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Abstract

With the expansion of digital information and the number of people potentially able to access

it, there are increasing demands for efficient, secure systems which authenticate users effec-

tively. At the end of the 1960s, IBM defined three authentication factors: knowledge factor,

which relates to “something the entity knows”; ownership factor, relating to “something the

entity has/possesses”; inherent factor, which can be summarised as “something the entity is or

does”.

Each of these factors possesses its own limitations: knowledge factors can be forgotten or

discovered by a fraudster; ownership factors can be lost, stolen or counterfeited. These nui-

sances have led to increased use of biometric authentication as a means of increasing security.

However, conventional biometrics are static, so if compromised cannot be changed by the user.

This has led to interest in techniques that authenticate using changeable multi-factor authen-

tication measures that are influenced by biometrics, rather than being completely reliant on

them. Investigating the practicality and security of such techniques provided the motivation for

this research.

First we needed to identify these “easily changeable biometrics” and it led us to define a

new biometric family, which we called the dynamic biometrics. We then studied the security

characteristics of this new family.

Out of the dynamic biometrics, we chose to focus on one of these elements, authentication

based on gesture recognition. We conducted several experiments to assess the ability of this

authentication technique to authenticate the genuine user and reject any impostors, either if

these impostors do not know the gesture or do random movements.

We continued by looking for a secure place to store the gesture recognition’s template and

run the application. We evaluated the possibility of doing that on a personal limited device,

such as a Smart Card.

Then we designed a protocol to use a gesture recognition application which we analysed

with respect to several threat vectors.
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Chapter 1
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This chapter presents the motivation for the thesis. It shows that all authentication

factors have limits and that single-factor authentication is not secure.

We introduce the main contribution, which proposes an authentication system that

is secure, easily changeable, and multi-factor.

The chapter concludes with the presentation of the structure of the thesis.
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1.1. Introduction 1. Introduction

1.1 Introduction

The explosive growth of the consumer electronics, communication and the use of internet has

given rise to an impressive amount of information which needs to be stored, processed and

communicated securely.

Attempted violations of privacy, confidentiality, authority, access and control of the in-

formation, for either mischievous or vicious purposes, are commonplace. This generates a

powerful need to efficiently protect access to certain resources, reserving them for those who

are authorised.

Recognizing authorised individuals requires auditing their claimed identity. Methods to

authenticate identity are based on one or more of the authentication factors that were formalized

in the 1960s by IBM [112], namely:

• The presentation of something that one has. This currently involves various forms of

security token such as password generators, Smart Cards (SC) or USB keys, which,

when presented to the system allow access. This is known as the “ownership factor”.

• Something that one knows, which these days commonly takes the form of a PIN or

password, among other things. This is known as the “knowledge factor”.

• Demonstrate Something that one is/does which nowadays breaks down into various elec-

tronic techniques of biometric measurements (physical, physiological and behavioural)

and gesture recognition. This is known as the “inherence factor”.

Each of the above factors has limitations and weaknesses in terms of security and usability,

which can be exploited by potential intruders.

Both “something you know” and “something you have” suffer from weaknesses and in-

convenience. Things you know can be forgotten or discovered by a fraudster; things you have

can be lost, stolen or counterfeited. These nuisances have led to increased use of biometric

authentication as a means of increasing security. However, conventional biometrics are static,

so if compromised cannot be changed by the user. This has led to interest in techniques that

authenticate using changeable multi-factor authentication measures that are influenced by bio-

metrics, rather than completely reliant on them. Investigating the practicality and security of

such techniques provided the motivation for this research.
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1.2. Contribution 1. Introduction

1.2 Contribution

First we needed to identify “easily changeable biometrics” which led us to define a new biomet-

ric family: the dynamic biometric. This new family has some security characteristics which

we studied and compare to several fixed biometrics based on criteria devised by Bonneau et

al. [23].

Out of the dynamic biometric, we chose to focus on one particular type which has become

possible through the popularization of depth sensors: the authentication based on gesture
recognition.

We focused on assessing if a Gesture Recognition (GR) application would be feasible and

secure.

To do that we conducted several experiments in order to determine if GR would be able to

authenticate genuine users and reject any impostors. This was tested when these impostors do

not know the gesture and do random movements, and when they do know the gesture and try

to mimic it.

We then put our results into perspective by comparing them with others works. We broad-

ened the analysis to another widely used biometric, fingerprints, thus giving a point of compar-

ison to other form of biometrics.

We continued by looking for a secure place to store the Gesture Recognition’s template

and run the authentication application. We evaluated the possibility of doing that on a personal

limited device, such as Smart Card (SC). The result of this experiment shows us that on a SC

the application would require more than a minute to run but if implemented using Host Card

Emulation (HCE) on a mobile phone it would not need more than 1 or 2 seconds.

We designed a protocol to use a Gesture Recognition application which we assess against

several threat vectors defined by Roberts [94].

1.3 Structure of the thesis

To efficiently conduct this research work, we relied on two complementary approaches, namely

performing a review of the literature, and conducting several experiments.

The thesis is presented in three parts: part 1 “Background”, part 2 “Contributions” and part

3 “Conclusion”. The “Background” consists of chapters 2, 3 and 4 which include of literature

searches relating to the areas of individual authentication (Chapter 2); existing biometric tech-

niques, modalities and threat vectors used for such purpose (Chapter 3); various methods used
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1.3. Structure of the thesis 1. Introduction

for gesture recognition and tracking in order to make some kind of inventory, understand the

concepts, approaches and techniques used (Chapter 4).

In the part named “Contributions”, we gathered all our research and experiments as well

as their analysis.

We first set the definition of what we named a “dynamic biometric” in Chapter 5 entitled

“Comparison of Dynamic Biometric Security Characteristics against other Biometrics”.

In this chapter we also studied the security properties of dynamic biometrics and compared

them to those of other biometrics.

Then, we examined the feasibility and the security of GR to authenticate genuine users and

reject any impostors when these impostors either know or do not know the gesture.

In Chapter 6 titled “Feasibility of authentication based gesture recognition”. We con-

ducted several experiments with different sensors where we imposed the gestures or let the

volunteers to choose them. We compared our results to others’ work done on GR and went a

step further by comparing them to a widely used biometric, namely fingerprint recognition.

In Chapter 7 called “Gesture Recognition Implemented on a Personal Limited Device”,

we investigated storing and protecting a template and running a Gesture Recognition applica-

tion on a personal limited device such as a SC or on a smartphone by using an HCE application.

Chapter 8 named “Application and threat model” presents a protocol for using an au-

thentication based on GR application. This chapter also presents an analysis of the security of

this application against different threat vectors and how various profiles of attacker may take

advantage.

In the third part we will present the conclusion of our research, as well as some proposal

for future research work in the field.
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2. Authentication

Chapter 2

Authentication

Contents
2.1 Introduction to authentication . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Authentication factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Single- vs multi-factor authentication . . . . . . . . . . . . . . . . . . . 26

This chapter presents the authentication factors, i.e. the knowledge factor, which

relates to “something the entity knows”; the ownership factor, relating to “some-

thing the entity has/possesses”; the inherent factor, which can be summarised as

“something the entity is or does”, as well as their use in our everyday lives.

This chapter also gives the definition of single- and multi-factor authentication

and it enlightens the context in which each of them should be used.
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2.1 Introduction to authentication

The multiplicity of services and functions we can access on-line today has changed drastically

in the last decade, both in the way we interact with others and use those technologies.

In the past, people had to rely on physical relationships and personal trust, whether it was

for their personal matter or business, whereas nowadays they are largely and increasingly fac-

ing machines on which processes for many activities have been automated.

Even with this physical relationship, the recognition of the right person was sometimes

tricky as [13] reminds us using a Bible story (Genesis, 27:1-24). With virtual communications

expanding and the erosion of personal contacts, authentication of individuals has become even

more difficult in the on-line world.

Some consumers may not feel confident with on-line technologies and are reluctant to

make use of them to purchase goods even though prices can be very attractive in comparison

with retail offers. On the contrary, others are more relaxed and have accepted these new ways,

providing their banking details as they would have done over the counter of the corner shop.

Sometimes this trust can be misplaced.

The expanding use of web-based technologies has been helped by a number of factors.

For example, the fact that government agencies are digitizing information and proposing more

and more of their services on-line, means citizens may prefer to remain comfortably at home

and access the services on-the-spot instead of going “there” and queuing (sometimes for hours)

before being served.

However, this ease of use also helps the development of identity theft with its heavy financial

and social burden [103].

It can be seen that there is a necessity for systems to allow reliable and strong validation

and verification of the identity for both parts of an exchange [77], at both national and organi-

zational levels.

This has been called “Authentication”.

This is the process that aims at confirming the claimed identity of an entity (person or com-

puter). Depending on the result of this authentication process, access to the required resource

(network, application...) may be granted.

In our context, at the beginning of the 21st century, with an increasing presence of social

networks, the development of IoT and the robotisation of more and more services, authenti-
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cation has become a crucial function and it is the key concept within which our work on the

different projects has been accomplished.

2.2 Authentication factors

2.2.1 The three main authentication factors

Over the years and centuries, people have imagined and created several means to segregate

who was part of the “allowed ones” from everyone else.

The most natural way to identify a person, and the one we use in our everyday relationship

with the people “we know” such as our friends, family, neighbours and colleagues, is to rely

on their aspect and appearance, i.e. the characteristics that qualify the expression “something

one is”.

Historically, there are numerous examples of people having been deceived in such manner.

For example, in the book of Genesis there is an example of this when Jacob pretends to be

Esau, Isaac’s first-born son. Despite the doubts Isaac has because the voice speaking to him

seems to be Jacob’s, Isaac tries to identify Esau by bringing him back some game for his meal,

touching his hands and arms in search of the hairy feeling as a characteristic.

As relying on the aspect and appearance of somebody is not infallible and because one

cannot know a large amount of people coming from elsewhere, another approach has been

conceived.

The term “password” refers originally to the act of being requested to pronounce the ex-

pected word(s) to be recognized and then granted access to a given place.

A different password might be required if the individual wanted to enter a more profound cir-

cle. Security was then based on “something one knows”.

On another hand, some very early people imagined a different way to authenticate, using

what the ancient Greeks called “syn-bolun” (which has become “symbol”). For example, part

of a given object which could be compared or assembled with another one that the counterpart

would have had in his possession in order to assess the validity of the identity of both persons.

Security was then based on “something one has or possesses”.

It might even happen than in order to get more security, several of these previous techniques

were used at the same time, such as the combination of a physical symbol and a password.
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With the augmentation of digital information as well as the number of people who can

potentially access it, early in the story of the computer, from the end of the 60’s [112] IBM

defined the three authentication factors:

• Knowledge factor, which relates to “something the entity knows”, for example a pass-

word, a personal identification number (PIN).

• Ownership factor, relating to “something the entity has/possesses”, for example ID

card, software and/or physical token.

• Inherence factor which can be summarized as “something the entity is or does”, for

example a signature, a gesture or all kinds of biometrics.

Some authors are researching other authentication factors than those listed above: for ex-

ample “where the entity is located” [13] which can make sense for specific applications that

can only be accessed from pre-determined terminals (more and more difficuly in a nomade

era), or “someone you know”, i.e. having a reference person that could help and grant urgent

access in case of problems [24].

But these two examples can only be exceptional processes as treating a large crowd in such

ways would be rather difficult and expensive.

2.2.2 Knowledge factor

Knowledge authentication factors have at their base a shared secret. The principle is that both

parties, viz. the user (something a person knows) and the entity to whom the user has to

authenticate, know a specific piece of information.

Passwords and PINs are the most common examples of this type of factor.

This can also include questions or queries which should only be answerable with the user’s

specific knowledge, as well as selecting, recognizing or identifying pre-chosen (during initial

enrolment process) images mixed in a pool of images [34].

The security level is largely affected by the lifetime of this secret.

If the shared secret never (or scarcely) changes over time, it then would be described as “static”
(or ”fixed”) and the risk for this secret to be compromised increases as the time passes-by.

A secret with a short lifetime will be more difficult to discover before it is obsolete.

2.2.3 Ownership factor

Ownership factors (something a person has) use tokens. These tokens are physical devices

providing all or part of the information required by the authentication authority. There are nu-
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merous kinds of token, such as an ID card, a passport or a driving license.

The three following tokens are currently the most secure and widespread: the USB token

device, the smart card, and the password-generating token [34].

The USB token device

The USB token is a device which is quite easy to carry and user-friendly.

With its relatively small size, as well as the way it works, it can be compared to a house key.

The user just has to plug it into a computer’s USB port, like a key within a lock.

Once the machine recognizes the token, the owner gains access either to a password prompt or

to the computer system.

The internal memory of the USB device stores, solidly encrypted, the required programs

certificates and encryption.

No installation of any extra hardware on the computer is required as the system uses the exist-

ing USB port as long as there is one (not all new computers have standard size USB ports, or

any at all).

If the USB drive is based around an attack-resistant chip and/or enclosure then it can be

used in a public key infrastructure (PKI) environment.

The smart card

A smart card (SC) consists of a tamper-resistant integrated circuit embedded within a card car-

rier [44].

Figure 2.1: Contact

Smart Card un-

der a microscope

(source [68]).

It has to respect international standards and its maximum size

should not exceed that of a credit card and is often smaller as in the

case of the Subscriber Identity Module (SIM) cards used in mobile

phones.

Strictly speaking a smart card should have a card pack-

age, however the terminology is often used for other pack-

ages/carriers such as tags, key fobs, watches, USB tokens

etc. [68].
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The use of the denomination “smart” is explained by [68] as follows:

“The unique ability to store relatively large amounts of data, carry out their own on-card func-

tions (e.g. encryption), interact intelligently with a smart card reader, with the help of an

embedded microcontroller and support mutual authentication” (using for example the two un-

marked components shown on Figure 2.1).

Most importantly, the SC is able to resist attacks against its normal operation.

The work done by [68] also explains that a typical smart card system is composed of the

cards, the readers and the background system, the whole being described as follows:

The use of an SC requires a reader to which it connects either with direct physical contact

(called a ‘contact card’) or with a remote contactless radio frequency interface (called a ‘con-

tactless card’ which can be broken down into ‘proximity cards’: distance not exceeding 10cm,

and ‘vicinity cards’ distance not exceeding 1.2m [44]). The reader connects to the background

system which stores and processes the information of the whole system.

When the SC is recognized as valid (ownership factor), the user is allowed to enter a password

(knowledge factor).

It is explained in [44] that although contactless smart cards use radio frequency fields for

their communications (and usually − not always − as a source of power), they are different

from RFID devices that are not restricted to card carriers and can be embedded into a range of

objects. RFID is not as sophisticated as contactless smart cards, not because of the technical

limitations but due to functional and cost requirements. “RFID refers to procedures to auto-

matically identify objects using radio waves” [44].

Mayes et al. explain in [77] that since SC can store secret identifiers securely and engage

in cryptographically protected (challenge-response) protocols, it is generally accepted that SC

currently play a very useful role in secure authentication.

They may contain some personal information about the user, like banking cards, strongly link-

ing them to a personal identity, or not as it is the case of telecommunication SC, which often

have only a weak linkage to the person with the emphasis being more on a valid (and paying)

account.

In either case, the authors emphasize that the use of a SC exploits high security protocols and

processes in a very user friendly way that provides both “easy-to-use and tamper-resistant se-

curity”.
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All the SC advantages that are recognized by [34] are the same as those described above

for USB tokens, but from these authors’ point of view, the disadvantage of the SC lies in the

need for the users to install additional hardware, i.e. the reader, as well as associated software

drivers on their own computer.

Password-generating token

The principle of a password-generating token is to generate a One-Time Password (OTP) which

would be displayed on the screen embedded in the token. This passcode is unique and either

changes after a certain amount of time (some may last 60 seconds and others may last 30 sec-

onds) or once it has been used.

The system ensures that the same OTP cannot be used twice consecutively.

In the case of the use of a token continuously showing an OTP which changes regularly,

when accessing an information, the user might be required to enter their username as well as

a standard password (knowledge factors) which are completed by the OTP generated by token

(the ownership factors). The condition for the user to be authenticated is the match between

the authentication authority’s expectations and both their password and the OTP.

This kind of authentication is considered secure by [34] because in a time sensitive context the

OTP are unique, random and unpredictable.

Non-hardware-based OTP scratch cards are less-expensive, “low-tech” versions of the OTP

generating tokens discussed above. It is a card, similar to a bingo card in the sense that there

are cells (the number of which depends on the physical size of the card) presented in a grid

which contains alphanumerical characters.

According to [34], if these scratch cards are placed inside protecting plastic that makes

it durable and easy to carry. They present some advantages over conventional OTP hardware

tokens which rely on electronics that can fail through physical abuse or defects.

This type of authentication has the advantage of not needing any training and in the case

where the card would be lost, the replacement of this one is relatively easy and inexpensive.

Another authentication technique is to send an SMS (Short Message System) with a code

on the user’s (known) mobile phone and asking them to enter that code.

Such technique transforms the mobile phone into a temporary token.
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2.2.4 The inherence factor

The etymology of the term ‘Biometrics’ is literally measurement (metrics) of the living (bio).

It refers to identifying a person based on one or more of their physiological or behavioural

characteristics [82].

In other words, the identification is proceeded based on “something a person is or does”.

Any physiological and/or behavioural characteristic of a person that satisfies the distinc-

tiveness, permanence, universality and collectability properties can be used as a biometric.

Physiological, physical and/or anatomical characteristics relate to measurable biological

specific parts of a person (e.g., face, speech, fingerprint, iris). They are related to the shape of

a part of the body.

Behavioural characteristics (e.g., gait or speech too) are related to the behaviour of the per-

son and are the result of an acquisition/learning process. They are thus comparably less stable

as they might evolve over time because of external influences.

The work of [97] describes how physiological characteristics are generally more stable

over time than the behavioural.

2.3 Single- vs multi-factor authentication

Several types of factor-based authentication are important to differentiate when one wants to

deal with secure authentication.

2.3.1 Single-factor authentication

A system which uses only one of the above three factors of authentication is called “single-

factor authentication”. The most common example of this type is the use of a password to

authenticate a person.

Single-factor authentication as the only control mechanism is considered by the US fed-

eral financial agencies (e.g., the Board of Governors of the Federal Reserve System, the Fed-

eral Deposit Insurance Corporation, the National Credit Union Administration, the Office of

the Comptroller of the Currency, and the Office of Thrift Supervision) to be inadequate for

high-risk transactions involving the movement of funds to other parties or access to customer

information [34].
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2.3.2 Multi-factor authentication

A system which uses two of the above three factors of authentication is called “two-factor au-

thentication”. A example of this case is when a user gets money from an Automated Teller

Machine (ATM), they both need to have the bankcard (ownership factor) and to know the PIN

(knowledge factor).

In the same way, three-factor authentication is the use of all three of the factors of authen-

tication. For example, in order access a highly secure site an individual might need to pass a

guard who checks their face against a stored image (something you are), use an access card

(something you have), and enter a code (something you know).

In a more general way, the use of multi-factor authentication mechanisms refers to the ap-

plication at least two authentication factors. This allows for reliable and strong authentication

which can be more difficult to compromise due to the fact that multiple shared secrets (more

than one) must be known to authenticate [34].

It is preferable to use multi-factor authentication to protect high-risk, high-stake information.

Computer security systems and technology have passed through several changes. Accord-

ing to [115], “the trends have been from what you know (e.g., password, PIN) to what you have

(ATM card, driving license, etc.) and presently to who you are (biometry) or combinations of

two or more of the trios”.

A multi-factor authentication system is, from a security point of view, more difficult to

defeat as it would require the attacker to discover/replicate/obtain several things such as the

shared secret (something you know) as well as the token (something you have) and/or replicate

what you are (biometrics).

The literature states that any authentication factor can potentially be defeated but to deceive a

multi-factor authentication system it would involve more effort and money.

Multi-factor authentication is however sometimes perceived by users as inconvenient and slow.
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Chapter 3

Biometry

Contents
3.1 Definition and successful evaluation . . . . . . . . . . . . . . . . . . . . 29

3.2 Overview of biometric techniques / modalities . . . . . . . . . . . . . . 35

3.3 Threat vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Privacy and biometric authentication . . . . . . . . . . . . . . . . . . . 49

3.5 Hints for selecting appropriate biometrics . . . . . . . . . . . . . . . . . 54

This chapter will detail further what relates to biometrics in order to allow for a

good understanding of the subject.

After a quick overview of the definition and some clarifications about the vocabu-

lary used in the present research.

We will first present the processes of biometric-based systems, and then an overview

of the main techniques that are today either in use or in research.
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3.1 Definition and successful evaluation

3.1.1 General principle

As PINs and passwords (something the user knows) can be either learnt by an attacker and/or

forgotten by the user; tokens (something the user has) can be stolen or lost. All of this increased

the interest in biometric solutions (something the user is) [77].

