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Abstract. We present a reduction from the module learning with errors
problem (MLWE) in dimension d and with modulus q to the ring learning
with errors problem (RLWE) with modulus qd. Our reduction increases
the LWE error rate α by a quadratic factor in the ring dimension n and a
square root in the module rank d for power-of-two cyclotomics. Since, on
the other hand, MLWE is at least as hard as RLWE, we conclude that the
two problems are polynomial-time equivalent. As a corollary, we obtain
that the RLWE instance described above is equivalent to solving lattice
problems on module lattices. We also present a self reduction for RLWE in
power-of-two cyclotomic rings that halves the dimension and squares the
modulus while increasing the error rate by a similar factor as our MLWE
to RLWE reduction. Our results suggest that when discussing hardness to
drop the RLWE/MLWE distinction in favour of distinguishing problems
by the module rank required to solve them.

Keywords: Security reduction · Learning with errors · Lattice-based cryptogra-
phy

1 Introduction

Lattice-based cryptography has emerged as a central area of research in the
pursuit of designing quantum-safe primitives and advanced cryptographic con-
structions. For example, lattice-based schemes have been proposed for public-key
encryption [Reg09, LP11], key exchange protocols [LP11, ADPS16, BCD+16],
digital signatures [BG14, DDLL13], identity-based encryption [GPV08, DLP14]
and fully homomorphic encryption schemes [Gen09, BGV12, GSW13].

A fundamental problem in lattice-based cryptography is the Learning with
Errors problem (LWE) [Reg05]. For a given dimension n, modulus q and error
distribution χ, samples of the LWE distribution in normal-form are constructed
as (a, b = 1

q 〈a, s〉+ e mod 1), where a ∈ Znq is chosen uniformly at random and
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all components of the secret s ∈ Znq and e are drawn from the distribution χ.
Distinguishing the LWE distribution from uniform is known as the decision LWE
problem, whereas finding the secret s is known as the search LWE problem.

The seminal work of Regev [Reg05] establishes reductions from standard
problems such as finding short vectors in general lattices to LWE, suggesting that
LWE is indeed a difficult problem to solve. In particular, the ability to solve LWE
in dimension n implies an efficient algorithm to find somewhat short vectors in
any n-dimensional lattice. The concrete and asymptotic hardness of LWE has
recently been surveyed in [APS15, HKM17]. Although LWE has proven to be a
versatile ingredient for cryptography, it suffers from large key sizes (quadratic in
the dimension) which motivated the development of more efficient LWE variants.

The Ring Learning with Errors problem (RLWE) was introduced in [LPR10].
RLWE can be seen as a specialisation of LWE where n-dimensional vectors are
replaced by polynomials of degree smaller than n. Informally, for RLWE we first
choose a ring R of dimension n, modulus q and error distribution χ over a related
space of dimension n denoted KR. Then, to sample the RLWE distribution, we
sample a ∈ R/qR uniformly, a secret polynomial s in a suitable space and error e
according to χ. We then output (a, b = 1

qa · s+ e mod R∨) as the RLWE sample

where R∨ denotes the dual of the ring R. A complete and more precise definition
is given in Section 2.3. Similar to the case of plain LWE, the decision problem is
to distinguish the RLWE distribution from uniform and the search problem is to
find the secret s. As alluded to above, the RLWE problem generally offers an
increase in efficiency over plain LWE. Intuitively, this can be seen by considering
each RLWE sample as a structured set of n LWE samples.

It has been shown that RLWE is at least as hard as standard lattice problems
on ideal lattices [LPR10, PRSD17]. However, these ideal lattice problems have
received much less attention than their analogues on general lattices. Furthermore,
some problems that are presumed hard on general lattices such as GapSVP are
actually easy on ideal lattices and a recent series of works [CGS14, CDPR16,
CDW17] showed that finding short vectors in ideal lattices is potentially easier on
a quantum computer than in the general case. More precisely, the length of the
short vectors found in quantum polynomial time are a sub-exponential multiple
of the length of the shortest vector in the lattice. Currently, it is not known how
to efficiently find such vectors in general lattices efficiently. However, the vectors
that can be found in quantum polynomial time are mainly of theoretical interest
since they are still too long to affect current RLWE-based cryptography. Another
important caveat to note is that if there was a way to find even shorter vectors
in ideal lattices, RLWE could still prove to be a difficult problem. This is due
to the fact that RLWE has not been proven to be equivalent to finding short
vectors in ideal lattices, i.e. the problem might be strictly harder.

It is worth noting that the reductions from lattice problems to LWE resp.
RLWE [Reg05, LPR10, PRSD17] mentioned above have no dependency on q
apart from the requirement that q must exceed some lower bound that depends
on the dimension and error distribution. In these reductions, the class of lattices
is simply defined by the dimension in plain LWE and the ring in the case of
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RLWE. Similarly, the approximation factors defining the lattice problems are
also independent of q.

This interpretation of known hardness results is inconsistent with the current
state-of-the-art cryptanalytic techniques for solving LWE. The cost of all known
strategies scales with q [HKM17].

Indeed, for LWE it is well-known [BLP+13] that we can trade the size of
the fundamental security parameter n and the modulus q without affecting
security, as long as n log q remains constant. Furthermore, in the case of plain
LWE we can choose n freely, reducing our dependence on large q to increase
security. However, in the case of RLWE the analogue reduction to [BLP+13]
is not known and the choice of ring R — and hence the dimension n — can
lead to practical implementation advantages and a simpler interpretation of
formally defined RLWE (see Section 3.1). Typically, a power-of-two cyclotomic
ring is used, i.e. a ring isomorphic to Z[X]/ 〈Xn + 1〉 with n = 2k. In addition
to its simplicity, this choice also improves performance due to its amenability
to FFT-based algorithms. In fact, power-of-two cyclotomic rings have proven
extremely popular in the literature and dominate the design space, e.g. [LMPR08,
Gen10, BGV12, DDLL13, BCNS15, ADPS16]. However, as stressed in [LPR13],
“powers of two are sparsely distributed, and the desired concrete security level for
an application may call for a ring dimension much smaller than the next-largest
power of two. So restricting to powers of two could lead to key sizes and runtimes
that are at least twice as large as necessary.” Alternatively, if an implementation
wishes to support intermediate field sizes, a new implementation of multiplication
in the intermediate ring is required to achieve comparable performance.

The Module Learning with Errors problem (MLWE) [BGV12, LS15] was
proposed to address shortcomings in both LWE and RLWE by interpolating
between the two. It will be defined formally in Section 2. For now, one way to
informally view the MLWE problem is to take the RLWE problem and replace
the single ring elements (a and s) with module elements over the same ring.
Using this intuition, RLWE can be seen as MLWE with module rank 1.

As expected, MLWE comes with hardness guarantees given by lattice problems
based on a certain class of lattices. In this case, the lattices are generated by
modules as opposed to ideals in the RLWE case and in contrast to RLWE, it has
been shown that MLWE is equivalent to natural hard problems over these lattices.
Indeed, solving the approximate shortest vector problem on module lattices for
polynomial approximation factors would permit solving MLWE (and thus RLWE)
efficiently. We note that this reduction, too, only has a mild dependency on q.
Furthermore, MLWE has been suggested as an interesting option to hedge against
potential attacks exploiting the algebraic structure of RLWE [CDW17]. Thus,
MLWE might be able to offer a better level of security than RLWE, while still
offering performance advantages over plain LWE.

An example illustrating the flexibility of MLWE is given by the CRYSTALS
suite [BDK+17, DLL+17], where MLWE is used to build both key encapsulation
and signature schemes. The advantage of using modules when implementing
such systems is that the concrete-security/efficiency trade-off is highly tunable.
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Remembering that working in power-of-two dimensional rings enables efficient
implementations, we can fix our ring and then change the rank of the module
as desired. For example, suppose we were working in a module over a ring of
dimension n = 256, then we can increase the effective dimension from 1024 to
1280 by simply increasing the rank of the module. This effective dimension would
not be attainable using power-of-two dimensional rings in RLWE. Thus, MLWE
promises to adjust the security level with much greater granularity than efficient
RLWE instantiations and implementations for one security level can easily be
extended to other security levels.

Contributions. After some preliminaries in Section 2, our main contribution is
a reduction from MLWE in dimension d over some general ring R/qR to RLWE
in R/qdR. This was posed as an open problem in [LS15]. Our solution is given in
Theorem 1 and Corollary 1. In Section 3.1, we carry out a tighter analysis of the
reduction for power-of-two cyclotomic rings. It turns out that for the decision
variants, we cannot obtain satisfactory bounds for our reduction to preserve
non-negligible advantage unless we allow for super polynomial q and absolute
noise in addition to negligible noise rate. We address this problem in Section 4 by
considering the search variants. An instantiation of Corollary 3 for power-of-two
cyclotomic rings is the following:

Corollary. There exists an efficient reduction from search MLWE in modulus q,
rank d and error rate α to search RLWE in modulus qd and error rate α · n2

√
d.

In essence, this says that RLWE with modulus qd is at least as hard as MLWE
with modulus q and module rank d in the same ring. More generally, Corollary 3
shows that there is a freedom to trade between the rank of module and the
modulus as long as we hold d log q = d′ log q′ fixed for cyclotomic power-of-two
rings. This means that for any decrease in d, we can always balance this off by
increasing q exponentially without loss of security.

Our reduction is an application of the main result of Brakerski et al. [BLP+13]
in the context of MLWE. In its simplest form, the reduction proceeds from the
observation that for a, s ∈ Zdq with s small it holds that

qd−1 · 〈a, s〉 ≈

(
d−1∑
i=0

qi · ai

)
·

(
d−1∑
i=0

qd−i−1 · si

)
mod qd = ã · s̃ mod qd.

