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SUMMARY 

Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons 

and muscle atrophy, generally presenting in childhood, and is caused by low levels of the survival motor neuron 

(SMN) protein due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, 

produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in 

clinical trial, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. 

However, several factors suggest that complementary strategies may be needed for the long-term maintenance 

of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that requirement 

for SMN is highest as the structural connections of the neuromuscular system are being established from late 

fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying 

progressive functional decline beyond childhood in less severe Types of SMA. Furthermore, individuals receiving 

SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is 

incomplete.  Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion 

in gene therapy and ASO clinical trials and may not benefit from SMN-inducing treatments. Therefore, a 

comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and 

SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways 

implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA 

drug discovery.  
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GLOSSARY 

AAV: adeno-associated virus: a small DNA virus that infects humans and other primate species without causing 

disease 

ASO: antisense oligonucleotide: a synthetic polymer, typically 15-20 nucleotides long and complementary to the 

sense sequence of a target mRNA 

BBB: blood–brain barrier: a highly selective semi-permeable endothelial cell barrier separating the circulating 

blood from the brain in the central nervous system  

CPP: cell-penetrating peptide: a short peptide that facilitates cellular uptake of molecules 

Intracerebroventricular: direct injection into the ventricular system (i.e. into the cerebral ventricles) of the brain 

Intrathecal: direct injection into the sub-arachnoid space so that a drug reaches the cerebrospinal fluid  

NMJ: neuromuscular junction: the chemical synapse between a motor neuron and a muscle fiber 

SMN: survival motor neuron  
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INTRODUCTION 

Spinal muscular atrophy (SMA) is the most common genetic disease resulting in death in infancy, affecting 

approximately 1 in 6000 to 1 in 10000 births (Crawford and Pardo, 1996). This autosomal recessive disorder, 

resulting from the loss-of-function of the survival motor neuron 1 (SMN1) gene, is characterized by loss of spinal 

cord motor neurons, muscular atrophy, neuromuscular junction (NMJ) denervation and paralysis (Crawford and 

Pardo, 1996; Kariya et al., 2008; Kong et al., 2009; Lefebvre et al., 1995; Murray et al., 2008). SMN1 is highly 

conserved and present in a single copy in the genome of all eukaryotic organisms (Bergin et al., 1997; Miguel-

Aliaga et al., 1999; Miguel-Aliaga et al., 2000; Paushkin et al., 2000). In humans, however, a genomic 

duplication has given rise to a second gene, SMN2 (Lefebvre et al., 1995; Rochette et al., 2001). A crucial C-to-

T substitution at position 6 of exon 7 in SMN2, which occurs in all individuals, leads to the aberrant splicing of 

exon 7 and the subsequent production of an unstable SMN∆7 protein (Lorson et al., 1999; Monani et al., 2000). 

An important sequence in intron 7 of SMN2, termed intron splicing silence N1 (ISS-N1) has been demonstrated 

to further favor the exclusion of exon 7 in the transcript (Singh et al., 2006).  Thus, the telomeric SMN1 copy 

gives rise to the full-length (FL) SMN protein while the centromeric SMN2 copy predominantly produces the 

SMN∆7 protein. However, the SMN2 gene always generates a small amount of functional protein, which 

maintains viability, as homozygous deletion of SMN1 is uniformly lethal (Gennarelli et al., 1995; Lefebvre et al., 

1995). Deletions or intragenic mutations in SMN1 are found in all forms of SMA, with SMN2 acting to modulate 

the disease severity through variation in its copy number (Gennarelli et al., 1995; Lefebvre et al., 1995) (Figure 

1). As the number of SMN2 copies increases, so does the quantity of stable FL-SMN protein produced. Thus, 

the variation in clinical severity seen in SMA is mostly explained by the total level of residual SMN protein.  

SMA is clinically heterogeneous and has thus been categorized into 5 Types (0-IV) based on age of onset, 

severity of motor decline and life expectancy. The term ‘Type 0’, in which the minimal complement of one SMN2 

gene is present, describes SMA with a clear in utero onset, arthrygryphosis and complex motor and sensory 

nerve deficits and death before or just after birth. Type I SMA patients display the most severe symptoms, with 

death in infancy if invasive ventilation is not implemented. Types II and III have a later childhood onset and are 

associated with survival into adulthood, and the potential for a normal lifespan, albeit with considerable physical 

disability (Munsat and Davies, 1992; Pearn, 1980). The clinical course of Type II and III patients living with SMA 

is characterized by long periods of relative stability with superimposed periods of accelerated functional decline, 

for example during the pubertal growth spurt, and a subsequent long period of slowly progressive age-related 
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loss of motor function (Kaufmann et al., 2012). Advances in respiratory, musculoskeletal and nutritional care 

mean that greater numbers of patients with Type I SMA are surviving beyond infancy. Most SMA Type II patients 

are living full lives into adulthood and Type III SMA is, in the majority of cases, associated with a normal lifespan 

(Rudnik-Schöneborn et al., 2001). The clinical and molecular features of the five types of SMA are presented in 

Table 1. Given the range of severity and ages of onset, it will be necessary for any therapeutic strategy to 

address the needs of all individuals affected by SMA, from infancy to adulthood. 

