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Abstract—The major challenges for optical based tracking
are the lighting condition, the similarity of the scene, and the
position of the camera. This paper demonstrates that under
such conditions, the positioning accuracy of Google’s Tango
platform may deteriorate from fine-grained centimetre level to
metre level. The paper proposes a particle filter based approach
to fuse the WiFi signal and the magnetic field, which are not
considered by Tango, and outlines a dynamic positioning selection
module to deliver seamless tracking service in these challenging
environments.

I. INTRODUCTION

In 2016, Google unveiled the world’s first 3D augmented
reality Tango-based consumer smartphone, which delivers low
latency six degrees of freedom tracking and 3D reconstruction
in one complete package1. This release was significant, as for
the first time, the consumer was presented with a portable
mobile device that has the potential of providing centimetre
level indoor positioning, by mixing computer vision, inertial
tracking, and machine learning.

Nevertheless, the major challenges posed for Tango are
the lighting condition, the similarity of the scene, and the
camera position, which are common hurdles for any optical
based tracking system. This paper will illustrate that, under
such conditions, Tango’s fine-grained centimetre positioning
accuracy may degrade to metre level, or worse, it may stop
working completely (see Figure 1).

To tackle these challenges, this paper proposes a combina-
tion of two ubiquitous indoor elements - the WiFi signals and
the magnetic field, that are not considered by Tango. They
will be fused under a particle filter, which is governed by
a dynamic switching system to select what tracking module
to use under certain circumstance. More significantly, the
addition of WiFi and magnetism does not require excessive
effort in handling and maintenance, under our proposal. They
will blend naturally into the Tango platform and may be
applied in other existing Tango based systems. Ultimately,
the paper aims to deliver a multi-modal system that combines
vision, inertia, magnetism and WiFi signal in one complete
platform.

1http://www3.lenovo.com/sg/en/smartphones/smartphone-phab-
series/Lenovo-Phab-2-Pro/p/WMD00000220 - last accessed in 4/2017

Fig. 1. The motivation for combining WiFi and magnetism to improve on
Tango’s positioning. Dark and dim lightings caused Tango to deviate heavily
at corners. Clear front view is needed for Tango to operate.

Overall, the contributions of the paper are three-fold:

• We assess the positioning accuracy of the Tango mobile
device in two realistic and challenging indoor environ-
ments, that are a large auditorium with wide space and
symmetric structure, and an office building with dark
corridors, which aim to exploit the weaknesses of optical-
based tracking systems.

• We fuse the WiFi signal and the magnetic field by a
Particle Filter to mitigate such challenges.

• We posit a novel positioning framework that dynamically
moves between tracking modules to provide seamless
indoor positioning service.

The remaining of the paper is organised into five sections.
Section II overviews Tango’s state-of-the-arts, emphasising on
the limitations of such system. So that, Section III details our
approach to tackle these challenges. Section IV then describes
the test environments that exploit such weaknesses and the
performance evaluation. Finally, Section V reviews the related
work, and Section VI summaries the contributions and outlines
further research.978-1-5090-6299-7/17/$31.00 c©2017 IEEE.



II. AN OVERVIEW OF THE TANGO PLATFORM

This section provides insight into the structure of Tango,
emphasising on the challenges faced by such system.

A. Visual inertial odometry tracking

Visual inertial odometry (VIO) allows Tango to track its
own movement and orientation in 3-dimensional space with six
degrees of freedom. It achieves that by using an accelerometer
to measure how fast the device is moving in which direction, a
gyroscope to measure how much it is tilting, and a 160 degree
wide angle fish-eye camera to calculate how far it is moving
between frames. By combining inertial motions with visual
input, Tango can work out its current whereabouts related to
its starting position. This tracking process is performed up
to 100 times a second in real-time, with the fish-eye camera
provides 60 images per second.