It should be noted that we incur an extra factor of n3/2 d1/2 in error rate expansion
when comparing our results to those in [BLP+13]. The extra factor of n3/2 arises
since we need to drown an (unknown) discrete Gaussian over an (unknown)
lattice determined by the secret of the input MLWE instance. Naturally, the
factor of d accounts for summing Gaussians when compressing the MLWE sample
in rank d into a RLWE sample.

The error distribution of the output in our reduction is an ellipsoidal Gaussian
(with bounded widths) as opposed to a spherical one. This type of error distribu-
tion appears in the standard hardness result for RLWE [LPR10] and should not
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be considered unusual. However, we also describe how to perform a reduction
from search MLWE to spherical error search RLWE using Rényi divergence
arguments (see Section 4.1). This is a tool that has recently received attention in
lattice-based cryptography because it allows to tighten security reductions for
search (and some decisional) problems [LSS14, BLL+15, BGM+16, LLM+16].

In Section 5, we present self-reductions from power-of-two RLWE in dimension
n and modulus q to RLWE in dimension n/2 and modulus q2 following the same
strategy. Here, the error rate typically expands from α to Õ(α · n9/4) if we have
access to O(1) samples and wish to preserve a non-negligible success probability.

Finally, in Appendix A, we show how to achieve the same flexibility as MLWE-
based constructions for public-key encryption by explicitly only considering RLWE
elements but relying on a MLWE/large modulus RLWE assumption resp. relying
on the leftover hash lemma.

Interpretation. Our reduction along with the standard hardness results for
MLWE [LS15] implies that RLWE with modulus qd and error rate α is at least as
hard as solving the approximate lattice problem Module-SIVP over power-of-two
cyclotomic rings. The approximation factor in this case is γ = Õ(n5/2 d1/2). As
there are also converse reductions from RLWE to Module-SIVP e.g. the dual
attack [MR09] which requires finding short vectors in a module lattice, these
observations imply RLWE is equivalent to Module-SIVP. Previous hardness
results only stated that RLWE is at least as hard as Ideal-SIVP [LPR10].1

We note, though, that it is not known if Module-SIVP is strictly harder than
Ideal-SIVP.

Our results suggest that the distinction between MLWE and RLWE does
not yield a hardness hierarchy. There are two different interpretations of this
implication. The first and perhaps suspicious conclusion is that MLWE should
not be used to hedge against powerful algorithms solving RLWE for any modulus.
However, such an algorithm would essentially solve RLWE over any power-of-two
cyclotomic field by our reduction in Section 5. Furthermore, as already mentioned
in [BLP+13], an adversary solving our output RLWE instance with modulus
qd and any dimension n implies an adversary that can solve the standard LWE
problem in dimension d and modulus q given n samples (we give more details in
Appendix B). While such an adversary cannot be ruled out in principle, it cannot
be enabled by the algebraic structure of RLWE or ideal lattices. However, we
note that this line of argument is less powerful when restricting to small constant
d.

On the other hand, assuming that such a powerful adversary does not exist,
an alternative interpretation is that our results suggest that the difficulty of
solving RLWE increases with the size of the modulus when keeping dimension
n and noise rate α (roughly) constant. This interpretation is consistent with
cryptanalytic results as the best, known algorithms for solving LWE depend on
q [APS15, HKM17] and the analogous result for LWE in [BLP+13]. Indeed, our

1 Except for RLWE instances with modulus qn which are known to be as hard as LWE
in dimension n and modulus q [BLP+13].



6

output RLWE instance in modulus qd has noise of size at least qd/2. Thus, our
RLWE output instances cannot be solved by finding short vectors in lattices of
module rank 2 using standard primal or dual attacks in contrast to typical RLWE
instances used in the literature. This augments standard reductions from RLWE
resp. MLWE to Ideal-SIVP resp. Module-SIVP [Reg05, LPR10, LS15] which do
not by themselves suggest that the problem becomes harder with increasing q.

2 Preliminaries

An n-dimensional lattice is a discrete subgroup of Rn. Any lattice Λ can be seen
as the set of all integer linear combinations of a set of basis vectors {b1, . . . ,bj}.
That is, Λ :=

{∑j
i=1 zibi : zi ∈ Zn for i = 1, . . . , j

}
. The lattices we will be

considering will have full rank i.e. j = n. We use the matrix B = [b1, . . . ,bn]
to denote a basis. B̃ is used to denote the Gram-Schmidt orthogonalisation of
columns in B (from left to right) and ‖B‖ is the length of the longest vector
(in Euclidean norm) of the basis given by B. Additionally, for any x ∈ Rn, we
write ‖x‖ to denote the standard Euclidean norm of x. The dual of a lattice Λ
is defined as Λ∗ = {x ∈ span(Λ) : ∀ y ∈ Λ, 〈x,y〉 ∈ Z} where 〈·, ·〉 is an inner
product.

Given a matrix M ∈ Cm×n, the singular values of M are defined to be the
positive square roots of the eigenvalues of M†M where M† denotes the conjugate
transpose of M. The matrix M†M takes a diagonal form in some orthonormal
basis of Rn since it is self-adjoint. We write σi(M) for the ith singular value
of M where σ1(M) ≥ · · · ≥ σn(M). We also denote the identity matrix in n

dimensions using In. In addition to the conjugate transpose denoted by (·)†, the

transpose of a matrix or vector will be denoted by (·)T . The complex conjugate
of z ∈ C will be written as z̄.

The uniform probability distribution over some finite set S will be denoted
U(S). If s is sampled from a distribution D, we write s←$D. Also, we let s =
(s0, . . . , sd−1)←$Dd denote the act of sampling each component si according to
D independently. We also write Supp(D) to mean the support of the distribution
D. Note that we use standard big-O notation where Õ hides logarithmic factors.

For any algebraic number field K, an element x ∈ K is said to be integral
if it is a root of some monic polymonial with integer coefficients. The set of all
integral elements forms the ring of integers of K denoted by OK . We also denote
isomorphisms via the symbol '.

2.1 Coefficient Embeddings

Let K := Q(ζ) be an algebraic number field of degree n where ζ ∈ C is an

algebraic number. Then for any s ∈ K, we can write s =
∑n−1
i=0 si · ζi where

si ∈ Q. We can embed this field element into Rn by associating it with its vector
of coefficients svec. Therefore, for any s ∈ K we have svec = (s0, . . . , sn−1)

T
.

We can also represent multiplication by s ∈ K in this coefficient embedding
using matrices. The appropriate matrix will be denoted by rot(s) ∈ Rn×n. In
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particular, for r, s, t ∈ K with r = st, we have that rvec = rot(s) · tvec. Note
that the matrix rot(s) must be invertible with inverse rot(s−1) for s 6= 0. The
explicit form of rot(s) depends on the particular field K. In the case where K is
a cyclotomic power-of-two field, i.e. K = Q[X]/ 〈Xn + 1〉 for power-of-two n, we
have

rot(s) =



s0 −sn−1 −sn−2 · · · · · · −s1

s1 s0 −sn−1

. . .
. . . −s2

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

sn−1 sn−2 · · · · · · · · · s0

 . (1)

2.2 Canonical Embeddings

We will often use canonical embeddings to endow field elements with a geometry.
A number field K(ζ) has n = r1 + 2r2 field homomorphisms σi : K → C fixing
each element of Q. Let σ1, . . . , σr1 be the real embeddings and σr1+1, . . . , σr1+2r2

be complex. The complex embeddings come in conjugate pairs, so we have
σi = σi+r2 for i = r1 + 1, . . . , r1 + r2 if we use an appropriate ordering of the
embeddings. Define

H := {x ∈ Rr1 × C2r2 : xi = xi+r2 , i = r1 + 1, . . . , r1 + r2}.

and let (ei)
n
i=1 be the (orthonormal) basis assumed in the above definition of H.

We can easily change to the basis (hi)
n
i=1 defined by

– hi = ei for i = 1, . . . , r1

– hi = 1√
2
(ei + ei+r2) for i = r1 + 1, . . . , r1 + r2

– hi =
√
−1
2 (ei − ei+r2) for i = r1 + r2 + 1, . . . , r1 + 2r2

to see that H ' Rn as an inner product space. The canonical embedding is
defined as σC : K → Rr1 × C2r2 where

σC(x) := (σ1(x), . . . , σn(x)).

The image of any field element under the canonical embedding lies in the space
H, so we can always represent σC(x) via the real vector σH(x) ∈ Rn through the

change of basis described above. So for any x ∈ K, σH(x) = U†H · σC(x) where
the unitary matrix is given by

UH =


Ir1 0 0

0 1√
2
Ir2 i√

2
Ir2

0 1√
2
Ir2 −i√2

Ir2

 ∈ Cn×n. (2)

Addition and multiplication of field elements is carried out component-wise
in the canonical embedding, i.e. for any x, y ∈ K, σC(xy)i = σC(x)i · σC(y)i
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and σC(x+ y) = σC(x) + σC(y). Multiplication is not component-wise for σH .
Specifically, in the basis (ei)

n
i=1, we have that multiplication by x ∈ K can

be written as left multiplication by the matrix Xij = σi(x)δij where δij is the
Kronecker delta. Therefore, in the basis (hi)

n
i=1, the corresponding matrix is

XH = U†HXUH ∈ Rn×n which is not diagonal in general. However, for any XH ,

we have XH ·XT
H = XH ·X†H = U†HXX

†UH . Explicitly, (XH ·XT
H)ij = |σi(x)|2δij

i.e. XH ·XT
H is a diagonal matrix. Likewise for XT

H ·XH . Therefore, the singular
values of XH are precisely given by |σi(x)| for i = 1, . . . , n.

Remark 1. We use σi(·) to denote both singular values and embeddings of field
elements. If the argument is a matrix, it should be assumed that we are referring
to singular values. Otherwise, σi(·) denotes a field embedding.

For a ring R contained in field K, we define the canonical embedding of
the module Rd into the space Hd in the obvious way, i.e. by embedding each
component of Rd into H separately. Furthermore, if we have a matrix of ring
elements G ∈ Rd′×d for integers d and d′, we denote the action of G on Rd in
canonical space Hd as GH ∈ Rnd′×nd. It is well-known that the dimension of
OK as a Z-module is equal to the degree of K over Q, meaning that the lattice
σH(R) is of full rank.

