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Highlights 8 

- Diseases have a central, but poorly understood role in bee foraging ecology 9 

- Flowers are hubs for horizontal transmission of parasites within and between bee species 10 

- Nutritional and non-nutritional pollen and nectar chemistry affects bee immunity and disease 11 

- Diseases modify foraging behaviour by impairing foraging ability or changing floral 12 

preferences 13 

- Parasites affect pollination services by reducing bee populations or changing foraging 14 

behaviour 15 

 16 

Abstract 17 

Diseases have important but understudied effects on bee foraging ecology. 18 

Bees transmit and contract diseases on flowers, but floral traits including 19 

plant volatiles and inflorescence architecture may affect transmission. 20 

Diseases spill over from managed or invasive pollinators to native wild bee 21 

species, and impacts of emerging diseases are of particular concern, 22 

threatening pollinator populations and pollination services. Here we review 23 

how parasites can alter the foraging behaviour of bees by changing floral 24 

preferences and impairing foraging efficiency.  We also consider how changes 25 

to pollinator behaviours alter or reduce pollination services. The availability of 26 

diverse floral resources can, however, ameliorate bee diseases and their 27 

impacts through better nutrition and antimicrobial effects of plant compounds 28 

in pollen and nectar.  29 
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 30 

Introduction 31 

Bees, and the pollination services they provide, are threatened by a range of factors, including habitat 32 

loss, climate change, pesticides, and parasites [1],[2]. The impacts of parasites, and the diseases 33 

they cause, may be enhanced by interactions with other stressors [3]. Pesticides and decreasing floral 34 

resources can make bees more susceptible and less tolerant to diseases [4],[5], and global trade of 35 

managed pollinators has led to the spread of diseases into novel areas and hosts [2],[6]. Parasites 36 

can be transmitted and contracted by foraging bees on flowers [7], whereas the floral food rewards - 37 

pollen and nectar - that are consumed by bees may modulate disease severity, for example, through 38 

the antimicrobial compounds they contain [8],[9]. Foraging behaviour can also be impaired or altered 39 

by diseases (e.g. [10]), potentially affecting pollination services. Bee diseases and foraging ecology 40 

are thus intricately linked in a number of ways, and a better understanding of these relationships will 41 

be crucial to control the spread and negative effects of bee diseases. This review outlines the 42 

interactions between disease and foraging in bees, and highlights recent advances in this field as well 43 

as critical knowledge gaps. 44 

 45 

Foraging bees contract and transmit diseases on flowers 46 

Flowers act as hubs for the spread of diseases among visiting pollinators [7],[11],[12],[13]. Diseased 47 

bees can deposit parasites on flowers, for example, through defecation during foraging, or simple 48 

contact between contaminated bee and flower surfaces. Parasites may also be vectored by 49 

uninfected bees between flowers [13]. Subsequent flower visiting bees may then contract infections 50 

[7],[14].Thus interactions at flowers present an important horizontal transmission route for bee 51 

diseases.  52 

Emerging diseases spilling over from managed and naturalized honey bee and bumble bee colonies 53 

into native wild bee populations through shared flower use present a particular concern for pollinator 54 

conservation [15],[12],[16],[17]. For example, Deformed Wing Virus (DWV) and Nosema ceranae 55 

(Microsporidia) are both transmitted between honey bees and wild bumble bees, and can have high 56 

virulence in bumble bee hosts [12]. The detection of several viruses first described from honey bees 57 

in solitary bees, wasps, hoverflies, and moths suggests that some parasites may even be transmitted 58 

across broader taxonomic boundaries in the pollinator community [16],[18],[19]. However, it remains 59 

to be demonstrated if active and virulent viral infections can occur in these alternative hosts, as most 60 

studies to date have only screened for the presence, but not active replication of viruses, and effects 61 

on these alternative hosts remain unknown [19]. Global trade of honey bees has introduced bee 62 

parasites such as DWV strains into new areas where they were previously absent [6], which may 63 

threaten native pollinators. In South America, the invasive European bumble bee Bombus terrestris 64 