These are ways to identify a person based on either their behavioural or physiological charac-

teristic as such techniques have the ability to reliably distinguish between an imposter and an

authorized person [82].

An intrinsic advantage is offered by biometric authentication which is based on direct ev-

idence of the personal identity (whereas secrets of any type can be stolen) when compared to

other non-biometric identifiers, especially when considering that biometry enrolment is made

in a controlled environment making it very reliable for future use [103].

However, to be more precise, as [22] said, biometrics describe both behavioural character-

istic(s) of a person and/or measurable biological (physiological and anatomical) as well as the

process (developed later) of using automated methods of verifying, identifying or recognizing

an individual based on such characteristic(s).

Recognition, verification, identification, authentication

“Recognition” is a generic term which does not necessarily imply either identification or veri-

fication.

Verifying or identifying a person’s identity are two concepts which are not exactly the same

from a biometric process point of view [57, 77, 22, 112, 82]:

• To verify the identity, the biometric data of the person is captured and compared with

the biometric data of this person which has been previously recorded during enrolment

(see later) and stored in a database.

This is a one-to-one (1:1) matching.

In this case a person submits a claim which will be verified and after verification is either

accepted or rejected.

• To identify a person, the biometric data of the person is captured and compared with

a whole set of biometric data available in a database in order to identify (i.e. give an

identity to) the person from whom biometric data was captured.

This is a one-to-many process (1:n, with n being the size of the database).
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So in this case a specific identity of an individual is identified without submitting a

claim [82].

3.1.2 Components and processes involved

A 3-step process

A recognition system based on biometrics will operate as follows:

• Acquisition of the biometric data from an individual (capture);

• Preparation of the biometric data template by extracting feature sets;

• Comparison between the extracted biometric data and the reference template which is in

the database.

“Enrolment” [60] is the process during which the biometric data of an individual user is

captured. The features are extracted in order to save the template in the database of the authen-

tication system as a data sample from one or more physiological or behavioural characteristics.

Generally biometric enrolment is run in-person and in a controlled environment that aims

at making it very reliable for future use [103].

Presentation of the components of a biometric system

A typical biometric system is comprised of five integrated components [22, 43]:

1. A sensor is used to collect the data and convert the information to a digital format.

Sensors involve amongst other things: cameras, microphones, fingerprint scanners, etc.

Each digitization of the original biometric signal potentially creates what is called ‘noise’

(i.e. unwanted components in a signal) which distorts the signal-image.

The quality of the capture steps is crucial for the whole system efficiency.

It relies not only on technological elements (sensor, digital template) but also on the

controlled conditions and environment of the enrolment (lighting, background noise,

etc.).

Two samples captured at different times will not be exactly equivalent as some variation

in presentation will occur.

2. The digital signal-image is then transformed into a digital set (called a template) through

signal processing algorithms which perform quality control activities and develop the
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Figure 3.1: Biometric authentication system (image adapted from [43])

biometric template, eliminating the noise as well as unnecessary information (such as

background).

Templates will be used as references in the following steps of the process.

Their quality is therefore important and it may be necessary to make several attempts to

capture before a reference template is created.

3. Template data will be encrypted for the sake of security and privacy and stored either

in a database (if remote, the transport network needs to be secured because the template

could be either exchanged or altered) or on a card for later comparison with an identity

claim data set.

4. When this occurs, a specific algorithm:

• compares the claim template to one or more templates kept in data storage

• and gives the matching score that indicates the degree of similarity, i.e. the likeli-

hood that both data sets are coming from the same individual.

5. Finally, a decision process (automated or human-based) makes a decision based on the

comparison of the matching component results (i.e. the score) to an acceptance threshold

(called ‘match threshold’) that has been previously defined according to the system’s

sensitivity.

Figure 3.1 illustrates the various components of a biometric authentication system, as well

as the different steps of the process.
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Figure 3.2: Receiver operating characteristic (ROC) graph (source: Benoit Ducray)

3.1.3 Match between threshold and management indicators

Human recognition systems are inherently probabilistic, and hence inherently fallible.

The chance of error can be made small but cannot be eliminated. System designers and oper-

ators should anticipate and plan for the occurrence of errors, even if errors are expected to be

infrequent [32].

Biometric matching is probabilistic in nature, which implies that two samples of the same

individual are never exactly the same [103] for multiple reasons including environmental con-

ditions, sensibility of the sensors, reaction/adaptation of the user to the sensors and process.

Hence those systems are inherently fallible.

The developers who build the application know (or should know) the quality, capability,

and sensitivity of the components they use, so they can specify what is called a “match thresh-

old” that defines the level of concordance required for acceptance.

If technically possible, setting the required score at 100% would be ideal.

But it would also cause inconvenience to users who would be required to be very thorough

when going through the authentication process in order to have a chance of being validated.

The match threshold can be defined based on the Receiver Operating Characteristic (ROC)

approach which is a method of showing measured accuracy performance of a biometric system.

A verification ROC (as shown in Figure 3.2) compares false accept rate versus verifica-

tion rate whereas an open-set identification (otherwise called ‘watchlist’ ROC) compares false

alarm rates against detection and identification rate.

The statement presented in Table 3.1 shows the various output triggered by the comparison
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Table 3.1: Matching rate for acceptance (source: Benoit Ducray)

Score level Genuine sample from
Legitimate owner

Fake sample from
impostor

Superior or equal to
threshold Correctly accepted Incorrectly accepted

Management indicator
TAR (True Accept Rate)
Verification/Identification

Rate

Error type II : FAR (False
Acceptance Rate)

Inferior to threshold Incorrectly rejected Correctly rejected

Management indicator
Error type I : FRR (False

Rejection Rate)
TRR (True Reject Rate)

None Failure to acquire.
New capture required

Error types
FTA (Failure to Acquire), i.e. failure to capture/extract

usable information from a biometric sample.
FTE (Failure to Enrol), i.e. failure to form a proper

enrolment reference for a given user due either to a lack
of training in order to provide their biometrics, or to the

quality of the sensor(s) that are not capturing data
correctly or with the expected quality level to develop a

template.

of the score with the match threshold as well as the management indicators and error types that

are related to each situation.

3.1.4 Multimodal biometrics

Multimodal biometric systems refer to systems that use more than one biometric characteristic

to authenticate individuals [43], whether several instances of the same modality (e.g., several

fingers or both eyes) or different modalities (such as fingerprint and eye recognition).

Figure 3.3 shows the various possible combinations of a multimodal system.

In the same way that multi-factor authentication offers increased security, the biometric

multimodal approach drastically improves recognition accuracy and reliability [96].

Each biometric modality of the solution brings additional (fairly) independent pieces of evi-

dence and authentication is based on global consolidation.

This can be useful for both increased authentication (a single biometric is not so simple to
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Figure 3.3: Multimodal biometrics scenarios (adapted from [96])

forge but several can become even more difficult for fraudulent identification) and in situations

where a given biometric is not shared by all users.

Such an approach can also be used to mitigate risks and diminish error rate, by bringing

some solution to both poor sensor performance (as each capture will be scored and the authen-

tication will be granted on the basis of the fusion of all scores), as well as for ensuring aliveness

of the captured sample [96, 43].

Given the various modalities used at the same time in multimodal biometric system, in-

formation analysis requires reconciling/combining the different elements collected in order to

have one single result at the end of the process.

Reconciliation can potentially occur at any of the three steps of the process [96], i.e. fusion

can be made at:

• Data or feature level, which means that either the data itself or the feature sets originating

from multiple sensors/sources are fused.

Fusion at that level theoretically brings better recognition results but in practice it is dif-

ficult to achieve, especially because the feature sets of the various modalities are often

not compatible and/or are not made accessible by equipment providers.

• Match score level, in which the different scores obtained by the multiple classifiers of
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the different modalities are combined.

This is the commonly preferred solution, as the scores resulting from the different modal-

ities are available and relatively easy to combine.

• Decision level, which means that the final outputs of the different classifiers are consoli-

dated (sometimes using something close to majority voting). This is often considered to

be difficult to use because of the limited amount of information available.

However, several studies have questioned the robustness of multimodal systems [95, 9, 10].

Rodrigues et al. in [95] evaluated a multimodal system composed of face and fingerprint

using three different fusion schemes: weighted sum, likelihood ratio and Bayesian likelihood

ratio. They found that the multimodal systems have a very high probability of being spoofed

when only one of its modes is spoofed. Different fusion schemes were tested by Akhtar et al.

in [10]: product, perceptron-based rule, etc. They experiment shown that multimodal biometric

systems are not intrinsically robust against spoof attacks.

3.2 Overview of biometric techniques / modalities

The following is a quick overview of different biometric modalities in order to help understand

what they are about as well as their diversity and potential limits. They are presented sorted

into three families which are physical, behavioural and physiological.

3.2.1 Physical biometrics

Face

Face recognition technique is non-intrusive and easy to use, especially as numerous cameras

can catch the required data, which makes it one of the most popular biometrics.

It is the preferred way of humans to recognize each other but a facial recognition system

needs to overcome a three-step challenge as it should automatically:

• detect whether there is a face in the image captured by the system,

• locate the face if there is one,

• recognize the face from a general viewpoint (i.e. from any pose, which means whether

smiling or frowning).

The best known methods for automated face recognition are based on either facial at-

tributes’ (i.e. the eyes, eyebrows, nose, lips, or chin) location and shape as well as their spatial
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relationships, or the global analysis of the picture of a face as a weighted combination of sev-

eral reference faces.

Face recognition authentication systems sometimes require respecting some constraints re-

lated to the composition of the background and/or illumination conditions.

Jain et al. highlight in [59] that it is questionable whether the face itself, with no contextual

information, is a sufficient basis for identifying a person from a large number of identities with

a high level of confidence.

Face recognition from 2D images proves to be difficult because of the pose, expression and

illumination of the face. Each of these things generate important statistical differences from

one to the other.

Using a 3D image makes it easier to localise face features without pose and/or illumination

problems [82].

Numerous algorithms have been proposed to improve the face recognition over the years.

Both [82] as well as [22] propose to class them into two families which are:

1. Appearance-based methods, such as the following:

• Fisherfaces [20] which are also called Linear Discriminant Analysis (LDA) or

Fisher Linear Discriminant Analysis (FLDA)

• General Discriminant Analysis (GDA) [19]

• Eigenfaces [110], also known as Principal Components Analysis (PCA)

• Neural Networks [67]

• Independent Component Analysis (ICA) [18]

2. Geometry feature-based methods, such as the following:

• Active Shape Model [33, 118]

• Local Feature Analysis (LFA) [88]

• Elastic Bunch Graph Matching (EBGM) [116]

A disadvantage of appearance-based methods is that successful face recognition requires

having a similar lighting and pose reference in the database.
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As a matter of fact it tends to be difficult for these methods to match face images showing

either two really different viewpoints or lighting conditions (for example, outdoor lighting ver-

sus indoor fluorescents).

Geometric feature-based methods are less sensitive to problems of viewpoints and lighting

variations but are weaker in the feature extraction process [82].

This might explain why, according to [22], the three predominant approaches are the fol-

lowing:

• Fisherfaces require knowledge of both the within-class (i.e. within user) as well as the

global variations. Thus, this approach requires having multiple samples of each person

in the database.

It is a statistical approach for classifying samples of unknown classes based on training

samples with known classes which maximizes the ratio of ‘between-class’ (i.e. across

users) scatter to that of ‘within-class’ (i.e. within user) scatter.

• Eigenfaces or PCA, the process of which is described by [22] as follows:

First, the probe and gallery images must be the same size. The probe has to be standard-

ized to line up the eyes and mouth of the subjects within the images.

The eigenfaces, which are the orthogonal decomposition of the facial patterns are ob-

tained using the PCA approach, are then used to remove information that is not useful.

These are then used to keep the most effective low dimensional structure of the face (this

also reduces the dimension of the data).

Each face image can be summarized as a weighted sum (feature vector) of the eigenfaces.

When required, the probe image is compared to the gallery image by measuring the

distance between their respective feature vectors.

With the PCA approach, the full frontal face must be presented each time an authentica-

tion is required. Other viewpoints result in poor performance [22].

Another drawback of this method is that the total scatter across all classes, i.e. all images

of all faces are spoiled by a lot of unwanted variations such as variations in lighting or

in facial expression.

Within-class variation (i.e. within user) from lighting and pose (standing straight vs.

leaning over) are, most of the time, more important than the normal inter-class variation

due to a different identity.
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• The EBGM method uses the many non-linear characteristics of the face image that are

not addressed by linear analysis methods, such as illumination variations, pose and ex-

pression.

An elastic grid is projected on the face corresponding to a dynamic link architecture is-

sued from a “Gabor wavelet transform”.

The Gabor jet is a node on the elastic grid [116]. It is the result of a convolution of the

image with a Gabor filter, which is used to detect shapes and to extract features using

image processing.

Recognition is based on the similarity of the Gabor filter response at each Gabor node.

The main difficulty is the need for accurate landmark localization. This is sometimes

achieved by combining PCA and LDA methods.

Fingerprint

Fingerprint biometric is the analysis of the ridges and valleys formed on fingertips during foetal

development. They are unique for each finger of a person and this is also true for identical

twins.

Recognition by fingerprint is a basic method due to its outstanding features of universality,

accuracy, uniqueness, permanence and low cost. It is the most popular and reliable technique

and is currently the leading biometric technology [58].

According to [74], archaeologists have found evidence that such a technique was used by

Assyrians and Chinese for some kind of identification as early as 7000 to 6000 BC.

By introducing in 1880 the use of minutiae features for fingerprint matching, Henry Fauld

laid the scientific basis of the modern fingerprint recognition.

Nowadays, fingerprint recognition techniques can be broadly classified as:

- Ridge feature-based,

- Minutiae-based,

- Gradient based [7]

- and Correlation-based [56].
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Figure 3.4: Fingerprint

recognition: Examples

of specific items creat-

ing uniqueness (adapted

from [22])

Most automated systems use minutiae points in one way or an-

other to identify a person.

In practice, fingerprint identification is done as follows: minu-

tiae are stored in a template, but only a subset of these has to match

for identification or verification.

In most systems, if 10 to 20 minutiae match, the fingerprint

is considered a positive match. In today’s smart card systems

approximately 40 minutiae are stored, because of space restric-

tions [115].

The matching accuracy using fingerprints, i.e. identification of

a person, has been historically shown to be very high, although for a population of more than

a few hundred people information of multiple fingerprints of each person are required to allow

for large-scale identification involving millions of identities [59].

Fingerprint identification is widely used in personal identification as it works well in most

cases.

However, it must be noted that fingerprints of a fraction of a given population such as man-

ual labourers, elderly people, etc., may be unsuitable for automatic identification due to the

difficulty to acquire fingerprint features, i.e. minutiae (see illustration 3.4) [59].

This difficulty is a result of various factors impacting the prints themselves or their ‘read-

ability’. For example: genetic factors, aging, environmental or occupational reasons (e.g., cuts

and bruises on the fingerprints of manual workers make them continuously change).

Palm print

The palm is the region between the wrist and fingers. Palm print features like ridges, singular

points, minutia points, principal lines, wrinkles and texture are used for identification.

Ridges and minutiae have a pattern similar to a fingerprint. However, in palm prints the creases

and ridges often overlap and cross each other.

Several methods have been proposed for their use in human identification but most can be

deceived by forged biometrics.

It is mostly used in combination with hand geometry biometrics [66], which is presented

hereafter.
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Hand geometry

Another of the most widely used biometric technologies is hand geometry, which becomes

stable after a certain age (once an adult).

To be identified, the individual being authenticated just has to show/spread their hand to

the sensor. Usually, the process takes only a few seconds for the system to extract features

from the captured image and compute the widths and lengths of the fingers at various locations

(see Figure 3.5).

Figure 3.5: Hand features

and geometry measure-

ments used for identification

(source [66]).

As a matter of fact, this modality is based on the

analysis and measurement of the overall structure, pro-

portions and shape of the hand, e.g., width, length and

thickness of the hand, joints and fingers, as well as char-

acteristics of the skin surface area such as ridges and

creases [59].

In order to check for aliveness of the presented hand and

to prevent a mould or a cast of it being used, modern systems

use several techniques among which are: requiring movement

from the fingers, checking skin conductivity, or the heat of the

hand.

As hand biometrics is based on finger and hand geometry, it is also efficient in case of dirty

hands, but people with severe arthritis cannot be identified using this modality because they

cannot spread their hands on the reader [115].

However, the geometry of the hand is not known to be very distinctive (it seems to suffer

limitations that can in a way be compared to Bertillon’s anthropometric [48] ones).

It cannot be scaled up for systems used for identification within large populations.

Iris and Retina

Iris recognition is the process of recognizing a person by analysing the random pattern of the

iris which is the coloured portion of the eye, i.e. the annular region of the eye bounded by the

pupil and the sclera (white of the eye) on either side.

It is a muscle within the eye that regulates the size of the pupil, controlling the amount of light

that enters the eye.
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Automated methods of iris recognition date back from the mid-1990s.

Figure 3.6: Examples of

different iris structures

(source [22])

Although the colouration and structure of the iris is

genetically linked, the details of the patterns are not.

The iris develops during prenatal growth through a pro-

cess of tight forming and folding of the tissue mem-

brane.

Using iris patterns as a method to recognize a person dates

back to 1936, when ophthalmologist Frank Burch came up with

this approach but it was not until 1985 that Drs. Leonard Flom

and Aran Safir, also ophthalmologists, proposed the concept that

the iris structure is very distinctive and that no two irises are alike.

Figure 3.7: Eye

biometric: Differ-

entiating iris and

retina (source [22])

Dr John Daugman implemented a working automated iris recogni-

tion system, which has remained the principal algorithm utilised for that

purpose, and which has not had a false match after more than 200 billion

comparisons [39].

While iris-based systems show a very low false accept rate (FAR)

compared to other biometric recognition, the false reject rate (FRR) of

these systems can be high, especially as it requires quite a good user par-

ticipation [59].

An advantage of this biometric is that it is today extremely dif-

ficult to surgically tamper with the texture of the iris and that cur-

rent systems have the ability to detect artificial irises (e.g., contact

lenses).

Retinal recognition uses the unique pattern of blood vessels on an individual’s retina at the

back of the eye. The illustration 3.7 helps clarify the difference between the two organs.

Both techniques involve capturing a high quality picture of the iris or retina using a digital

camera. In the acquisition of these images, some form of illumination is necessary.

For that purpose, both techniques use NIR (Near InfraRed) light. Although safe in a prop-

erly designed system, eye safety is a major concern for all systems that illuminate the eye.
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The risk of damage to the eye is remote with a single LED source using today’s LED tech-

nology. Illumination from multiple LEDs can, however, produce eye damage if not carefully

designed and used [22].

The iris and the retina have higher degrees of distinctiveness than hand or finger geome-

try [115].

3.2.2 Behavioural biometrics

Signature

This modality should better be called “Dynamic Signature”. It does not relate to what the

signature looks like, but to the capture through touch sensitive technologies (such as PDAs or

tablets) of the direction, stroke, pressure, and shape of a signature. The result can be used as a

reliable indicator of an individual’s identity.

In practice, signature recognition can only be used for recognition processes rather than

identification. It is based on the analysis along the X, Y and Z axis of specific dynamic charac-

teristics such as the speed, acceleration, timing, pressure, angles and direction of the signature’s

strokes. X and Y positions show velocity modulation in the respective directions while Z indi-

cates changes in pressure with respect to time.

Although quite precise, the characteristics of a signature have a large intra-class variability

which means that someone’s own signature may vary from one production to the other, often

making dynamic signature recognition difficult.

Some dynamic signature recognition algorithms incorporate a learning function to account

for the natural changes that may happen over time in an individual’s signature [59, 22, 115, 82].

Keystroke dynamics

The use of keystroke dynamics is an automated method of examining the cadence of an indi-

vidual’s typing pattern. The technology uses a specific keyboard compatible with PCs.

It is based on dynamics such as speed and pressure, total time of typing a particular pass-

word, and the time a user takes between hitting certain keys.

Keystroke dynamics have the potential for continuous authentication of identity while a

person is using a computer [22, 115].
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Gait

The ‘gait’ biometric relates to the analysis of the manner of walking of an individual or more

precisely on both static human shape and movements.

It is one of the natural ways commonly used by humans to recognize each other. It could

potentially allow for recognition at such distance or at such low resolution that other biometrics

might not be perceivable, whether because of distance, concealment or disguise.

Among the behavioural biometrics this is not only one that is quite specific to a given indi-

vidual but also that might require a lot of training to change as it is something rather natural.

It is based on medical studies and biomechanical literature of beginning of the 90s, but it

is still in the research and development stage in order to find an automated way of applying

it [115].

