
PING PONG ON CAT(0) CUBE COMPLEXES

ADITI KAR AND MICHAH SAGEEV

Abstract. Let G be a group acting properly and essentially on an
irreducible, non-Euclidean finite dimensional CAT(0) cube complex X
without a global fixed point at infinity. We show that for any finite col-
lection of simultaneously inessential subgroups {H1, . . . , Hk} in G, there
exists an element g of infinite order such that ∀i, 〈Hi, g〉 ∼= Hi ∗ 〈g〉. We
apply this to show that any group, acting faithfully and geometrically on
a non-Euclidean possibly reducible CAT(0) cube complex, has property
Pnaive i.e. given any finite list {g1, . . . , gk} of elements from G, there
exists g of infinite order such that ∀i, 〈gi, g〉 ∼= 〈gi〉 ∗ 〈g〉. This applies
in particular to the Burger-Mozes simple groups that arise as lattices
in products of trees. The arguments utilize the action of the group on
the boundary of strongly separated ultrafilters and moreover, allow us
to summarize equivalent conditions for the reduced C∗-algebra of the
group to be simple.

1. Introduction

Felix Klein’s Ping Pong Lemma is a widely used criterion for determining if a
collection of group elements generate a non-abelian free subgroup and more
generally, for constructing subgroups which are non-trivial free products. In
this paper, we employ the ping pong lemma in the setting of groups acting
on CAT(0) cube complexes to construct subgroups which split as non-trivial
free products, as described below in the Main Theorem.

An action of a group G on a CAT(0) cube complex X is said to be essential
if for any given orbit of G, there are orbit points which are arbitrarily deep
inside any half space of X. A collection of groups G1, . . . , Gk acting on X are
said to be simultaneously inessential if there is a half space h and a vertex
v ∈ X such that ∪iGi(v) ⊂ h. A large class of examples of simultaneously
inessential subgroups arise when G is Gromov hyperbolic and acts properly
cocompactly on X and the Gi’s are a finite collection of infinite index quasi-
convex subgroups of G (see Proposition 6). Our goal is the following.

Main Theorem. Let X be a finite dimensional, irreducible, non-Euclidean
CAT(0) cube complex and let G be a group acting essentially and properly
on X, without a global fixed point at infinity. Assume further that G has
no finite normal subgroup. Let A1, . . . , An be a collection of simultaneously
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inessential subgroups of G. Then there exists g ∈ G of infinite order, such
that for each i, 〈g,Ai〉 ∼= 〈g〉 ∗Ai.

If H is a quasi-convex subgroup in a non-elementary hyperbolic group G,
then Theorem 1 holds and there exists g ∈ G such that the subgroup gener-
ated by g and H is the free product 〈g〉∗H; this was proved by Arzhantseva
in [1].

The key step in the proof of the Main Theorem that allows us to play
ping pong is Proposition 19 which says that for any collection A1, . . . , An of
simultaneously inessential subgroups, one can find a half space h in X such
that ah is contained in the complement of h, for all nontrivial a ∈ ∪iAi.

In the process of proving the Proposition, we construct a new ultrafilter
boundary S(X) built out of strongly separated ultrafilters of X. The strongly
separated ultrafilters have nice properties. For example, the median of three
strongly separated ultrafilters is a vertex of X. We use this to show that the
fixed set of every non-trivial element of the group has empty interior on the
boundary. We summarize this into the proposition below, which is proved
at the end of Section 3.

Proposition 1. Let X be a non-Euclidean irreducible CAT(0) cube complex
X. Suppose a group G is acting essentially on X without a global fixed
point at infinity. Then, the compact G-space S(X) is minimal and strongly
proximal and hence, a G-boundary. Moreover, if the action of G on X is
proper and G has no non-trivial finite normal subgroups, then the action of
G on S(X) is topologically free.

When X splits into irreducible direct factors X1×. . .×Xn and each factor Xi

is non-Euclidean then S(X) decomposes as a direct product of the S(Xi) and
Proposition 1 naturally extends to the reducible case. A similar ultrafilter
boundary was studied by Fernos in [8].

An Application of the Main Theorem : property Pnaive. We use the
Main Theorem to study property Pnaive for groups acting on CAT(0) cube
complexes.

Property Pnaive was introduced by Bekka, de la Harpe and Cowling [3] to
study the ideal structure of group C∗-algebras. We give a brief introduction
to Pnaive in section 4.

Definition 2. A group G has property Pnaive if for every finite subset F ⊂ G
there exists an element y ∈ G of infinite order such that given g ∈ F , the
subgroup 〈g, y〉 is canonically isomorphic to the free product 〈g〉 ∗ 〈y〉.
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Corollary 3. Suppose a group G is acting properly and cocompactly on a
finite dimensional non-Euclidean CAT(0) cube complex. If G has no non-
trivial finite normal subgroups then G has property Pnaive.

In the irreducible case, property Pnaive is a direct consequence of the Main
Theorem, as given by Corollary 17. When the underlying CAT(0) cube
complex is reducible, we prove property Pnaive for lattices in Aut(X), where
X is locally finite, co-compact and has no Euclidean factor (see Theorem
20). Examples of groups satisfying the hypotheses of Theorem 20, which
were not known up to now to satisfy Pnaive, are the Burger-Mozes simple
groups [5], which arise as lattices in products of trees.

