
A New Security Middleware Architecture Based on Fog
Computing and Cloud To Support IoT Constrained Devices

Wissam Razouk
Kyushu University
Fukuoka, Japan

w.razouk@inf.kyushu-u.ac.jp

Daniele Sgandurra
Royal Holloway, University of London

United Kingdom
daniele.sgandurra@rhul.ac.uk

Kouichi Sakurai
Kyushu University
Fukuoka, Japan

sakurai@csce.kyushu-u.ac.jp

ABSTRACT
The increase of sensitive data in the current Internet of Things
(IoT) raises demands of computation, communication and storage
capabilities. Indeed, thanks to RFID tags and wireless sensor net-
works, anything can be part of IoT. As a result, a large amount of
data is generated, which is hard for many IoT devices to handle,
as many IoT devices are resource-constrained and cannot use the
existing standard security protocols. Cloud computing might seem
like a convenient solution, since it offers on-demand access to a
shared pool of resources such as processors, storage, applications
and services. However this comes as a cost, as unnecessary commu-
nications not only burden the core network, but also the data center
in the cloud. Therefore, considering suitable approaches such as
fog computing and security middleware solutions is crucial.

In this paper, we propose a novel middleware architecture to
solve the above issues, and discuss the generic concept of using fog
computing along with cloud in order to achieve a higher security
level. Our security middleware acts as a smart gateway as it is meant
to pre-process data at the edge of the network. Depending on the
received information, data might either be processed and stored
locally on fog or sent to the cloud for further processing. Moreover,
in our scheme, IoT constrained devices communicate through the
proposed middleware, which provide access to more computing
power and enhanced capability to perform secure communications.
We discuss these concepts in detail, and explain how our proposal
is effective to cope with some of the most relevant IoT security
challenges.

KEYWORDS
Internet of Things security, ressource-constrained devices, fog com-
puting, cloud.

ACM Reference Format:
Wissam Razouk, Daniele Sgandurra, and Kouichi Sakurai. 2017. A New
Security Middleware Architecture Based on Fog Computing and Cloud To
Support IoT Constrained Devices. In Proceedings of International Conference
on Internet of Things and Machine Learning (IML 2017). ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IML 2017, LC, UK
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5243-7. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The design of large-scale IoT systems is challenging due to the
large number of heterogeneous components involved and due to
the complex iterations among devices introduced by cooperative
and distributed approaches. In many cases, IoT implies that even
the smallest device like a sensor or an RFID tag could be connected
to the network. This high level of heterogeneity, coupled to the
wide scale of IoT systems, is expected to magnify security threats of
the current Internet, which is being increasingly used to let humans,
machines, and things interact in any combination. Given that IoT
security requirements include authentication, data confidentiality
and access control, the enforcement of privacy and security poli-
cies are crucial, as privacy and trust among users and things are
necessary in many cases. Unfortunately, traditional security coun-
termeasures cannot be directly applied to IoT technologies due the
limited computing power and the heterogeneous nature of such en-
vironment. Indeed, different standards and communication stacks
are involved, and the high number of interconnected devices arises
scalability issues. As a result, flexible security innovative models
and design frameworks need to be created. This can be addressed
by deploying a suitable middleware, which sits usually between
things and applications to make a reliable platform. Middleware
solutions act as a medium for communication among things with
different interfaces, architectures and operating systems.
Currently, there are no standarized middleware solution that is suit-
able for resource-constrained IoT environments, since the available
approaches are either customized for the conventional Internet or
regular IoT devices. In this paper, we design a novel middleware
architecture system for IoT environments. In our scheme we pri-
marily target constrained devices such as low-cost RFID tags and
wireless sensor networks. However, our approach can be extended
to regular IoT devices.

Our proposed solution includes data confidentiality, authenti-
cation and access control mechanisms using the fog computing
approach. Our middleware not only pre-process data locally, but
also acts as smart gateway to enhance the utilization of network
and cloud resources, which improves significantly the system’s
performances. Contributions of this paper can be summarized as
follows:

• We start by an investigation of some of the most relevant
IoT security challenges.