3.2.3 Physiological biometrics

Speaker / voice

Speaker or voice recognition uses a person’s voice, i.e. the acoustic features of speech that are

specific to each individual, in order to recognize or identify someone.

It is important to differentiate the biometric approach, the purpose of which is to recognize

or identify an individual, from what is called “speech recognition”, which aims to recognize

spoken words.

Some authors such as [112] mix the two technologies in their presentation.

This biometric modality is based on the acoustic patterns of the sound of the voice, i.e. the

“Voiceprint” building the voice template. These patterns, i.e. voice pitch, speaking style, tone

(e.g., low, high, nasal, etc.), cadence and frequency of a person’s voice, resonances in the nasal

passages, etc., are the result of the combination of two things:

• physical patterns which are inherent to an individual and dependent on the movement of

the jaw, tongue, larynx, as well as the size and shape of the throat and mouth;

• behavioural patterns, which are acquired.

From the above one can understand that the identification capabilities of this modality can

suffer from sensor quality and “within-class” (i.e. each user) variations.
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Figure 3.8: Voice sample spectral

analysis of the frequency variation

(source [22])

A speaker recognition system analyses the fre-

quency content of the spoken words and sentences

in order to compare their characteristics in terms of

duration, intensity dynamics, pitch, quality, and so

on.

As shown in the illustration (Figure 3.8), signal

speech samples produce waves which can be presented

in a kind of graph showing the frequency variation of

the voice, with time on the horizontal axis and both intensity and loudness on the vertical ac-

cess.

Authentication is performed by comparing this graph to the enrolment one and expecting a

good match.

Some systems use the “anti-speaker” or “other-speaker” model which compares the cap-

tured sample to the template that exists in the database.

The system produces a likelihood ratio (a score) which indicates the probability of a match,

i.e. the fact that the presented sample is more similar to the claimed or assumed identity than

to the “anti-speaker” model.

Speaker/voice biometric recognition systems can be sorted into two modes of spoken input,

i.e. unconstrained (or free) mode and constrained mode.

• The former one (free mode) is text independent which means that any text can be used for

the captured sample. In other words, the system does not need the individual submitting

the sample to be cooperative or even aware of the capture.

• The latter one (constrained mode) is based on “text dependent” speech which is pre-

established. The individual submitting the sample needs to be cooperative as they will

be required to read:

– either a fixed text or passwords. This is called “text dependent”.

– or a text that is prompted by the system such as “Please say ’36-24-36’ ”.

Prompted text is more difficult to deceive than the two other methods because the text to

pronounce is not known in advance (instead, it is automatically chosen by the system) and it

changes randomly and completely for every occurrence.
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Brainwaves / EEG

A model for using electroencephalogram (EEG) as a biometric identification system has been

proposed by Poulos et al. in 1999 and then further explored by various author but this modality

is still under research [82].

Heart sound / ECG

According to [82], capturing the heart sound, i.e. the electrocardiogram (ECG) of a person has

been found to be quite discriminative and able to allow individual recognition by surveying the

anxiety state through ECG features made by [55] in 2005.

It has been shown that these signals are fairly unique to a given individual and not subject

to the person’s state of anxiety. However, it is a modality still in the research and develop-

ment stage. Also the many electrodes required by the ECG capture are rather awkward and

inconvenient [21].

Vascular Pattern Recognition / Vein Pattern Authentication

Vascular Pattern Recognition, also commonly referred to as Vein Pattern Authentication, is

originally based on the work initiated in the 90s by Dr. K. Shimizu [22].

At the beginning of the 21st century, further research has shown that the vascular pattern

of the human body is unique for each individual [36] and does not change with a person’s age.

By using the difference in near-infrared light absorbance by blood vessels and other tis-

sues, an image of the pattern of the blood vessels (vessel branching points, vessel thickness,

and branching angles) of a hand, palm, or finger is produced.

Such systems are currently in use in Japan for securing access to various services, such as

ATMs, hospitals, and universities.

DNA

DNA (DeoxyriboNucleic Acid) is present in every living cell and it does not change all through

the life of the person.

DNA systems of authentication have a very high degree of accuracy. There are 1-in-6 bil-

lion chance of two people having the same DNA profile. Except for monozygotic twins, the

DNA system is the most distinct biometric identifier. An individual’s DNA profile does not

change in the entire life of a person, therefore its permanence is incontestable [115].
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Currently the processes to get a DNA sample are rather intrusive and require the person’s

cooperation. In order to get a DNA profile or DNA fingerprint, it is necessary to get human

tissue, blood or some other bodily sample.

Due to the rather long time required for the analysis, this modality is more often used in

the forensic side of biometrics.

3.2.4 Other biometrics

This section briefly introduces some biometric modalities which are either in limited use or

under development. These are not described in much detail but their existence is important to

finalize the review of all the different modalities.

• Ear-shape: the shape of a person’s ear is known to be distinctive especially in the foren-

sic field.

• Knuckle-crease: it seems the image pattern formation where the knuckles or joints of

fingers bend is unique enough to enter the realm of biometric identifier.

• Chemical attributes: for example, body odour.

The biometrics presented here above are definitely not exhaustive. The review however

cover the one that are mostly used and researched.

3.3 Threat vectors

Biometric authentication is part of the whole authentication system and as such is exposed

to multiple threat vectors. It is important to consider these vulnerabilities. The aim of these

attacks may either be to get authenticated as somebody else or to prevent the authentication of

a valid user. The attacker may also intend to prevent access to one or more specific people or

deny access to all users.

A threat vector is a route by which the system can be attacked. In [94], the authors list 18

threat vectors, which are illustrated in Figure 3.9.

1. Denial of Service (DoS): a DoS attack can be executed through a wide range of routes:

e.g., from power loss or physical damage to the system, but all with the aim to cor-

rupt or incapacitate the system. Other forms of attacks could include introducing radio

frequency or electrical signals in order to affect data quality.
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Figure 3.9: Threat vectors (source [94])

2. False enrolment: the ability of a biometric to authenticate an individual is based on the

fact that the enrolled person is who they claim to be. If this identity is a fake, even if the

biometric is accurate, the identity will be incorrectly matched.

In this case the system will validate a false identity, and grant access to privileges.

3. Fake physical biometric: this represents a spoofing attack, that is, providing a fake

physical biometric in order to circumvent the biometric system.

These attacks are made on the entry of the system (i.e. the input) so many of the digital

protection mechanisms are not effective.

An original biometric can easily be captured by many sources, with or without the con-

sent of the owner.

4. Fake digital biometric: there are two kinds of attack: masquerade attacks and replay of

reference sets:

• Masquerade attacks: this kind of attack uses false biometric data such as digitised

latent fingerprints (such as those left on surfaces that have been touched) or digital

facial images.

• A replay of reference sets: this kind of attack takes place inside the biometric

system in order to replay the reference set or templates.

This requires access to the system as well as knowledge of the biometric system.
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5. Latent print reactivation: some biometrics such as fingerprint and palm print leave a

latent print on the biometric sensor due to sweat glands in the skin. A skilled individual

may be able to copy or reactivate these into readable prints through a range of techniques.

6. Reuse of residuals: some biometric systems and devices may keep in memory the last

biometrics extracted and templates used. An attacker who gains access to this data may

be able to reuse it to provide a valid biometric.

7. Replay attacks / false data inject: this category includes man-in-middle-attacks that

consist of capturing the biometrics data and replaying it at a later stage. An alternative

way is to inject a false data stream between the processing system and the sensor. That

implies, most of the time, some physical tampering with the system.

A replay attack requires a two or three step process:

(a) intercept or copy of the sensor transmission

(b) possibly, modify the data

(c) replay the data

An encrypted transmission adds complexity to this process and is an effective defence.

Having to decrypt and re-encrypt the data may require advanced technical skills and/or

the use of specialised tools.

8. Synthesised feature vector: this is an iterative technique which consists of a data stream

representing a fake biometric retaining only those changes that improve the score until

this fake biometric reaches a point where it gets validated by the system. This technique

is described as “hill climbing” and requires access to the matching score.

9. Override feature extraction: this attack aims to interfere with the extraction of the

biometric features which are being used, either by attacking the software or firmware, in

order to manipulate or provide false data.

This data can then be used to disable the system.

10. System parameter override / modification: this attack aims to modify the acceptance

threshold or other key system parameters.

That may result in system acceptance of poor quality or incorrect data.

11. Match override / false match: during feature comparison, the templates are generally

unencrypted which makes them susceptible to tampering. The decision thus made can

be overridden or ignored and modified.
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12. Storage channel intercept and data inject: if the attacker has access to where the

template is stored, they can capture it for later use or inject a false template.

13. Unauthorised template modification: the biometric template can be stored in several

places such as readers or sensors, on an access card or token, or within the biometric

system itself. Any unauthorised changes made as templates are modified, replaced or

added to the system are a threat for the system as this may add an unauthorised template

or circumvent any registration procedure.

The loss of template integrity can affect the identification or authentication processes

and result into a denial of service.

14. Template reconstruction: this attack is similar to synthesised feature vector where “hill

climbing” techniques are used, but template reconstitution may also be done by scav-

enging file fragments from data storage.

15. Decision override / false accept: this attack bypasses any identification or authentica-

tion processes by overriding the decision data or injecting a false acceptance.

16. Modify access rights: this attack is generally achieved by obtaining system administra-

tor rights to allow the unauthorised user to get access privileges and other data and key

system parameters.

17. System interconnections: the interconnection with other systems may imply two other

threat vectors: external system compromise and unauthorised external system access.

3.4 Privacy and biometric authentication

Biometric authentication and the technology progression that enable its application in multiple

contexts for both governmental applications (law enforcement, border and immigration man-

agement) and private ones (be it health care sector, financial institutions), means that privacy

is a legitimate topic [8].

According to [99], security concerns regarding the use of biometrics have increased since

2006 together with and increase in occurrences of fraud. Countermeasures in the form of both

algorithms and software have been developed but they are far from being part of standard appli-

cations. Some time will be required to secure existing implementation but it is a very important

point as any compromised biometrics can have serious consequences for their owner (identity
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theft being one of them).

Biometric authentication is raising at least three types of issue related to privacy:

• The first one regards the potential access to biometric templates (whether the reference

one or the submitted ones) when authentication claims are made, in other words, the

privacy and security of the various steps of the authentication process.

• The second type of issue relates to ensuring reference data integrity, which relates to the

security and privacy of the technical parts involved in the solution.

• The third one refers to the social, legal and political side of privacy related to the use of

the biometric information.

3.4.1 Privacy and biometric submitted claims

The use of fake biometrics, or even stolen ones (e.g., using a photograph for face recognition,

forged fingerprints, etc.), by impostors claiming a false identity has not remained in Hollywood

movies. It is to present such techniques that aliveness tests are used.

The fact that biometric modalities use real human physiological or behavioural character-

istics to authenticate users and that these biometric characteristics are (more or less) permanent

and not easily changeable has led people to think (wrongly) that it is quite secure by nature.

In 2006, Jain et al. wrote in [59] that biometrics could not be easily shared, misplaced, or

forged and that the resultant security was more reliable than current password systems (which

can be shown in hacker websites) with the great advantage not to encumber the end user with

remembering ‘long cryptographically strong passwords’.

In addition, biometric traits require the person being authenticated to be present at the time

and point of authentication (whereas impostors can negate this if they have access to the secret

features).

It is as hard to falsify biometrics, but not impossible, it just takes the right amount of time,

money, experience or access.

Nevertheless the biometric data can be stolen from computer systems and networks as well

as forged [99] using dead or artificial biometric characteristics. As a matter of fact, biometrics

of themselves are not secret, they are a person’s characteristic (we expose them in our everyday

life, be it our face, fingerprints, etc.) that can also be captured by malevolent people and then
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used in place of their genuine owner.

The use of multimodal biometrics as proposed by some authors can help increase the se-

curity level but in fact the real problem remains unsolved, and this could create situations

comparable to Isaac’s one when hearing the voice of Jacob but feeling the hands and arms of

Esau and concluding he was in the presence of the latter.

It has been emphasized by [103] that biometric authentication made from a remote location

is a clear issue because of the risk of spoofing attacks.

The efficiency of the whole system and particularly the credibility of the score from a

biometric matching process depends entirely on the integrity of the sample provided for com-

parison, and whether it has been provided by the real biometric owner.

In 2009, the NSTC attracted the attention on this point too in showing that, in the context of

the US-VISIT application, as well as in other important United States government applications,

biometric data is captured in the presence of an officer who can detect the presence of a forgery.

The NSTC added something which is very true and that all users should keep in mind: that

once digitized by the system the biometric data is as secure as any other computer data and

faces the same vulnerabilities.

3.4.2 Privacy and biometric referential storage

The questions raised by [77] regarding the security of the different steps of the process, the

encryption of the data as well as where to store the reference data (centrally or the end-user’s

smart card) are as important as the technical sides of the rest of the process (capture, quality,

transmission, comparison, decision).

If any fraudulent party can access and tamper with the metadata accompanying the bio-

metric data submitted for evaluation, the actual owner of the biometric characteristic can be in

serious trouble.

The choice of storing biometric data as well as metadata on a user-held smart card that has

the ability to integrate a solution providing tamper-proofed capture, encryption and matching is

solving part of the privacy problem (biometric revocation and issue of remote authentication),

but not all of it. That SC can still be stolen.
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Large centralized biometric template storage raises the question of data integrity all along

the process steps as well as the protection of the owner of the biometrics and the revocation of

biometrics that have been compromised.

This last point is not an easy one to solve but research has been done on the topic [91, 12,

92].

The risk of forged template or rather of tampering with the template, i.e. changing, trans-

forming or altering the template attached to identification and other metadata, is real and the

consequences for the person might be very heavy. The difficulties are compounded because

compromised biometric data is very hard to revoke and change (no easy procedure is available

for that purpose); this is especially problematic in cases of identity theft.

These problems have been identified by several authors and especially [59].

In this way, [77] emphasizes the fact that choices as to where to store biometric information

are limited, e.g., either in a portable device for a small population, or in a centralised database

for large scale systems. The latter requires a relatively large, fast and reliable infrastructure

especially in order to allow for a continuous service as well as a solution to privacy and porta-

bility issues. On the other hand, the authors argue that, using an SC for storing and checking

biometric information at the location (match-on-card) allows for more flexibility with a better

user-feeling about privacy.

As described above, based on [103] biometric matching is probabilistic in nature, which

implies that two samples of the same individual are never exactly the same. The two samples,

for obvious security reasons, which are encrypted will need to be decrypted for a comparison

to the reference template.

Such a process raises the issue of encryption key management as is the case for any other IT

system.

In other words, a biometric authentication system must be considered not just from the

technical point of view, i.e. getting the proper biometric data, but more as a complete system

including all the management tasks that it triggers, including access to the data and metadata

captured and stored as well as modification and update which does not seem to be currently the

case when reading the literature we have used as reference for the present document.

As it is said by [59]: “A well-implemented biometrics system with sufficient privacy safe-

guards may be a clear requirement in the quick response to natural or man-made disasters”.

Such a complete approach is called ‘identity management’.
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3.4.3 Social, legal, politics and privacy

In addition to the two previous categories described above, it can be emphasized that the use

of biometrics for identity authentication triggers serious questions and even fears in the popu-

lation.

This is due to the specific nature of biometrics in the sense that they are intrinsically linked

to our identity in a way that no other forms of proof of identity (id-card, password, keys, etc.)

can approach. Biometrics is so special to so many humans because they are based on physical

and/or behavioural characteristics of an individual and because they are very difficult to hide

or modify.

The important development of biometric-based identification systems since the 90s which

has become quite explosive in the 21st century, especially boosted by the technology. The post

9-11 context has generated a some kind of malaise in the population as Big Brother’s technolo-

gies were implemented nearly everywhere, leading to what has been perceived as the invasion

of individual privacy.

The systematic face recognition scanning of the crowds attending the 2001 football Super

Bowl in Tampa, Florida, a few weeks after that September’s events, has been one important

element to set off the fears in that matter [43].

Civil liberty and consumer groups have reacted to the potential misuse of these data as

cross matching with other biometrics databases or sold to third parties. Most countries have

then implemented or reinforced a legal framework regulating the use of citizens’ personal in-

formation (rules of privacy) in a constitutional background, and have defined privacy under

law, including physical, decisional, and information privacy [112].

The notion of privacy of the average citizen/user is somewhat proportionate to the quantity

and quality of disclosed data required for authentication [103]. One important principle is that

biometric information is not to be released without the citizen’s prior personal consent.

A side effect of the deployment of biometric technologies has been the difficulties faced by

individuals under covert operation or those in witness protection [43].
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3.5 Hints for selecting appropriate biometrics

In this section, we introduce criteria that should drive the design of an authentication model

based on the use of biometrics.

3.5.1 Apparent advantages of biometric authentication

The chief advantage of biometric authentication methods over other approaches is that they

really do what is expected, i.e. authenticate the person actually using the system.

As a matter of fact, all modalities use either physiological or behavioural characteristics to

authenticate users which are (more or less) permanent and not easily changeable and therefore

the illicit use of somebody’s fingerprint or iris pattern does not break security in the same way

as any other user’s password.

However no technology can provide a 100% guaranteed identification as currently each

technology faces some weaknesses, especially when not adapted to the context and/or popula-

tion.

The key for choosing the right one is to determine where the system will be successful and

how to implement it correctly. For that purpose, the following section presents some attributes

that can help clarify the different biometric modalities.

Biometrics cannot be stolen in the same manner as tokens, keys, cards or other objects

used for traditional user authentication. In the same way, users can neither pass nor lend their

biometric characteristics to other users as easily as they can with their cards or passwords, nor

lose or forget them because of their intrinsic nature.

This is an advantage for the users as well as for the system administrators as it can save

some problems and costs of system management such as, for example, the costs associated

with lost, reissued or temporarily issued tokens/cards/passwords.

Biometric recognition, because of its intrinsic probabilistic nature, involves matching within

a tolerance of approximation (the score) of the captured biometric against previously collected

(enrolment) data. Approximate matching is required due to the variations both within and be-

tween class (i.e. individuals) in physical and behavioural attributes.

Hence biometric-related results are not as binary as the rest of IT systems [32].

However biometric characteristics are not secret. We all carry them in front of everybody.

In addition they can be either stolen from computer systems or networks that are not be
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properly protected or even forged [99] using dead or artificial biometric characteristics.

3.5.2 Criteria for a biometric taxonomy

As shown previously (see above) there is a large number of biometrics that can be used for

authentication of individuals. Each one of them has its own strengths which depend on the

expected application.

The attributes listed below, in no specific order, can help make a choice regarding what

appropriate biometrics would be. Each component could be weighted or assessed individually

according to the requirements of the project [43, 112].

• Uniqueness / distinctiveness is the level of discrimination between individuals, i.e. ac-

cepting a given person while rejecting others. The importance of this particular attribute

increases with the size of the population among which people are to be distinguished.

• Permanence relates to the invariance or stability of the given biometric over time and

context. There are a number of reasons that might alter the biometrics of a person such

as age, disease, accident, clothes, skin plasticity (e.g., smiling), etc.

A biometric should use enough features to minimise the change’s effect on the system’s

ability to discriminate.

This might be of less importance when processes allow for periodic update of the bio-

metric template, i.e. re-enrolment.

• Scalability refers to the efficiency capability of processing of a chosen biometric in both

cases of the capture step, i.e. enrolment and claim.

This attribute is more important in large identification system contexts.

• Convenience relates to the disturbance degree (ease of use, speed of capture and/or

treatment) of a given biometric.

It is a factor that will be more important for disabled people (e.g., mobility or vision

impaired) even though it is becoming a requirement common to all users, especially

when system will be used frequently like the access control.

• Universality means that all (or almost) members of the population should possess the

trait, otherwise it would be inconvenient and trigger difficulties for the management of

security.
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• Performance, i.e. the reliability of the chosen biometric, which means that the sys-

tem’s results should remain the same even if the environment might alter (e.g., lighting,

temperature, etc.).

• Vulnerability is the system’s ability to deceive fraud.

• Privacy is ideally protecting users by getting their permission before acquisition and

strong encryption of the stored data.

• Maintenance is for systems using sensors requiring physical contact which potentially

require more maintenance because of residue build-up, wear-and-tear...

• Health: Capturing biometric should be painless and harmless.

• Quality of the sample captured is important to ensure accurate testing of the matching

potential. The required quality should be obtained easily with the chosen system.

• Integration: the chosen biometric should be able to come in addition to other authenti-

cation test in order to build a multi-factor authentication system.

• Cost / benefit appreciation: Expected benefits could be enhanced security, convenience,

smaller cost of token to be replaced, suppression of human operator, etc.

• Acceptance by the population to be submitted to the system.

There might be some additional criteria to take into account depending on specific context.