The study of property Pnaive was initiated by Bekka, Cowling and de la
Harpe as a means to establish C∗-simplicity of group C∗-algebras. Here, we
use property Pnaive from the above Corollary and several previously known
results to provide necessary and sufficient conditions for the reduced C∗-
algebra of a CAT(0) cube complex group to be simple. This last property
is commonly referred to as C∗-simplicity.

Corollary 4. The following are equivalent for a group G acting properly
and co-compactly on a finite dimensional CAT(0) cube complex X.

(1) G has property Pnaive.
(2) G is C∗-simple.
(3) Every non-trivial conjugacy class of G is infinite.
(4) The amenable radical of G is trivial.
(5) The G-action is faithful and X is non-Euclidean.

Recent research has yielded more sophisticated techniques for establishing
C∗-simplicity. Kalantar and Kennedy [11] have brought in dynamical tech-
niques showing that a group G is C∗-simple if and only if there exists a
G-boundary on which the G-action is topologically free. Using Proposition
1, we get an application of their Theorem to groups acting properly (not
necessarily, co-compactly) on CAT(0) cube complexes (refer to Proposition
1) without a global fixed point at infinity.

Kalantar and Kennedy’s methods were developed further by Breuillard,
Kalantar, Kennedy and Ozawa [4]. Recall [4, Theorem 3.1] which says that
if a discrete group G has countably many amenable subgroups, then G is
C∗-simple if and only if the amenable radical is trivial. In [15], Sageev and
Wise showed that groups acting on finite dimensional CAT(0) cube com-
plexes satisfy the Tits Alternative so long as one knows the action is proper
and there is a bound on the size of the finite subgroups. Their proof works
equally well if the existence of a bound on the size of finite subgroups is
replaced by the weaker condition that, every locally finite subgroup is finite.
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Therefore, if G is acting properly on a finite dimensional CAT(0) cube com-
plex and every locally finite subgroup of G is finite, then the Tits Alternative
for G implies that every amenable subgroup is finitely generated virtually
abelian. Consequently, if G is countable, then G can have only countably
many amenable subgroups. We get the following interesting application of
[4, Theorem 3.1].

Proposition 5. Let G be a countable discrete group such that every locally
finite subgroup is finite. Suppose G acts properly on a finite dimensional
CAT(0) cube complex. Then, G is C∗-simple if and only if its amenable
radical is trivial.

This generalizes Le Boudec’s Proposition 3.2 from [10], which deals with the
case when X is a product of trees. When the locally finite subgroups are not
necessarily finite, groups acting properly on finite dimensional CAT(0) cube
complexes can have uncountably many amenable subgroups. For instance,
one can make a direct sum of infinitely many copies of a finite cyclic group
act properly on a tree.

Acknowledgements. We would like to thank Moose, Luna and Shurjo,
without whom this paper would have been possible. We would like to thank
Emmanuel Breuillard, Pierre de la Harpe and the anonymous referee for
their comments and suggestions for improving the paper.

2. Preliminaries

In this section, we collect some relevant notions and results on CAT(0) cube
complexes, as well as introducing a few new notions. We refer the reader
to [6], [12] and [14] for details on the relevant background material. In
particular, we will assume familiarity with hyperplanes and halfspaces. We
will always assume that X is a finite dimensional CAT(0) cube complex.
We will use h (and other gothic letters) to refer to a halfspace, h∗ to refer

to the complementary halfspace and ĥ to refer to a hyperplane.

2.1. Essentiality. A CAT(0) cube complex is called essential if every half-
space h contains arbitrarily large metric balls. This is the same as saying
that every halfspace contains arbitrarily deep points: points arbitrarily far
away from its bounding hyperplane.

If Aut(X) acts on X without a global fixed point either in X or at infinity
(the visual boundary), then X contains an Aut(X) invariant essential core.
Thus, it is reasonable to discuss only essential CAT(0) cube complexes, and
we shall assume this from now on.
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An action of a group G on X is said to be an essential action if for any given
orbit, there are orbit points arbitrarily deep inside every halfspace. When
X is essential and the action is inessential there exists a halfspace h and a
vertex v such that G(v) ⊂ h. A collection of subgroups G1, ..., Gn < Aut(X)
are said to be simultaneously inessential if there exists halfspace h and a
vertex v in X such that ∪iGi(v) ⊂ h.

A large class of examples of simultaneously inessential subgroups arises in
the context of hyperbolic groups.

Proposition 6. Let G be a hyperbolic group which acts properly, cocom-
pactly and essentially on a CAT(0) cube complex X. Let G1, . . . , Gn be a
finite collection of infinite index quasiconvex subgroups. Then G1, . . . , Gn

are simultaneously inessential.

We delay the proof of Proposition 6 until Section 3.

2.2. Products. We say that X is reducible if it admits a decomposition as
a product of two non-trivial CAT(0) cube complexes. A finite dimensional
CAT(0) cube complex always admits a canonical decomposition as a product
of irreducible complexes.

If X is essential then each irreducible factor of X is also essential. Those
irreducible factors that are not quasi-isometric to a real line are called non-
Euclidean factors. More explicitly, an irreducible, essential CAT(0) cube
complex is called non-Euclidean if it is not quasi-isometric to a real line. A
(possibly reducible) essential CAT(0) cube complex is called non-Euclidean
if all of its factors are non-Euclidean. Essential, irreducible, non-Euclidean
complexes will be the subject of Section 3.