• Then, we discuss the difference between fog computing and
cloud, and summarize the security benefits of using fog par-
ticularly in our case.

• Unlike previous protocols, our protocol relies on combining
the benefits of fog computing and cloud to alleviate heavy

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IML 2017, LC, UK Wissam Razouk, Daniele Sgandurra, and Kouichi Sakurai

cryptographic operations on IoT resource-constrained de-
vices. To the best of our knowledge, this is the first proposed
IoT security middleware using fog in order to provide exter-
nal support to IoT constrained devices.

• We propose a model based on usual technologies such as "the
ConstrainedApplication Protocol" (CoAP) and "the Represen-
tational State Transfer Application Programming Interface"
(REST API) to allow easy implementation and application
development.

• Many security weaknesses are already highlighted by the
research community when it comes to the most commonly
used IoT technologies such as ZigBee, ZWave, EnOcean,
KNX, FS20, HomeMatic [6] [7] [3] [2] [5] [8]. For this reason
we include a security module in our middleware, which is
considered as an optional extra security layer. Therefore, the
security option can be turned off in case the application is
not sensitive and does not require a high security level.

• Our scheme is lightweight and specially designed to fit the
requirements of IoT constrained devices. Thus, no resource-
extensive cryptographic operations are needed. However,
our approach can be extended to regular powerful IoT de-
vices.

This paper is organized as follows. In Section 2, we present an
overview of the related works. Section 3 is about IoT constrained
devices security challenges. We discuss in Section 4 the main differ-
ences between fog computing and cloud. In Section 5, we explain
the benefits of using Fog computing to enhance IoT systems from
the security point of view. The proposed middleware security ar-
chitecture is presented in section 6. Finally, we conclude with a
summary of our contributions and future work in Section 8.

2 RELATEDWORKS
Some IoT devices can support IPv6 communications, unfortunately
this not the case for a whole range of IoT constrained devices which
do not support the IP protocol within the local area scope. In such a
case, gateways and middleware solutions are considered necessary
[10] .

In [6], the authors analyze security related to the most commonly
used IoT protocols namely ZigBee, EnOcean, ZWave, KNX, FS20,
and HomeMatic. Then conclude that none of the technologies pro-
vide the necessary security measures needed in IoT environments.
Indeed, many other papers in the literature point out their sever
security weaknesses [7] [3] [2] [5].
Furthermore, in [4] the authors identify IoT security requirements
and analyze the existing IoT middleware solutions in the literature.
On December 1st, 2016, 213 related papers were identified. Out of
these papers only 55 papers proposed an IoT middleware architec-
ture. Moreover, only 19 out of these 55 papers tackled IoT security
issues, and the rest of the papers had no published discussion or
architecture for security. The authors go further than that and con-
clude that none of the remaining examined papers fulfilled all IoT
security requirements.

This clearly shows a severe lack of suitable solutions. Therefore,
much more research has to be done, and designing innovative IoT
security middleware solutions is a pressing need.

This work aims to discuss the most relevant existing IoT security
flaws, and propose a novel approach to fix them.
Although prior works have proposed several architectures to ad-
dress specific issues, however, an IoT security middleware architec-
ture that is based on fog computing and cloud that is able to adapt
according to application requirements has not been studied. In this
work, we propose a new approach that unifies IoT, fog computing,
and cloud paradigms to enhance future IoT environments.

3 IOT CONSTRAINED DEVICES SECURITY
CHALLENGES

TodayâĂŹs IoT security has many challenges and necessitate new
essential changes to the existing security solutions. Indeed, most
of the available security approaches are designed for regular in-
ternet and are geared toward protecting data centers, enterprise
networks and consumer electronics. Moreover, IoT systems are
typically made from several resource-constrained devices. There-
fore, implementing common protection security solutions such as
intrusion detection and malware signature scanning is unfeasible.
And although some devices might have sufficient resources, im-
plementing such solutions on a large number of devices might be
challenging.
Some of these inconveniences can be fixed, thanks to the possi-
bility of moving resource-intensive security functions from hosts
to resource-rich cloud [11]. Unfortunately, this comes at a cost, as
cloud based security services can induce significant delays for many
systems and applications and require high bandwidth. We explain
in this section why these methods are not suitable for IoT envi-
ronments by discussing some of the core IoT constrained devices
security challenges.