(introduced for greenhouse pollination in the 1990s) is likely to have spread the trypanosomatid gut 65 

parasite Crithidia bombi to native bumble bees, which may have contributed to the rapid decline of 66 
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these keystone species [20]. However, the epidemiological processes of disease spread among 67 

native and invasive pollinators, as well as disease impacts on wild pollinator populations are not well 68 

understood, and further research in this area is needed urgently [19]. Next generation sequencing 69 

methods have greatly facilitated the detection of novel pathogens and other microbial associates of 70 

bees [21],[22], and can in the future be employed to characterize plant-pollinator-pathogen webs via 71 

metabarcoding or metagenomics [23]. 72 

Floral traits such as floral morphology or chemistry could influence pollinator disease transmission, 73 

with flowering plants varying in their likelihood of spreading infections [7],[11]. For example, floral 74 

volatiles that provide broad spectrum antimicrobial protection for the flower can inhibit the survival on 75 

or colonisation of flowers by microorganisms [24], and so could equally kill bee parasites. 76 

Furthermore, architectural complexity in inflorescences was found to reduce C. bombi transmission in 77 

B. terrestris [7]. To date, there is little knowledge on the specific interactions of floral traits and bee 78 

disease transmission [11]. However, anthropogenic changes to plant communities, like introduction of 79 

invasive plants or loss of floral diversity via intensified land use, could alter transmission patterns with 80 

unknown consequences for bee health [11]. 81 

 82 

The chemistry of bee forage impacts pollinator disease 83 

The chemistry of pollen and nectar varies in both primary metabolites (e.g., sugars, amino acids, and 84 

lipids) and the secondary compounds like flavonoids, terpenoids, and alkaloids [25]. These nutritional 85 

and non-nutritional chemical differences could modulate parasite susceptibility and disease severity of 86 

bees.  For example, nutrition has been linked to bee immunocompetence. Bumble bees fed on a 87 

protein deprived diet containing no pollen showed a reduced immune response to C. bombi infections 88 

[26]. In honey bee workers, protein-rich pollen types resulted in higher individual (phenoloxidase 89 

activity) and social (glucose oxidase activity) immunocompetence [4]. Furthermore, honey bee larvae 90 

were more susceptible to Aspergillus opportunistic fungal pathogens when fed on poorer larval diets 91 

with monofloral pollen in comparison to polyfloral pollen [27]. 92 

Conversely, a diet with a high nutritional value can also benefit the parasite. Logan et al. [28] reported 93 

higher C. bombi levels in bumble bees and Jack et al. [29] reported higher N. ceranae spore loads in 94 

honey bees when both hosts were fed on pollen. In this case, the survival of honey bees fed on pollen 95 

was enhanced despite increased N. ceranae parasite load compared with pollen starved bees. This 96 

suggests that although a rich diet may improve conditions for parasites, it also increases the host’s 97 

disease tolerance, which may be more important than parasite numbers alone [29].  98 

The above studies did not directly manipulate individual chemical constituents of the experimental 99 

diets, making it difficult to determine what specific qualities of dietary variation influenced the different 100 

experimental outcomes. Pollen is chemically complex and highly variable between species, and the 101 

role of some pollen constituents like fatty acids, sterols, flavonoids, and alkaloids were neither 102 

investigated nor discussed. This important limitation will need to be addressed in future studies. 103 



4 
 

Plant secondary metabolites have a range of ecological functions, including defence against microbial 104 

disease. Although the chemistry of pollen and nectar is of increasing interest [25], knowledge of the 105 

diversity of these secondary compounds and their antimicrobial properties against bee diseases is 106 

limited. The best evidence to date that nectar secondary compounds reduce disease load in bees 107 

comes from several studies of C. bombi in bumble bees. Manson et al. [30] showed that gelsemine 108 

