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Abstract. The American signature standards DSA and ECDSA, as well
as their Russian and Chinese counterparts GOST 34.10 and SM2, are
of utmost importance in the current security landscape. The mentioned
schemes are all rooted in the Elgamal signature scheme (1984) and use
a hash function and a cyclic group as building blocks. Unfortunately,
authoritative security guarantees for the schemes are still due: All existing
positive results on their security use aggressive idealization approaches,
like the generic group model, leading to debatable overall results.

In this work we conduct security analyses for a set of classic signature
schemes, including the ones mentioned above, providing positive results
in the following sense: If the hash function (which is instantiated with
SHA1 or SHA2 in a typical DSA/ECDSA setup) is modeled as a random
oracle, and the signer issues at most one signature per message, then
the schemes are unforgeable if and only if they are key-only unforgeable,
where the latter security notion captures that the adversary has access
to the verification key but not to sample signatures. Put differently, for
the named signature schemes, in the one-signature-per-message setting
the signature oracle is redundant.

Keywords: Elgamal signatures · DSA · ECDSA · GOST · SM2

1 Introduction

Digital signatures. Digital signature schemes are a ubiquitous cryptographic
primitive. They are extensively used for message and entity authentication and
find widespread application in real-world protocols. The signature schemes most
often used in practice are likely the RSA-based PKCS#1v1.5, and the DLP-based
DSA and ECDSA [20]. For instance, current versions of TLS exclusively employ
signatures of these types to authenticate servers. Standardized schemes that
share a great similarity with (EC)DSA are the Russian GOST 34.10 [9] and the
Chinese SM2 [19]. In the following we describe those schemes in more detail.
DSA and ECDSA. The signature schemes DSA and ECDSA build on ideas
of Elgamal [10] and are defined over a cyclic group G = 〈g〉 of prime order q.

The full version of this work can be found on the IACR Cryptology ePrint Archive [12].
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They utilize two independent hash functions, H and f , that map messages
and group elements, respectively, into the exponent space Zq. Function f is
called the conversion function. While for DSA the group G is a prime-order
subgroup of the multiplicative group of some prime field GF(p) with the canonical
representation of group elements as integers in {1, . . . , p− 1}, and f is defined as
A 7→ (A mod p) mod q, for ECDSA the group is a subgroup of an elliptic curve
over some field GF(pn), and f is defined as A 7→ A.x mod q where A.x is an
encoding of the x-coordinate of elliptic curve point A as an integer.

The signature schemes GOST and SM2 use similar settings. After having
fixed the cyclic group G, the hash function H, and the conversion function f , if
x is a signing key and X = gx the corresponding verification key, an (EC)DSA
signature on a message m is a pair (s, t) such that s = (H(m) + xt)/r and
t = f(gr), where r is freshly picked in each signing operation. In GOST and SM2,
different equations that values s, t, r, x have to fulfill are used. (For details see
Fig. 2.)

Prior analyses of Elgamal-type signature schemes. The first positive
results on (unmodified) ECDSA are due to Brown. In [6,5,4] he proves security
of ECDSA in the generic group model [27]. Unfortunately, some crucial formal
aspects of his idealization remain unclear, for instance that his modeling ap-
proach for the group implicitly also idealizes the conversion function f . This
has unexpected impact: he de facto proves that ECDSA signatures are strongly
unforgeable, while in practice this is obviously not the case. See the discussions
in [28,11] for more details. Further, as Brown reports, his arguments are applicable
to ECDSA only, but not to the (closely-related) DSA.

Independently of the findings discussed above, in [7,4,6] Brown identifies both
sufficient and necessary conditions on H, f for the security of ECDSA. However,
the sufficient ones are significantly stronger than the discrete logarithm problem.

In an informal discussion, in [6, II.4.4], Brown mentions that for ECDSA,
in the random oracle model, unforgeability against adversaries that have access
to the verification key but not to a signing oracle implies unforgeability against
adversaries that can request signatures, but at most one per message. No formal
argument is given for this claim. We work out the details in the current article. As
our treatment shows, a formal proof requires careful consideration and additional
techniques.

In [11] the current authors propose GenDSA, a signature framework that
subsumes both DSA and ECDSA in unmodified form, and prove the unforge-
ability of corresponding signatures using a novel approach of idealization: They
decompose the conversion function into three independent functions, where the
outer two mimic algebraic properties of the conversion function’s domain and
range, and the inner function is modeled as a bijective random oracle.1 In the
full version they extend their results to also cover GOST and SM2. To the best

1 A bijective random oracle is an idealized public bijection that is accessible, in both
directions, via oracles; cryptographic constructions that build on such objects include
the Even–Mansour blockcipher and the SHA3 hash function.
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of our knowledge, this is the only existing security proof for GOST signatures.
For SM2, the only other security evaluation is in the generic group model [31].

In comparison to [5,11] the current work takes a conservative approach: We
idealize neither the group nor the conversion function but rather model a hash
function as a random oracle. As this hash function is typically instantiated with
a dedicated construction like SHA1 or SHA2, we believe our assumptions are
weaker and thus preferable to those used in [5,11,31]. We caution, however, that
also our results are weaker for not giving a reduction to the DLP, but to a
different (non-interactive) assumption.
Further related work. The works discussed next do not establish security
results for standardized schemes like DSA/GOST/SM2: Some works instead
target modified versions of these schemes, others give implementation advice.

