Typical equilibrium state of an embedded quantum system
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We consider an arbitrary quantum system coupled non perturbatively to a large arbitrary and
fully quantum environment. In [G. Ithier and F. Benaych-Georges, Phys. Rev. A 96, 012108
(2017)] the typicality of the dynamic of such an embedded quantum system was established for
several classes of random interactions. In other words, the time evolution of its quantum state does
not depend on the microscopic details of the interaction. Focusing at the long time regime, we
use this property to calculate analytically a new partition function characterizing the stationary
state and involving the overlaps between eigenvectors of a bare and a dressed Hamiltonian. This
partition function provides a new thermodynamical ensemble which includes the microcanonical and
canonical ensembles as particular cases. We check our predictions with numerical simulations.

In what state of equilibrium can a quantum system
be? Does this state have universal properties and what
are the conditions for its emergence? These questions
are not new, dating even from the very birth of quan-
tum theory[l] and are surprisingly open[2] B]. Indeed,
the foundations of statistical physics still rely today on
a static Bayesian point of view assuming the equiproba-
bility of the accessible states defining the microcanonical
ensemble. Assuming temperature and chemical poten-
tial can be defined then the canonical and grand canon-
ical ensembles can be derived, allowing to calculate all
relevant macroscopic quantities in the thermodynamical
limit [4H6]. In order to link theoretical predictions calcu-
lated with averages over these ensembles to experimental
quantities measured on a single system, an assumption
of ergodicity is made. Despite being broadly accepted,
this assumption is not justified in a satisfactory manner
(see, e.g., the discussion in Ref. [7]). Triggered by recent
progress in the quantum engineering of mesoscopic sys-
tems [8, @], some theoretical progress has been achieved
for attempting to explain thermodynamical equilibrium
with a purely quantum point of view.

From the early work of von Neumann on quantum er-
godicity [1L [10], most theoretical studies aiming at under-
standing thermalisation as a quantum and universal [I1]
process have focused on looking for signatures of ther-
malisation on physical observables of large quantum sys-
tems [I2HI5], for instance with the Eigenstate Thermal-
isation Hypothesis (ETH) surmise [I6HIS]. Instead of
observables, one can also focus on the state of a system
embedded in a larger one for which a “canonical typi-
cality” property has been established: the overwhelming
majority of pure quantum states of the composite sys-
tem are locally[19] canonical [20H22]. This static “typ-
icality” has been extended to the dynamics of embed-
ded quantum systems (two-level [23], four-level [24] and
arbitrary [25] quantum systems). We apply here this
“dynamical typicality” property in order to calculate an-
alytically and with full generality the stationary state of
an embedded quantum system at long time. We find a

new thermodynamical ensemble of purely quantum ori-
gin characterizing this state. This ensemble captures the
microcanonical and the canonical ensembles as particu-
lar cases, and as such provides a quantum explanation
for the Gibbs distribution.

We consider an arbitrary quantum system coupled to
a large arbitrary quantum environment through a ran-
dom interaction. We emphasize the fact that the initial
state of this composite system can be chosen arbitrarily,
in particular the environment does not have to be in ther-
mal equilibrium initially nor the full composite system in
the microcanonical situation. Dynamical typicality [25]
states that for almost all interaction Hamiltonian[26] the
reduced density matrix of the system has a self-averaging
property in the large environment limit[27], in other
words, it follows a universal dynamics. Despite this does
not imply a priori equilibration, since it can be consistent
with sustained oscillations and revivals|28], this property
has a very practical consequence. It allows to perform
non perturbative analytical calculations with full gener-
ality, i.e. for arbitrary system, environment, and global
initial state, by justifying rigorously an averaging proce-
dure over some randomness introduced only at the level
of the interaction Hamiltonian. We apply this calcula-
tion framework here to study the state of the system at
long but finite times, i.e. smaller than any recurrence
time. Postponing all questions regarding the out of equi-
librium dynamics to a further publication [29], we show
that: if the system converges towards a stationary state,
then this state is characterized by a new quantum par-
tition function which can be calculated. This partition
function relies on an average transition probability be-
tween states involving some purely quantum quantities:
the fourth order moments of the overlap coefficients be-
tween eigenvectors of a bare and a dressed Hamiltonian.
We calculate this transition probability for several classes
of random interactions. Then we calculate the probabil-
ities of occupation of the states of the system a find a
new thermodynamical ensemble more general than the
microcanonical one.