3.1 Many IoT devices are constrained and
difficult to update

IoT devices can be geographically distributed, updating devices
might turn out to be demanding and hard to manage. Usually brute-
force solutions are the main techniques used as incident response
to solve security issues, and systems are required in a lot of cases
to be offline in order to replace the compromised files and have the
system cleaned up. However, maximal responses such as shutting
down a potentially compromised system, re-installing or rebooting
its software, or replacing its components or subsystems is not suit-
able for several IoT systems as this can result in significant business
loss and disruption as well. Indeed, unlike some of today’s Inter-
net devices such as smartphones, laptop computers, routers and
switches, the security hardware and software in industrial manu-
facturing or control systems cannot always afford upgrading timely
when necessary. For example, a nuclear reactor usually runs on 18
months cycles and cannot afford going offline, as this can cause the
loss of tens of thousands of dollars [11].
Consequently, regular security systems that require each endpoint
or network device to use its built in security mechanisms are not
recommended for IoT environments. As an alternative, novel ap-
proaches such as Fog computing provide external servers to allevi-
ate the hardware and software on IoT devices, in order to provide
higher security level.

A New Security Middleware Architecture Based on Fog Computing and Cloud To Support IoT Constrained Devices IML 2017, LC, UK

3.2 Using security firewalls for IoT devices is
unpractical and infeasible

Many IoT devices such as sensors, wearable devices, vehicles, drones,
etc. are placed in unprotected vulnerable physical environments.
Consequently, accessing them through wired or wireless local net-
work is a very feasible task. Moreover, these devices cannot easily
implement standard existing security solutions, which rely pri-
marily on firewalled castles and are aimed for perimeter based
protection. Therefore, the system has to be placed behind firewalls
to be secured, which usually provide intrusion detection and intru-
sion prevention. In general, these solutions has to be implemented
in each one of the devices, and typically require resource intensive
security functions in order to offer threat protection for individual
hosts.
One example of such case is cars that consist of tens of micro-
computers interconnected by several types of in-vehicle networks.
Accessing the internal vehicle’s network by eavesdropping and
false data injection can be easily done through physically attaching
low-cost and readily available tools such as dongles on the vehi-
cle. Thus, using firewalled castles is technically not possible, as
placing a firewall on every single microcomputer can prove to be
unmanageable, complex and costly. As a result, this type of security
approaches are not suitable for various IoT devices and systems.

3.3 Public key infrastructures are in a lot of
cases not suitable for IoT environments

Remote attestation mechanisms have been typically used in order
for a device to prove its trustworthiness to a remote verifier. In such
case, a device uses its hardware-based root of trust or public key cer-
tificates tomake claims about properties of its hardware, software or
runtime environment. The verifier then validates cryptographically
these claims. Unfortunately a large number of resource-constrained
devices are not able to implement remote attestations algorithms
and protocols because of their intensive processing requirements.
Moreover, remote attestation methods are geared toward allowing
an individual device to attest for its own trustworthiness. But re-
questing a large number of devices to execute remote attestation
can prove to be challenging and complex in terms of management.
Consequently, new techniques are needed to ensure the security of
a large number of distributed devices and systems.