The SMN protein is ubiquitously expressed and is localized in the cytoplasm (Liu and Dreyfuss, 1996), neuronal 

growth cones (Fan and Simard, 2002), neuronal extensions (Fallini et al., 2010), the nucleolus (Charroux et al., 

2000; Wehner et al., 2002), and in punctate nuclear structures called Gemini of coiled bodies (Gems) and Cajal 

bodies (Carvalho et al., 1999; Liu and Dreyfuss, 1996). The SMN protein has thus been attributed several key 

regulatory cellular functions in neuronal cells related to RNA metabolism (specifically small nuclear 

ribonucleoproteins (snRNPs))  (Li et al., 2014), actin cytoskeleton dynamics (Hensel and Claus, 2017), mRNA 

transport (Donlin-Asp et al., 2016), ubiquitin homeostasis (Groen and Gillingwater, 2015), bioenergetics 

pathways (Boyd et al., 2017), and synaptic vesicle release (Kong et al., 2009) (Figure 2). Of importance is that 

to date, none of these roles have been identified as being solely responsible for SMA pathophysiology. 

The most advanced therapies currently in clinical trials for SMA are aimed at increasing FL SMN either by 

exogenously expressing SMN1 or upregulating FL SMN2 production (d’Ydewalle and Sumner, 2015). Unless 

these current SMN-dependent approaches can be given pre-symptomatically, when motor neuron dysfunction 

may still be reversible, and delivered with a very high level of efficiency to drastically induce SMN levels in spinal 

cord motor neurons, it is likely that the progressive neurodegenerative process will not be completely abrogated 

but simply slowed down, thus rendering treated SMA patients vulnerable to a delayed deterioration of the 

neuromuscular system. There are also a large number of older children and adults living with SMA who do not 

fulfill the present criteria for inclusion (on the grounds of age and various clinical parameters) in the ongoing 

clinical trials and for whom it is not currently clear that SMN-inducing treatments will be beneficial, due to the 

significant and irreversible SMN-related neuromuscular decline that is already established. Furthermore, it has 

become evident that SMA pathophysiology extends beyond the neuromuscular system, whereby numerous 

peripheral organs and tissues demonstrate pathological changes in pre-clinical models and patients (Hamilton 

and Gillingwater, 2013). Therapies that improve neuromuscular function as well as maintain lifelong general 

health of people living with SMA are therefore a major priority and an unmet clinical need.  



 6

As the first successful SMN-targeted therapeutic approaches are emerging into the clinical arena (Finkel et al., 

2016; Gillingwater, 2016), we review here how to best move forward in the development of combinatorial 

therapeutic approaches for SMA that, ideally, would target the CNS and the periphery, operating via SMN-

dependent and SMN-independent processes. We will firstly consider the various existing and alternative 

experimental models that could be used to identify novel SMA therapeutic targets. We will then discuss how the 

current SMN-specific compounds presently in clinical trials inform the potential development of treatments aimed 

at non-SMN targets in non-CNS tissues. Finally, we will expand on the idea of developing drug discovery and 

delivery approaches that enable systemic delivery of therapies.  

ADVANTAGES AND LIMITATIONS OF CURRENT ANIMAL AND CELL MODELS 

Animal models 

A range of in vivo model systems have been developed to aid understanding of the pathogenesis of SMA and to 

test the efficacy of therapies. The similarities in anatomy and physiology to the human neuromuscular system, 

coupled with the ease of genetic manipulation, mean that the mouse has been an extremely valuable model for 

exploring the basic pathogenesis and evaluating potential treatments for SMA. Various mouse models have 

been developed over the years, displaying differing ranges of disease severity. While the complete knockout 

(Smn-/-) is embryonic lethal (Schrank et al., 1997), the heterozygous animals (Smn+/-) do not develop a typical 

SMA phenotype (Bowerman et al., 2014; Schrank et al., 1997), which is in accordance with previous work 

demonstrating that loss of ~85% of normal Smn levels is required to reflect an SMA phenotype in mice 

(Bowerman et al., 2012a). Genetic modifications were thus integrated in the Smn–/– mice to allow their survival, 

whilst still retaining the criteria for an SMA model. The severely afflicted Smn–/–;SMN2 (Hsieh-Li et al., 2000; 

Monani et al., 2000) harbor a human SMN2 transgene that produces the typical ~15% FL SMN2 transcript, 

whereas the Smn–/–;SMN2;SMNΔ7/Δ7 transgenic mice (Le et al., 2005) additionally express the partially functional 

human SMN∆7 protein, which confers an increase in survival. Both these severe SMA mouse models typically 

do not survive past the first two post-natal weeks and therefore have their limitations, as they do not reflect the 

chronic phase of the disease, thus better modeling severe infantile SMA, and do not allow the evaluation of non-

SMN therapies that may benefit some aspects of SMA pathology. In addition, severe SMA mouse models do not 

allow for the long-term evaluation of extra-CNS defects that might emerge over time in people living with Types 

II, III and IV SMA. To address this, animals that have a significantly longer asymptomatic phase have been 
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developed. The Smn2B/– mice (Bowerman et al., 2012a; Hammond et al., 2010) are an intermediate model with 

an average lifespan of 30 days that have an endogenous mutation within the murine Smn gene that mimics the 

human SMN2 gene by principally producing SMNΔ7 transcripts. More recently, administration of sub-optimal 

doses of exon 7 inclusion-promoting ISS-N1 ASOs to SMA mice harboring the human SMN2 transgene 

(Hosseinibarkooie et al., 2016; Zhou et al., 2015), leading to an insufficient increase of FL-SMN for complete 

rescue, has been exploited to generate longer-lived intermediate models. Mouse models therefore remain 

indispensable in augmenting our understanding of the SMA disease process and in the evaluation of potential 

therapeutic approaches.  