2.3. Facing triples and strongly separated hyperplanes. The notion
of a non-Euclidean CAT(0) cube complex can be characterized in terms of
facing triples of hyperplanes. By a facing triple of hyperplanes we mean a
pairwise disjoint triple of hyperplanes that bound halfspaces which are also
pairwise disjoint. Equivalently, no hyperplane of the triple separates the
other two from one another. We then have the following lemma.

Lemma 7 (Facing Triples). Let X be an essential, non-Euclidean CAT(0)
cube complex such that Aut(X) acts with no global fixed point at infinity.

Then for every halfspace h, there exists a facing triple ĥ, k̂, m̂ with k̂, m̂ ⊂ h.

An important lemma for us regarding irreducible cube complexes involves
strongly separated pairs. A pair of disjoint hyperplanes ĥ and k̂ are called
strongly separated if there are no hyperplanes that intersect both ĥ and k̂.
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We will also refer to the corresponding nested pair of halfspaces h ⊂ k as
being strongly separated. We then have the following lemma.

Lemma 8 (Strongly Separated Pairs). Let X be an essential non-Euclidean
CAT(0) cube complex such that Aut(X) acts without a global fixed point at
infinity. Then for every halfspace h there exists a halfspace k ⊂ h such that
ĥ and k̂ are strongly separated.

2.4. Skewering. A halfspace h is said to be skewered by an automorphism
g ∈ Aut(X) if gh ⊂ h. We say that g skewers the hyperplane ĥ if g skewers
h or h∗. The relevant lemma for us regarding skewering is the following.

Lemma 9 (Double Skewering). Let X be essential and G act on X either
cocompactly or without a global fixed point at infinity. Then for every pair
of halfspaces h ⊂ k, there exists g ∈ G such that gk ⊂ h.

As a corollary of the Double Skewering Lemma, we have that every halfspace
is skewered by some element. For given a halfspace h, there exists some h ⊂ k
and then the element ensured by the Double Skewering Lemma skewers h.

In fact, a generalization of this for products can be established. More pre-
cisely (Theorem C of [6]), one can show the following.

Theorem 10. Let X = X1×. . .×Xn be a product of infinite, locally compact
CAT(0) cube complexes such that Aut(Xi) acts cocompactly on Xi for each
i. Suppose that G is a lattice in Aut(X). Suppose that hi ⊂ ki are nested
halfspaces in each factor Xi. Then there exists g ∈ G which simultaneously
double skewers these hyperplanes. That is to say, for each i, gki ⊂ hi.

2.5. The Roller Boundary. As before, let X be essential. We will con-
sider here a certain part of the Roller boundary which will be useful to us
(see [14] for basics on ultrafilters and the Roller boundary). Let H denote
the collection of halfspaces of X. Recall that an ultrafilter on H is a subset
α ⊂ H satisfying

(1) (Choice) For each pair h, h∗, exactly one of h or h∗ is in α.
(2) (Consistency) If h ⊂ k and h ∈ α then k ∈ α.

The collection of all ultrafilters U(X) has a natural topology induced by the
Tychonoff topology on 2H. This has as a basis the collection of halfspace
neighborhoods, where a halfspace neighborhood is a subset of U(X) of the
form

Uh ≡ {α ∈ U(X)|h ∈ α}

One can show that the collection of ultrafilters is then closed in 2H. The
vertices of X correspond to those ultrafilters satisfying the descending chain



PING PONG ON CAT(0) CUBE COMPLEXES 7

condition (DCC). The Roller Boundary is defined to be the complement in
U(X) of the DCC ultrafilters. It is closed in U(X) as well and is therefore
compact.

On the opposite side of the spectrum for ultrafilters, we have what we call
strongly separated ultrafilters.

Definition 11. An ultrafilter α is strongly separated if there exists an in-
finite nested sequence of halfspaces h1 ⊃ h2 . . . ∈ α such that hi and hi+1

are strongly separated. We call such a sequence of halfspaces a strongly
separated sequence of halfspaces.

It is easy to see that there are strongly separated sequences of halfspaces,
since by Lemma 8, any halfspace h contains a halfspace strongly separated
from it. In fact, by employing the Facing Triple Lemma, there exist un-
countably many strongly separated sequences. A key observation is that a
strongly separated sequence uniquely determines an ultrafilter.

Lemma 12. For every strongly separated sequence of halfspaces h1 ⊃ h2 . . .,
there exists a unique ultrafilter α such that hi ∈ α.

Proof. We define an ultrafilter as follows.

α = {h|hi ⊂ h for infinitely many i}

By definition hi ∈ α for each i. We are left to check that α satisfies the
two conditions necessary for an ultrafilter (choice and consistency) and then

that it is unique. Any given hyperplane ĥ may intersect at most one of the
ĥi’s. It follows that exactly one of the halfspaces h, h∗ contains infinitely
many hi’s, thus precisely one of h, h∗ is in α. The consistency condition is
immediate since if infinitely many hi satisfy hi ⊂ h and h ⊂ k then hi ⊂ k
for infinitely many i.