4 DISTINCTION BETWEEN FOG COMPUTING
AND CLOUD

Cloud computing offers to other computers or devices an on-demand
access to a shared pool of resources such as processors, storage,
servers, networks, applications and services. Cloud computing is
also capable of handling a huge amounts of data from IoT systems.
But the transfer of massive data to and from cloud comes with
many downsides and challenges, part of it is due to the limited
bandwidth. Fog computing is a favorable solution to many Cloud of
Things issues, as data can be processed near the data source using
this approach.
It is important to note that fog complements cloud computing and
does not substitute it. In fact, many cases require active cooperation
between the "edge" and the "core". Thanks to this approach, the

scope of processed data is narrow in space and time at the "edge"
and is wide at the "core". In fact, the hierarchical organization of the
networking, computing and storage resources is typical in many
applications such a smart connected vehicles, connected rail and
smart communities.
In meteorology, the word "fog" simply refers to a cloud that is close
to the ground. In our case, it refers to extending the cloud to IoT
devices in order to process information near the data source. Fog
usually sits between the cloud and the underlying network, and
it is meant to extend traditional cloud computing paradigm to the
edge of the network, and therefore brings the advantages of cloud
closer to data source. The fog node receive computation requests
and sensed data from various IoT devices and can be implemented
in different devices such as edge servers, smart routers, base sta-
tions and gateway devices. Thus, fog can be considered as a micro
data center (MDC) located at the edge of the network to provide
services for IoT systems. Fog computing reduces considerably the
data volume that must be exchanged between end devices and cloud
as well, as it allows data analytics and knowledge generation to
occur at data source.
Fog computing and cloud computing can be differentiated from
different perspectives:
– The proximity: Fog is located at the edge of the network, whereas
cloud resides within Internet. Which makes fog much closer to the
end user.
– The network efficiency: Using fog nodes frees up the core network
bandwidth, which offers an enhanced overall network efficiency.
– The distance between client and server nodes: In general, many
hops are required in order to connect to cloud, while it is usually
possible to communicate with fog through a single hop.
– The latency: Thanks to the proximity of fog to the end devices as
compared to the cloud, the latency of data transmission from IoT
devices to the offloaded server is significantly reduced. Therefore,
fog computing is a better choice for real time IoT applications com-
pared to cloud.
– Mobility support: Unlike cloud which has a limited mobility sup-
port, fog computing can be a good option for such cases.
– Specialized content: Fog is more suitable for providing specialized
content to IoT devices. As cloud is usually incapable of offering
location-based customization of content, services and applications
to devices.

5 A NEW APROACH FOR SECURING IOT
USING FOG COMPUTING

5.1 External help for constrained devices
Instead of using expensive security mechanisms in terms of compu-
tation and storage requirements, fog computing reduces the security
complexity on individual devices and replaces the IoT devices lim-
ited capabilities with off-board security services. Therefore, highly
scalable, timely, resource-efficient and easy to manage external
security services are provided while combining IoT with the fog
computing approach. Moreover, as mentioned in previous sections,
relying solely on remote attestation mechanisms for all IoT devices
is not feasible, and pre-configuring standard security mechanisms
on individual IoT devices is impractical. That is why fog systems

IML 2017, LC, UK Wissam Razouk, Daniele Sgandurra, and Kouichi Sakurai

are implemented at the edge of the network, as they can assist
in achieving transient connection among endpoints. For instance,
security keys can be generated on fog to help authenticating IoT
devices. For these reasons, fog computing can be considered as a
suitable solution for many IoT challenges.

5.2 Protection of endpoints
Fog computing can be used as a firewall replacement to protect the
network perimeter from attacks coming from outside the security
perimeter. Indeed, as discussed in section 3.1, firewalls are not
practical for many IoT systems and fog computing might be the
only solution for such cases. In addition, other traditional security
solutions such as malware detection and prevention can be moved
to fog systems [11]. Signature based malware scanning as well as
heuristic based malware detection mechanisms can be used thanks
to the high storage capacities of Fog nodes and their abilities to
communicate with the centralized cloud services. Therefore, any
file that is considered suspicious by a certain endpoint can be sent
to the Fog node for further analysis.

5.3 Proximity-based services
One of the main advantage of using the Fog approach is reducing
the distance that information needs to traverse. Using proximity-
based authentication challenges can strengthen identity verification
and significantly reduce the chances of eavesdropping. Indeed, a lot
of IoT devices lack the abilities to perform extensive cryptographic
computations, so fog nodes can act as proxies to perform such
operations, by providing additional computational resources that
help achieve a higher security level within IoT environments.