(an alkaloid found in the nectar of Gelsemium sempervirens) reduced C. bombi infection levels in B. 109 

impatiens. Richardson et al. [8] later found four out of eight secondary nectar compounds to inhibit C. 110 

bombi in the same host. Baracchi et al. [31] showed that nicotine delayed the development of C. 111 

bombi infections in a second host species, B. terrestris. Such effects can occur under biologically-112 

realistic dosage levels, for example, in Richardson et al. [8] the monoterpene thymol was fed at 0.2 113 

ppm in sugar water, whereas it naturally occurs in thyme nectar at concentrations of up to 8.2 ppm, 114 

sufficient to inhibit C. bombi in vitro [9]. The eco-evolutionary interactions between plant compounds 115 

and bee parasites are however likely considerably more complex than this, and have only been 116 

studied in a few cases. Palmer-Young et al. [9] showed that C. bombi strains differed more than 4-fold 117 

in their EC50 values for thymol and anabasine. C. bombi strains could also readily evolve increased 118 

resistance to thymol in vitro within a 6 week period [32]. Importantly, under natural conditions, 119 

parasites will not be exposed to single plant compounds within the host, but chemical mixtures from 120 

the bee diet. Different plant metabolites may then act additively or synergistically in inhibiting 121 

parasites, although this has been shown only using compounds at above naturally occurring 122 

concentrations [33]. 123 

In addition to direct effects, secondary plant compounds can indirectly affect bee diseases by 124 

modulating the immune system or gut microbiome. Mao et al. [34] showed that p-coumaric acid, a 125 

phenylpropanoid found in nectar and pollen, enabled upregulation of two antimicrobial peptides 126 

(abaecin and defensin) in honey bees, and Negri et al. [35] found an improved cellular immune 127 

response in honey bees feeding on abscisic acid, a terpenoid present in nectar of some species. A 128 

potential, but unstudied, path for secondary metabolites to indirectly affect bee parasites is through 129 

modulation of the bee gut microbiome, the composition of which has been shown to play an important 130 

role in parasite susceptibility [22],[36]. Given the complex interactions between plant compounds, 131 

microorganisms, and hosts, to understand the outcome for bee health it will be necessary to 132 

complement controlled laboratory experiments elucidating underlying mechanisms with field or semi-133 

field (e.g. greenhouse) trials under more natural conditions. These studies should investigate fitness 134 

consequences of phytochemical dietary differences for healthy or diseased bees by manipulating the 135 

plant composition of the foraging environment or supplementing free flying bee colonies with target 136 

phytochemicals. Studies will also have to be extended beyond the bumble bee – C. bombi system, as 137 

patterns found in this interaction may not translate to other pathogens (e.g. viruses, Nosema) and 138 

hosts. 139 

Besides naturally occurring plant compounds, bees are also exposed to agricultural pesticides during 140 

foraging. Neonicotinoid insecticides can suppress the immune system of honey bees [37], and 141 

increase the risk and severity of parasitic infections with N. ceranae and DWV [5],[38]. The interaction 142 
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of pesticides and other anthropogenic stressors with diseases increases the pressure on pollinator 143 

populations [2],[3]. 144 

Ultimately, a biodiverse floral landscape and the resulting dietary alternatives for bees may have an 145 

important beneficial effect for bee disease resistance and tolerance by improving nutrition and 146 

availability of beneficial secondary compounds. Polyfloral diets increase immune function and 147 

decrease disease loads in honey bees [4],[39], and the different secondary compounds in nectar may 148 

act synergistically against parasites (e.g., C. bombi in bumble bees [33],[40]). One of the best and 149 

most practical methods to improve pollinator health may therefore be to ensure the availability of 150 

diverse and health promoting floral resources in urban, agricultural, and natural landscapes. 151 

 152 

Diseases affect foraging behaviour 153 

Just as the foraging of bees impacts pathogen susceptibility and transmission, the pathogens can 154 

influence the behaviour of foraging bees. For example, Fouks & Lattorff [41] found that bumble bees 155 

avoided flowers artificially inoculated with the parasite C. bombi. Bacteria in nectar can also deter 156 

honey bees and bumble bees from feeding [42],[43]. It remains to be seen how and to what extent 157 

bees can detect pathogens while foraging, but these studies suggest bees may be able to reduce 158 

exposure to pathogens by altering foraging choices. 159 

On the other hand, once bees are infected, diseases may have a range of effects on foraging 160 

behaviour. Schmid-Hempel & Schmid-Hempel [44] were the first to document an association between 161 

parasite infections and bee foraging behaviour in the field. B. pascuorum workers parasitized by 162 

conopid flies were found foraging significantly more often on Stachys officinalis than on Prunella 163 

grandiflora when compared to unparasitized individuals. Additional field studies revealed that conopid 164 

and C. bombi parasitized bumble bees were less likely to collect pollen for their colony [45],[46]. A 165 

number of experimental studies have later found detrimental effects of diseases on various aspects 166 

related to the bees’ foraging ability. In bumble bees, C. bombi reduces foraging speed and the ability 167 

to learn floral reward associations and novel flower handling motor patterns [47],[48],[49],[50]. Honey 168 

bees infected with N. ceranae have reduced homing ability and conduct shorter search flights 169 

