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Abstract
Several advanced applications of autonomous aerial vehicles
in civilian and military contexts involve a searching agent
with imperfect sensors that seeks to locate a mobile target
in a given region. Effectively managing uncertainty is key to
solving the related search problem, which is why all meth-
ods devised so far hinge on a probabilistic formulation of the
problem and solve it through branch-and-bound algorithms,
Bayesian filtering or POMDP solvers. In this paper, we con-
sider a class of hard search tasks involving a target that ex-
hibits an intentional evasive behaviour and moves over a large
geographical area, i.e., a target that is particularly difficult
to track down and uncertain to locate. We show that, even
for such a complex problem, it is advantageous to compile
its probabilistic structure into a deterministic model and use
standard deterministic solvers to find solutions. In particular,
we formulate the search problem for our uncooperative tar-
get both as a deterministic automated planning task and as a
constraint programming task and show that in both cases our
solution outperforms POMDPs methods.

1 Introduction
In a search mission, an aerial vehicle, the observer, wishes
to locate the position on the ground of an object, the target.
The search problem has been studied extensively for station-
ary targets or targets moving according to predicable exter-
nal forces, such as currents and wind, both in the context
of operations research (Stone 1975; Benkoski, Monticino,
and Weisinger 1991) and that of robotics (He, Bachrach,
and Roy 2010; Furukawa et al. 2012; Ragi and Chong 2013;
Lin and Goodrich 2014). However, the problem of searching
for a target that moves according to its own intentions re-
mains much less explored. We consider here the particularly
hard task of searching for a moving target that is uncoop-
erative with the observer. We assume that the target moves
over a large geographical area that offers several opportuni-
ties for hiding, which will make it even more difficult for the
observer to discover the target.

In this paper, we offer not only an efficient solution for
large-scale search for evasive targets, but also a compara-
tive analysis between two completely different approaches
to this problem: one exploiting deterministic solvers and the
other using probabilistic reasoning tools. Probabilistic rea-
soning, and the Bayesian framework in particular, is tradi-
tionally used to guide the search process. Based on an initial

set of assumptions regarding the target’s behaviour, the ob-
server starts exploring the area of operation (AoO). At regu-
lar intervals, as it gathers imperfect observations, it updates
its knowledge of the object’s likely location. As time passes,
it explores a larger portion of the AoO and its understanding
of the target’s position improves, but its resources decrease.
Optimising this trade-off is the goal of automated decision
making for search. Since search naturally lends itself to this
Bayesian formulation, several solutions within this frame-
work have been attempted (Chung and Furukawa 2006;
Furukawa, Durrant-Whyte, and Lavis 2007; Lavis and Fu-
rukawa 2008). However, we have recently shown that a
Bayesian formulation of search can be compiled into a deter-
ministic planning problem and solved with automated plan-
ning tools (Bernardini et al. 2016). If a few comparisons be-
tween different probabilistic approaches to search have been
already carried out (Chung and Burdick 2012), we are not
aware of any comparative analysis on alternative paradigms,
such as the deterministic and the probabilistic ones.

To carry out this analysis, we adopt the following method
(Bernardini, Fox, and Long 2014; 2015). We discretise the
search problem in space and in time: we consider a grid laid
over the AoO and a set of equally spaced time points from
the start to the end of the mission. We make the observer use
standard search patterns (spirals and lawnmowers) to survey
the grid cells in the AoO. If, while executing patterns, the
observer finds the target, it abandons its search strategy and
starts tracking the target. In this context, the search problem
is reformulated as finding a sequence of patterns to execute,
S = (σ1, . . . , σk̄), that maximises the probability of finding
the target. Extending our previous work (Bernardini et al.
2016), we carefully tailor a probabilistic model to capture
this problem. We then encode it in three different ways: (i)
as a POMDP; (ii) as an automated planning task; and (iii)
as a constraint programming (CP) task. While POMDPs are
generally regarded as the elective method for problems un-
der uncertainty, planning and CP are powerful paradigms for
deterministic reasoning. When comparing the results, our
conclusions are twofold. On the one hand, we show that
POMDP solvers, considered to be inefficient on large and
complex problems, can in fact deal with them when under-
pinned by expressive models. On the other hand, we provide
evidence that, for our search problem, deterministic tech-
niques systematically outperform POMDP methods.