More targeted hypotheses about the role of SMN and its interaction with specific proteins can be successfully 

explored in invertebrates such as Drosophila (fruit flies) (Chan et al., 2003; Chang et al., 2008) and genetically 

tractable vertebrate model organisms presenting a developmental phenotype such as zebrafish (Hao et al., 

2011; McWhorter et al., 2003). However, these models may display phenotypes that differ greatly from what is 

observed in mouse models and SMA patients. The locomotor and motility defects characterized in Drosophila 

larval SMA models (Praveen et al., 2012; Praveen et al., 2014) can only have an indirect relationship to the 

disruptions in neuromuscular function that occur in patients. In zebrafish models of SMA generated by antisense 

morpholinos or maternal zygotic genetic mutations (Hao et al., 2013; McWhorter et al., 2003), developing motor 

axons and dendrites display outgrowth and branching defects, whereas in mouse and human, SMA motor axons 

correctly reach the target muscle and form the NMJ, followed by denervation of the muscle as the disease 

progresses (Ling et al., 2012). Nevertheless, such model systems are more efficient than mammalian models for 

high-throughput screening and are likely to have significant advantages if utilized efficiently and thoughtfully.  

Finally, there have also been initiatives to develop large animal models for SMA, particularly for the evaluation of 

the delivery, benefits and toxicity of clinical-grade therapeutics. Specifically, endogenous and exogenous genetic 

modifications have been introduced in the pig to generate a porcine SMA model (Duque et al., 2015; Towne et 

al., 2010). More work is needed to evaluate whether the pig will become the pre-clinical model of choice for 

therapeutic assessment. 

Cellular models 

There are obvious limitations in the extent to which mouse models and the other in vivo models described above 

might be predictive of effects in humans owing to inherent species-specific differences in cellular function. The 



 8

inability to directly study neurons in patients suffering from neurological disorders such as SMA has been a 

significant impediment to understanding basic pathological mechanisms, particularly those occurring early in the 

disease process. Recent developments in stem cell technology have substantially expanded the range of cellular 

models available in motor neuron disorders by allowing the direct observation of pathological mechanisms in 

neurons derived from induced pluripotent stem cells (iPSCs) obtained from human fibroblasts harboring the 

genetic background conferring disease susceptibility. SMA was the first neurological disorder in which a disease 

relevant phenotype was demonstrated in iPSC-derived motor neurons (Ebert et al., 2009).  

Beyond neurons, other cell types have been demonstrated to contribute to SMA pathology, as described below. 

iPSCs can be converted into these cell types, such as pancreatic and cardiac cells, and thus represent an even 

more powerful tool as these cell lines can be studied separately or in co-culture systems that mimic the dynamic 

interaction that exists in the human body (De Vos et al., 2016). Furthermore, iPSCs can also be used to 

generate endothelial cells (Lippmann et al., 2014) to model the BBB that protects the CNS, but also limits the 

entry of therapeutic compounds (Abbott, 2013; Pardridge, 2005), thus allowing screening of novel and 

established drugs for the ability to cross the BBB as well as compare the properties of SMA and healthy 

endothelial cells. 

iPSC-derived motor neurons can be generated from families in which genotypically matched individuals are 

discordant for the SMA phenotype, to serve as a tool to identify disease modifiers (Boza-Morán et al., 2015). 

Similarly, iPSCs can be generated from Type I, II and III patients, allowing the exploration of the impact of small 

changes in SMN expression at a cellular level. While iPSCs hold a lot of promise, experimental caveats include 

heterogeneity of the cell populations derived, as well as the limitations of studying cells in culture, isolated from 

other tissues within the context of the whole organism. Nevertheless, iPSC-based models will give new insights 

into disease mechanisms and will also serve as a screening and validation tool for potential therapies identified 

in model organisms, especially as part of an experimental workflow designed to identify novel molecular targets 

and drugs and evaluate their combinatorial potential. Indeed, testing candidate therapies across multiple 

platforms will most likely be key to the efficient and successful advancement of complementary therapeutic 

approaches (Figure 3).  
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CURRENT SMN-TARGETED TRIALS – EARLY SUCCESSES AND STRATEGIES FOR THE FUTURE 

At the forefront of SMA translational research are efforts now entering clinical trials for therapies that promote 

SMN2 exon 7 inclusion via ISS-N1 inhibition (antisense oligonucleotides, ASOs), increase FL SMN2 transcription 

(small molecules) or directly replace SMN1 (viral gene therapy) (Table 2) (d’Ydewalle and Sumner, 2015). Two 

decades of basic research characterizing the molecular basis of exon 7 splicing (Singh et al., 2017) have 

recently culminated in the first successful clinical trial of an ASO therapy (nusinersen, commercial name 

Spinraza) developed and commercialized by Ionis Pharmaceuticals and Biogen (Finkel et al., 2016; Gillingwater, 

2016). Not only did intrathecal delivery of nusinersen improve some disease symptoms in Type I patients, but 

there was also evidence that levels of FL-SMN were increased in spinal motor neurons of treated individuals. 