Brickell et al. [3] define a framework for signature schemes called Trusted
El Gamal Type Signature Scheme and prove its unforgeability in the random
oracle model. Among the instantiations of their framework are the schemes DSA-I
(reportedly due to Brickell, 1996) in which the conversion function f is replaced by
a random oracle, and DSA-II (due to [26]) that deviates from DSA for applying
the hash function H to both the message and the ephemeral value f(gr). The
framework of [3] cannot be instantiated such that unmodified (EC)DSA, GOST,
or SM2 is covered.

Similarly, Malone–Lee and Smart [22] propose the variants ECDSA-II and
ECDSA-III of ECDSA. In order to make certain attacks impossible (like duplicate
signatures [28] where one signature is valid for two messages), and for obtaining
tighter security reductions, the authors diverge from the original ECDSA scheme.

Other work on the security of DSA and ECDSA, identifying necessary condi-
tions for the security of the schemes or analyzing their robustness against flaws
in implementations and parameter selection, was conducted by Vaudenay [29,30],
Howgrave–Graham and Smart [18], Nguyen and Shparlinski [24], Leadbitter et
al. [21], García et al. [13], and Genkin et al. [14].

Our Contribution

Our contribution is threefold. First, we describe the abstract signature scheme
GenElgamal that, among others, subsumes DSA, ECDSA, and GOST in unmod-
ified, and SM2 in an equivalent form. Second, we show that in the random oracle
model (for H), forging signatures in the presence of a signing oracle that can be
queried at most once on each message (one-per-message unforgeability, uf-cma1)
is as hard, but with a non-tight security reduction, as without such an oracle
(key-only unforgeability, uf-koa). This means for the named schemes that the
(restricted) signing oracle is actually redundant. Third, we generalize the notion
of intractable semi-logarithm from [6] and show that it is equivalent, for some
schemes, to key-only unforgeability. In the following we describe these three parts
in more detail.
Generic Elgamal Signatures. The GenElgamal signature scheme is defined
in the DLP setting relative to a hash function H, a conversion function f , a
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so-called defining equation E, and a set D that enforces some restrictions on
the signature values. See Section 3 for the details. Different choices of these
parameters lead to different signature schemes, including DSA, ECDSA, GOST,
and SM2.
Proving the security of GenElgamal. Consider GenElgamal and assume
H is a random oracle. In Section 4 we prove that, in this setting, key-only
unforgeability implies one-per-message unforgeability. (The latter notion is not
only of theoretical interest; as we elaborate in Section 2 it is sufficient in many
practical scenarios.) This observation can be traced back to Brown [6, II.4.4] for
the case of ECDSA, but previously it has not been proved formally. Surprisingly,
our security reduction requires a Coron-like partitioning argument [8]. We note
that our reduction is not tight but loses a factor of about Qs (the number of
queries to the signing oracle).
Intractable Semi-Logarithm. The notion of intractable semi-logarithm was
introduced by Brown [6, II.2.2] to analyze the security of ECDSA. The idea
is effectively to remove hash function H from the assumption that ECDSA is
unforgeable. In brief, a semi-logarithm challenge consists of computing, given g
and X = gx, a pair (s, t) such that t = f((gXt)1/s). We formalize and generalize
the semi-logarithm assumption in Section 5 and show that, in the random oracle
model, its hardness is equivalent to the key-only unforgeability of the signature
schemes considered in this article (except for SM2).

2 Preliminaries

Notation. For a set A we write An for the n-fold Cartesian product. We denote
random sampling from a finite set A according to the uniform distribution with
a $← A. We use symbol $← also for assignments from randomized algorithms, while
we denote assignments from deterministic algorithms and calculations with ←.
All algorithms are randomized unless explicitly noted. When using symbols like ⊥
we mean special symbols that do not appear as elements of sets (e.g., key spaces).
Any computation involving ⊥ results in ⊥, in particular for every function f we
have f(⊥) = ⊥.

If q is a prime number, we write Zq for the field Z/qZ and assume the canonic
representation of its elements as a natural number in the interval [0, q − 1]. That
is, an element a ∈ Zq is invertible iff a 6= 0. We denote prime-order groups with
(G, g, q) where G is (the description of) a cyclic group, its order q = |G| is a
prime number, and g is a generator such that G = 〈g〉. We write 1 for the neutral
element of G and G∗ = G \ {1} for the set of its generators.

Our security definitions are game based and expressed via program code.
As data structures, besides sets our code may use associative arrays (look-up
tables). We use notation A[·]← ∅ to initialize all cells of an array A to empty.
A game G consists of an Init procedure, one or more procedures to respond to
adversary oracle queries, and a Fin procedure. G is executed with an adversary A
as follows: Init is always run first and its outputs are the inputs to A. Next, the
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oracle queries of A are answered by the corresponding procedures of G. Finally,
A calls Fin and terminates. Whenever the Stop command is invoked in a game,
the execution of game and adversary is halted and the command’s argument
is considered the output of the game. We write ‘Abort’ as a shortcut for ‘Stop
with 0’. By GA ⇒ out we denote the event that game G executed with A invokes
the Stop command with argument out.
Signature Schemes. A signature scheme consists of algorithms KGen,Sign,Verify
such that: algorithm KGen generates a signing key sk and a verification key pk;
on input a signing key sk and a message m algorithm Sign generates a signature σ
or the failure indicator ⊥; on input a verification key pk, a message m, and a
candidate signature σ, deterministic algorithm Verify outputs 0 or 1 to indicate
rejection and acceptance, respectively. A signature scheme is correct if for all key
pairs (sk, pk) created by KGen and all messages m, an invocation of Sign(sk,m)
results in a signature with overwhelming probability, and if it does so then Verify
accepts it.