All of the above should be considered as important for the reliability and efficiency of the

solution to be implemented.

3.5.3 Current limits of biometric authentication

Based on [32] and [99], it appears that a number of domains need further research especially

in the following three areas:

• Human recognition systems are intrinsically probabilistic, and thus potentially fallible.

The odds of an error can be drastically reduced but not totally eradicated, which should

be taken care of by system designers and operators.

• Fundamental understanding of biometrics needs strengthening, since understanding the

biometric traits distributions within given populations to the variation of human interac-

tion with biometric systems.

This could allow for defining methods enabling the acquisition of rigorous biometric

measures, especially clarifying required operational and environmental conditions.
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This is important particularly for biometric systems that are to be deployed at national

level.

• Approaching a biometric solution from a full system perspective is a critical success

factor. This involves taking complex decisions regarding definitional, technological, and

operational possibilities and appreciating the technological and social contexts in which

they are integrated, in order to ensure performance, effectiveness, trustworthiness, suit-

ability and security of automated solution.
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This chapter gives some background information about gesture recognition sys-

tems and an overview of the methods currently used.

The chapter presents also the devices used for Gesture Recognition biometric cap-

ture in the following of the thesis i.e. the KinectTMand the Leap Motion, as well as

the comparison algorithm i.e. the Dynamic Time Warping
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4.1 General background

A large part of human communication is done through gesture as shown by the works of [51]

on body language, which he called proxemics. Through gesture, emotions, intentions and mes-

sages of all kinds can be exchanged without saying a word.

Gestures can be made using any part(s) of the body, and especially hands, arms, legs, fin-

gers, or the head as well as facial expressions. A combination of several of the former is even

more expressive.

In fact humans use gestures for several purposes, which can even be combined in one same

gesture. They have been called: semiotic, ergodic, and epistemic [25]:

• Semiotic gestures are the very common gestures aimed at conveying meaningful infor-

mation to others. It is culturally coloured, i.e. the same gesture in two different places

and context can have very different meaning.

The thumb-up gesture is a good example of such diversity [42], e.g, for British people

it generally means “brilliant”, i.e. a congratulation or an approbation but here below are

some examples of its other meanings:

– in American sign language, it can mean “yourself” (if thrust toward another person)

or the number 10 (when slightly shake left and right)

– for scubadivers it means “going upwards/returning to surface”

– for hitchhikers, it is a way to ask car drivers passing by for a lift

– in Brazil it means “obrigado-thank you”

– in ancient Rome, it seems it was a vote for “sparing the life”

– in the middle-east, Iran, west and south-Africa it has a very bad meaning compara-

ble to ‘giving someone the finger’

• Ergotic gestures relate to manipulating or interacting with the environment, such as

when creating tools or artefacts, or wiping dust from a table, etc.

• Epistemic gestures relate to using tactile experience when discovering the environment.

When touching something humans can appreciate its resistance, texture, structure, etc.

Babies discover their world this way.

Any gesture of each of the above types may be emphasized using an object, e.g., a hand-

kerchief when moving the hand in a ‘good-bye’ gesture, a brush for wiping dust, or a stick to

explore the world.
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4.2 Overview of the methods used for gesture recognition

Computer-based Gesture Recognition (GR) uses mathematical algorithms to capture the ges-

ture in itself and then to understand the meaning of that movement. Developing computer-

based GR allows for providing a more convenient and natural human-machine interface, i.e.

interacting in a natural way not necessarily requiring the use of any particular device, such as

keyboards or mice.

GR is currently developing and is now accessible to common users.

These capabilities cover the full range of the three types of gesture listed above. For ex-

ample it is possible to control the mouse cursor of the computer (Ergodic), to translate sign

language (Semiotic) or to analyse some sporting movement (Epistemic).

Such solutions can be used in many areas of everyday life.

For example, they help make game playing experience more genuine through increased in-

teractivity with the virtual machine, or can analyse movements in order to identify potential

mistakes and rectify them.

This can be used for high-level practitioners in dance, high level sport or other activities requir-

ing appropriate gesture, or even to translate sign language into words, either written or spoken.

There are many ways to recognise and track a person’s movements, using different kinds

of sensors. They can be classed into two main categories, hand-held device-based ones and

hands-free ones.

• Hand-held controlling devices of some kind are the most common way of controlling a

computer.

– The mouse of a computer is the one used by most users in the world, whether

internal or external, wire-linked or wireless.

– This category includes all other instrumented devices such as gloves, body suits,

and marker-based optical tracking which require holding something that helps to

track movements.

– Motion sensing devices that embed accelerometers and gyroscopes (to measure

acceleration along the three axes x, y and z over time) with optical sensors (for

pointing) like the Nintendo’s Wii remote control for the Wii console, are a different

way of controlling a computer that has appeared and developed some years ago.

This answers the users’ expectations which are very clearly expressed when using

the terminology “wirefree” instead of “wireless”.
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PDAs are already equipped with such technology and soon they might be embed-

ded in watches [65].

• The vision-based way is a hands-free approach which is literally viewing the user’s ges-

ture(s) through sensors such as webcams. This category is also named depth camera.

The vision-based approach can rely on several kinds of sensor technologies of which are

listed below. It can thus be based on:

– A single camera is the most accessible. It is a basic camera that can recognise

gestures. Such basic devices are limited to capture and recognise only 2D (two-

dimensional) gestures.

– A stereo camera relates to two cameras positioned next to each other.

Such equipment allows for capturing and working out the depth of the situation by

corresponding points in the two images. This is the way human eyes determine the

depth of what we are seeing.

– A camera array is the extended version of the stereo camera as it is using multiple

cameras to capture an action from many angles at the same time.

All the cameras have to work as one single system for properly estimating 3D

(three-dimensional) scene geometry from the dense imagery (light fields) captured

by the array to construct multi-perspective panoramas.

– A time-of-flight camera is a range imaging camera which takes its name from the

fact that such systems are built using methods comparable to radars or LIDAR

(Light Detection And Ranging which are used to measure distance and ‘illuminate’

a target), which take into account the light travel time (based on the speed of light)

to resolve distance.

– A structured-light 3D scanner determines the 3D structure of a scene based on the

captured distortion of the projected pattern (infrared light).

The Figure 4.1 shows how such a device works.

The KinectTM sensor is good example of this kind of device.

Choosing a sensing technology requires an analysis of several factors such as resolution,

latency, range of motion, user comfort, and cost [83]. Although nobody can deny the impor-

tance of cost in such an approach, the high-paced continuously decreasing trend of technology

market prices that has been seen for more than a decade, makes it very relevant.

As a matter of fact some devices that were considered very expensive less than 10 years ago

are now quite cheap even in their up-to-date version.
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Figure 4.1: Working principle of a structured-light 3D scanner (source [5])

One can also understand from the market evolution that the user comfort dimension has

become a dominant one. With this in mind, hand-held devices are, if not exactly doomed,

rather cumbersome as even if very small they hinder the ease and naturalness of the user’s

interaction with the computer. However most vision-based techniques (except the last one

mentioned above), while overcoming this, still need to overcome some problems, in particular

those related to occlusion of parts of the user’s body say [83]. And this statement might very

soon be outdated.

4.3 The gesture recognition system used

Accurate GR depends on factors similar to those mentioned above for biometrics in general,

i.e.:

• The sensor(s): The quality of the input which, in other words, relates to precision of the

captured points, the camera location, lighting, potential shadows, etc.

This is related to the capture step of biometric authentication.

• The feature extraction: The appropriate selection of captured features, i.e. choosing and

making sure to acquire the key points adapted to the gesture.

This is equivalent to the use of biometric sensors.
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Figure 4.2: The KinectTM(source [81])

• The analysis: The choice of the detection algorithm for an appropriate interpretation.

The next section provides some more information on each of these.

Comparisons with biometric authentication systems can be made as gestures have physical

characteristics and often behavioural ones too.

There are two main ways to achieve GR [83]:

• The model-based approach which uses the 3D coordinates of some key body parts to

get several important data points such as (but not only) the joints (knee, ankle, elbow,

shoulder). Two sub-kinds need to be distinguished, i.e.:

– volumetric models which are preferably used in offline algorithms,

– skeletal models used for real time analysis, as only key parameters have to be taken

into account.

• The appearance-based approach which uses image sequences or features derived from

these as gesture templates and thus consists in reducing the error between the input image

and the closest model instance.

4.4 The sensors

4.4.1 The KinectTM

The KinectTM, shown in Figure 4.2, is a good example of a structured-light 3D scanner.

It was originally developed as a completely hands-free control for a Microsoft gaming console,

the Xbox 360, in order to offer a serious alternative to Nintendo’s Wii Remote control and

Sony’s PlayStation Move-Eye motion controllers.
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The KinectTM “understands” gestures using software created by the “Rare” company (Mi-

crosoft Game Studios group), coupled with the particular range camera technology developed

by the Israeli company “PrimeSense” [78].

It can accurately track and capture under any ambient lighting, in 30 frames/sec video [80], a

skeleton composed of 20 points [100] which represent the 3D position of the head, neck, spine,

centre hip, as well as the left and right side joints: hand, wrist, elbow, shoulder, hip, knee, ankle

and foot.

It uses an infrared projector [79] and camera fitted with a special microchip, known as Light

Coding, and uses a variant of image-based 3D reconstruction to provide a 3D scanner system.

4.4.2 The Leap Motion

Figure 4.3: A: User using the Leap Motion (source: Benoit Ducray) B: Leap Motion orienta-
tion (source [3]).

The Leap Motion Controller is a device launched on July 2013 by Leap Motion [3]. Its aim

is to track hands and recognise gestures in order to give the user a new interface to communi-

cate with machines (i.e. computer, smart phone etc.).

It is composed of three IR emitters and two IR cameras. Thus it is an optical tracking system

based on stereo vision, because the LEDs (Light Emitting Diodes) are generating patternless

IR light.

The manufacturer claims that the sensor has an accuracy in fingertip position detection of ap-

proximately 0.01 mm. The accuracy of the Leap Motion has been discussed and it was found

that the theoretical accuracy of 0.01 mm could not be achieved under real conditions; an overall

average accuracy of 0.7 mm was achieved [114].

The Leap Motion device gives the position of an element in three dimensions by using coordi-

nates (x, y, z). See Figure 4.3.
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4.5 Feature extraction

Feature extraction is responsible for isolating the appropriate data amongst the amount of in-

formation captured by the sensor signal, i.e. reducing the number of input data to the amount

required in order to perform a desired task. It is in particularly important to identify the begin-

ning and the end of a gesture in order to keep only what is for the analysis part.

This is the most complex part as the same gesture can present important variations not only

between two different persons but even when accomplished several times by one single person.

Other background data is captured by the sensor that brings no additional information on

the nature and meaning of the gesture and thus needs no treatment during the analysis phase.

This background data can also be eliminated.

Such an elimination process normally requires either expert knowledge of the data to analyse

or applying data-driven dimension reduction techniques such as principal components analysis

(PCA), independent component analysis (ICA), or linear discriminant analysis (LDA). Often a

combination of the three approaches can be used.

4.6 Analysis

They are several algorithms to do GR: Dynamic Time Warping (DTW), Neural Network or

Hidden Markov Model. We have mainly focused on the DTW algorithm, because it requires

little or no learning period for the machine.

Other classification algorithms such as Neural Network or Hidden Markov Model need several

examples from the user in order to get an accurate authentication rate.

4.6.1 Dynamic time warping

Dynamic Time Warping is a type of algorithm which uses a temporal structure technique. It

is used to find an optimal alignment between two time-bound sequences, independently of the

variation of time or speed between both sequences.

Originally, this algorithm was used in speech recognition [113] and its use has been en-

larged to all domains in which data can be modelled in a linear representation e.g., computer

animation, video, audio and graphics.

One of the applications is for GR to extend the interface between human and machine [38].

The interested reader is referred to other works that have used this method [46, 106, 69].
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This capability of finding an alignment for two sequences which are comparable but not

aligned is very important when comparing gesture patterns.

The speed at which a given gesture is performed can be highly variable from one occurrence

to another, even when the same individual is performing them in a sequence.

In practice, the principle of DTW is to define a warping path with the minimal cost. This

cost is given by the cost function (or distance function) which is the distance (or the error)

between the two sequences, as shown in Figure 4.4.

In other words, the DTW algorithm gives the alignment between the curve given by the

reference model data, and the curve given by the user’s captured data. DTW is reviewed in [63]

and can be summarised as follows:

In order to use DTW algorithm to align two sequences A and B, where:

• A = (a1, a2, ..., aN ) of length N ∈ N (i.e. a positive integer)

• B = (b1, b2, ..., bM ) of length M ∈ N,

We construct an N-by-M matrix where the (ith, jth) element of the matrix contains the

distance d (xi, yj) between the two points xi and yj , using a distance function, generally the

Euclidean distance, d(xi, yj) = (xi − yj)2.

Each element (i, j) of the matrix corresponds to a hypothetical alignment between the

points xi and yj .

From this matrix we can determine a warping path W where the kth element of W is

defined as wk = (i, j)k and we thus have:

W =w1, w2, . . . , wk, . . . , wK

max(m,n) ≤ K < m+ n− 1
(4.1)

The warping path is typically subject to constraints on boundary conditions, continuity and

monotonicity with the following constraints:

• Boundary conditions: w1 = (1, 1) and wk = (m,n), the warping path must start and

finish in diagonally opposite corner cells of the matrix.

• Continuity: Given wk = (x, y) then wk−1 = (x′, y′) where x− x′ ≤ 1 and y − y′ ≤ 1.

Allowable steps in the warping path are restricted to adjacent cells (including diagonally

adjacent cells).
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• Monotonicity: Givenwk = (x, y) thenwk−1 = (x′, y′) where x−x′ ≥ 0 and y−y′ ≥ 0.

The points in W are forced to be monotonically spaced in time.

We are interested only in the path which minimises the warping cost:

DTW (AB) = min(

√√√√ K∑
k=1

wk) (4.2)

We can find this path using dynamic programming to evaluate the following recurrence

which defines the cumulative distance γ(i, j) as the distance d(i, j) found in the current cell

and the minimum of the cumulative distances of the adjacent elements:

γ (m;n) =d(m;n) +min(γ (m− 1;n− 1); γ(m− 1;n); γ(m;n− 1)) (4.3)

Where: γ (m;n) is an (M + 1) × (N + 1) matrix; γ (0;n) and γ (m; 0) are initialized

with a large number representing infinity or zero, depending on the application; γ (0; 0) with

zero; d(m;n) is the cost function.

The cost of the minimal path between both sequences is contained in γ(M ;N).

Figure 4.4: Illustration of the principle of the Dynamic Time Warping algorithm
Graph 1: Two time series (A and B) - Graph 2: The warping path between A and B obtained
using the DTW algorithm (source: Benoit Ducray)
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Biometric data can be used as “something you are” in authentication systems,

but if a biometric is compromised by a malicious entity, the genuine user can no

longer use it because it cannot be easily changed.

What we defined as ‘Dynamic biometrics’ may offer a practical alternative, as

they capture both an inherent factor along with a changeable knowledge factor in

a single step.

This chapter investigates dynamic biometrics and whether they offer useful secu-

rity authentication properties compared to conventional biometrics.

Security characteristics of examples from three classes of dynamic biometrics are

compared to a selection of common physiological (“fixed”) biometrics, leading to

the conclusion that in addition to providing one-step, two factor authentication,

dynamic biometry may provide privacy benefits in some circumstances.
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5.1 Problem statement

Biometrics are often used in authentication solutions to provide “something you are”. However,

attackers may seek to compromise biometric authentication; possible attacks include compro-

mise of stored biometric data, or copying or faking biometrics to fool data capture sensors.

The compromise of a fixed user biometric is a fundamental disadvantage of this type of authen-

tication, so the use of dynamic (changeable) biometrics may provide a practical alternative.

The availability of new types of sensors such as depth cameras, brainwave sensing head-

sets, etc., has generated research interest into what we called ‘dynamic biometrics’, as these

sensors can be used to capture inherent factors (physical/behavioural) simultaneously with a

knowledge factor; e.g., Gesture Recognition (GR) (e.g. [71, 15, 40]).

In the same way that the knowledge factor is easily changeable, a dynamic biometric can

be changed yet still retain the advantages of biometric input. It will also provide a means for

one step two-factor authentication [27], where only one action is required to present two au-

thenticating factors to a verifier.

This chapter investigates whether dynamic biometrics can provide security authentication

and compares them to fixed (static) biometrics. Several examples of dynamic biometrics are

presented. The security characteristics of several fixed or dynamic biometrics are determined

based on criteria devised by Bonneau et al. [23]. We chose to take Bonneau et al. as a reference

for the security criteria as they have done a useful work to compare various web authentication

schemes. In this document, we will focus on the criteria which are relevant for biometrics

schemes but future research can easily associate the analysis done here with Bonneau et al.

work to extend the comparison.

The three fixed (static) biometrics included in the analysis are:

• Fingerprints as they are a well proven and widely used biometric [53];

• Face Recognition, which is also a widely used and accepted biometric [53];

• Retina as it is seen as a highly reliable and accurate identifier [30].

We chose to use this three (static) biometrics as they are among well proven and widely

used for the Fingerprints and Face Recognition [53], while Retina recognition is one the of the

most highly reliable and accurate biometric [30].
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This chapter is structured as follows: Section 5.2 presents the limits of fixed biometrics and

the solutions proposed. Section 5.3 explains the background about dynamic biometrics and de-

fines its different categories. Section 5.4 shows evaluation criteria and the security assessment

of each biometric, and results are analysed in Section 5.5.

5.2 The need for the concept of ‘Dynamic Biometrics’

5.2.1 The limit of biometrics

Compared to other authentication factors, biometrics may seem without fault, as they are not

easily stolen, forgotten, or lost. The main limitation of biometrics is that they are not secret −
they are public data − hence biometric data can be captured and replayed.

For example, when considering the most widely used biometric, fingerprints [53], it is rela-

tively easy to obtain fake samples because latent fingerprints are left on every surface we touch.

Several people have had their biometrics stolen: for example, the defence minister Ursula

von der Leyen had her thumbprint replicated by a member of the Chaos Computer Club [64];

or the hack of a US government where 5.6 million federal employees had their fingerprints

stolen [50].

Alarm bells have been raised by a team at Japan’s National Institute of Informatics about

the popular two-fingered pose as the team was able to copy fingerprints based on photos taken

by a digital camera three metres away from the subject [6].

5.2.2 Partial solutions to such limitations

Some works propose the use of cancelable biometrics [91, 12, 92] to reach the revocability of

biometric. The main point of this technique is to store a transformed biometry using a one-way

function and the transformed biometric and the transformation are both retained.

This construct preserves privacy since it is not possible (or computationally very hard) to

recover the original biometric template using such a transformed version.

If a biometric is compromised, it can be simply re-enrolled using another transformation

function, thus providing revocability [91].

But this is offering protection of the biometric main template on the storage point, but pro-

vides no protection at all in case of the original biometric data being stolen.
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Another solution to protect against fake biometrics is to detect the aliveness of the sample.

The method used to determine whether the biometric is alive or not depends on the biometric

and system used. Indeed, contact and contactless systems do not have the same ability to de-

termine aliveness.

There are two major ways to do this, either with the hardware, which needs to be performed

at the point acquisition, or software which would be performed at the processing stage.

For example, when using fingerprints, we would have:

• From a hardware point of view, the countermeasures possible are: skin temperature,

optical properties of the skin, pulse oximetry, blood pressure, electric resistance of the

skin [74, 98].

• From a software point of view, the countermeasures possible are: Local Binary Pat-

terns [87], Pores detection [76], Power spectrum [31], Wavelet energy signature [85],

Ridges wavelet [104], Valleys wavelet [105], Curvelet energy signature, Curvelet co-

occurrence signature [84].

If any weakness is found in one of the hardware countermeasure, it would be very expensive

to change the full system.

According to [102], even if the authors claim a very high performance score, the perfor-

mance of their methods depends on knowledge of the fake biometric fabrication techniques

and materials during the development of the method.

5.3 Dynamic biometrics

5.3.1 Definition of dynamic biometrics

Our definition of dynamic biometrics is shown below (other papers have used slightly different

definitions e.g., [101]):

A biometric is dynamic when physical/behavioural (inherent) biometric information is

captured together with a knowledge factor from a user, such that it can be used as the basis of

a one-step two factor authentication.
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5.3.2 The three classes of dynamic biometrics

We introduce the following three dynamic biometric classes: text based, gesture based, and

thought based.

Text based

Keystroke, Speaker Recognition and touch screen patterns1 on smart devices are good ex-

amples of this class [27], provided that the text/pattern used has been chosen by the user.

Here, there is both biometric information (either the keystroke, sound emission or touch screen

speed/style/pressure) and something the user has to know and can change easily, i.e. the text.