To see uniqueness, let β be an ultrafilter such that hi ∈ β for all i. Then
for any h ∈ β, observe that ĥ may intersect at most one ĥi. Consequently,
either h contains infinitely many hi’s or h∗ contains infinitely many hi’s.
Choose one such hi. Since h, hi ∈ β, by the consistency condition we have
that hi ⊂ h (and not hi ⊂ h∗). This means that h ∈ α. So α and β make
the same choices for each pair h, h∗ and hence α = β. �

We define S(X) to be the closure in U of the collection of strongly separated
ultrafilters. It is a compact subspace of the Roller Boundary.



8 ADITI KAR AND MICHAH SAGEEV

Next we see that strongly separated utrafilters behave nicely with respect
to medians. Recall that given three ultrafilters α, β, γ, the median of α, β
and γ is defined as

med(α, β, γ) ≡ (α ∩ β) ∪ (β ∩ γ) ∪ (γ ∩ α).

Lemma 13. Let α, β, γ be distinct strongly separated ultrafilters. Then the
med(α, β, γ) satisfies DCC and hence is a vertex of X.

Proof. We need to show that µ = med(α, β, γ) satisfies the descending chain
condition (see Figure 1). Suppose that h1 ⊃ h2 . . . is an infinite sequence
of halfspaces such that hi ∈ µ. Then after passing to a subsequence, we
may assume that hi ∈ α ∩ β for all i. Since α and β are distinct strongly
separated ultrafilters, there exist h ∈ α and k ∈ β such that h ∩ k = ∅ and
ĥ and k̂ are strongly separated. Since hi ∈ α, we have that hi ∩ h 6= ∅ and
hi ∩ k 6= ∅. But if {hi} is an infinite descending sequence of hyperplanes, we

Figure 1. The median of strongly separated ultrafilters sat-
isfies DCC.

must have that for i sufficiently large, hi ⊂ h or ĥi ∩ ĥ 6= ∅. Similarly, for
i sufficiently large, we must have hi ⊂ k or ĥi ∩ k̂ 6= ∅. But this contradicts
the fact that ĥ and k̂ are strongly separated. �
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We will also need the following lemma telling us that halfspace neighbor-
hoods form a basic collection of open neighborhoods for the strongly sepa-
rated ultrafilters.

Lemma 14. Let U ⊂ S(X) be an open neighborhood of α ∈ S(X), where α
is a strongly separated ultrafilter. Then there exists a halfspace h such that
α ∈ (Uh ∩ S(X)) ⊂ U .

Proof. Since the halfspace neighborhoods Uh serve as a collection of sub-
basic open sets for the topology on U(X) and hence of S(X), it suffices
to prove this when U is a finite intersection of halfspace neighborhoods
of α. That is, we assume that there exist halfspaces h1, . . . , hn such that
U = ∩Uhi ∩ S(X). Since α is a strongly separated ultrafilter, there exists
a strongly separated sequence k1 ⊃ k2 . . . with ki ∈ α. For each hi, we then
know that there exists a tail of the strongly separated sequence contained
in hi. Consequently, there exists a single kj such that kj ⊂ hi for all i. We
then have that α ∈ Ukj ∩ S(X) ⊂ U as required. �

2.6. Ping Pong. We will use the following version of the Ping-Pong Lemma.

Lemma 15 (Ping-Pong Lemma). Let S be a set and let G be a group acting
on S. Let H,K < G be subgroups of G. Suppose that there exist two disjoint
subsets U, V ⊂ S such that for all for all 1 6= h ∈ H, we have hU ⊂ V and
for all 1 6= k ∈ K, kV ⊂ U . Then < H,K >∼= H ∗K.

3. Irreducible complexes

In all that follows, we will assume that X is a finite dimensional, irreducible,
essential, non-Euclidean CAT(0) cube complex, and that G is a group acting
on X essentially, properly, and without global a fixed point at infinity. We
also assume that G has no finite normal subgroup.

Theorem 16 (Main Theorem). Let A1, . . . , An be a collection of simultane-
ously inessential subgroups of G. Then there exists g ∈ G of infinite order,
such that for each i,

〈g,Ai〉 ∼= 〈g〉 ∗Ai

Corollary 17. Suppose that a group G is acting on a finite-dimensional
irreducible non-Euclidean CAT(0) cube complex X. If the action of G on X
is essential, proper and has no global fixed point at infinity, and, G has no
non-trivial finite normal subgroups then G has property Pnaive.

First of all, we will need the following lemma.



10 ADITI KAR AND MICHAH SAGEEV

Lemma 18. Suppose that a ∈ G is nontrivial. Then Fix(a) ⊂ S(X) has
empty interior.

Proof. Suppose that a is non-trivial and fixes an open subset U ⊂ S(X). By
Lemma 14, there exists a half space h such that the halfspace neighborhood
Uh ⊂ S(X). Consider three strongly separated ultrafilters in Uh and let v
denote their median. By Lemma 13, the ultrafilter v is a vertex in X. Since
the action is essential, there exists g ∈ G such that g skewers h, so that
gh ⊂ h. By the Lemmas 8 and 9, we may further assume that gĥ and ĥ are
strongly separated.

We now consider the elements an ≡ g−nagn. Let hn = g−nh. Note that by
our choice of g above, the sequence {h∗n} is a strongly separated sequence of
halfspaces.

