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University of Oxford

standa.zivny@cs.ox.ac.uk

Abstract

We study methods for transforming valued constraint satisfaction problems (VCSPs)
to binary VCSPs. First, we show that the standard dual encoding preserves many aspects
of the algebraic properties that capture the computational complexity of VCSPs. Second,
we extend the reduction of CSPs to binary CSPs described by Buĺın et al. [LMCS’15] to
VCSPs. This reduction establishes that VCSPs over a fixed valued constraint language
are polynomial-time equivalent to Minimum-Cost Homomorphism Problems over a fixed
digraph.

1 Introduction

The valued constraint satisfaction problem (VCSP) is a general framework for problems that
involve finding an assignment of values to a set of variables, where the assignment must satisfy
certain feasibility conditions and optimise a certain objective function. The VCSP includes
as a special case the (purely decision) constraint satisfaction problem (CSP) [38] as well as
the (purely optimisation) minimum constraint satisfaction problem (Min-CSP), see [34] for a
recent survey.

Different subproblems of the VCSP can be obtained by restricting, in various ways, the set
of cost functions that can be used to express the constraints. Such a set of cost functions is
generally called a valued constraint language [16, 34]. For any such valued constraint language
Γ there is a corresponding problem VCSP(Γ), and it has been shown that the computational
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complexity of VCSP(Γ) is determined by certain algebraic properties of the set Γ known as
fractional polymorphisms [16]. The classical constraint satisfaction problem (CSP) [20] is
a special case of the VCSP in which all cost functions are relations. If a valued constraint
language Γ contains only relations then we call Γ a constraint language.

There has been significant progress on classifying the computational complexity of different
constraint languages [43, 23, 8, 12] and valued constraint languages [32, 25, 31, 51, 33, 52, 30].
Most notably, it has been shown that a dichotomy for constraint languages, conjectured by
Feder and Vardi [20], implies a dichotomy for valued constraint languages [30]. This result thus
resolves the complexity of valued constraint languages modulo the complexity of constraint
languages.

In binary VCSPs every valued constraint involves at most two variables; in other words,
the interaction between variables is only pairwise. In this paper we consider transformations
of the general VCSP, with constraints of arbitrary arity, to the binary VCSP. There are several
motivations for studying such reductions. Firstly, binary VCSPs have been extensively studied
in the context of energy minimisation problems in computer vision and machine learning [7, 39]
since pairwise interaction is enough to model interesting problems. Secondly, algorithms for
binary VCSPs may be easier to design, as discussed below in the case of submodular VCSPs.
Finally, various aspects of binary VCSPs, such as the algebraic properties that capture the
complexity of valued constraint languages, may be easier to study on binary instances.

One important class of valued constraint languages are the submodular languages [45]. It is
known that VCSP instances where all constraints are submodular can be solved in polynomial
time, although the algorithms that have been proposed to achieve this in the general case are
rather intricate and difficult to implement [27, 44]. In the special case of binary submodular
constraints a much simpler algorithm can be used to find a minimising assignment of values,
based on a standard max-flow algorithm [15]. Our results in this paper show that this simpler
algorithm can be used to obtain exact solutions to arbitrary VCSP instances with submodular
constraints (from a finite language) in polynomial time.

The more restricted question of which valued constraint languages can be transformed to
binary valued constraint languages over the same domain was studied in [18]. It was shown
in [55] that there are submodular valued constraint languages which cannot be expressed
(using min and sum) by binary submodular languages over the same domain.

However, there are two well-known methods for transforming a non-binary CSP into a
binary one over a different domain of values; the dual encoding [19] and the hidden variable
encoding [42]. Both encode the non-binary constraints to variables that have as domains of
possible labels the valid tuples of the constraints. That is, these techniques derive a binary
encoding of a non-binary constraint by changing the domain of the variables to an extensional
representation of the original constraints. A combination of these two encodings, known as
the double encoding, has also been studied [47]. It was observed in [36] that both of these
standard encodings can be extended to valued constraints.

It is also known that any CSP with a fixed constraint language is polynomial-time equiv-
alent to one where the constraint language consists of a single binary relation (i.e., a di-
graph) [20, 1, 14]. Recent work by Buĺın et al. shows that this reduction can be done in a
way that preserves certain algebraic properties of the constraint language that are known to
characterise the complexity of the corresponding CSP [14].

As our first contribution, we extend the idea of the dual encoding to valued constraint
satisfaction and show that this standard encoding preserves many aspects of the algebraic
properties that capture the complexity of valued constraint languages. In particular, we show
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that for any valued constraint language Γ of finite size, there is a one-to-one correspondence
between the fractional polymorphisms of Γ and the fractional polymorphisms of the binary
language Γd obtained by the dual encoding. Moreover, we show that Γd preserves all identities
involving (fractional) polymorphisms of Γ, where an identity is an equality between arbitrary
expressions involving only polymorphisms and all variables are universally quantified. A large
body of research on the complexity of (valued) constraint languages has shown that it is the
identities satisfied by the (fractional) polymorphisms that determine both the complexity and
suitable algorithmic solution techniques [34].

Hence, as well as providing a way to convert any given instance of the VCSP to an
equivalent binary instance, we show that the dual encoding also provides a way to convert
any valued constraint language to a binary language with essentially the same algebraic
properties, and hence essentially the same complexity and algorithmic properties. We remark
that a similar transformation from constraint languages of arbitrary arity to sets of unary and
binary relations was used in [5] (and also implicitly in [3]), for the special case of the CSP.

While the idea of the dual encoding is very simple, the resulting Γd contains a single
unary cost function and more than one binary relation (in general). However, all the binary
relations that are included in Γd are of the same type and correspond to enforcing equality
on the shared variables between different constraints in instances of VCSP(Γ).

As our second contribution, we adapt the proof from [14] to the VCSP framework and show
that each VCSP, with a fixed valued constraint language Γ of finite size, is polynomial-time
equivalent to a VCSP with valued constraint language Γe, where Γe consists of a single unary
cost function and a single binary relation (i.e., a digraph). Problems of this type have been
studied as the Minimum-Cost Homomorphism Problem (MinCostHom) [22, 24, 49], which
makes this result somewhat surprising as it was believed that MinCostHom was essentially a
more restricted optimisation problem than the VCSP.

This second reduction, which we call the extended dual, again preserves many aspects of
the algebraic properties that capture the complexity of valued constraint languages. In fact,
we show that it preserves all identities involving (fractional) polymorphisms of Γ which are
linear and balanced. These are the key properties for characterising most known tractable
cases.

However, the extended dual encoding does not preserve all identities: in particular, it
does not preserve the (unbalanced) identities defining Mal’tsev polymorphisms. In fact it is
impossible for any reduction to a single binary relation to preserve such identities, without
changing the algorithmic nature of the problem, because it has been shown that any single
binary relation that has a Mal’tsev polymorphism also has a majority polymorphism [29]; the
former is solved by a generalised form of Gaussian elimination whereas the latter is solved by
local consistency operations.

In summary, our first reduction, using the dual encoding, transforms any valued constraint
problem over an arbitrary valued constraint language Γ of finite size to a binary problem
with more than one form of binary constraint, which satisfies all of the identities on fractional
polymorphisms satisfied by Γ. Our second reduction, using the extended dual encoding,
transforms any valued constraint problem over an arbitrary valued constraint language Γ of
finite size to a binary problem with just one form of binary constraint, which satisfies an
important subclass of the identities satisfied by Γ.
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2 Background and Definitions

In this section we will give the necessary background. Section 2.1 defines the VCSP, whereas
Sections 2.2 and 2.3 present the basics of the algebraic approach to studying the complexity
of the VCSP.