Although this was an open-label (unblinded) trial, treatment can cautiously be compared favourably to the 

devastating natural history of Type I SMA patients where the majority of children have died or become ventilator-

dependent before the age of 12 months. Whilst the results of an ongoing Phase III study in a larger cohort of 

patients are awaited, the drug was approved in December 2016 by the United States Food and Drug 

Administration (U.S. FDA) for all Types of SMA due to the strength of the existing data. Likewise, nusinersen 

was recommended for European Union approval by the EMA in April 2017 and given marketing authorization in 

June 2017. 

The ASO therapeutic approach, however, requires invasive intrathecal and intracerebroventricular administration 

for adequate delivery to the CNS, thus not addressing the issue of expression levels of FL-SMN required in 

peripheral tissues, which are also potentially key contributors to SMA pathology (see below). A non-replicating 

adeno-associated virus (AAV9) vectore has been developed by AveXis to deliver a functional copy of a human 

SMN1 gene. A significant potential advantage of this approach is that AAV9 crosses the perinatal BBB, allowing 

a single intravenous dose to ensure widespread systemic delivery. A Phase I clinical trial is now under way. 

Small molecules that increase FL SMN2 expression can also be administered systemically but their ability to 

cross the BBB may be limited and their exact mode of action needs to be deciphered to ensure minimization of 

off-target adverse effects. SMN2-targeting small molecules developed by Novartis Pharmaceuticals and 

Hoffmann-La Roche are currently in clinical trials.  

Given that nusinersen and other small molecules act on SMN2, the evaluation of their activity in pre-clinical 

studies was limited to severe SMN2-harboring mice and patient fibroblasts (Pinard et al., 2017; Ratni et al., 
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2016; Singh et al., 2017). Similarly, the efficiency of AAV9-SMN1 to increase SMN expression was 

demonstrated in severe SMA mice (Armbruster et al., 2016; Passini et al., 2010). Whilst use of additional models 

such as drosophila and zebrafish may not be relevant in these instances, assessing the activity of SMN-

dependent approaches in iPSC-derived motor neurons, in vitro BBB models and other cell types may help shed 

light on cell-specific activity and efficiency of these various drugs, which could help in the development of their 

respective dosing regimens.   

EXPANDING THE REPERTOIRE OF TARGETS TO NON-NEURONAL TISSUES 

Although SMA has generally been considered as an archetypal disorder of selective motor neuron vulnerability, 

there is now abundant evidence that other tissues and cells are either overtly or sub-clinically affected in SMA 

patients and animal models (Hamilton and Gillingwater, 2013), including; skeletal muscle (Boyer et al., 2013; 

Martínez-Hernández et al., 2009; Mutsaers et al., 2011; Walker et al., 2008), pancreas (Bowerman et al., 2012c; 

Bowerman et al., 2014), liver (Bowerman et al., 2012c; Bowerman et al., 2014; Szunyogova et al., 2016), spleen 

(Deguise et al., 2017; Thomson et al., 2017), vasculature (Somers et al., 2012; Somers et al., 2016), heart 

(Bevan et al., 2010; Heier et al., 2010; Shababi et al., 2010) and Schwann cells (Aghamaleky Sarvestany et al., 

2014; Hao et al., 2015; Hunter et al., 2014; Hunter et al., 2016). The clinical implications of these observations is 

that treatment modalities that target solely the nervous system might be an inadequate long-term therapeutic 

strategy for SMA, especially in Type I patients where the consequences of low levels of SMN for the function of 

non-CNS tissues beyond infancy is unknown. 

To date, a single clinical trial provides evidence for the potential benefit of non-SMN therapies in the chronic 

phase of SMA. Olesoxime is an orally active drug, which is predicted to have favourable bioenergetics effects as 

it acts on the outer mitochondrial membrane to modulate the permeability transition pore opening in response to 

oxidative stress. It has a neuroprotective effect in a range of in vitro and in vivo models (Bordet et al., 2010). A 

recent clinical trial in SMA Type II and III (non-ambulatory) patients did not achieve its primary endpoint, though 

showed some evidence of disease stabilising effects using secondary endpoints (Bertini et al., 2017).  

Pharmacological compounds aimed at specifically targeting skeletal muscle are presently the only non-SMN 

non-CNS drugs in clinical trial for SMA patients. In particular, Cytokinetics has developed a fast skeletal troponin 

activator (CK-2127107) currently in a phase 2 study in SMA patients. Troponin mediates muscle contraction and 

strength (Gresslien and Agewall, 2016), and is abnormally distributed in skeletal muscle of Types I-III SMA 
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patients (Stevens et al., 2008). Interestingly, CK-2127107 has not been evaluated in either pre-clinical or phase 

1 clinical stages as a therapeutic strategy for SMA.  Instead, the drug was investigated in a rat model of heart 

failure, where its oral administration resulted in an overall amelioration of muscle endurance and performance 

following exercise (Hwee et al., 2015). A first generation form of the compound (tirasemtiv or CK-2017357) was 

also assessed in nemaline myopathy (Lee et al., 2013), myasthenia gravis (Russell et al., 2012) and 

amyotrophic lateral sclerosis (Hwee et al., 2014) rodent neuromuscular models, demonstrating in each a 

significant improvement in muscle strength.  Nevertheless, the FDA has recently granted the Orphan Drug 

designation to CK-2127107 for the treatment of SMA patients. 