2 Probabilistic Model of Search
We give here a dynamic programming formulation of the
search task that naturally lends itself to be reformulated both
in deterministic and probabilistic terms. We deal with an
evasive target (see Figure 1). At the beginning of the mis-
sion, we assume that the target in unaware of being tracked
by the observer. As time passes and it traverses clear re-
gions, it becomes suspicious of being observed and finally
starts evading the observer. Although the exact behaviour of
the target depends on its destination, it never changes such
a destination or stops during its journey. The observer does
not know whether the target is trying to evade or not and
uses a motion model for it that is described below.
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Figure 1: Target’s behaviour

2.1 Graph Construction
We assume that the target is located in Euclidean 2-space
and that this space is characterised by a road network (RN),
where each road is a sequence of connected line segments.
The target motion on each segment is assumed to follow a
constant speed randomly and uniformly sampled in a inter-
val [νmin, νmax], where νmin and νmax are the minimum and
maximum speed allowed in that segment depending on the
road type. Each segment in a road is characterised by a con-
cealment level η ∈ [0, 1] that represents an estimate of how
easy is for the target to hide from the observer when travel-
ling over that segment. We take a circle centred on the tar-
get’s last known position (LKP) as the optimal search area
and then superimpose a grid X on it, with the side of each
square cell being δ. To represent the topology of the search
area, we build a graph G = 〈V,E〉 based on the RN enclosed
in the grid. V represents the set of cells that intersect at least
a line segment within the grid. Edges in E are those pairs
(v, w) where v and w are adjacent cells in the grid and there
exists a line segment that intersects both of them. Each edge
(v, w) is labelled with: (i) the minimum νmin

(v,w) and maxi-
mum νmax

(v,w) speed allowed in the segment that connects v to
w and (ii) its concealment level η(v,w). We denote by v0 the
cell that corresponds to the target LKP and assume that a set
of target possible destinations, which we will identify with
a subset D ⊂ V of cells, is given together with a probability
distribution (PD) over them: µ : D → [0, 1].

2.2 Probabilistic Motion Model
Given the graph G, we define the weight of an edge (v, w)
as w(v,w) := (δ/νmax

(v,w)(1 − αη(v,w))), where the parameter
α ∈ [0, 1] needs to be established case by case based on the
desired trade-off between the time to travel an edge and the
concealment level over it. Given a path γ in G, we define the
cost of γ as cost(γ) :=

∑
(vi,wi)∈γ w(vi,wi).

From the graph G and for l equally partitioned values of α,
we calculate the k cheapest loop-less paths from v0 to each
destination in D by using a variant of the Dijkstra’s single-
source-shortest-path algorithm (Yen 1971). Given v0 and a
destination x ∈ D, we denote with Γx = {γ1, . . . , γ(k∗l)}
the set of the (k ∗ l) cheapest paths associated with desti-
nation x. For each destination x, we define a PD over Γx,
θ : Γx → [0, 1] as follows: θ(γ) = 1

Z(β)e
−βcost(γ), where

β ∈ R is a free parameter and the normalising constantZ(β)
is the partition function

∑
γi∈Γx

e−βcost(γi). When β = 0,
the probability is uniform over all paths; when β increases,
the cheapest path progressively becomes the most probable.
This function, therefore, gives us the flexibility to treat dif-
ferent degree of evasiveness within the same framework.

Given the graph G, consider the subgraph G′ determined
by the LKP node v0, the destination nodes D and the nodes
on the cheapest paths Γx1

, . . .Γxd that connect v0 to the des-
tination x1, . . . , xd. Given a node w in this graph, consider
the subgraph Gw that is determined by all the paths from w
to the destination nodesD (these are subpaths of the paths in
Γx1 ∪ . . . ∪ Γxd ). We call C(w) the set of pairs (x, γ) where
x ∈ D and γ is a path in Gw from w to x. We say that these
pairs (x, γ) are compatible with w.

The target motion is modelled as a continuous time
stochastic process X(t) that takes values on V and is de-
scribed as follows: (i) the final destination cell x ∈ D
is sampled according to the PD µ; (ii) the path γ ∈ Γx
from v0 to x is sampled according to the PD θ; (iii) X(t)
moves with a velocity scaled by a constant factor ω uni-
formly sampled in the interval [0,1]; (iv) X(t) moves from
v0 to x by following the path γ = (v0, v1, . . . , vl = x)
and by jumping from vk to vk+1 at the time tk; and (v) the
jumping time tk’s are iteratively determined according to
the following formula: tk+1 − tk = δ/νk, where νk =
νmin

(vk,vk+1) + ω(νmax
(vk,vk+1) − ν

min
(vk,vk+1)).