I. MODEL SETUP

The setup is identical to[25]: we consider a system S
in contact with an environment F, writing H, H. for
their respective Hilbert spaces. The total system S + E
is closed and its Hilbert space is the tensor product H =
Hs @ He (with dimension N = dim H,.dim Hg). The
total or dressed Hamiltonian H is the sum H = ﬁs +
H. + W where W is an interaction term. Eigenvectors
of the “bare” Hamiltonian H, + H, are written as |¢,,)
and are tensor products of eigenvectors |es) of H, and
eigenvectors |e.) of ﬁe, with the eigenenergy €, = €;+¢..
We write |¢;) for the dressed eigenvectors and {);}; the
set of associated dressed eigenvalues. The state of S+ F
is described by a density matrix o(t) which follows the
well known relation

o(t) = Ut,Q(O)UtT with Ut — o #Ht

The state of the subsystem S is described by a reduced
density matrix: p4(t) = Tre o(t), Tr. being the partial
trace with respect to the environment. Decomposing the
initial state o(0) on the bare eigenbasis {|¢1),.., |¢n)}
and using linearity, we consider the matrix elements
(dn| Ut ) (0p|Uf | ¢g) in order to calculate gq(t). By
expanding the evolution operator U, over the dressed
eigenbasis {|11), ..., [n)}: Uy = 3, e 7528 9h;) (4], these
matrix elements can be re-written as the 2 dimensional
Fourier transform of a product of four “overlaps” (¢, |¢;):

(Dn|Uelém) (05| UF [69) =
S e F TG 105, (i) (D185 (510) - (1)
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To calculate the expression in Eq. , one needs an ana-
lytical formula for the overlap coefficients (1;|¢,,) and the
dressed eigenvalues \;, which are quantities usually acces-
sible in a perturbative framework only. In this Letter, we
use a statistical method for calculating these quantities
in a non perturbative setting and for arbitrary system
and environment.

The method relies on the hypothesis assumed for the
interaction Hamiltonian: we introduce deliberately some
randomness in and only in the interaction W in order
to perform calculations, knowing that this randomness
actually will not matter in the large dimensionality limit
(dimH,. — oo) due to the typicality of the dynamics
[25]. This randomness should be compatible with some
macroscopic constraints: W “centered” i.e. Tr(W) =0
and with fixed spectrum variance o2 = Tr(W.W1)/N in-
dependent of N. Then regarding the symmetry class of
the randomness, we will assume W to be either a Wigner
band random matrix (WBRM)[30] or a randomly rotated
matrix (RRM i.e. of the type U.Q.U' with Q real diago-
nal fixed and U unitary or orthogonal Haar distributed).
The WBRM ensembles are convenient for modeling inter-
actions in heavy atoms and nuclei[3TH33]. The sparsity of

WBRM comes from the finite energy range of the inter-
action. On the other hand, RRM ensembles are dense,
which contradicts the a priori two body nature of the
interaction, but provides a convenient way for modeling
the local spectral statistics of more physical interaction
Hamiltonians[33H37].

II. TYPICAL DYNAMICS

We now focus on the reduced density matrix: o,(t) =
Tr. o(t) and consider it as a function of the interaction
W, keeping all other parameters constant (time, spectra
of S and F, initial state). This function exhibits a gen-
eralized central limit theorem phenomenon known as the
concentration of measure[25), 38].

