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Abstract: In today's 24/7 society, sleep restriction is a common phenomenon which leads to
increased levels of sleep pressure in daily life. However, the magnitude and extent of
impairment of brain functioning due to increased sleep pressure is still not completely
understood.
Resting state network (RSN) analyses have become increasingly popular because
they allow us to investigate brain activity patterns in the absence of a specific task and
to identify changes under dif-ferent levels of vigilance (e.g. due to increased sleep
pressure). RSNs are commonly derived from BOLD fMRI signals but studies
progressively also employ cerebral blood flow (CBF) signals.
To investigate the impact of sleep pressure on RSNs, we examined RSNs of
participants under high (19 h awake) and normal (10 h awake) sleep pressure with
three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing
confirmation of vigilance states in most conditions.
We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin
labeling) are suit-ed to derive independent component analysis based RSNs. The
spatial map differences of these RSNs were rather small, suggesting a strong
biological substrate underlying these networks.
Interestingly, increased sleep pressure, namely longer time awake, specifically
changed the functional network connectivity (FNC) between RSNs. In summary, all
FNCs of the DMN with any other network or component showed increasing effects as a
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function of increased 'time awake'. All other FNCs became more anti-correlated with
increased 'time awake'. The sensorimotor networks were the only ones who showed a
within network change of FNC, namely decreased connectivity as function of 'time
awake'.
These specific changes of FNC could reflect both compensatory mechanisms aiming
to fight sleep as well as a first reduction of consciousness while becoming drowsy. We
think that the specific changes observed in functional network connectivity could imply
an impairment of information transfer between the affected RSNs.
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We thank the reviewers for their valuable input. We are glad to see that they perceived our results as 

interesting and relevant. We provide an extensive point-by-point response below, summarize the 

changes made, and highlight the changes in the updated manuscript. The text in quotation marks and 

italics refers to the manuscript. 

 

Reviewer #1:  

Main comment:  

- The main limitation of the study lies in the differences between acquisition protocols for 

the high and low sleep pressure group. For instance, arterial spin labeling sequences 

were acquired with alternating 'eyes closed' and 'eyes open' periods in the low sleep 

pressure group, but with eyes open in the high pressure group; the low pressure group 

did not wear an EEG cap during this sequence but the high pressure group did, and 

there were differences in tasks that were carried out before the sequences. Although the 

authors tried to control for these factors and discuss these limitations, it remains unclear 

how much these differences affected the results. Also, some subjects were excluded 

because they fell asleep, but there was no possibility to verify whether the low pressure 

group fell asleep during the arterial spin labeling sequence because EEG was not 

recorded. 

 

Answer: 

We are aware of these limitations in the study design and tried to control for them in the best 

way possible. Because we took measures as e.g. adding nuisance regressors for the eyes 

open/closed patterns as well as motion parameters, and because we only included subjects in 

the NSP group that did not fall asleep in the first recording, displayed normal levels of 

daytime sleepiness values (Epworth sleepiness scale) as well as normal levels of acute 

sleepiness (Karolinska sleepiness scale), we are confident that the remaining confounding 

effects should be small and should not influence our results to a large extent. 

“Further, our results were limited by the absence of EEG recordings in the NSP group during 

the CBF session. We cannot rule out minor intrusions of sleep in this group during the CBF 

recordings. However, as these subjects were supposedly well-rested (which was reflected both 

by their Epworth sleepiness scores – a measure of daytime sleepiness – and the assessment of 

their acute sleepiness with the Karolinska sleepiness scale; see Tab. 1), were recorded 

through-out the daytime, did not fall asleep during the preceding BOLD session and after the 

recording did not report any sleep intrusions, we are confident that this potential confound is 

small. 

Another limitation stems from the differences regarding the eyes open or closed conditions in 

the two recording protocols, between the BOLD (2 min EO, 2 min EC, 2 min EO, 2 min EC; 

Fig. 1) and CBF sessions (HSP: 10 min EO, NSP: 5 min EO, 5 min EC; Fig. 1). Although 

studies have reported differences in functional connectivity with respect to voluntary eye 

movements in sleep-deprived subjects (Ong et al. 2015) and vigilance fluctuations (Wang et 

al. 2016), the reported functional connectivity changes were distinctly different from our 

observations. Also, since the pattern of cued EO/EC was added as a covariate of no interest 

in our FNC analysis, this confound should be minimal.” (Discussion, p. 15-16) 

 

The highlighted sections have been added to the manuscript. 
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Minor comments: 

- The presentation of results in the abstract is not specific enough. For example, the 

direction of change of FNC in RSN is not mentioned, which makes the conclusion 

difficult to follow. The methodological aim should be mentioned because this aspect 

appears as a conclusion. 

 

Answer: 

As we observed changes of FNC in different directions (ranging from increased positive 

correlations over increased negative correlations, to changes from negative to positive 

correlations and vice versa and decreased negative correlations), we found including detailed 

descriptions of the change direction too overwhelming for the abstract. 

However, to include some aspect of the observed changes, we changed the following section 

of the abstract: 

“Interestingly, increased sleep pressure, namely longer time awake, specifically changed the 

functional network connectivity (FNC) between RSNs. In summary, all FNCs of the DMN with 

any other network or component showed increasing effects as a function of increased ‘time 

awake’. All other FNCs became more anti-correlated with increased ‘time awake’. The 

sensorimotor networks were the only ones who showed a within network change of FNC, 

namely decreased connectivity as function of ‘time awake’. 

These specific changes of FNC could reflect both compensatory mechanisms aiming to fight 

sleep as well as a first reduction of consciousness while becoming drowsy. We think that the 

specific changes observed in functional network connectivity could imply an impairment of 

information transfer between the affected RSNs.” (Abstract, p. 2) 

 

The highlighted sections have been added to the manuscript. 

 

- It is not totally clear to me why the decreasing FNC between RSN could reflect 

compensatory mechanisms aiming to fight sleep, this main hypothesis should be explained 

better in the discussion, and backed up with more references/background. 

 

Answer: 

Our hypothesis is that the change of FNC from an anti-correlation between attentional 

networks and the DMN component could represent compensatory mechanisms to maintain 

wakefulness. This is on the one hand based on several studies that reported decreased anti-

correlations between these networks after sleep deprivation (that only included awake 

subjects), and one study in particular that observed larger reductions of these anti-correlations 

in subjects more resilient to sleep deprivation. As we specifically included subjects that could 

maintain wakefulness longer, our sample might be biased towards more resilient subjects. 

“In the specific case of the increase of FNC between the left executive control ATT 

component and a DMN component, this change from an anti-correlation to a positive 

correlation with increased time awake might have resulted in a loss of attention (maybe 

paralleled by a decrease of consciousness) due to the strenuous burden of maintaining 

wakefulness while struggling not to fall asleep. This is in line with results of several studies 

that reported decreased anti-correlations between ATT networks and the DMN after sleep 

deprivation (e.g. De Havas et al. 2012; Yeo et al. 2015; Kaufmann et al. 2016). Yeo and 

colleagues (2015) described that subjects more resilient to sleep deprivation exhibited 

relatively larger reductions of the anti-correlations between default mode and attentional 



networks. This could hint towards compensatory mechanisms of the brain counteracting the 

increased need for sleep.” (Discussion, p. 12) 

 

This would be in line with the lack of change in FNC involving the thalamus: 

“Surprisingly, we did not see any change of FNC involving the subcortical component (SUB, 

which includes the thalamus). The thalamus is hypothesized to have an influence on arousal 

levels (which are distinct from attention; Portas et al. 1998; Fan et al. 2005) and would be 

expected to show changes in connectivity in relation to different levels of sleep pressure. 

However, Chee and Tan (2010) reported that thalamic levels of activation in subjects not 

vulnerable to sleep deprivation were unchanged after sleep deprivation. Again, this could 

reflect compensatory mechanisms attempting to counteract increased sleep pressure in these 

subjects. In the present study, since we included those subjects who best were able to 

maintain wakefulness, our observed lack of FNC changes in the SUB component with time 

awake could be due to a potential bias towards subjects less vulnerable to sleep restriction or 

loss (see also subsection ‘Spatial maps of RSNs’). This might also be the reason why both our 

study and the study of Kaufmann and colleagues (2016) did not observe any within DMN 

changes of connectivity. Therefore, the observed changes in FNC between components of 

RSNs due to ‘time awake’ that we observed could be a property of sleep restricted subjects 

who are able to maintain wakefulness under levels of elevated sleep pressure in a challenging 

environment to stay awake, i.e. those who might be less vulnerable to sleep restriction or loss 

because their brain is able to compensate.” (Discussion, p. 13) 

 

The highlighted sections have been added to the manuscript. 

 

- Also, the potential utility of using ASL sequences to derive BOLD should be clarified in 

the discussion, as this appears to be one of the main conclusions of the paper 

 

Answer: 

As ASL recordings to derive functional cerebral blood flow (CBF) are increasing (because 

these measures provide an absolute value in contrast to the relative nature of the BOLD 

signal), it was important to us to evaluate the suitability of CBF signals for ICA-derived 

resting state networks. To address this issue, we did not only want to compare CBF and 

BOLD signals (that have different sensitivities to specific tissues) but to include a measure 

that should demonstrate similar tissue sensitivity (in order to rule out differences stemming 

only from this background) – hence the use of the pseudo BOLD (pBOLD) signals. 

“As the BOLD and ASL signals measure quite different phenomena and were not recorded 

simultaneously (and with different acquisition times (TRs)), we included a “pseudo BOLD” 

measure derived from the ASL data (presenting a similar tissue sensitivity as BOLD; Wong et 

al. 1997) in order to address whether differences between ASL and BOLD would be caused 

by variability in tissue sensitivity. 

… 

Thus, in this analysis, we investigated RSNs found with ICA of combined BOLD/CBF/pseudo 

BOLD signals in subjects under high (awake for approximately 19 hours) and normal sleep 

pressure (awake on average for approximately 10 hours) to verify that CBF signals present a 

viable option for RSN analyses. Based on previous reports (Sämann et al. 2010; De Havas et 

al. 2012; Yeo et al. 2015), we expected a decrease in functional net-work connectivity within 

and between network groups due to increased sleep pressure.” (Introduction, p. 4) 

 



In the conclusion we state our aim that these CBF and CBF-derived signals are suited for the 

kind of resting state network analyses employed in this study. 