2.3 Approximation of Marginal Distributions
X(t) is a continuous time process, but we look at it only at
certain time points. Given the mission time interval [0,T],
we establish the time check points t0 = 0, t1, . . . , tn, where
ti+1 = ti + T/n. Our goal is to estimate the marginal PD
of the process X(t) on the above checkpoints. We then use
these marginals to generate candidate search patterns.

Estimation of the marginal is performed through standard
Monte Carlo Simulation (MCS). More specifically, we con-
sider a set of M particles moving in the graph as indepen-
dent realisations of the stochastic process X(t). Let χj(t)
be the position of the j-th particle at time t. We define the
approximated distribution of the process X(t) at time tk as
qtkv = | {j|χj(tk) = v} | /M for v ∈ V. From the law of
large numbers, we know that qtkv approximates, for a suffi-
ciently large M , the true marginal distributions of X(tk).

2.4 Generation of Search Patterns
For each time check point ti, we select the n nodes that have
collected the highest number of particles and then generate
n candidate search patterns centred around them, which are
subsets of R2. We denote the set of all search patterns chosen



at any time check point by Σ. Each search pattern σ ∈ Σ has
a time window [t−σ , t

+
σ ] associated with it that corresponds

to the activation window of the pattern. This window is set
up by calculating the shortest and longest time of arrival for
the target to the pattern’s centre. For every σ ∈ Σ, we call
Vσ the set of nodes in the graph G that are contained by σ (in
the embedding environment R2), i.e. Vσ = {v ∈ V |v ⊆ σ}.
We indicate with Cσ =

⋃
v∈Vσ C(v) the set of all pairs (x, γ)

that are compatible with σ. A plan is a sequence of elements
in Σ, S = (σ1, σ2, . . . , σk̄), with k̄ being its length.

We call P (S) and T (S), respectively, the probability and
an approximation of the expected time of finding the target
by executing the plan S and P (k)(S) and T (k)(S) the proba-
bility and expected time of finding the target within time step
k. The approximated expected time is defined by assuming
that if the target is discovered by executing the pattern σ, the
rediscovery time is given by the midpoint tσ of the activation
window [t−σ , t

+
σ ] (tσ = (t+σ − t−σ )/2). In formula:

T (S) :=

k̄∑
j=1

tσj (P
(j)(S)− P (j−1)(S))

We consider an objective function of type G(S) =
P (S) − kT (S), with k ≥ 0 a constant parameter. Maximi-
sation of G(S) leads to plans that balance, depending on k,
probability of rediscovery and time to complete the mission.

2.5 Calculation of Probabilities
To maximise the objective functionG(S) = P (S)−kT (S),
we need to compute P (S) and T (S). Take a plan with k̄ pat-
terns. We have that: P (S) = P (k̄)(S) and T (S) = T (k̄)(S).
Building on (Bernardini et al. 2016), we give a recursive
structure for the computation of P (k)(S) and T (k)(S):

P (k)(S) = P (k−1)(S) + P
(k−1)
S∗ · (1− P (k−1)(S))

P (0)(S) = 0
(1)

T (k+1)(S) = T (k)(S) + tσk+1
(P (k+1)(S)− P (k)(S))

T (0)(S) = 0 (2)

In Equation 1, P (k−1)
S∗ represents the probability that the

target is found during the execution of pattern σk at time step
k conditioned to the event that it has not been discovered ear-
lier. It is the product of two terms: (i) the probability that the
observer finds the target when it is in view, i.e. the detection
probability φσk ; and (ii) the probability that the target has
chosen any of the destinations and paths compatible with σk
(i.e. a pair in Cσk ) computed according to the distribution
P

(k−1)
S (x, γ), which encodes the fact that the target has not

been discovered earlier. That is:

P
(k−1)
S∗ =

∑
(y,ζ)∈Cσk

φσk · P
(k−1)
S (y, ζ) (3)

More precisely, P (k−1)
S (x, γ) represents the probability

that the target is driving towards x by following the path
γ at time step k after executing the patterns in S and pro-
vided that the searches in patterns σ1, . . . , σk have failed.