2.1 Valued Constraint Satisfaction Problems

Throughout the paper, let D be a fixed finite set and let Q = Q ∪ {∞} denote the set of
rational numbers with (positive) infinity. For any m-tuple x ∈ Dm we will write x[i] for its
ith component.

Definition 1. An m-ary cost function over D is any mapping φ : Dm → Q. We denote by

Φ
(m)
D the set of all m-ary cost functions and let ΦD =

⋃

m≥1 Φ
(m)
D .

We call D the domain, the elements of D labels (for variables), and we say that the cost
functions in ΦD take values (which are elements of Q).

We denote by Feas(φ) = {x ∈ Dm |φ(x) <∞} the underlying feasibility relation of a given
m-ary cost function. A cost function φ : Dm → Q is called finite-valued if Feas(φ) = Dm.

It is convenient to highlight the special case when the values taken by a cost function are
restricted to 0 and ∞.

Definition 2. Any mapping φ : Dm → {0,∞} will be called a crisp cost function (or simply
a relation) and will be identified with the set {x ∈ Dm | φ(x) = 0}.

Definition 3. Let X = {x1, . . . , xn} be a set of variables. A valued constraint over X is an

expression of the form φ(x) where φ ∈ Φ
(m)
D and x ∈ Xm, for some positive integer m. The

integer m is called the arity of the constraint, the tuple x is called the scope of the constraint,
and the cost function φ is called the constraint cost function.

Definition 4. An instance I of the valued constraint satisfaction problem (VCSP) is specified
by a finite set X = {x1, . . . , xn} of variables, a finite set D of labels, and an objective function
ΦI expressed as follows:

ΦI(x1, . . . , xn) =

q
∑

i=1

φi(xi) (1)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over X. Each constraint can appear
multiple times in ΦI .

Any assignment of labels from D to the variables of X for which ΦI is finite will be called
a feasible solution to I. The goal is to find a feasible solution that minimises ΦI .

Definition 5. Any set Γ ⊆ ΦD of cost functions on some fixed domain D is called a valued
constraint language, or simply a language.

We will denote by VCSP(Γ) the class of all VCSP instances in which the constraint cost
functions are all contained in Γ.

The classical constraint satisfaction problem (CSP) can be seen as a special case of the
VCSP in which all cost functions are crisp (i.e., relations). A language containing only crisp
cost functions is called crisp.

A language Γ is called binary if all cost functions from Γ are of arity at most two.
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2.2 Fractional Polymorphisms

Over the past few years there has been considerable progress in investigating the complex-
ity of different kinds of constraint satisfaction problems and valued constraint satisfaction
problems by looking at the algebraic properties of the relations and cost functions that de-
fine the constraints and valued constraints [28, 20, 11, 16] resulting in strong complexity
classifications [32, 25, 51, 30]. We present here some of the tools used in this line of work.

We first need some standard terminology. A function f : Dk → D is called a k-ary
operation on D. For any tuples x1, . . . ,xk ∈ Dm, we denote by f(x1, . . . ,xk) the tuple in Dm

obtained by applying f to x1, . . . ,xk componentwise.

Definition 6. Let φ : Dm → Q be a cost function. An operation f : Dk → D is a polymor-
phism of φ if, for any x1, . . . ,xk ∈ Feas(φ) we have f(x1, . . . ,xk) ∈ Feas(φ).

We denote by Pol(Γ) the set of all operations on D which are polymorphisms of all φ ∈ Γ.
We denote by Pol(k)(Γ) the k-ary operations in Pol(Γ).

The k-ary projections, defined for all 1 ≤ i ≤ k, are the operations e
(k)
i such that e

(k)
i (x1, . . . , xk) =

xi. It follows directly from Definition 6 that all projections are polymorphisms of all valued
constraint languages.

Polymorphisms are sufficient to analyse the complexity of the CSP, but for the VCSP,
it has been shown that in general we need a more flexible notion that assigns weights to a
collection of polymorphisms [16, 21].

Definition 7. Let φ : Dm → Q be a cost function. A probability distribution ω on the set
of k-ary polymorphisms of φ (i.e., ω : Pol(k)(φ) → Q≥0 with

∑

f∈Pol(k)(φ) ω(f) = 1) is called

a k-ary fractional polymorphism of φ if for any x1, . . . ,xk ∈ Feas(φ)

∑

f∈Pol(k)(φ)

ω(f)φ(f(x1, . . . ,xk)) ≤
1

k

k
∑

i=1

φ(xi) . (2)

We denote by fPol(k)(Γ) the set of k-ary fractional polymorphisms of all φ ∈ Γ and set
fPol(Γ) =

⋃

k≥1 fPol
(k)(Γ).

For any ω ∈ fPol(Γ) we denote by supp(ω) the set {f ∈ Pol(k)(φ) | ω(f) > 0} and define
supp(Γ) =

⋃

ω∈fPol(Γ) supp(ω).

Example 1. Let D = {0, 1}. Let Γ be the set of cost functions φ : Dm → Q that admit
ωsub as a fractional polymorphism, where ωsub is defined by supp(ωsub) = {min,max} and
ωsub(min) = ωsub(max) = 1

2 ; here min and max are the binary operations returning the
smaller and larger of their two arguments, respectively, with respect to the usual order 0 < 1.

In this case Γ is precisely the well-studied class of submodular set functions [45].

2.3 Identities and Rigid Cores

Many important properties of polymorphisms can be specified by identities, i.e., equalities of
terms that hold for all choices of the variables involved in them. More formally, an operational
signature is a set of operation symbols with arities assigned to them and an identity is an
expression t1 = t2 where t1 and t2 are terms in this signature.

Here are some examples of important properties of operations that are specified by iden-
tities:
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• An operation f is idempotent if it satisfies the identity f(x, . . . , x) = x.

• A k-ary (k ≥ 2) operation f is weak near unanimity (WNU) if it is idempotent and
satisfies the identities f(y, x, . . . , x, x) = f(x, y, . . . , x, x) = · · · = f(x, x, . . . , x, y).

• A k-ary (k ≥ 2) operation f is cyclic if f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1).

• A k-ary (k ≥ 2) operation f is symmetric if f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) for each
permutation π on {1, . . . , k}.

• A k-ary (k ≥ 3) operation f is edge if

f(y, y, x, x, . . . , x) = f(y, x, y, x, x, . . . , x) = x

and, for all 4 ≤ i ≤ k,

f(x, . . . , x, y, x, . . . , x) = x where y is in position i.

An identity t1 = t2 is said to be linear if both t1 and t2 involve at most one occurrence of
an operation symbol (e.g., f(x, y) = g(x), or h(x, y, x) = x). An identity t1 = t2 is said to
be balanced1 if the set of variables occurring in t1 and t2 are the same. For example, both
f(x, x, y) = g(y, y, x) and f(x, x, x) = x are balanced identities. A set Σ of identities is linear
if it only contains linear identities, idempotent if for each operation symbol, f , the identity
f(x, x, ..., x) = x is in Σ and balanced if all of the identities in Σ are balanced.