Another interesting muscle target is the myostatin-follistatin pathway, whereby myostatin is a negative regulator 

of muscle growth (McPherron et al., 1997), which is inhibited by follistatin (Lee and McPherron, 2001). Several 

therapeutics strategies aimed at modulating this signaling cascade to promote muscle mass have therefore been 

evaluated in pathologies characterized by muscle atrophy, including SMA (Rodino-Klapac et al., 2009). 

Administration of recombinant follistatin to Smn–/–;SMN2;SMNΔ7/Δ7 mice resulted in significant improvement in 

muscle mass, gross motor function and lifespan .  However, inhibition of myostatin by genetic (follistatin 

overexpressing mice) or pharmacological (soluble activin receptor IIB (ActRIIB-Fc)) interventions had no obvious 

beneficial effects on the phenotype of the same mouse model (Sumner et al., 2009). Similar negative results 

were obtained upon genetically deleting myostatin in severe SMA mice (Rindt et al., 2012). Conversely, the 

recent administration of a soluble form of ActRIIB in a milder model of SMA model improved mass, contractile 

properties and size of Smn-depleted muscles (Liu et al., 2016). Results from SMA mouse studies have therefore 

been varied and the discrepancies may be due to the differing severities of the models used, the developmental 

timing of the approach and the specific targeting/delivery strategy utilized.  Several myostatin/follistatin strategies 

are currently in clinical trials for muscle pathologies such as Duchenne Muscular Dystrophy (DMD), Becker 

Muscular Dystrophy and Inclusion Body Myositis but have yet to be initiated for SMA. However, a recent report 

shows that serum and muscle biopsies from SMA patients display decreased expression of myostatin and 

increased levels of follistatin (Mariot et al., 2017), suggesting that additional mechanistic insight in the relevance 

of targeting this pathway for SMA therapy is required. 

Taken together, these findings highlight an important need to better understand the intrinsic pathologies not only 

in SMA neurons but also in muscle and other non-CNS afflicted organs, so that cell- and tissue-specific 

treatments can be developed and eventually used in combination with SMN- and CNS-targeted strategies. 
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IDENTIFYING NON-SMN TARGETS TO DEVELOP COMBINATORIAL THERAPEUTIC APPROACHES 

SMN-dependent gene therapies will require administration as early as possible, even pre-symptomatically, to 

exert the maximum effect (Bevan et al., 2010; Foust et al., 2010; Valori et al., 2010), and at present can be 

expected to reduce disease severity rather than effect a complete cure. In the absence of a routine screening 

program for newborns, the potential benefit may also be limited by diagnostic delay in milder forms, which 

generally have an insidious onset. An important step forward would be to develop therapeutic approaches 

targeting pathways that reflect the chronic pathological process in SMA, facilitating treatments that are adjunctive 

to SMN replacement therapy to improve and maintain neuromuscular integrity and function throughout the life of 

the individual.  

One of the first SMN-independent targets to prove beneficial with respect to potential SMA therapy is the RhoA–

ROCK pathway. The small GTPase RhoA and its downstream effector, the Ser/Thr protein kinase ROCK, are 

key modulators of actin dynamics (Luo et al., 1997). It has been demonstrated that the RhoA–ROCK pathway is 

aberrantly upregulated in Smn-depleted rodent neuronal cells (Bowerman et al., 2007) and in the spinal cord and 

skeletal muscle of Smn2B/– mice (Bowerman et al., 2010; Bowerman et al., 2012b). Importantly, it was shown that 

pharmacological inhibition of ROCK significantly increases lifespan and muscle pathology of Smn2B/– SMA mice 

(Bowerman et al., 2010; Bowerman et al., 2012b). Additional investigators have further confirmed the 

contribution of the RhoA–ROCK pathway in neuronal cells (Hensel et al., 2014), patient fibroblasts (Nölle et al., 

2011) and glial cells (Caraballo-Miralles et al., 2012). The tumour suppressor protein PTEN is a member of the 

protein tyrosine phosphatase family that can regulate cell migration, spreading, and growth (Lachyankar et al., 

2000; Li et al., 2003; Sano et al., 1999; Tamura et al., 1999). Interestingly, PTEN is phosphorylated by ROCK 

(Bermúdez Brito et al., 2015), thus leading to increased PTEN inhibitory activity on neuronal survival. While 

PTEN activity in SMA mice has yet to be investigated, we can hypothesize that the increased activity of the 

RhoA–ROCK pathway reported in SMA mice (Bowerman et al., 2010; Bowerman et al., 2012b) induces the 

increased phosphorylation of PTEN. Concordantly, it has been found that suppressing PTEN in SMA mice 

through a gene therapy approach led to improvements in NMJ pathology and a significant extension in lifespan 

(Little et al., 2015). Combined, these studies have highlighted actin modulators as potential targets for 

combinatorial therapeutic approaches for SMA. 
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Further regulators of actin dynamics have emerged as potential therapeutic targets for SMA. Plastin 3 is an 

actin-bundling protein that was identified as a modifier of disease severity in an investigation of discordant family 

members that carried the same SMN1 mutations (Oprea et al., 2008). Additional analyses of serum (Yanyan et 

al., 2014) and iPSC-derived motor neurons from SMA patients have further supported the influence of plastin 3 

levels on disease progression in certain families but not others (Boza-Morán et al., 2015; Heesen et al., 2016). 