“Additionally, we demonstrated that CBF and pBOLD signals are suited to derive ICA-based 

RSNs and that differences between CBF and BOLD measures were rather small, both with 

respect to the spatial intensity of the RSNs as well as their between network connectivity (i.e. 

FNC). Therefore, we could verify that CBF signals are indeed a viable option for these types 

of analyses. As we find the same networks with different modalities, a strong biological 

substrate must be underlying these resting state networks.” (Conclusions, p. 17) 

 

Thus, we think our objectives have been made clear, i.e. by our use of a pBOLD measure, we 

were able to justify the use of CBF signals for ICA-derived resting state networks. 

The highlighted sections have been added to the manuscript. 

 

- There is a problem in the way the references are displayed in the text (for many of them 

there is an error message in brackets but not the reference) 

 

Answer: 

We apologize for this inconvenience. Although we took care to remove the EndNote field 

codes before uploading the manuscript, somehow the Word document was corrupted, 

resulting in this error. The references have been checked and inserted correctly now. 

 

Reviewer #2:  

- This manuscript is concerned with the impact of the sleep pressure on the resting state 

brain activity. There is no doubt on the relevance of this topic, with a definitive impact 

in neuropsychology (impairment of the brain functioning with reduced vigilance, ...). 

The review of the manuscript was oscillating between excitation and frustration: some 

imprecisions or apparent methodological flaws weak the present work, and the 

outcomes are mitigated. The present review will tend to help to clarify some points 

although the reviewer thinks the main difficulty here is the small size of the cohorts in 

this experiment. 

 

Answer: 

The size of our cohorts is in a typical range for resting state studies, and in a medium to large 

range with respect to sleep studies. For example, in the paper by Blautzik et al. Neuroimage 

2013 “Classifying fMRI-derived resting-state connectivity patterns according to their daily 

rhythmicity” where the authors could demonstrate that the degree of daily modulation of 

resting state networks ranges from highly rhythmic to stable networks, only 15 participants 

were recorded. Therefore, we are confident that our study cohorts represent a reasonable 

sample in terms of size and allow us to reliably detect time-awake dependent differences in 

functional network connectivity. 

 

- The use of the pBOLD is interesting but the rationale of assessing functional 

connectivity through CBF is not clear. The fact that the three modalities lead to similar 

RSNs may be not so surprising given the strong change in brain state induced by the 

sleep pressure. The authors are fair: it is clear that this study was not planned in the 



original design of the experiment and they clearly explain the limitations of the results 

that they are discussing. 

 

As ASL recordings to derive functional cerebral blood flow (CBF) are increasing (because 

these measures provide an absolute value in contrast to the relative nature of the BOLD 

signal), it was important to us to evaluate the suitability of CBF signals for ICA-derived 

resting state networks. To address this issue, we did not only want to compare CBF and 

BOLD signals (that have different sensitivities to specific tissues) but to include a measure 

that should demonstrate similar tissue sensitivity (in order to rule out differences stemming 

only from this background) – hence the use of the pseudo BOLD (pBOLD) signals. Further, 

ASL measures provide absolute values of CBF, thereby allowing a comparison without the 

need for a baseline recording across scanners and subjects in a way not possible with the 

BOLD technique. 

“Another measurement technique used less in functional imaging up to now is arterial spin 

labeling (ASL) that measures cerebral blood flow (CBF; Williams et al. 1992). Currently, 

there are only a few studies that have investigated RSNs with ASL (for a recent review see 

Chen et al. 2015), possibly due to the lower temporal resolution of ASL compared to BOLD 

or the smaller signal to noise ratio (Wu et al. 2010). One of the great advantages of ASL, 

however, is its sensitivity to changes in CBF in small arteries, capillaries and brain 

parenchyma (Wong et al. 1997). In addition, the capability of this technique to measure 

absolute changes of CBF (e.g. Aslan et al. 2010) – thereby allowing valid comparisons across 

subjects and scanners without potential confounds due to differences in baseline measures – 

might be the cause for the growing number of studies employing ASL. This advantage is 

particularly important for resting state studies, where no task conditions are available to 

remove baseline effects by computing differential responses. Also, ASL measurements do not 

face the so-called “draining vein” problem that can occur in BOLD recordings: due to a 

draining vein and the BOLD sensitivity mainly to veins, BOLD activation may occur in a 

brain region downstream from the actual site of neuronal activity (Buxton 2002). 

… 

As the BOLD and ASL signals measure quite different phenomena and were not recorded 

simultaneously (and with different acquisition times (TRs)), we included a “pseudo BOLD” 

measure derived from the ASL data (presenting a similar tissue sensitivity as BOLD; Wong et 

al. 1997) in order to address whether differences between ASL and BOLD would be caused 

by variability in tissue sensitivity. 

… 

Thus, in this analysis, we investigated RSNs found with ICA of combined BOLD/CBF/pseudo 

BOLD signals in subjects under high (awake for approximately 19 hours) and normal sleep 

pressure (awake on average for approximately 10 hours) to verify that CBF signals present a 

viable option for RSN analyses. Based on previous reports (Sämann et al. 2010; De Havas et 

al. 2012; Yeo et al. 2015), we expected a decrease in functional network connectivity within 

and between network groups due to increased sleep pressure.” (Introduction, p. 4) 

 

Our explanation for the similarity of the resting state networks derived of three different 

modalities would be that resting state networks exist due to a strong biological substrate 

which overcomes the specific modality differences. 

“Additionally, we demonstrated that CBF and pBOLD signals are suited to derive ICA-based 

RSNs and that differences between CBF and BOLD measures were rather small, both with 

respect to the spatial intensity of the RSNs as well as their between network connectivity (i.e. 



FNC). As we find the same networks with different modalities, a strong biological substrate 

must be underlying these resting state networks.” (Conclusion, p. 17) 

 

We do not think that this effect is due to some kind of “masking” based on the “strong change 

in brain state induced by the sleep pressure” as we only found minor difference in the spatial 

maps of the RSNs due to the factor ‘time awake’. 

“Only minor differences in the spatial map intensities were due to ‘time awake’, indicating 

that the intrinsic networks structures were largely independent of the level of sleep pressure.” 

(Discussion, p. 14) 

 

The highlighted section has been added to the manuscript. 

 

- Beside the size of the groups, this work suffers from the absence of female in the HSP. 

Given the sex ratio in the NSP group, this is a problem that the authors do not ignore. 

However, the reviewer does not understand how interaction with sex can be addressed 

in this extreme unbalanced situation. Moreover, can we believe that differences of 

results with Kaufmann et al. can be partially due to this male/female ratio? (only male 

in Kaufmann et al.) 

 

Answer: 

We addressed the potential confounding factor of the sex bias in our study populations with 

an additional analysis where we included the factor ‘sex’. As stated in the Results, Discussion 

and supplementary material, although this factor slightly influenced the FNC with respect to 

‘time awake’, the general pattern stayed similar to our original analysis. Further, even in large 

cohort studies with balanced sex ratios, influences on FNC were sparse or absent. 

“As we had a sex bias (some females only in the NSP group), we performed an additional 

analysis with the covariate ‘sex’ to address this unbalanced distribution as good as possible. 

This covariate influenced the FNC due to ‘time awake’. However, the overall ratio of females 

to males was roughly 1:2, therefore, males dominated. Also, all females were awake for a 

shorter time, and thus had a lower sleep pressure. This bias might lead to shared variance of 

‘time awake’ and ‘sex’ (though no interaction effect of ‘sex’ and ‘time awake’ was observed 

regarding FNC), and thereby could influence the FNC results. As Online Resource 1 Figure 

S4 shows, the pattern of FNC due to time awake stayed similar when taking ‘sex’ into 

account. As in general sex differences in FNC were relatively sparse or even absent in large-

cohort studies (Weissman-Fogel et al. 2010; Allen et al. 2011a; Filippi et al. 2013; 

Hjelmervik et al. 2014) we think a pure sex influence is rather unlikely and therefore 

negligible.” (Limitations/Advantages, p. 16) 

 

The highlighted sections have been added to the manuscript. 

 

- The functional network connectivity has been assessed with the GIFT toolbox. The 

reviewer suggests the redaction of an appendix that describes the MANCOVAN 

approach applied to the present case (sensitivity to inter-individual differences?). In 

general, the sections 'Network identification using ICA' and 'Functional Network 

Connectivity' were not clear enough to be reproducible and convincing. Another issue 

not addressed here is about motion correction that may be more subtle for the HSP 

group. How this correction affects the ICA processing and results? 

 



Answer: 

We added a reference to the GIFT/MANCOVAN manual to the methods section as a detailed 

description of these methods is beyond the scope of this paper. 

“The analysis of functional network connectivity (FNC) was assessed with the MANCOVAN 

toolbox implemented in the GIFT toolbox 

(http://mialab.mrn.org/software/gift/docs/v4.0b_gica_manual.pdf; Allen et al. 2011a).” 

(Materials and methods, p. 8) 

 

Motion correction has been taken into account and addressed. As the GIFT authors advise 

against motion correction prior to the ICA, we did not apply this step beforehand, but 

excluded components that resembled artifacts. 

“Resting state network components were identified with the GIFT toolbox 

(http://mialab.mrn.org/software/gift/; 

http://mialab.mrn.org/software/gift/docs/v4.0b_gica_manual.pdf; Allen et al. 2011a) based on 

preprocessed data of all subjects (i.e. NSP and HSP subjects pooled) and all imaging 

modalities (group independent component analysis, group ICA). Twenty-five independent 

components (ICs; i.e., RSNs) were assumed, based on dimension estimation with minimum 

description length of the data (Li et al. 2007), visual inspection of the resulting ICs and 

number of ICs typically used in the literature (e.g. Damoiseaux et al. 2006; Sämann et al. 