We specify three security notions for signature schemes: uf-cma, uf-cma1, and
uf-koa. The standard goal is unforgeability under chosen-message attack (uf-cma),
meaning that no adversary can produce a valid signature on a fresh message,
even if it sees signatures on messages of its choosing. A slightly weaker notion is
one-per-message unforgeability (uf-cma1) [25,2,15] that adds the restriction that
the adversary can see at most one signature per message. The weakest notion
considered in this paper is key-only unforgeability (uf-koa) where the adversary
sees no sample signature but only the verification key. The corresponding security
games are in Fig. 1. Note that the uf-cma1 game aborts if the adversary queries
the signing oracle a second time on any message, and that in the uf-koa game
there is no signing oracle.

Definition 1 (Unforgeability). For a signature scheme, a forger F is said
to (τ,Qs, ε)-break uf-cma (uf-cma1, uf-koa) security if it runs in at most time τ ,
poses at most Qs queries to the Sign oracle, and achieves a forging advantage of
ε = Pr[GF ⇒ 1], where G is the corresponding game in Fig. 1. (In the uf-koa
case we require Qs = 0.)

If the signature scheme is specified in relation to some idealized primitive that
is accessed via oracles, we also annotate the maximum number of corresponding
queries; for instance, in the random oracle model for a hash function H we use
the expression (τ,Qs, QH , ε). We always assume that forgers that output a forgery
attempt (m∗, σ∗) pose a priori all (public) queries that the verification in Fin
will require.

Note that, while the uf-cma1 notion is technically weaker than uf-cma security,
for many practical applications the former is natural and sufficient. For instance,
in Signed-Diffie-Hellman key agreement users exchange messages of the form
gx ‖ Sign(sk, gx), where exponent x is fresh for each execution and thus no
value gx is ever signed twice. For cases where uf-cma security is not sufficient,
[2] propose efficient generic transformations that turn uf-cma1 secure signature
schemes into ones secure in the uf-cma sense. Concretely, one possibility is to



6 M. Fersch, E. Kiltz, B. Poettering

Procedure Init
00 L ← ∅
01 (sk, pk) $← KGen
02 Return pk

Procedure Sign(m) (uf-cma)

03 σ $← Sign(sk,m)
04 If σ = ⊥: Return ⊥
05 L ← L ∪ {m}
06 Return σ

Procedure Fin(m∗, σ∗)
07 If m∗ ∈ L: Abort
08 If Verify(pk,m∗, σ∗) = 0: Abort
09 Stop with 1

Procedure Sign(m) (uf-cma1)
10 If m ∈ L: Abort (uf-cma1)
11 σ $← Sign(sk,m)
12 If σ = ⊥: Return ⊥
13 L ← L ∪ {m}
14 Return σ

Fig. 1. The vertical space above Line 03 is exclusively for aligning the Sign oracles of
variant uf-cma and of variant uf-cma1 (that adds Line 10). In variant uf-koa the Sign
oracle does not exist.

derandomize the signing algorithm by obtaining the randomness from a secretly
keyed function applied to the message.

3 The Generic Elgamal Framework

We recall the abstract signature framework GenElgamal from [23, Sec. 11] that
is defined relative to a group G, a hash function H, a conversion function f , and
an equation E(s, h, t, r, x) called the defining equation of GenElgamal. To the
latter is also associated a set D. In GenElgamal, the hash function H is used to
hash messages to elements of field Zq, and the conversion function f is used to
transform group elements to elements of Zq. Intuitively, a signature consists of a
solution s of E for values h = H(m), t = f(gr) where r is the signing randomness,
and signing key x. As we will see, to ensure functionality and security, certain
such solutions need to be excluded. This is implemented by filtering them out
by requiring containedness of corresponding triples (s, h, t) in set D. As it turns
out, some standards are overly restrictive on the set of possible signatures (i.e.,
set D is specified smaller than it could be; an example is SGenSM2 where s = 0
is not allowed). Nevertheless, in this document we stick to the sets specified by
the standard documents unless further noted.

Different choices of the defining equation E (and set D) lead to different
signature schemes. See Fig. 2 for an overview of classic ones. All these schemes
are rooted in the Elgamal signature scheme [10].

Definition 2 (Defining Equation). Let D ⊆ Z3
q be a set. An equation

E = E(s, h, t, r, x) over D× (Z∗q)2

is said to be defining (a signature scheme) if E has the form

E(s, h, t, r, x) = C0(s, h, t) + r Cr(s, h, t) + xCx(s, h, t) ,
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where C0, Cx are functions D → Zq, and Cr is a function D → Z∗q. With other
words, E is defining if it is affine linear in x and r, and E can always be solved
for r.