Note that the identities defining WNU, symmetric and cyclic operations above are linear
and balanced. The identities defining edge operations, on the other hand, are linear but not
balanced.

We now give some examples of results about the VCSP that are described using identities.
We start with the notion of rigid cores [33].

Definition 8. A valued constraint language Γ is a rigid core if the only unary operation in
supp(Γ) is the identity operation.

It is known that with respect to tractability it suffices to consider valued constraint lan-
guages that are rigid cores. Indeed, for every valued constraint language Γ which is not a rigid
core there is another language Γ′ which is a rigid core2 and with the property that VCSP(Γ)
is polynomial-time equivalent to VCSP(Γ′) [33]. It is also known that Γ is a rigid core if and
only if all operations from supp(Γ) are idempotent [33].

The “algebraic dichotomy conjecture” [11], a refinement of the dichotomy conjecture for
the CSP [20], can be re-stated as follows [11, 37]: for a rigid core crisp language Γ, CSP(Γ)
is tractable if Γ admits a WNU polymorphism of some arity, and NP-complete otherwise.
Equivalently, CSP(Γ) is tractable if Γ admits a cyclic polymorphism of some arity, and is
NP-complete otherwise.

The “bounded-width theorem” for the CSP can be restated as follows [35, 4, 9, 13]: for a
rigid core crisp language Γ, the problem CSP(Γ) has bounded width (and thus can be solved
using local consistency methods) if and only if Γ has WNU polymorphisms of all arities.

1 This notion of balanced identity is not related to the balanced digraphs introduced in Section 5.
2 Γ′ is the restriction of Γ to a subset D′ of the domain of Γ together with the unary relations ud for every

d ∈ D
′, where ud is defined by ud(d) = 0 and ud(x) = ∞ if x 6= d.
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There is an algorithmic technique for the CSP that generalises the idea of using Gaussian
elimination to solve simultaneous linear equations. The most general version of this approach
is based on the property of having a polynomial-sized representation for the solution set of
any instance [10, 26]. This algorithm is called the “few subpowers” algorithm (because it is
related to a certain algebraic property to do with the number of subalgebras in powers of an
algebra). Crisp languages where this algorithm is guaranteed to find a solution (or show that
none exists) were captured in [26]: for a crisp language Γ, the problems CSP(Γ) are solvable
using the few subpowers algorithm if Γ admits an edge polymorphism of some arity. In fact
the converse to this theorem is true in the following sense: the absence of edge polymorphisms
of Γ implies that the presence of small enough representations is not guaranteed [26].

For finite-valued constraint languages, the following complexity classification has been
obtained [51]: for a finite-valued constraint language Γ, VCSP(Γ) is tractable if supp(Γ)
contains a binary symmetric operation, and is NP-complete otherwise.

The power of the basic linear programming relaxation has been characterised as fol-
lows [31]: for a valued constraint language Γ, the problem VCSP(Γ) is solvable optimally
by the basic linear programming relaxation if and only if supp(Γ) contains symmetric opera-
tions of all arities.

The power of constant-level Sherali-Adams linear programming relaxations has been char-
acterised as follows [52]: for a valued constraint language Γ, the problem VCSP(Γ) is solvable
optimally by a constant-level of the Sherali-Adams linear programming relaxation [46] if and
only if the problem VCSP(Γ) is solvable optimally by the third level of the Sherali-Adams
linear programming relaxation if and only if supp(Γ) contains WNU operations of all arities.

3 Reduction to a Single Combined Cost Function

Throughout this paper we will make use of the following simple but useful observation about
arbitrary finite languages.

Proposition 1. For any valued constraint language Γ such that |Γ| is finite, there is a single
cost function φΓ over the same domain such that:

1. Pol(Γ) = Pol({φΓ});

2. fPol(Γ) = fPol({φΓ});

3. VCSP(Γ) and VCSP({φΓ}) are polynomial-time equivalent.

Proof. Let Γ consist of q cost functions, φ1, . . . , φq, with arities m1, . . . ,mq, respectively.
Without loss of generality, we assume that none of the φi are the constant function ∞. Let
m =

∑q
i=1mi. Define the cost function φΓ, with arity m, by setting φΓ(x1, . . . , xm) =

φ1(x1, . . . , xm1) + φ2(xm1+1, . . . , xm1+m2) + . . .+ φq(xm−mq+1, . . . , xm), and set Γc = {φΓ}.
Since the operations in Pol(Γ) are applied co-ordinatewise, it follows easily from Defini-

tion 6 that Pol(Γ) = Pol({φΓ}), and since inequalities are preserved by addition, it follows
easily from Definition 7 that fPol(Γ) = fPol({φΓ}).

For any instance I of VCSP(Γ) we can obtain an equivalent instance I ′ of VCSP({φΓ}) by
simply adding irrelevant variables to the scope of each constraint φi(x), which are constrained
by the elements of Γ \ {φi}, and then minimising over these. The assignments that minimise
the objective function of I can then be obtained by taking the assignments that minimise the
objective function of I ′ and restricting them to the variables of I.
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Conversely, any instance I ′ of VCSP({φΓ}) can clearly be expressed as an instance of
VCSP(Γ) since each constraint in I ′ can be expressed as a sum of constraints whose constraint
cost functions are contained in Γ.

4 Reduction by the Dual Encoding

In this section we will describe the dual encoding introduced in [19] for the CSP and later
extended in [36] to the VCSP.

4.1 From a language Γ to a binary language Γd

Definition 9. Let Γ be any valued constraint language over D, such that |Γ| is finite, and
let φΓ be the corresponding single cost function, of arity m, as defined in Proposition 1.

The dual of Γ, denoted Γd, is the binary valued constraint language with domain D′ =
Feas(φΓ) ⊆ Dm, defined by

Γd = {φ′
Γ} ∪

⋃

i,j∈{1,...,m}

{matchi,j} ,

where φ′
Γ : D′ → Q is the unary finite-valued cost function on D′ defined by φ′

Γ(x) =
φΓ(x1, . . . , xm) for every x = (x1, . . . , xm) ∈ D′, and each matchi,j : D′ × D′ → Q is the
binary relation on D′ defined by

matchi,j(x,y) =

{

0 if x[i] = y[j]

∞ otherwise.

The language Γd contains a single unary cost function, which returns only finite values,
together with m2 binary relations and hence is a binary valued constraint language.

Example 2. Let Γ = {φeq}, where φeq is the equality relation on D, i.e., φeq : D ×D → Q

is defined by φeq(x, y) = 0 if x = y and φeq(x, y) =∞ if x 6= y.
Then D′ = Feas(φeq) = {(a, a) |a ∈ D} and Γd consists of a single unary finite-valued cost

function φ′
eq, together with four binary relations match1,1,match1,2,match2,1, and match2,2.

Moreover, φ′
eq(x) = 0 for every x ∈ D′, and hence is trivial. All four of the other relations

are in fact equal to the equality relation on D′ defined by {((a, a), (a, a)) | (a, a) ∈ D′}. Thus,
the dual of the equality relation on D consists of a trivial unary relation, together with the
equality relation on D′, where |D| = |D′|.

Example 3. Let Γ = {φsum}, where φsum : {0, 1}3 → Q is defined as follows:

φsum(x, y, z) =

{

x+ 2y + 3z if x+ y + z = 1

∞ otherwise.