2011). 

Motion correction was not applied before the ICA, as this could influence the FNC analysis. 

Therefore, selection of components and identification of artifacts was performed by visual 

inspection, guided by spatial correlation of the components to the data set published by Allen 

et al. 2011a. Seventeen ICs were identified (Fig. 2; Tab. 2).” (Materials and methods, p. 7) 

 

For the analysis of FNC, we added a regressor of no interest comprising the movement 

parameters of the realignment step, to reduce effects due to movements. 

“For the analyses of FNC, additionally, regressors of no interest were added to reduce their 

influence on the analysis. These regressors were the movement parameters (derived from the 

realignment step), EO/EC “condition” (different for CBF/BOLD sessions) and sleep scorings 

(derived from the simultaneous EEG recordings in all sessions of the HSP group or the 

BOLD session of the NSP group; to account for different levels of vigilance). The movement 

parameters did not differ between the NSP and the HSP group (two-way repeated measures 

ANOVA with factors ‘group’ and ‘modality’ performed on the framewise displacement mean 

values derived from the movement parameters; see Power et al. 2012) but were significantly 

different for the factor ‘modality’ (p < 0.015). This probably is due to the different sampling 

rates of the two modalities, that may influence the precision of the movement parameters.” 

(Materials and methods, p. 8) 

 

Also, the aspect of inter-individual differences has been addressed in this section. 

“Group ICA provides the advantage that common RSN components are derived from the 

pooled data and back-projected to each subject. This method has been shown to be sensitive 

to inter-individual and group differences in these RSN components (Calhoun et al. 2001; 

Allen et al. 2011b; Erhardt et al. 2011). Further, it circumvents the potential issue of 

incomparable components arising when performing separate ICAs for each group.” 

(Materials and methods, p. 8) 

 



An additional analysis on group differences of motion parameters has been performed (see 

above). The highlighted sections have been added to the manuscript. 

 

- Are the correlations displayed in fig.3 associated to a particular 'time awake' condition? 

What is the meaning of the indices along the diagonal of the displayed matrix ? 

 

Answer: 

These are the mean FNC correlations after correction. Therefore, they are computed across 

both groups and not attributed to a ‘time awake’ condition. The indices along the diagonal are 

indicating the total number of components used in the analysis. As they are not necessarily 

needed and seem to confuse the reader, we removed them and indicate the diagonal with a 

dotted line (see new Fig. 3). 

“Mean functional network connectivity (FNC) matrix. Pairwise partial correlations between 

ICs after correction for movements, eyes open/closed and sleep scores are illustrated. R-

values were Fisher z-transformed and averaged across subjects, then back-transformed for 

display.” (Figure legend 3, p. 18) 

 

- The reading of the Fig.4 is not easy. What is the color bar variable (minus sign? log_1_0 

??) The related section in the manuscript does not help. 

 

Answer: 

Univariate results values are displayed as -sign(t statistic)*log10(p-values). Basically this 

figure shows the positive and negative p-values of the significant changes on a logarithmic 

scale. 

“‘Time awake’ effects on the mean FNC matrix. Univariate test results showing the effect of 

‘time awake’ on FNC. Illustrated are the significant −sign(t)log10(p) values, meaning that the 

significant positive or negative effects are displayed on a logarithmic scale. Floating-point 

numbers on the colorbar indicate the FDR-corrected threshold (α = 0.05).” (Figure legend 4, 

p. 18) 

The highlighted sentence has been added to the manuscript and labeling in Fig. 4 has been 

improved (see new Fig. 4). 

 

- The reviewer agrees with the author with respect to the differences in the spatial map 

intensities of the RSNs related to the 'time awake', up to the putative flaws due to the 

unbalanced sex in the HPS. However, the 'group ICA' deserves more explanation and 

justification. Unless it represents exaggerated extra works, it would be interesting (and 

helpful in the interpretation) to consider the available DTI to relate variations 

(moderator in the DMN connectivity with other network connectivity) in FA with 

respect to the 'time awake' in this experiment (see Elvsashagen et al., PLoS One 10(5), 

2015). 

 

Answer: 

We chose the ‘group ICA’ approach because of the following considerations given by the 

GIFT toolbox implementers 

(http://mialab.mrn.org/software/gift/faq.html#Q_single_or_group). When running each 

subject individually, components are difficult to interpret as they may cluster differently in 

different subjects. Along the same lines, it is preferable to run one large group ICA rather 

than individual ICAs on different groups to achieve comparable components. Advantages are 



that the statistics can be performed for a given component over subjects and this component 

can also be visualized for different subjects. We think that we have made these advantages 

clear in the following section: 

“Group ICA provides the advantage that common RSN components are derived from the 

pooled data and back-projected to each subject. This method has been shown to be sensitive 

to inter-individual and group differences in these RSN components (Calhoun et al. 2001; 

Allen et al. 2011b; Erhardt et al. 2011). Further, it circumvents the potential issue of 

incomparable components arising when performing separate ICAs for each group.” (Material 

and methods, p. 8) 

 

Although the combination of the recorded DTI with resting state network functional 

connectivity would certainly be of great interest, this would require exaggerated extra work. 

The DTI data have been recorded for later use but as of right now are not preprocessed and 

therefore not yet ready to be analyzed. Unfortunately, we currently do not have the capacity to 

perform these analyses. 

 

- Can we assess the 'transfer of information' through some 'hubness' descriptors of the 

functional networks? 

 

Answer: 

The idea of ‘transfer of information’ is based on the hypothesis of Buzsáki and colleagues 

regarding EEG studies: 

“As hypothesized, transfer of information between different brain areas might happen by 

coherent oscillations of these brain areas, i.e. networks (Buzsáki et al. 2013). Although this 

hypothesis was formulated on the basis of the EEG, studies have demonstrated a close 

relationship of the BOLD signal and specific frequency bands in local field potentials derived 

from intracranial recordings (e.g. Logothetis et al. 2001; Magri et al. 2012).” (Discussion, p. 

12) 

‘Hubness’ is a measure employed in graph-theoretical approaches to characterize small world 

networks. Although it is certainly possible to derive such a measure of the ‘hubness’ of a 

network based on functional connectivity recordings of resting state networks, and although it 

would be interesting to combine the two ideas of small world network properties and transfer 

of information, we do not have the means to do that in our analysis. 

Merely, we find the concept of information transfer happening via coherent oscillations of 

different brain areas appealing and reasonable, and could imagine that communication in the 

brain is taking place this way. 

 

- Note: many references were not linked in the manuscript. 

 

Answer: 

We apologize for this inconvenience. Although we took care to remove the EndNote field 

codes before uploading the manuscript, somehow the Word document was corrupted, 

resulting in this error. The references have been checked and inserted correctly now. 
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Abstract 

In today’s 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of 

sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning 

due to increased sleep pressure is still not completely understood. 

Resting state network (RSN) analyses have become increasingly popular because they allow us to 

investigate brain activity patterns in the absence of a specific task and to identify changes under 
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different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from 

BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. 

To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high 

(19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin 

labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. 

We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are 

suited to derive independent component analysis based RSNs. The spatial map differences of these 

RSNs were rather small, suggesting a strong biological substrate underlying these networks. 

Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional 

network connectivity (FNC) between RSNs. In summary, all FNCs of the DMN with any other 

network or component showed increasing effects as a function of increased ‘time awake’. All other 

FNCs became more anti-correlated with increased ‘time awake’. The sensorimotor networks were the 

only ones who showed a within network change of FNC, namely decreased connectivity as function 

of ‘time awake’. 

These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as 

well as a first reduction of consciousness while becoming drowsy. We think that the specific changes 

observed in functional network connectivity could imply an impairment of information transfer 

between the affected RSNs. 

Introduction 

In today’s 24/7 society, sleep restriction or curtailment of sleep caused by “social jetlag” 

(Wittmann et al. 2006) is a common phenomenon. Insufficient sleep may lead to cognitive 

deficits (e.g. Berger and Oswald 1962; Dinges et al. 1997; Choo et al. 2005; for reviews see 

Banks and Dinges 2007; Basner et al. 2013) but sleep deprived people are still able to 

function at a basic level, implying that compensatory mechanisms may play a role in 

maintaining cognitive function (Wilkinson 1961; Webb and Levy 1984; Horne and Pettitt 

1985; Hockey et al. 1998; Drummond et al. 2004). Reduced activation in multiple brain 

regions following acute total sleep deprivation are commonly observed (see recent meta-

analysis of neuroimaging studies by Ma et al. 2015). For example, several studies have 

demonstrated that acute total sleep deprivation exerts detrimental effects on parietal 

activation during tasks requiring attention, independent of the specific type of attention (e.g. 

Drummond et al. 2001; Drummond et al. 2005; Chee et al. 2008; Mander et al. 2008; Tomasi 

et al. 2009; Chee et al. 2010; Chee and Tan 2010; Lim et al. 2010; Jackson et al. 2011; Czisch 

et al. 2012; Kong et al. 2012; Muto et al. 2012), and that some parts of the parietal lobe are 

crucial for the modulation of attention after sleep deprivation (Chee and Choo 2004; Mu et al. 

2005; Chee et al. 2006; Lim et al. 2007). Seed-based functional connectivity studies have 

shown changes in network size and connectivity dependent on the level of sleep pressure 

(Sämann et al. 2010; De Havas et al. 2012; Yeo et al. 2015), i.e. as a function of the duration 

of prior wakefulness, and also dependent on the vulnerability to sleep deprivation. These 

findings could imply an impaired regulation of brain activity after sleep deprivation in 

specific networks and might be attributed to a misallocation of cognitive resources (more 

towards networks assumed to be involved in self-referential activity and not attention; see 

Sämann et al. 2010). Similarly, functional connectivity alterations have been shown in 
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relation to sleep depth (Horovitz et al. 2009; Larson-Prior et al. 2009; Sämann et al. 2011), 

suggesting that sustained activity in specific resting state networks is related to the 

preservation of internal and external awareness but could also play a more general role in 

integrity maintenance of functional brain systems. 