Note that an fixes Un ≡ Uhn . Since v ∈ h ⊂ g−nh it follows that v is the
median of three points contained in Un, and therefore anv = v. By the
properness of the action, there are only finitely many possibilities for an,
so that we may pass to a subsequence of {an} such that an = b for all n.
We then have

⋃
n Un ⊂ Fix(b) = {y ∈ S(X)|by = y}. Because the action

is proper, the kernel of the action on S(X) is a finite normal subgroup and
because G has no finite normal subgroup, we have Fix(b) 6= S(X). But now
Fix(b) is closed. So there exists a halfspace k such that Uk ⊂ S(X)−Fix(b).

Consequently, we have that k̂ ∩ h∗n, for all n. But this is a contradiction,
since {h∗n} is a strongly separated sequence of halfspaces. �

The key to proving the main theorem is the following proposition, which
will allow us to play ping-pong.

Proposition 19. Let A1, . . . An be a collection of simultaneously inessential
subgroups of G. Then there exists a halfspace k in X, such that ak ⊂ k∗ for
all non-trivial a ∈

⋃
iAi.

Proof. To avoid writing indices, we will first give the proof for the case of a
single subgroup A and then later explain how this is done for finitely many
subgroups.

We will construct a combinatorial convex hull for A(v), where v is some
vertex of X. For a halfspace h, let C(h) denote the carrier of h, namely the
union of cubes that intersect h non-trivially. It is easy to see that that C(h)
is a convex subcomplex of X (see [9]). Now, given a halfspace h such that
A(v) ⊂ h, we define

Ch =
⋂
a∈A

C(ah).
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The inessentiality assumption tells us that there exists such an h, and since
Ch is the intersection of convex subcomplexes, it is convex. Also, Ch is
invariant under A.

Remark. It is convex in both the usual CAT(0) sense but also in the `1
sense: every combinatorial edge-geodesic between vertices in Ch remains in
Ch.

Choose some halfspace k1 ⊂ h∗ such that ĥ and k̂1 are strongly separated.

We observe that every hyperplane which intersects Ch does not intersect k̂1,

since Ch ⊂ h and ĥ and k̂1 are strongly separated.

Figure 2. A convex hull for A(v).

Now we consider the natural combinatorial projection of k̂1 onto Ch. Namely,
consider all the hyperplanes intersecting Ch. As observed, for every such hy-

perplane m̂, we have k̂1 ⊂ m or k̂1 ⊂ m∗. This thus defines an ultrafilter on
the collection of hyperplanes meeting Ch, since it is a choice of halfspaces
which satisfies the standard consistency conditions necessary for an ultra-
filter. It also satisfies the DCC condition (see, for example, [14]). Thus, it
determines a vertex w in Ch. This is the unique vertex of Ch that can be

joined by a path to k̂1 without crossing any hyperplane that meets Ch.

Note that for any a ∈ A, ak̂1 does not intersect any hyperplane that intersects
C(h). This is because if it did, say ak̂1 ∩ m̂ 6= ∅, then by applying a−1, we
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find that k̂1 ∩ a−1(m̂) 6= ∅. But by invariance of C(h) under A, we have that

a−1(m̂) ∩ C(h) 6= ∅, contradicting the strong separation of k̂1 and ĥ.

Thus ak̂1 projects to a vertex in C(h), just as k̂1 does. Now by the naturality

of this construction, we have that for each a ∈ A, the translate ak̂1 projects
to aw. But if ak̂1 ∩ k̂1 6= ∅ it must project to w as well.

Figure 3. The projection of k̂1 onto Ch.

This tells us that

S = {a ∈ A|ak̂1 ∩ k̂1 6= ∅} ⊂ Stab(w)

By the properness of the action, we get that S is finite. For all elements
a 6∈ S, we have ak ⊂ k∗, as required. We are thus left to prove the proposition
for the elements of S.

Let Uk1 denote the open subset of S(X) determined by k1. By Lemma 18 we
can find a point b ∈ Uk̂1

which is not fixed by any element of S. Since S is

finite, there exists a neighborhood U ⊂ Uk1 of b such that U∩aU = ∅ for any
a ∈ S. Since every open neighborhood contains a halfspace neighborhood,
we have a halfspace k2 ⊂ k1 such that aUk2 ∩Uk2 = ∅ for all a ∈ S. Thus, for
any a ∈ S, we have that ak2 ⊂ k∗2 for any a ∈ S. Since this is already true for

k1 for all other elements of A, the hyperplane k̂2 is the desired hyperplane.

To show the proposition for the case of finitely many subgroups A1, . . . , An

which are simultaneously inessential, we start with a hyperplane h such that⋃
iAi(v) ⊂ h. Taking k̂1 as above we see that the set of elements S of

⋃
iAi

which carry k̂1 to a hyperplane meeting k̂1 is finite. We then construct, as
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in the previous paragraph a halfspace k2 ⊂ k1 such that ak2 ⊂ k∗2 for any

element of S. This k̂2 is the desired hyperplane. �

Proof of Theorem 16. By Proposition 19, there exists a halfspace k such that
ak ⊂ k∗ for all a ∈

⋃
iAi. We need to find our g ∈ G which plays ping-pong

with every Ai.