Indeed, overexpression of plastin 3 in a zebrafish model of SMA significantly rescues the axonal growth and 

branching defects caused by Smn depletion (Oprea et al., 2008). Further analysis of Smn mutant zebrafish 

reveals that reduced Smn levels lead to decreased plastin 3 protein expression, NMJ defects and aberrant motor 

function, whereby the latter are corrected by plastin 3 overexpression (Hao et al., 2012).  More recently, studies 

in mice have shown that increased expression of plastin 3 delays axonal degeneration and improves NMJ 

function (Ackermann et al., 2013) as well as ameliorates survival and neuromuscular phenotype (Kaifer et al., 

2017), possibly through the modulation of endocytic pathways (Hosseinibarkooie et al., 2016). However, it must 

be noted that a number of animal and patient studies do not reflect the suggested modifying powers of plastin 3 

on SMA pathogenesis (McGovern et al., 2015; Stratigopoulos et al., 2010), highlighting the complex relationship 

that may exist between these genetic interactors. The pathological relevance and therapeutic importance of non-

SMN targets can be highly dependent on the severity of the disease (Kaifer et al., 2017) and as such, should be 

evaluated in hypomorphic models, whether transgenically or pharmacologically induced.  Nonetheless, the 

studies on RhoA–ROCK, PTEN and Plastin 3 have highlighted actin modulators as potential targets for 

combinatorial therapeutic approaches for SMA. 

Subsequent work has also revealed other promising non-SMN targets such as chondrolectin, stasimon, cyclin-

dependent kinase 5 (cdk5) and Uba1. It has been shown that the transmembrane protein chondrolectin 

(encoded by Chodl) and its binding partners are potential modifiers of axonal integrity in SMA mice and that 

altered expression of Chodl is found in spinal motor neurons of SMA mice (Bäumer et al., 2009). Importantly, 

increasing the expression of Chodl rescues motor neuron outgrowth defects in a zebrafish model of SMA (Sleigh 

et al., 2014). Experiments in mouse models are under way to fully evaluate the therapeutic potential of Chodl 

modulation. 

As described above, one of SMN’s housekeeping function is regulating RNA metabolism, particularly in the 

biogenesis of snRNPs (Li et al., 2014), essential components of the RNA splicing machinery (Will and 

Lührmann, 2001). It has been demonstrated that Smn depletion specifically impacts the activity of the 
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splicesome complex containing the U12 snRNP (Doktor et al., 2017; Gabanella et al., 2007) and that the 

stasimon gene is a direct target of U12-dependent splicing (Lotti et al., 2012). Stasimon plays a role in synaptic 

transmission in neuronal synapses and its expression is significantly reduced and splicing similarly altered in 

motor and sensory neurons of SMA mice  (Lotti et al., 2012). Importantly, overexpression of stasimon restored 

neurotransmitter release in drosophila Smn mutants and rescued motor axon growth and branching defects in 

SMA zebrafish (Lotti et al., 2012). 

The activity of cyclin-dependent kinase 5 (Cdk5) has been reported to be upregulated in SMA mice and patient 

iPSC-derived motor neurons (Miller et al., 2015). The increased abundance of Cdk5 is responsible for the 

pathological hyperphosphorylation of the tau protein in Smn-depleted neuronal cells (Miller et al., 2015). A 

transgenic approach was used to completely knockout Cdk5 expression in SMA mice, which lead to significant 

rescue of motor neuron synaptic stripping, motor neuron death and NMJ denervation (Miller et al., 2015). 

Interestingly, a recent unbiased RNA-Sequencing assessment of global gene changes in Smn-depleted mouse 

tissues confirmed the specific missplicing of U12 snRNP-dependent genes, several of which are Ca2+ channel 

genes and may be upstream regulators of Cdk5 activity such as  (Doktor et al., 2017).  

Finally, the ubiquitin enzyme Uba1 (Groen and Gillingwater, 2015), and its downstream effectors (including beta-

catenin), have been identified as major targets acting downstream of SMN to regulate neuromuscular and 

systemic pathology in SMA. Reduced levels of Uba1 were reported in all tissues and organs investigated from 

SMA mouse models (Aghamaleky Sarvestany et al., 2014; Wishart et al., 2014), and beta-catenin, which 

accumulates in neuromuscular tissues in SMA, has been uncovered as a key downstream target of Uba1 

deficiencies in SMA. Importantly, pharmacological inhibition of beta-catenin dramatically ameliorated 

neuromuscular pathology in zebrafish, drosophila and mouse models of SMA (Wishart et al., 2014) while 

systemic Uba1 gene therapy increased survival and improved neuromuscular and peripheral pathology of SMA 

mice (Powis et al., 2016). 