2.3 Ring-LWE and Module-LWE

Let R be some ring with field of fractions K and dual R∨ := {x ∈ K : Tr(xR) ⊆
Z}. Also let KR = K ⊗Q R and define TR∨ := KR/R

∨. Note that distributions
over KR are sampled by choosing an element of the space H (as defined in
Section 2.2) according to the distribution and mapping back to KR via the
isomorphism H ' KR. For example, sampling the Gaussian distribution Dα over
KR is done by sampling Dα over H ' Rn and then mapping back to KR. In
all definitions below, let Ψ be a family of distributions over KR and D be a
distribution over R∨q where R∨q := R∨/(qR∨) and Rq := R/(qR).

Definition 1 (RLWE Distribution). For s ∈ R∨q and error distribution ψ

over KR, we sample the ring learning with errors (RLWE) distribution A
(R)
q,s,ψ

over Rq × TR∨ by outputting (a, 1
q (a · s) + e mod R∨), where a←$U(Rq) and

e←$ψ.

Definition 2 (Decision/Search RLWE problem). The decision ring learn-

ing with errors problem RLWE
(R)
m,q,Ψ (D) entails distinguishing m samples of

U(Rq × TR∨) from A
(R)
q,s,ψ where s←$D and ψ is an arbitrary distribution in Ψ .

The search variant s-RLWE
(R)
m,q,Ψ (D) entails obtaining the secret s←$D.

Definition 3 (MLWE Distribution). Let M := Rd. For s ∈ (R∨q )
d

and
an error distribution ψ over KR, we sample the module learning with error
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distribution A
(M)
d,q,s,ψ over (Rq)

d × TR∨ by outputting (a, 1
q 〈a, s〉 + e mod R∨)

where a←$U((Rq)
d
) and e←$ψ.

Definition 4 (Decision/Search MLWE problem). Let M = Rd. The deci-

sion module learning with errors problem MLWE
(M)
m,q,Ψ (D) entails distinguishing

m samples of U((Rq)
d × TR∨) from A

(M)
q,s,ψ where s←$Dd and ψ is an arbitrary

distribution in Ψ .
The search variant s-MLWE

(M)
m,q,Ψ (D) entails obtaining the secret element

s←$Dd.

When Ψ = {ψ}, we replace Ψ by ψ in all of the definitions above. It can be
shown that the normal form of the above problems where the secret distribution
is a discretized version of the error distribution is at least as hard as the case
where the secret is uniformly distributed. Therefore, it is customary to assume
the normal form when discussing hardness.

2.4 Statistical Distance and Rényi Divergence

Definition 5 (Statistical Distance). Let P and Q be distributions over some
discrete domain X. The statistical distance between P and Q is defined as
∆(P,Q) :=

∑
i∈X |P (i)−Q(i)|/2. For continuous distributions, replace the sum

by an appropriate integral.

Claim. If P and Q are two probability distributions such that P (i) ≥ (1− ε)Q(i)
for all i, then ∆(P,Q) ≤ ε.

We will also make use of the Rényi divergence as an alternative to the
statistical distance to measure the similarity between two distributions.

Definition 6. (Rényi Divergence) For any distributions P and Q such that
Supp(P ) ⊆ Supp(Q), the Rényi divergence of P and Q of order a ∈ [1,∞] is
given by

Ra (P ||Q) =


exp

(∑
x∈Supp(P ) P (x) log P (x)

Q(x)

)
for a = 1,(∑

x∈Supp(P )
P (x)a

Q(x)a−1

) 1
a−1

for a ∈ (1,∞),

maxx∈Supp(P )
P (x)
Q(x) for a =∞.

For the case where P and Q are continuous distributions, we replace the sums
by integrals and let P (x) and Q(x) denote probability densities. We also give a
collection of well-known results on the Rényi divergence (cf. [LSS14]), many of
which can be seen as multiplicative analogues of standard results for statistical
distance. The proof of this lemma is given in [vEH14] and [LSS14].

Lemma 1 (Useful facts on Rényi divergence). Let a ∈ [1,+∞]. Also let P
and Q be distributions such that Supp(P ) ⊆ Supp(Q). Then we have:
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– Increasing Function of the Order: The function a 7→ Ra (P ||Q) is non-
decreasing, continuous and tends to R∞ (P ||Q) as a→∞.

– Log Positivity: Ra (P ||Q) ≥ Ra (P ||P ) = 1.
– Data Processing Inequality: Ra

(
P f ||Qf

)
≤ Ra (P ||Q) for any function f

where P f and Qf denote the distributions induced by performing the function
f on a sample from P and Q respectively.

– Multiplicativity: Let P and Q be distributions on a pair of random variables
(Y1, Y2). Let P2|1(·|y1) and Q2|1(·|y1) denote the distributions of Y2 under P
and Q respectively given that Y1 = y1. Also, for i ∈ {1, 2} denote the marginal
distribution of Yi under P resp. Q as Pi resp. Qi. Then
• Ra (P ||Q) = Ra (P1||Q1) ·Ra (P2||Q2).
• Ra (P ||Q) = R∞ (P1||Q1) ·maxy1∈Supp(P1)Ra

(
P2|1(·|y1)||Q2|1(·|y1)

)
.

– Probability Preservation: Let E ⊆ Supp(Q) be an arbitrary event. If

a ∈ (1,∞), then Q(E) ≥ P (E)
a
a−1 /Ra (P ||Q). Furthermore, we have Q(E) ≥

P (E)/R∞ (P ||Q).
– Weak Triangle Inequality: Let P1, P2 and P3 be three probability distri-

butions such that Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3). Then

Ra (P1||P3) ≤

{
Ra (P1||P2) ·R∞ (P2||P3) ,

R∞ (P1||P2)
a
a−1 ·Ra (P2||P3) if a ∈ (1,+∞).

2.5 Gaussian Measures

Definition 7 (Continuous Gaussian distribution). The Gaussian function
of parameter r and centre c is defined as

ρr,c(x) = exp
(
−π(x− c)2

/r2
)

and the Gaussian distribution Dr,c is the probability distribution whose probability
density function is given by 1

rρr,c.

Definition 8 (Multivariate Gaussian distribution). Let Σ = STS for some
rank-n matrix S ∈ Rm×n. The multivariate Gaussian function with covariance
matrix Σ centred on c ∈ Rn is defined as

ρS,c(x) = exp
(
−π(x− c)

T
(STS)

−1
(x− c)

)
and the corresponding multivariate Gaussian distribution denoted DS,c is defined
by the density function 1√

det(Σ)
ρS,c.

Note that if the centre c is omitted, it should be assumed that c = 0. If the
covariance matrix is diagonal, we describe it using the vector of its diagonal
entries. For example, suppose that (STS)ij = (si)

2
δij and let s = (s1, . . . sn)

T
.

Then we would write Ds to denote the centred Gaussian distribution DS .
We are often interested in families of Gaussian distributions. For α > 0, we

write Ψ≤α to denote the set of Gaussian distributions with diagonal covariance
matrix of parameter r satisfying ri ≤ α for all i.
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We also have discrete Gaussian distributions i.e. normalised distributions
defined over some discrete set (typically lattices or lattice cosets). The notation for
a discrete Gaussian over some n-dimensional lattice Λ and coset vector u ∈ Rn
with parameter r is DΛ+u,r. This distribution has probability mass function

1
ρr(Λ+u)ρr where ρr(Λ+ u) =

∑
x∈Λ+u ρr(x). It was shown in [GPV08] that we

can efficiently sample from a (not too narrow) discrete Gaussian over a lattice to
within negligible statistical distance. It was further shown that we can actually
sample the discrete Gaussian precisely in [BLP+13]. This result is given below as
Lemma 2.

Lemma 2 (Lemma 2.3 in [BLP+13], Sampling discrete Gaussians). There
is a probabilistic polynomial-time algorithm that, given a basis B of an n-
dimensional lattice Λ = L(B), c ∈ Rn and parameter r ≥ ‖B̃‖ ·

√
ln(2n+ 4)/π

outputs a sample distributed according to DΛ+c,r.

Next we define the smoothing parameter of a lattice followed by a collection
of lemmas that we will make use of.

Definition 9 (Smoothing parameter). For a lattice Λ and any ε > 0, the
smoothing parameter ηε(Λ) is defined as the smallest s > 0 s.t. ρ1/s(Λ

∗\{0}) ≤ ε.

Lemma 3 (Lemma 3.1 in [GPV08], Upper bound on smoothing pa-
rameter). For any ε > 0 and n-dimensional lattice Λ with basis B,

ηε(Λ) ≤ ‖B̃‖
√

ln(2n(1 + 1/ε))/π.

Lemma 4 (Claim 3.8 in [Reg09], Sums of Gaussians over cosets). For
any n-dimensional lattice Λ, ε > 0, r ≥ ηε(Λ) and c ∈ Rn, we have

ρr(Λ+ c) ∈
[

1− ε
1 + ε

, 1

]
· ρr(Λ).

The claim R∞ (Dt||Y ) ≤ 1+ε
1−ε in the lemma below follows immediately from

the proof given in [LS15].

Lemma 5 (Adapted from Lemma 7 in [LS15], Drowning ellipsoidal
discrete Gaussians). Let Λ be an n-dimensional lattice, u ∈ Rn, r ∈ (R+)

n
,

σ > 0 and ti =
√
r2
i + σ2 for all i. Assume that mini riσ/ti ≥ ηε(Λ) for some

ε ∈ (0, 1/2). Consider the continuous distribution Y on Rn obtained by sampling
from DΛ+u,r and then adding a vector from Dσ. Then we have ∆(Y,Dt) ≤ 4ε
and R∞ (Dt||Y ) ≤ 1+ε

1−ε .