Figure 2 lists possible defining equations together with common names for the
corresponding signature schemes. Concretely, we consider all variants of Elgamal
signatures mentioned in the Handbook of Applied Cryptography [23], and in
addition SM2.2 Of course there are also other possible choices for E; for example,
[17] lists a total of 18 configurations.

Scheme E D
GenDSA (V1) [20] h+ tx = rs Z∗q × Zq × Z∗q
GenGOST (V3) [9] hr + tx = s Z∗q × Z∗q × Z∗q
SGenSM2 [19] h+ r + t = sx DSM(t)
GenAMV (V2) [1] h = rt+ sx Zq × Zq × Z∗q
GenHarn (V6) [16] hsx+ r = st Z∗q × Zq × Z∗q
no name (V4) [23] hx+ rt = s Zq × Zq × Z∗q
no name (V5) [23] hr + t = sx Zq × Z∗q × Z∗q

Fig. 2. Defining equations of a selection of established signature schemes. The variant
number (Vi) refers to [23, Table 11.5]. DSM(t) is defined as {(s, h, t) ∈ Z∗q ×Z2

q : t+ h 6=
0, s− t− h 6= 0}.

Definition 3 (Signing and Verification Function). Let E be a defining
equation. Then we define the signing function SE(h, t, r, x) = SEx (h, t, r) as follows:
if there exists a unique s such that E(s, h, t, r, x) is satisfied, SE returns s;
otherwise, the function returns ⊥.

Further, we define the verification function VE(g, s, h, t, x) = VEg,x(s, h, t) with
respect to a prime-order group (G, g, q) as follows: if r is the (unique) solution of
E(s, h, t, r, x) then VE returns gr.

Note that the affine linear form of E makes it possible to efficiently evaluate
VE given just s, h, t, gx, i.e., without knowing x explicitly.

Definition 4 (GenElgamal framework). Let (G, g, q) be a prime-order group,
D ⊆ Z3

q a set, and H : {0, 1}∗ → Zq a hash function. Let further f : G∗ → Zq
be a function and E a defining equation as in Definition 2. Then GenElgamal
(relative to E,G, H, f,D) is defined by the algorithms of Fig. 3.

2 More precisely, we consider SGenSM2 which is an equivalent variant of SM2. Con-
cretely, (ŝ, t̂) is a valid SM2 signature on a message m for the verification key X̂
if and only if (s, t) = (ŝ+ t̂, t̂−H(m)) is a valid SGenSM2 signature on m for the
verification key X = gX̂. As all these transformations are public and reversible, the
functionality and security of SM2 and SGenSM2 are the same.
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Proc KGen
00 x $← Z∗q ; X ← gx

01 sk := x; pk := X
02 Return (sk, pk)

Proc Sign(sk,m)
03 r $← Zq; R← gr

04 If R = 1: Return ⊥
05 t← f(R)
06 h← H(m)
07 s← SE

x (h, t, r)
08 If (s, h, t) /∈ D:
09 Return ⊥
10 Return (s, t)

Proc Verify(pk,m, (s, t))
11 h← H(m)
12 If (s, h, t) /∈ D:
13 Return 0
14 R̂← VE

g,x(s, h, t)
15 If R̂ = 1: Return 0
16 t̂← f(R̂)
17 If t 6= t̂: Return 0
18 Return 1

Fig. 3. The GenElgamal signature scheme with defining equation E. Functions SE and
VE are as in Definition 3. If SE returns ⊥ in Line 07 then Sign returns ⊥ in Line 09.

We define a notion of simulatability that will be used in the GenElgamal
security proof (in Section 4). It captures the fact that, in the random oracle model,
it is possible to simulate (almost) correctly distributed GenElgamal signatures
without knowledge of the signing key.

Definition 5 (δ-Simulatability). Let (E,G, H, f,D) be an instantiation of
GenElgamal as in Definition 4. We say the scheme is δ-simulatable if there exists
a function SimE : Z3

q → Z2
q ∪· {⊥} that is computable in about the same time as

SE such that for all x ∈ Z∗q the statistical distance between the outputs of the two
protocols depicted in Fig. 4 is at most δ.

Protocol Preal(x)
00 r $← Zq

01 R← gr

02 If R = 1: Return ⊥
03 t← f(R)
04 h $← Zq

05 s← SE
x (h, t, r)

06 If (s, h, t) /∈ D: Return ⊥
07 Return (s, h, t)

Protocol Psim(gx)
08 a, b $← Zq

09 R← Xagb

10 If R = 1: Return ⊥
11 t← f(R)
12 (s, h)← SimE(a, b, t)

13 If (s, h, t) /∈ D: Return ⊥
14 Return (s, h, t)

Fig. 4. Simulatability of an instantiation of GenElgamal. If SimE outputs ⊥ in Line 12
then Psim outputs ⊥ in Line 13. The vertical space between Lines 12 and 13 is exclusively
for aligning the two protocols.

Lemma 1. All of the instantiations of GenElgamal described in Fig. 2 are
δ-simulatable with δ ≤ 2/q.

Proof. Consider any of the instantiations. Let x ∈ Z∗q be arbitrary. In Psim the
random value r is implicitly computed in the exponent as ax+ b and by choice
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of a and b uniformly distributed on Zq, so the t-values in both protocols are
distributed identically.