Thus, a range of pathways are already candidates for non-SMN therapy approaches. As the list of molecular 

effectors grows, drug-screening approaches to identify pharmacological compounds that can modulate them will 

be essential. In addition, identifying novel targets should combine proteomics/transcriptomics studies with 

genome-based network analysis and drug-repositioning strategies. Combinatorial experimental paradigms 

should then be put in place to evaluate the therapeutic potential of a ‘cocktail treatment’ comprising a SMN gene 
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therapy and a non-SMN-targeting drug, optimally making use of the multiple in vitro and in vivo models 

discussed above (Figure 3). While several non-SMN pathways and molecular targets have been highlighted as 

being aberrantly regulated in SMA models and display therapeutic potential, these studies remain, for the most 

part, in the pre-clinical discovery phase, in contrast to SMN-dependent strategies that are quickly dominating the 

clinical trial landscape. For non-SMN treatments to become a practical reality in the combinatorial approach 

paradigm, an efficient strategic plan needs to be established to facilitate their transition to the clinic.  

DEVELOPING APPROACHES FOR EFFICIENT SYSTEMIC DELIVERY OF THERAPEUTIC COMPOUNDS 

TO TARGET CNS AND NON-CNS TISSUES 

While motor neurons are undoubtedly the primary cellular target in SMA (Powis and Gillingwater, 2016), 

cumulative evidence highlights the role of other cells and tissues that may be clinically or sub-clinically affected. 

However, most of these studies have investigated these tissues or cells independently of the others. The 

hierarchal contribution of each to Types 0-IV SMA therefore remains unclear. While current gene therapies in 

clinical trials are promising, nusinersen (Ionis Pharmaceuticals/Biogen) delivery circumvents the peripheral 

tissues and organs by being injected directly to the CNS, whereas multiple administration of the AAV9-SMN1 

gene therapy (AveXis) might not be possible due to immunogenicity. In both of these cases, this leaves the 

potential for incomplete rescue of SMN deficiency in peripheral organs and the potential for development of non-

CNS pathologies later in life.  

Development of novel therapeutic approaches targeting non-SMN targets should therefore include careful 

consideration of both CNS and systemic delivery methods. The optimal dosing regimen for a pharmacological 

compound should balance its ability to target all relevant tissues with the need to make therapy as non-invasive 

as possible. An option for systemic delivery of molecules is to conjugate them with a vehicle that can transport 

them across the membrane of multiple cell types. This has proven efficient for the delivery of ASOs under the 

neutrally charged chemistry of phosphorodiamidate morpholino (PMO) (Douglas and Wood, 2013). Cell-

penetrating peptides (CPPs) have previously been shown to cross both plasma and endosomal membranes 

(Mitchell et al., 2000). One such peptide-conjugated PMO has been developed, termed peptide nucleic 

acids/PMO internalization peptide 6a (Pip6a)-PMO, that efficiently modulates splicing in various tissues of a 

DMD mouse model (Betts et al., 2012). Importantly, it is delivered via a single intravenous (IV) injection. 

Recently, it has been reported that conjugation of Pip6a to the SMN2 ISS-N1 PMO results in dramatic 
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improvements in survival and neuromuscular phenotype associated with increased FL-SMN levels in both CNS 

and peripheral tissues (Hammond et al., 2016). CPPs therefore have significant potential for facilitating the 

targeting of SMN to the whole body as well the eventual delivery of therapeutic non-SMN targets or drugs in a 

similar fashion.  

CONCLUDING REMARKS 

Gene therapy and ASO approaches to increase SMN levels are now entering the clinical arena. In the severest 

form (Type I) of SMA, promising preliminary results must be balanced with a full appreciation of the potential 

limitations of such strategies. The value of SMN-based therapies in older Type II and III patients is unclear and it 

may be some time before these can be accurately estimated. Translational research should therefore address 

the development of non-CNS and SMN-independent therapeutic approaches to complement and enhance the 

benefits of CNS-directed and SMN-dependent therapies, taking into account the need to maintain the 

neuromuscular system of an SMA patient through childhood and puberty, when there is maximal growth of the 

axial skeleton, and into adult life when a process of age-related attrition of motor units is likely to contribute to 

progressive loss of motor function (Figure 4).  

There remains a need for the use of various in vitro and in vivo models as well as molecular high-throughput 

approaches for the rapid identification of new targets and drugs. It will be crucial to develop tools to evaluate the 

effects of combination pharmacological therapies at different disease stages. It is therefore of utmost importance 

that the SMA research and clinical community, as well as those living with SMA, recognise the need to develop 

and test combinatorial therapeutic approaches that can be effectively delivered systemically and target both 

SMN and non-SMN molecular effectors. This will allow for a better understanding of the tissue requirements for 

SMN and non-SMN treatments and, ultimately, provide the best therapeutic strategy for SMA. As with most 

chronic progressive neurodegenerative disorders, it is likely that, once loss of neuronal integrity has been 

initiated, combinatorial approaches to therapy will be required to maintain neuromuscular health throughout life. 
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Table 1. Clinical and molecular features of SMA sub-types 

Type of SMA 0 I II III IV 

SMN2 copy 

number 

1 2 3 3-5 3-5 

Age of onset In utero Majority by 6 

months 

6-12 months After 18 months: 

IIIa: <3yrs 

IIIb:>3yrs 

Adulthood 

Key clinical 

features 

Widespread 

motor and 

sensory 

neuronal loss, 

contractures, 

high incidence 

of congenital 

cardiac defects 

Neonatal 

hypotonia, poor 

feeding and 

head control, 

respiratory 

insufficiency, 

never develop 

ability to roll or 

sit unaided  

Defined by 

achieving the 

milestone of 

sitting 

unsupported. 

