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Abstract

Most applications of planning to real problems involve com-
plex and often non-linear equations, including matrix oper-
ations. PDDL is ill-suited to express such calculations since
it only allows basic operations between numeric fluents. To
remedy this restriction, a generic PDDL planner can be con-
nected to a specialised advisor, which equips the planner with
the ability to carry out sophisticated mathematical operations.
Unlike related techniques based on semantic attachment, our
planner is able to exploit an approximation of the numeric
information calculated by the advisor to compute informa-
tive heuristic estimators. Guided by both causal and numeric
information, our planning framework outperforms traditional
approaches, especially against problems with numeric goals.
We provide evidence of the power of our solution by success-
fully solving four completely different problems.

1 Introduction
Planning for real-world applications usually requires tem-
poral domain models with complex numeric effects that in-
volve algebraic expressions, analytic functions, non-linear
equations and matrix calculations (e.g. the Space Telescope
Slew Manoeuvre domain (Löhr et al. 2012) and the Machine
Tool Calibration domain (Parkinson et al. 2014)). PDDL
(Fox and Long 2003) is inadequate to express these calcu-
lations as it only allows basic operations between numeric
fluents. To cope with this problem, an external advisor is
typically attached to a PDDL planner and tasked with han-
dling complex mathematical operations. However, existing
solutions provide limited heuristic guidance about such op-
erations and are not general enough to encompass all the
temporal and numeric features that can be found in real-
world problems. In this paper, we present our approach to
combining a specialised advisor with a generic PDDL plan-
ner, which improves the state of the art in two ways: (i) we
provide the planner with heuristic insights into the effects
of the advisor on numeric state variables, which enhances
search control; and (ii) we demonstrate capabilities in four
completely different domains borrowed from the literature,
attesting to the generality of our approach.

More specifically, complex mathematical operations have
so far been dealt with semantic attachments. Introduced by
Weyhrauch (1980) as a way to interpret predicate symbols
using external procedures, semantic attachments have been

incorporated in PDDL as modules (Dornhege, Eyerich, and
Keller 2009), extending the PDDL language into PDDL/M.
However, the TFD/M planner has no heuristic guidance over
the effects of semantic attachments and often judges prob-
lems unsolvable because it cannot identify any actions that
can help achieve the goals. Action descriptions, in fact, play
two roles for a planner: (i) allowing it to predict the states
resulting from action application; and (ii) helping it identify
actions that are relevant and useful to achieve state condi-
tions. This second role is key in guiding search. Without
guidance, the planner is forced to resort to blind search,
progressing states and probing their properties. TFD/M also
does not support a full range of temporal plan structures (it
uses a constrained choice in which new actions are restricted
to start only at the start of the plan or immediately after other
actions have started or ended).

We propose a principled and general technique to build
approximations of the numeric information calculated by an
advisor and use them to compute effective heuristic values.
Since we integrate the approximations in the domain (as an
extra effect of the actions that rely on the advisor to calcu-
late their exact numeric effects), the planner can use them di-
rectly in the standard heuristic evaluation, without the need
to build a specialised heuristic. We can also dynamically in-
form this heuristic using the external advisor to rapidly com-
pute first order approximations of effects that can be trans-
parently exploited within the heuristic computation.

Although our method is general, we implement it in the
context of a powerful planner, POPF-TIF (POPF with Timed
Initial Fluents) (Piacentini et al. 2015). This planner sup-
ports required concurrency, metric variables, predictable ex-
ogenous events and external advisors. The combination of a
powerful planner with good heuristic guidance, both causal
and numeric, allows us to successfully solve, within the
same framework, complex problems in four very diverse do-
mains: (i) Earth Observations problem (Aldinger and Löhr
2013); (ii) the Hydraulic Blocks World problem (Ivankovic
et al. 2014); (iii) the Voltage Control problem (Piacentini
et al. 2015); and (iv) large scale Search-and-Tracking mis-
sions (Bernardini et al. 2016). When possible, we compare
our solution to related techniques, providing evidence of the
benefits of our approach.



2 Semantic Attachment in PDDL
Semantic attachments (Dornhege, Eyerich, and Keller 2009;
Piacentini et al. 2015) evaluate fluents using externally spec-
ified functions. Here we consider numeric fluents only.

We implement a simple interface between the planner and
the specialised advisor. The interface works by categorising
the numeric variables V into three sets:

(i) V ind (indirect variables) are calculated by the external
advisor based on the context provided by the planner;

(ii) V dir (direct variables) are determined by the planner
and their values affect the V ind variables;

(iii) V free (free variables) are evaluated by the planner and
do not result in any external computation.

When the planner queries the advisor, the planner passes the
V dir variables and the advisor hands back the V ind vari-
ables. Hence, the values of the V ind variables can be seen
as indirect effects of the choices made by the planner. For-
mally, we define a semantic attachment as a function φ that
depends on the variables V dir and calculates the values of
the variables V ind, φ : ~V dir → ~V ind.