To calculate P (k−1)
S (x, γ), we need to distinguish whether

the pair (x, γ) is in the set of pairs compatible with the pat-
tern σk or not. If (x, γ) 6∈ Cσk , this term is equal to 0. On
the other hand, if (x, γ) ∈ Cσk , this term can be computed
by conditioning the probability distribution P (k−1)

S (x, γ) to
the subset of the destinations and paths Cσk which are com-
patible with σk. Hence, we obtain the recursive structure:

P
(k)
S (x, γ) =


P

(k−1)
S (x,γ)·(1−φσk )

1−P (k−1)
S∗

if (x, γ) ∈ Cσk

P
(k−1)
S (x,γ)

1−P (k−1)
S∗

if (x, γ) 6∈ Cσk

(4)

3 Modelling Search as a POMDP
The probabilistic model described in Section 2 can be natu-
rally encoded as a POMDP.

State S In our problem, we identify two subsystems, the
target and the observer, and so the state space is S =
Starget × Sobserver. The state of the target is determined
by its destination, the path that it is following to reach it, its
velocity and the time. We indicate the set of pairs (destina-
tion, path) as C, the discretised space of the possible velocity
scaling factor ω as Ω and the set of discretised time-points
as T . The target’s evasive behaviour is captured by the dif-
ferent paths that lead to each destination, which are calcu-
lated by sampling the value of the parameter α. The state of
the observer is determined by its position in the the grid X
and the time. The position of the observer can be any cell
in the grid X , but we can safely consider only the subset of
cells from which at least one path of the target is observable,
which we call X̃ . Hence, the POMDP state space S is given
by C×Ω×T ×X̃ . In this representation, the pairs (x, γ) and
the velocity scaling factor w are the quantities carrying the
uncertainties because they are not known by the observer.
Actions, however, do not modify their values.

Actions A The actions space consists of the possible
patterns that the observer can perform. In the PODMP
model, we do not restrict the observer to choose among
a pool of initial candidate patterns. Instead, every cell in
X̃ can be the origin of a pattern. The action space is
then X̃ × Σ̃, where Σ̃ = {spiral, lawnmower}. Given
the current state (x, γ, w, τ, c) and the origin c′ of a pat-
tern of type σ̃, the application of an action ac′,σ̃ results
in a change of the observer position and an update of the
time: ac′,σ̃(x, γ, w, τ, c) = (x, γ, w, τ ′, c′) where τ ′ =
distance (c, c′) /velocityobserver + durationσ̃ .

Transition Function T We assume that the position of the
observer and its velocity are not subject to uncertainties. The
actions are therefore deterministic.

Observations Z The possible observations Z correspond
to having seen the target or not during the execution of a
search pattern: Z = {seen, not-seen}. The observation
seen occurs when the target position is within the area cov-
ered by the search pattern executed by the observer and the
imaging system is accurate and spots the target. The obser-
vation not-seen occurs in every other case.



Probability of Observation O The conditional probabil-
ity O(s, a, z) of observing the target while executing a pat-
tern σ depends on the position of σ and the detection proba-
bility φσ .

Reward Function R If the observer makes a observation
seen, we update the reward by a constant factor. So in our
case, R(s, a) = R(z). Although the time when the observa-
tion seen is done is not explicitly part of the reward func-
tion, POMDP solvers usually evaluate policies based on a
discounted reward function and therefore they balance high
rewards with time to obtain them.

Belief State B Since we assume that the observer state is
fully observable, its belief states corresponds to the actual
states in Sobserver. Instead, the state of the target is unknown
and we need to assign an initial PD over the possible target
states. We use µ as the PD for the target moving to a desti-
nation x ∈ D, θ as the PD for the target choosing the path
γ ∈ Γx from v0 to x and a uniforme PD for the velocity
factor ω (see Section 2.2).

POMDP Planner We use DESPOT (Somani et al. 2013),
a state-of-the-art POMDP planner. It requires a generative
model and relies on MCS to update the belief state. Although
DESPOT is an online planner, we could use it in an offline
mode thanks to the structure of our problem. By forcing all
the observations to have the value non-seen, we obtain a plan
that covers the entire length of the mission.