Functional connectivity studies and specifically the investigation of resting state networks 

(RSNs) with functional magnetic resonance imaging (fMRI) have increased tremendously 

(e.g. Beckmann et al. 2005; Fox et al. 2005; De Luca et al. 2006; for a recent review on the 

topic see Raichle 2011), following the seminal paper by Biswal and colleagues (1995). The 

rise of resting state fMRI may in part be due to ease and speed of acquisition. However, 

certainly the more important aspect of it is the appealing idea that cognition and perception 

might arise from cortical oscillation patterns that organize the brain in functional networks 

(Buzsáki et al. 2013). The absence of a specific task, and short acquisition time (around 10 

minutes), make resting state recordings especially desirable for investigating clinical and 

pediatric populations, as well as altered states of vigilance when tasks cannot be performed 

(e.g. coma, anesthesia, and sleep). In general, functional connectivity (whether derived from 

seed-based or independent component analysis (ICA) RSN approaches) groups together brain 

areas showing a similar pattern of temporal fluctuations (i.e. activation). 

Most studies employing fMRI have measured the standard blood oxygen level dependent 

(BOLD) response. This technique measures the relative changes of oxygenated and 

deoxygenated blood and is most sensitive for veins and tissue surrounding veins (Wong et al. 

1997). Another measurement technique used less in functional imaging up to now is arterial 

spin labeling (ASL) that measures cerebral blood flow (CBF; Williams et al. 1992). 

Currently, there are only a few studies that have investigated RSNs with ASL (for a recent 

review see Chen et al. 2015), possibly due to the lower temporal resolution of ASL compared 

to BOLD or the smaller signal to noise ratio (Wu et al. 2010). One of the great advantages of 

ASL, however, is its sensitivity to changes in CBF in small arteries, capillaries and brain 

parenchyma (Wong et al. 1997). In addition, the capability of this technique to measure 

absolute changes of CBF (e.g. Aslan et al. 2010) – thereby allowing valid comparisons across 

subjects and scanners without potential confounds due to differences in baseline measures – 

might be the cause for the growing number of studies employing ASL. This advantage is 

particularly important for resting state studies, where no task conditions are available to 

remove baseline effects by computing differential responses. Also, ASL measurements do not 

face the so-called “draining vein” problem that can occur in BOLD recordings: due to a 

draining vein and the BOLD sensitivity mainly to veins, BOLD activation may occur in a 

brain region downstream from the actual site of neuronal activity (Buxton 2002). 

To our knowledge, no study has investigated independent component analysis (ICA) derived 

RSNs in subjects under different levels of sleep pressure and specifically changes in 

functional network connectivity within and between these RSNs. Also, only few studies 

compared the reliability of RSNs derived from CBF and BOLD data (Jann et al. 2013; Jann et 

al. 2015). 

Therefore, we compared resting state fMRI recorded with both the BOLD and ASL 

techniques. As the BOLD and ASL signals measure quite different phenomena and were not 
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recorded simultaneously (and with different acquisition times (TRs)), we included a “pseudo 

BOLD” measure derived from the ASL data (presenting a similar tissue sensitivity as BOLD; 

Wong et al. 1997) in order to address whether differences between ASL and BOLD would be 

caused by variability in tissue sensitivity. 

Thus, in this analysis, we investigated RSNs found with ICA of combined 

BOLD/CBF/pseudo BOLD signals in subjects under high (awake for approximately 19 

hours) and normal sleep pressure (awake on average for approximately 10 hours) to verify 

that CBF signals present a viable option for RSN analyses. Based on previous reports 

(Sämann et al. 2010; De Havas et al. 2012; Yeo et al. 2015), we expected a decrease in 

functional network connectivity within and between network groups due to increased sleep 

pressure. 

Material and methods 

Participants and protocol 

In total, data of 45 subjects were recorded in the same scanner and with an identical scanning 

protocol. Data of 34 participants were combined in the final analysis. Participants were 

excluded due to the following reasons: 1) falling asleep at the beginning of a scan session 

(initial 3 minutes; n=1), 2) being asleep >50 % of the recording session (n=1), 3) technical 

difficulties with the EEG (insufficient quality of the EEG; n=2), 4) lack of a clear alpha 

rhythm in wake EEG (n=3), 5) motion in one or both sessions of larger than 1 mm (n=2), 6) 

discordance with the protocol (n=2). Resting state data were recorded after approximately 10 

and 19 hours of wakefulness (Fig. 1). The ethical committee of the canton of Zurich approved 

the study, and it was performed according to the Helsinki declaration. Participants gave their 

written informed consent and were remunerated for their participation. 

Participants were selected for the study after a thorough screening process excluding 

excessive daytime sleepiness based on standard cutoff (defined as values > 10, assessed by 

the Epworth Sleepiness Scale (ESS; Johns 1991). Participants reported not having 

neurological or psychiatric diseases and had a normal body mass index (BMI) according to 

the WHO (normal range: 18.5 – 24.99 kg/m2; 

http://apps.who.int/bmi/index.jsp?introPage=intro_3.html). Demographics and behavioral 

measures of the participants are provided in Tab. 1. 

Protocol 

Participants consisted of two groups (normal sleep pressure group, NSP, and high sleep 

pressure group, HSP; details see below) and underwent the following study protocols 

(Fig. 1): Assessment of their current sleepiness with the Karolinska Sleepiness Scale (KSS; 

Åkerstedt and Gillberg 1990; range: 1 – 9, 1: extremely alert, 9: extremely sleepy – fighting 

sleep), calibration and resting state EEG outside of the scanner (RSout), followed by a resting 

state recording in the scanner with simultaneous EEG and BOLD-fMRI (RSin). Afterwards, 

all participants performed a modified (Michels et al. 2010) Sternberg working memory task 

(SB;Sternberg 1966) and participants in the NSP group some additional tasks (modified 
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speeded Eriksen Flanker: Kopp et al. 1996; Bunge et al. 2002; Iannaccone et al. 2015) and 

Stop signal task: Rubia et al. 2003). After a short break, resting state fMRI data were 

recorded with simultaneous EEG/fMRI-ASL (RSasl; HSP group) or fMRI-ASL (RSasl; NSP 

group, no EEG). Anatomical images (T1, DTI) were acquired at the end of the respective 

study protocol without the EEG cap. 

In the HSP group the EEG was recorded during both BOLD and ASL measurements, 

whereas in the NSP group it was only measured during the BOLD session. During the resting 

state recordings, participants were instructed to focus their gaze on a white fixation cross in 

the center of their dark field of view, delivered by scanner compatible video goggles when 

having their eyes open (EO). During the BOLD session, participants alternated between 2 

min EO, 2 min eyes closed (EC), 2 min EO, 2 min EC. To lessen the chance of HSP 

participants falling asleep during the ASL session, they were instructed to keep their eyes 

open for 10 min, whereas the NSP group had 5 min EO and 5 min EC. 

Participants of both groups were similar in terms of age, BMI, daytime sleepiness (ESS) and 

mid sleep time on free days (corrected for age, gender and sleep debt, assessed by the Munich 

Chronotype Questionnaire (MCTQ; Roenneberg et al. 2003; Tab. 1). 

Normal sleep pressure group (NSP) 

Seventeen healthy adults (23.9 ± 2.3 (SD) years; 7m, 10 f) slept normally at home 

(approximately 8 h) prior to recordings (no sleep restriction the night before, thus not 

challenged with extended wakefulness) and reported on average habitual sleep durations of 

7.6 ± 0.5 h (range: 6.5 -8.4 h). Recordings took place during the day (clock time: 12:23 – 

18:36, time awake: 8:06 – 14:23 h). Time awake was calculated from the actual recording 

times with respect to habitual wake up time derived from the MCQT. Participants of this 

group showed low to moderate levels of sleepiness (mean: 4.4 ± 2.1, Tab. 1; assessed by the 

KSS, a validated measure of sleepiness, which is sensitive to acute modifications in 

sleepiness). 

High sleep pressure group (HSP) 

Seventeen healthy males (22.4 ± 2.5 years) were recorded in the evening after 19 hours of 

prior wakefulness (clock time: 20:40 – 21:38, time awake: 17:43 – 20:09 h) and reported on 

average habitual sleep durations of 7.5 ± 0.6 h (range: 6.4 -8.5 h). Time awake was calculated 

from the actual recoding times with respect to actual wake up time (3:30 am for all 

participants of this group). Sleep was restricted to 4 hours time in bed in the sleep laboratory 

the night prior to scanning and participants adhered to 8 hours time in bed the three nights 

prior to the recording in the sleep laboratory. Due to the protocol, the participants of this 

group showed significantly higher levels sleepiness (KSS, mean: 6.7 ± 1.3; Tab. 1). 

fMRI and EEG Data Acquisition 
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The resting state recordings were performed with a 3T Philips Achieva whole-body system 

(Philips Medical Systems, Best, the Netherlands) with a 32-elements receive-only head coil 

(Philips SENSE head coil 32-elements). 

First, simultaneous EEG/fMRI-BOLD recordings were obtained. BOLD images were 

acquired with 2D EPI readout with the following parameters: 250 volumes, a 80 x 77 matrix, 

a slice thickness of 3 mm with a 0.7 mm gap, 3 x 3 x 3 mm3 isomorphic voxels, 35 slices, a 

repetition time/time echo (TR/TE) of 1960/30 ms, a flip angle of 80°, and a 240 mm field of 

view. 

Afterwards, the fMRI-ASL recordings (simultaneous with EEG for the HSP group) were 

conducted. ASL images were obtained with 2D EPI readouts with a pseudo-continuous 

labeling scheme with the following parameters: 72 volumes, a 80 x 79 matrix, a slice 

thickness of 7 mm with no gap, 3 x 3 x 7 mm3 voxels, 20 slices, repetition time/time 

echo/label time/post label delay (TR/TE/τ/PLD) of 4400/20/1650/1525 ms, a flip angle of 

90°, a field of view of 240 mm, a labeling offset of 2 cm from the bottom imaging slice 

(corresponding roughly to 9 cm offset from the anterior commissure-posterior commissure 

(AC-PC) line) and background suppression. To quantify CBF (Deibler et al. 2008), an 

equilibrium magnetization volume (M0) was acquired right before the fMRI-ASL recordings, 

with the same parameters as for the fMRI-ASL sequence described above, except that a 

longer TR of 10000 ms and no labeling was applied. Both BOLD and ASL slices were 

oriented along the AC-PC line such that the whole cortex was included. Therefore, the 

cerebellum was not fully covered with the selected slices. From the unquantified ASL 

images, the pseudo BOLD (pBOLD) images were reconstructed (see below). 