[51],[52], and honey bees forage less and carry less pollen under increased Nosema apis infections 170 

[10]. Similarly, DWV infections reduced flight distance and duration in honey bees [53]. Furthermore, 171 

DWV and N. ceranae infected honey bee workers started foraging at an earlier age [54], potentially 172 

through impacts on juvenile hormone levels [55]. An earlier onset of foraging in infected bees could 173 

benefit the parasites by increasing horizontal transmission on flowers [54], but direct evidence for an 174 

evolved manipulation of pollinator foraging behaviour by parasites is lacking. As a consequence of 175 

these various effects, infected bees may be less efficient foragers [10],[45],[56] with negative 176 

consequences for individual and colony survival and reproduction.  177 

Bees could also obtain fitness benefits through actively changing their foraging behaviour when 178 

infected, in essence self-medicating by preferentially visiting plants with disease ameliorating 179 
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compounds. Self-medication behaviour has been suggested in other animals [57], including several 180 

insect species [58]. For a behaviour to be classified as true self-medication, de Roode et al. [57] 181 

outlined five criteria to be fulfilled: 1.) Application or ingestion of a chemical compound or third 182 

species; 2.) Initiation of the behaviour by parasite infection; 3.) Increased fitness of the infected 183 

individual or its genetic kin by the behaviour; 4.) Costliness of the behaviour to uninfected individuals; 184 

5.) Relevance of the behaviour in natural environments (beyond e.g. artificial diets in the laboratory). 185 

For honey bees, increased resin collecting was observed in chalkbrood fungus (Ascosphaera apis) 186 

challenged hives, and experimentally applying bee-collected resin (propolis) to the interior of the hive 187 

reduced chalkbrood infection levels [59]. Stingless bees similarly collect antimicrobial resins [60],[61], 188 

but it is unknown if this behaviour is increased or altered by parasite infections. Under laboratory 189 

conditions, honey bees preferred honey with higher antimicrobial activity (sunflower honey) over less 190 

active honeys under N. ceranae infections, and feeding sunflower honey led to a slight reduction in N. 191 

ceranae spore counts [62]. In the field, Richardson et al. [50] showed that bumble bees naturally 192 

infected with C. bombi increased foraging for nectar with experimentally increased iridoid glycoside 193 

concentrations, compounds that had previously been shown to reduce Crithidia infection levels [8]. 194 

However, as the association between C. bombi infections and iridoid glycoside foraging in this study 195 

was correlational, and not based on experimental manipulation, it remains unclear if this behaviour 196 

was caused by the infection, or other external factors caused individuals to both be infected and 197 

change foraging. In conclusion, these studies suggest that criteria 1, 2, and 5 for self-medication 198 

mentioned above have been fulfilled for honey bees, and suggestive evidence has been obtained for 199 

bumble bees as well. Crucially, fitness effects, i.e., a fitness benefit of the behaviours under infection 200 

and costs to uninfected individuals (criteria 3 & 4) remain to be demonstrated directly. A reduction in 201 

parasite numbers (see [8],[62]) may result in fitness benefits, but, as pointed out by de Roode et al. 202 

[57], is not a central criterion for demonstrating self-medication. Harmful effects of ingested 203 

compounds could negate any benefit of decreased parasite numbers, and conversely, if 204 

phytochemicals increase disease tolerance, unaltered parasite counts could still result in host fitness 205 

benefits [57]. Experimental tests looking at fitness benefits of foraging behaviour changes under 206 

infection are therefore needed to determine if bees are truly self-medicating. 207 