A. Concentration of measure

This phenomenon can be described informally as fol-
lows: a numerical function which depends on many inde-
pendent random variables in a balanced way (i.e. there is
no outliers on which this function depends) is very close
to its mean value almost everywhere. On the quantita-
tive side, this phenomenon can be characterized rigor-
ously with the following upper bound on the variance of
this function away from its mean behavior[25]:
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where E is the average over the set of interaction Hamil-
tonians considered (WRBM and RRM) and [|A||? =
Tr(AAT). As dim#H, — oo, ‘735 — 0 and consequently
0s(t) is getting very close to its mean value which pro-
vides the typical dynamics. We can thus compute an ap-
proximate g;(t) simply by averaging: o4(t) = Tr.(o(t)) =~
E[Trc(o(t))] = Tr. (E[o(t)]). We are led to consider the
average of Eq. .

We will now focus specifically on the stationary regime
at long times. Under the hypothesis assumed on the
statistics of the interaction (WBRM and RRM ensem-
bles) the dressed eigenvalues {1, ..., Ay} undergo level
repulsion and, as such, are non degenerate. This implies
that the time independent terms are provided by the case
i = j in the summation in Eq. averaged over W:

ZE[<¢n|wi><wi\¢T,L><¢p\¢i><wi|¢q>]. (2)

The time dependent regime (given by the summation
over i and j such that ¢ # j) is outside the scope of this
article. We will assume this regime to be damped (see
[39] for W in the WRBM ensemble), without revivals[28]
at least on the largest time scale of this model (1/D where
D is the mean level spacing of the dressed Hamiltonian)
such that considering a stationary regime is meaningful
over this time scale.



We first single out the non zero cases for the
fourth order moments of the overlap coefficients:
E[{d|t3) {t62lm) (6p |13 {16:]6,)] which axe when (n = m
and p = ¢) or when (n = ¢ and m = p)[40]. The for-
mer case is involved in the asymptotic value of the off-
diagonal terms of p4(t) i.e. the quantum coherences of
the state of S, which can be shown to be zero as ex-
pected in the limit ¢ — co[40]. In the following, we focus
on the later case (n = ¢ and m = p) which governs the
dynamics of the diagonal terms of o(t) and g4(t), i.e. the
probabilities of occupation.

B. Average transition probability

We define from Eq. with n = ¢ and m = p, an
average transition probability p,,_, from an initial state
|om) at t = 0 to a final state |¢,) at t — oo:

Pm—sn = ZEH(%\wi>l2|<¢mlwi>\2]- 3)

Such sum provides quantitatively how |¢,) is accessi-
ble from |¢,,) and has been considered, e.g., numeri-
cally in the context of random two body interactions
(TBRI) ensembles [41] and analytically for some specific
systems: quantum walkers[42H44]. The particular case
m = n provides the return probability whose recipro-
cal 1/pp—n is the so-called purity [45H48]. The leading
order of Dm—sn 18 given by ZzEH<¢n‘7/}z>|2] ]E[|<¢m|wz>|2}
and involves the second order moment of the overlaps
E[|(¢n]1:)[?]. This quantity, multiplied by p, is called
the local density of states (LDOS) and quantifies how
much a bare eigenvector is delocalized or hybridized with
the dressed eigenbasis and has already been considered
in various contexts (nuclear physics[49H51I], molecular
physics[52], atomic physics[31], thermalisation[12], quan-
tum chaos[31], financial data analysis[53], [54], see also the
review in [33]) for various cases of Hy and W. It has the
following typical shape:

Bloulil?) ~ L)

where p,.. is the bare density of states, ); is the mean
of the dressed eigenvalue \; and f is a function peaked
around zero with a typical width I'. The denominator is
here for the purpose of normalisation. For most models
of Hy and W, the function f is a Lorentzian reminis-
cent of the Breit-Wigner law with a generalized Fermi
Golden rule rate I' = 702 p/N, p being the dressed den-
sity of states (see, e.g., Ref. [33]). Interestingly, such
a Lorentzian shape has been shown to preclude ther-
malisation in closed quantum systems made of interact-
ing particles as far as observables of these systems are
concerned[33] 55, 56]. However, regarding the problem
we are interested in: a quantum system coupled to a
large environment, it is important to stress that this
Lorentzian shape does not preclude thermalisation, as we