By the Facing Triples Lemma, there exists a pair of disjoint halfspaces m
and n with m∪ n ⊂ k. By the Double Skewering Lemma, there exists g ∈ G
such that gm∗ ⊂ n.

We now construct two disjoint subsets U and V of X, such that aU ⊂ V
for all non-trivial a ∈ Ai and gnV ⊂ U for all n 6= 0 and for all i. This will
then give the result by the Ping Pong Lemma. For each i, we define

U =
⋃

a6=1∈Ai

ak and V = m ∪ gm∗

Figure 4. The construction of the ping pong pair.

Note that by construction, for each a 6= 1 ∈ Ai, we have ak ⊂ U , so we have
aV ⊂ U . For each n 6= 0, we obtain gn(gm) ⊂ m or gnm∗ ⊂ gm∗. Since
U ⊂ m∗ and U ⊂ gm, we have that gnU ⊂ V , as required. �

We now prove Proposition 6.
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Proof. We prove the proposition by induction on n. Let v be a vertex of X.
In [16] (Proposition 3.3), it is shown that if H is a quasiconvex subgroup of
G, there exists a number C > 0 and a universal number D > 0 (depending
only on the dimension of the complex), such that if w is a vertex with

d(w,H(v)) > C, then there exists a hyperplane ĥ separating w and H(v)

and d(w, ĥ) < D.

Since points arbitrarily far away from H(v) are guaranteed to exist when H
is of infinite index, this implies that the the proposition in the case n = 1.

We know assume that G1, . . . , Gn−1 are simultaneously inessential. Let h be
a halfspace such that Gi(v) ⊂ h∗ for i = 1, . . . , n−1. Note that since v ⊂ h∗,
the orbit Gn(v) is not entirely contained in h. We consider a halfspace k ⊂ h

such that k̂ is strongly separated from ĥ. Since Gn is of infinite index, there
exists a vertex w ∈ k such that d(w,Gn(v)) > C. We also choose w such that

d(w, k̂) > D. Now we apply the above again and conclude that there exists
a hyperplane m̂ separating w and Gn(v) and such that d(w, m̂) < D. Let m
be the halfspace associated to m̂ such that w ∈ m and Gn(v) ⊂ m∗. Since

d(w, m̂) < D, we have that m̂ ∩ k 6= ∅. Since k̂ and ĥ are strongly separated,

we thus have that m̂∩ ĥ = ∅. Moreover, since Gn(v)∩ h∗ 6= ∅, we must have
m ⊂ h and not m∗ ⊂ h. It follows that Gi(v) ⊂ h for all 1 = 1, . . . , n, as
required. �

We complete the section with a proof of Proposition 1, which says that S(X)
is a G-boundary, on which, if conditions are favourable, G acts topologically
freely.

Proof of Proposition 1. Let X be a non-Euclidean irreducible CAT(0) cube
complex X. Suppose G is acting essentially on X without a global fixed
point at infinity. Then, we claim that S(X) is a G-boundary. We first show
that the compact G-space S(X) is minimal: given α ∈ S(X) and U ⊂ S(X)
open, there exists g ∈ G such that gα ∈ U . By Lemma 14, there exists some
halfspace h such that (Uh ∩ S(X)) ⊂ U . If h ∈ α then we can take g = 1.
Suppose then h /∈ α. By the Flipping Lemma [6], there exists g ∈ G such
that gh∗ ⊂ h and for this g, h ∈ gα. This implies gα ∈ (Uh ∩ S(X)) ⊂ U .

We now show that the S(X) is proximal: for any pair α, β ∈ S(X) of points,
there exists a point γ ∈ S(X) such that for every open neighbourhood U
of γ there exists g ∈ G such that gα, gβ ∈ U . Choose a strongly separated
ultrafilter γ which is distinct from both α and β. Let U be any open set
containing γ. Note that S(X) is Hausdorff and so we can find an open set V
that contains γ but does not contain α and β. The open set U∩V contains γ
and by Lemma 14, contains a half-space neighbourhood Uh. Now, h∗ ∈ α, β,
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so we use the Flipping Lemma to find g ∈ G such that gh∗ ⊂ h. Then,
h ∈ gα, gβ and therefore gα, gβ ∈ U .

To ensure that the proximal minimal G space S(X) is strongly proximal,
we need to check that S(X) has contractible neighbourhoods. Let α be a
strongly separated ultrafilter and let h be a halfspace contained in α. We
claim that the open neighbourhood V := Uh ∩ S(X) of α is contractible i.e.
there exists β ∈ S(X) such that every open neighbourhood of β contains a
translate of V . Choose β to be any strongly separated ultrafilter distinct
from α and let U be an open set containing β. As before, choose a halfspace
k such that k ∈ β, k ⊂ h∗ and Uk ∩ S(X) ⊂ U . Use the Flipping Lemma to
choose g ∈ G such that gk∗ ⊂ k. Then, gV ⊂ U .

This shows that S(X) is a minimal and strongly proximal compact G-space.
Lemma 18 verifies that the action is topologically free whenever the action
of G on X is proper and G has no non-trivial finite normal subgroups. �

4. Property Pnaive and C∗-simplicity

Recall that a group G has property Pnaive if for every finite subset F ⊂ G
there exists an element y ∈ G of infinite order such that given g ∈ F , the
subgroup 〈g, y〉 is isomorphic to the free product 〈g〉 ∗ 〈y〉.