Never walk. 

Respiratory 

muscle 

weakness 

Defined by 

acquisition of 

ability to walk 

unaided, even if 

briefly.  

Slowly develop 

progressive 

proximal 

weakness; lower 

limb 

predominance.  

Natural history Peri-natal death  50% death by 

12 months, 90% 

death by 24 

months without 

invasive 

ventilation 

Life expectancy 

30-50yrs 

depending on 

respiratory 

function 

Loss of 

ambulation very 

variable (from 

childhood to late 

life). Respiratory 

involvement 

uncommon. Life 

expectancy near 

normal.  

Slow 

progression. 

Ambulation 

maintained. 

Normal lifespan. 

 

Note: i) All SMA patients, regardless of type have no functional copies of SMN1, ii) the number of SMN2 

copies in unaffected individuals (carriers or non-carriers) can range from 3-5. 
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Table 2. SMN-dependent therapies in clinical trial* 

Strategy Drug ClinicalTrials.gov 
identifier 

Clinical stage 

SMN2 ISS-N1 
targeting ASO 

Nusinersen/ 
Spinraza 

NCT02386553 
NCT02052791 
NCT02865109 
NCT01780246 
NCT02462759 
NCT01703988 
NCT02193074 
NCT02292537 
NCT01839656 
NCT02594124 
NCT01494701 

Active, Phase 2 
Completed, Phase 1 
Expanded access 
Completed, Phase 1 
Ongoing, Phase 2 
Completed, Phase 1 & 2 
Completed, Phase 3 
Completed, Phase 3 
Active, Phase 2 
Enrolling by invitation, Phase 3 
Completed, Phase 1 

SMN2 targeting small 
molecules 

LMI070 
 
RO7034067 
 
 
 
 
Hydroxyurea 
 
 
 
Celecoxib 

NCT02268552 
 
NCT03032172 
NCT02913482 
NCT02908685 
NCT02633709 
 
NCT00485511 
NCT00568698 
NCT00568802 
 
NCT02876094 

Active, Phase 1 & 2 
 
Recruiting, Phase 2 
Recruiting, Phase 2 
Recruiting, Phase 2 
Completed, Phase 1 
 
Completed, Phase 2 & 3 
Completed, Phase 1 & 2 
Unknown, Phase 1 & 2 
 
Not yet recruiting, Phase 2 

SMN1 gene therapy AVXS-101 NCT02122952 Active, Phase 1 
* as of June 2017 
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FIGURE LEGENDS 

Figure 1.  

SMN1 and SMN2 contribute to spinal muscular atrophy (SMA). In healthy individuals, the survival motor neuron 

1 (SMN1) gene produces 100% full length (FL) SMN protein while the SMN2 gene produces ~10% FL SMN and 

~90% of a non-functional product that lacks exon 7 (SMNΔ7) due to aberrant alternative splicing. In SMA 

patients, the SMN1 gene is lost due to mutations or deletions. SMN2 remains and the small amount of FL SMN 

is sufficient for survival. The number of SMN2 copies correlates with disease severity. 

Figure 2. 

Localization of the survival motor neuron (SMN) protein in neuronal cells and associated general cellular 

functions. SMN regulates small nuclear ribonucleoprotein (snRNP) biogenesis, maturation and recycling in 

Gemini of coiled bodies (Gems) and Cajal bodies; ribosome biogenesis in nucleolus; snRNP biogenesis and 

actin dynamics in the cytoplasm; mRNA transport in axons; actin dynamics and vesicle release in the synpase. 

Figure 3. 

A model experimental plan to determine the therapeutic potential of a candidate non-survival motor neuron 

(SMN) molecular target or drug, alone and as a combinatorial therapy. Various in vitro and in vivo models such 

as an in vitro blood-brain barrier (BBB) model, Smn mutant zebrafish, hypomorphic SMA mouse models and 

induced pluripotent stem cell (iPSC)-dervied cells (e.g. motor neurons) could be used to evaluate different 

activity and efficiency parameters of the candidate target or drug. Each model system has a particular 

informative value depending on the candidate target or drug. Finally, the same experimental paradigm should be 

followed to assess the synergistic or additive value of combining the non-SMN treatment strategy with an SMN-

dependent therapy. 

Figure 4. 

Overview of the natural history of spinal muscular atrophy (SMA), major developmental milestones and 

treatment strategies. Although the precise details of SMN expression in the developing human nervous system 

are difficult to study, evidence from animal models suggests that SMN levels peak in the period of maximum 

neuromuscular development and then decline to a stable low level. This means that there are different windows 
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of opportunity for the various types of proposed therapies to be effectively employed. Whether combinatorial 

therapies might be particularly applicable in the more chronic phase of SMA or from the outset is a priority area 

for research.  

 

 

 