Then D′ = Feas(φsum) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and Γd consists of a single unary finite-
valued cost function φ′

sum, together with nine binary relationsmatch1,1,match1,2, match1,3, . . . ,match3,3.
If we set a = (1, 0, 0),b = (0, 1, 0), c = (0, 0, 1), then we have φ′

sum(a) = 1;φ′
sum(b) = 2

and φ′
sum(c) = 3. Also

match1,1(x,y) =

{

0 if (x,y) ∈ {(a,a), (b,b), (b, c), (c,b), (c, c)}

∞ otherwise
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match1,2(x,y) =

{

0 if (x,y) ∈ {(a,b), (b,a), (b, c), (c,a), (c, c)}

∞ otherwise

and so on.

4.2 The dual encoding using Γd

We will need the following notation: for any xi ∈ Xm with xi = (xi1 , . . . , xim), we write
vars(xi) for the set {xi1 , . . . , xim}.

Definition 10. Let Γ be any valued constraint language over D, such that |Γ| is finite, and
let φΓ be the corresponding single cost function, of arity m, as defined in Proposition 1. Let
I be an arbitrary instance of VCSP({φΓ}) with variables X = {x1, . . . , xn}, domain D, and
constraints φΓ(x1), . . . , φΓ(xq), where xi ∈ Xm for all 1 ≤ i ≤ q.

The dual of I, denoted Id, is defined to be the following instance of VCSP(Γd):

• The variables V ′ = {x′1, . . . , x
′
q} of Id are the constraints of I.

• The domain of Id is D′ = Feas(φΓ) ⊆ Dm.

• For every 1 ≤ i ≤ q, there is a unary constraint φ′
Γ(x

′
i), where φ

′
Γ : D′ → Q is as defined

in Definition 9.

• If the scopes of two constraints of I, say φΓ(xi) and φΓ(xj), overlap, then there are
binary constraints between x′i and x′j enforcing equality at the overlapping coordinate
positions. More specifically, if xi = (xi1 , . . . , xim), xj = (xj1 , . . . , xjm), and vars(xi) ∩
vars(xj) 6= ∅ then there is a binary constraintmatchk,l(x

′
i, x

′
j) for every k, l ∈ {1, . . . ,m}

with ik = jl.

The dual encoding provides a way to reduce instances of VCSP(Γ) to instances of VCSP(Γd).
Our next result extends this observation to obtain the reverse reduction as well.

Proposition 2. For any valued constraint language Γ such that |Γ| is finite, if Γd is the dual
of Γ, then VCSP(Γ) and VCSP(Γd) are polynomial-time equivalent.

Proof. By Proposition 1 we may assume that Γ consists of a single cost function φΓ : Dm → Q.
Moreover, since D is finite, and m is fixed, we may assume that this cost function is given
extensionally as a table of values.

Hence, for any instance I of VCSP(Γ) we can construct in polynomial time the dual
instance Id in VCSP(Γd), as defined above (Definition 10). It is straightforward to show
that the assignments that minimise the objective function of Id correspond precisely to the
assignments that minimise the objective function of I, and hence we have a polynomial-time
reduction from VCSP(Γ) to VCSP(Γd).

For the other direction, given any instance I ′ in VCSP(Γd) we now indicate how to
construct a corresponding instance I in VCSP(Γ).

For each variable x′i of I
′ we introduce a fresh set of m variables for I. If there is a unary

constraint φ′
Γ(x

′
i) ∈ I

′, then we introduce the constraint φΓ on the corresponding variables
of I. If there is no unary constraint on x′i, then we introduce the constraint Feas(φΓ) on the
corresponding variables of I to code the fact that the domain of x′i is D

′. If there is a binary
constraint matchk,l(x

′
i, x

′
j) in I

′, then we merge the kth and lth variables in the corresponding
sets of variables in I. This construction can be carried out in polynomial time.
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We have constructed an instance I in VCSP({φΓ,Feas(φΓ)} such that assignments min-
imising the objective function of I correspond precisely to assignments minimising the objec-
tive function of I ′. Hence we have established a polynomial-time reduction from VCSP(Γd)
to VCSP(Γ ∪ {Feas(φΓ)}).

However, it follows from the proof of [16, Theorem 4.3] that VCSP(Γ ∪ {Feas(φΓ)}) can
be reduced to VCSP(Γ) in polynomial time.

4.3 Preservation of algebraic properties

Our next result shows that the polymorphisms of Γd are very closely related to the polymor-
phisms of Γ.

Theorem 1. Let Γ be a valued constraint language such that |Γ| is finite, and let Γd be the
dual of Γ. There is a one-to-one correspondence between the polymorphisms of Γ and the
polymorphisms of Γd, defined as follows. For any f ∈ Pol(k)(Γ) the corresponding operation
fd ∈ Pol(k)(Γd) is defined by fd(x1, . . . ,xk) = f(x1, . . . ,xk) for all xi in the domain of Γd.

Proof. By Proposition 1 we may assume that Γ consists of a single cost function φΓ : Dm → Q,
and hence that the domain D′ of Γd is a subset of Dm.

First, consider any f : Dk → D ∈ Pol(k)(Γ), and the corresponding fd : (D′)k → D′ given
by fd(x1, . . . ,xk) = f(x1, . . . ,xk) for all xi ∈ D′. Since f is a polymorphism of φΓ, it is also
a polymorphism of the unary cost function φ′

Γ in Γd. It is straightforward to check that fd is
also a polymorphism of all binary matchi,j relations in Γd (since it will return the same label

at all positions where its arguments have the same label). Hence fd ∈ Pol(k)(Γd).
Now consider any fd : (D

′)k → D′ ∈ Pol(k)(Γd). Since fd is a polymorphism of matchi,i it
must return an element of D′ whose label in position i is a function, gi, of the labels in position
i of its arguments. Moreover, since fd is a polymorphism of matchi,j , the functions gi and
gj must return the same results for all possible arguments from D′. Hence, there is a single
function g : Dk → D such that the result returned by fd(x1, . . . ,xk) is equal to g(x1, . . . ,xk).
Now, since fd must return an element of D′, it follows that g must be a polymorphism of φΓ,
which gives the result.

The individual cost functions in Γd often have other polymorphisms, that are not of the
form indicated in Theorem 1, but the only polymorphisms that are shared by every cost
function in Γd are those that correspond to polymorphisms of Γ in this way, as the next
example illustrates.

Example 4. Recall the language Γ = {φsum}, defined in Example 3.
The cost function φsum has no polymorphisms, except for the projection operations on

D = {0, 1}.
However, the unary finite-valued cost function φ′

sum, has every operation on D′ = {a,b, c}
as a polymorphism.

The binary relation match1,1 has many operations on D′ as polymorphisms, including all
of the constant operations.

The binary relation match1,2 also has many operations on D′ as polymorphisms, including
the ternary majority operation g defined by

g(x,y, z) =











x if x = y or x = z

y if y = z

c otherwise
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but not including the constant operation returning the label a, or the constant operation
returning the label b.

Continuing in this way it can be shown that the only operations that are polymorphisms
of every cost function in Γd are the projection operations on D′.

One simple consequence of Theorem 1 is that the polymorphisms of Γ and the polymor-
phisms of Γd satisfy exactly the same identities.

Corollary 1. Let Γ be a valued constraint language such that |Γ| is finite, and let Γd be the
dual of Γ. Then the operations in Pol(Γ) and the operations in Pol(Γd) satisfy exactly the
same identities.