6 OVERVIEW OF OUR SCHEME
Our architecture consists of four distinct components: IoT devices,
the middleware, fog and cloud. Security related decisions are taken
at various levels depending on their complexity. IoT devices col-
lect data from the physical surroundings, and takes basic security
decisions, while the middleware take more advanced decisions on
whether data should be processed on fog or cloud . In section 3, we
discussed unique IoT security challenges, we propose in this section
a new security approach using the above mentioned technologies
to help enhance and optimize future IoT performances.

6.1 The proposed middleware
– The Security Module (SM): Offers the following security properties:

• Access control: Ensures that only authorized entities are
allowed to connect to the middleware, and denies unknown
remote things from connecting to the system. Remote things
need to be approved by an administrator or one of the users
before they can communicate with other parties in the sys-
tem. Therefore only authorized "things" can access certain
resources or perform a given action such as accessing data
or updating an IoT device software.

• Authentication: One of the most essential security require-
ments for IoT devices is authentication. Unfortunately, many
IoT devices are resource-constrained in terms of memory and
CPU power. Thus, executing the asymmetric cryptographic
protocols required for the standard authentication solutions

Figure 1: Proposed generic securitymiddleware architecture

is not feasible. In our scheme, we propose a lightweight au-
thentication protocol and outsource expensive computations
and storage to fog trough the middleware.

• Privacy and data protection: Ideally, data must be pre-
served not only at the communication level, but also at the
processing level. But information leakage in IoT environ-
ments, such as data location and usage, is still an open chal-
lenge and is currently attracting the attention of the research
community. Indeed, the lack of resources on several types
of IoT services limit significantly the techniques that can be
used to provide efficient and effective privacy-preserving
schemes, and makes IoT systems vulnerable to adversary
attacks. In our scheme, we use a lightweight session key
agreement to provide data protection. Moreover, data is pre-
processed using our middleware, and is either sent to the
fog or cloud for further processing and analyzing.

• Security profiles: The SM also contains security profiles
allowing users or admins to define security disclosure poli-
cies. The security policies are used to define whether a given
entity is authorized to access data related to "things" that
are stored in the database module. Thus, a user can define
to whom the information collected from the "things" is dis-
closed. Moreover, every user possesses a list of authorized
entities in the database, and uses security profiles to create
policies to define the security level. For example, if a secure
channel is required to share the information collected from
things with IoT applications or no.

– The communication module: Is in charge of communicating
with various IoT devices such as RFID tags and wireless sensors.
We base our proposed model on usual technologies to allow easy

A New Security Middleware Architecture Based on Fog Computing and Cloud To Support IoT Constrained Devices IML 2017, LC, UK

integration, development and transparent data exchange with differ-
ent IoT entities. For this purpose, standard protocols like CoAP[9]
and ZigBee[1] are used to comply with the products available on
the market. These protocols are specially designed for constrained
devises and are already widely deployed.
Unfortunately, as mentioned in section 2, these protocols are not
secure and suffer from sever security weaknesses. For this reason,
we provide in our scheme an extra optional layer of security to
fix these issues. The security option can either be activated if the
application is sensitive, or turned off if security is not a necessity.
– The decision maker module (DMM): This module has access to a
database of authorized things using their IDs. This module not only
manages the control policies, but also pre-process data to make de-
cisions whether data should be processed locally at the edge of the
network using fog, or send to the core network using cloud. This
depends on how quickly data need to be processed. For example,
extremely time-sensitive data is processed on the fog node closer to
the things generating data, whereas big data analytics on historical
data are less time-sensitive, and need the resources and the long
term storage of the cloud.
– The API module: The application programing interface (API), offers
an integrated and improved access interface for IoT applications.
Not only it allows IoT applications communication, but also en-
ables them to retrieve information from the database remotely over
Internet. For this purpose, we choose the Representational State
Transfer (REST) as it is platform and language agnostic. Indeed,
REST supports various platforms (Windows, Unix, HTML, Android,
iOS, etc.) and does not require the usage of a specific language.
Therefore, the API module is compatible with a diverse range of
IoT applications regardless of the platform or language they use.
– The IoT applications: Since the communication between themiddle-
ware and the application layer is not resource-constrained, standard
security solutions such as SSL to send requests over HTTP.
– Cloud and fog computing: The cloud provides data storage and
computing resources for IoT applications. It stores the "big data" of
available things and users’ profiles, etc. The history data is stored
on cloud, whereas the most recent data is usually stored locally on
a fog database to support real-time queries. This approach can be
used for computing and making decisions based on facts in a quick
and reliable way.