Concurrent EEG was acquired with an MR compatible amplifier and electrodes (BrainAmp, 

BrainCap and BrainAmp ExG MR devices and electrodes; Brain Products GmbH, Gilching, 

Germany; 60 EEG, 2 EOG, 1 EMG, 3 EKG channels; EEG electrodes placed according to the 

international 10-20 system, Nuwer et al. 1998). Data were sampled at a 5 kHz and 

synchronized with the scanner clock (see supplementary Online Resource 1 for more details). 

Data processing 

fMRI 

All fMRI data were first realigned in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Participants’ anatomical T1 images were 

co-registered to the mean functional image per run and then normalized to MNI space. 

BOLD data were normalized to MNI space (by way of the co-registered and normalized T1 

image and resliced to 3 x 3 x 3 mm3 isomorphic voxels), masked and smoothed (6 mm full-

width at half maximum (FWHM) Gaussian Kernel) with SPM8. 

ASL data were quantified to CBF images (in house MATLAB script courtesy A. Federspiel, 

University Hospital of Psychiatry Bern; based on the simple subtraction method, i.e. 

subtracting the mean of the surrounding images from the image in question, described in 
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Aguirre et al. 2002 as this method has been described to reliably minimize BOLD 

contamination in resting state recordingsLiu and Wong 2005), normalized to MNI space (by 

way of the co-registered and normalized T1 image and resliced to 3 x 3 x 3 mm3 isomorphic 

voxels), masked and smoothed (6 mm FWHM Gaussian Kernel) with SPM8. 

Pseudo BOLD (pBOLD) images were reconstructed from the realigned ASL images, by way 

of surround addition (adding the mean of the two surrounding images to the image in 

question, as described inWong et al. 1997), normalized to MNI space (by way of the co-

registered and normalized T1 image and resliced to 3 x 3 x 3 mm3 isomorphic voxels), 

masked and smoothed (6 mm FWHM Gaussian Kernel) with SPM8. This method has been 

validated and reveals images comparable to regular BOLD images (Wong et al. 1997). 

Variance maps 

To assess whether potential modality differences would arise due to differences of variability 

inherent of the modalities (e.g. higher tissue specificity in one modality but not the other, 

higher noise in different areas of the brain dependent on modality), we chose to evaluate 

variance maps of all modalities. 

Variance maps were derived from the final preprocessed images of all modalities (after 

removal of visually identified ICA-derived artefact components and back-projection to 

subjects’ native space with the GIFT toolbox; description of ICA analysis see below). For 

each subject, the temporal variance of each voxel was calculated and log-transformed. These 

images were then normalized by subtracting the overall logarithmic mean value of the image, 

and averaged across subjects. 

EEG 

The EEG was preprocessed according to standard approaches (i.e., removal of the gradient 

artifacts by template subtraction, removal of the cardioballistogram artifacts by template 

subtraction, subsequent ICA across pooled EEG data measured outside and inside the scanner 

to remove residual artifacts; Allen et al. 1998; Allen et al. 2000; Mantini et al. 2007). EEG 

was visually inspected for signs of sleep by a trained expert (derivations C3A2, F3A2, O1A2; 

A2 approximated by closest electrode in the EEG cap, i.e. TP10) in 20-s epochs according to 

standard criteria (Rechtschaffen and Kales 1968; Iber et al. 2007) and subjects were 

considered sleeping when stage 2 non-rapid eye movement (non-REM) sleep occurred. 

Network identification using ICA 

Resting state network components were identified with the GIFT toolbox 

(http://mialab.mrn.org/software/gift/; 

http://mialab.mrn.org/software/gift/docs/v4.0b_gica_manual.pdf; Allen et al. 2011a) based on 

preprocessed data of all subjects (i.e. NSP and HSP subjects pooled) and all imaging 

modalities (group independent component analysis, group ICA). Twenty-five independent 

components (ICs; i.e., RSNs) were assumed, based on dimension estimation with minimum 

description length of the data (Li et al. 2007), visual inspection of the resulting ICs and 
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number of ICs typically used in the literature (e.g. Damoiseaux et al. 2006; Sämann et al. 

2011). 

Motion correction was not applied before the ICA, as this could influence the FNC analysis. 

Therefore, selection of components and identification of artifacts was performed by visual 

inspection, guided by spatial correlation of the components to the data set published by Allen 

et al. 2011a. Seventeen ICs were identified (Fig. 2; Tab. 2). Components were numbered 

according to the output of the GIFT toolbox group ICA. Group ICA provides the advantage 

that common RSN components are derived from the pooled data and back-projected to each 

subject. This method has been shown to be sensitive to inter-individual and group differences 

in these RSN components (Calhoun et al. 2001; Allen et al. 2011b; Erhardt et al. 2011). 

Further, it circumvents the potential issue of incomparable components arising when 

performing separate ICAs for each group. 

Functional Network Connectivity 

The analysis of functional network connectivity (FNC) was assessed with the MANCOVAN 

toolbox implemented in the GIFT toolbox 

(http://mialab.mrn.org/software/gift/docs/v4.0b_gica_manual.pdf; Allen et al. 2011a). This 

analysis takes into account the temporal fluctuations of each component and computes its 

(partial) correlation with the temporal fluctuations of every other component (including 

potential regressors of no interest). 

Statistics 

In order to test the impact of ‘time awake’ (i.e. continuous variable, not group difference) and 

‘modality’ (i.e., BOLD, CBF, pBOLD), statistical differences were assessed with the 

MANCOVAN toolbox implemented in the GIFT toolbox (Allen et al. 2011a). We tested 

‘time awake’ rather than a difference between the HSP and NSP group because the NSP 

group had a larger variance in their time awake (std: 2.3 h, both for the BOLD and ASL 

session) than the HSP group (std: 0.4/0.5 h for BOLD/ASL session, respectively). 

We were interested in two aspects regarding the RSNs: 1) their spatial map intensities and 2) 

the FNC between RSNs. 

Seventeen ICs entered the statistical analysis investigating spatial map intensities with 

covariates of ‘time awake’ and ‘modality’. For the analyses of FNC, additionally, regressors 

of no interest were added to reduce their influence on the analysis. These regressors were the 

movement parameters (derived from the realignment step), EO/EC “condition” (different for 

CBF/BOLD sessions) and sleep scorings (derived from the simultaneous EEG recordings in 

all sessions of the HSP group or the BOLD session of the NSP group; to account for different 

levels of vigilance). The movement parameters did not differ between the NSP and the HSP 

group (two-way repeated measures ANOVA with factors ‘group’ and ‘modality’ performed 

on the framewise displacement mean values derived from the movement parameters; see 

Power et al. 2012) but were significantly different for the factor ‘modality’ (p < 0.015). This 

probably is due to the different sampling rates of the two modalities, that influences the 

precision of the movement parameters. The partial correlations within and between RSN 
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groups’ time courses were Fisher z-transformed, averaged across subjects and back 

transformed for visualization (Allen et al. 2011a). 

All reported spatial and connectivity effects were significant at the level p<0.05 after 

correction for false discovery rate (FDR). The percentage values reported in Tab. 2 were 

calculated with respect to the total voxel number of each RSN group (i.e., combining the 

number of voxels of all ICs forming a network group). In the sensorimotor RSN group e.g., 

this would mean adding the voxels of the four ICs to achieve the total number and equally 

combining all voxels with a positive/negative effect of all these ICs, respectively (for details 

on the RSN groups, see below). They denote the number of voxels in each RSN group 

showing an effect. 

Results 

Spatial map intensities of RSNs 

Seventeen spatial maps, spatially highly correlated with the data templates provided in the 

publication of Allen et al. (2011a), were identified, forming seven RSN groups (Fig. 2, 

Tab. 2): one thalamic and basal ganglia component (IC 7; subcortical network, SUB), an 

auditory component (IC 4; auditory network, AUD), four components forming the 

sensorimotor networks (IC 5/12/17/21; SENS), three components comprising visual networks 

(IC 2/15/18; VIS), four components representing the default mode networks (IC10/20/22/23; 

DMN), three components forming attentional networks (IC 8/14/24; ATT) and one cerebellar 

component (IC 16; cerebellar network, CEREB). 

Differences in spatial map intensities of RSNs due to ‘time awake’ 

There were only minor effects of ‘time awake’ on the spatial intensity maps (< 1 % of voxels) 

and even smaller interaction effects between ‘time awake’ and ‘modality’. To account for the 

sex differences between the groups, ‘sex’ was added as a covariate in an additional 

MANCOVAN analysis. There were only minor effects of ‘sex’ and an interaction of ‘sex’ 

and ‘time awake’ (< 3 % and approximately 1 % of the voxels, respectively; not shown). 

Differences in the spatial map intensities of RSNs due to ‘modality’ 

The topography of the spatial map intensities was similar across modalities but we observed 

significant differences in intensity (Online Resource 1 Figure S1, Tab. 2). 

The largest effect of modality on spatial intensity maps was observed between CBF and 

BOLD maps (Online Resource 1 Figure S1A and D) with effects largely localized to the SUB 

(IC 7) and SENS (IC5, IC12, IC17 and IC21) networks (see also Tab. 2).  

Differences between the BOLD and pBOLD spatial intensity maps were smaller but still 

showed some pronounced effects that looked quite similar to the differences between CBF 

and BOLD spatial intensity maps (Online Resource 1 Figure S1B and E). Apart from the 

SUB network (26 % of the voxels related to higher pBOLD sensitivity; Tab. 2), spatial 
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intensity map differences were small comparing pBOLD and BOLD, in the range of 0.2-7 % 

of the respective RSN groups’ voxels (Tab. 2). 