B. Depth sensing

The challenge for VIO is that the device does not experience
any depth perception of the surroundings. The camera is able
to see the nearby objects, yet they appear as in a flat world.
To mitigate this hindrance, Google offer three hardware-based
resolutions. The first one is based on Structure Light which
uses an infrared projector to send out an array of invisible
infrared dots to illuminate the environment. Based on the size
of the dots, observed by the camera, Tango knows how far
away the object is (i.e. the smaller the dot, the nearer it is). The
second option also relies on the infrared projector, however,
it uses a dedicated camera to capture the reflected infrared
beams, allowing it to measure the time-of-flight (ToF) taken
to travel back and forth. The last option does not use infrared
technology, but employs two horizontally adjacent cameras to
emulate the human eyes. They allow the device to perceive
the same scenery at slightly different perspectives to infer the
depth with trigonometry. In summary, depth sensing equips
Tango with the ability to recognise the shape of nearby objects,
as well as the distance to them.

C. Area learning

While VIO and depth sensing allow Tango to achieve fine-
grained short-term tracking, the long-term accuracy quickly
deteriorates because of the accumulated sensors’ error. This is
a well-known challenge for inertial-based tracking. To mitigate
this challenge, Google came up with a machine learning
solution, called ’Area Learning’. Without learning, Tango has
no memory of the environment. Hence, it can only trace its
position back to the relative starting position (0, 0, 0) of each
session. With learning, Tango can re-position itself within a
previously learned environment. By doing so, at the same time,
it corrects any drifting errors from the sensors, and remains
accurate over time.

To perform Area Learning, the user must let the Tango-
based device experience the environment first hand, by walk-
ing through the tracking zone. Depending on the unique
textures of the environment (i.e. furniture, interior layout),
multiple walks from different cardinal directions may be

Fig. 2. The components and workflows of the Tango positioning platform.

needed for Tango to fully understand the building. At each
position, Tango converts the visual information obtained via
the camera and the depth sensors into searchable mathematical
descriptions to be stored on the device. When needed, these
entries can be quickly indexed to localise the device within
the area (see Figure 2).

D. Challenges

Equipped by the knowledge of the working internal system
discussed above, this paper identifies three challenging settings
that exploit the weaknesses of Tango.

Firstly, with every visual based system, the lighting remains
a critical challenge. The fish-eye camera becomes under-
exposed in low lighting and is over-exposed in bright scenes.
Whereas, the dark surfaces absorb the infrared lights, which
are also disoriented under sun lights. The low light condition
is more common indoors, where most modern offices install
motion sensor light for energy saving. These smart lights
switch themselves off when no movements are detected, and
do not react to brief movements. As such, the system may be
left in the dark for some period of time.

Secondly, to enable tracking, Tango’s camera must have a
direct line of sight to the environment at the same time as the
user does. This is a fair assumption for navigators, who should
hold the device at chest level and at an angle to look at the
screen for directions, which in turn, allows the back camera
to observe the front scenery. Passive monitoring, however,
renders the system useless because the device may be left in
the pocket. Other practical scenarios include the user making
a phone call while walking, for which the device is looking
at one side of the user.

Thirdly, with Area Learning, Tango tries to memorise
interesting features of the environments (e.g. objects with
corners and edges). As such, blank indoor areas with no unique
textures (e.g. large open space) may be harder to localise.
Additionally, similar looking areas may confuse the system
and put the user in the wrong position.

In summary, these scenarios may decrease the positioning
accuracy, or worse, temporarily interrupting the Tango
tracking service, as we will examine later on.



III. TOWARDS WIFI AND MAGNETIC BASED TRACKING
FOR GOOGLE TANGO

We are now in a good position to explain our proposal
to tackle the aforementioned challenges facing the Tango
platform. We will progressively outline each working step and
explore how our idea improves on it.