Are diseases reducing pollination services? 208 

Diseases may reduce pollination services by foraging bees in two ways. Firstly, pollinator population 209 

declines resulting from diseases could lead directly to reduced pollination services owing to fewer 210 

floral visits, negatively affecting food production [2]. Consequently, the global spread of diseases from 211 

managed pollinators into wild bee populations is of special concern [6],[63], and better trade 212 

regulations are needed to halt the national and international spread of pathogens through the 213 

distribution and trade in managed pollinator species [2],[63]. 214 

Secondly, an important but poorly understood open question is whether diseased bees intrinsically 215 

deliver sub-optimal pollination services. Given that various pathogens have been observed to impair 216 

the foraging ability of bees (see discussion above), it would seem likely that pollination services are 217 

also altered or impaired. Gillespie & Adler [64], for example, found a negative correlation between 218 
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Nosema infection rates in bumble bees at different field sites, and seed set of Trifolium and Solanum 219 

plants. Lach et al. [10] found that honey bees infected with N. apis collected less pollen, and infection 220 

intensity was negatively correlated with the amount of pollen grains carried on the body of foragers, 221 

suggesting a lower efficiency of highly infected workers as pollinators. In contrast, higher C. bombi 222 

disease loads by bumble bees in urban compared to rural environments did not result in reduced 223 

pollination, which instead only depended on the amounts of visits a flower received [65].  224 

Shifts in the floral preferences of infected bees may impact pollination services [66]. For example, 225 

Crithidia infected bumble bees foraged more and transferred more pollen on Chelone glabra flowers 226 

with higher iridoid glycoside concentration, compounds previously found to reduce Crithidia infections 227 

[50]. Potentially, this change in pollinator preference under infection would increase pollination 228 

services for plants with higher amounts of nectar iridoid glycosides, but would lower pollination of 229 

those plants for which these compounds were at low concentration or absent [50]. Conopid fly 230 

infected bumble bees switched more often between plant species while foraging [66], whereas 231 

tracheal mite infections increased flower constancy [47]. This suggests that depending on the specific 232 

interaction, bee parasites could both increase and decrease within-species pollen transfer between 233 

flowers. Certainly, much more detailed experimental work is needed to understand the potential 234 

impacts of diseases on pollination services. 235 

 236 

Conclusion 237 

Diseases are an important, but still poorly understood factor in bee foraging ecology. Foraging for 238 

pollen and nectar exposes bees to a multitude of parasites that are horizontally transmitted via 239 

flowers. A better understanding of the epidemiology of disease spread in foraging pollinators and the 240 

role of floral traits in influencing transmission is needed if we are to develop effective interventions to 241 

reduce the impact of disease on pollinators. The varying nutritional and non-nutritional plant chemistry 242 

of pollen and nectar can affect bee diseases, either by directly inhibiting parasites through 243 

antimicrobial compounds, or indirectly by influencing host nutritional state, immune function, and the 244 

microbiome. Parasites can alter bee foraging behaviour, either through adaptive or non-adaptive 245 

impacts of the parasite on bee behaviour, or through bees detecting and avoiding infected flowers. 246 

Infected bees in turn could potentially self-medicate by visiting plants with disease-ameliorating pollen 247 

and nectar phytochemistry. Both the reduction of pollinator populations and the change in foraging 248 

behaviour due to diseases may result in reduced or altered pollination service, highlighting an urgent 249 

need to better understand the relation between foraging and bee disease. 250 
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 477 

Figure 1: Bees transmit and contract parasites on flowers. Parasites can be excreted by infected 478 

foraging bees onto flowers, or vectored on the bees’ surface between flowers. Subsequently visiting 479 

bees of the same or different species may then ingest parasites while foraging, and become infected. 480 

 481 

Figure 2: Flower chemistry affects bee diseases. For example, antimicrobial plant metabolites on 482 

flowers may kill bee pathogens and reduce floral transmission, and compounds in pollen and nectar 483 

can inhibit diseases in the gut of foraging bees or in larvae in the nest. 484 
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 485 

Figure 3: Diseases modify foraging behaviour of bees. Infected bees can be less efficient foragers for 486 

example due to less pollen collecting, or a reduced ability to learn floral reward associations and novel 487 

flower handling motor patterns. 488 

 489 

Figure 4: Diseases may reduce pollination services due to a reduction in bee populations or by 490 

affecting foraging behaviour, reducing pollen transfer between conspecific plants. 491 