Differences between CBF and pBOLD were minimal (Online Resource 1 Figures S1C and 

F), affecting around 1 % of the respective RSN groups’ voxels (Tab. 2).  

This suggests that differences between BOLD and the other two modalities may reflect 

parameters such as e.g. recording voxel size rather than differences in the signals acquired by 

the different modalities. 

To assess whether differences between modalities arose due to high variance caused by one 

of the modalities in those areas showing modality differences, variance maps of each 

modality were calculated (Online Resource 1 Figure S2). The largest variance occurred in the 

CBF signal (Online Resource 1 Figure S2B), most prominently more or less in the 

subarachnoid space surrounding the brain (following the interhemispheric fissure and close to 

the pons), as well as to a lesser degree in a prefrontal region of the cortex. The other two 

modalities (BOLD and pBOLD, Online Resource 1 Figure S2A and C, respectively) showed 

highly comparable variance distributions, while their highest variance values were present in 

similar brain areas as for the CBF data, however less pronounced. The variability distribution 

of the three modalities did not coincide with the areas where the spatial map intensities 

differed between modalities. This further suggests that the detection intensity differences 

between the modalities were not caused by high variance of one modality in particular brain 

areas. 

Functional network connectivity between components 

Mean FNC (meaning pairwise partial correlations of the time courses of different ICs, i.e. 

RSNs) resembled the findings from the literature (Allen et al. 2011a): the network 

components were highly correlated within the RSN groups, especially within the SENS, VIS, 

DMN and ATT networks (Fig. 3). 

Furthermore, the SUB component was associated with the SENS and DMN networks, 

whereas the AUD network was correlated with SENS, VIS, DMN and ATT networks. Also, 

the SENS and both the VIS and ATT networks were correlated, and the VIS networks were 

related to the CEREB component. Both correlations and anti-correlations were observed 

(Fig. 3). 

Interpretation of the direction of functional network connectivity effects 

When assessing the FNC between components with regard to the covariates ‘time awake’ or 

‘modality’, the displayed effects are not so straightforward to interpret and do not necessarily 

reflect correlations between the components directly. Positive effects can arise from positive 

correlations increasing with the respective covariate, from anti-correlations becoming less 

anti-correlated or from a change from an anti-correlation to a correlation. Similarly, negative 

effects on FNC regarding the respective covariate can be caused by anti-correlations that 

increase in their negative correlation, weakening of positive correlations or due to the change 

from a correlation to an anti-correlation. Thus, in Fig. 4 these effects are detailed by arrows. 
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‘Time awake’ effects on functional network connectivity 

FNC within and between network groups (SUB, AUD, SENS, VIS, DMN, ATT, CEREB) 

was affected by the amount of time participants were awake before the resting state 

recording. ‘Time awake’ was treated as a continuous covariate of interest combining the NSP 

and HSP group (Fig. 4). However, to facilitate interpretation regarding the direction of 

change, group average FNC are illustrated (Online Resource 1 Figure S3B and C). 

In summary, all FNCs of the DMN with any other network or component showed increasing 

effects (Fig. 3), either by increasing correlations, weakening anti-correlations or even 

changing from an anti-correlation to a positive correlation as a function of increased ‘time 

awake’. All other FNCs became more anti-correlated with increased ‘time awake’, either 

manifesting in increasing negative correlations, weakening positive correlations, or changes 

from correlation to anti-correlation with increasing sleep pressure. The SENS networks were 

the only ones who showed a within network change of FNC, namely a negative effect as 

function of ‘time awake’. More details can be found in the supplementary Online Resource 1 

and especially Online Resource 1 Figure S4. 

When including ‘sex’ as a covariate in the additional analysis (Online Resource 1, Online 

Resource 1 Figure S4), the sex difference between our two groups slightly influenced the 

‘time awake’ FNC. However, there were no significant effects on FNC due to ‘sex’ alone or 

any interactions between ‘time awake’ and ‘sex’. The overall pattern of FNC due to ‘time 

awake’ stayed similar to the one observed without the ‘sex’ covariate (Online Resource 1 

Figure S4). 

Discussion 

FNC within and between RSNs 

The FNC within and between RSNs regardless of ‘time awake’ and ‘modality’ was in good 

agreement to previous literature (Allen et al. 2011a), displaying high FNC within the network 

groups, as well as high correlations between ATT and SENS components. 

‘Time awake’ effects on functional network connectivity 

FNCs between some of the RSNs and within one RSN were dependent on the duration of the 

time awake until the data acquisition. All RSN components in which a positive effect with 

time awake was observed comprised components of the DMN. All changes in FNC not 

involving any DMN components revealed negative effects of FNC as a function of ‘time 

awake’. As HSP subjects were under considerable sleep pressure and in a demanding 

environment to stay awake (lying in a dark scanner room with no explicit task), they could 

have been transitioning between wakeful awareness and drowsiness. This could have resulted 

in a stronger dominance of the DMN (which is associated with self-referentialism and 

introspect; Mason et al. 2007; Buckner et al. 2008), as well as an attempt of the ATT 

component to approximate DMN fluctuations as drowsiness became more prevalent. Along 

these lines of thought, Poudel and colleagues (2012) found increases of CBF in both the basal 
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forebrain, as well as in the anterior and posterior cingulate cortex (areas which are part of the 

DMN) in participants who were able to remain alert after sleep deprivation. In a seed-based 

BOLD study, although most within-region of interest (ROI) correlations stayed similar 

throughout light sleep and wakefulness, stronger correlations of ROIs in the supplementary 

motor areas and right calcarine sulcus were observed during light sleep (Horovitz et al. 2008). 

Also, Larson-Prior and colleagues (2009) found no change in within-ROI connectivity in the 

VIS, AUD and SENS as well as the DMN networks during light sleep but increases in the 

dorsal attention network and decreases in the executive control network (in our analysis 

comprised of ICs 14 and 24; Fig.  2). These reported changes of seed-based within network 

connectivity (in the dorsal attention and executive control network) might be paralleled in our 

findings by changes in network connectivity within the ATT RSNs group. However, as both 

previous studies (Horovitz et al. 2008; Larson-Prior et al. 2009) looked at light sleep (defined 

as stage 1 and 2 of non-REM sleep) and subjects were not sleep-deprived prior to scanning, 

their results are not directly comparable with our findings. 

In general, the pattern of FNC changes that we found as a function of ‘time awake’ is 

distinctively different from the one observed during sleep, where DMN connectivity along 

with all other network connectivity decreased with deeper sleep stages (Horovitz et al. 2009; 

Sämann et al. 2011). Therefore, the state of drowsiness due to increased sleep pressure might 

be distinctly different from the process of falling asleep and being in light sleep. 

As hypothesized, transfer of information between different brain areas might happen by 

coherent oscillations of these brain areas, i.e. networks (Buzsáki et al. 2013). Although this 

hypothesis was formulated on the basis of the EEG, studies have demonstrated a close 

relationship of the BOLD signal and specific frequency bands in local field potentials derived 

from intracranial recordings (e.g. Logothetis et al. 2001; Magri et al. 2012). Therefore, if the 

temporal fluctuations in specific networks approached synchronicity with the DMN, their 

FNC with other networks should decrease as they no longer would exchange meaningful 

information (as now most of them would fluctuate with the DMN pattern). With an increase 

of time awake, we observed that 1) networks which previously were positively correlated 

now showed weak anti-correlations, and 2) that the anti-correlation between the VIS IC and 

ATT networks decreased, both effects potentially implying reduced information transfer 

between these networks (along the lines of Buzsáki et al. 2013). The stronger anti-correlation 

of the left executive control network (which is thought to be involved in cognitive processing; 

Smith et al. 2009; Laird et al. 2011) and the SENS IC could be due to an within-network 

change in the SENS FNC with increased time awake. In the specific case of the increase of 

FNC between the left executive control ATT component and a DMN component, this change 

from an anti-correlation to a positive correlation with increased time awake might have 

resulted in a loss of attention (maybe paralleled by a decrease of consciousness) due to the 

strenuous burden of maintaining wakefulness while struggling not to fall asleep. This is in 

line with results of several studies that reported decreased anti-correlations between ATT 

networks and the DMN after sleep deprivation (e.g. De Havas et al. 2012; Yeo et al. 2015; 

Kaufmann et al. 2016). Yeo and colleagues (2015) described that subjects more resilient to 

sleep deprivation exhibited relatively larger reductions of the anti-correlations between 
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default mode and attentional networks. This could hint towards compensatory mechanisms of 

the brain counteracting the increased need for sleep. Furthermore, it has been suggested that 

activity in the executive control networks could be a necessary condition for conscious visual 

perception (Dehaene et al. 2003).Therefore, a decrease of activity in these networks (and with 

it less pronounced FNC) might be paralleled by a loss of its hypothesized function. Also, 

most task-based studies investigating sleep restriction or deprivation found changes of brain 

activation in areas thought to involve executive functioning or attention (for a review see 

Jackson et al. 2013). 

A recent study looking at changes of the brain functional connectome as a function of time of 

day (morning/evening sessions) as well as total sleep deprivation found very diverse changes 

of functional network connectivity due to total sleep deprivation: increased positive 

correlations (between DMN and both VIS and ATT networks as well as AUD and amygdala 

components), increased negative correlations (between DMN and frontal networks, ATT and 

VIS components, as well as frontal and CEREB networks), some changes from negative to 

positive correlations (between DMN and VIS networks, within both ATT and AUD network, 

between ATT and VIS components, and frontal and SENS networks), and decreased 

magnitude of negative correlations (between DMN with frontal, ATT and CEREB networks, 

as well as between ATT and AUD components; Kaufmann et al. 2016). Though their changes 

in FNC mostly do not resemble the pattern that we observed in our study, this might be due to 

several factors. Methodologically, their assessment of sleep stages (and thereby also 

wakefulness) was based on a trained classifier of the fMRI data, and they considered non-

REM sleep stage 1 as being asleep. Further, subjects underwent total sleep deprivation prior 

to the scans. In addition, network components were slightly different and their clustering to 

networks resulted in other categorization compared to ours (e.g. the left and right executive 

control networks were assigned to “frontal networks” while we included them in the 

“attentional networks”). Nevertheless, they also did not report within DMN alterations 

(Kaufmann et al. 2016). In addition, along our lines, Kaufmann and colleagues (2016) 

observed, that when trying to classify sessions (morning, rested; evening, rested; morning, 

rested/sleep deprived) based on FNC data of their sleep deprived group, the morning session 

after sleep deprivation was classified as being “evening-like”, whereas in their rested control 

group, the second morning scan was equally classified as being “morning-” or “evening-

like”, suggesting an impact of sleep deprivation. 