6.2 Physical Architecture
The proposed framework consists of four entities: the IoT devices,
the middleware, fog and cloud. IoT devices can be composed of
smart terminals, mobile phones, RFID tags, sensors, etc. The pro-
posed middleware acts as a smart gateway and is meant to be
implemented on routers or dedicated servers. It comprises many
modules aimed for different tasks as shown in figure 1. The physical
architecture of our scheme is shown in figure 2.

6.3 Layered Architecture
We present our proposed middleware layered architecture in figure
3.

• The sensing layer: In this layer, data is collected from physical
environments. In addition, physical and virtual things are

Figure 2: The physical architecture of our proposal

also managed and maintained according to different applica-
tions.

• The preprocessing layer: This layer’s purpose is to deal with
the collected data in order to analyze it and perform filtering
and trimming so that more necessary and meaningful data
is generated.

• The temporary storage layer:Datamight be temporarily stored
on the fog resources. Once data is not required to be stored
locally anymore, it can be uploaded on the cloud and then
removed from the storage media.

• The security layer: This layer comes into play when some
private data is generated in IoT systems such as data related
to patients in smart healthcare, or some location aware data
that might be sensitive.

• The transport layer: In this layer, preprocessed and secure
data is uploaded to the cloud. Therefore, burdening the core
is reduced to the minimum allowing cloud to create other
relevant services.

6.4 Usage scenario example
Four entities are involved in this scenario: the IoT device, the mid-
dleware, fog and cloud. Each IoT device stores its identifier IDD
and its secret key KD . The middleware has access to a database
where information related to IoT devices are stored (in our case we
are interested in the IDs and secret keys related to the IoT devices).
The session key is generated by fog and used only one single time.
The session key KS is a one-time-use key generated by fog and
shared temporarily between both the initiator and responder during
a given communication.
In our approach we use random numbers as a nonce to ensure the
freshness of the messages containing the session keys. The nonce

IML 2017, LC, UK Wissam Razouk, Daniele Sgandurra, and Kouichi Sakurai

Figure 4: Authentication and session key agreement

is updated after each communication to prevent replay attacks and
also to protect the IoT devices from traceability. We use the nota-
tions in table 1 to describe our solution throughout the paper, and
provide in figure 4 an example scenario of a successful authentica-
tion and session key agreement to give insight regarding the way
the information is processed in our proposed scheme.

• Step 1. The IoT device collects information from the physical
or virtual environment, and send an authentication request
to the middleware.

Symbole Description
NM Random number sent from the middleware
ND Random number sent from the IoT device
H (X) Hash function applied to X
IDD ID related to the IoT device
KS Session key
KD The IoT device secret Key
| | Concatenation

Table 1: List of symbols description related to the authenti-
cation and key agreement scheme

• Step 2. The middleware sends the random number NM as a
challenge to the IoT device.

• Step 3. The IoT device sends ND | |H (ND | |NM | |IDD) which
contains the following items:
- A random number ND to protect the system from traceabil-
ity. Thus, even if an attacker send the same message to the
IoT device, the response is going to be different every time
and therefore tracking the device by sending continuous
requests is not possible. ND is also used later in Step 9 by
the middleware to prevent replay attacks.
- NM is included in the hash function to prevent from replay
attacks.
- IDD is used for authentication and also to retrieve the in-
formation related to the IoT device from the database.