Goals and conditions can be expressed in terms of all of
the variables in V dir ∪ V free ∪ V ind. Action effects can af-
fect only the variables in V dir ∪ V free , but cannot directly
modify the V ind (V ind ∩ V dir = ∅). However, whenever a
change occurs in one of the V dir variables by means of the
direct effects of an action, the state is updated by also con-
sidering the indirect effects of such action since the values of
the V ind variables are immediately calculated by the advisor
according to the new values of the V dir variables.

Indirect effects are a special case of PDDL+ events (Fox
and Long 2006). Events are similar to actios, in that they
trigger transitions from one state to another, but they nec-
essarily apply as soon as their preconditions are satisfied.
Indirect effects can be seen as events that are provoked by
changes in the V dir variables.

The V ind variables can also be seen as a generalisation of
derived predicates (Hoffmann and Edelkamp 2005) involv-
ing numeric fluents, where the V dir and V free are the basic
variables and the function φ is the rule that determines the
values of the derived variables. In PDDL, however, derived
predicates are limited to propositional variables, while in our
framework we focus on numeric fluents.

As an alternative to events and derived predicates, rela-
tions between variables (either numeric or propositional) can
be modelled via global constraints (Ivankovic et al. 2014) on
the values that they can assume. The variables are divided in
two classes, primary and secondary, which are similar to the
direct and indirect variables in our framework. The differ-
ence is that the secondary variables that appear in the global
constraints do not need to be assigned to specific values as
long as they respect all the constraints, while in our case the
V ind variables have specific values, which are calculated by
the advisor. One limitation of the global constraints is that
they only capture the relations between variables at the same
time point. In our setting, instead, it is possible to store the
values of the V ind variables at a certain time step by us-
ing auxiliary V dir variables, allowing the specialised advi-

sor to access their values in calculations at subsequent time
points. Finally, although global constraints can be incorpo-
rated in delete relaxation heuristics (Ivankovic et al. 2014),
this requires explicitly calling the external constraint solver
to check the satisfiability of an action, which is a computa-
tionally expensive operation.

In previous works, semantic attachments are supported
via external modules. In particular, TFD/M (Eyerich,
Mattmüller, and Röger 2009) allows three types of modules:
condition-checkers, effect-applicators and cost-calculator.
The actions in the model must be annotated with the specific
external modules that the planner needs to invoke to check
the conditions and to calculate the effects. Therefore, PDDL
is extended into PDDL/M, which allows such annotations.

Our approach to semantic attachment is related to Plan-
ning Modulo Theories (PMT) (Gregory et al. 2012). PMT
is an extension of planning to support first order theories as
parameters: new types (e.g. sets) can be added in the domain
as modules to allow custom operations (e.g. set unions, set
intersections). The core planner exploits abstractions of the
theories to guide the search. For new types, these abstrac-
tions are automatically derived by sampling reachable val-
ues from the initial state. Semantic attachment can be seen
as a form of PMT where an external module constitutes a
new theory. A key difference between our work and PMT is
that PMT offers a way to construct heuristic guidance that is
specifically designed for structured types, while we propose
an approach for non-linear functions of numeric variables.

Other approaches to semantic attachment, such as OPL
(Hertle et al. 2012) and PDDLx (Bajada 2016), are compat-
ible with our framework, which is independent of the syn-
tactic form in which the attachments are specified. However,
we have no direct experience with them.

3 Benchmark Domains
We show now how our benchmark domains (available at
https://github.com/popftif/popf-tif) can be modelled by ex-
ploiting V ind, V dir and V free variables.

3.1 Earth Observation Domain
The EO problem (Aldinger and Löhr 2013) concerns finding
a sequence of poses for a satellite to maximise the number of
observations. The satellite needs to perform a series of slew
manoeuvres to reach the right conditions for executing an
observation. Hence, the angles between x,y,z-axes, the angu-
lar rate of the satellite and the scan velocity of an observation
site must be calculated after every manoeuvre.

This domain was first modelled using PDDL/M and
solved with TFD/M. The model consists of three actions:
positioning of the satellites to point towards an observation
site, making an observation and skipping a site. A plan is
found when every observation site has been either scanned
or ignored. A condition-checker module is introduced
to verify that the satellite can transition from one observa-
tion site to the next one. An effect module calculates the
changes on the numeric variables after each scan operation,
while cost modules determine the duration of each action.

The EO problem finds an easy and compact model us-
ing the formalism in Section 2. The V ind variables are:



the action duration, the angular rates and values and aux-
iliary variables that represent whether the satellite can tran-
sition between observation sites. The values of these vari-
ables depend on the observation site that has been targeted
or scanned, which is part of the V dir variables.

3.2 Hydraulic Blocks World (HBW) Model
The HBW domain was introduced to explore the use of
global constraints to filter valid states (Ivankovic et al.
2014). This domain is an extension of blocks world (BW)
where the towers of blocks sit on pistons that are inside ver-
tical cylinders connected to a reservoir of hydraulic fluid.
The columns can be of different areas and the blocks can
have different sizes and weights. The goal of the planning
problem is to reach a given configuration of blocks, avoid-
ing any piston going above the top or below the bottom of its
cylinder. Whenever a block is put down or picked up from
a cylinder, the total weight of the column changes and the
fluid rearranges itself to balance the forces in the system.