Thought based

Authentication based on brainwave signals is now a realistic possibility. Several works have

proposed the idea of a “passthought” and have shown than it is possible to authenticate a person

via a specific thought [107, 61, 28]. Here the knowledge factor is the particular thought and

the inherence factor is the uniqueness of the brain’s wave emissions [107].

Gesture based

This class can be divided into Gesture and Signature categories.

Gesture: There are several ways to capture a gesture: for example, by using a depth camera

(described later in this paper); or by using an electromyograph to capture electric impulses in

the muscle [54]. The knowledge factor is the gesture itself.

Signature: This refers to the capture of the direction, stroke, pressure, and shape of a

signature, through touch sensitive technologies (such as PDAs or tablets). This only matches

our definition of a dynamic biometric when the handwritten text can vary.

5.3.3 Advantages and disadvantages of dynamic biometrics

Dynamic biometrics have several advantages; they are easily changeable due to the knowl-

edge factor, and they allow one-step two-factor authentication2. However, some categories of

the dynamic biometrics family only use weak physical biometrics, such as gestures based on

1Touchstroke dynamics is a behavioural biometric based on the style and rhythm that someone uses to interact
with a touchscreen-equipped smartphone. This authentication method is analysed in [37] and [62], and enhanced
in [11] e.g., by proposing how to handle typos.

2However the reverse is not true, all one-step two-factor authentications are not dynamic biometrics e.g. the
Bionym wristband allows authentication via the cardiac rhythm it records plus ownership of the wristband itself [2].
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upper body geometry (shoulder length, arms length) which may be a disadvantage in some

situations. Furthermore, any behavioural elements in the biometric may be observed/copied

and knowledge factors may be forgotten.

5.4 Fixed vs dynamic: an evaluation framework

The evaluation of dynamic biometrics that follows is based on security criteria outlined in the

work of Bonneau et al. [23]. Out of the 25 criteria described in Bonneau et al. work, we chose

to focus on the seven criteria relevant for biometrics along with additional security criteria that

are particularly relevant to dynamic biometry. We have chosen to include in this comparison

one example of each dynamic biometric class.

We chose Speaker Recognition rather than Keystroke Recognition or touch screen because

it is easily deployable over existing communications infrastructure (the telephone system) [73]

and stable over various devices (Keystroke and touch screen are not)3.

In the end, we selected Gesture Recognition and Passthought as they are both relatively

new research areas.

Note that we expand the definition of ‘attacker’ that here refers to an individual who

attempts to obtain biometric information by any method (not just copying) in order to success-

fully authenticate in the stead of the genuine user.

5.4.1 Evaluation criteria of the biometric types

• Resilient-to-Physical-Observation:

if an attacker is present when the genuine user is authenticating, they should not be able

to capture any useful information.

We rate a biometric as High if no information can be captured, Medium if some infor-

mation could be captured and Low if almost all the information can be captured.

• Resilient-to-Targeted-Impersonation:

if an attacker has investigated background information about the genuine user, they

should not be able to use this successfully in authentication.

We rate a biometric as High if no information can be captured, Medium if some infor-

mation could be captured and Low if almost all the information can be captured.

• Resilient-to-Unthrottled-Guessing:

the system should not permit an attacker to be authenticated if they are allowed unlimited

3However, touch screen biometrics on smart phone devices exhibit many of the same characteristics as speaker
recognition
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tries.

We rate a biometric as High if the attacker would need more than 220 attempts, Medium

if they need more than 210 attempts and Low if they need less than 210 attempts.

• Resilient-to-Theft:

if the system uses a physical object for authentication (i.e. reader, keyboard, etc.), this

object should not give any information to an attacker if they get access to it.

We rate a biometric as High if it does not need any physical object or the object does not

keep any information, Medium if the biometric might require an object that an attacker

could get information from, and Low if the biometric always needs an object that an

attacker could potentially get information from.

• Requiring-Explicit-Consent:

Here we rate a biometric High if it needs the full consent of the user to start an authenti-

cation process, Medium if the biometric can be used to authenticate without the consent

of the user only by using subterfuge, and Low if the biometric can be used to authenticate

without the consent of the user.

• Unlinkable:

For privacy, it should not be possible for colluding verifiers to determine if the same user

is authenticating to both their systems with the same secret.

We rate a biometric as High if there is no linkability, Medium if it is linkable in some

circumstances and Low if it is totally linkable.

• One Step Two Factors:

Does the biometric combine two factors in one step? (yes or no)

• Changeable:

Can the biometric be changed and reused for authentication in the case of compromise?

(yes or no)

• FAR / TAR:

False Acceptance Rate (FAR): an attacker successfully authenticates - True Acceptance

Rate (TAR): a genuine user successfully authenticates.

5.4.2 Evaluation of biometrics

The following analysis has been summarised in Table 5.1.
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Table 5.1: Comparison of biometrics (source Benoit Ducray).

Physical Biometrics Dynamic Biometrics
Fingerprint
Recogni-

tion

Face
Recogni-

tion

Retina
Recogni-

tion

Speaker
Recogni-

tion
Passthought

Gesture
Recogni-

tion
Resilient to

Physical
Observation

High Low High Low High Medium

Resilient to
Targeted

Impersonation
Low Low High Medium Medium Medium

Resilient to
Unthrottled
Guessing

Low Low High Low Low Low

Resilient to
Theft

Medium High High High High High

Requiring
Explicit
Consent

Medium Low High Medium High High

Unlinkable Low Low Low Medium Medium Medium
One Step Two

Factor
No No No Yes Yes Yes

Changeable No No No Yes Yes Yes
False

Acceptance
Rate

0.2% 0.1% 10−7% 2%-5% 2% 0%-3.4%

True Accept
Rate

99.8% 90% 99.99% 80-90% 98% 81%-99%

• Resilient-to-Physical-Observation:

We rated Fingerprint and Retina as High, along with Passthought: for Passthought an

observer cannot capture what the user is thinking as there is no device yet that can capture

brain waves at a distance.

GR is rated Medium, as although an observer can see/observe/record a gesture, they

cannot use a recording directly to get authenticated. Face and Speaker Recognition are

rated Low.

• Resilient-to-Targeted-Impersonation:

Retina is rated High as it is difficult for an attacker to find out the blood vessel pattern.

Speaker Recognition, Passthought and Gesture are Medium because the attacker may be

Benoit Ducray 2017 76 PhD Thesis



5.4. Fixed vs dynamic: an evaluation framework 5. Dynamic versus Fixed Biometrics Security

able to discover information relevant to the specific thought and gesture but that would

not be enough to perform an attack.

Fingerprint and Face Recognition are rated Low as it would be easy for an attacker to

find a picture [109] and a latent fingerprint [75] to impersonate a user.

• Resilient-to-Unthrottled-Guessing:

Here we will use FAR data with the formula given in [86] to calculate the keyspace

which is 1/FAR = keyspace.

We base our ratings on the following calculated keyspaces: Fingerprint 28.97, Face

Recognition 26.7, Retina 229.89, Speaker Recognition goes from 24.35 to 25.65, Passthought

25.65. Gesture4 ranges from 24.9 to 26.65.

We can see that, according to the above criteria, all here listed biometrics are Low except

Retina which is High.

• Resilient-to-Theft:

All the biometrics analysed here do not required any contact with an object or leave any

information on it, with the exception of Fingerprint. This leaves some latent prints on

the reader, which provides a way to attack it [75].

• Requiring-Explicit-Consent:

Retina scanning requires the user to look into an eyepiece and focus on a specific spot [60]:

we rate this High.

Similarly, a High rating was given for Passthought and Gesture as it would be difficult

for a attacker to authenticate without user consent.

Fingerprint is rated Medium as an attacker could trick a genuine user into touching a

reader to initiate an authentication.

Speaker Recognition is rated Medium because an attacker could use a hidden micro-

phone to authenticate as a genuine user without their consent.

Face Recognition is rated Low as an attacker could authenticate using an easily obtained

photo of the user taken without their consent [109].

• Unlinkable:

By definition, biometrics are related to a particular user, so all ‘fixed’ biometrics are

rated Low. However, some dynamic biometrics use weak inherent biometric factors:

for example GR may involve some body measurements such as arm length or shoulder

width [40] which are not sufficient for a unique identification of a user. This make them

better for privacy. Also the inclusion of a knowledge factor in dynamic biometrics means

4An FAR of 0% was found in [40], i.e. a very high keyspace, but we feel that this value needs to be confirmed
by further experiments.
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that the same inherent factor can be used with different secrets at different verifiers.

Consequently, all dynamic biometrics are rated Medium.

• One Step Two Factors:

None of the physical biometrics can be used in a One Step Two Factors authentication,

but by definition any dynamic biometric can.

• Changeable:

Physical biometrics cannot be changed at the wish of the user. With dynamic biometrics

the knowledge factor can be easily changed.

• FAR and TAR:

For Fingerprint, Face, Speaker Recogniton we based this section on [60].

For Retina, the error rate is 0.0000001% [30] so we can assume than the FAR is the

same and the TAR is 99.9999999%.

Passthought [61] found a FAR of 2% and a TAR of 98%. For GR we used the range of

values from Table 6.3.

5.5 Security of dynamic vs fixed biometrics

The data shown in Table 5.1 highlights some important issues.

There have always been concerns about privacy and linkability of biometrics, and that once

compromised, a biometric credential becomes unusable by the genuine user.

These concerns are addressed by dynamic biometrics, and it can be seen from the table that

this new family of biometrics outperforms some traditional biometrics in a number of respects.

For example, our rating of Face Recognition is equal to or lower than all the dynamic biomet-

rics assessed, for all security criteria identified.

We can also see that Passthought could rival Retina Recognition in terms of security,

being ranked lower in only two criteria, resilient-to-targeted-impersonation and resilient-to-

unthrottled-guessing.

All the dynamic biometry categories were ranked Medium in the resilient-to-targeted-

impersonation criterion, better than Fingerprint and Face Recognition.

Naturally, not all biometrics are suitable for all authentication situations: conventional bio-

metric techniques are typically used for applications with higher security requirements than

dynamic biometrics.
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For example, as Gesture authentication is vulnerable to ‘shoulder-surfing’ (copying) attacks

it would not be suitable for use in busy public environments without the use of some kind of

voting booth concealing the person executing the gesture, but would be a plausible option for

video games.

Passthought currently requires fairly intrusive use of hardware so may not be a good option

for day-to-day use.

Dynamic biometrics are by definition capable of providing One-step Two Factor Authen-

tication, and the use of a secret knowledge factor brings some privacy benefits in comparison

to ‘fixed’ biometrics: additionally the use of weak inherent biometric data in gestures will also

improve Unlinkability.

5.6 Summary

A major security issue with ‘fixed’ biometrics occurs if biometric data is compromised so the

use of a changeable, dynamic biometric may provide a practical alternative. This thesis inves-

tigated how the security of dynamic biometrics compares to conventional biometrics. Several

examples of dynamic biometry were presented.

Evaluation criteria devised by Bonneau et al. [23] were then used as a basis to assess the

security of several fixed/dynamic biometrics.

The inclusion of a knowledge factor in a dynamic biometric brings some privacy benefits in

comparison to ‘fixed’ biometrics, in addition to making the biometric changeable.

Unlinkability improves a) because the same physical characteristic can be used at different

verifiers with different secret knowledge, and b) by using weak inherent biometric data in some

dynamic biometrics (e.g. in GR).
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Feasibility of Authentication based on
Gesture Recognition
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In this chapter, we take an example of dynamic biometric, the Gesture Recognition

(GR). We study the ability of a system based on GR to authenticate genuine user

and reject an impostor.

For this we identify what are the possible attacks against a GR: “Brute Force

attack”, “Dictionary attack”, “Storage Leakage” and “Shoulder Surfing attack”.

We set up two experiments which test the GR system against “Brute Force attack”

and “Shoulder Surfing attack”.

For these experiments, we used two different sensors: the KinectTM design to

recognise gesture made by the upper body and the Leap Motion, designed to recog-

nise a movements made by a hand.

We compared the results with others studies. Our results align with those found by

others work on this domain.
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6.1 Problem statement

Since the commercialization of the KinectTM in 2010 several devices propose to get depth in-

formation of a scene either by being a depth camera such as the Leap Motion or by embedding

a depth camera such as the Lenovo Phab 2, which provides depth and motion tracking sensors.

This proliferation of depth camera will last for several years [70].

This technology may be used in several applications, including measuring distances and

geolocation. It would be interesting to see if this technology, as it proliferates, could be used

for authentication. Gestures are not usually aimed at high security applications, but as conve-

nient alternatives to simple PIN or password entry.

However, depending on the method and precision of capture, gestures can include some

biometric related characteristics as well as the “something you know”, making them more like

two-factor authentication inputs.

This type of authentication has the added advantage that in the case of compromise, the gesture

can be changed yet still retain the advantages of biometric input. However, one of the obvious

weaknesses is that a gesture has to be performed in plain sight, so even an unskilled observer

can attempt to copy it, to attack the authentication system.

In this chapter, we are proposing to study the feasibility of using Gesture Recognition (GR)

for authenticating a user. In order to investigate this question, we have set up two experiences:

• One using the KinectTM design to recognise gesture made by the upper body (i.e. both

arms movement). Ten volunteers provided ten reference gestures of their own design.

These gestures were attacked by 28 people who first tried to guess the gestures and, after

watching them, tried to mimic them.

• The second experiment was a proof of concept using the Leap Motion, designed to recog-

nise a gesture made by a hand. This aimed to highlight the difficulty of mimicking a

gesture. A group of ten volunteers was asked to reproduce ten predetermined gestures

ten times.

We also tested GR using just the palm centre data points. This effectively removed all

hand geometry information, resulting in similar data to that which could be obtained

from an accelerometer sensor.

This chapter is structured as follows: Section 6.2 gives the definition of what we call a

“gesture” and how the biometric information affect the authentication. Section 6.3 presents dif-

ferent ways an attack can be performed on a gesture. Section 6.4 presents our proposed system,
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and the actual experiment for both experiences. Section 6.5 presents the results. Section 6.6

compares our work to what has been done by others on GR. A comparison with fingerprint is

also done on two security abilities: the ability to correctly recognize a genuine user, and the

ability to reject an individual trying to mimic the biometric.

6.2 Gesture recognition

Figure 6.1: KinectTM’s Skeleton (adapted from [79])

When we refer to a “gesture” we mean a set of frames and tracking points produced by our

gesture capture devices. These elements are organised such that every frame contains the same

number of tracking points.

• Frames: These represent the length of a gesture in time. The frequency generation of

a new frame depends on the sensor; the KinectTM software generates 30 frames per

second [81], the Leap Motion software can produce frames up to a rate exceeding 100

frames per second [4].

• Tracking points: These represent the features of the gesture. Movement is usually

tracked in three dimensions, which means that for each point we have information on

the horizontal, vertical and depth (x, y, z). Depending on the sensor used, there may be

support for point tracking, for example the KinectTM is able to track points from the

head to toe including the head, hands, hips, feet, etc. [79] (see Figure 6.1), but it is also

possible to use the raw image from the sensor to track other points. The Leap Motion

device, which tracks and records hand movements, could use raw data to track more

information about the hands, such as finger thickness.
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Table 6.1: Limbs’ length in centimetre (data extracted from [49])
Men Women

Average Standard deviation Average Standard deviation
Lower Arm 26.99 1.57 24.34 1.55

Shoulder to Elbow 36.90 1.79 33.58 1.74
Hand Length 19.38 0.98 18.05 0.97
Hand Breadth 9.04 0.42 7.94 0.38

These tracking points are the elements which provide the biometric information through

the limbs’ length (either arms’ length or the fingers’ length).

On its own, the length of a limb does not have a variation which can be used to accurately

discriminate one individual from another. For example, the average arm’s length for a man is

77.68cm with a standard deviation of 3.80cm [49] (Table 6.1 shows the average and the stan-

dard deviation of limbs’ length we used).

But for GR, when using an algorithm such as Dynamic Time Warping (DTW), which

accumulates the error, any limb’s length difference will be conspicuous.

For example, if the difference between two limbs is 1cm and the gesture lasts 30 frames (1

second with a 30 frames per second sensor), even if the gesture is reproduced perfectly, at the

end there will be an error of 30cm, and thus discriminate one individual from the other.

6.3 Attacks against gestures

There are several ways to attack a system on GR. There are four different kinds of attack

presented in [29]: “Brute Force attack”, “Dictionary attack”, “Storage Leakage” and “Shoulder

Surfing attack”.

6.3.1 Brute force attack

A “Brute Force attack” consists of repeatedly trying movement in order to find the right gesture.

An equivalent to a Brute Force attack on text-based passwords would be trying to guess the

password.

6.3.2 Dictionary attack

A “Dictionary attack” similar to a “Brute Force attack” but the attempted movements are com-

ing from a set of more likely possibilities (such as datasets from user studies).
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6.3.3 Storage leakage

Storing a template has always been a challenge for biometric authentication systems. One the

thief has stolen the template, they still need to know both the recognizers structure and how

to translate the stored values into gesture actions. Text-based passwords usually only store the

cryptographic hash of the passwords but two given gestures are never exactly the same, so that

makes comparing their hashes effectively impossible.

6.3.4 Shoulder surfing attack

“Shoulder Surfing” can also be called “Copying Attack”, or “Mimic Attack”. The principle of

this attack is to observe and reproduce the gesture.

We can divide this attack in to two categorizes, Human and Mechanical.

• Human: For this category, a human reproduces the gesture in the hope that the gesture

will be reproduced well enough to compensate the biometric geometric difference. To do

so we can decompose the attack into three steps: the observation, the learning process,

the reproduction.

1. The attacker has to observe the gesture of the genuine user. This may be seen or

recorded. The more points of view the attacker has, the more accurate their gesture

reproduction can be. This can be achieved either by having some collaborator

who will observe or record the gesture from a different location, or if they have

the opportunity of changing their observation point every time the genuine user is

doing the gesture. One of the main difficulties of this portion of the attack is to not

arouse suspicion of the genuine user or any nearby guards.

2. The learning process is not the most difficult part but there are several errors to

avoid. The attacker or the collaborator who is learning the gesture should be the

one who has the closest biometric characteristics to the genuine user.

When the gesture is reproduced, it should be well sided (sagittal section) − this is

difficult because we noticed during our experiments that people tend to reproduce

a gesture as if has been done by a mirror.

The learner has to pay attention to any little movements made by the genuine user

such as shoulder movement, hip rotation, etc.

3. The reproduction step occurs when the attacker is in front of the sensor and has

to reproduce the gesture they have learned. In order to have more chance of suc-

cess, the attacker may use spoofing in order to reduce the error introduced by the

difference of geometry.
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• Mechanical: For this category, a mechanical device (i.e. a robot) reproduces the ges-

ture. We can decompose this attack into four steps: capturing, reconstituting, faking the

biometric geometry, and reproducing.

1. Capturing aims to record the gesture in three dimensions. Because it needs to be

recorded in 3D, a suitable recorder needs to be used. One of the main challenges of

this portion of the attack is to successfully place the recording device where it will

be able to record the full gesture without arousing any suspicion. Several devices

may be used. Subsequently the different videos may be merged in order to create

the full gesture scene.

2. Reconstituting consists of numerical extraction of the different movements of the

features (i.e. the joints used for the GR), composing the gesture, and translating

and rotating them in the way it must be seen by the genuine sensor, and making

them understandable to the robot.

3. Faking the biometric geometry: the main advantage of using a robot is that it does

not have any specific biometric geometry but it needs to adopt the biometry of the

genuine user. The hardest part of this step is to get the right mensuration of the

genuine user. Once it has been done, a basic articulated mannequin can be used to

perform the gesture.

4. Reproducing: Once the robot has good geometry and can reproduce the gesture, it

needs to set in front of the sensor in order to execute the attack on the system.

The Mechanical attack is a lot more accurate than a Human attack but has several draw-

backs: the cost of a robot reproducing a human gesture, the need for a mannequin capable of

having the correct geometry, and the fact than if the authentication system is to open a door the

need to deploy the mannequin is hard to do without arousing suspicion.

6.4 Description of our experiments

6.4.1 The KinectTM protocol for the experiment

Extracted features

We have chosen to recognise the gesture based only on the movement of the arms and hands,

in order to be independent of the user position in front of the sensor: stepping or flexing would

not be recognised i.e. the position of the feet and of the lower body is not relevant information.

A particular advantage of using fewer points is that the system needs less physical space to

operate in, as the user does not have to be far from the device.
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From the 20 points that the KinectTM provides at a time t, we extract the position of both

hands, elbows and shoulders (six points in total).

Using just these 6 skeleton points we estimate that there are ≈ 10144 1 second (30 frames)

gestures: this assumes humans are only able to achieve a pose accuracy of 1cm3, giving≈ 1016

potential gesture starting points and ≈ 2.5× 104 possible positions in each subsequent frame).