A. Off-line training

To enable localisation, prior knowledge of the tracking
zone must be established in advance. For Tango, this pro-
cess involves walking through the building at least once to
allow Area Learning to create a mathematical model of the
environment. With our approach, two additional WiFi and
magnetism training databases are required. Some readers may
immediately concern that these databases add burdens to
collect and maintain, from which, other similar systems have
suffered. However, two major distinctions of our approach are:

1) Ease of generating the training databases. The merit
of our approach is that the magnetic field and the WiFi
signals collection can be executed simultaneously along
side the Tango learning process, with minimal effort
from the surveyor. The key asset is since Tango provides
the positioning co-ordinates automatically as it learns the
environment, they can also be used to label the WiFi and
magnetic samples.

2) Ease of updating the training databases. The ma-
jor hassle of implementing a training database is
that the changing environment requires occasional
re-calibrations. Although obtaining fresh samples is
straightforward, it is challenging to map them to the
correct training index. With Area Learning, we can align
the user’s position to the trained ones. Hence, the old
training samples can be updated with the latest ones.

For each snapshot, the device collects the WiFi fingerprint
(i.e. the WiFi signal strength (RSS) from nearby WiFi Access
Points) and the magnetic signature (i.e. the magnetic field
strength along the 3-axes of the phone), and labels them with
the Tango position. In the next sections, we will learn how to
use these databases to handle the challenging scenarios.

B. Tracking with WiFi

Given the WiFi training database generated from the last
step, we match the real time WiFi sample recorded from
the user to estimate his current position. This process is also
known as WiFi fingerprinting, which has been the subject of
extensive research in the past decade [1]. The main challenge
of WiFi fingerprinting is the high volatility of the WiFi RSS,
which aggravates the uncertainty of the matching process. It
is well-accepted that the accuracy of WiFi fingerprinting is
around 2-3 metres on average. As such, it is unintuitive to
combine WiFi positioning with Tango that is capable of fine-
grained centimetre accuracy. However, there are two scenarios
that WiFi may improve on Tango.

1) Tango does not work under poor lighting condition,
or there is no front line-of-sight. As Tango must see

the front scenery to enable tracking, it does not work
when the back camera is blocked (e.g. user puts the
device at ear-level to make calls, or temporarily puts
phone in pocket), or when the lighting is too dim. WiFi
or magnetic field does not have this problem, and may
substitute for the lack of vision in these scenarios.

2) Wide space and plain looking areas with no unique
features. Tango’s Area Learning distinguishes between
positions by memorising the notable features of the
scene. That means, similar looking areas or ones without
any furniture may confuse Tango.

Our idea of utilising WiFi is allowing it to act as an
anchor, for which the Tango based position is constrained
within the estimated WiFi positioning circle. Additionally,
WiFi positioning is useful when every other options fail (i.e.
dark setting with non-coverage of magnetic database). In this
paper, we employ the well-known Naı̈ve Bayes classifier to
perform WiFi fingerprinting [2].

C. Tracking with magnetism

In contrast to WiFi, indoor magnetism is known to be
temporally stable (see Figure 3). However, the magnetic field
strength (MFS) is not spatially unique, because it contributes
just 3 measures for each position, which corresponds to
the strength along each of the 3 axes of the phone. More
challengingly, the 3D orientation of the phone varies the
above measures. As such, they must be reduced into one total
scalar magnitude (i.e.

√
(X2 + Y 2 + Z2)), which practically

means we only have one magnetic field measure for every
position. This is a huge challenge for magnetic field based
positioning, because it is inevitable to observe the same
magnetic magnitude in several positions in the tracking zone.

(a) Poor temporal uniqueness of the
WiFi RSS of the same path over one
month.

(b) Strong repeatability of the MFS for
the same path. The slight spreading be-
tween trajectories was caused by small
differences in walking speeds and shift-
ing positions.

Fig. 3. Comparison of the WiFi RSS and the MFS surveyed on the same
path, over one month. MFS’ spatial uniqueness is salient.

To tackle this challenge, we merge the magnetic field
strength into a sequence to increase its dimension. Hence, each
magnetic sequence does not just represent a single position,
but a trajectory of all visited positions during this session. The
rationale of our approach are:



1) A trajectory is more distinctive than a position. It is
less likely to have two identical training magnetic paths.