The HBW domain can be modelled in PDDL similarly
to the traditional BW domain, with the addition of metric
information. In HBW, there are two numeric variables per
cylinder, wk, the weight of the tower in cylinder k, and hk,
the height of the fluid in cylinder k, as well as four con-
stant parameters: V (total fluid volume), ak (cross section
of cylinder k), ρ (density of the fluid), and hmaxk (maximum
height of cylinder k). The usual BW actions pickup/putdown
and stack/unstack have an additional parameter that repre-
sents the cylinder in which the block that is to be moved
rests. When one of these actions is performed on block b in
cylinder k, its effects change the weight wk of the tower in
k, which will increase or decrease a quantity corresponding
to the weight of b, and the height hk of the fluid.

While the change in weight can be directly modelled in
PDDL by using the INCREASE and DECREASE operators in
the actions’ effects, the same does not hold for the global
change in the height of the fluid in every cylinder. This is
where semantic attachment comes into play: we handle the
change in height by calling an external advisor that encap-
sulates the fluid dynamics. Thus, in our formulation of the
HBW, the weight variables wk are the V dir and the height
variables hk are the V ind. A specialised advisor calculates
the V ind based on the V dir by implementing the following
system of equations that describe the fluid dynamics:{∑m

k=1 akhk = V (m = number of cylinders)

ρ (hk − hk+1) = wk+1/ak+1 − wk/ak ∀k = 1, ...,m− 1

3.3 Voltage Control Model
The VC problem is a power system problem where the goal
is to maintain the voltage of the busbars of an electrical net-
work within safety boundaries. In power systems, the elec-
trical current follows sinusoidal waves, so the relevant quan-
tities are related to each other by non-linear equations. Given
a network withN busbars, the voltage of a busbar k depends
on the power injected and ejected through a set of non-linear
equations, know as power flow equations.

In the VC problem, part of the power cannot be controlled
as it is given by the customers’ behaviours and the level of
power generated by the units. For the part that can be con-
trolled, electrical devices are used: capacitor banks, which
can inject a given amount of reactive power, and transform-
ers, which modify the reactance of a line. Planning can be
used to choose the configuration of the controllable devices
that keeps the voltage within given constant limits, while the
power consumed and generated are changing over time. In
the work by Piacentini et al. (2015), a specific solution to
formulate the VC problem in PDDL2.2 with semantic at-
tachment is presented, where the voltages of the busbars are
the V ind variables, which are calculated by the advisor via
the following equations:

Pk = Vk

N∑
n=1

Vn [Gkn cos (δk − δn) +Bkn sin (δk − δn)]

Qk = Vk

N∑
n=1

Vn [Gkn sin (δk − δn)−Bkn cos (δk − δn)]

where Q is the reactive power, the root mean square of the
product of current and voltage, P is the real power, δ is the
phase angle of the voltage and Gkn and Bkn are constants
called, respectively, reactance and susceptance of the line
between busbars k and n. The variables Pk and Qk consti-
tute the set of V dir.

3.4 Search-and-Track Model
In a Search-and-Track (SaT) mission (Stone 1975), a search-
ing vehicle, the observer, wishes to locate the position of
a moving object, the target, and to track it to a destina-
tion upon finding it. Bernardini et al. (2016) propose a solu-
tion to SaT based on automated planning in which standard
search patterns (e.g. spirals and lawnmowers) are employed
by the observer to survey the search region. Starting from
an initial pool of promising candidate patterns Σ, which are
scattered throughout the search area, the planner finds a se-
quence of patterns in Σ, S = (σ1, σ2, . . . , σk̄) that max-
imises the probability of finding the target. Based on the tar-
get’s last known position and a set of possible destinations
D, the planner populates the plan S by making predictions
about which destination the target is aiming for. The plan-
ner updates these predictions over time in view of the tar-
get’s motion and the results of the previous searches. In a
Bayesian fashion, at every iteration k, the planner calculates
the probability of finding the target within k time steps:

P (k)(S) = P (k−1)(S) + P
(k−1)
S∗ (1− P (k−1)(S)) (1)

with P (0)(S) = 0 and P
(k−1)
S∗ being the probability that

the target is found during the execution of pattern σk con-
ditioned to the event that it has not been discovered earlier.
This term depends on the probability that the observer finds
the target when it is in view, i.e. the detection probability
γσk and on the probability that the target has chosen any of
the destinations compatible with σk. The probability that the
target is moving towards x at step k after executing S can be



formulated as follows:

P
(k)
S (x) =


P

(k−1)
S (x) (1−γσk )

1−P (k−1)
S∗

if x ∈ Dσk

P
(k−1)
S (x)

1−P (k−1)
S∗

if x 6∈ Dσk

(2)

with P (0)
S (x) = 1

d since a uniform prior PD for the destina-
tions is initially assumed andDσk indicating the destinations
compatible with the pattern σk.