In the lemma below, ring elements are sampled in the coefficient embedding.

Lemma 6 (Adapted from Lemma 4.1 in [SS13], Upper bound on least
singular value). Let n be a power of two and R = Z[X]/ 〈Xn + 1〉. Then for
any δ ∈ (0, 1), t ≥

√
2π and σ ≥ t√

2π
· ηδ(Zn), we have

Prb←$DZn,σ

[
1

σn(rot(b))
≥ t
√

2

σ
√
n

]
≤ 1 + δ

1− δ
· n
√

2πe

t
.
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3 Reduction for General Rings

In this section, we show how to reduce an MLWE instance in module rank d
and modulus q to an MLWE instance in rank d′ and modulus q′. The particular
case where d′ = 1 yields a reduction from MLWE to RLWE. We start by
describing the high-level intuition behind the reduction for the case d′ = 1
and where the modulus goes from q to qd. In this case, our strategy is to map
(a, s) ∈ (Rq)

d × (R∨q )
d

to (ã, s̃) ∈ Rq × R∨q′ aiming to satisfy the approximate
equation

1

q
〈a, s〉 ≈ 1

qd
(ã · s̃) mod R∨. (3)

We then map from b to b̃ ≈ b mod R∨. For q = Ω(poly(n)), if we take s̃ =

(qd−1, . . . , 1)
T · s and ã = (1, . . . , qd−1)

T · a, we obtain

1

qd
(ã · s̃) =

1

q
〈a, s〉+

1

q2
(. . . ) +

1

q3
(. . . ) + . . . mod R

≈ 1

q
〈a, s〉 mod R.

(4)

This mapping satisfies the requirement but leads to a narrow, yet non-standard
error distribution. The reduction in Theorem 1 is a generalisation of the above

idea. Specifically, take G ∈ (R)
d′×d

and s̃ = G · s mod (q′R)
d′

. Then we simply
require that

1

q′

d′∑
i=1

d∑
j=1

ãigijsj ≈
1

q

d∑
j=1

ajsj mod R∨. (5)

This requirement can be satisfied if we choose ã such that

1

q′

d′∑
i=1

ãigij ≈
1

q
aj mod R (6)

for j = 1, . . . , d. To carry out this strategy, we will sample ã over an appropriate
lattice defined by G in the canonical embedding. The main challenge in applying
this strategy is that we want the error in the new MLWE sample to follow a
standard error distribution, i.e. a continuous Gaussian.

Theorem 1. Let R be the ring of integers of some algebraic number field K
of degree n, let d, d′, q, q′ be integers, ε ∈ (0, 1/2), and G ∈ Rd′×d. Also, fix

s = (s1, . . . , sd) ∈ (R∨q )
d
. Further, let BΛ be some known basis of the lattice

Λ = 1
q′G

T
HR

d′ +Rd (in the canonical embedding), BR be some known basis of R
in H and

r ≥ max


‖B̃Λ‖ ·

√
2 ln(2nd(1 + 1/ε))/π

1
q ‖B̃R‖ ·

√
2 ln(2nd(1 + 1/ε))/π

1
q maxi ‖B̃siR‖ · 1

mink |σk(si)| ·
√

2 ln(2n(1 + 1/ε))/π
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where BsiR is a basis of siR in the canonical embedding. There exists an efficient

probabilistic mapping F : (Rq)
d × TR∨ −→ (Rq′)

d′ × TR∨ such that:

1. The output distribution given uniform input F(U((Rq)
d × TR∨)) is within

statistical distance 4ε of the uniform distribution over (Rq′)
d′ × TR∨ .

2. Let M = Rd, M ′ = Rd
′

and define B := maxi,j |σi(sj)|. The distribution

of F(A
(M)
q,s,Dα

) is within statistical distance (4d + 6)ε of A
(M ′)
q′,Gs,Dα′

where

(α′)
2
i = α2 + r2(β2 +

∑d
j=1 |σi(sj)|2) and β satisfies β2 ≥ B2d.

Proof. We use the canonical embedding on each component of Rd individually,
e.g. aH = (σH(a1), . . . , σH(ad)) ∈ Hd ' Rnd and similarly for other module
elements. We will also refer to the canonical embedding of R as simply R to
ease notation. Suppose we are given (a, b) ∈ (Rq)

d × TR∨ . The mapping F is
performed as follows:

1. Sample f ← DΛ− 1
q aH ,r

. Note that the parameter r is large enough so that

we can sample the discrete Gaussian efficiently by Lemma 2.

2. Let v = 1
qaH + f ∈ Λ/Rd and set x ∈ (Rq′)

d′
to be a random solution of

1
q′G

T
Hx = v mod Rd. Then set ã ∈M ′ to be the unique element of M ′ such

that ãH = x.
3. Sample ẽ from the distribution Drβ over KR ' H for some β > B

√
d and

set b̃ = b+ ẽ.
4. Finally, output (ã, b̃) ∈ (Rq′)

d′ × TR∨ .

Distribution of ã. Suppose that a ∈ (Rq)
d

was drawn uniformly at random. Step
2 of the reduction can be performed by adding a random element of the basis of
solutions to 1

q′G
T
Hy = 0 mod Rd to a particular solution of 1

q′G
T
Hx = v mod Rd.

In order to show that ã is nearly uniform random, we will show that the vector

x is nearly uniform random over the set (Rq′)
d′

. Note that every x ∈ (Rq′)
d′

is

a solution to 1
q′G

T
Hx = v mod Rd for some v and the number of solutions to

this equation in (Rq′)
d′

for each v is the same. Thus, proving that v is almost
uniform suffices. Observe that r ≥ ηε(Λ). Therefore, Lemma 4 tells us that for

any particular ā ∈ (Rq)
d

and f̄ ∈ Λ− 1
q āH , we have

Pr[a = ā ∧ f = f̄] = q−nd · ρr (̄f)/ρr(Λ−
1

q
āH)

=
q−nd

ρr(Λ)
· ρr(Λ)

ρr(Λ− 1
q āH)

· ρr (̄f)

∈ C ·
[
1,

1 + ε

1− ε

]
· ρr (̄f)

(7)

where C := q−nd/ρr(Λ) is a constant. By summing this equation over appropriate
values of ā and f̄, Lemma 4 tells us that for any coset v̄ ∈ Λ/Rd,
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Pr[v = v̄] ∈ C ·
[
1,

1 + ε

1− ε

]
· ρr(q−1Rd + v̄)

∈ C · ρr(q−1Rd) ·
[
1,

1 + ε

1− ε

]
· ρr(q

−1Rd + v̄)

ρr(q−1Rd)

∈ C ′ ·
[

1− ε
1 + ε

,
1 + ε

1− ε

] (8)

where C ′ := Cρr(q
−1Rd). Note that we may apply Lemma 4 here since we

know that r ≥ ηε((q)
−1
Rd) by Lemma 3. This allows us to conclude that the

distribution of v is within statistical distance 1− [(1− ε)/(1 + ε)]
2 ≤ 4ε of the

uniform distribution. This means that x is uniformly random over (Rq′)
d′

to

within statistical distance 4ε implying that ã is uniform random over (Rq′)
d′

to

within statistical distance 4ε. It is also clear that b̃ is exactly uniform random
given that b is uniform random. This proves the first claim (uniform-to-uniform).

Distribution of −f. In our analysis of the resulting error, it will be useful to
understand the distribution of the vector −f for fixed ã (and thus fixed v = v̄).
Note that fixing a value f = f̄ fixes 1

qa = v̄ − f̄ mod Rd. By summing over all
appropriate values of f in Equation 7, one can show that the distribution of −f
for any fixed ã is within statistical distance 1− (1− ε)(1 + ε) ≤ 2ε of D 1

qR
d−v̄,r.

Distribution of the error. Suppose we are given the MLWE sample (a, b =
1
q 〈a, s〉+ e) ∈ (Rq)

d × TR∨ where e ∈ KR is drawn from Dα. We have already

shown that our map outputs ã ∈ (Rq′)
d′

that is almost uniformly random. Now
we condition on a fixed ã = ¯̃a and analyse the distribution of

(b̃− 1

q′
〈
¯̃a · s̃

〉
) mod R∨. (9)

Let fi ∈ Rn be the vector consisting of the ith block of n entries of f ∈ Rnd for
i = 1, . . . , d. Using the fact that s̃ = Gs and that R∨ is closed under multiplication
by elements of R, we can rewrite this as

(b̃− 1

q′
〈
¯̃a · s̃

〉
) =

d∑
i=1

si · σ−1
H (−fi) + ẽ+ e mod R∨. (10)

In fact, we want to analyse the RHS of the above equation in canonically embedded
space. To do so, define the invertible matrix Si,H := UHSiU

†
H ∈ Rn×n where UH

is given in Equation (2) and Si is the diagonal matrix with the field embeddings
of si along the diagonal i.e. [Si]jk = σj(si)δjk. Note that Si,H is the matrix

representing multiplication by s in the basis (hi)
n
i=1 of H. Therefore, in canonical

space, the error is given by

d∑
i=1

Si,H · (−fi) + σH(ẽ) + σH(e) mod R∨ (11)
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where σH(ẽ) and σH(e) are distributed as Drβ and Dα respectively. Also, let-
ting v̄i denote the ith block of n coordinates of v̄, we know that −fi is almost
distributed as D 1

qR−v̄i,r
. It then follows that Si,H · (−fi) is close in distribution

to D 1
qSi,H ·R−Si,H ·v̄i,r(Si,H)T i.e. an ellipsoidal discrete Gaussian. In fact the co-

variance matrix r2Si,HS
T
i,H is diagonal with respect to our basis (hi)

n
i=1 of Rn

(see Section 2.2) with eigenvalues given by r2|σj(si)|2 for j = 1, . . . , n. Note

that we can conceptualise σH(ẽ) as
∑d
i=1 ẽ

(i) where each ẽ(i) is distributed as a
continuous spherical Gaussian in Rn with parameter γi ≥ rB. Recalling that −f
is distributed as D 1

qR
d−v̄,r to within statistical distance 2ε, we can now apply

Lemma 5 d times to conclude that

d∑
i=1

Si,H · (−fi) + σH(ẽ) =

d∑
i=1

Si,H · (−fi) + ẽ(i) (12)

is distributed as the continuous Gaussian with a diagonal covariance matrix
to within statistical distance 2ε + 4dε. In particular, the diagonal entries of

the convariance matrix are given by r2
(
β2 +

∑d
j=1 |σi(sj)|2

)
for i = 1, . . . , n.