Next, we want to show that for fixed r, t, x the value a is almost always a
function in h and vice versa. To this end we show that for each instantiation
there exist sets A,H ⊆ Zq (depending on r, t = f(gr), x) with |H| ≥ q − 2 and a
bijection πx,r : H→ A. The bijection and its inverse function can be computed
directly from the respective defining equation, see Fig. 5. Note that π−1

x,r actually
is a function of a, b, t, but for fixed x, r the value of b is uniquely determined
by the choice of a as b = r − ax and the value of t is uniquely determined as
t = f(gr). Now when sampling a $← Zq and computing h as π−1

x,r(a, r− ax, f(gr))
in Psim(x) (setting π−1

x,r(a, r − ax, f(gr)) = ⊥ for a /∈ A, which happens with
probability at most 2/q since |Zq \A| ≤ 2) instead of directly sampling h uniformly
random from Zq in Preal(x), the statistical distance between the h-values is at
most 2/q.

Scheme H A πx,r π−1
x,r ξx,r δ

GenDSA Zq \ {−xt} Z∗q rt/(h+ xt) bt/a t/a 1/q
GenGOST Z∗q Z∗q −1/h −1/a −b/a 1/q
SGenSM2 Zq \ {−t− r} Z∗q (h+ r + t)/x −(b+ t) a 1/q
GenAMV Zq \ {rt} Z∗q (h− rt)/tx bt −at 1/q
GenHarn Z∗q \ {t/x} Z∗q \ {r/x} hr/(hx− t) −at/b b/t 2/q
(V4) Z∗q Z∗q −h/t −at bt 1/q
(V5) Z∗q \ {−t/r} Z∗q \ {r/x} (hr + t)/hx −t/b −at/b 2/q

Fig. 5. Sets H and A and functions πx,r(h), π−1
x,r(a, b, t), and ξx,r(a, b, t) for the schemes

from Fig. 2. We write t = f(gr). The last column shows the δ-values for the simulatability
of the instantiation (see Definition 5).

Now once x, a, b, t, h are fixed, since the defining equation has to hold, s can
be computed deterministically by a function ξx,r, also displayed in Fig. 5. Note
that both π−1

x,r and ξx,r can be computed without explicit knowledge of x, r for
all of the instantiations. So if we set

SimE(a, b, t) = (ξx,r(a, b, t), π−1
x,r(a, b, t)) ,

the statistical distance between the outputs of the two protocols from Fig. 4 is
at most 2/q. ut

4 Security of GenElgamal in the ROM

We examine the security of GenElgamal, showing that if the hash function H
is modeled as a random oracle, key-only unforgeability implies one-per-message
unforgeability. This was already suggested in [6, II.4.4] for the case of GenDSA,
but no formal treatment was given. We here provide a formal statement and
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a proof for the general case. Interestingly, our argument involves Coron-type
partitioning [8].

Theorem 1. Let E,G, H, f,D be a δ-simulatable instantiation of GenElgamal.
Then if H is modeled as a random oracle, for every forger F that (τ,Qs, QH , ε)-
breaks the one-per-message unforgeability of this instantiation there also exists a
forger F ′ that (τ ′, 0, QH , ε′)-breaks the key-only unforgeability of this instantiation,
where

ε′ ≥ ε/(e2(Qs + 1))−Qsδ and τ ′ = τ +O(QH) .

Proof. Let F be a forger that (τ,Qs, QH , ε)-breaks the one-per-message unforge-
ability of the scheme under consideration. LetGame G0 be the standard uf-cma1
game with the algorithms of Fig. 3 plugged in and an additional random oracle
RO for H that is implemented by lazy sampling (see Fig. 6). We assume without
loss of generality that F queries RO on m before calling Sign or Fin involving
the same message. We have

Pr[GF0 ⇒ 1] = ε .

The idea of the reduction is that we respond to each hash query RO(m) by
selecting the hash value in a specific though uniform way (such that we can
simulate signatures on m), except for the value of m∗, which we want to forward
to the random oracle RO∗ of the uf-koa security game in a reduction later. But
m∗ is not yet known at the time of simulating the hash queries, so in Game G1
(see Fig. 6) we apply the partitioning technique from [8] and toss a biased coin
that takes value 0 with probability Qs/(Qs + 1) and value 1 with probability
γ = 1/(Qs + 1) for every queried message, and we hope that it takes the value 0
for all messages used in signature queries and the value 1 for m∗.

We now analyze the probability that one of the coins takes an unwanted value,
i.e, the probability of an abort in Lines 05 and 21. To do this, we consider the
complementary probability. Since for all messagesm, c[m] is distributed according
to the Bernoulli distribution Ber(γ) with γ = 1/(Qs + 1) and independently of
all other coins, the probability that no abort happens in these lines is

(1− γ)Qsγ ≥ (1− 1/Qs)Qs(1/(Qs + 1)) ≥ 1/e2(Qs + 1) ,

where the last inequality is a standard result in calculus and holds for Qs ≥ 2.
The case Qs = 1 is trivial. It follows that

Pr[GF0 ⇒ 1] ≤ e2(Qs + 1) Pr[GF1 ⇒ 1] .