We use an advisor to calculate Equations 1 and 2 at each
iteration. The destination and the total probabilities, P (k)

S (x)

and P (k)(S), are the V ind variables calculated by the ad-
visor. They depend on their own values in the preceding
state and on the last pattern added to the plan (P (k−1)

S (x)

and P (k−1)(S)). We create auxiliary V dir variables to store
these values, which are updated when a new search pattern
is executed, triggering a call to the external advisor.

4 Combining POPF-TIF with an Advisor
POPF-TIF, built on top of POPF2 (Coles et al. 2010; 2011),
is a PDDL planner based on a forward heuristic search en-
gine and exploits partial ordering. The partial ordering is
obtained by delaying the commitment to ordering the ac-
tions until some constraint forces it. The planner performs
Enforced Hill Climbing (EHC) with helpful actions prun-
ing and resorts to Best First Search (BFS) when EHC does
not find a solution. The planner uses a temporal extension of
the Metric-FF heuristic (Hoffmann 2003), TRPG (Temporal
Relaxed Planning Graph) (Coles et al. 2010), to guide the
search: facts and action layers are annotated to record the
minimum time-step at which they appear.

We create a modular architecture to handle seman-
tic attachments by coupling POPF-TIF with user-defined
advisors (Figure 1). Our framework, together with the
domains, is open source and can be downloaded at
https://github.com/popftif/popf-tif.

The planner receives the PDDL domain, the problem files
and the advisor as inputs. The model contains all the vari-
ables, while their classification into V ind, V dir and V free
is stored in the advisor. The role of the advisor is to com-
pute the V ind variables whenever it is invoked by the plan-
ner, which happens when the planner applies an action that
changes the V dir variables. The planner can access the val-
ues of the V ind variables that are calculated by the advi-
sor, but does not require a declarative description of how the
action effects change them. Such an abstraction is needed
whenever actions have effects that cannot be modelled in an
action-based declarative language such as PDDL.

An important advantage of this abstraction is that the user
can define a relaxation of the effects on the V ind that the
planner can use during the heuristic evaluation of a state.
Hence, the planner does not apply actions in a way that is
blind to the semantic attachment, but instead exploits it to
approximate its effects and to evaluate alternative states in
the search space. In the state progression phase of the search,
the V ind variables are updated by the advisor, while in the
TRPG construction an approximation of the effects is used.
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Figure 1: A general framework to incorporate an external
advisor into a generic PDDL planner.

A domain designer can achieve a semantic attachment in
any domain by adhering to the following procedure: 1) Iden-
tify the V ind, V dir and V free variables, set up the advisor
for calculating the V ind variables and establish a communi-
cation line between the planner and the advisor, which uses
the V dir variables. This mechanism is domain independent.
2) For each variable v ∈ V ind, identify an approximation
of how v changes (see Section 4.2) and add it in the domain
as an extra effect of those actions that rely on the advisor to
calculate the exact value of v.

4.1 State Evaluation and External Advisor
When the planner updates a state, the V free and the V dir
are calculated first. If there is a change in one of the V dir,
then the V ind values are calculated by calling the advisor,
using as input all the values of the V dir and other optional
parameters that can be provided to the advisor.

For example, in the HBW domain, when a block b is un-
stacked from a cylinder k, the planner starts by calculat-
ing the effects on the variable wk, expressed in PDDL as
(decrease (weight-c k) (weight-b b)), where the
fluent (weight-c k) represents wk and (weight-b b)
is the constant weight of the block b. Then, the planner in-
vokes the advisor and provides it with the updated values
of wi ∀i = 1, ...,m. These values, together with the other
constant parameters (ρ, V, ai), are used by the advisor to
calculate the values of all the variables hi ∀i = 1, ...,m,
which are then communicated back to the planner.

POPF-TIF is implemented in C++ and the external advi-
sor is a dynamically loaded shared library, which is given to
the planner as input when invoked. This allows the user to
implement different external advisors for different purposes.
To successfully load the advisor, the planner and the advisor
need to share a common interface. Since the advisor deals
only with numeric variables, without any continuous effect,
a state in the advisor is given by a map from the names of
the fluents to their values. The interface consists of:

(i) a method to initialise the advisor, possibly loading in-
put parameters;

(ii) the lists of the V dir and V ind variables, which are



identified by the names of their corresponding fluents
in the PDDL domain;

(iii) a method that calculates and updates the V ind based
on the V dir.

The planner calls the advisor only when the application of
an action changes the V dir.

4.2 Heuristic Guidance and Approximations
In our framework, we provide the planner with some coarse
information about this change to help it guide its choice of
actions. In addition, if the goal refers to the V ind variables,
we include an approximation of their values in the model to
support the planner in recognising what actions are helpful
for achieving the goal. This approach offers a general and
principled way to harness the heuristic content of the model
within the standard planning approach, while still using the
external advisor to manage state progression.