2) Most office corridors are long and narrow pathway.
As such, we assume there is one trajectory per corridor.

3) Most users follow a straight walking direction. In
such constrained indoor space, we assume the user does
not make random turns, except at the corners.

Essentially, with Tango providing the positioning label in
real time, we can promptly identify which magnetic training
trajectory to use and whereabouts on it the user starts walking,
whereas other magnetic based systems must slowly build up
the magnetic sequence until it is long enough to match. To
compare two magnetic trajectories, we employ the well-known
Dynamic Time Warping algorithm [3].

D. Fusion of WiFi and magnetism

Thus far, we have learned how to use WiFi and magnetism
independently to estimate the user position. Nonetheless, it
is logical to combine them for more accurate positioning
given their complementary properties. That is, distant positions
should observe different WiFi fingerprints, because of limited
broadcasting range of the WiFi APs, but similar magnetic
signature, thanks to its highly spatial similarity. In contrast,
neighbour positions should perceive similar WiFi fingerprints,
but different magnetic signature (see Figure 4).

(a) The Euclidean distance in the magnetic field
space of neighbour positions can be large, whereas
that of remote ones can be similar.

(b) The Euclidean distance in the WiFi signal
space of neighbour positions are fairly similar,
whereas that of remote ones are distinctive.

Fig. 4. The justification for combining WiFi and magnetism. The distance
matrices for all pairs of continuous positions in our office test bed’s floor.

Two most popular techniques to combine different sensors’
reading in a time-series is the Kalman Filter (KF) and the
Particle Filter (PF) [4]. We adopted the PF because of the
non-Gaussian nature of the WiFi RSS, the magnetic field and
the non-linearity of the user’s movements. We avoid the hassle
of implementing an Extended KF to satisfy these conditions.

The basic principle of a PF is recursively refining a set
of positioning estimations (i.e. particles) based on the latest
sensors’ readings, on a per-step basis. The state of a particle
includes its position (x, y), its heading direction ~d, and a
weight to represent the likelihood of being the true position.
When the user moves, PF re-samples this set of particles to
get rid of old ones, include new possible particles and update
existing particles, according to the latest magnetic and WiFi
signatures. Their detailed implementations are outlined below.
• Particles initialisation. With our approach, initial parti-

cles do not spread all over the map, but only circle around
the previously known position suggested by Tango.

• Particles weighing. Each particle is assigned a weight
that is the DTW distance between the training trajectory
containing this particle and the actual observed trajectory.

• Particles distribution. As the user moves to a new
position, the device records a new WiFi RSS, for which
WiFi fingerprinting will recommend a new set of particles
matching this sample. These newly introduced particles
are essential to avoid the depletion problem, where we
end up with only old unlikely particles. We propose
a weight-based selection process, for which each new
particle will be ranked against existing ones. As such,
only those that are physically close in terms of the
Euclidean distance are accepted (see Figure 5).

Fig. 5. The weight-based particle selection process. New particles are ranked
against old ones, only the closest in terms of Euclidean distance are admitted.

• Particles re-sampling. After all particles are distributed,
they will have their directions updated as follows, with
~dgyro is the device’s heading measured by the gyroscope.

~d′ =

{
~dgyro, for new particles

~d+ ~dgyro, for existing particles
(1)

Simultaneously, we go through all current particles, and
remove 50% particles with the lowest weights and those
further away from the current estimated ones. Hence,
under our proposal, an old particle will either die of low
weight, or being out of range. This process is essential
to avoid the number of particles going up exponentially
as the user navigates.



E. A dynamic selection system

Having explained all core sensor based positioning modules
(i.e. WiFi, magnetism, Tango) and understood their strengths
and weaknesses, we are now in a good position to propose
a system that decides what module to use to benefit certain
scenario. The flow moves between three operating regimes (i.e.
Tango positioning, WiFi positioning, and mixture of WiFi -
Magnetism positioning) (see Figure 6).

Fig. 6. The decision process of our system.