To achieve position-independence, we refocus all the positions of the limbs used onto the torso

of the user as follows:

Xrefocus,t = (Xx,t − Tx,t;Xy,t − Ty,t;Xz,t − Tz,t) (6.1)

where:

• Xrefocus,t is the position of a limb X refocused on the torso at a moment t

• Xx,t;Xy,t;Xz,t is the position, in x, y, z, of a limb X such as the KinectTM gave us at a

moment t

• Tx,t;Ty,t;Tz,t is the position, in x, y, z, of the torso at a moment t

We divided the volunteers into two groups, a reference group composed of 10 people and

an attacker group composed of 28 people.

In the reference group, our sample consisted of 4 women and 6 men: their height ranges

from 1.51m to 1.83m and arm length ranges from 0.68m to 0.75m.

For the attack group, there were 13 women and 15 men, whose height varied from 1.53m

to 1.92m, and their arm length was between 0.62m to 0.79m.

In the reference group, each person was asked to register a gesture of their own design,

following some basic instructions. Gestures should be:

• relatively short, as our system records gestures of a maximum five second length;

• based on a movement of their hands and arms, as we refocus all points on the user’s torso

so we cannot recognise any body movement (e.g., step forward, flexing, etc.);

• easily reproducible (i.e. they have to pay attention to where their arms are at the begin-

ning and end, etc.);

• and not too close to the body, as the KinectTM has difficulty tracking the arms when they

are too close to the body.
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Once the volunteers had registered their gestures, they were asked to reproduce it 20 times.

This allows for the calculation of the True Accept Rate (TAR) / False Acceptance Rate (FAR).

Reference gestures were also recorded by a separate camera in order to be shown to the

attack group in the next phase of the experiment.

In the attack group, each volunteer was asked to try and guess the gestures of the reference

group, without knowing what they were. To do that they were given 2 minutes to attempt all

gestures which came to their minds.

We then showed the attacker a recording of a reference gesture and asked them to copy the

gesture as accurately as possible 10 times: this was repeated for each reference gesture.

This allows the False Acceptance Rate / True Reject Rate to be calculated.

6.4.2 The Leap Motion Protocol for the Experiment

We set up a GR experiment, which produced 90,000 attacks and 10,000 attempts at authenti-

cation by genuine users.

Gestures were captured by a Leap Motion device which tracks and records hand move-

ments in three dimensions. We recorded the (x, y, z) positions of the palm centre and all five

fingertips and finger roots (i.e. eleven elements (E) for each frame).

A group of ten volunteers was asked to reproduce ten pre-determined gestures ten times.

It is important to note than this experiment was designed to simulate an attack. We thus dis-

closed to all participants the design of each gesture to be mimicked.

We devised a set of 10 model gestures ranging from a simple hand drop, to more complex

shapes, e.g., drawing a symbol of infinity, and gave instructions about which hand to use and

the positioning of fingers (see Figure 6.2).

Five gestures were done with an open palm, as follows:

01: Let Right Hand (RH) drop vertically.

02: Make a circle on horizontal plane with Left Hand (LH).

03: Make a square on vertical plane with RH.

04: Make a triangle on horizontal plane with LH.

05: Draw a symbol of infinity on vertical plane with RH.
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Figure 6.2: Model Gestures (Designed: Benoit Ducray)

Another five gestures required variation of finger position, as follows:

06: Make a circle on horizontal plane with the RH and the index, middle, ring and little

finger straight.

07: Make a square on vertical plane with LH and the index, middle, ring finger straight.

08: Make a triangle on horizontal plane with LH and the index, middle finger straight.

09: Draw a ”b” on vertical plane with RH and the index finger straight.

10: Draw a symbol of infinity on vertical plane with RH and the index finger straight.

In order to accurately record when a gesture starts and stops, and to ensure that authen-

tication attempts are synchronized with stored gesture templates, the software waits for an

unmoving hand with five straight fingers before triggering or stopping the recording.

More synchronisation is done automatically during the analysis with the DTW algorithm.
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6.5 Results

6.5.1 The KinectTM experiment results

Table 6.2: False acceptance rate
Success / number of attacks for each person in reference group.
∗Weak gesture, excluded from calculations (source: Benoit Ducray).

Person False Acceptance rate Person False Acceptance rate
Person01∗ 34.7% Person06 1%
Person02 0% Person07 1%
Person03 5% Person08 2.1%
Person04 3.54% Person09 0%
Person05 2.8% Person10 0%

By the end of the experiment we had obtained:

• 200 sample gestures of genuine users trying to authenticate;

• 56 minutes of people trying to guess the reference gestures (assuming each guessing

attempt lasted an average of 3 second this equates to 11200 guessing attacks);

• 2800 attacks done by copying the reference gestures.

Out of these 2800, only 142 attacks succeeded including the ones on the weak gesture

(see below).

However, we found out that 70% of the successful attacks occurred when attacking one

particular gesture. We concluded that this gesture (a simple movement of both arms up

and down) was a particularly weak gesture that could be excluded from the subsequent

calculations as it may be considered equivalent to a weak PIN.

In the end there were 2520 attacks done by copying the 9 remaining reference gestures.

Out of these 2520, only 44 attacks succeeded, i.e. 1.7%.

Figure 6.3 presents the ROC curve, when an attacker knows the gesture.

From this curve, we can determine the best threshold which maximizes the TAR and minimises

FAR. In our case this threshold would be 0.40, which gives a TAR of 93% and a FAR of 1.7%,

shown in black in Figure 6.3.

Based on this threshold we can find the successful attack rate for each reference person (see

Table 6.2).
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Figure 6.3: ROC curve when the attacker knows the gesture (KinectTM).
Black lines indicate a threshold of 0.4 giving TAR 93% / FAR 1.7% (source: Benoit Ducray)

From this ROC curve we can also determine the Equal Error Rate (EER).

In the case of an attacker knowing the reference gestures, the EER is 2.8%.

When the attacker does not know the gestures they do not have any choice other than to

move randomly in front of the KinectTM.

Each volunteer did that during 2 minutes, and their movements were compared to all the

recorded gestures with the threshold we have determined previously (0.40).

Assuming the average gesture duration produced by the volunteers in this case is 3 seconds,

that means in 2 minutes they are able to make 40 attacks, so our volunteers produced 11200

attacks in 56 minutes.

None of these attacks had any success which make it impossible to draw a ROC curve or to

determine the EER.

However, the conclusion that can be drawn here is that the likelihood of a successful attack

is less than 1 in 11200 which gives better security than a 4-digit PIN which has 10,000 possible

combinations.
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6.5.2 The Leap Motion experiment results

We also tested GR using just the palm centre data points. This effectively removed all hand

geometry information, resulting in similar data to that which could be obtained from an ac-

celerometer sensor.

Figure 6.4: ROC curves of the full hand gesture authentication and palm gesture authentication
- Leap Motion (source: Benoit Ducray)

The ROC curves obtained are shown in Figure 6.4. For full hand gestures, it can be seen

that for a TAR of 10 we have FAR of 0; that is due to the comparison of a user’s gesture with

itself which should always give the minimal score, i.e. 0.

The asymptotic part takes a long time to reach the rate of 100, which means some of the

samples are distant compared to the other samples from the same user’s gesture. This may be

due to several users having difficulties using the Leap Motion as it was the first time they had

tried it.

Figure 6.4 shows that palm GR is a less effective biometric for secure authentication than

the full hand gesture; the EER from the palm centre gesture authentication is 25.04% against

11.88% for the full hand. The latter rate shows that full hand gestures produce half the number

of errors (i.e. False Rejection/False Acceptance) than a gesture authentication based on the

palm alone.
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From the analysis of the ROC curve, we determined the optimal threshold for both the full

hand gesture and palm gesture, with the help of the EER. With these respective thresholds, we

find the global TAR= 88.12% and the FAR 11.88% for full hand gesture and the palm gesture

TAR of 74.96% and a FAR of 25.04%. Once we had determined these thresholds, the analysis

was done gesture by gesture.

Figure 6.5: Split of TAR and FAR per gesture for the full hand and palm GR (source: Benoit
Ducray)

Figure 6.5 shows the split of TAR and FAR per gesture for both hand and palm gestures. It

can be seen that none of the TAR reach 100%.

This may be due to the fact that the users are not familiar with using the Leap Motion. 88 Also

most of the gestures without straight fingers had lower TAR than the other gestures, which

suggests that the users were not at ease performing this kind of gesture.

In particular, gesture 10 had a very low TAR of 74.8%, possibly because it was the most diffi-

cult and potentially less comfortable for the users to execute consistently.

The most basic gesture (hand drop 01) corresponds to simple analysis of only the user hand

geometry and gave the worst result: the FAR is 70%. As we examine more complex gestures

the FAR is never higher than 10%.
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This point is confirmed by gesture 05, which is the most complex of the full hand gestures,

and which has 0.47% of TAR. Analysing Figure 6.5 shows that for every gesture, the TAR is

always better for the full hand GR (except for the outlier gesture 01).

We could therefore deduce that for authentication based on GR, it is better to have the most

information possible from the sensor as more points captured from the hand would give better

results.

As a result, we can say that an attacker may be able to copy a gesture exactly after prac-

tising it several times. However the biometric hand geometry of the user will still afford some

protection in this case.

6.6 Contextualization of our results

6.6.1 Comparison with other research works

Table 6.3: Comparison the results of our experiments with those provided in several gesture
authentication papers.
FA-BF: False Acceptance brute force, FA-AK: False Acceptance attacker knows
(source: Benoit Ducray)

Papers Sensor Algorithm TAR FA-BF FA-AK
Our

Leap Motion
experiment

Leap Motion DTW 88.12% − 11.88%

Chahar et
al. [26]

Leap Motion
Mix of Naive Bayes,

Neural Network,
Random Decision Forest

81% 1% −

Aslan et
al. [14]

Leap Motion DTW 88.29% − 11.71%

Aumi et
al. [15]

Short range
depth sensor

DTW 96.6% 3.4% 5.3%

Our KinectTM

experiment
KinectTM DTW 93% 0% 1.7%

Wu et al. [117] KinectTM DTW 98.11% − 1.89%
Tian et

al. [108]
KinectTM DTW 99% 1% 3%

In Table 6.3 we gathered the results of our experiments with those of several papers pub-

lished on the GR authentication subject, some of which using protocols different from the ones

we followed.
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Wu et al. [117] proposed to use all 20 skeleton tracking points provided by the KinectTM and

it gave them a TAR of 98.11% for 1.89% of FAR.

Tian et al. also used the KinectTM with the DTW algorithm for analysis and recognition of

gestures designing a 3D signatures [108]. In this work they found 99% of TAR for 1% FAR

and 3% against attacks.

Aumi et al.’s paper [15] explored hand gesture authentication, accuracy and attack resis-

tance against shoulder surfing. In this experiment, reference hand gestures were recorded using

a depth camera, filmed, and shown to a group of attackers. Participants were then asked to copy

given gestures [15]. In this case, the FAR was 2.3%.

We can thus see that the papers compared in table 6.3 show that TAR can vary between

81% to 99% depending on the capture system used.

The table also shows results of brute force attacks against these systems (denoted FA-BF),

where attackers attempted to guess a gesture.

It can be seen that this type of attack is very unlikely to succeed.

Additionally if the attacker knows the gesture (denoted FA-AK) the FAR results vary from

1.7% to 12%. Our results confirm the other experiments done on this domain by researchers.

More generally, studies based on KinectTM get better results than the one based Leap Mo-

tion or on short range depth sensors, which may imply that the more parts of the body that

are used for the authentication, the better it is for correctly accepting the genuine user and the

rejection of potential attackers.

6.6.2 Comparison to fingerprints

In order to extent the analyse on GR, we will compare our work with Fingerprint recognition,

as it has been well proven and a widely used biometric [53].

To compare these two methods, we will study two security abilities of the system: the

ability to correctly recognise a genuine user, and the ability to reject an individual trying to

mimic the biometric.

• For the recognition of a genuine user, either the system is performing an identification

or an authentication. In this case, GR cannot compete with fingerprint recognition.

Fingerprint recognition has an error rate of 0.2% [60] while for the best GR system it is

around 1% or 2%. We see that fingerprint recognition is a better biometric system than

other presented to correctly recognise a genuine user.

Benoit Ducray 2017 94 PhD Thesis



6.6. Contextualization of our results 6. Feasibility of Authentication based on Gesture Recognition

Table 6.4: Fingerprint liveness detection algorithm performance (data extracted from [47])
Fingerprint Liveness detector FAR

Hardware used Algorithm FAR
Sagem sensor Local Binary Patterns 4.34%
Digital sensor Valleys wavelet 12.40%
Digital sensor Wavelet energy 15.10%
Sagem sensor Ridges wavelet 18.15%
Sagem sensor Power spectrum 21.81%
Italdata sensor Pores detection 22.00%

• In the case of a malicious individual mimicking the biometric in order to fraud the sys-

tem, we do not take into account the ability of GR of being changeable as it is a dynamic

biometric. We compare the FAR found for the GR to the FAR of liveness detection for

fingerprint.

Several works have been gathering the results of experiments related to liveness detec-

tion such as [47, 102].

Table 6.4 presents some of the best liveness performance algorithms found by [47].

For GR, the FAR found, either by our experiments or others works, is around 2% or

3% for systems based on the KinectTM and around 12% for systems based on the Leap

Motion. These rates are better than most of the results presented in Table 6.3.

But it is also important to take in consideration what [102] said about the liveness detec-

tion, i.e. “The results suggest that the performance of the methods strongly depends on

the knowledge of the fake fabrication techniques and materials during the development

of the method.”

In other words, this means that liveness detection requires the authentication authorities

to keep up with the evolution of the forging techniques and materials (e.g., in this case

the fabrication of a synthetic finger).

FAR would largely vary according to the kind of attack and the knowledge of the tech-

niques deployed.

Despite the apparent results shown here above, GR is finally a better authentication sys-

tem to use as the method used to forge biometrics evolve continuously and the one that

will be used for the next serious attack is potentially unknown yet.
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6.7 Summary

In this chapter, we have presented four kinds of attack from which a GR system may suffer

one of the following attack: “Brute Force attack”, “Dictionary attack”, “Storage Leakage” and

“Shoulder Surfing attack”.

We have focused on two of these attacks, viz. “Brute Force attack” and “Shoulder Surfing

attack”, by setting up two experiments which used different devices to capture the gesture:

1. the KinectTM, which tracks the full body movement

2. the Leap Motion, which tracks movement of the hands.

The results of the KinectTM experiment, in the case when the attacker does not know the

users secret gestures, show that none of the attacks succeeded during 56 minutes of attack (over

10,000 attacks), which is at least as good as an unknown 4-digit PIN. When the attacker knows

the users gestures, however the system has 1.7% FAR for 93% of TAR and an EER of 2.8%,

which remain a rather low attack success level, even if significantly above the scores obtained

with fingerprints and retina.

For the Leap Motion experiment, we chose eleven characteristic points, i.e. the palm centre

and all five fingertips and finger roots. We used the DTW algorithm to compare the gestures.

This experiment was more focused on a mimic attack as all participants had to execute prede-

termined gestures.

An attacker mimicking a known gesture had 11.88% likelihood of a successful attack,

whilst a genuine user had a 88.12% chance to be correctly authenticated.

All these results align with others’ studies done on this domain, using the same kind of

sensor.

A comparison was made with fingerprint recognition (FAR scores) where it has been estab-

lished that for recognizing a genuine user, either for identification or authentication, fingerprint

is much better than GR.

However, against an attack GR is better for rejecting an attacker unless we know the method

used to forge the biometrics. Should the forging technique be known, the liveness detection

algorithms for fingerprints obtain a better score but in the real world such knowledge is greatly

unlikely.
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Gesture Recognition Implemented on
a Personal Limited Device
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This chapter is mainly based on our paper [41], which was nominated for the best

paper award at the International Conference on Information and Communication

Systems (ICICS 2017).

The main challenge of a biometric authentication system is to protect the integrity

of the reference template. Should an attacker obtain or tamper with the template,

the genuine user would have to stop using that biometric for any application.

This chapter investigates the feasibility of implementing a Gesture Recognition

(GR) system on a personal limited device such as a smart card. To do this, we

set out an experiment using sample gestures based on practical results of gesture

authentication trials and an optimised version of Dynamic Time Warping (DTW)

algorithm to analyse the data captured. We implemented them on both a contact

Smart Card (SC) and a smartphone, a much more powerful device, using Host

Card Emulation (HCE). The latter being 60 times quicker than the former (one

second vs one minute).
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7.1 Problem statement

One of biometric systems’ principal challenges is to store the biometric reference template in

a secure location. If a malicious individual is able to obtain the template, that would mean the

genuine user would not be able to reuse this biometric for any application.

A prime location for the related reference template would be on a security evaluated Smart

Card (SC), as it is tamper resistant, easy to carry and, if used with Gesture Recognition (GR),

the system can provide a three-factor authentication method.

If the matching processes could also be carried out on-card (Match-on-Card), then this

provides additional protection, as the template does not need to leave the card during an au-

thentication. It also protects against attacks on the implementation due to the tamper-resistance

of the smart card chip.

GR is a rather demanding system in terms of computation power and memory storage.

This chapter sets out to investigate whether it is feasible to implement a GR system on a per-

sonal device of limited capability, such as an SC. To do this, an experiment was performed

using sample gestures based on practical results of gesture authentication trials which used

depth cameras as sensors and the Dynamic Time Warping algorithm (DTW) [63] to analyse the

captured data. We varied the data length, number of frames and tracking points of the sample

gestures, and implemented them on both a contact SC and the much more powerful Samsung

Galaxy S4 mobile phone. The latter used Host Card Emulation (HCE) [89] to emulate the SC,

and the DTW algorithm was optimised to minimise memory usage on both platforms.

The experiment showed that the implementation on a SC was slow (in a excess of minute),

and the HCE version was much faster (around 1s or 2s), although the overall processing time

depended on the gesture data length. It should be noted that the test applications were imple-

mented at the platform level, rather than in low-level native code which would have been much

faster.

This chapter is structured as follows: Section 7.2 presents some background information

about Host Card Emulation. In Section 7.3, we present the details of the experiment, gestures,

hardware and the optimisation of the gesture comparator used. The Section 7.4 present the

results. In Section 7.5 we discuss the feasibility of using GR on a personal device of limited

capabilities.
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7.2 Host Card Emulation

Host Card Emulation (HCE) is a technology which emulates an SC on mobile equipment us-

ing only software [89], and can be used with Near Field Communication (NFC) to emulate a

contactless SC.

Before HCE, all messages from a card terminal were routed to a hardware Secure Element

(SE) in the mobile handset. HCE communicates directly with the mobile operating system,

which decides if messages should be handled by a physical SE or a software application [111].

7.3 Experiment

In the previous chapter, we used six of the twenty available KinectTM skeleton-tracking points

(we wanted the use to be able to seat and get authenticate so we chose to focus on both hand

elbow and should which should be visible by the device even seated) in a gesture authentication

system with promising results: giving an Equal Error Rate (EER) of 2.8%.

We devised a proof-of concept authentication experiment using a Leap Motion device,

which tracks and records hand movements in three dimensions. For more technical informa-

tion concerning the Leap Motion device see [3].

Preliminary results from a small sample of volunteers indicated that it is feasible to use this

device in gesture authentication systems although the EER is 11.88%.

For the performance evaluation in this chapter, we used the Leap Motion to record a ges-

ture of 90 frames (as we want a good sequence of the gesture) with 11 tracking points (the five

finger tips and roots and the palm centre which are the most characteristic point of the hand)

from which we truncated the floating numbers and encoded them all into two bytes.

We chose to emulate gestures from these two capture devices, setting the number of frames

and tracking points in our sample gestures accordingly to reflect the different characteristics of

the sensors. The DTW algorithm was used to analyse the gestures.

We are not assessing here the performance of any cryptographic protocols because they

would be the same for both SC and HCE.
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Table 7.1: Information on the gestures and APDU sent (source: Benoit Ducray).

Gesture
size in
bytes

Number
of frames

Number of
tracking
points

Number of
frames
sent per
APDU

Size of the
APDU

data

Number of
APDU

sent

Gesture 1 3240 90 6
1 36 90
6 216 15

Gesture 2 1764 49 6
1 36 49
6 216 9

Gesture 3 5940 90 11
1 66 90
3 198 30

Gesture 4 3234 49 11
1 66 49
3 198 17

7.3.1 Gesture data and hardware

The gestures

We created four different sample gestures with varying memory requirements and processing

time, described as follows:

• Gesture 1: This gesture represents the capture of six points in three dimensions and is

composed of 90 frames. The total amount of data of this gesture is 3240 bytes. This

gesture represents a three second gesture obtained with a device capturing at 30 frames

per second. The number of tracking points represents either the five fingertips and the

palm centre (if performing hand GR), or both hands, elbows and shoulders for upper

body GR.