4 Deterministic Models for Search
The probabilistic model described in Section 2 lends itself
to be reformulated as a deterministic model thanks to the
specific characteristics of our problem. In search, the uncer-
tainty arises from the unknown position of the target. How-
ever, we do not need to model the target position explic-
itly. When we choose a sequence of patterns to look for the
target, we always work under the hypothesis that the target
remains undiscovered after executing each pattern. In fact,
if the target is found, the observer abandons the plan and
switches to tracking. We propose here two different deter-
ministic encodings for search.

4.1 Modelling Search as a Planning Task
In Bernardini et al. (2016), we propose a solution to the
search problem for a cooperative target based on automated
planning. Building on this work, we formulate search for
an evasive target as a deterministic planning task. Based
on the target’s LKP, the set of destinations D and the path
Γx1

, . . . ,Γxd , the planner populates the plan S by making
predictions about which path the target is following and
which destination it is aiming for. The planner updates these
predictions over time in view of the target’s motion and
the results of the previous searches. In a Bayesian fashion,
at every iteration k, the planner calculates the probabilities
P

(k)
S (x, γ), the total probability P (k)(S) and the approxi-

mated expected time T (k)(S) according to equations 4, 1
and 2. Its goal is to produce plans that maximise the objec-
tive function G(S).

The probabilistic model described in Section 2 is
compiled into a deterministic PDDL (Fox and Long
2003) domain. It contains a fly action, which allows
the observer to fly from one location to another, and
search actions, which correspond to executing patterns.
To keep track of probabilities and expected time, the do-
main contains functions representing P

(k)
S (x, γ), P (k)(S)

and T (k)(S) both at the current step and at the pre-
vious one: (prob ?d - dest), (previous-prob ?d
- dest), (total-prob), (previous-total-prob),
(expected-time) and (previous-expected-time).
These functions are updated according to Equations 4, 1 and
2 by the effects of the actions that represent search patterns.
The effect of a search action takes place only when that
pattern has failed to rediscover the target, since the plan is
abandoned when the target is found. Therefore, the planner
can exploit this information when it adds the next pattern
to the plan by decreasing the probability of the destinations
and paths compatible with the last pattern and increasing the
probability of the others.

The initial state of a planning problem contains all the
destinations and the candidate patterns from which the plan-
ner chooses the ones to execute. The goal is empty and the
plan metric corresponds to the objective function G(S).

We use the planner POPF-TIF (Piacentini et al. 2015) to
build plans. It uses a cost-improving search, so it finds a
first solution very quickly, but then improves on it until the
time bound is reached. Since our PDDL model involves non-
linear mathematical calculations, which go beyond the scope
of modern planners, we couple POPF-TIF with an external
advisor to calculate Equations 4, 1 and 2 at each iteration.
The probabilities and expected time P

(k)
S (x, γ), P (k)(S)

and T (k)(S) are the variables calculated by the advisor. The
parameters that are state independent, which are φσk and
Cσk , are given to the external advisor in an input file.

4.2 Modelling Search as a CP Task
We formulate the problem of finding a sequence of patterns
S among a set of candidates Σ that maximises the prob-
ability of discovering the target as a CP task. Due to the
complex update of the total probability, the model cannot
be linearised and expressed as a mix linear integer program-
ming problem. The model requires the discretisation of the
time into a set of τ time-points T = {t0, ..., tτ}, where
tτ ≥ maxσ∈Σ t

+
σ . A binary variable zσ,t = {0, 1} indicates

if a pattern σ is being executed at time-point t. The CP prob-
lem is to find the values of zσ,t, ∀ σ ∈ Σ, ∀t ∈ T that
maximise the objective function G(S) = P (S)− kT (S). A
set of constraints must be imposed to make sure that the se-
quence of patterns can be executed by the observer, as shown
in Model 1. Constraint (M1.1) ensures that only one pattern
at a time can be executed, while constraint (M1.2) indicates
that a pattern can be executed only within its predefined time
window. In addition, two patterns σ and λ can be performed
one after the other only if the sum of the time needed to exe-
cute σ and the time needed to reach λ has elapsed, as shown
by constraint (M1.3). Constraints (M1.4-7) update the total
probability and the expected time needed to calculate the ob-



jective function, while constraints (M1.8-12) represent the
initial state.