In Game G2 (see Fig. 7) we introduce two changes: (a) when processing a
random oracle query on a message m, a signature for m is precomputed and
stored, and (b) the way of signing messages is changed so that signatures are
generated without knowing the signing key. Note that change (a) is possible
only because the Sign oracle may be queried on each message at most once.
Change (b) exploits the assumed simulatability (see Definition 5) of GenElgamal.
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Procedure Init
00 L ← ∅
01 H[·]← ∅; c[·]← ∅
02 x $← Z∗q ; X ← gx

03 Return X

Procedure Sign(m)
04 If m ∈ L: Abort
05 If c[m] 6= 0: Abort (G1)
06 r $← Zq; R← gr

07 If R = 1: Return ⊥
08 t← f(R)
09 h← H[m]
10 s← SE

x (h, t, r)
11 If (s, h, t) /∈ D: Return ⊥
12 L ← L ∪ {m}
13 Return (s, t)

Procedure RO(m)
14 If H[m] 6= ∅:
15 Return H[m]
16 c[m] $← Ber(γ) (G1)
17 h $← Zq

18 H[m]← h
19 Return h

Procedure Fin(m∗, (s∗, t∗))
20 If m∗ ∈ L: Abort
21 If c[m∗] 6= 1: Abort (G1)
22 h∗ ← H[m∗]
23 If (s∗, h∗, t∗) /∈ D: Abort
24 R∗ ← VE

g,x(s∗, h∗, t∗)
25 If R∗ = 1: Abort
26 If f(R∗) 6= t∗: Abort
27 Stop with 1

Fig. 6. Games G0 and G1. Ber is the Bernoulli distribution with bias γ = 1/(Qs + 1),
i.e., in Line 16 c[m] takes the value 1 with probability 1/(Qs + 1). Note that Line 20 is
redundant in G1.

We argue that the adversary can distinguish G1 and G2 with probability at
most Qsδ. To see this, note that change (a) is a pure rewriting step and does not
influence the output of the game. Concerning change (b), consider first the case
that the adversary queries Sign or RO on a message m with c[m] = 1. For the
random oracle, the response h is picked uniformly at random in Line 11, and the
signing oracle aborts, so the distribution is exactly as in G1.

Consider next the case that the adversary queries one of the oracles on a
message m with c[m] = 0. Observe then that Lines 06 to 11 in G1 correspond
exactly to the protocol Preal from Fig. 4, and Lines 13 to 20 in G2 correspond
exactly to the protocol Psim. Thus, switching the way of computing signatures
introduces, for each call to the signing oracle, a statistical distance between the
two games that is bounded by δ. We obtain∣∣Pr[GF1 ⇒ 1]− Pr[GF2 ⇒ 1]

∣∣ ≤ Qsδ .

Now construct a uf-koa forger F ′ against GenElgamal in the random oracle
model as in Fig. 8.

The coin tosses in Line 10 of Fig. 7 ensure that F ′ only has to provide
signatures on messages for which it programmed the random oracle itself; it
thus simulates the signing procedure of G2 perfectly. Further, the coin tosses
guarantee that the forgery is consistent with RO∗, so F ′ wins its game exactly if
F produces a valid forgery. This means that

Pr[GF2 ⇒ 1] = ε′ ,

and the statement follows. ut
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Procedure Init
00 L ← ∅
01 H[·]← ∅; c[·]← ∅
02 σ[·]← ∅
03 x $← Z∗q ; X ← gx

04 Return X

Procedure Sign(m)
05 If m ∈ L: Abort
06 If c[m] 6= 0: Abort
07 L ← L ∪ {m}
08 Return σ[m]

Procedure Fin(m∗, (s∗, t∗))
as in G1 (Fig. 6)

Procedure RO(m)
09 If H[m] 6= ∅: Return H[m]
10 c[m] $← Ber(γ)
11 h $← Zq

12 If c[m] = 0:
13 a, b $← Zq

14 R← Xagb

15 If R = 1:
16 σ[m]← ⊥; Goto Line 22
17 t← f(R)
18 (s, h)← SimE(a, b, t)
19 If (s, h, t) /∈ D:
20 σ[m]← ⊥; Goto Line 22
21 σ[m]← (s, t)
22 H[m]← h
23 Return h

Fig. 7. Game G2

Procedure Init
replace Line 03 with
03 X $← Init∗

Procedure RO(m)
replace Line 11 with
11 h← RO∗(m)

Procedure Sign(m)
as in G2 (Fig. 7)

Procedure Fin(m∗, (s∗, t∗))
replace Lines 22–27 in Fig. 6 with
22 Invoke Fin∗(m∗, (s∗, t∗))

Fig. 8. Construction of uf-koa forger F ′ from F by changing Game G2 as specified.
Init∗, RO∗, and Fin∗ are the procedures from the uf-koa security game run by F ′.
Procedure Sign is as in Game G2.

5 The Semi-Logarithm Problem

We formalize and generalize the notion of intractable semi-logarithm problem
(SLP), a notion introduced by Brown for the analysis of signature schemes.

His motivation for studying the SLP is “to isolate the role of the hash function
and the group in analyzing the security of ECDSA” [6, p. 25]. Effectively, the
SLP is a number-theoretic hardness assumption related to the search problem
of finding a valid GenElgamal signature for a (unknown) message m with hash
value H(m) = 1.