• Gesture 2: This gesture captures six points in three dimensions and is composed of 49

frames. The total amount of data of this gesture is 1764 bytes.

This gesture may represent a 1.63s gesture obtained with a device capturing at 30 frames

per second (it would be different with a device capturing more or less frames per second).

The tracking points are the same as in Gesture 1.

• Gesture 3: This gesture captures 11 points in three dimensions and is composed of

90 frames. The total amount of data of this gesture is 5940 bytes. Again, this gesture

may represent a three second gesture obtained with a device capturing at 30 frames per

second. The tracking points can represent the five fingertips, five finger roots and the

palm centre for hand GR, or both feet, knees, hands, elbows, shoulders and the head for

body GR.
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• Gesture 4: This gesture captures 11 points in three dimensions and is composed of 49

frames. The total amount of data of this gesture is 3234 bytes. This gesture may rep-

resent a 1.63s gesture obtained with a device capturing at 30 frames per second. The

tracking points are the same as in Gesture 3.

The hardware

The devices used for the experiment were: an ACR1281U reader which can be used with both

SC and NFC devices as contactless reader, attached to a PC running Windows 7 with 2 GB of

RAM and a processor of 1.86 GHz. As an SC, we used a Java Card 2.2.2 with 16 bits processor,

and a HCE equivalent application running on a Samsung Galaxy S4 with Android 5.0.1, 2 GB

RAM, Quad-core (4x1.6 GHz Cortex-A15 and 4x1.2 GHz Cortex-A7).

The experiment protocol

Firstly, we needed to decide how to send the gesture information from the terminal to the card.

A normal Application Protocol Data Unit (APDU), which is how we communicate with a card,

can send up to 256 bytes. We tested two methods for sending the gesture information:

• Sending all the information frame by frame: in this way the APDU data size is 36 bytes

for Gesture 1 and 2 and 66 bytes for Gesture 3 and 4

• The other method was to send the maximum number of frames that an APDU can handle.

For Gesture 1 and 2, it is six frames which gives an APDU data size of 216 bytes and for

Gesture 3 and 4, it is three frames, so the APDU data size is 198 bytes

All the information about the gestures and the APDUs sent are summarized in Table 7.1.

We measured the communication time for the APDUs described above for both SC and

HCE, in order to know how this decision may affect the performance evaluation. We carried

out 100 time measurements, to assess if the measured response time was stable.

We then performed the GR application with DTW. First, we captured 100 time measure-

ments for each of the four gestures, when running the application by sending the gesture frame

by frame to the SC. We repeated the experiment packing the maximum number of frames into

the APDU. We then repeated these two steps using HCE.
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7.3.2 Dynamic time warping: memory optimisation

The main drawback of the DTW algorithm is that, for a gesture A of M frames and a gesture

B of N frames, it needs to fill an M x N matrix where the cell (i,j) represents the score between

frame i of gesture A and frame j of gesture B plus the cumulative score.

Figure 7.1: Application of DTW with only one row in memory (source: Benoit Ducray)

Some works try to optimise the DTW either in calculation, memory or both. In [90],

they reduced the amount of calculation and memory needed by focussing on a part of the

DTW matrix, which may contain the warping path. But they forced the warping path of any

comparison to be in this calculated section which may imply more false positive results. The

same comment can be made if we do not calculate the full matrix as the warping path will be

altered.

Equation 4.3 shows that we only need three elements, γ(m−1;n−1), γ(m−1;n), γ(m;n−
1). Thus we only need to have in memory two rows, either the row m and row m-1, or the row

n and row n-1. Let us say that we have in memory the row m and row m-1: this method then

reduces the memory cost from M x N to 2M, although the number of calculations remain un-

changed.

We found that it is possible to implement the DTW algorithm by storing only one row of

size M plus a temporary variable of the size of one element of M. This method overwrote the
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row at each iteration and saved the temporary variable in the last overwritten cell.

So if we are looking for γ(m;n) which will be saved in the cell c(a), we can find γ(m; n− 1)

in the cell c(a-1); γ(m− 1;n) is the current value of c(a), and γ (m− 1;n− 1) is saved in the

temporary variable.

Once the cost γ(m;n) is calculated, we have to save the value in c(a) in the temporary

variable then overwrite c(a) with the value of γ(m;n). Figure 7.1 is illustrating this method.

7.4 Results

For the communication, the SC is always more than three times quicker than the HCE (the av-

erage time for each kind of APDU can be seen in the Table 7.2 in the communication time per

APDU column) and is more stable as its average standard deviation is 0.29ms against 5.65ms

for HCE.

Table 7.2: Times measured in millisecond (source: Benoit Ducray)

Size of
Number

of
Communication
time per APDU

Average time for
the full application

Estimate
processing time

the
APDU

APDU
sent

SC HCE SC HCE SC HCE

G1
36 90 6.71 23.65 92982.15 2228.48 92378.09 99.48
216 15 24.72 77.54 76029.02 1196.35 75658.16 33.12

G2
36 49 6.71 23.65 50622.60 1214.52 50293.73 55.40
216 9 24.72 77.54 43760.30 667.18 43555.80 23.14

G3
66 90 9.79 31.81 108674 3084.76 107792 221.60
198 30 23.76 71.80 94083.19 2253.42 93370.15 99.30

G4
66 49 9.79 31.81 32448.10 1684.36 31968.07 125.52
198 17 23.76 71.80 28092.53 1237.19 27702.44 64.68

We then measured the time for the full application (communication time plus processing

time) as described earlier in 7.3.1. The average time for each gesture can be seen in Table 7.2

under the column Average time for the full application.

Knowing the communication time, the number of APDUs sent and the full time for the appli-

cation, we can calculate the time needed by the devices to process the GR. This time can be

seen in Table 7.2 under the column Estimate processing time.

An extended version of the Table 7.2 can be found in Annex B.
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We observed that the SC needed a lot of time to process a gesture; more than 27s for the

quickest. Even if we used SC technology with a quicker communication interface, the SC

processing would still be a bottleneck. On the other hand, the HCE had a slow communication

time, but its processing time was much quicker than the SC, rarely exceeding 100ms duration.

7.5 Discussion

The experiment has shown that it is possible to implement authentication based on GR on an

SC at platform level, however the performance (one minute duration for a three second gesture)

was far too slow to be practical. A solution to this problem could be to develop the application

on a lower level, either in hardware or in native code.

Based on the work of [52] who implemented signature recognition on an SC, on both ap-

plication level and native level, using an algorithm of similar complexity to the one we used.

We estimate that the process time would be three times faster.

An HCE application would be more feasible for a real application as it takes around one

second. However, an HCE application does not provide the attack resistance offered by an SC.

The HCE application could be protected, at least from phone malware, by running within a

Trusted Execution Environment (TEE).

A TEE offers a more restricted and protective environment for running sensitive code, com-

pared to normal phone applications [45], although it does not offer the tamper resistance of an

SC.

Using a device with faster communication speed, or devices supporting extended APDUs

(an extended APDU is able to support up to 216 data bytes [1]), will reduce the time needed for

the full GR application.

The application installed on a personal, limited device will still remain slower than an equiv-

alent application installed on a secure server, but it will be more versatile, supporting both

on-line and off-line transactions.

An example application that could use this kind of authentication is controlling access to

a building. If a sensor and a reader are installed at a restricted area entry point, possession of

the SC (or the phone) plus knowledge of the correct gesture performed in the correct manner

would be needed to enter. This three-factor authentication then reduces the likelihood that the

system could be compromised.
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7.6 Summary

In this chapter, we pondered on a secure location to store a GR template. We investigated

whether an SC or an HCE implementation would be feasible for a GR application, when using

the DTW algorithm to compare gestures. Thus, we measured communication and processing

time for both SC and HCE.

Although it is possible to run a GR application on an SC at platform level, it is not feasible

for a real application as our implementation took around a minute.

There is margin for improving performance by implementing the application at a lower level,

either in hardware or with native code.

Our HCE application was far more practical for a real world application, although it did

not provide the attack resistance that an SC offers.

The use of a TEE may enhance security and resist logical and malware attacks, although a TEE

does not offer the tamper-resistance of an SC.
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In the previous chapters, we shown that authentication application based on au-

thentication using Gesture Recognition (GR) is a good authentication system. We

also shown that a Smart Card (SC) secure place a template and run the authenti-

cation application. But all of these is useless if any malicious individual can spy,

inject or modify the communication between the SC and the terminal.

In this chapter we propose a security protocol in order to protect the transmission

of a gesture from a terminal to a SC for an authentication application based on

authentication using GR. We assess the security of this protocol through Scyther,

which is a formal analysis tool for security protocols.

We described different types of attackers: Script Kiddies, Expert individuals and

Organised crime. We determine the abilities of each of them to attack the system.

We deduce from this analysis that most of the profiles do not have more possibilities

of bypassing the authentication other than just trying to mimic the gesture.
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8.1 Problem statement

Chapter 6 has shown that an authentication based on Gesture Recognition (GR) is able to effi-

ciently recognize the genuine user and reject any attackers or malicious individuals.

We have also seen in chapter 7 than such authentication can be versatile by supporting both

on-line and off-line transactions, as the gesture template can be securely stored on an SC and

the authentication can be run on the same device.

A good authentication system and a secure place for the template is useless if any malicious

individual can spy, inject or modify the communication between the SC and the terminal.

We thus need a security protocol which makes it nearly impossible to affect the confidentiality,

the integrity and availability of the authentication data.

In this chapter, we propose a security protocol between the SC and the terminal, in order

to assess whether the whole system (gesture authentication and the security protocol) correctly

authenticates the genuine user while keeping the gesture secret.

We identify four kind of attackers’ profile: Script Kiddies, Expert individuals and Organ-

ised crime. We determine the abilities of each of them to attack the system based of the threat

vectors presented in Chapter 3.3.

The present research shows that most of the profiles do not have more possibilities of bypass-

ing the authentication other than just trying to mimic the gesture.

This chapter is structured as follows: Section 8.2 presents the entities involved for the

security protocol and assumptions we make around the security protocol and the minimum

security goals of the protocol. In Section 8.3, we present the details of the security protocol

we propose and assess the protocol’s goals. In Section 8.4 we present different of attacker

profiles. Section 8.5 describes different kinds of attacker profiles and attacks which cover the

threat vectors presented in 3.3. In Section 8.6 we discuss the attack possibilities of each profile.
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8.2 Background on the security protocol

8.2.1 The entities

For a security protocol, there are several entities: one or several authorities, a terminal, and an

SC.

• The authorities: the role of the authority is to certify one or both devices (i.e. the SC and

terminal). This certification is used to assert the authenticity of the devices.

For our application, there is only one authority which has certified both the SC and

terminal.

• The terminal: The terminal consists of a smart card reader, a depth sensor to capture

gestures, and a computer. Its role is to be an interface between the sensors and the SC.

Moreover, in terms of the whole authentication application, the terminal is the interface

between the user and the entity with whom they want to do a transaction.

For our application, the terminal needs to have an identification (ID) number through

which it can be identified (noted IdT ), a couple of RSA keys [93] (SKT for the private

Key, PKT for the Public Key), and a digital certificate which has been signed with the

secret key of the authority (SSKA
{PKT }). The terminal also has the public key of the

authority (PKA) in order to verify the authority signature.

• The Smart Card: The role of the SC is to store the gesture template and to run the

gesture comparison algorithm in order to determine if the attempted gesture comes from

a genuine user or from an impostor.

For our application, the SC needs to have the gesture template, an ID number through

which one it can be identified (noted IdSc), a couple of RSA keys [93], and a digital

certificate which has been signed with the Secret Key of the authority (SSKA
{PKSC}).

The SC also has the Public Key of the authority (PKA) in order to verify the authority

signature.

8.2.2 Assumptions

Before going any further, we need to state a series of assumptions:

• We will consider the SC to be trustworthy, due to the properties of the SC’s integrated

circuit with some form of tamper resistance.

• We will consider the terminal to be trusted. We are making this assumption as we con-

sider that the terminal should be in a controlled environment.
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• We will consider all cryptographic keys to have been checked for validity before use and

that adversaries cannot break cryptographic algorithms.

8.2.3 Minimum security goals of the protocol

• Mutual Entity Authentication: Both of the entities, the SC and the terminal, authenticate

to each other. This goal is to avoid masquerading by a malicious entity.

• Public Key Exchange: In order to facilitate the key generation and the entity authentica-

tion process, an exchange of certified public keys has to be done between the entities.

• Key Freshness: The generation of a key has to be fresh to the protocol session, in order

to avoid replay attacks.

8.3 Proposed security protocol

The security protocol between the terminal and the SC is shown in Figure 8.1 and the notation

used is in Table 8.1.

1. The terminal sends the SC its public key (PKT ) in the clear, its digital certificate signed

with the secret key of the authority (SKA{PKT }), its identity number (IdT ), and a first

nonce (nT1).

2. The SC checks, using PKA, that the terminal digital certificate it has just received has

been signed by the authority.

If the signature is correct, the SC generates two 192 byte keys. One is used as an AES

session key (K) to encrypt subsequent messages. The other is an AES key (KMAC)

which will be used to generate the Message Authentication Code (MAC) by a CBC-

MAC method.

Then the SC sends back a message to the terminal which is encrypted with PKT . This

message is composed of the SC public key (PKSC) and its digital certificate also signed

with the secret key of the authority (SKA{PKSC}), the Starting Variable (SV) for the

Cipher Block Chaining (CBC) mode encryption, the Starting Variable for the CBC-MAC

(SVMAC), the session key (K), the MAC key (KMAC), the IdT , the SC identity number

(IdSC), nT1 and an SC generated nonce (nSC1).

3. The terminal first decrypts the message using the SKT and checks that nT1 and the

terminal identity number it has just received is the same one that it previously sent. If

the nonce and the ID are correct, the terminal will verify the digital certificate signature

using PKA.
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Table 8.1: Notation table (source: Benoit Ducray)
Notation definition

Entities
A Authority
T Terminal

SC Smart Card
Keys

SKZ Private key of the entity Z
PKZ Public key of the entity Z

K A 192 bits AES key session

KMAC
AES key of 192 bits which will be use to generate a

MAC
SV Starting Variable for the CBC mode of encryption

SVMAC Starting Variable for CBC-MAC generation
Fields

SSKZ
{X} The element X has been signed with the private key

of the entity Z

eY (X)
The message X has been encrypted by an asymmetric

encryption method using the public key Y

EY {X}
The message X has been encrypted by an symmetric
encryption method (AES using the CBC mode) using

the key Y

MACY < X >
A MAC has been computed on the data X using a

CBC-MAC method with the key Y
Other protocol elements

IDZ Identification number of entity Z
nZi The ith nonce generated by the entity Z

Gesturei
The ithfraction of a Gesture to be used in

authentication

If the signature is correct, the terminal will start to send the gesture: this generates several

messages. These messages are composed of an encrypted part which has been encrypted

with the session key K, (using the AES as cryptographic function and the Cipher Block

Chaining (CBC) mode) and a MAC part.

The encrypted part is composed of the first fraction of the Gesture1, the IdT and the

IdSC , nSC1 and a newly generated nonce (nT2) which is encrypted with PKSC in order

to verify that the entity claiming to SC has the SKSC . Based on this message, a MAC is

generated with the key KMAC .

4. Upon receipt of this message, the SC verifies that the MAC corresponds to the message.

Then, after decrypting the message using the key K, the SC checks that nSC1 is the one

it sent previously, the IdT and the IdSC .
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Figure 8.1: Security protocol of communication between SC and terminal for authentication
based on Gesture Recognition (source: Benoit Ducray)

If everything is in order, the SC starts the gesture comparison and acknowledges suc-

cessful receipt of the message by sending back an encrypted message composed of the

IdT and the IdSC , nT2 and newly generated nonce (nSC2). Based on this message a

MAC is generated with the key KMAC and sent with the message.

5. These two last steps are repeated (at the exception of the nonce encryption which no

more encrypted with PKSC) until the exchange gets to the last APDU containing the

gesture data.

When the SC receives the instruction of that last APDU, the SC checks if the MAC, the

nonce, the terminal identity and the SC identity are valid.

Then the SC finishes the gesture comparison and sends an encrypted message to the ter-
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minal containing the acceptance or the rejection, nTi and newly generated nonce (nSCi),

IdSC , IdT and a MAC based on this message generated with KMAC .

If any of the protocol validation checks fail, an error message is sent to all participants, the

transaction is terminated and logged as unsuccessful.

8.3.1 The enrolment

Enrolment is when the system captures the reference biometric and extracts the features.

It is important that this phase is done in a secure environment where the identity of the user is

checked in order to avoid false enrolment.

So, every time the user wants to enrol a new gesture, they have to go to the authority office

which is considered secure and trusted.

A staff member will certify the identity of the user by asking to inspect the identity card and

some basic questions about the user. Then the user will be allowed to record a new gesture and

store it on the card.

8.3.2 Protocol goals assessment

• Mutual Entity Authentication: To assess this goal, we will study how each entity authen-

ticates the other individually.

– SC authenticating the terminal:

In message 1 the terminal sends its certificate and the PKT from the terminal. The

SC does not know where this message came from and so cannot trust it, but it can

verify than the certificate is valid and has been issued by A using SSKA
{PKT }.

The SC replies by challenging the terminal to decrypt a message encrypted with

PKT . This message is composed of two session keys K and KMAC .

If the terminal is the one it claims to be, it will be able to decrypt the message with

SKT and get access to K and KMAC . Then the terminal replies with a message

MAC section generated with KMAC .

By verifying the MAC, the SC has authenticated the terminal.

– Terminal authenticating the SC:

In message 2 the SC sends the terminal its certificate, IdSC , and PKSC . All these

elements are encrypted with PKT which has been certified by A.

In order to prevent any leak of the SC certificate, at the same time that the terminal

sends the first piece of gesture, it also sends its new nonce encrypted with PKSC

and expects the SC to send it back decrypted, in this way this the entity claiming to

be the SC is proving that it has the SKSC .
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• Public Key Exchange: During the protocol each entity sends its certified public key to

the other to help the authentication.

• Key Freshness: Both of the key sessions, K and KMAC are generated by a random bit

generator, which follows the recommendation of [17] and provides fresh entropy bits of

a length of 192 bytes.

8.3.3 Formal analysis

Figure 8.2: Formal analysis result (source: Benoit Ducray).

In order to do a formal analysis, we choose to use software called Scyther.

Scyther is a formal analysis tool for security protocols under perfect cryptography assumption.
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This tool is usually used to find problems that arise from the way the protocol is constructed.

We submitted a simplified version of the protocol to this analysis. This simplified version

goes directly from message 3 to message 5. This is done because messages 4, 3’ and 4’ are

there to ensure than the whole gesture has been sent.

The code submitted to Scyther can be found in Annex A.

Scyther found that no attack is possible. The Scyther result is shown in Figure 8.2.

For both the SC and the terminal, we have tested that:

• The gesture is kept secret.

• The key session K is kept secret.

• The MAC key KMAC is kept secret.

• The starting variable SV is kept secret.

• The starting variable for the MAC SVMAC is kept secret.

• Both of the devices are validating the Message Agreement property, which means that

contents of the received messages correspond to the sent messages [35].

• Both of the devices are validating the Non-injective Synchronisation requirement; this

property states that everything we intended to happen in the protocol description also

happens in the trace [35].

• Both of the devices are alive, which means that, as expected, as intended communication

partners, they have executed some events [35].

8.4 Attacker profiles

In order to set a threat model, we need to identify different types of attackers.

These profiles have been inspired and modified from [16]:

• Script Kiddies:

Script Kiddies are generally 14 - 16 years old and still at school preferring to spend their

free time working on computers rather than playing with friends.

They have rudimentary knowledge of the mechanics of the system, but enough knowl-

edge to cause damage.
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Script kiddies use the tools that are already freely available on the internet and go to

internet forums to swap information, gain experience and guidance from others.

They may be driven by curiosity, a desire to test their skills or assess a weakness they

have heard about. They may also be motivated by money or kudos.

• Expert individuals:

Broadly speaking, Expert individuals understand how the system works. They also un-

derstand how to use some hacking tools.

They are highly capable, intelligent and able to write good applications themselves be-

cause they have a sound knowledge of common programming languages. They probably

have, or could acquire, reasonably good jobs in the IT industry on the basis of their

abilities.

They may have a wide range of motivations, ranging from some venal motivation to

industrial espionage, via security analysts.

• Organized crime:

This profile describes a group of Expert individuals. These people are normally in-

volved with organized crime syndicates, governments or militant wings of political par-

ties. They have the same kind of abilities as that of Expert individuals, but are lot more

dangerous due to their number and the help that the rest of the structure (the organiza-

tion) can bring to them either financially or informationally. Their aim is to make money

or damage other countries’ or parties infrastructures.