When the user opens the tracking app, the system performs
WiFi fingerprinting to obtain a coarse positioning estimation.
If the Tango position is not within this WiFi estimate, which
indicates that Tango may confuse the current scenery with
others in its training database, we ignore Tango position until
it is within the WiFi circle. At any point during tracking that
Tango’s camera reports over- or under-exposure, we turn to the
referenced magnetic trajectories, if available, to perform the
PF of WiFi and magnetism, until Tango resumes functionality.

IV. EVALUATION OF PERFORMANCE

This section conducts the experiments to assess the perfor-
mance of our proposal, and addresses the following research
questions.
• How much does Tango’s positioning accuracy deteri-

orate in the experimented environments? We hypoth-
esise that Tango’s performance may likely drop or even
stop working all together.

• To what extent WiFi and magnetism can support
Tango in these scenarios? Ideally, we expect to maintain
a Tango-level accuracy with our proposal.

A. The test beds

The first test bed is a three-storey building housing the
Computer Science department of Royal Holloway University.
The surveyed zone measures about 45 metres by 40 metres

per floor, on three levels. The building is populated by motion
based lights in the corridors, which will be exploited in our
tests (see Figure 7a). The second test bed is a huge 500 seater
auditorium of 900 square metres at the same university. The
notable properties of this test bed are its symmetric structure,
which portrays similar scenery from different positions’ per-
spective, and its wide space with little furniture (see Figure 7c).

(a) The office test
bed in normal
lighting.

(b) The office test
bed with part of the
corridor in the dark.

(c) The auditorium test bed. (d)
Auditorium’s
left stair.

(e)
Auditorium’s
right stair.

Fig. 7. The two test environments.

Training-wise, a surveyor walked through the building sev-
eral times (i.e. twice in both directions for the office test
bed, and in random directions for the auditorium test bed)
to allow Tango to learn the area. The WiFi and magnetism
training procedures were executed simultaneously along side
the learning process, with the WiFi chipset collecting the WiFi
RSS at 1.5 Hz and the magnetometer collecting the MFS at 5
Hz, and Tango providing the positioning label for all sensors’
samples at 10 Hz. Note that we reduce Tango’s sampling rate
to 10 Hz to preserve battery, since this is a taxing process. Due
to WiFi’s low sampling rate, the surveyor walked consistently
at a low speed to allow at least 1 WiFi sample every metre.
In the tracking phase, the user may walk at various speeds,
and the system would still be able to cope with, thanks to the
dense coverage of the training databases and the algorithms
we implemented.

Testing-wise, we compiled an independent test set for each
test bed. The challenge for doing so is that we have no
other reference system that is more precise than Tango itself
for ground-truth. Hence, we manually tape-marked several
positions in each test bed. Through out the experiments, these
known landmarks were visited multiple times, from different
directions, using different routes. The evenly spaced office
doors in the office test bed also helped as references to



generate the test data. At each test position, the Euclidean
distance of the estimated positioning co-ordinate and the true
position was used to assess the performance accuracy. Since
the aim of the paper is to maintain the performance of Tango
in challenging environments, we do not have any test positions
that are outside the training areas.

(a) WiFi coverage in one level of the
office test bed.

(b) Magnetic coverage in one level
of the office test bed exhibits high
level of anomalies.

(c) WiFi coverage in the auditorium test bed.

Fig. 8. The training coverage of the two test environments.

All experimental periods were carried out during office-
hours, with people walking in the building, and seen by
the phone’s camera. More details of the training and testing
databases are summarised in Table I. The Tango device used
in this paper is the Lenovo Phab 2 Pro smart phone, running
Android Marshmallow. For evaluation purpose, we developed
an app to collect the WiFi and magnetism.

TABLE I
SUMMARY OF THE TRAINING AND TESTING DATABASES FOR EACH TYPE

OF SENSOR.