Corollary 2. Let Γ be a valued constraint language such that |Γ| is finite, and let Γd be the
dual of Γ. Then Γ is a rigid core if and only if Γd is a rigid core.

Proof. Follows immediately from Corollary 1, since the property of being idempotent is spec-
ified by an identity, as discussed in Section 2.3.

Following our discussion in Section 2.3, Corollary 1 shows that the property of being
solvable using local consistency methods or by the few subpowers algorithm is possessed by
a language Γ if and only if it is also possessed by the associated binary language Γd.

Although the polymorphisms of Γ and Γd satisfy the same identities, the polymorphisms
of Γd do not, in general, have all the same properties as the polymorphisms of Γ. For
example, Pol(Γ) might include the binary operation min that returns the smaller of its two
arguments, according to some fixed ordering of D. This operation has the property of being
conservative, which means that the result is always equal to one of the arguments. However,
the corresponding operation mind in Pol(Γd) is not generally conservative, since, for example,
mind((a, b), (b, a)) = (a, a) for all a < b.

Our next result shows that the fractional polymorphisms of Γd are closely related to the
fractional polymorphisms of Γ.

Theorem 2. Let Γ be a valued constraint language such that |Γ| is finite, and let Γd be the dual
of Γ. There is a one-to-one correspondence between the fractional polymorphisms of Γ and the
fractional polymorphisms of Γd, defined as follows. For any ω : Pol(k)(Γ)→ Q≥0 ∈ fPol(k)(Γ)
the corresponding function ωd : Pol

(k)(Γd)→ Q≥0 ∈ fPol(k)(Γd) is defined by ωd(fd) = ω(f) for
all f ∈ Pol(k)(Γ) and their corresponding operations fd ∈ Pol(k)(Γd) (as defined in Theorem 1).

Proof. By Proposition 1 we may assume that Γ consists of a single cost function φΓ : Dm → Q,
and hence that the domain D′ of Γd is a subset of Dm.

First, consider any ω : Pol(k)(Γ) → Q≥0 ∈ fPol(k)(Γ), and the corresponding ωd :
Pol(k)(Γd) → Q≥0 given by ωd(fd) = ω(f) for all f ∈ Pol(k)(Γ). Since ω is a fractional
polymorphism of φΓ, it is easy to check that ωd satisfies the conditions in Definition 7, and
hence is a fractional polymorphism of the unary cost function φ′

Γ in Γd. Since all other
cost functions in Γd are the matchi,j relations, the inequality condition in Definition 7 holds
trivially for all these cost functions, and hence ωd is a fractional polymorphism of all cost
functions in Γd.

Now consider any ωd : Pol(k)(Γd) → Q≥0 ∈ fPol(k)(Γd). Since ωd is a fractional polymor-
phism of φ′

Γ, the function ω : Pol(k)(Γ)→ Q≥0 that assigns the same weights to corresponding

elements of Pol(k)(Γ) satisfies the condition of Definition 7, and hence is a fractional polymor-
phism of φΓ.
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Following our discussion in Section 2.3, combining Corollary 1 with Theorem 2 shows that
the property of being solvable using the basic linear programming relaxation or by constant
levels of the Sherali-Adams linear programming relaxations is possessed by a language Γ if
and only if it is also possessed by the associated binary language Γd.

5 Reduction by the Extended Dual Encoding

In this section we will describe our new extension of the reduction from [14] to the VCSP.

5.1 From a language Γ to a binary language Γe

Throughout this section it will be helpful to view a binary relation on a set as a directed
graph (digraph) where the vertices are the elements of the set, and the directed edges are the
binary tuples in the relation.

First we introduce some simple definitions relating to digraphs that we will need in our
constructions. We define a digraph as a structure G = (V G, EG) with vertices v ∈ V G and
directed edges e ∈ EG. We will sometimes write the directed edge (a, b) ∈ EG as a→ b.

Definition 11. A digraph is an oriented path if it consists of a sequence of vertices v0, v1, ...vk
such that precisely one of (vi−1, vi), (vi, vi−1) is an edge, for each i = 1, ..., k.

We now adapt the construction from [14] to valued constraint languages. The construction
makes use of zigzags, where a zigzag is the oriented path • → • ← • → •. The important
property we will use is that there is a surjective homomorphism from a zigzag to a single edge
but not from a single edge to a zigzag.

Definition 12. Let Γ be any valued constraint language over D, such that |Γ| is finite, and
let φΓ be the corresponding single cost function, of arity m, as defined in Proposition 1. As
before, we define D′ = Feas(φΓ) ⊆ Dm.

The extended dual of Γ, denoted Γe, is the binary valued constraint language {DΓ, µΓ},
where DΓ is a binary relation, and µΓ is a unary cost function, as defined below.

For S ⊆ {1, 2, . . . ,m} define QS,i to be a single edge if i ∈ S, and a zigzag if i ∈
{1, 2, . . . ,m} \ S. Now define the oriented path QS by

QS = • → • +̇ QS,1 +̇ QS,2 +̇ · · · +̇ QS,m +̇ • → •

where +̇ denotes the concatenation of paths.
To define the digraph DΓ, consider the binary relation D ×D′ as a digraph, and replace

each edge (d,x) with the oriented path Q{i | x[i]=d}. The resulting digraph DΓ has vertex set

V DΓ = D ∪D′ ∪ E, where E consists of all the additional internal vertices from the oriented
paths QS.

Finally, let µΓ be the unary cost function on V DΓ such that

µΓ(v) =

{

φΓ(v) if v ∈ D′

0 otherwise.

The language Γe contains a single binary relation DΓ, together with a unary cost function
µΓ, which returns only finite values, and hence is a binary valued constraint language with
domain V DΓ .

12
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(1, 0) (0, 1)

Figure 1: The digraph DΓ built from the valued constraint language Γ described in Example 5.

Example 5. Consider the valued constraint language Γ over the domain D = {0, 1} contain-
ing the single (binary) cost function

ρ(x, y) =







2 if (x, y) = (0, 1)
1 if (x, y) = (1, 0)
∞ otherwise.

The digraph DΓ constructed from ρ is shown in Figure 5.1. The unary cost function built
from ρ is

µΓ(v) =







2 if v = (0, 1)
1 if v = (1, 0)
0 otherwise

for every vertex v ∈ V DΓ .

The binary relation DΓ defined in Definition 12 is identical to the digraph defined in [14,
Definition 3.2], where it is shown that the number of vertices in DΓ is (3n+ 1)|D′||D|+ (1−
2n)|D′|+ |D| and the number of edges is (3n+2)|D′||D| − 2n|D′|. Also, as noted in [14], this
construction can be performed in polynomial time.

5.2 The extended dual encoding using Γe

We now show how to reduce instances of VCSP(Γ) to instances of VCSP(Γe) using a construc-
tion that we call the extended dual encoding. This construction is similar in overall structure
to the hidden variable encoding described in [42], but has only one form of binary constraint.

Definition 13. Let Γ be any valued constraint language over D, such that |Γ| is finite, and
let φΓ be the corresponding single cost function, of arity m, as defined in Proposition 1. Let
I be an arbitrary instance of VCSP({φΓ}) with variables X = {x1, . . . , xn}, domain D, and
constraints φΓ(x1), . . . , φΓ(xq), where xi ∈ Xm for all 1 ≤ i ≤ q.