The simplest example of a group possessing property Pnaive is a non-abelian
free group Fn. Property Pnaive was introduced by Bekka, Cowling and de la
Harpe as part of their programme to study simplicity of group C∗-algebras
[3]. Non-elementary hyperbolic groups have property Pnaive; this was proved
for torsion-free groups by de la Harpe, and further generalized to relatively
hyperbolic groups in [2]. In [3], the authors established Pnaive for Zariski
dense subgroups of connected simple Lie groups with R-rank 1 and trivial
center. More recently, property Pnaive was studied by Tal Poznansky in
the context of linear groups: he proved that every Zariski-dense subgroup
of a semisimple algebraic group (over any field), satisfies a weak version of
property Pnaive [13, Lemma 2.3].

Here, we study conditions under which groups acting on CAT(0) cube com-
plexes have property Pnaive. When the underlying complex is irreducible,
property Pnaive follows from the Main Theorem and is recorded as Corollary
17 above.

4.1. Products. In the case of products, we prove a result in a more re-
stricted setting, namely that of lattices in Aut(X), where X is a locally
finite, cocompact cube complex.
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Theorem 20. Let X be a locally finite, cocompact CAT(0) cube complex
with no Euclidean factors; let G be a lattice in Aut(X) with no non-trivial
finite normal subgroup. Then G satisfies Pnaive.

Proof. Let X =
∏

kXk be the decomposition of X into irreducible factors.
Let g1, . . . , gn denote a finite collection of elements of G.

We first observe that for each i, the action of < gi > on each irreducible
factor of X is inessential. This is simply because < gi > is cyclic and each
factor is non-euclidean.

Secondly, we observe that since the action of < gi > is proper, there exists
a factor of X on which the action of < gi > is proper. Otherwise, for each
factor Xk there exists an integer nk such that gnk fixes the ball of radius R
in Xk. Taking N =

∏
k nk, we obtain an N such that < gNi > fixes the ball

of radius R in each Xk, which in the case that gi is infinite cyclic, would
contradict the properness of the action of < gi > on X.

For each factor Xk for which < gi > acts properly on Xk, Proposition 19
insures that there exists a halfspace hk, such that ahk ⊂ h∗k for all a ∈< gi >.
(If for some k, there are no such gi’s, we choose hk arbitrarily.) Following
the proof of Theorem 16, for each such k, we then choose halfspaces mk and
nk, so that mk ∪ nk ⊂ hk.

Now we apply Theorem 10 to conclude that there exists g ∈ G such that
gm∗k ⊂ nk simultaneously for all k. The construction now of U and V for the
application of the Ping Pong Lemma proceeds as in the proof of Theorem
16.

More precisely, we need to show that < g, gi >≡< g > ∗ < gi >. Given
such an i, Let Xk denote an irreducible component on which < gi > acts
properly. Then set

U =
⋃

a6=1∈<gi>

ahk and V = mk ∪ nk

Then we obtain aV ⊂ U for any a 6= 1 and we have gnU ⊂ V for any n 6= 0,
as required. �

4.2. Infinite conjugacy classes. Corollary 17 and Theorem 20 allow us
to determine necessary and sufficient conditions for a CAT(0) cube complex
group to be C∗-simple. C∗-simple groups are often icc: a group is icc if
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the conjugacy class of every non-identity element is infinite. We will first
identify the collection of CAT(0) cubical groups which are icc.

Proposition 21. If a group G acts properly and co-compactly on a CAT(0)
cube complex then G is icc if and only if no finite index subgroup of G
contains a non-trivial virtually abelian normal subgroup.

Proof of Proposition. Suppose that G is not icc. Let H be the collection of
all elements g ∈ G such that the conjugacy class of g is finite. It is easy to
check that H is a characteristic subgroup of G. Let L be a subgroup gener-
ated by finitely many elements x1, . . . , xk of H. For each i, the centralizer
of xi in L is a subgroup of finite index in L. Consequently, the centre of L,
which is the intersection of the centralizers of the xi’s has finite index in L.
This implies that each finitely generated subgroup of H is virtually abelian.
As every virtually abelian subgroup must stabilize a flat and the dimension
of flats in X is bounded, H is forced to be virtually abelian. This shows,
if G has a non-trivial finite conjugacy class, then G contains a non-trivial
virtually abelian normal subgroup.

Suppose now that a finite index subgroup Γ of G contains a virtually abelian
normal subgroup K. If K is finite and g is a non-trivial element of K, then
the conjugacy class {xgx−1 | x ∈ G} of g is contained in ∪t∈G/ΓtKt

−1.
Evidently, every conjugacy class of K is finite and so, G cannot be icc. If
K is infinite, then replace K by a characteristic subgroup K ′ which is free
abelian of finite rank. The action of Γ on K by conjugation fixes K ′ and so,
Γ normalizes K ′. The homomorphism from Γ to Aut(K ′) ∼= GL(n,Z) has
finite image (in fact, it lies inside O(n) ∩ GL(n,Z)) and so, a finite index
subgroup of Γ (and hence, of G) that centralizes K ′. Clearly, the conjugacy
class of every element of K ′ in G is finite and G cannot be icc. �

The amenable radical of a group G, written AG is the largest amenable nor-
mal subgroup of G. As amenability is closed under extensions, the amenable
radical exists and is easily shown to be a characteristic subgroup of G. Sup-
pose a group G has a finite index subgroup that contains a normal virtually
abelian subgroup K. Then, passing to a normal finite index subgroup,
we can assume that G has a normal subgroup H of finite index such that
AH 6= 1. As AH is characteristic in H, it is normal in G and it follows,
AG 6= 1. Hence, the triviality of AG implies that G has no finite index
subgroups containing normal virtually abelian subgroups.