The relaxation of numeric state variables used in POPF-
TIF for reachability analysis and heuristic evaluation is based
on the same principles introduced in Metric-FF (Hoffmann
2003), which can handle only numeric effects expressed in
linear normal form (LNF). In our framework, however, the
values of the V ind for the next states are not accessible to the
planner to calculate the heuristic estimators, so we provide
the planner with a LNF approximation of them. In princi-
ple, more accurate and general approximations can be pro-
vided, depending on the capability of the planner. The sim-
plest effect that can be used is a linear effect of first degree:
v 7→ v + c where c is a constant and v ∈ V ind. This ef-
fect indicates whether an action increases (c > 0), decreases
(c < 0) or is irrelevant (c = 0) to v. The value of c should be
chosen so that it does not underestimate the real effect on v,
otherwise possible values might be excluded in the reach-
ability analysis. As proposed by Hoffmann (2003), if the
action can be applied multiple times and increases (or de-
creases) the fluent value, then the upper (or lower) bound of
the reachable values becomes +∞ (or −∞), making all the
values of the variable v reachable. In this case, the value of
c becomes relevant during the relaxed plan extraction, if the
action is required to satisfy a numeric goal. This value de-
termines the number of applications of the action, therefore
changing the length of the relaxed plan. The approximation
of these effects is left to the modeller, who can specify in the
model an appropriate linear effect on the V ind variables.

The use of an approximation of the effects on the V ind
variables becomes particularly important when there are nu-
meric goals that involve them. In this case, the heuristic
must be able to discriminate the actions that are helpful to
achieve such goals among all actions. To favour the iden-
tification of such actions, we consider different approxima-
tions, which reflect different compromises between the ac-
curacy of the approximation and the informativeness of the
heuristic. Given a variable v ∈ V ind, a set of actions A that
affect v and the approximated effect v 7→ v+c, we calculate
c in different ways, from the least to the most accurate:

(i) c is equal in each a ∈ A and its order of magnitude
does not necessarily reflect the exact effects calculated
by the advisor;

(ii) c is equal in each a ∈ A and its order of magnitude
reflects the exact effects calculated by the advisor;

(iii) c’s absolute value is equal in each a ∈ A, but its polar-
ity reflects the exact effects calculated by the advisor;

(iv) c is different for every a ∈ A and is computed based
on the initial state as a first-order approximation of the
exact effects calculated by the advisor;

(v) c is different for every a ∈ A and is dynamically com-
puted for each state by the advisor along with the exact
numeric effects as a first-order approximation of them.

Approximations (iii)-(v) are increasingly more informative
and realistic: case (iii) allows the planner to see not only
that an effect on the V ind exists, but also its polarity; case
(iv) and (v) expose both the magnitude and the polarity of
the changes in the V ind to the planner. Cases (i) and (ii) are
rather unrealistic. We consider them only to analyse the im-
pact of different approximations on the heuristic guidance.

Heuristic Guidance for the Earth Observation Domain
In the original domain, there is only one condition on the
V ind, which involves the auxiliary variable that represent
the condition-checker module. This condition requires
the torque of the satellite not to exceed a conservative upper-
bound, ensuring that there is a feasible slew manoeuvre be-
tween two observation sites. As a simple approximation, we
consider that every action makes this condition true.

Heuristic Guidance for the Hydraulic Blocks World
We equip the HBW model with information on how mov-
ing a block affects the fluid heights in the cylinders. This
helps the planner guide search. First, we add the invariant
condition 0 ≤ hk ≤ hmaxk ,∀k = 1, ...,m to all the actions.
In addition, when the goal involves the V ind variables, we
provide the planner with an approximation of their values,
which helps the planner identify the actions that are rele-
vant to achieve the goal. For example, suppose that the goal
is (≥ (height-column C1) 6), where the heights of the
columns are the V ind variables. To guide search, the plan-
ner must be able to identify which actions have effects that
can change these values. Supplying the model with an ap-
proximation of how the column heights change serves this
purpose, even if the approximation is not precise. When un-
stacking a block b from a cylinder c, we expect the fluid in
the cylinder c to rise and the fluid in the other cylinders to
drop. We can express an approximate effect on the hk in
PDDL via a universally quantified effect in the pickup ac-
tion: (forall (?d - column) (and

(decrease (height-column ?d)
(approximation ?d ?c))))

where (approximation ?d ?c) denotes constant values,
instantiated by the modeller in the initial state, positive when
?d and ?c are two distinct cylinders and negative otherwise.
Any suitable approximation can be used. For example, we
can set that the total increase in the height of the fluid in
cylinder c is equal to the sum of the fluid displaced from
the other two cylinders, each of which are inversely propor-
tional to the areas of the cylinders (assuming that the blocks
have constant weight). This approximation corresponds to
method (iv) as described in Section 4.2. A simpler and less



informative approximation would be just a constant, repre-
senting the fact that the heights in the other columns have
decreased by a non-zero value (approximations (i) or (ii)).
This approximation is only used by the planner when evalu-
ating the goodness of reachable states.