As we show, the key-only unforgeability of an instantiation of GenElgamal
is characterized by the intractability of the corresponding variant of the semi-
logarithm problem (in the random oracle model), potentially establishing a
simplified target for cryptanalysis. Note that a suitable SLP variant does not exist
for all GenElgamal instantiations: for SM2 there is apparently no corresponding
SLP definition.
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Definition 6. Let (G, g, q) be a prime-order group and let f : G∗ → Zq and
ρ0, ρ1 : Z2

q → Zq be functions. We say that an algorithm I (τ, ε)-breaks the semi-
logarithm problem (SLP) in G with respect to f, ρ0, ρ1 if it runs in time at most τ
and achieves probability

ε = Pr[X $← G; (u, v) $← I(g,X) : v = f(gρ0(u,v)Xρ1(u,v))] .

Definition 7. Let E = E(s, h, t, r, x) be a defining equation with corresponding
set D (see Definition 2). We say that E is h-decomposable (with respect to D) if
there exist functions

η0, η1 : Zq → Zq and ρ0, ρ1 : Z2
q → Zq

such that η0(h), η1(h) 6= 0 if h 6= 0 and

r = η0(h)ρ0(s, t) + x η1(h)ρ1(s, t)

for all (s, h, t) ∈ D and r, x ∈ Z∗q satisfying E(s, h, t, r, x).

All defining equations from Fig. 2, except for SGenSM2, are h-decomposable.
The corresponding components η0, ρ0, η1, ρ1 are listed in Fig. 9.

Scheme η0(h) ρ0(s, t) η1(h) ρ1(s, t)
GenDSA (V1) h 1/s 1 t/s
GenGOST (V3) 1/h s −1/h t
GenAMV (V2) h 1/t −1 s/t
GenHarn (V6) 1 st −h s
no name (V4) 1 s/t −h 1/t
no name (V5) −1/h t 1/h s

Fig. 9. Components η0, ρ0, η1, ρ1 of the h-decomposable defining equations from Fig. 2.

Theorem 2. Let (G, g, q) be a prime-order group, let E be a defining equation
with corresponding set D, and let f : G∗ → Zq and H : {0, 1}∗ → Zq be functions.
If E is h-decomposable with functions ρ0, ρ1, and H is modeled as a random
oracle, then the semi-logarithm problem in G with respect to f, ρ0, ρ1 is non-tightly
equivalent to the key-only unforgeability of GenElgamal when instantiated with
E,G, H, f,D.

More precisely, for any adversary I that (τ, ε)-breaks SLP, there exists a
forger F that (τ ′, ε)-breaks the key-only unforgeability of GenElgamal, where
τ ≈ τ ′.

Conversely, for any forger F that (τ,QH , ε)-breaks the key-only unforgeability
of GenElgamal, there exists an adversary I that (τ ′, ε/QH − 1/q)-breaks SLP,
where τ ′ ≈ τ and QH is the number of random oracle queries posed by F .
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Proof. Given an adversary I that (τ, ε)-breaks SLP, we construct a forger F that
(τ ′, ε)-breaks key-only unforgeability of GenElgamal, for any hash function H.
(For the particular case of ECDSA, this result is due to Brown [6].) On input,
F obtains g,X (from pk). It picks any message m (independently of X) such
that H(m) 6= 0, computes h ← H(m), g′ ← gη0(h), and X ′ ← Xη1(h), and lets
I compute a semi-logarithm as per (u, v) $← I(g′, X ′). Then (u, v) is a valid
signature on m (with respect to g,X). Indeed, since E is h-decomposable, by
definition of VEg,x (see Definition 3) it holds that in Verify (see Line 14 in Fig. 3)
we have

R̂ = VEg,x(u, h, v) = gη0(h)ρ0(u,v)Xη1(h)ρ1(u,v) = (g′)ρ0(u,v)(X ′)ρ1(u,v) ,

and thus f(R̂) = v.
Let now F be a forger that (τ,QH , ε)-breaks the key-only unforgeability of

GenElgamal. We construct an adversary I against SLP from it. On input of
(g,X), it draws a $← Zq, aborts if a = 0, sets g′ ← g1/η0(a) and X ′ ← X1/η1(a),
and starts F on input pk = (g′, X ′). If m∗ denotes the message on which F forges
a signature, we assume w.l.o.g. that F queries H(m∗) before outputting the
latter. I initially guesses the index j ∈ {1, . . . , QH} of the corresponding query
to H. It then responds to the jth random oracle query by programming it via
H(mj)← a, and answers all other queries with uniform values. Once F outputs
its forgery (m∗, (s, t)), adversary I forwards (s, t) to its own challenger. Since E
is h-decomposable and g = (g′)η0(H(m∗)) and X = (X ′)η1(H(m∗)), it holds that

gρ0(s,t)Xρ1(s,t) = ((g′)η0(H(m∗)))ρ0(s,t)((X ′)η1(H(m∗)))ρ1(s,t)

= VEg′,x′(s,H(m∗), t) ,

where x′ = logg′ X ′. That is, I wins in the SLP game if it didn’t abort when
sampling a, its guess for index j was correct, and F forges successfully. ut

Acknowledgments. The first author was supported by DFG SPP 1736 Big Data.
The second author was supported in part by ERC Project ERCC (FP7/615074)
and by DFG SPP 1736 Big Data. The third author was supported in part by
ERC Project ERCC (FP7/615074).