Considering the original error term σH(e) that follows the distribution Dα

completes the proof.

Remark 2. It is permissible to take B := mini,j |σj(si)| in the above theorem.
However, this will not save us any asymptotic factors in the output error distri-
bution so we use B := maxi,j |σj(si)| to allow for cleaner looking bounds.

The following corollary specialises to a map from MLWE in module rank d
to d/k and from modulus q to qk for general rings. Taking k = d constitutes
a reduction from MLWE to RLWE. Note that the new secret distribution is
non-standard in general, but we can always use the usual re-randomizing process
to obtain a uniform secret. We also highlight the fact that the lower bound on r
is not particularly tight due to a loose upper bound on the quantities ‖B̃siR‖.
This issue is addressed for power-of-two cyclotomics in Section 3.1. In fact, for a
general cyclotomic ring R, it holds that ‖BsiR‖ = ‖σH(si)‖.

Corollary 1. Let R be a ring with basis BR in the canonical embedding and χ
be a distribution satisfying

Prs←$χ

[
max
i
|σi(s)| > B

]
≤ δ and Prs←$χ

[
max
i,j

|σi(s)|
|σj(s)|

> B′
]
≤ δ′

for some (B, δ) and (B′, δ′). Also let α > 0 and take any ε ∈ (0, 1/2). For any
k > 1 that divides d and

r ≥ max

{
1
q ‖B̃R‖ ·

√
2 ln(2nd(1 + 1/ε))/π

1
q B

′ ‖B̃R‖ ·
√

2 ln(2nd(1 + 1/ε))/π
,
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there is an efficient reduction from MLWE
(Rd)
m,q,Ψ≤α

(χd) to MLWE
(Rd/k)

m,qk,Ψ≤α′
(G ·

χd) for G = Id/k ⊗ (1, q, . . . , qk−1) ∈ Rd/k×d and

(α′)
2 ≥ α2 + 2r2B2d.

Moreover, this reduction reduces the advantage by at most [1− (1− δ − δ′)d] +
(4d+ 10)εm.

Proof. We run the reduction from Theorem 1, taking q′ = qk, β2 ≥ B2d
and G ∈ Rd/k×d as in the corollary statement. First, note that ‖B̃siR‖ ≤
maxj |σj(si)| · ‖B̃R‖ by considering multiplication in the canonical embedding
and Lemma 2 from [ABB10]. In the coefficient embedding, we have that G =
Id/k ⊗ (1, q, . . . , qk−1)⊗ In and the lattice of interest is 1

qk
GTZnd/k + Znd with

basis B = Id/k ⊗Q⊗ In where

Q =


q−1 q−2 · · · q−k

q−1 · · · q1−k

. . .
...
q−1

 .
To move from the coefficient embedding to the canonical embedding, we simply
multiply by the matrix BRd := Id ⊗BR. Therefore, in the canonical embedding,
the basis is given by BΛ = Id/k ⊗Q⊗BR. Orthogonalising from left to right, we

can see that ‖B̃Λ‖ is precisely 1
q‖B̃R‖.

Let E be the event that maxi |σi(s)| ≤ B and F be the event maxi,j
|σi(s)|
|σj(s)| ≤

B′ where s←$χ. The fact that P (E ∩ F ) = P (E) + P (F ) − P (E ∪ F ) ≥
P (E) + P (F )− 1 ≥ 1− δ − δ′ implies the result.

3.1 Power-of-Two Cyclotomic Rings

We now give a more specific account of Theorem 1 in the case where R for
power-of-two is a cyclotomic ring, i.e. R = Z[X]/ 〈Xn + 1〉 for power-of-two n.
We will also be considering discrete Gaussian secret distributions and normal
form MLWE. The corollary given in this section is almost identical to Corollary 1
apart from the definition of the pairs (B, δ) and (B′, δ′). This change makes the
corollary amenable to known results for discrete Gaussian secret distributions.

It can be shown that the map taking the canonical embedding to the coefficient
embedding is a scaled isometry with scaling factor 1/

√
n. In particular, the

canonical to coefficient embedding map sends a spherical Gaussian r to r/
√
n.

Furthermore, the dual ring is given by R∨ := 1
n ·R and takes the simple form of

1
nZ

n in the coefficient embedding.
Let τ > 0. We will be considering the case where the secret s is drawn from

DR∨,τ (and then reduced modulo qR∨). In the coefficient embedding, this is
equivalent to drawing the secret from the distribution D 1

nZn,τ/
√
n.
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Let SH be the matrix of multiplication by s in the canonical embedding. For
cyclotomic power-of-two rings, there is a simple relationship between components
of the canonical embedding σi(s) and the singular values of the matrix rot(s). Let
BR =

√
n ·U denote the scaled isometry mapping from coefficient space to canon-

ical space where U is unitary. Then we have SH
TSH = U−1 · rot(s)T rot(s) · U .

Since SH
TSH is diagonal with elements given by |σi(s)|2, the eigenvalues of

rot(s)T rot(s) are exactly these diagonal elements. This implies |σi(s)| are exactly
the singular values of rot(s). We will use this fact in the next claim.

Lemma 7. Let R = Z[X]/ 〈Xn + 1〉 for some power-of-two n. Then for any
δ ∈ (0, 1), t ≥

√
2π and τ ≥ t√

2πn
· ηδ(Zn), we have

Prs←$DR∨,τ

[
1

mini |σi(s)|
≥ t
√

2

τ

]
≤ 1 + δ

1− δ
· n
√

2πe

t
.

Proof. Let b = ns. The distribution of b is DZn,τ
√
n. Let σn(rot(b)) denote the

least singular value of rot(b). Now we can write

Prs←$DR∨,τ

[
1

mini |σi(s)|
≥ t
√

2

τ

]
= Prs←$D 1

n
Zn, τ√

n

[
1

σn(rot(s))
≥ t
√

2

τ

]

= Prb←$DZn,τ
√
n

[
1

σn(rot(b))
≥ t

√
2

(τ
√
n) ·
√
n

]

≤ 1 + δ

1− δ
· n
√

2πe

t

where the inequality comes from Lemma 6.

In the proof of the following lemma, we will say that a distribution D over
Zn is (B, δ)-bounded for real numbers B, δ > 0 if Prx←$D [‖x‖ > B ] ≤ δ.

Lemma 8. Let R = Z[X]/ 〈Xn + 1〉 for some power-of-two n. Then for any
δ ∈ (0, 1) and τ ≥ 0,

Prs←$DR∨,τ

[
‖σH(s)‖ > Cτ

√
n log(n/δ)

]
≤ δ

for some universal constant C > 0. We also have that

Prs←$DR∨,τ

[
‖σH(s)‖ > τ

√
n
]
≤ 2−n.

Proof. Take B > 0 and let b = ns. We have

Prs←$DR∨,τ [‖σH(s)‖ > B ] = Prs←$D 1
n

Zn, τ√
n

[
‖svec‖ > B/

√
n
]

= Prb←$DZn,τ
√
n

[
‖b‖ > B

√
n
]
.
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As mentioned in [BLP+13], we know that DZn,r is (Cr
√
n log(n/δ), δ)-bounded

for some universal constant C > 0 by taking a union bound over the n coordinates.
Furthermore, an application of Lemma 1.5 in [Ban93] implies that DZn,r is
(r
√
n, 2−n)-bounded. Applying these results completes the proof.

Corollary 2. Let R = Z[X]/ 〈Xn + 1〉 for power-of-two n and χ be a distribution
over R∨ satisfying

Prs←$χ [‖σH(s)‖ > B1 ] ≤ δ1 and Prs←$χ

[
max
j

1

|σj(s)|
≥ B2

]
≤ δ2

for some (B1, δ1) and (B2, δ2). Also let α > 0 and take any ε ∈ (0, 1/2). For any
k > 1 that divides d,

r ≥
(

max{
√
n,B1B2}
q

)
·
√

2 ln(2nd(1 + 1/ε))/π,

there is an efficient reduction from MLWE
(Rd)
m,q,Ψ≤α

(χd) to MLWE
(Rd/k)

m,qk,Ψ≤α′
(G ·

χd) for G = Id/k ⊗ (1, q, . . . , qk−1) ∈ Rd/k×d and

(α′)
2 ≥ α2 + 2r2B2

1d.

Moreover, this reduction reduces the advantage by at most [1− (1− δ1 − δ2)
d
] +

(4d+ 10)εm.

Proof. We apply Theorem 1 taking β2 ≥ B2
1d. For power-of-two cyclotomic rings,

‖BsiR‖ = ‖σH(s)‖. Furthermore, if B1 ≥ ‖σH(s)‖, then it is guaranteed that
B1 ≥ maxi |σi(s)|. The rest of the proof is the same as in Corollary 1.

To put the above corollary into context, we now discuss the pairs (B1, δ1)
and (B2, δ2) when the secret distribution χ is DR∨,τ . From Lemma 8, for any

δ1 ∈ (0, 1), we have B1 = O(τ
√
n log(n/δ1)). Next, for any δ2 ∈ (0, 1), we fix the

parameter δ from Lemma 7 (e.g. δ = 1/2) and take t from Lemma 7 proportional
to n/δ2. Then, as long as τ ≥ O(

√
n log(n)/δ2), we can take B2 = O(n/(τδ2)).