In groups acting geometrically on CAT(0) cube complexes the converse is
true: the amenable radical is trivial if no finite index subgroup of G has
normal virtually abelian subgroups 6= 1. This is because, CAT(0) cubical
groups satisfy the Tits Alternative [15, Main Theorem] and the amenable
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radical is virtually abelian. Therefore AG 6= 1 implies G has a normal vir-
tually abelian subgroup. To summarise, we have the following equivalence.

Lemma 22. Suppose that a group G is acting properly on a CAT(0) cube
complex and G has a bound on the size of its finite subgroups. Then the
amenable radical AG is trivial iff G has no finite index subgroups with normal
non-trivial virtually abelian subgroups.

The presence of virtually abelian subgroups inside finite index subgroups
of G is directly related to the existence of Euclidean factors in the Cartan
decomposition of the underlying space.

Lemma 23. Suppose a group G is acting geometrically and faithfully on a
CAT(0) cube complex X. If X has a Euclidean factor, then some finite index
subgroup of G contains a non-trivial virtually abelian normal subgroup. In
particular, the amenable radical of G is non-trivial.

Proof. As G is acting geometrically, X is finite dimensional and moreover
by passing to an essential core, we may assume that the G-action on X is
essential. Now, if X is irreducible, then X is Euclidean, meaning, it is quasi-
isometric to the real line. In this case G itself is virtually infinite cyclic. If
X is reducible, then it has a Cartan decomposition into irreducible factors.
We have X ∼= XP × XE , where XE is the Euclidean part of X. Then, by
Corollary 2.8 from [12], there is a finite index subgroup H of G such that
H = HE × HP , where HE acts properly and co-compactly on XE . This
implies that HE is virtually abelian and so, a finite index subgroup contains
a non-trivial virtually abelian normal subgroup. �

C∗ simple groups. Let G be a countable discrete group and let `2G be
the Hilbert space of square-summable functions on G. The group G acts on
`2G via its left regular representation as follows.

λg(f)(h) = f(g−1h), ∀g, h ∈ G.
The map g 7→ λg gives an injection of G into the space of bounded linear
operators B(`2G). The closure of the linear span of image {λg : g ∈ G} in
the operator norm is called the reduced C∗-algebra of G and written, C∗r (G).

A countable group is said to be C∗-simple if C∗r (G) is a simple algebra,
i.e. C∗r (G) has no non-trivial two-sided ideals. The reduced C∗-algebra
carries information about the representation theory of the group. One can
show that simplicity of the algebra C∗r (G) is equivalent to the following
restriction on the representation theory of G: every unitary representation
of G which is weakly contained in the left regular representation of G is
actually equivalent to it. This means that a group which is both amenable
and C∗-simple must be the trivial group. This statement in turn generalizes
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to the fact that a C∗-simple group cannot have non-trivial normal amenable
subgroups.

Many geometric classes of groups have been shown to be C∗-simple. These
include all free products (except the infinite dihedral group), non-soluble
subgroups of PSL2(R), torsion-free non-elementary hyperbolic groups and
mapping class groups of surfaces. More generally, acylindrically hyperbolic
groups are C∗-simple [7].

A group acting geometrically on an irreducible CAT(0) cube complex has
enough rank one elements to make it acylindrically hyperbolic, using results
from [17]. So groups acting geometrically on irreducible CAT(0) cubical
groups are C∗-simple. However a group acting geometrically on a non-
trivial product of irreducibles is not acylindrically hyperpbolic (for example,
irreducible lattices in products of trees). Here, we apply our theorems on
property Pnaive to show that even in this setting, a group G acting properly
and co-compactly on a CAT(0) cube complex is C∗-simple. We summarize
this as follows.

Theorem 24 (Corollary 4). Suppose that a group G is acting properly and
co-compactly on a CAT(0) cube complex X. The following are equivalent.

(1) G is C∗ simple.
(2) G is icc.
(3) No finite index subgroup of G has a non-trivial virtually abelian nor-

mal subgroup.
(4) the amenable radical of G is trivial.
(5) The G-action is faithful and X is non-Euclidean.
(6) G has property Pnaive.

Proof. The implications (1)⇒(2) and (6)⇒(1) are well-known, see [3]. Propo-
sition 21 establishes the equivalence of (2) and (3). Lemma 22 shows (3)
and (4) are equivalent. That (4) implies (5) follows from Lemma 23.

The hypothesis that G acts properly and co-compactly implies that G is
finitely presented and moreover, X is finite-dimensional. The kernel of the
action is finite whenever the action is proper and so if the amenable radical
is trivial, the action is faithful. Now, to deduce (6) from (5), after passing
to an essential core if needed, we apply Corollary 17 and Theorem 20. �
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