8.5 Security analysis

We have identified different kinds of attacks which cover the threat model presented in Chap-

ter 3.3, i.e. template modification attacks, mimic attacks, data modification or injection and

Denial of Service.

• Template modification attacks:

These attacks correspond to all modification of the template either by False Enrolment

or by modification of the template where it is stored.

To proceed to a False Enrolment, the malicious individual needs to have a fake identity

card and be able to answer some questions on the genuine user. Modifying the template

while it is saved on the SC cannot be done as the enrolment takes place in a trusted and

secure place. The modification of the template in the SC is extremely difficult due to the

tamper resistance of this device.
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• Mimic attack:

This refers to any form of attempting to reproduce the biometric, here the gesture. This

can be done either with a fake biometric or by Reuse of Residuals. This last form can

only be used on an untrusted terminal as it requires extraction of the last attempt recorded

from the memory of the terminal.

It is easy for an individual to copy a gesture they have seen, but as we have discussed in

Chapter 6, a mimic attack made by a human has only around 11% chance of succeeding.

Another form of mimic attack would be to use a robotized mannequin with the rig bio-

metric geometry. The mannequin has to be programmed to reproduce a pre-recorded

gesture, such as residuals extracted from the memory of a terminal.

This method has several drawbacks: this kind of mannequin is expensive and cumber-

some, and is difficult to adapt to attack several genuine users.

• Data modification or injection:

This represents several threat vectors:

Replay Attacks / False Data Inject, Storage Channel Intercept and Data Inject, Match

Override / False Match, Decision Override / False Accept, Fake Digital Biometric, Syn-

thesised Feature Vector and Template reconstruction.

All these above vectors attempt to break the communication between the SC and the

terminal in order inject, modify or replay some data.

– Replay Attacks / False Data Inject:

This attack cuts the message flow between the SC and terminal and injects some

malicious data.

This data would be ignored by both SC and terminal unless this data includes the

correct use of IdSC , IdT , and nonce. As IdSC and IdT do not change, the nonce

is providing the protection against this attack.

– Storage Channel Intercept and Data Inject:

The storage element is the SC. It is very difficult for a malicious individual to

access to the memory and modify it.

– Match Override / False Match, Decision Override / False Accept:

The protection against such attacks is mainly the fact that the decision message is

encrypted, which means that even a little modification on this encrypted message
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will impact the whole of the decrypted message. In turn, this results in a mod-

ification of the nonce in the message, which would be no longer match the one

used.

– Fake Digital Biometric, Synthesised Feature Vector and Template reconstruction:

to implement these attacks, the malicious individual needs to claim to be a certified

terminal, which results in a masquerade attack. We have seen in 8.3.2 that the SC

and the terminal authenticate each other before beginning any transaction.

• Denial of Service:

This represents any attack which aims to block the authentication of a person. This can

be done by either damaging the system, or performing Override Feature Extraction or

System Parameter Override / Modification attacks.

The Overriding of the Feature Extraction is not possible because we have set up in a

trusted environment. Similarly, System Parameter Override/Modification is not possible

due to this trusted environment.

Devices such as depth sensors can be easily disrupted by any environmental or malicious

interference which makes any denial of service attack easy. Depth cameras are based on

visual frequency, thus any object which can block or disturb this kind of wave will affect

the whole system.

• Other threat vectors:

We did not discuss about Modify Access Rights and System Interconnections because

these threat vectors are out of the scope of our studies, as we are focusing on the authen-

tication and not access rights management and system interconnection.

Also, we did not discuss the Latent Print Reactivation as the GR system does not need

any contact with a device, which implies than there is no latent print left.

Unlike the ink left by the pen for signature recognition, GR does not leave any trace after

the gesture has been done (or at least none that can be traced today).
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8.6 Comparison with attackers’ profiles

The assumptions as they have been described in 8.2.2 extremely limited the abilities of the

attackers and are not representative of the reality. In this section, we relax these assumptions.

Table 8.2 summarizes the options that each profile has to attack the authentication system.

Due to their lack of knowledge and technical skill, the Script Kiddies would be limited to basic

attacks such as the denial of service by damaging the devices or mimicking the gesture, but

their chance of success would be rather limited.

Most of the Expert individuals would be able to do the same attacks as those made by

Script Kiddies, plus due to their high level of knowledge and technical skill, they might be able

to do some others kinds of attacks such as:

• False enrolment: some Expert individuals may have the contact or the ability to forge a

fake ID card and be able to answer the questions asked by the authority agent.

• Fake digital biometric: some Expert individuals may be able to afford a robot, which is

able to replicate a human gesture, and be able to set up it. But the problem still remains

of getting the biometric required by the system and bringing all machinery in front of

the terminal without damaging the machinery and without arousing suspicion.

Organized crime is able to perform the same attacks as the previous profiles but it is also

able to break the SC and terminal security which then gives access to the SKT and the SC

certificate SKA{PKSC}. This access allows all the attacks we have described above.

• The ability to access the template makes the Unauthorised template modification possi-

ble.

• A basic replay attack would still be impossible because of the protocol and the use of

nonce, but a false data injection is possible due to knowledge of the terminal private key

with which it is possible to decrypt the message where the session key is exchanged.

• With the access to both the template and private key, it would be easy for a malicious

individual to extract the template from the SC and inject this data to get authenticated.

• With the private key it is possible to know the session key which makes it possible to

override the feature extracted, as well as the decision to bypass the authentication. It is

also possible to Override Feature Extraction and System parameter override/modification

to produce a denial of service.
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Table 8.2: Attackers’ profile ability
where 7: this profile cannot do this kind of attack;
3: this profile can do this kind of attack;
−: this attack is not applicable to our model
(source: Benoit Ducray)

Attacks Threat vectors
Script

Kiddies
Expert

individuals
Organized

crime

Template
Unauthorised template

modification
7 7 7

modification False enrolment 7 3 3

Mimic attack
Fake physical biometric 3 3 3

Reuse of residuals 7 7 3

Data

Replay attacks/false
data inject

7 7 3

modification

Storage channel
intercept and data inject

7 7 3

Override feature
extraction

7 7 3

or injection
Decision override/false

accept
7 7 3

Fake digital biometric 7 7 3

Synthesised feature
vector

7 7 3

Template
reconstruction

7 7 3

Denial

Damaging the system 3 3 3

of service

Override Feature
Extraction

7 7 3

System parameter
override/modification

7 7 3

Modify access rights − − −

− System
interconnections

− − −

Latent print reactivation − − −
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• With the terminal private key and the capture of its certificate (which is sent in clear in

the protocol) it is possible to emulate a fake terminal which makes Synthesised feature

vector and Template reconstruction possible.

Most of the profiles do not have more possibilities of bypassing the authentication other

than just trying to mimic the gesture, which has only an 11% chance of getting accepted. Some

Experts would be able to attempt a false enrolment by having knowledge of their victim’s life

and obtaining a fake identity card.

A group of these Experts would be able to bypass the SC and terminal protection, which

leaves the system open to any form of attack. But attackers with such a profile would probably

use the easiest way to achieve their goals rather than by breaking such strong protection.

8.7 Summary

We have seen in the previous chapter that an authentication based on GR may correctly au-

thenticate the genuine user and keep away any malicious individual. We have also seen, that a

gesture template and GR application can be stored on a SC.

However, all of this would be useless if the communication between the SC and the termi-

nal is not secure. In this chapter we have proposed a security protocol which would be used

between the SC and the terminal.

This protocol requires the involvement of an authority who certifies the authenticity of both

the SC and the terminal, which implies both of these elements have a certificate signed by the

authority.

The communication between the SC and terminal will begin by exchanging the certificate

and the generation of two AES keys of 192 bytes generated by the SC.

One key will be used for encrypting the message (here the gesture) and the other to gener-

ate the MAC. Then the terminal will send the gesture attempt to the SC, which will compare it

to the template on the SC. Then the SC will send the acceptance or rejection of the attempt.

The use of mutual authentication of the SC and terminal, the encryption of messages, and

the repeated generation of nonces provide a protection against a wide range of attacks.
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After describing some attackers’ profiles, such as Script Kiddies, Expert individuals and

Organized crime, we assess the protocol to different kind of attacks, ranging from fake enrol-

ment to Override feature extraction via the use of fake biometrics.

Then we assessed the abilities of each profiles presented earlier to produce attack against

the system. Most of the attacker profiles have limited options to attack, but the grouping of

several Experts may be able to break all of the system’s securities.
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Chapter 9

Conclusion and Future Work
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This chapter concludes the thesis by summarising the contributions and discusses

potential future work.
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9.1 Conclusion

The main goal of this thesis were:

• To explore the possible techniques to authenticate a person using changeable multi-factor

authentication measures that are influenced by biometrics.

• To evaluate their security characteristics.

• And finally to show through an example, i.e authentication by Gesture Recognition (GR),

that an authentication application using this kind of system can be secure.

We began the discussion by an overview of the three factors of authentication formalised

in the sixties by IBM [112] (i.e. knowledge factors, ownership factors, inherence factors).

We then focused on biometric authentication and gave some general principles, the compo-

nents and processes involved as well as an overview of the techniques and modalities.

We continued the discussion by presenting some background about GR, and the systems we

used: sensors, features extraction and analyser.

After a review of some major security issues with ‘fixed’ biometrics and the limited solu-

tions that exist, we defined a new family of biometrics, viz. dynamic biometrics.

This family gathers biometrics that are dynamic when physical / behavioural (inherent) bio-

metric information is captured together with a knowledge factor from a user, such that it can

be used as the basis of a one-step two-factor authentication.

We then investigated how the security of dynamic biometrics compares with conventional

biometrics.

Evaluation criteria devised by Bonneau et al. [23] were used as a basis to assess the security of

several fixed/dynamic biometrics. We found than the inclusion of a knowledge factor in a dy-

namic biometric brings some privacy benefits in comparison to ‘fixed’ biometrics. In addition

to making the biometric changeable, dynamic biometrics improve Unlinkability.

With such information, we studied the ability of GR to be an efficient authenticator system.

We presented four possible attacks against GR (viz. “Brute Force attack”, “Dictionary attack”,

“Storage Leakage” and “Shoulder Surfing attack”) and we set up two experiments in order to

explore two out of the four attacks (i.e. “Brute Force attack” and “Shoulder Surfing attack”).

These experiments were done with different sensors: the KinectTM, which aims to track full

body movement; and the Leap Motion which aims to track movement of the hands.
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In the case of the experiment of a “Brute Force attack” using the KinectTM system, none

of the attacks succeeded despite 56 minutes of attack (representing over 10,000 attacking ges-

tures). This result is at least as good as an unknown 4-digit PIN. In the case of a “Shoulder

Surfing attack”, the system has 1.7% FAR for 93% of TAR and an EER of 2.8%.

The Leap Motion experiment was focused on a “Shoulder Surfing attack” as all participants

performed predetermined gestures. An attacker mimicking a known gesture had an 11.88%

likelihood of a successful attack, whilst a genuine user had a 88.12% chance to be correctly

authenticated.

We show that all these results were in line with other research done in this domain and

using the same kind of sensor.

Then we made a comparison between fingerprint recognition and GR.

We established that for identifying or authenticating individuals, fingerprint is much more re-

liable than GR.

However, against attacks, GR is a better choice for rejecting an attacker unless we know

the method used to forge the biometrics. Should the forging technique be known, the liveness

detection algorithms for fingerprints obtain a better score but in the real world such knowledge

is greatly unlikely.

One of biometrics systems’ principal challenges is to store the biometric reference template

in a secure location. We investigated this problem by implementing an SC and a smart phone

HCE GR application in order to asses the feasibility of such applications on these devices with

the DTW algorithm to compare gestures. We measured communication and processing time

for both SC and HCE.

Although it is possible to run a GR application on an SC at platform level, the implemen-

tation took around a minute which is too long for an real application.

There are different ways to improve this time, for example running the application at a lower

level either in hardware or with native code.

The HCE application was far more practical for a real world application, but does not pro-

vide the attack resistance that an SC offers. The use of a Trusted Execution Environment (TEE)

may enhance security and resist logical and malware attacks, although a TEE does not offer

the tamper-resistance of an SC.
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Whatever the efficiency of an authentication system and how well-protected the template

is, if the communication between the terminal and the SC is not secure any malicious indi-

vidual can spy, inject or modify the communication. In order to secure this communication,

we proposed a security protocol which could be used between the SC and the terminal. This

protocol involves an authority who certifies the authenticity of both the SC and the terminal

which implies both of these elements have a certificate signed by the authority.

The communication between the SC and the terminal starts with the exchange of the cer-

tificate and the generation of two AES keys of 192 bytes generated by the SC. One of these

is used to encrypt the message (here, the gesture) and the other is used to generate the MAC.

Then the terminal can start to send the gesture attempt to the SC, which will then do the com-

parison with the stored template. Once the whole gesture has been sent, the SC will send the

acceptance or rejection of the attempt.

A mutual authentication of the SC and terminal, the encryption of messages, and the re-

peated generation of nonces protect against a wide range of attacks.

We assessed the protocol against different kinds of attack, ranging from fake enrolment to

Override feature extraction via use of fake biometrics.

We also described some attackers’ profiles as Script Kiddies, Expert Individuals and Orga-

nized crime and assess the abilities of each of these profiles to produce an attack against the

system. It resulted that most of the attackers’ profiles have limited options to attack but the

grouping of several Experts may be able to break all of the system’s security.

Dynamic biometrics, such as authentication based on GR, provide several advantages com-

pared to ‘fixed’ biometrics, for example, the possibility to change the secret (which in the case

of GR is the gesture), which improves Unlinkability. But dynamic biometric cannot be used

to identify somebody, only for authentication; because of this, the FAR is higher than other

biometric families.

Dynamic biometrics do not aim to replace ‘traditional’ biometrics.

Dynamic biometrics and ‘fixed’ biometrics can work together in order to identify and au-

thenticate a user. A ‘fixed’ biometric can be used as a login, in much the same way as e-mail

addresses are nowadays used as login-ID, with a dynamic biometric used to authenticate the

identity claim. This operation would allow fixed biometric information to be shared widely

with no more security problems than the use of e-mail addresses; the use of dynamic biomet-

rics acts as a highly secure “password” because of the addition of the security properties of

dynamic biometrics.
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The collection of ‘fixed’ biometric can be transparent to the user, as it will be collected

while providing the secret dynamic biometric. For example during the execution of a secret

hand gesture, authentication authorities may as well collect fingerprints and/or the face of the

user for identification.

9.2 Future work

Future work in the areas of dynamic biometrics and GR is now identified.

9.2.1 Dynamic biometric

It would be possible to develop completely new authentication methods based on the above

definition of dynamic biometrics whether these would be feasible for practical use or not.

For example, in Chapter 5 we mentioned a Gesture Recognition (GR) based on electromyog-

raphy, and also one based on Speaker Recognition.

It might be possible to create an authentication method based on a mix of these two dy-

namic biometrics with an electromyography of the mouth.

This technique would fit the dynamic biometrics definition as the movement of the lips depend

on the text being spoken at the time of capture, and it can be easily changed.

The biometric component is the electromyograph.

The definition for each class of dynamic biometrics needs more precision as some of the

dynamic biometrics may fall into different categories.

For example, GR based on electromyography can be considered to belong to the class of

gesture-based as does GR, but it can also be classified as thought-based as the electromyo-

graphy can be associated to thought.

Here we can base the classification either on the information that is captured, i.e. the data

which may be visual information or electric impulses, or on what is required from the user.

9.2.2 Gesture recognition

As we have seen the Chapter 7, running a GR authentication process on an SC takes a lot of

time. Our implementation has been done at the application level but an implementation in the

hardware and/or the native SC code may reduce the process time to a third of the time found

in our experiment.

New solutions should be explored, in a context of improved security and accuracy of the

whole process, taking into account, on the one hand, the continuing improvement of calcu-
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lation, processing and storage capabilities (Moore’s Law), and on the other hand, the bare

minimum data (number of frames, features and the relationship between those two) that would

be needed to fulfil the following:

• Improve the time required by the authentication process,

• Reduce the size of the necessary storage memory.

A problem we did not tackle in this research, relates to the evolution of the way a gesture is

performed by a given individual over time, especially when the gesture is performed at varying

intervals. Habits and physical factors might play a role here.

For this problem, Liu et al. [72] propose the solution of storing two templates of the reference

gesture and of updating one of them at each correct authentication in order to keep up with the

gesture’s evolution.

However, this solution may result in a template being updated with attackers details following

a successful attack. Thus, an alternative, secure method for tracking the evolution of a gesture

should be studied.

Several experiments can be imagined where both ‘fixed’ and dynamic biometrics would

be used together for authentication. An example of an application which uses both biometrics

would be one that used the ‘fixed’ biometrics as a login the way an e-mail address works, and

the dynamic biometric as the equivalent of a password.
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A. Scyther code

Appendix A

Scyther code

usertype Gesture;

usertype Accept;

secret Cert: Function;

protocol ExampleProtocol(T,SC) {

role T {

fresh Nt1: Nonce;

fresh Nt2: Nonce;

const gesture1: Gesture;

var K: Nonce;

var Kmac: Nonce;

var SV: Nonce;

var SVmac: Nonce;

var Nsc1: Nonce;

var Nsc2: Nonce;

var accept: Accept;

send˙1(T,SC, Cert(T), T, Nt1);

recv˙2(SC,T, {K, Kmac, SV, SVmac, Cert(SC), SC, T, SVmac, Nsc1, Nt1}pk(T));

send˙3(T, SC, {gesture1, T, SC, Nt2pk(SC), Nsc1}K, {{gesture1, T, SC, Nt2pk(SC), Nsc1}K}Kmac);

recv˙4(SC,T, {accept, T, SC, Nt2, Nsc2}K, {{accept, T, SC, Nt2, Nsc2}K}Kmac);
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claim˙T1(T, Secret, gesture1);

claim˙T2(T, SKR, K);

claim˙T3(T, SKR, Kmac);

claim˙T4(T, SKR, SV);

claim˙T5(T, SKR, SVmac);

claim˙T6(T, Niagree);

claim˙T7(T, Nisynch);

claim˙T8(T, Alive);

}

role SC{

fresh K: Nonce;

fresh Kmac: Nonce;

fresh Nsc1: Nonce;

fresh Nsc2: Nonce;

fresh SV: Nonce;

fresh SVmac: Nonce;

const accept: Accept;

var Nt1: Nonce;

var Nt2: Nonce;

var gesture1: Gesture;

recv˙1(T,SC, Cert(T), T, Nt1);

send˙2(SC,T, {K, Kmac, SV, SVmac, Cert(SC), SC, T, SVmac, Nsc1, Nt1}pk(T));

recv˙3(T, SC, {gesture1, T, SC, {Nt2}pk(SC), Nsc1}K, {{gesture1, T, SC, {Nt2}pk(SC),

Nsc1}K}Kmac);

send˙4(SC,T, {accept, T, SC, Nt2, Nsc2}K, {{accept, T, SC, Nt2, Nsc2}K}Kmac);

claim˙SC1(SC, Secret, gesture1);

claim˙SC2(SC, SKR, K);

claim˙SC3(SC, SKR, Kmac);
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claim˙SC4(SC, SKR, SV);

claim˙SC5(SC, SKR, SVmac);

claim˙SC6(SC, Niagree);

claim˙SC7(SC, Nisynch);

claim˙SC8(SC, Alive);

}
};
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Appendix B

Smart Card and Host Card Emulation
times measured extended (Times
measured in millisecond)
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Size of
Number

of
Communication
time per APDU

Standard deviation of
the communication

time

Average time for the
full application

Standard deviation of the
full application

Estimate processing
time

the
APDU

APDU
sent

SC HCE SC HCE SC HCE SC HCE SC HCE

G1
36 90 6.71 23.65 0.26 1.75 92982.15 2228.48 413.70 44.98 92378.09 99.48
216 15 24.72 77.54 0.22 12.09 76029.02 1196.35 1055.72 20.64 75658.16 33.12

G2
36 49 6.71 23.65 0.26 1.75 50622.60 1214.52 276.90 30.31 50293.73 55.40
216 9 24.72 77.54 0.22 12.09 43760.30 667.18 2653.56 23.05 43555.80 23.14

G3
66 90 9.79 31.81 0.34 3.79 108674.40 3084.76 408.12 50.06 107792.70 221.60
198 30 23.76 71.80 0.34 4.94 94083.19 2253.42 1038.14 28.95 93370.15 99.30

G4
66 49 9.79 31.81 0.34 3.79 32448.10 1684.36 138.99 47.00 31968.07 125.52
198 17 23.76 71.80 0.34 4.94 28092.53 1237.19 137.83 25.72 27702.44 64.68
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