References

1. Agnew, G., Mullin, R., Vanstone, S.: Improved digital signature scheme based on
discrete exponentiation. Electronics Letters 26(14), 1024–1025 (1990)

2. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly:
A framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg,
Germany, Hanoi, Vietnam (Dec 4–8, 2016)

3. Brickell, E.F., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for
discrete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg, Germany, Melbourne, Victoria,
Australia (Jan 18–20, 2000)



One-Per-Message Unforgeability of (EC)DSA 15

4. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Cryptology ePrint
Archive, Report 2002/026 (2002), http://eprint.iacr.org/2002/026

5. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes
Cryptography 35(1), 119–152 (2005)

6. Brown, D.R.L.: On the provable security of ECDSA. In: Blake, I.F., Seroussi, G.,
Smart, N.P. (eds.) Advances in Elliptic Curve Cryptography, pp. 21–40. Cambridge
University Press (2005), http://dx.doi.org/10.1017/CBO9780511546570.004

7. Brown, D.R.L.: One-up problem for (EC)DSA. Cryptology ePrint Archive, Report
2008/286 (2008), http://eprint.iacr.org/2008/286

8. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 20–24, 2000)

9. Dolmatov, V., Degtyarev, A.: GOST R 34.10-2012: Digital Signature Algorithm.
RFC 7091 (Informational) (Dec 2013), http://www.ietf.org/rfc/rfc7091.txt

10. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 1984)

11. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signatures.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 16. pp. 1651–1662. ACM Press, Vienna, Austria (Oct 24–28, 2016)

12. Fersch, M., Kiltz, E., Poettering, B.: On the One-Per-Message Unforgeability of
(EC)DSA and its Variants. Cryptology ePrint Archive, Report 2017/890 (2017),
http://eprint.iacr.org/2017/890

13. García, C.P., Brumley, B.B., Yarom, Y.: “Make sure DSA signing exponentiations
really are constant-time”. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 16. pp. 1639–1650. ACM Press, Vienna, Austria
(Oct 24–28, 2016)

14. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key
extraction from mobile devices via nonintrusive physical side channels. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16.
pp. 1626–1638. ACM Press, Vienna, Austria (Oct 24–28, 2016)

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press, Victoria, British Columbia, Canada (May 17–20, 2008)

16. Harn, L.: New digital signature scheme based on discrete logarithm. Electronics
Letters 30(5), 396–398 (1994)

17. Harn, L., Xu, Y.: Design of generalised ElGamal type digital signature schemes
based on discrete logarithm. Electronics Letters 30(24), 2025–2026 (1994)

18. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptography 23(3), 283–290 (2001)

19. ISO/IEC 11889:2015: Information technology — Trusted Platform Module library
(2013), https://www.iso.org/

20. Kerry, C.F., Gallagher, P.D.: FIPS PUB 186-4 Federal Information Processing
Standards publication: Digital Signature Standard (DSS) (2013), http://dx.doi.
org/10.6028/NIST.FIPS.186-4

21. Leadbitter, P.J., Page, D., Smart, N.P.: Attacking DSA under a repeated bits
assumption. In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 428–440. Springer, Heidelberg, Germany, Cambridge, Massachusetts, USA
(Aug 11–13, 2004)

http://eprint.iacr.org/2002/026
http://dx.doi.org/10.1017/CBO9780511546570.004
http://eprint.iacr.org/2008/286
http://www.ietf.org/rfc/rfc7091.txt
http://eprint.iacr.org/2017/890
https://www.iso.org/
http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://dx.doi.org/10.6028/NIST.FIPS.186-4


16 M. Fersch, E. Kiltz, B. Poettering

22. Malone-Lee, J., Smart, N.P.: Modifications of ECDSA. In: Nyberg, K., Heys, H.M.
(eds.) SAC 2002. LNCS, vol. 2595, pp. 1–12. Springer, Heidelberg, Germany, St.
John’s, Newfoundland, Canada (Aug 15–16, 2003)

23. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. The CRC Press series on discrete mathematics and its applications, CRC
Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA (1997)

24. Nguyen, P.Q., Shparlinski, I.: The insecurity of the Elliptic Curve Digital Signature
Algorithm with partially known nonces. Des. Codes Cryptography 30(2), 201–217
(2003)

25. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kuty-
lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp. 436–453.
Springer, Heidelberg, Germany, Wroclaw, Poland (Sep 7–11, 2014)

26. Pointcheval, D., Vaudenay, S.: On provable security for digital signature algorithms.
Technical Report LIENS-96-17, LIENS (1996)

27. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg,
Germany, Konstanz, Germany (May 11–15, 1997)

28. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 18–22, 2002)

29. Vaudenay, S.: Hidden collisions on DSS. In: Koblitz, N. (ed.) CRYPTO’96. LNCS,
vol. 1109, pp. 83–88. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 18–22, 1996)

30. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg, Germany, Miami, FL, USA
(Jan 6–8, 2003)

31. Zhang, Z., Yang, K., Zhang, J., Chen, C.: Security of the SM2 signature scheme
against generalized key substitution attacks. In: Security Standardisation Research
- Second International Conference, SSR 2015, Tokyo, Japan, December 15-16, 2015,
Proceedings. pp. 140–153 (2015)


	On the One-Per-Message Unforgeability of (EC)DSA and its Variants