Since in HBW all the actions have the same preconditions
on the V ind variables, these preconditions must hold in ev-
ery state. Hence, if the goal never mentions the V ind vari-
ables, then no approximation is needed and the planner can
be blind to how the advisor changes them. The advisor will
of course still need to make sure that the values of the V ind
variables are properly computed, to ensure state consistency.
For example, even if none of the goals refer to the heights of
the columns, the advisor must still exclude states that violate
the fluid constraints as blocks are moved around.

Heuristic Guidance for the Voltage Problem For the
voltage problem, the heuristic computation uses an abstrac-
tion of the network that is based on a first order approxima-
tion of the effects of the actions expressed in the domain, us-
ing problem-specific constants provided in the initial state:
(forall (?b - bus) (at start

(increase (voltage ?b) step-max ?t ?b))))
where (voltage ?b) are the voltages of the busbars and
(step-max ?t ?b) are constant values depending on the
transformer that was changed and the busbars.

The values of these fluents can be obtained in a prepro-
cessing stage by using different approximations. One way
to compute them is to assign a uniform value to the busbars
within a given distance from the transformer (approximation
(iii) as described in Section 4.2). A more accurate way is ob-
tained by taking, for each busbar, the difference between the
voltage at the first time point and the voltage after applying
a transformer change (approximation (iv)).

The (step-max ?t ?b) values are used in the heuristic
evaluation whenever a predicted change of the load or gener-
ation profiles rise (lower) the voltage level above (below) the
admitted limit. The heuristic computation adds the most ap-
propriate set of actions to the relaxed plan, according to the
approximated effects, to re-achieve the numeric goal, chang-
ing the heuristic value and the set of helpful actions of the
state. The voltage values are then computed by the advisor
when the successor states are expanded in the search.

Heuristic Guidance for Search-and-Track In the heuris-
tic evaluation of SaT problems, the actions that corre-
spond to the execution of search patterns have an ap-
proximate effect on the total probability, which corre-
sponds to a constant value that is set in the initial
state and is dependent on the pattern that is executed:
(at end (increase (total-probability)

(heuristic-approximation ?p)))
In this domain, we are interested in obtaining good qual-
ity solutions in terms of the specified metric (usually, prob-
ability to discover the target). POPF-TIF achieves that by
using an any-time search, where the value of the previous
solution’s metric is the lower limit of an additional metric
goal that the following solution must achieve. The approxi-
mate effects on the total probability are therefore used in the
heuristic computation to select the actions (search patterns)

# obs sites 3 4 5 6 7 8 9 10
TFD/M 0-0.24 1 1 1 3 7 16 34

POPF-TIF 0.17 0.52 4.33 4.99 8.78 9.40 11.82 28.70

Table 1: Time to find the best quality solution for the EO
problems using POPF-TIF and TFD/M.

to add in the relaxed plan to achieve this additional numeric
goal. To add discriminatory power to the search patterns in
the heuristic guidance, we extend our external advisor to cal-
culate the effect (heuristic-approximation ?p) after
a search pattern action is inserted in the plan. This fluent be-
comes a V ind variable, which is calculated by the external
advisor by applying each search pattern to the current state
(approximation (v) as described in Section 4.2). This results
in calls to the external advisor that are more expensive, but
also more informative for the heuristic evaluation.

5 Experimental Results
We encoded all the benchmark domains within our frame-
work and devised heuristic approximations for them by fol-
lowing our principled approach. We use several heuristic
approximations in each case and compare them. When-
ever possible, we also compare our solution with other ap-
proaches and, to this aim, we built modules for TFD/M
for two of the four domains. Our experimentation demon-
strates that: (i) from a knowledge engineering perspective,
our framework is general enough to capture very diverse
domains; and (ii) from a performance perspective, our ap-
proach is always comparable with related techniques, but
outperforms them on the most sophisticated problems.

5.1 Earth Observations
For the EO domain, we compare our planner with TFD/M
using the benchmark by Aldinger and Löhr (2013). In Ta-
ble 1, we show the times at which the best quality solution
is found. We consider problems with an increasing number
of observation sites. Both planners use an anytime search
algorithm (i.e. the search algorithm does not stop when find-
ing the first solution, but keeps generating increasingly bet-
ter plans until the time-out expires). Since in TFD/M the
time at which each solution is found is not shown, we pro-
vide the approximative range at which it is found. The up-
per bound is the time when TFD/M exhausts the exploration
of the search space or the time of the first report after the
solution is found. Table 1 shows that, in this domain, our
framework and TFD/M have comparable performance.

5.2 Hydraulic Blocks World
Planners We evaluate our framework against the HBW
domain by comparing it with two alternative planners:
PREFPEA*(Ivankovic et al. 2014) and TFD/M (Dornhege,
Eyerich, and Keller 2009). PREFPEA* is an optimal plan-
ner that has been specifically built to solve problems with
global numerical state constraints, such as HBW.