Magnetometer WiFi Tango
Power consumption Low Average High
Sampling rate 5 Hz 1.5 Hz 10 Hz
Training positions (office) 814 257 1667
Training positions
(auditorium) 482 152 976

Test positions (office) 138 138 138
Test positions
(auditorium) 45 45 45

B. Normal environment testing

Before committing into further challenging environments,
we first test the positioning accuracy of Tango in normal,
working environment, that is as close as possible to the one
used to train the system. This result will act as a baseline

for further testing. To our knowledge, since the release of the
Tango mobile handset in December 2016, there has been no
other work that assesses the performance of the device yet.

For this experiment, a tester walked through the above two
test beds, with Tango providing the positioning estimations on
the go. No WiFi or magnetism was used to improve Tango.
For the office test bed, the result displays an impressively
consistent accuracy of under 40 cm error, with the help of
just Area Learning, whereas WiFi positioning managed a less
impressive accuracy of about 2.5 m error. The performance
gap, however, changes significantly for the auditorium test
bed, where Tango struggled at about 3.5 m error, which was
just slightly better than WiFi’s. This result was down to the
similarity of the scenes in this test bed, which will be examined
later on (see Figure 9).

Overall, the results in this section suggested that under
favourable conditions, Tango is capable of highly fine-grained
centimetre accuracy.

C. Dark environment testing

This test exploits the low lighting vulnerability of Tango
with the motion based lights in the corridors of the office test
bed. This experiment was performed in late evening, when the
building was empty and all the lights were automatically off.
As the tester walked through the corridors, the lights slowly
turned themselves back on.

We noted two interesting observations. Firstly, the lights
possess various sensitivities. So that, some of them did not
react to brief or slow movements. Secondly, there was no co-
ordination amongst them. Hence, each light is only aware of
the direct space beneath itself. The resulting scenario was the
user may be left in the dark or dim lighting in part of the
corridor as he navigates through.

Nonetheless, the ultimate question is whether this condition
has any impact on Tango’s positioning. In complete darkness,
Tango obviously stops working and our system can immedi-
ately engage to estimate the user position with WiFi and mag-
netism. In dim lighting, we noticed that Tango still operates
although it is no longer certain of the surroundings. In straight
corridor, VIO did an adequate job in maintaining Tango’s
trajectory. However, its path strongly deviates when the user
turns corner (see Figure 10a). To tackle this challenge, we use
the camera’s exposure level to detect such situation (i.e. the
camera is under-exposed), and allows our system to take over
the positioning estimation. The result indicates a competitive
performance using WiFi and magnetism, compared to Tango’s
(see Figure 10).

D. Similar scenery testing

The tests in this section exploit the huge space and the
symmetric structure of the auditorium test bed. In the first
experiment, a tester walked around the large apron in a closed
loop several times with only a podium and a few chairs in
sight. Such conditions give away no unique elements for Tango
to recognise. Unsurprisingly, Tango struggled to maintain the
same path as he navigated, with the largest positioning error



(a) 3D view of Tango navigation over 3 levels of the office test bed. (b) 2D view of Tango navigation in the audi-
torium test bed.

(c) A comparsion of Tango and
WiFi positioning. WiFi positions fre-
quently walked through walls and
doors, whereas Tango positions closely
follow the true trajectory.

(d) A close-up on the Tango’s
positions through a 35 m corridor
as seen on the left, which were
well within 40 cm error margin.

(e) Positioning accuracy with the test set for
both test beds.

Fig. 9. The positioning accuracy of Tango in normal condition. Tango also achieves a much finer-grained positioning thanks to its higher sampling rate.

of about 2 metres, which was on the same level as WiFi’s (see
Figure 11a). The second experiment inspects the 2 stairs from
both sides of the auditorium. A view from the top of these
stairs offer almost the same scenery (see Figures 7d and 7e).
Hence, Tango occasionally confused between the two, which
results in position jumping from one stair to the other (see
Figure 11b). With our proposal, we use the WiFi signal to
constrain the positioning estimate. As such, the system would
override the Tango’s estimation in these cases, and uses WiFi
fingerprinting as the replacement till Tango re-settles itself
amongst the WiFi positioning estimation.