Sämann and colleagues (2010) reported reduced functional connectivity with increased sleep 

pressure in main nodes of both the DMN and its so-called anti-correlated network in a seed 

based approach. We did not observe changes along these lines. However, in Sämann et al. 

(2010), maintenance of wakefulness was only assessed by subjective reports. Furthermore, 

the changes in functional connectivity were assessed between the nodes that formed a 

network. In our case, these nodes would probably comprise one IC and changes of functional 

connectivity within a specific IC would only be visible in differences of the spatial map 

intensities with time awake. As this was not the case, it might be that the subjects of Sämann 

et al. (2010) displayed different levels of drowsiness and that the differences found in 

functional connectivity of the nodes within the DMN and anti-correlated network could have 
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been affected by intrusion of light sleep (not measured). Also, in the study of Sämann and 

colleagues (2010), only 14 subjects were included in the analysis. 

Surprisingly, we did not see any change of FNC involving the subcortical component (SUB, 

which includes the thalamus). The thalamus is hypothesized to have an influence on arousal 

levels (which are distinct from attention; Portas et al. 1998; Fan et al. 2005) and would be 

expected to show changes in connectivity in relation to different levels of sleep pressure. 

However, Chee and Tan (2010) reported that thalamic levels of activation in subjects not 

vulnerable to sleep deprivation were unchanged after sleep deprivation. Again, this could 

reflect compensatory mechanisms attempting to counteract increased sleep pressure in these 

subjects. In the present study, since we included those subjects who best were able to 

maintain wakefulness, our observed lack of FNC changes in the SUB component with time 

awake could be due to a potential bias towards subjects less vulnerable to sleep restriction or 

loss (see also subsection ‘Spatial maps of RSNs’). This might also be the reason why both 

our study and the study of Kaufmann and colleagues (2016) did not observe any within DMN 

changes of connectivity. Therefore, the observed changes in FNC between components of 

RSNs due to ‘time awake’ that we observed could be a property of sleep restricted subjects 

who are able to maintain wakefulness under levels of elevated sleep pressure in a challenging 

environment to stay awake, i.e. those who might be less vulnerable to sleep restriction or loss 

because their brain is able to compensate.  

Spatial maps of RSNs 

We could demonstrate that group ICA with combined CBF, BOLD and pBOLD data detected 

the same networks (Fig. 2) that have been identified previously with BOLD data (e.g. 

Damoiseaux et al. 2006; Allen et al. 2011a; Heine et al. 2012). The topography of the spatial 

intensity maps was very similar across modalities only differing in their detection sensitivity 

(Online Resource 1 Figure S1, Tab. 2). 

Differences in the spatial map intensities of RSNs due to ‘time awake’ 

Only minor differences in the spatial map intensities were due to ‘time awake’, indicating 

that the intrinsic networks structures were largely independent of the level of sleep pressure. 

This might seem counterintuitive at first sight, since several studies showed changes due to 

sleep restriction or sleep deprivation in specific resting state network areas (Braun et al. 1997; 

Wu et al. 2006; Sämann et al. 2010; De Havas et al. 2012; Poudel et al. 2012). However, 

most of these studies used a seed-based approach to define resting state networks and 

compared the extent of correlated areas with specific seeds. As we used an ICA approach that 

combines correlated areas into networks, changes within these components or networks 

cannot be analyzed further. We performed a group ICA (and not two separate ICAs, i.e. one 

per group), it is thus possible that group differences might have become more apparent with 

two separate ICAs. However, the group ICA approach we used in this study has been shown 

to be sensitive to inter-individual variability even in a single group ICA (Allen et al. 2011b). 

Further, a good test-retest reliability has been attributed to RSNs derived from both seed-

based and ICA approaches (Franco et al. 2013). As mentioned in the methods, employing 
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group ICA approach provides the advantage that the resulting components are present in all 

subjects and are directly comparable. 

Because we explicitly excluded subjects from the analysis that showed strong signs of sleep, 

we might have chosen subjects that were less vulnerable to sleep restriction, i.e. increased 

sleep pressure. As mentioned above, Chee and Tan (2010) observed that subjects not 

vulnerable to sleep deprivation did not show the same patterns of brain activation during a 

visual attention task as their vulnerable counterparts and that their neural activation 

characteristics more closely resembled those of non-sleep deprived subjects. Similarly, 

Poudel and colleagues (2012) observed an overall reduction of CBF in attentional networks 

that seemed to be driven mostly by subjects who showed strong signs of drowsiness. 

Differences in the spatial map intensities of RSNs due to ‘modality’ 

We found some differences in the intensities of the networks due to ‘modality’ (see 

supplementary Online Resource 1 as well as Online Resource 1 Figure S1). The majority of 

differences were found between the not simultaneously obtained modalities with slightly 

different recording parameters (CBF/BOLD, pBOLD/BOLD) but only minor differences 

between those recorded simultaneously (CBF/pBOLD). This is along the lines of a recent 

study showing highly reproducible network-specific CBF measures (Jann et al. 2015). 

It therefore seems likely that these differences in spatial map intensities (comparing 

CBF/BOLD and pBOLD/BOLD) stem mainly from the underlying differences of the 

recording parameters, though both were resliced to the same spatial resolution and filtered to 

match sampling rates during preprocessing). 

We further ruled out that the modality differences were due to high variability of one of the 

methods in specific brain areas. Variability distributions were very similar for the three 

modalities with highest values observed for CBF (Online Resource 1 Figure S2). Brain areas 

showing differences due to ‘modality’ did not overlap with the areas of largest variance in the 

three modalities. 

Limitations/Advantages: 

A limitation of our study was the lack of a within group design as this was not initially 

planned. This could have decreased the sensitivity for changes due to sleep pressure at the 

level of FNC in the brain as the NSP group showed more variance in time awake until their 

recordings were performed. Also, the NSP and HSP group were recorded at different times of 

day, thus potentially influenced by circadian differences (Blautzik et al. 2013), though due to 

the variability in the time of the recordings in the NSP group, this influence – if present – 

should be fairly small.  

Another small potential confound was the lack of caffeine abstention in the NSP group. 

Caffeine intake has a known (and regionally heterogeneous) effect on brain metabolism (Wu 

et al. 2014; Xu et al. 2015) that could have influenced the differences between the NSP and 

HSP group. However, plasma caffeine concentration after administration of doses 
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comparable to two cups of coffee peaks after 0.5 hours after administration and returns to 

baseline levels after approximately 8 hours (Kaplan et al. 1997). Further, significant 

differences on EEG theta activity vanish at 10 hours after caffeine administration (Landolt et 

al. 2004). Out of 17 subjects in the NSP group, 7 reported caffeine intake prior to the study. 

In all of these subjects, the time of caffeine consumption was at least 3 hours before the first 

measurement. Therefore, if influences were still present, they should have been varying and 

non-systematic in the NSP group. Due to the demanding design of the studies, an approach 

with more thorough control of the NSP group was not feasible. 

Further, our results were limited by the absence of EEG recordings in the NSP group during 

the CBF session. We cannot rule out minor intrusions of sleep in this group during the CBF 

recordings. However, as these subjects were supposedly well-rested (which was reflected 

both by their Epworth sleepiness scores – a measure of daytime sleepiness – and the 

assessment of their acute sleepiness with the Karolinska sleepiness scale; see Tab. 1), were 

recorded throughout the daytime, did not fall asleep during the preceding BOLD session and 

after the recording did not report any sleep intrusions, we are confident that this potential 

confound is small. 

Another limitation stems from the differences regarding the eyes open or closed conditions in 

the two recording protocols, between the BOLD (2 min EO, 2 min EC, 2 min EO, 2 min EC; 

Fig. 1) and CBF sessions (HSP: 10 min EO, NSP: 5 min EO, 5 min EC; Fig. 1). Although 

studies have reported differences in functional connectivity with respect to voluntary eye 

movements in sleep-deprived subjects (Ong et al. 2015) and vigilance fluctuations (Wang et 

al. 2016), the reported functional connectivity changes were distinctly different from our 

observations. Also, since the pattern of cued EO/EC was added as a covariate of no interest in 

our FNC analysis, this confound should be minimal. 

As we had a sex bias (some females only in the NSP group), we performed an additional 

analysis with the covariate ‘sex’ to address this unbalanced distribution as good as possible. 

This covariate influenced the FNC due to ‘time awake’. However, the overall ratio of females 

to males was roughly 1:2, therefore, males dominated. Also, all females were awake for a 

shorter time, and thus had a lower sleep pressure. This bias might lead to shared variance of 

‘time awake’ and ‘sex’ (though no interaction effect of ‘sex’ and ‘time awake’ was observed 

regarding FNC), and thereby could influence the FNC results. As Online Resource 1 Figure 

S4 shows, the pattern of FNC due to time awake stayed similar when taking ‘sex’ into 

account. As in general sex differences in FNC were relatively sparse or even absent in large-

cohort studies (Weissman-Fogel et al. 2010; Allen et al. 2011a; Filippi et al. 2013; 

Hjelmervik et al. 2014) we think a pure sex influence is rather unlikely and therefore 

negligible. 