Model 1 CP Formulation of the Search Problem.
Set:
Σ (set of candidate patterns), T (set of time-points), C (set of pairs (x, γ))

Parameters:
tflyσi,σj

(time to fly from σi to σj ), texeσ (duration of the execution of the pattern σ),

t+σ (minimum time at which σ can be executed), t−σ (maximum time at which σ is
executed), φσ (detection probability of σ), δc,σ (coefficient indicating if c ∈ Cσ)
Variables:
zσ,t ∈ {0, 1} (1 if σ is executed at time t, 0 otherwise), P(x,γ),t ∈ [0, 1] (prob.
at time step t that target is going to destination x via path γ), Pσ

∗
t ∈ [0, 1] (prob.

that the target is found at time t while executing pattern σ∗), Pt ∈ [0, 1] (total prob.
of finding the target at time t), T expt ∈ [0,maxσ t

+
σ ] (expected time to find the

target at time-step t)
Maximise:
Pt|T | + w · T expt|T |
Subject to:∑
σ∈Σ zσ,t ≤ 1 ∀t ∈ T M1.1

zσ,t = 0 ∀σ ∈ Σ, ∀t ∈ T |t < t−σ ∧ t ≥ t
+
σ M1.2

zσ,t +
∑t+texeσ +t

fly
σ,λ

i=t zλ,i ≤ 1 ∀σ, λ ∈ Σ, ∀t ∈ T M1.3
Pσ∗t =

∑
σ∈Σ

∑
c∈C (Pc,t−1φσδc,σ) zσ,t ∀t ∈ T /{t0} M1.4

Pc,t = Pc,t−1

(
1−

∑
σ∈Σ

(
1− 1−φσδc,σ

1−Pσ∗t

)
zσ,t

)
∀t ∈ T /{t0}, c ∈ CM1.5

Pt = Pt−1 +
∑
σ∈Σ P

σ∗
t (1− Pt−1) zs,t ∀t ∈ T /{t0} M1.6

T expt = T expt−1 +
∑
σ∈Σ

t−σ +t+σ
2T (Pt − Pt−1) zσ,t

∀t ∈ T /{t0} M1.7
z0,0 = 1 M1.8
δ0,c = 0 ∀c ∈ C M1.9
P0 = 0 M1.10
δc,0 = 1

|C| ∀c ∈ C M1.11

T exp0 = 0 M1.12

Model 1 can be solved with any off-the-shelf CP solver.
We used IBM ILOG CPLEX CP Optimizer v12.6 (IBM
2013) a software designed to solve constraint satisfaction
and optimisation problems. The solver performs an initial
constraint propagation that reduces the search space size.
The self-adapting large neighbourhood search algorithm is
then triggered on the reduced space in combination with
constraint propagations until a solution is found (Laborie
and Godard 2007; Laborie and Rogerie 2008).

5 Experimental Results
We conducted extensive experiments to assess the perfor-
mance of our three approaches to search. To do that, we de-
veloped a simulator of a fixed-wing UAV in collaboration
with our industrial partners, BAE Systems (Bernardini et al.
2013). We abstract away from issues concerning control and
stability of flight and assume that the UAV is capable of ex-
ecuting accurately a specified set of manoeuvres. The tech-
nique used to generate these manoeuvres is transparent to
the rest of the simulation and so we can easily plug in our
three different techniques. All solvers are given 1 minute to
generate the plans. The AoO is a fragment of Scotland about
100 kilometres square and the target follows a path acquired

via GraphHopper1 by setting up origin and destination. The
target starting point is Stirling and the possible destinations
are the first 15 most populated cities in Scotland, which are
assigned equal probability. The UAV is equipped with an
imaging system that allows it to observe the target and it is
susceptible to error. Although the exact value of the detec-
tion probability depends on the pattern, we usually use val-
ues around 0.3 for urban terrain, 0.5 for a suburban terrain
and 0.7 for rough terrain. The terrain type influences also the
concealment level η, which is higher in forested and urban
terrains and lower in suburban and rough terrains. The target
starts unaware of being followed and therefore it moves to-
wards its destination according to the quickest path. It starts
to evade when the observer is within its line of sight for a
prolonged time. When evading, the target chooses a route r
towards its destination that maximises the total concealment
level, obtained as the sum of the values of η on the different
segments of r.