(4)

observe numerically (see Fig.1) and as far as the state of
this embedded system is concerned. This point is rather
subtle and its explanation involves dynamical typicality
(see [40] for a detailed discussion). Finally, we emphasize
that the subsequent calculation can also be performed us-
ing other shapes (see [40] for details and a short review
of possible LDOS). In particular, our derivation can be
applied to a Gaussian LDOS, relevant if W if enforces a
two body nature of the interaction (TBRI) [41] [57].

Assuming the interaction to be non perturbative, i.e.
the mean level spacing D is much smaller than the width
I’ and consequently the bare eigenvector |¢,,) is delo-
calized over several (=~ I'p) dressed eigenvectors, then
one can proceed further with the calculation of Py,
by using a continuous approximation for the summation
(3>, < [p(N)dX). The transition probability is then
given by:

g (Em - en)
T ere(@)g(em — c)de ©)

pm—>n ~

where g = f * f is the convolution of f with itself and
with a typical width I. For instance, if the LDOS is
Lorentzian (resp. gaussian) then g is also a Lorentzian
(resp. gaussian) with a width TV = 2T" (resp. I = v/2T).
At this stage, one should note that Eq. is in sharp con-
trast with the microcanonical hypothesis of equiprobabil-
ity of the accessible states. We have performed numerical
simulations for p,,—, with W in the Gaussian orthogo-
nal ensemble (GOE) and found a satisfactory agreement
with our prediction[40].

III. MAIN RESULT
A. General case

In order to perform the partial trace and get o4(t),
we recall the final state |¢,) = |es)ec) and sum Eq. (5]

over €. using a continuous approximation: Tr, = >

[ de pe(e). This provides the main result of this pa;er:
for an initial state 9(0) = |¢m)(dm|, the long time sta-
tionary state of S is distributed according to

The denominator is the convolution of the bare density of
states by the transition probability ¢ which provides the
effective number of bare states accessible from the initial
|¢m). Such a quantity [ pe+s(€)g(em — €)de enforces the
normalization condition and can be considered as a new
partition function. The numerator is the convolution of
the environment density of states by the transition prob-
ability ¢ and provides the effective number of accessible
states such that S is in the state of energy e,. The prob-
ability of occupancy is the ratio of these two numbers.
Let us now consider the case of intermediate coupling.



B. Intermediate coupling case

A temperature can be defined by g = ﬁ = .
Assuming a good decoupling between the micro (D =
1/p), meso (I'V) and macro (kT') energy scales: D < IV <
kT, and considering all energies €,, €, to be inside the
bulk of the spectrum, then the function g in Eq.@ can
be approximated by a Dirac function which is ”sampling”
pe(€) at €. = €, — €5 and simplifying Eq.@ for

pe(em - 65)
De, © ———————. 7
Pste(€m) @)

We are recovering here the same prediction as the one
resulting from a microcanonical ensemble defined locally
in energy, i.e. by assuming the equiprobability of all bare
eigenstates inside a small energy window centered around
the initial energy e€,,. This prediction is checked numer-
ically on Fig. 1. It is important to stress that we re-
covered this prediction with a purely quantum point of
view: from the geometrical relation between the eigen-
vectors of the bare and dressed Hamiltonians. Note that
by assuming the environment to be macroscopic, i.e. kT
does not depend on energy on a wide range and con-
sequently p. scales exponentially with energy, one can
recover the canonical ensemble prediction following the
usual derivation[d]:

B pe(€m)e™ P _ e—Bes
Pste(€m) Zes, pel€m)e P - Zg

with Zg =3 e~P¢ the canonical partition function. In
other words, the Boltzmann distribution is a particular
case of the more general distribution provided by Eq.@
whose origin is quantum.