• Step 4&5. Data is forwarded to fog in order to check if
IDD exists in the database, which would mean that the IoT
device is a legitimate device and is part of the system. For
this, H ′(ND | |NM | |IDi) is computed for all devices i in the
database until H=H’ is found (otherwise the authentication
is not considered successful).

A New Security Middleware Architecture Based on Fog Computing and Cloud To Support IoT Constrained Devices IML 2017, LC, UK

Figure 3: Our proposed middleware layers

• Step 6&7. The authentication is successful and the access
is granted. The following steps are performed only if the
security option is turned on in case of a sensitive application.

• Step 8, 9&10. The session key KS is generated on fog, and
E(KS)KD | |H (KS | |ND) is computed. KS is encrypted using
the IoT device secret key KD . Whereas ND is included to
prevent from replay attacks.

• Step 11&12. The session key KS is extracted, and secure
data exchange starts.

• Step 13. Data is pre-processed using the decision maker
module in order to decide whether it should be sent to fog
or cloud.

• Step 14. Recent data are stored on fog to support real time
queries.

• Step 15. History data and big data requiring storage and
extensive computing resources are sent to the cloud.

7 SECURITY ASSESSMENT
We discuss in this section the security of our proposed scheme. The
formal verification can be found in the extended version of this
paper.

7.1 Data integrity checking
In our scheme we utilize hash functions to provide data integrity
checking. This prevent data from being tampered during the trans-
mission. Hash functions can convert an arbitrary length of data
into a fixed length of data. Moreover, any change occurred during
the transmission procedure will result in a change in the output
of the fixed length data. Therefore, the receiver can compare hash

values and verify if data has not been tempered. We also use hash
data integrity checking in the authentication process to verify data
access process. This method effectively prevent data from being
tempered by an attacker, and the transmitted messages cannot be
arbitrarily modified.

7.2 Forward secrecy
Forward security feature guarantees the security of past communi-
cations, even if the tag is compromised later. In our proposal, we use
one-time session keys to secure the communication. In fact, even
if current messages are exposed, the one-time session keys used
to secure exchanged information are all different and unknown,
which prevents from inferring any secrets from previous sessions.
Thus, our scheme reduces the chances of using previous sessions
to compromise the communication.

7.3 Replay attacks protection
Our solution is designed to counter replay attacks. In each session
different random numbers are included in the message exchanges
to prevent this type of vulnerability. For example, an eavesdrop-
per could try to impersonate the IoT device and replay one of its
previous responses in step 3; however, the message would not be
validated by the middleware, as the nonce NM included in the
message would not be fresh. Thus, the message would not match
the verification and the attack would fail. Therefore our approach
resists replay attacks.

7.4 Impersonation attack protection
For example, an attacker can try to be authenticated as someone
else, and gain access to restricted areas without being authorized
to do so. Also, an expensive object can be disguised into a cheap
one. In the proposed scheme, even if an adversary wants to deceive
the middleware, and pretends to be a legal IoT device, the attack
would not be successful, because IDD is never sent in clear and is
therefore unknown to the attacker. As a result, the message in step
3 cannot be forged.

7.5 Traceability protection
Malicious traceability allows recognizing and tracing an object or
a person in different times and places, and is one of the most diffi-
cult problems to solve. Several IoT applications are location based
services, especially mobile computing applications. As a result, an
adversary can infer the IoT device’s location based on the communi-
cation patterns. Specially, if the IoT device sends identical responses
when queried, which is the case of some IoT devices such as low-
cost RFID tags. For instance, an attacker could identify important
user’s personal belongings in order to steal them, or track an im-
portant political person etc. For this reason, we include in each IoT
device’s responses, a fresh random number for each session, which
provide protection against traceability as all responses are distinct
for every communication.