The extended dual of I, denoted Ie, is defined to be the following instance of VCSP(Γe):

• The variables of Ie are X ∪ {x′1, . . . , x
′
q} ∪ Y where {x′1, . . . , x

′
q} correspond to the

constraints of I and Y contains additional variables as described below.
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• The domain of Ie is the same as the domain of Γe, as defined in Definition 12; that is,
D ∪D′ ∪ E, where D′ = Feas(φΓ) ⊆ Dm and E contains the additional vertices of DΓ.

• For every 1 ≤ i ≤ q, there is a unary constraint µΓ(x
′
i), where µΓ is as defined in

Definition 12.

• For each constraint φΓ(xi) of I, where xi = (xi1 , . . . , xim), there is an oriented path Q{j}

from each xij to x′i (where QS for any S ⊆ {1, 2, . . . ,m} is as defined in Definition 12).
Each such path uses disjoint sets of intermediate vertices, and each oriented edge on
these paths, say (y, y′), is the scope of a constraint in Ie with relation DΓ. The set Y is
the union of all such intermediate vertices over all such paths.

To verify that the extended dual of I gives a reduction from VCSP(Γ) to VCSP(Γe) we
introduce the following terminology.

Given any digraph G, we can define an associated undirected graph G∗ where each directed
edge of G is replaced by an undirected edge on the same pair of vertices. We will say that a
digraph G is connected if G∗ is connected, and we will define the connected components of G
to be the connected components of G∗.

For any digraph G, if G∗ contains a cycle, then the corresponding set of directed edges
in G will be called an oriented cycle. The length of an oriented cycle is defined as being the
absolute value of the difference between the number of edges oriented in one direction around
the cycle and edges oriented in the opposite direction. A connected digraph G is said to be
balanced if all of its oriented cycles have zero length [20].

Note that the digraph DΓ described in Definition 12 is balanced. Moreover, the binary
scopes of the extended dual instance Ie constructed in Definition 13 also form a balanced
digraph which we will call GIe (if GIe is not connected then we may consider each connected
component separately).

The vertices of any balanced digraphG can be organised into levels, which are non-negative
integers given by a function lvl such that for every directed edge (a, b) ∈ EG, lvl(b) = lvl(a)+1.
The minimum level of G is 0, and the top level is called the height of G.

Any feasible solution to Ie must assign to each vertex x in GIe a label dx chosen from the
vertices of DΓ, which must be at the same level as x.

Every variable xi ∈ X of Ie is at level 0 in GIe , and so any feasible solution to Ie must
assign to xi a label at level 0 in DΓ, that is, an element d(xi) of D. Similarly, every variable
x′j of Ie is at level m+ 2 in GIe , and so any feasible solution to Ie must assign to x′j a label
at level m+ 2 in DΓ, that is, an element d(x′j) of D

′ = Feas(φΓ).
Every other variable y of Ie lies on an oriented path of the form Q{k} from some xi to x′j,

and so any feasible solution to Ie must assign to all variables on this oriented path a label on
some fixed oriented path of the form QS in DΓ. By the construction of the oriented paths QS

(see Definition 12), the labels assigned to the variables in a path of the form Q{k} must lie in
an oriented path of the form QS for some set S that contains the index k [14, Observation 3.1].
By Definition 12, such a path exists in DΓ if and only if d(xi) = d(x′j)[k].

Hence there is a one-to-one correspondence between feasible solutions to Ie and feasible
solutions to I. The cost of each feasible solution to Ie is determined by the sum of the values
given by the cost function µΓ for the labels assigned to the variables x′i, and hence is equal
to the cost of the corresponding solution to I. Hence the extended dual encoding specified in
Definition 13 provides a way to reduce instances of VCSP(Γ) to instances of VCSP(Γe).

Our next result extends this observation to obtain the reverse reduction as well.
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Theorem 3. For any valued constraint language Γ such that |Γ| is finite, if Γe is the extended
dual of Γ, then VCSP(Γ) and VCSP(Γe) are polynomial-time equivalent.

Proof. By Proposition 1 we may assume that Γ consists of a single cost function φΓ : Dm → Q.
Moreover, since D is finite, and m is fixed, we may assume that this cost function is given
extensionally as a table of values.

Hence, for any instance I of VCSP(Γ) we can construct in polynomial time the extended
dual instance Ie in VCSP(Γe) as described in Definition 13. As we have just shown, the
assignments that minimise the objective function of Ie correspond precisely to the assignments
that minimise the objective function of I, and hence we have a polynomial-time reduction
from VCSP(Γ) to VCSP(Γe).

For the other direction, given any instance I ′ in VCSP(Γe) we now indicate how to solve
it in polynomial time, or else construct in polynomial time a corresponding instance I ′d in
VCSP(Γd). We can then appeal to Proposition 2.

Consider the digraph G formed by the binary scopes of I ′. Since each connected compo-
nent can be considered separately, we may assume that G is connected. Moreover, if G is not
balanced, then I ′ has no feasible solutions, so we may assume that G is balanced (which can
be checked in polynomial time).

Any feasible solution to I ′ must assign each vertex in G a label chosen from the vertices
of DΓ, in a way which preserves the differences in levels between different vertices. Hence if
the height of G is greater than the height of DΓ, then I

′ has no feasible solutions, so we may
assume that the height of G is less than or equal to the height of DΓ.

Now consider the case when G is balanced and of height h which is strictly less than
the height of DΓ. In this case every vertex of G must be assigned a vertex in some induced
sub-graph of DΓ which is connected and of height h. For a fixed DΓ, there are a fixed number
of such subgraphs, and they all have one of three forms:

• An oriented path which is a subpath of QS , for some set S, as defined in Definition 12;

• A collection of such oriented paths which all share their initial vertex (and no others);

• A collection of such oriented paths which all share their final vertex (and no others).

In all three cases we can order the vertices of the subgraph by increasing level in DΓ, and within
that by which path they belong to (when there is more than one), and within that by the
distance along the path. With the vertices ordered in this way, the subgraph has the property
that for all edges (a, b), (c, d) with a < c we have b ≤ d, so it admits the binary polymorphisms
min and max. Together with the fact that any unary cost function is submodular for any
ordering of the domain, it follows that in all such cases the corresponding valued constraint
language is submodular, and an optimal solution can be found in polynomial time [15].

Finally, we consider the case when G is balanced and has the same height as DΓ. In this
case only vertices at the top level in G can be assigned labels at the top level in DΓ. Let
these vertices of G be x1, x2, . . . , xq. We will build an instance I ′d of VCSP(Γd) beginning
with these vertices as variables.

If there is a unary constraint with cost function µΓ on any of these vertices in I ′, then
we add a unary constraint with cost function φ′

Γ in I ′d, where φ′
Γ is the unary cost function

defined in Definition 9. (Note that any other unary constraints on other variables in I ′ will
not affect the cost of a feasible solution, because all other variables must be assigned a label
with cost 0.)
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To complete the construction of I ′d we will add constraints of the form matchk,l between
pairs of vertices xi and xj where it can be shown from the structure of G that they must be
assigned labels that agree in positions k and l respectively.

To examine the structure of G, consider the connected components of the induced sub-
graph of G obtained by removing all vertices at the top level and all vertices at level 0. Each
such component is a balanced digraph of height at most m which must be assigned labels
from a single oriented path in DΓ of the form QS , for some set S ⊆ {1, ...,m}. Note that the
choice of oriented path in DΓ is fixed by the assignment to any vertex in the component.