Finally, an advantage of our study is the careful selection of subjects. We took care to have 

groups not differing in their corrected mid sleep time on free days (assessed by the MCTQ), 

i.e. to have a similar chonotype, while presenting significant differences in their subjective 

sleepiness and the time awake at recordings. Further, unlike most studies investigating sleep 

restriction or deprivation, we combined most of our fMRI measurements with EEG 
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recordings, to objectively determine whether subjects were able to maintain wakefulness 

especially while under high sleep pressure. 

Conclusions 

We could demonstrate that while RSNs themselves basically do not change their topography 

in response to increased sleep pressure, the FNC between specific network components 

changes in a distinctive pattern. This specific change in FNC could potentially reflect both 

compensatory mechanisms to fight sleep as well a first decrease of consciousness in the form 

of becoming drowsy. FNC of RSNs with components of the DMN revealed positive effects 

as a function of time awake and negative effects with all other but the DMN networks 

(Fig. 4), hinting at a change of the temporal fluctuations of some RSNs in the brain towards 

the fluctuation pattern of the DMN which might influence information transfer of these 

networks as a consequence both of increased drowsiness as well as decreased consciousness. 

Additionally, we demonstrated that CBF and pBOLD signals are suited to derive ICA-based 

RSNs and that differences between CBF and BOLD measures were rather small, both with 

respect to the spatial intensity of the RSNs as well as their between network connectivity (i.e. 

FNC). Therefore, we could verify that CBF signals are indeed a viable option for these types 

of analyses. As we find the same networks with different modalities, a strong biological 

substrate must be underlying these resting state networks. 
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Figure Legends 

Figure 1: Study protocols of the normal sleep pressure (NSP; top) and high sleep pressure 

(HSP; bottom) group. NSP participants were recorded throughout the day (range: 14:25 to 

20:53 for BOLD, 15:46 to 22:18 for CBF) after approximately 8 hours of sleep at home. 

Average time awake at resting state recordings (RSin: BOLD resting state; RSasl: ASL 

resting state) was 10 hours. Participants in the HSP group had a sleep opportunity of 4 h in 

the laboratory (23:30 to 03:30) and had to stay awake approximately 19 hours. RSin 

recordings started on average at 22:21 and RSasl at 23:31. In between BOLD and CBF 

resting state recordings, participants executed different tasks (NSP: modified Sternberg 
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working memory task (SB; Michels et al. 2010), modified Eriksen Flanker task (Flanker; 

Kopp et al. 1996; Bunge et al. 2002; Iannaccone et al. 2015), Stop signal task (Stop; Rubia et 

al. 2003); HSP: modified Sternberg working memory task (SB; Michels et al. 2010) and had 

a break. RSout: EEG resting state and calibration recording outside of the scanner. For further 

details see Tab. 1. EO: eyes open, EC: eyes close, DTI: diffusion tensor imaging, T1: 

anatomical T1-weighted image. 

Figure 2: Spatial map intensities (SMs) of the 17 ICs identified as RSNs. These ICs form 

seven RSN groups (Tab. 2). SMs are plotted as t-statistics, thresholded according to Allen et 

al. (2011a) and displayed with the three most informative slices. RSNs were grouped based 

on their anatomical and functional properties and include subcortical (SUB), auditory (AUD), 

sensorimotor (SENS), visual (VIS), default mode (DMN), attentional (ATT) and cerebellar 

(CEREB) networks. 

Figure 3: Mean functional network connectivity (FNC) matrix. Pairwise partial correlations 

between ICs after correction for movements, eyes open/closed and sleep scores are 

illustrated. R-values were Fisher z-transformed and averaged across subjects, then back-

transformed for display. 

Figure 4: ‘Time awake’ effects on the mean FNC matrix. Univariate test results showing the 

effect of ‘time awake’ on FNC. Illustrated are the significant −sign(t)log10(p) values, meaning 

that the significant positive or negative effects are displayed on a logarithmic scale. Floating-

point numbers on the colorbar indicate the FDR-corrected threshold (α = 0.05). Warm colors 

indicate a positive effect on FNC with longer time awake, while cold colors indicate a 

negative effect on FNC with longer time awake. Arrows illustrate the direction of the effect: 

positive effects can be caused by increased positive correlations, decreased negative 

correlations and switches of negative to positive correlations, while negative effects can be 

caused by decreased negative correlations or switches from positive to negative correlations 

(see Online Resource 1 Figure S3 for a detailed interpretation). 

Table Legends 

Table 1: Participant demographics and behavioral measures. Body mass index (BMI) derived 

from self-reported weight and height measures. Mean wakeup time derived from the Munich 

chorotype questionnaire (MCTQ) information in the NSP group and experimental recording 

time in the HSP group. Time awake at the recording session derived from wakeup time and 

actual time of start of the recording. ESS: Epworth sleepiness scale (range 0 – 24, 0: lowest 

possible level of daytime sleepiness, above 10: excessive daytime sleepiness). MCTQ values 

represent mid sleep point on free days, corrected for age, sex and sleep debt. KSS: Karolinska 

sleepiness scale (range 1 – 9, 1: extremely alert, 9: extremely sleepy-fighting sleep). Values 

are shown as mean (standard deviation). *All p-values derived from Mann-Whitney-U test. 

n.s.: not significant; n.a.: not applicable 

Table 2: RSN groups and modality effects on their detection sensitivity. Seventeen ICs were 

identified forming seven RSN groups (Fig. 2). ICs were classified into RSN groups and 

assigned to the ICs reported by Allen et al. (2011a) to which they were spatially best 
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correlated. Coordinates of their peak activations are provided in MNI space [mm]. 

Component size was derived by a non-overlapping winner-takes-all approach on the t-maps 

(Fig. 2). Modality effects per RSN group are given as percentage of the total number of 

voxels. CBF>BOLD indicates higher detection sensitivity of CBF than BOLD and 

accordingly for other comparisons. 

Tables 

Table 1: Participant demographics and behavioral measures. 

Variables Normal sleep pressure (NSP) 

group 

High sleep pressure (HSP) 

group 

P value* 

Age 23.9 (2.3) years 22.4 (2.5) years n.s. 

Gender 7 m, 10 f 17 m n.a. 

BMI 21.8 (2.2) kg/m2 23.3 (2.3) n.s. 

Wake up time 6:52 (50 min) 3:30 (0 min) kg/m2 p < 0.0001 

Time awake at BOLD session 9.8 (2.3) h 18.9 (0.5) h p < 0.0001 

Time awake at CBF/pBOLD 

session 

11.2 (2.3) h 20 (0.4) h p < 0.0001 

ESS 5.2 (2.8) 4.5 (2) n.s. 

MCTQ (mid sleep free days 

corrected) 

4:32 (1:44) 4:06 (1:07) n.s. 

KSS 4.4 (2.1) 6.7 (1.3) p < 0.002 

*Mann-Whitney-U-Test 
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Table 2: RSN groups and modality effects on their detection sensitivity. 

Network 

groups 

Allen et 

al. 

(2011a) 

IC Peak voxel Size 

(Nr of 

voxels) 

Modality 

difference 

CBF vs 

BOLD (%) 

CBF>BOLD/

CBF<BOLD 

Modality 

difference 

pBOLD vs 

BOLD (%) 

pBOLD>BOLD/

pBOLD<BOLD 

Modality 

difference 

CBF vs 

pBOLD (%) 

CBF>pBOLD/

CBF<pBOLD 
x y z 

Subcortical 

Network 

(SUB) 

(IC 21: 

basal 

ganglia) 

IC 7 -6 -19 7 2514 29.3 %/0.72 % 25.8 %/0.20 % 0.36 %/0.40 % 

Auditory 

Network 

(AUD) 

IC 17 IC 4 -60 -40 7 3377 7.43 %/0.36 % 1.01 %/0.06 % 0.44 %/0.09 % 

Sensorimotor 

Networks 

(SENS) 

IC 7 

IC 23 

IC 24 

IC 38 

IC 56 

IC29 

 

IC 5 

 

 

IC 12 

IC 17 

IC 21 

-57 

 

 

60 

-27 

3 

-7 

 

 

-34 

-1 

-22 

22 

 

 

34 

55 

55 

2657 

 

 

1470 

2377 

3887 

Total: 

10391 

 

 

 

 

 

 

20.9 %/2.10 % 

 

 

 

 

 

 

6.84 %/0.60 % 

 

 

 

 

 

 

0.82 %/0.72 % 

Visual 

Networks 

(VIS) 

IC 46 

IC64 

IC 67 

IC48 

IC 39 

IC 59 

 

IC 15 

IC 2 

 

 

IC 18 

 

24 

12 

 

 

42 

-91 

-73 

 

 

-76 

-2 

4 

 

 

1 

2292 

3157 

 

 

2672 

 

Total: 

8121 

 

 

 

 

 

 

5.91 %/1.74 % 

 

 

 

 

 

 

0.80 %/0.06 % 

 

 

 

 

 

 

1.15 %/0.37 % 

Default 

Mode 

Networks 

(DMN) 

IC 50 

IC 53 

 

 

IC 25 

IC 68 

 

 

IC 20 

IC 23 

IC 22 

IC 10 

 

3 

9 

-54 

-30 

 

-49 

-58 

-61 

47 

 

31 

19 

28 

34 

 

2149 

873 

3147 

1308 

 

Total: 

7477 

 

 

 

 

 

 

8.88 %/1.00 % 

 

 

 

 

 

 

2.41 %/0.35 % 

 

 

 

 

 

 

0.37 %/0.12 % 

Attentional 

Networks 

(ATT) 

IC 34 

IC 60 

IC52 

IC 72 

IC 71 

IC 55 

 

IC 24 

IC 14 

 

 

 

IC 8 

-45 

39 

 

 

 

0 

-49 

-67 

 

 

 

11 

43 

43 

 

 

 

55 

2712 

3036 

 

 

 

1608 

Total: 

7356 

 

 

 

 

 

 

7.64 %/1.17 % 

 

 

 

 

 

 

3.90 %/0.24 % 

 

 

 

 

 

 

0.52 %/0.07 % 

Cerebellar 

Network 

(CEREB) 

 IC 16 15 -67 -26 3346 3.14 %/0.4 5% 0.90%/0.18% ÷/÷ 

IC: Independent Component 
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