The positioning accuracy of Tango and our proposal for
both test beds is summarised below (see Table II). Note that
the maximum error does not account for the situations where
Tango stops working.

V. RELATED WORK

Since the essence of this paper is smart phone based optical
tracking, we will only overview other related systems in the
same area.

Azizyan et al. combine WiFi, magnetism, visual informa-
tion, with other mobile sensors to construct a rich position’s

TABLE II
POSITIONING ERRORS OF THE TWO TEST BEDS UNDER CHALLENGING

CONDITIONS.

Office Auditorium
Tango Our system Tango Our system

Mean (m) 0.34 0.27 6.53 2.43
Maximum (m) 0.57 1.36 17.24 3.19
Minimum (m) 0.02 0.02 0.05 1.38

fingerprint [5]. However, the positioning result from indepen-
dent sensors are simply intersected to obtain a final estimation.
With our approach, the sensors’ data are naturally fused under
a PF for more accurate positioning. The magnetic field was
also used to aid visual based information for other tracking
systems [6], [7], [8]. Yet, it is mostly implemented along side
accelerometer and gyroscope to track the user’s motion.

Alismail et al. attempted to mitigate the low lighting chal-
lenge of visual tracking by manipulating the image with binary
feature descriptors [9]. Zheng et al. used the depth and infrared
sensors incorporated on the Kinect to match images taken in
low light with those in normal condition [10]. Although their



(a) Tango path contains several
gaps caused by darkness where
Tango completely stops working.
This result displays the Tango po-
sitions in dim lighting, where VIO
managed to follow the straight
path till the corner, where it starts
to deviate.

(b) The combination of WiFi and
magnetism path is indicated by the
blue line, which complements the
red Tango path. This result demon-
strates how often our system en-
gages to support Tango.

(c) Positioning accuracy of our approach
using WiFi and magnetism clearly im-
proved on Tango’s. Note that this CDF
does not reflect the position where Tango
stops working, which happens often in this
dark setting.

Fig. 10. The positioning accuracy of Tango and our system in dark
environment. The black square indicates the starting position. All smart lights
were off from the start.

method was tested with Kinect, it is applicable for Tango
based hardware. We took a different approach in this paper,
by using non-optical wireless signals to compensate for the
lack of vision in those scenarios.

VI. CONCLUSION AND FURTHER WORK

We have presented a novel approach to mitigate the chal-
lenges facing the Tango tracking platform using the WiFi
signals and the magnetic field strength. Our work was one
of the first to assess the positioning accuracy of Tango in
the small form factor of a mobile device. We exploit the
positioning co-ordinates generated by Tango and area learning
as references to label the WiFi and magnetic samples in normal
conditions. These training databases will later be used to
complement Tango’s positions in challenging environments,
where the device’s camera is under-exposed in dark lighting,
and when area learning mistakenly identifies the wrong loca-
tion due to the lack of unique textures of the surroundings.
We have assessed our approach in an office building with
motion based lights, and in a huge auditorium with symmetric
structure, where Tango struggled to deliver the positioning

(a) A closed loop walk in a clear area
with little unique visual. Tango strug-
gled to maintain the same trajectory.

(b) The two red lines are the two walks
down the stairs. The blue line connects
the positions on the walks where Tango
confuses due to similar views.

Fig. 11. The positioning accuracy of Tango in wide, clear space, without
much textures in the surroundings, and in areas with similar views.

service. Under our proposal, the system managed to maintain
a similar Tango-level accuracy.

In the past few years, indoor localisation has transitioned
from single specific sensor based technology to a more general
multi-modal platform, thanks to the proliferate of the smart
phone. This is an exciting but challenging approach, because
although we have much more information at our disposal,
how to combine all those sensors’ data efficiently is still an
open-ended question. Our work will continue to explore more
effective means to fuse the magnetic field and WiFi with the
vision based platform provided by Tango.
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