Figure 2-Left shows the ratio of runs in which the target
was tracked to its destination against total number of runs.
The POMDP policy has an overall success rate of 33.13%,
the planning-based technique 49% and the CP-based one
51.13%. The deterministic approach significantly outper-
forms the PODMP approach in all paths except for one. The
planning and CP approaches have similar performance.

Figure 2-Center displays the average time that the ob-
server tracks the target against journey duration and shows
that the deterministic approaches track the target much more
successfully than the POMDP approach. They spend more
time tracking the target because their search is shorter and
more effective.

Figure 2-Right displays the probability of finding the tar-
get over time for one specific destination (Cumbernauld). It
demonstrates that the plan-based and CP policies dominates
the POMDP one and are very robust as they offer significant
probability of discovery even after more than 15 minutes.

Figure 3 shows search time versus tracking time dur-
ing the target’s journey to Cumbernauld. Comparing these
times, it is easy to see that when we use one of the deter-
ministic approaches, the target is usually quickly rediscov-
ered after being lost, which implies that the observer spends
most of its time tracking the target. On the other hand, the
POMDP approach spends a lot of time in searching the tar-
get, often never reacquiring it after the first loss.

Planning vs CP We use a coarser time discretisation for
the CP model than for planning to keep the size of the task
manageable for the CP solver. This coarser discretisation
results in plans with fewer search patterns (CP usually se-
lects around half the number of patterns w.r.t. planning). In
consequence, as the mission time is the same for all the ap-
proaches, when the observer executes a plan provided by the
CP solver, it spends longer on the first few patterns in the
plan, which are those that carry a higher probability of re-
discovering the target. Although this choice is beneficial in
our domain and accounts for the good performance of CP, if
a fine discretisation is needed (because for example the do-
main contains short actions like communication activities),

1https://graphhopper.com - Accessed: 2016-09-11
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Figure 2: Left: Ratio of runs in which target was tracked to destination. Center: Average time over which target was tracked to
destination against journey length. Right: Probability of recapturing target over time while it is going to Cumbernauld.
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Figure 3: Search time versus tracking time during target’s journey to Cumbernauld for 100 runs.

then the planning approach will scale better than the CP one.

POMDP vs deterministic approaches The POMDP and
the deterministic models share a number of similar features:
the target motion model, the use of MCS, the iterative up-
date of probabilities. Their different use of them, however,
accounts for the discrepancy in the overall performance of
the two approaches. In planning and CP, the motion model
is used to select at the outset a pool of candidate patterns
among which to pick those to execute. When the plan is con-
structed, the motion model is no longer considered explic-
itly, but underlies the pattern activation time windows. Such
windows are used in the calculation of the expected time of
finding the target, but not in the update of the total proba-
bility. On the other hand, the POMDP model continuously
reasons about the exact position of the target to calculate the
policy that maximises the reward associated with finding it.
Therefore, the POMDP aims to gain a precise understand-
ing of the location of the target, which is reflected in the po-
sitioning of the search patterns. This makes the PODMP’s
performance more sensitive than the deterministic methods
to the alignment between the model and the real motion of
the target. If the algorithm run time is not an issue and the
problem at hand involves a small region and a predictable
target, the POMDP method is effective since it manages to
build an accurate target motion model, hence placing pat-
terns precisely. However, in the problem we consider, which
involves an evasive target moving in a large areas and a tight

run time bound of one minute, the POMPD approach suf-
fers the mismatch between modelled and real target motion
and its performance deteriorates w.r.t. deterministic meth-
ods, which remain more robust to such mismatch.

6 Conclusions

In this paper, we focus on the problem of a searching agent
with imperfect sensors that seeks to locate an evasive tar-
get in a large geographical area. Effective solutions to this
problem are instrumental to fully exploit the potential of au-
tonomous aerial vehicles in several civilian and military mis-
sions (e.g. surveillance and search-and-rescue). After dis-
cretising the problem in space and time, we propose a dy-
namic programming characterisation of the search task that
captures its intrinsic probabilistic structure. Based on this
formulation, we then compare two alternative approaches to
find solutions. On the one hand, we compile away uncer-
tainty and use standard deterministic algorithms to solve the
problem, particularly planning and CP. On the other hand,
we transform the model in a POMDP and use a state-of-
the-art POMDP solver against it. We provide evidence that
deterministic solutions systematically outperform POMDPs
methods, although these are generally regarded as the elec-
tive solution for complex problems under uncertainty.
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