To summarize, we may take:

– B1 = O(τ
√
n log(n/δ1)) for arbitrary τ > 0 and δ1 ∈ (0, 1)

– B2 = Õ
(

n
τδ2

)
for τ ≥ O(

√
n log(n)/δ2) and any δ2 ∈ (0, 1)

– B1B2 = Õ
(
n
√
n log(n/δ1)

δ2

)
for τ ≥ O(

√
n log(n)/δ2) and any δ1, δ2 ∈ (0, 1).

In an ideal setting, we would like to conclude that a probabilistic polynomial-
time (PPT) algorithm that solves RLWE with non-negligible advantage implies
a PPT algorithm capable of solving MLWE with non-negligible advantage. In
order to achieve this, it is necessary that the loss in advantage incurred by any



19

reduction should be negligible in the security parameter λ. Therefore, we would
require that δ1, δ2 and ε all be negligible in the corollaries above. The requirement
that δ2 be negligible is particularly troublesome since this implies that B1 and
B2 are super-polynomial in λ if we want to use the results above. This would
mean that the resulting error in our reduction would also be super-polynomial.
In particular, the case of normal form MLWE where τ = αq (= poly(n)) is not
covered by the analysis given in the case that δ2 is negligible. This issue will be
addressed in Section 4 where we show that taking δ2 = O(1/d) suffices when
considering search variants.

Yet, the analysis given so far remains relevant for sufficiently good algorithms
for solving RLWE. For example, given access to an algorithm solving decision
RLWE with advantage 1/poly(λ), it would be adequate to consider δ1, δ2 and
ε as 1/poly(λ). These choices lead to a reduction from MLWE to RLWE (with
polynomial noise) with 1/poly(λ) loss in advantage which is acceptable given a
sufficiently effective algorithm for solving RLWE.

4 Search Reductions Using Rényi Divergence

Given our analysis of the reduction explicited in Theorem 1, it is fairly straight-
forward to obtain analogous results based on Rényi divergence. We will show
that our reduction can be used to solve search MLWE with non-negligible
probability given an algorithm for solving search RLWE with non-negligible
success probability. Note that this result could potentially be derived from
statistical distance arguments, but we choose to use the Rényi divergence because
it later allows us to reduce to a strictly spherical error distribution while increasing
the width of the resulting error distribution only by small powers of n. In contrast,
statistical distance arguments require the drowning noise to increase by super-
polynomial factors. This is because we require negligible statistical distances to
target distributions whereas we only require that Rényi divergences are O(1) to
obtain meaningful results.

Theorem 2. Let R be the ring of integers of some algebraic number field K
of degree n, d, d′, q, q′ be integers, ε ∈ (0, 1/2), and G ∈ Rd

′×d. Also, fix

s = (s1, . . . , sd) ∈ (R∨q )
d
. Further, let BΛ be some known basis of the lattice

Λ = 1
q′G

T
HR

d′ +Rd (in the canonical embedding), BR be some known basis of R
in H and

r ≥ max


‖B̃Λ‖ ·

√
2 ln(2nd(1 + 1/ε))/π

1
q ‖B̃R‖ ·

√
2 ln(2nd(1 + 1/ε))/π

1
q‖B̃siR‖ · 1

mink |σk(si)| ·
√

2 ln(2n(1 + 1/ε))/π

where BsiR is a basis of siR in the canonical embedding. Let M = Rd, M ′ = Rd
′

and define B := maxi,j |σi(sj)|. There exists an efficient probabilistic mapping

F : (Rq)
d × TR∨ −→ (Rq′)

d′ × TR∨ such that

R∞

(
A

(M ′)
q′,Gs,Dα′

||F(A
(M)
q,s,Dα

)
)
≤
(

1 + ε

1− ε

)d+3
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where (α′)
2
i = α2 + r2(β2 +

∑d
j=1 |σi(sj)|2) and β satisfies β2 ≥ B2d.

Proof. We take the mapping F described in the proof of Theorem 1 and adopt the
same notation. Recall that (ã, b̃) denotes the output of F . Denote the distribution

of interest F(A
(M)
q,s,Dα

) as Ã
(M ′)

q′,Gs,D̃
i.e. the distribution of (ã, b̃) given that (a, b)

follows the distribution A
(M)
q,s,Dα

.

Distribution of ã. Let Ksol denote the number of solutions to the equation
1
q′G

T
Hx = v mod Rd and Kv the number of possible vectors v. Recall that Ksol

is constant in v. For any ¯̃a ∈ Rd′q′ , we have (from Equation (8)) that

Pr[ã = ¯̃a] =
∑

v̄∈Λ/Znd
Pr[ã = ¯̃a|v = v̄] · Pr[v = v̄]

≥ C ′ ·
(

1− ε
1 + ε

)
1

Ksol
≥
(

1− ε
1 + ε

)2

· 1

KsolKv
.

Note that picking ã at random is identical to choosing v at random followed
by picking a uniformly random solution to 1

q′G
T
Hx = v mod Rd. Therefore, the

distribution of ã which we denote by D(ã) satisfies

R∞

(
U(Rd

′

q′ )||D(ã)
)
≤
(

1 + ε

1− ε

)2

. (13)

Distribution of −f. Previously, we concluded that the distribution of −f was
close in statistical distance to D 1

qR
d−v̄,r conditioned on some fixed ã. Once again,

summing over appropriate values of f in Equation (7) tells us that

Pr[−f = f̄|ã = ¯̃a] ≥ C · ρr (̄f) ≥
1− ε
1 + ε

· ρr (̄f)

ρr(
1
qR

d − v̄)
.

Therefore, writing D(−f) as the distribution of −f, we see that

R∞

(
D 1

qR
d−v̄,r||D(−f)

)
≤ 1 + ε

1− ε
.

Distribution of the error term. We now analyse the distribution of the error term
given in Equation (10). Let fi denote the ith block of n consecutive coordinates
of f ∈ Rnd Once again, we split the RHS of this error term and analyse it

as
∑d
i=1

(
STi,H · (−fi) + ẽ(i)

)
+ e where each ẽ(i) is sampled independently from

a continuous Gaussian on Rn with parameter γi ≥ rB. Let D(i) denote the
distribution of

(
STi,H · (−fi) + ẽ(i)

)
. We now use the data-processing inequality

with the function (−f, ẽ(1), . . . , ẽ(d)) 7−→ (ST1,H ·(−f1)+ẽ(1), . . . , STd,H ·(−fd)+ẽ(d)).

For i = 1, . . . , d, define Y (i) as the distribution obtained by sampling from
D 1

qSi,HR+Si,H ·v̄i,r(STi,H) and then adding a vector sampled from Dγi . Note that

Y (i) is the distribution of STi · (−fi) + ẽ(i) in the case that the distribution of −f
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is exactly D 1
qR

d−v̄,r. Let Dγ = Dγ1 × · · · ×Dγd . The data-processing inequality

for Rényi divergence implies that

R∞
(
Y (1) × · · · × Y (d)||D(1) × · · · ×D(d)

)
≤ R∞

(
D 1
q
Rd−v̄,r ×Dγ ||D

(−f) ×Dγ
)

≤ 1 + ε

1− ε .

Now we apply Lemma 5 by recalling that the covariance matrix STi,HSi,H is
diagonal with elements |σj(si)| for j = 1, . . . n. This allows us to conclude that
for i = 1, . . . , d,

R∞

(
D

(γ2
i+r2STi,HSi,H)1/2

||Y (i)
)
≤ 1 + ε

1− ε
.

By first applying the data-processing inequality to the function that sums the
samples and then considering the triangle inequality and independence, the above
equation implies that

R∞

(
D

(α2+r2β2+r2
∑d
i=1 S

T
i,H

Si,H )
1/2 ||D̃

)
≤ 1 + ε

1− ε ·
d∏
i=1

R∞

(
D

(γ2+r2ST
i,H

Si,H )
1/2 ||Y (i)

)

≤
(

1 + ε

1− ε

)d+1

(14)

where D̃ is the distribution of the RHS of Equation (10) (i.e. the sum of the
distributions D(i)).

Distribution of the reduction’s output. We now complete the proof by combining
the results above.

R∞

(
A

(M ′)
q′,Gs,Dα′

||Ã(M ′)

q′,Gs,D̃

)
≤
(

1 + ε

1− ε

)2

·R∞
(
Dα′ ||D̃

)
≤
(

1 + ε

1− ε

)2

·
(

1 + ε

1− ε

)d+1

where the first inequality comes from the multiplicative property of Rényi di-
vergence along with the inequality in (13) and the second comes from the weak
triangle inequality along with (14).

Corollary 3. For power-of-two n, let R = Z[X]/ 〈Xn + 1〉, m be a positive
integer and χ be a distribution over R∨ satisfying

Prs←$χ [‖σH(s)‖ > B1 ] ≤ δ1 and Prs←$χ

[
max
j

1

|σj(s)|
≥ B2

]
≤ δ2

for some (B1, δ1) and (B2, δ2). Also let α > 0. For any k > 1 that divides d > 1
and

r ≥
(

max{
√
n,B1B2}
q

)
·
√

2 ln(2nd(1 +m(d+ 3)))/π,
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there exists an efficient reduction from search MLWE
(Rd)
m,q,Ψ≤α

(χd) to search

MLWE
(Rd/k)

m,qk,Ψ≤α′
(U(R∨q )) for

(α′)
2 ≥ α2 + 2r2B2

1d.

In particular, if there is an algorithm solving search MLWE
(Rd/k)

m,qk,Ψ≤α′
(U(R∨q ))

with success probability p, then for search MLWE
(Rd)
m,q,Ψ≤α

(χd) an algorithm exists

which succeeds with probability at least [1− (δ1 + δ2)]
d · p/8.

Proof. We use the reduction and analysis from Theorem 2 with β2 ≥ B2
1d and

G = Id/k ⊗ (1, q, . . . , qk−1) ∈ Rd/k×d followed by a standard re-randomization
of the resulting secret. Since we sample d such ring elements, we are in the
realm of Theorem 2 with probability at least (1− (δ1 + δ2))

d
. Since we have m

samples, we must raise the Rényi divergence in Theorem 2 to the mth power.