For any such component C there will be a unique smallest set S0 ⊆ {1, ...,m} such that
any feasible solution to I ′ can assign labels to the variables in C from the oriented path
QS0 [14]. Moreover, it is shown in [14] that this set S0 can be computed in polynomial time
(in fact, in logarithmic space). For each component C this set will be denoted3 by S0(C).

If there are edges in G from one such component C to two distinct vertices xi and xj at
the top level of G, then these vertices must be assigned the same label in any feasible solution
to I ′, due to the structure of the paths in DΓ, so we add a constraint matchkk(xi, xj) to I

′
d

for k = 1, 2, . . . ,m.
Next, if there is an edge in G from some component C to a vertex xi at the top level of G,

and S0(C) contains two distinct indices k and l, then the label assigned to xi in any feasible
solution to I ′ must agree in positions k and l. Hence for each such case we add a constraint
matchkl(xi, xi) to I

′
d.

Next, if there is an edge in G from some vertex y1 at level 0 to some component C, and
another edge in G from some vertex y2 at level 0 to the same component C, then we know
that any feasible solution to I ′ must assign the same label to y1 and y2, so we say that y1
and y2 are linked. Taking the reflexive, transitive closure of this linking relation gives an
equivalence relation on the vertices in G at level 0.

Finally, if there is an edge in G from a vertex y1 at level 0 in G to a component C1, and
an edge from C1 to a vertex xi at the top level, and there is also a vertex y2 at level 0 which
is equivalent to y1, and an edge from y2 to a component C2, and an edge from C2 to a vertex
xj at the top level in G, then we proceed as follows: choose an index k ∈ S0(C1) and an index
l ∈ S0(C2) and add the constraint matchkl(xi, xj) to I

′
d. This ensures that the label assigned

to xi in any feasible solution to I ′ must agree in position k with the label assigned to xj in
position l.

Now we have constructed an instance I ′d in VCSP(Γd) whose constraints impose precisely
the same restrictions on feasible solutions as the binary constraints in I ′ (whose scopes are
specified by the edges of G). We have also imposed unary constraints on the variables of I ′d
to ensure that the cost of any feasible solution is the same as the cost of the corresponding
feasible solution to I ′. Hence for any feasible solution to I ′ there will be a feasible solution
to I ′d with the same cost, and vice versa, which gives the result.

5.3 Preservation of Algebraic Properties

We now investigate how the polymorphisms of a valued constraint language Γ (with finitely
many cost functions) are related to the polymorphisms of the extended dual language Γe. In
the proof of Theorem 4 we will closely follow results from [14].

3The notation used in [14] is Γ(C), but we use a different notation here to avoid confusion with the valued
constraint language Γ.
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Theorem 4. Let Γ be any valued constraint language over D, such that |Γ| is finite, and let
Γe be the extended dual of Γ. If Γ is a rigid core, then {fe|D : fe ∈ Pol(Γe)} = Pol(Γ).

Moreover, for each f ∈ Pol(k)(Γ) there is at least one operation fe ∈ Pol(k)(Γe) such that
fe satisfies all linear balanced identities satisfied by f and

fe(x1, . . . ,xk) =

{

f(x1, . . . ,xk) if each xi ∈ D′

some label not in D′ otherwise.
(3)

where D′ denotes the set Feas(φΓ) ⊆ Dm for the single cost function φΓ defined in Proposi-
tion 1.

Proof. First, consider any fe ∈ Pol(Γe). If we apply the extended dual construction given in
Definition 13, we obtain an instance Ie of CSP(Γe) where in any feasible solution the variables
at level 0 must take values from D that together form tuples from Feas(φΓ). Hence fe|D must
be a polymorphism of Γ.

For the converse, consider any f ∈ Pol(Γ). As noted in Section 2.3, assuming that Γ is a
rigid core ensures that every polymorphism of Γ is idempotent. It is shown in [14, Proof of
Theorem 5.1] that any idempotent polymorphism f of the relation Feas(φΓ) can be extended
to a polymorphism fe of the associated digraph DΓ described in Definition 12 that satisfies
Equation 3. Since any operation defined on the vertices of DΓ is a polymorphism of the unary
finite-valued cost function µΓ described in Definition 12, the operation fe is a polymorphism
of Γe.

Moreover, it is also shown in [14, Proof of Theorem 5.1] that fe satisfies many of the same
identities as f , including all linear balanced identities that are satisfied by the polymorphisms
of the zigzag. By Lemma 5.3 of [14], all balanced identities are satisfied by the polymorphisms
of the zigzag, so fe satisfies all linear balanced identities satisfied by f .

For the special case of unary polymorphisms, we can say more: Lemma 4.1 of [14] states
that the unary polymorphisms of a relation and of the corresponding digraph DΓ are in
one-to-one correspondence. Hence, we immediately get the following.

Lemma 1. Let Γ be a valued constraint language such that |Γ| is finite, and let Γe be the
extended dual of Γ. Γ is a rigid core if and only Γe is a rigid core.

Following our discussion in Section 2.3, Theorem 4 and Lemma 1 show that if a rigid core
crisp language Γ has the property of being solvable using local consistency methods then so
does the associated binary language Γe.

Our next result shows that for finite rigid core valued constraint languages Γ, the fractional
polymorphisms of Γe are closely related to the fractional polymorphisms of Γ.

Theorem 5. Let Γ be a valued constraint language such that |Γ| is finite and let Γe be the
extended dual of Γ.

If Γ is a rigid core, then for any fractional polymorphism ω of Γ there is a corresponding
fractional polymorphism ωe of Γe such that for each f ∈ supp(ω) there is a corresponding
fe ∈ supp(ωe) and vice versa. Moreover, ωe(fe) = ω(f) for all fe ∈ supp(ωe).

Proof. By Proposition 1 we may assume that Γ consists of a single cost function φΓ : Dm → Q,
where Feas(φΓ) = D′.
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Now consider any function ω : Pol(k)(Γ) → Q≥0 ∈ fPol(k)(Γ). By Theorem 4, for each
f ∈ Pol(k)(Γ) we can choose a corresponding fe ∈ Pol(k)(Γe) satisfying Equation 3. Hence we
can define a function ωe : Pol(k)(Γe) → Q≥0 by setting ωe(fe) = ω(f) for all f ∈ Pol(k)(Γ)
(and setting all other values of ωe to zero).

To check that ωe is a fractional polymorphism of Γe we only need to verify that it satisfies
Equation 2 in Definition 7 for each cost function in Γe.

The language Γe contains just the binary relation DΓ and the unary cost function µΓ, as
specified in Definition 12. As DΓ is a relation, and each fe is a polymorphism of DΓ, the
inequality in Definition 7 is trivially satisfied by DΓ (both sides are equal to zero).

It remains to show that ωe is a fractional polymorphism of µΓ. When applied to µΓ, this
condition says that, for any x1, . . . , xk in the domain of Γe, we must have

∑

fe∈Pol(k)(Γe)

ωe(fe)µΓ(fe(x1, ..., xk)) ≤
1

k
(µΓ(x1) + . . . + µΓ(xk)).

Recall that, by definition, µΓ(x) = 0 for all x 6∈ D′. By Theorem 4, it follows that if
fe(x1, . . . , xk) ∈ D′ then x1, . . . , xk ∈ D′. Thus, if not all x1, . . . , xk are in D′, the only
possible non-zero terms appear in the RHS of the inequality, and hence it is trivially true.