e, & ps(em - 68)

C. Strong coupling case

If the coupling is strong enough that TV > kT then
the transition probability g cannot be approximated by
a Dirac function and its finite width must be taken into
account in the convolution in Eq.@. From this convo-
lution effect, one should expect a decrease of contrast
in the probability distribution of S when the interaction
strength is increased: the equilibrium probability then
undergoes a continuous crossover from the local micro-
canonical ensemble prediction we described earlier (i.e.
equiprobability over a small energy shell of accessible
states around initial energy) to a global microcanonical
ensemble prediction (i.e. all bare state are accessible and
equiprobable). The convolution in Eq. @ can be done an-
alytically e.g. when p. is Gaussian and g is Lorentzian:
one obtains the Voigt distribution, relevant in atomic
spectrocopy when a natural linewidth is broadened by
the Doppler effect[58]. We check numerically these pre-
dictions on Fig. [[] and find a satisfactory agreement.

Finally, we stress that the above results are valid for
an initial state |@m) @ (dm| = |€s) (€s] ® |ee){€e| and can
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FIG. 1. Crossover from a local microcanonical en-
semble to a global microcanonical ensemble. We con-
sider here numerically the particular case of a two level system
S (gap A = 2) coupled to an environment having a Gaussian
density of states (standard deviation o. = 1) through an in-
teraction W in the GOE ensemble. We plot P; the proba-
bility for the system to be in its excited state as a function
of time (left panel) and then the long time average of P; as
a function of interaction strength o, = /Tr(W?2)/N (right
panel). The environment Hilbert space dimension is set to
dim H. = 4096 (so that the total Hilbert space dimension is
N = 8192), the initial state to |1s)(1s| ® |2048.)(2048.| (i.e.
middle of the spectrum for E: ¢, ~ 0) and we numerically
integrate the Schrodinger equation for different values of o,,.
After a transient regime at short times (¢ < 40), a station-
ary regime takes place. As the interaction strength increases,
the time average value of P goes from a local microcanoni-
cal prediction Py = pe(A)/(pe(A) + pe(0)) =~ 0.87 to a global
microcanonical prediction: P; =~ 0.5. The analytical predic-
tion for this crossover (in dash) is given by Eq.(6)) which can
be calculated analytically in this case: it is the convolution
of a gaussian DOS with a Lorentzian transition probability g
giving the Voigt function[58] (see [40] for details). Note that
in the intermediate coupling regime, the LDOS (and conse-
quently the average transition probability pm—n) is of the
Breit-Wigner type and does not preclude thermalization (see
discussion in [40] for details).

be extended by linearity to any initial state, pure or not:
the extra diagonal terms (i.e. of the type |¢y,){(¢,| with
m # p) do not contribute, only the diagonal ones con-
tribute (see [40]). Therefore the stationary state of S
is the weighted average of Eq. @ by the initial energy
distribution of the composite system.

IV. CONCLUSION AND SUMMARY

We showed that the stationary properties of an em-
bedded quantum system are encoded in the geometric
relation between the eigenvectors of a bare and a dressed
Hamiltonian, more precisely in the fourth order moments
of the overlaps between their eigenvectors. This fact



provides a purely quantum way to define a new par-
tition function which can be calculated thanks to dy-
namical typicality[25]. In the intermediate coupling case
D <« TV < kT, this partition function simplifies to the
prediction of a local microcanonical ensemble defined on
a small energy window around the initial energy. In the
strong coupling regime (i.e. D < kT < TY), one gets a
more general ensemble which depends on the interaction
strength and leads to a loss of contrast of the proba-
bilities of occupation (i.e. a convergence towards global
equiprobability). We considered here two random matrix

ensembles for the interaction which have broad applica-
bility. Our framework could be used with other inter-
action Hamiltonian ensembles (e.g. conserving some set
of observables or enforcing the two body nature of the
interaction) as soon as dynamical typicality is shown to
be verified and a local density of states is available.
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