Since the three planners use different input languages,
we model HBW in three different ways. In PREFPEA*,
the model exploits global constraints to capture the physical
laws described in Section 3.2 and the additional constraint:



0 ≤ hk ≤ hmaxk (∀k = 1, ...,m). In TFD/M and POPF-TIF,
we do not directly model the HBW equations, but the action
effects on hk are calculated by the external advisor as black
boxes. The invariant 0 ≤ hk ≤ hmaxk (∀k = 1, ...,m) is ex-
pressed in PDDL by adding it to all the actions as an over
all condition and to the goal.

The difference between TFD/M and our framework lies
in how the external advisor is handled and exploited. In our
approach, there is no need to specify in the model when the
external advisor is required because the planner invokes the
advisor whenever a change in the V dir variables (i.e., wk)
occurs. Instead, in TFD/M, the effect-applicator module re-
quires explicit annotation and it is the responsibility of the
modeller to call it at the right time, e.g. when at least one
wk is updated. Moreover, when TFD/M evaluates a state,
its external modules use the numeric values of the preceed-
ing state. Hence, the update of wk and hk (calculated via
the module) must happen at two distinct time points (at the
start and at the end of the action, respectively). This delay in
the update of the hk is negligible in HBW, but it can create
problems in domains with a rich temporal structure.

Problems and Results For evaluating the three planners,
we consider two sets of problems, which allow us to observe
how the approximation of the V ind variables impacts on the
heuristic guidance: (i) the original problem set (Ivankovic
et al. 2014), which encompasses 120 randomly generated
problems with between 4 and 7 blocks; and (ii) a new set
of 80 problems, where we add a numeric goal on one of the
columns in the original problem, which corresponds to the
height that must be reached on that column.

When using the original set of problems, our planner is
blind to the numeric effects on the heights on the column: if
a state satisfies all the numeric invariants, these are consid-
ered always satisfied in the relaxed graph; if the state does
not satisfy them, the state has no successors. When consid-
ering the new set of problems, the addition of numeric goals
has an impact on the approximation of the effects on the
V ind variables in the heuristic evaluation. If the state does
not already satisfy the additional goal condition, the heuris-
tic evaluation must choose an appropriate set of actions.

The experimental evaluation reveals that POPF-TIF and
TFD/M have similar performance in terms of execution
time, while PREFPEA* is systematically slower than the
other two planners. Although PREFPEA* is an optimal
planner while the other two are satisfying planners, most of
the solutions found by POPF-TIF (60%) and TFD/M (77%)
are optimal (where optimality in the HBW is determined
by the number of actions in the plan), as show in Figure
2. Moreover, using an anytime search, both POPF-TIF and
TFD/M find the optimal solutions on average faster than
PREFPEA* in all but six and two cases, respectively.

As for a direct comparison between POPF-TIF and
TFD/M, they achieve comparable results against the origi-
nal set of problems because, in this case, the advisor does
not contribute to the calculation of the heuristic, which is
only driven by the propositional aspect of the problem. How-
ever, the situation is different when considering the new set
of problems. In evaluating them, we run POPF-TIF with the
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Figure 2: Relative distance from the optimality of solutions
obtained by POPF-TIF and TFD/M , with respect to the opti-
mal value found by PREFPEA* for the HBW problems.

POPF-TIF TFD/M

h(iv) h(ii) h(i)

# problem solved 71 71 60 11
average #state evaluated 829 904 698 150
average execution time 0.18 0.18 0.24 0.2
average plan length 20 20 50 8

Table 2: Average plan length and number of states evalu-
ated for different heuristic approximations with POPF-TIF
and TFD/M for the HBW.

three different constant approximation settings, and specifi-
cally cases (i), (ii) and (iv) of the approximations described
in Section 4.2. Note that the first and the second approxi-
mations contradict the physical effects that are expected. We
consider these case studies to test the impact of the approxi-
mations on the heuristic evaluation. Among the 80 new prob-
lems, TFD/M finds a solution only for 11 problems, while
it mistakenly marks the other problems as unsolvable. It is
worth noting that TFD/M finds solutions only in the acci-
dental case in which the states that satisfy the propositional
goals or their next successors satisfy the numeric goals as
well. When additional search is required, the planner fails to
recognise that other actions can be used to achieve the goal.
On the other hand, POPF-TIF finds solutions for 71 problems
with approximations (ii) and (iv) and 60 with approxima-
tion (i). The approximations contribute to the total number
of states that the planner needs to evaluate and the quality of
the solution (measured as plan length), as shown in Table 2.
Note that the average plan length for TFD/M is shorter be-
cause TFD/M only finds solutions for the smallest problems,
which require fewer actions. The results highlight that, for
the heuristic to be effective, we must provide approximated
effects with the right order of magnitude.

5.3 The Voltage Control Problem
We compare the solutions of the VC problem that we get
within our framework with those that can be obtained with-
out semantic attachment. We cannot offer a direct compari-
son with TFD/M in this domain because it involves required
concurrency, which TFD/M does not fully support.