Taking ε = 1
m(d+3) ensures that

(
1+ε
1−ε

)(d+3)m

≤ 8. The result now follows from

the probability preservation property of the Rényi divergence and the fact that
we can reverse the mapping between secrets.

The results of this section are far more satisfying than the analysis given in the
previous section when analysing a secret distribution of the form DR∨,τ . Let us
assume that the probability of success p of an algorithm for solving RLWE is non-
negligible. Then all we require is that δ1, δ2 = O(1/d) in order to solve the search
MLWE with non-negligible success probability. Therefore, we may take B1 =
Õ(τ
√
n) and B2 = O(dn/τ) for this secret distribution as long as τ ≥ Õ(d

√
n).

In this case, we have α′ = Õ(τn2
√
d/q). This simplifies to α′ = Õ(αn2

√
d) when

considering the normal form of MLWE where τ = αq. Therefore, we see that even
for typical error and secret distributions with polynomial standard deviations,
search MLWE is not qualitatively harder than search RLWE with larger modulus,
i.e. an efficient algorithm for the latter implies an efficient algorithm for the
former.

4.1 Strictly Spherical Error Distributions

We will now present a lemma that allows us to reduce from MLWE to RLWE
with a spherical error distribution.

Lemma 9. For integers m, n, let M ∈ Rm×n be a matrix with non-zero singular
values σi for i = 1, . . . , n and take β2 ≥ σ2

1. Then

– R2

(
Drβ ||Dr(β2I+MTM)1/2

)
≤
(

1 +
σ4
1

β4

)n/2
,

– R∞

(
Drβ ||Dr(β2I+MTM)1/2

)
≤
(

1 +
σ2
1

β2

)n/2
.
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Proof. To prove this lemma, simply work in the orthogonal basis where the
matrix MTM takes a diagonal form. For the first claim,

R2

(
Drβ ||Dr(β2I+MTM)1/2

)
=

n∏
i=1

√
r2(β2 + σ2

i )

r2β2

∫
R

exp

[
−πx2

i

(
2

r2β2
− 1

r2(β2 + σ2
i )

)]
dxi

=

n∏
i=1

√
β2 + σ2

i

r2β4

∫
R

exp

[
−πx2

i

(
β2 + 2σ2

i

r2β2(β2 + σ2
i )

)]
dxi

=

n∏
i=1

√
β2 + σ2

i

r2β4
·

√
r2β2(β2 + σ2

i )

β2 + 2σ2
i

=

n∏
i=1

√
(β2 + σ2

i )
2

β4 + 2β2σ2
i

=

n∏
i=1

√
1 +

σ4
i

β4 + 2β2σ2
i

≤
(

1 +
σ4

1

β4

)n/2
.

For the second claim, we have

R∞

(
Drβ ||Dr(β2I+MTM)1/2

)
= max

x∈Rn

 n∏
i=1

√
β2 + σ2

i

β2
· exp

[
−πx2

i

(
σ2

r2β2(β2 + σ2
i )

)]
=

n∏
i=1

√
β2 + σ2

i

β2
≤
(

1 +
σ2

1

β2

)n/2
.

We can now extend Theorem 2 to get a spherical output error distribution by
applying the above Lemma to the final result along with the triangle inequality.
In particular, the Rényi divergences given in Theorem 2 increase by factors

of
(

1 +
d4 maxi,j |σj(si)|4

β4

)n/2
and

(
1 +

d2 maxi,j |σj(si)|2
β2

)n/2
for orders 2 and ∞

respectively. Therefore, when applying the theorem to m MLWE samples, we

require that β increase by factors of (mn)
1/4

for order 2 and (mn)
1/2

for infinite
order to ensure O(1) Rényi divergences. These ideas will be concretised in the
proof of Theorem 3 in the next section.

5 Reducing RLWE in (n, q) to (n/2, q2)

Throughout this entire section, we assume that n is a power of two. The reduction
strategy is to represent polynomial multiplications in ring dimension n using
n× n matrices by working in the coefficient embedding. The reduction follows
the same blueprint as in Section 3 apart from the fact that we are no longer
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working exclusively in the canonical embedding. Since we are considering power-
of-two cyclotomic rings, polynomial multiplication is always represented by a
matrix of the form given in Equation (1). Going from ring dimension n to n/2
just halves the dimension of these matrices. For clarity, we adopt the notation
Rn,q = Zq[X]/ 〈Xn + 1〉 and Rn = Z[X]/ 〈Xn + 1〉.

Our aim is to reduce RLWE in dimension and modulus (n, q) to RLWE in
(n/2, q2) via some mapping:a ∈ Rn,q 7−→ ã ∈ Rn/2,q2 , b ∈ TRn∨ 7−→ b̃ ∈ TRn/2∨ ,

s ∈ Rn,q∨ 7−→ s̃ ∈ Rn/2,q2∨. We can start by defining a relationship between
rot(s) and rot(s̃). In order to make clear the distinction between the two rings,
we denote n× n matrices associated with multiplications in Rn,q by writing the
subscript n, q. Given G,H ∈ Zn/2×n, the linear relationship will be defined via
the equation

rot(s̃)n/2,q2 = 2 ·H · rot(s)n,q ·GT . (15)

Note that the factor of 2 is present to account for the fact that the new secret
should be in the dual ring Rn/2,q2

∨ = 2
nR and the matrix H ensures that we

end up with a square matrix rot(s̃)n/2,q2 . We also need to be careful that G and
H are chosen so the matrix rot(s̃)n/2,q2 has the correct form. Define the map

between b and b̃ (up to some Gaussian error) as

b̃vec ≈ 2H · bvec.

In order for the reduction to work, we require that b̃ ≈ ã · s̃/q2 mod Rn/2
∨ i.e.

2 ·H · rot(s)n,q ·
1

q
avec ≈ 2 ·H · rot(s)n,q ·GT · 1

q2
ãvec mod 2/n.

It is easy to see that we can satisfy this requirement by choosing ã such that

1

q
aTvec =

1

q2
GT · ãTvec mod 1.

Explicit forms for our choice of G and H are

G = In/2 ⊗ (1, q) ∈ Zn/2×n, (16)

H = In/2 ⊗ (1, 0) ∈ Zn/2×n. (17)

Claim. Take G and H as above. Then rot(s̃)n/2,q2 is of the correct form (i.e. rep-
resents multiplication by some polynomial in (Rn/2,q2)).

Proof. We can write simple explicit forms (GT )kl = δk,2l−1 + qδk,2l and (H)ij =

δ2i−1,j .Then the matrix multiplication H · rot(s)n,q ·GT yields (rot(s̃)n/2,q2)
il

=
(rot(s)n,q)2i−1,2l−1 + (qrot(s)n,q)2i−1,2l which is of the correct form.

Note that the mapping between secrets is

s =

n−1∑
i=0

si ·Xi 7−→ s̃ = (s0 − qsn−1) +

n/2−1∑
i=1

(s2i + qs2i−1) ·Xi. (18)
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Now the proof of correctness for this reduction is essentially the same as Theorem 2
with a few alterations. One of the more important changes is that we use Lemma 9
and target a spherical error. We do this to ensure that multiplication by H leads
to a Gaussian with parameters that we can easily bound.

Theorem 3. Let n be a power of two, q be an integer, fix s ∈ Rn,q∨ and

r ≥ 1

q
·max

{
1,
‖svec‖

σn(rot(s))

}
·
√

2 ln(2n(1 + 1/ε))/π.

Further, let σ1 := σ1(rot(s)) and β ≥ 2σ1
√
n.

For any α > 0, there exists an efficient mapping F : Rn,q × TRn,q∨ →
Rn/2,q × TRn/2,q2∨ such that

– R2

(
A
Rn/2
q2,s̃,Dα′

||F(ARnq,s,Dα)
)
≤
(

1+ε
1−ε

)4

·
(

1 +
16n2σ4

1

β4

)n/2
,

– R∞

(
A
Rn/2
q2,s̃,Dα′

||F(ARnq,s,Dα)
)
≤
(

1+ε
1−ε

)4

·
(

1 +
4nσ2

1

β2

)n/2
where s̃ is given in Equation (18) and (α′)

2
= 4α2 + r2β2.

Proof. Suppose we are given (a, b) ∈ Rn,q × TRn,q∨ and take G,H ∈ Zn/2×n as
in Equations (16) and (17) respectively. The mapping F is performed as follows:

1. Sample f← DΛ− 1
q avec,r

over the lattice Λ = 1
q2 GTZn/2 + Zn. Note that the

parameter r is large enough so we can sample the discrete Gaussian efficiently
by Lemma 2 since ‖B̃Λ‖ = q−1.

2. Let v = 1
qavec + f ∈ Λ/Zn and set x to be a random solution of 1

q2 GTx =
v mod 1. Then set ã ∈ Rn/2,q2 to be the unique polynomial such that ãvec =
x.

3. Sample ẽ from the distribution Drβ over KR ' H ' Rn/2 and set b̃ =
2H · b+ ẽ ∈ TRn/2,q2∨ .

4. Finally, output (ã, b̃) ∈ (Rn/2,q2)× TRn/2,q2∨ .

Distribution of ã: We can precisely repeat the argument given in the proof of
Theorem 2 after noting that r ≥ ηε(Λ) and r ≥ ηε(q−1Zn). The only conceptual
difference is that we are now working in the coefficient embedding. Denoting the
distribution of ã given uniform a by D(ã), we find that

R∞

(
U(Rn/2,q2)||D(ã)

)
≤
(

1 + ε

1− ε

)2

. (19)

Distribution of the error: We now condition on fixed ã = ¯̃a and set v̄ = GT ¯̃avec.
Denoting the distribution of −f as D(−f) we also have that

R∞

(
D 1

qZn−v̄,r
||D(−f)

)
≤
(

1 + ε

1− ε

)
.
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All that remains is to analyse the distribution of(
b̃− 1

q2
ã · s̃

)
vec

= 2H · rot(s) · (−f) + 2H · evec + ẽvec mod 2/n (20)

= 2H · (rot(s) · (−f) + evec + ẽ∗vec) mod 2/n (21)

where ẽ∗vec (resp. evec) is drawn from the spherical distribution Drβ/(2
√
n) (resp.