7.6 Mutual Authentication
This feature is important for many applications. Indeed, the pro-
posed protocol providesmutual authentication and only a legitimate
middleware possessing the keyKD can build a valid message in step

IML 2017, LC, UK Wissam Razouk, Daniele Sgandurra, and Kouichi Sakurai

9. Similarly, only a genuine IoT device can build a valid message
in step 3, as IDD is unknown from the attacker point of view as
it is never sent in clear. Thus, only genuine nodes can derive the
session key KS . The exchanged messages involve a hash function
that allows data integrity to be checked as well.

8 CONCLUSION
The existing traditional security approaches are not suitable to
solve IoT challenges and require fundamental changes. This paper
outlines some of the most relevant IoT security challenges, and
discusses the benefits of using fog within IoT environments to
provide a higher security level. In this work, we present a novel
security architectural paradigm that harnesses the benefits of IoT,
fog, and cloud. Our middleware mediates between the subsystems
and the cloud and aims to cope with the highlighted security issues
discussed in this paper.

In the future, we would like to implement and analyze it on actual
test-beds and real world scenarios to test its feasibility, practicality
and performance.

ACKNOWLEDGMENT
This work has been supported by the Strategic International Re-
search Cooperative Program - Japan Science and TechnologyAgency
(JST). The authors would also like to thank Prof. Anupam Joshi for
his valuable comments.

REFERENCES
[1] ZigBee Alliance. 2007. ZigBee 2007 specification. Online: http://www. zigbee.

org/Specifications/ZigBee/Overview. aspx 45 (2007), 120.
[2] Mark Devito and Johannes Johannes. 2016. A security assessment of Z-Wave

devices and replay attack vulnerability. The SANS Institute (2016).
[3] Behrang Fouladi and Sahand Ghanoun. 2013. Security evaluation of the Z-Wave

wireless protocol. Black hat USA 1 (2013), 1–6.
[4] Paul Fremantle and Philip Scott. 2017. A survey of secure middleware for the

Internet of Things. PeerJ Computer Science 3 (2017), e114.
[5] Katherine Hoskins. 2016. Security Vulnerabilities in Z-Wave Home Automation

Protocol. (2016).
[6] Karl Jonas, Bastian Vogl, and Michael Rademacher. 2017. Security Mechanisms

of wireless Building Automation Systems. Technical Report/Hochschule Bonn-
Rhein-Sieg-University of Applied Sciences, Department of Computer Science (2017).

[7] Wissam Razouk, Garth V Crosby, and Abderrahim Sekkaki. 2014. New security
approach for zigbee weaknesses. Procedia Computer Science 37 (2014), 376–381.

[8] Wissam Razouk, Abderrahim Sekkaki, et al. 2013. A One Round-Trip Ultra-
lightweight Security Protocol for Low-Cost RFID Tags. Journal of Green Engi-
neering 3, 3 (2013), 261–272.

[9] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The constrained appli-
cation protocol (CoAP). (2014).

[10] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-
Porisini. 2015. Security, privacy and trust in Internet of Things: The road ahead.
Computer Networks 76 (2015), 146–164.

[11] Tao Zhang, Yi Zheng, Raymond Zheng, and Helder Antunes. 2017. Securing the
Internet of Things. Fog for 5G and IoT (2017), 261–283.

	Abstract
	1 Introduction
	2 Related works
	3 IoT constrained devices security challenges
	3.1 Many IoT devices are constrained and difficult to update
	3.2 Using security firewalls for IoT devices is unpractical and infeasible
	3.3 Public key infrastructures are in a lot of cases not suitable for IoT environments

	4 Distinction between fog computing and cloud
	5 A new aproach for securing IoT using Fog computing
	5.1 External help for constrained devices
	5.2 Protection of endpoints
	5.3 Proximity-based services

	6 Overview of our scheme
	6.1 The proposed middleware
	6.2 Physical Architecture
	6.3 Layered Architecture
	6.4 Usage scenario example

	7 security assessment
	7.1 Data integrity checking
	7.2 Forward secrecy
	7.3 Replay attacks protection
	7.4 Impersonation attack protection
	7.5 Traceability protection
	7.6 Mutual Authentication

	8 Conclusion
	References