For this domain, we consider two approximations of the
V ind variables, corresponding to case (iii) and (iv) (respec-
tively, AC h(iii) and AC h(iv)) as described in Section 4.2.

In modelling the problem without relying on external ad-
visors, we need to use a linearisation of the power flow equa-
tions. We model predictable numerical exogenous events,
which happen when a change in the load and the generation
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Figure 3: Number of problems solved for the VC problem
without external advisor (SF) and with external advisor and
heuristic approximations (iii) (AC h(iii)) and (iv) (AC h(iv)).

profile occurs, with Timed Initial Fluents (TIFs). We divide
the voltage into two components: the first does not depend
on the actions, but only on the TIFs and can be calculated
exactly by applying the power flow equations in a prepro-
cessing step. The second component of the voltage takes into
account the variation of the voltage that capacitors and trans-
formers induce. This is the effect that is linearised providing
a set of linear sensitivity factors (SF) (Wood, Wollenberg,
and Shebleeacute 2013). The total voltage is the sum of the
two components. We call this second model SF.

In our experiments, we consider the VC problem for the
33 kV distribution network AuRA-NMS (Davidson et al.
2010) and take the load profiles from the UK power grid
(National Grid PLC 2012). We generate 1098 problem in-
stances and solve the same instances with the two models.
We validate the plans that we produce against the full power
flow equations and determine if there are voltage violations.
In the histogram in Figure 3, we report the total number of
problems for which each approach: (i) cannot find any so-
lution; (ii) finds an invalid solution; and (iii) finds valid so-
lutions. As expected, using the AC model, POPF-TIF only
produces valid solutions, while about 41% of the plans gen-
erated by the SF model are invalid. The total success rate of
the AC model is 89% with the accurate heuristic (AC h(iv))
and 87% with the less accurate one (AC h(iii)), compared
with 52% of the SF model. The difference between the two
heuristics is in the quality of the solutions: with an accurate
heuristic, the average plan length is 11, with the other is 21.

5.4 Search-and-Tracking
We conducted a series of experiments to assess the gain
that we obtain by using our framework in the solution of
SaT problems. The advisor allows the dynamic updating of
the probabilities over time, which cannot be achieved via
a purely deterministic planner. We cannot compare our ap-
proach with TFD/M in this domain because TFD/M does not
support temporal initial literals, which are needed in mod-
elling SaT as a planning problem.

We consider 14 routes that lead from Stirling (the target
starting point) to the 14 most populated cities of Scotland
and execute a SaT simulation on each route 1000 times (the
simulation has a non-deterministic spotting model and tar-
get behaviour) for each of the 2 strategies. The observer is
artificially blinded for 15 minutes after it loses the target to
make the SaT problems more difficult.

Figure 4 shows how the total probability changes while

executing the plans found by POPF-TIF for one of the prob-
lems in the dataset and the average among all the problems.
In each plot, we show the results found in three cases: (i)
without using the external advisor (no Adv) (Bernardini,
Fox, and Long 2015); (ii) using the external advisor and a
static approximation of the action effects on the total proba-
bilities for heuristic guidance, i.e. approximation (iv) as de-
scribed in Section 4.2 (Adv h(iv)) (Bernardini et al. 2016);
and (iii) using the external advisor and exploiting it to dy-
namically calculate the action approximated effects on the
total probabilities at each step for heuristic guidance, i.e. ap-
proximation (v) as described in Section 4.2 (Adv h(v)). On
average, the total objective functions found in the three cases
are 0.73, 0.82 and 0.86, respectively. From the plots, we ob-
serve that the use of an external advisor is instrumental in
improving the quality of the plans found. In addition, we see
that exploiting the external advisor to obtain more accurate
numeric effects to use in the heuristic evaluation further con-
tributes to obtain better quality plans.
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Figure 4: Total probability as a function of the execution
time of the plan for the SaT problem for one problem (left)
and for all the problems (right).

6 Conclusions
In this paper, we present a set of general principles to em-
bed a specialised advisor into a generic PDDL planner. We
focus on the method that we use to integrate approximations
of the values calculated by the advisor in the domain, which
can then be directly used in the standard heuristic evaluation
with no need to build a specialised heuristic. The resulting
heuristic guidance is informative and allows the planner to
maintain its performance against complex problems involv-
ing sophisticated mathematical calculations.

Our architecture is general and we demonstrate its power
by extending the planner POPF-TIF with plug-in advisors
and tackling problems in four completely different domains.
Our experiments provide evidence that our approach is ef-
fective regardless of the specific domain of application and
outperforms related techniques when complex tasks are con-
sidered. Our analysis across the four domains using the dif-
ferent approximations shows a trade-off between heuristic
calculation time/accuracy and resulting plan quality. The ac-
tual magnitude of the trade-off is domain specific.

Furthermore, we show that the enhancement of a high per-
forming planner capable of handling problems with a rich
temporal structure, such as POPF-TIF, with an advisor that
allows complex metric calculations and a mechanism that
supports good heuristic guidance opens the door to solving
sophisticated real-world problems.
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