Dα/
√
n). Note that the

√
n factors take into account that we are working in the

coefficient embedding.

The distribution of rot(s) ·D 1
qZn−v̄,r

is D 1
q rot(s)Zn−rot(s)v̄,r·rot(s)T . By working in

the orthogonal basis where the covariance matrix rot(s)T rot(s) is diagonal, we can
apply Lemma 5. We also apply the data-processing inequality on (−f, ẽ∗vec) 7−→
−rot(s) · f + ẽ∗vec along with the triangle inequality to obtain

R∞

(
Derr||D(−rot(s)·f+ẽ∗vec)

)
≤
(

1 + ε

1− ε

)
·
(

1 + ε

1− ε

)
, (22)

where Derr is a continuous Gaussian distribution with covariance Σ = r2(β
2

4n I +

rot(s)T rot(s)) and D(−rot(s)·f+ẽ∗vec) is the exact distribution of −rot(s) · f + ẽ∗vec.

Distance to spherical error: We now apply Lemma 9 to find that

R2

(
Drβ/(2

√
n)||Derr

)
≤
(

1 +
16n2σ4

1

β4

)n/2
,

R∞
(
Drβ/(2

√
n)||Derr

)
≤
(

1 +
4nσ2

1

β2

)n/2
.

Finally, using the weak triangle inequality with intermediate distribution 2H·Derr

and the data-processing inequality, we obtain

R2

(
2H ·D

((rβ)2/(4n)+α2/n)
1/2 ||D(RHS)

)
≤
(

1 + ε

1− ε

)2

·
(

1 +
16n2σ4

1

β4

)n/2
,

R∞

(
2H ·D

((rβ)2/(4n)+α2/n)
1/2 ||D(RHS)

)
≤
(

1 + ε

1− ε

)2

·
(

1 +
4nσ2

1

β2

)n/2
where D(RHS) is the distribution of the RHS in Equation (20).

Distribution of the reduction output: We conclude by combining the above results
in the same way as in the proof of Theorem 2. We must also scale up by a
factor of

√
n to account for the fact that we have been working in the coefficient

embedding.
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Corollary 4. Let n be a power of two and χ be a distribution over R∨n satisfying

Prs←$χ [‖σH(s)‖ > B1 ] ≤ δ1 and Prs←$χ

[
max
j

1

|σj(s)|
≥ B2

]
≤ δ2

for some (B1, δ1) and (B2, δ2). Also, let α > 0 and ε ∈ (0, 1/2). For any

r ≥ 1

q
·max{1, B1B2} ·

√
2 ln(2n(4m+ 1))/π,

let (α′c)
2

= 4α2 + 4r2B2
1(mn)

2c
. Suppose there exists an algorithm solving search

RLWE
(Rn/2)

m,q2,Dα′c
(U(R∨n/2,q2)) for c = 1/4 (resp. c = 1/2) with success probability

p1/4 (resp. p1/2). Then there exists algorithms solving RLWE
(Rn)
m,q,Dα

(χ) with

success probabilities at least (1− (δ1 + δ2))
p21/4
8e1/2

and (1− (δ1 + δ2))
p1/2
8e1/2

.

Proof. We will be applying the reduction in Theorem 3 with ε = 1/(4m) along
with a re-randomizing of the secret. We take β = 2B1(mn)

c
in the theorem.

Recall that for power-of-two cyclotomic rings, we have ‖σH(s)‖ =
√
n‖svec‖,

minj |σj(s)| = σn(rot(s)) and maxj |σj(s)| = σ1(rot(s)). This means that we are
able to apply the reduction and analysis of Theorem 3 with probability at least
1− (δ1 + δ2). Since we have m samples, we need to raise the Rényi divergences to
the mth power. Therefore, in the case that c = 1/4 (resp. c = 1/2), we have that
the Rényi divergence of order 2 (resp. order∞) is upper bounded by 8 ·e1/2. Note
that the reduction defines a reversible map between the secrets. Therefore, the
result is obtained by running the reduction, re-randomizing the secret, solving
the resulting search RLWE instance and then mapping back to the original
secret.

Typically, we would have access to m = O(1) RLWE samples. Considering
the normal form of RLWE with secret distribution DR∨,αq, we can take the

parameters B1 and B2 to be Õ(αq
√
n) and Õ(n/(αq)) respectively. Therefore,

the above corollary says that if we can solve RLWE in dimension n/2, modulus
q2 and error rate α · n9/4 with non-negligible probability in polynomial time,
then we can also solve RLWE with dimension n, modulus q and error rate α is
polynomial time with non-negligible probability.
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John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – kyber: a
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CDPR16. Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-
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A Design Space for RLWE Public-Key Encryption

Recall the simple public-key encryption scheme from [LPR10] which serves as the
blueprint for many subsequent constructions. The scheme publishes a public-key
(a, b = a · s+ e), where both s and e are small elements from the ring of integers
of a power-of-two cyclotomic field. Encryption of some polynomial m with {0, 1}
coefficients is then performed by sampling short r, e1, e2 and outputting:(

u, v
)

=
(
a · r + e1, b · r + e2 + bq/2c ·m mod q

)
.

The decryption algorithm computes

u · s− v = (a · r + e1) · s− (a · s+ e) · r − e2 − bq/2c ·m.

Let σ be the norm of s, e, r, e1, e2. Clearly, the final message will have noise of
norm ≥ σ2. Thus to ensure correct decryption, q has a quadratic dependency on
σ. As a consequence, in this construction, increasing σ and q can only reduce
security by increasing the gap between noise and modulus.

However, this issue can be avoided and is avoided in MLWE-based construc-
tions by picking some σ′ < σ at the cost of publishing more samples in the public
key. For example, if d = 2 the public key becomes

((a′, b′), (a′′, b′′)) = ((a′, a′ · s+ e′), (a′′, a′′ · s+ e′′)) ,

where s, e′e,′′ have norm σ. Encryption of some {0, 1} polynomial m is then
performed by sampling short r′, r′′, e1, e2 with norm σ′ and outputting

(u, v) = (a′ · r′ + a′′ · r′′ + e1, b′ · r′ + b′′ · r′′ + e2 + bq/2c ·m mod q) .

The decryption algorithm computes

u ·s−v = (a′ ·r′+a′′ ·r′′+e1) ·s− (a′ ·s+e′) ·r′− (a′′ ·s+e′′) ·r′′−e2−bq/2c ·m.

The security of the public key reduces to the hardness of RLWE in dimension n
with modulus q and noise size σ as before. The security of encryptions reduces
to the hardness of MLWE in dimension d = 2 over ring dimension n, modulus q
and noise size σ′, i.e. the level of security is maintained for σ′ < σ by increasing
the dimension. While we still require q > σ · σ′, the size of σ′ can be reduced at
the cost of increasing d resp. by relying on RLWE with modulus qd. Finally, note
that we may think of Regev’s original encryption scheme [Reg09] as one extreme
corner of this design space (for LWE) with d = 2n log q, where r′, r′′ are binary
and where e1, e2 = 0, 0. That is, in the construction above, we can replace the
Module-LWE assumption by the leftover hash lemma if d is sufficiently big.

B Powerful Ring LWE Adversaries

We show that an adversary that is able to solve search RLWE
(R)

m=1,qd,Dα
implies

an adversary that can solve search LWEm=n,d,q,Dα where m denotes the number
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of samples, n is the ring dimension of R and d is the plain LWE dimension. As
usual, q denotes the modulus and Dα the error distribution. This result is already
mention as a simple corollary in the introduction to [BLP+13], but we give a
slightly more detailed account here.

Suppose we start with n LWE samples in dimension d and modulus q. Then
the main result in [BLP+13] says that we may transform these to samples of
LWE in dimension 1 and modulus qd while slightly increasing the error rate to
α′ > α. We now show how to further transform these into a single RLWE sample.
Denote our m LWE samples of dimension 1 as(

ai, bi =
1

qd
· ais0 + ei

)
∈ Zqd × T for i = 1, . . . , n (23)

where s0 is the uniform secret obtained having performed the reduction mentioned
above.

Now we take the common example of a power-of-two cyclotomic ring R '
Z[X]/ 〈Xn + 1〉 for simplicity. In order to produce a RLWE sample, we choose

random s1, . . . , sn−1←$

{
0
n ,

1
n , . . . ,

qd−1
n

}n−1

where the divisor n arises because

secrets come from the dual ring. We now define

s :=
s0

n
+ s1 ·X + · · ·+ sn−1 ·Xn−1 ∈ R∨q , (24)

a := a0 + a1 ·X + · · ·+ an−1 ·Xn−1 ∈ Rq. (25)

When doing the multiplication 1
qd
a · s mod R∨, the only terms which we do not

explicitly know are of the form ai · s0. In particular, the only unknown term in
the coefficient of Xi is 1

qd
ai · s0n . However, we can simply replace this with 1

nbi

from Equation (23) to get an approximation of 1
qd
a · s. Following this strategy,

we end up with a polynomial b̃ such that

b̃− 1

qd
a · s =

1

n

(
e0 + e1 ·X + . . . en−1 ·Xn−1

)
mod R∨. (26)

Therefore, (a, b̃) ∈ Rq × TR∨ is an RLWE sample with error distribution Dα′

over KR. In the case of a general ring R, the same overall strategy works apart
from the fact that the final error distribution may be skewed in the canonical
embedding space. However, the error distribution can be made spherical by
adding an appropriately skewed Gaussian if desired.
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