On the other hand, if all x1, . . . , xk are in D′ then we have µΓ(xi) = φΓ(xi) for i =
1, 2, . . . , k. Moreover, since fe(x1, . . . , xk) = f(x1, . . . , xk), and f is a polymorphism of Γ,
we have fe(x1, . . . , xk) ∈ D′ and so µΓ(fe(x1, . . . , xk)) = φΓ(f(x1, . . . , xk)). In this case, the
inequality holds because the inequality

∑

f∈Pol(k)(Γ)

ω(f)φΓ(f(x1, ..., xk)) ≤
1

k
(φΓ(x1) + . . .+ φΓ(xk))

holds for ω, because it is a fractional polymorphism of Γ.

Following our discussion in Section 2.3, combining Theorem 4 with Theorem 5 shows that
the property of being solvable using the basic linear programming relaxation is possessed
by the binary language Γe if it is possessed by Γ. Similarly, the property of being solvable
by constant levels of the Sherali-Adams linear programming relaxations is possessed by the
binary language Γe if it is possessed by Γ.

5.4 Reduction to Minimum Cost Homomorphism

We have shown that for any valued constraint language with a finite number of cost functions
of arbitrary arity we can construct an equivalent language with a single unary cost function
and a single binary crisp cost function.

Valued constraint problems with a single binary crisp cost function, described by a digraph
H, can also be seen as graph homomorphism problems. In a graph homomorphism problem
we are given an instance specified by a digraph G and asked whether there is a mapping from
the vertices of G to the vertices of a fixed digraph H such that adjacent vertices in G are
mapped to adjacent vertices in H. Such a mapping is called a homomorphism from G to H.

If we have a VCSP instance I over a language containing only a single binary relation H,
then it is easy to check that the feasible solutions to I are precisely the homomorphisms from
G to H, where G is the digraph whose edges are the scopes of the constraints in I.
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If our instance I also has unary finite-valued cost functions, then it is equivalent to the
so-called Minimum Cost Homomorphism Problem [22], where the cost of a homomorphism
is defined by a unary function on each vertex of the input that assigns a cost to each pos-
sible vertex of the target digraph. The Minimum Cost Homomorphism Problem for a fixed
digraph H is denoted MinCostHom(H). The special case where all the unary finite-valued
cost functions are chosen from some fixed set ∆ is denoted MinCostHom(H,∆).

The problem MinCostHom(H) was studied in a series of papers, and complete complexity
classifications were given in [22] for undirected graphs, in [24] for digraphs, and in [49] for more
general structures. Partial complexity classifications for the problemMinCostHom(H,∆) were
obtained in [50, 53, 54]. One can see that MinCostHom is an intermediate problem between
CSP and VCSP, as there is an optimisation aspect, but it is limited in the sense that it is
controlled by separate unary cost functions, without explicit interactions of variables.

By Theorem 3 and Lemma 1 we obtain the following corollary, which shows that a very
restricted case of binary MinCostHom can express all valued constraint problems.

Corollary 3. Let Γ be a valued constraint language such that |Γ| is finite and Γ is a rigid core.
There is a balanced digraph DΓ which is a rigid core and a finite-valued unary cost function
µΓ such that problems VCSP(Γ) and MinCostHom(DΓ, {µΓ}) are polynomial-time equivalent.

An interesting problem is to characterise which digraph homomorphism problems can
capture NP-hard VCSPs. For the restricted case of ordinary CSPs the following result is
known.

Theorem 6 ([20]). Every CSP is polynomial-time equivalent to a balanced digraph homomor-
phism problem with only 5 levels.

Recall that an n-level digraph has height n− 1. We remark that [20] also shows that the
digraph homomorphism problem for a balanced digraph with 4 levels is solvable in polynomial
time.

To illustrate how the digraph homomorphism problem can capture NP-hard VCSPs we
give an example of a 5-level digraph and unary weighted relation which can capture Max-Cut,
a canonical NP-hard VCSP.

Example 6. Consider the digraph H shown Figure 2. Let the unary weighted relation µ(v)
be

µ(v) =

{

1 if v = b or v = c

0 otherwise

for every vertex v ∈ V H.
Now consider the instance of MinCostHom(H, {µ}) with the source digraph G shown in

Figure 3 and the unary cost function µ applied to all vertices of G. It is straightforward
to check that the homomorphism that maps x → 0 and y → 1 has cost 0, as does the
homomorphism that maps x→ 1 and y → 0. However the homomorphism that maps x→ 0
and y → 0 has cost 2, and likewise for the homomorphism that maps x → 1 and y → 1. If
we consider these homomorphisms as the possible assignments of labels to the variables we
have a VCSP instance I with ΦI(0, 0) = ΦI(1, 1) > ΦI(0, 1) = ΦI(1, 0), and thus we capture
Max-Cut.

Note that following the construction in Definition 12 for any binary finite-valued cost
function φΓ we obtain a digraph DΓ which is quite similar to H, except for an additional
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b c

0 1

a d

Figure 2: The target digraph H of Example 6.

x y

Figure 3: The source digraph G of Example 6.

oriented path from 0 to c and another from 1 to b, each consisting of a single edge followed
by two zigzags and another single edge. However no path in G can possibly map onto these
oriented paths, so they are omitted from H to simplify the diagram.

6 Conclusion

Transforming a constraint satisfaction problem to a binary problem has a number of advan-
tages and disadvantages which have been investigated by many authors [42, 20, 2, 48, 1, 14].
Such a transformation changes many aspects of the problem, such as what inferences can
be derived by various kinds of propagation. One might expect that achieving the simplicity
of a binary representation would incur a corresponding increase in the sophistication of the
required solving algorithms.

However, we have shown here that the well-known dual encoding of the VCSP converts
any finite language, Γ, of arbitrary arity to a binary language, Γd, of a very restricted kind,
such that there is a bijection between the polymorphisms of Γ and the polymorphisms of
Γd, and the corresponding polymorphisms satisfy exactly the same identities. Hence we
have shown that the algebraic analysis of valued constraint languages can focus on a very
restricted class of binary languages (at least in the case of finite languages). Moreover, many
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important algorithmic properties, such as the ability to solve problems using a bounded level
of consistency, or by a linear programming relaxation, are also preserved by the dual encoding.

Furthermore, we have adapted the recently obtained reduction for CSPs [14] to VCSPs
and thus obtained a polynomial-time equivalence between VCSPs and MinCostHom problems.
In order to study families of valued constraint languages with finitely many cost functions
defined by fractional polymorphisms satisfying linear balanced identities, we now know that
we need only study MinCostHom problems. This is important since, for example, to prove the
algebraic dichotomy conjecture for core crisp languages we only need to study polymorphisms
satisfying linear balanced identities [6].

We remark that the CSP reduction from [14] is shown to preserve a slightly larger class
of identities than that of linear balanced identities, and works not only in polynomial time
but actually in logarithmic space. We believe that our extension of this reduction can also be
adapted to derive similar conclusions, but we leave this as an open problem. Our contribution
is to show that the CSP reduction from [14] can be extended to the more general setting of
the VCSP, and that the extended reduction preserves all linear balanced identities. Finally
we remark that, even in the more general setting of the VCSP, using the dual construction
as a stepping stone considerably simplifies the proof.
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