
Kernelization of Constraint Satisfaction Problems: A
Study through Universal Algebra

Victor Lagerkvist1 and Magnus Wahlström2

1 Department of Computer and Information Science, Linköping University, Sweden
victor.lagerqvist@tu-dresden.de

2 Department of Computer Science, Royal Holloway, University of London, Great Britain
magnus.wahlstrom@rhul.ac.uk

Abstract. A kernelization algorithm for a computational problem is a procedure
which compresses an instance into an equivalent instance whose size is bounded
with respect to a complexity parameter. For the constraint satisfaction problem
(CSP), there exist many results concerning upper and lower bounds for kerneliz-
ability of specific problems, but it is safe to say that we lack general methods to
determine whether a given problem admits a kernel of a particular size. In this paper,
we take an algebraic approach to the problem of characterizing the kernelization
limits of NP-hard CSP problems, parameterized by the number of variables. Our
main focus is on problems admitting linear kernels, as has, somewhat surprisingly,
previously been shown to exist. We show that a finite-domain CSP problem has a
kernel with O(n) constraints if it can be embedded (via a domain extension) into
a CSP which is preserved by a Maltsev operation. This result utilise a variant of
the simple algorithm for Maltsev constraints. In the complementary direction, we
give indication that the Maltsev condition might be a complete characterization
for Boolean CSPs with linear kernels, by showing that an algebraic condition that
is shared by all problems with a Maltsev embedding is also necessary for the
existence of a linear kernel unless NP ⊆ co-NP/poly.

1 Introduction

Kernelization is a preprocessing technique based on reducing an instance of a
computationally hard problem in polynomial time to an equivalent instance, a
kernel, whose size is bounded by a function f with respect to a given complexity
parameter. The function f is referred to as the size of the kernel, and if the size
is polynomially bounded we say that the problem admits a polynomial kernel.
A classical example is Vertex Cover, which admits a kernel with 2k vertices,
where k denotes the size of the cover [25]. Polynomial kernels are of great
interest in parameterized complexity, as well as carrying practical significance in
speeding up subsequent computations (e.g., the winning contribution in the 2016
PACE challenge for Feedback Vertex Set used a novel kernelization step as a
key component (see https://pacechallenge.wordpress.com/).

When the complexity parameter is a size parameter, e.g., the number of
variables n, then such a size reduction is also referred to as sparsification

https://pacechallenge.wordpress.com/

(although a sparsification is not always required to run in polynomial time). A
prominent example is the famous sparsification lemma that underpins research
into the Exponential Time Hypothesis [10], which shows that for every k there is
a subexponential-time reduction from k-SAT on n variables to k-SAT on O(n)
clauses, and hence Õ(n) bits in size. However, the super-polynomial running time
is essential to this result. Dell and vanMelkebeek [5] showed that k-SAT cannot be
kernelized even down to size O(nk−ε), and Vertex Cover cannot be kernelized
to size O(n2−ε), for any ε > 0 unless the polynomial hierarchy collapses (in the
sequel, we will make this assumption implicitly). These results suggest that in
general, polynomial-time sparsification cannot give non-trivial size guarantees.
The first result to the contrary was by Bart Jansen (unpublished until recently [12]),
who observed that 1-in-k-SAT admits a kernel with at most n constraints using
Gaussian elimination. More surprisingly, Jansen and Pieterse [11] showed that
the Not-All-Equal k-SAT problem admits a kernel with O(nk−1) constraints,
improving on the trivial bound by a factor of n and settling an implicit open
problem. In later research, they improved and generalized the method, and also
showed that the bound ofO(nk−1) is tight [12]. These improved upper bounds are
all based on rephrasing the SAT problem as a problem of low-degree polynomials,
and exploiting linear dependence to eliminate superfluous constraints. Still, it is
fair to say that we currently lack the tools for making a general analysis of the
kernelizability of a generic SAT problem.

In this paper we take a step in this direction, by studying the kernelizability
of the constraint satisfaction problem over a constraint language Γ (CSP(Γ)),
parameterized by the number of variables n, which can be viewed as the problem
of determining whether a set of constraints over Γ is satisfiable. Some notable
examples of problems of this kind are k-colouring, k-SAT, 1-in-k-SAT, and
not-all-equal-k-SAT. We will occasionally put a particular emphasis on the
Boolean CSP problem and therefore denote this problem by SAT(Γ). Note that
CSP(Γ) has a trivial polynomial kernel for any finite language Γ (produced
by simply discarding duplicate constraints), but the question remains for which
languages Γ we can improve upon this. Concretely, our question in this paper is
for which languages Γ the problem CSP(Γ) admits a kernel ofO(nc) constraints,
for some c ≥ 1, with a particular focus on linear kernels (c = 1).

The algebraic approach in parameterized and fine-grained complexity.
For any language Γ , the classical complexity of CSP(Γ) (i.e., whether CSP(Γ) is
in P) is determined by the existence of certain algebraic invariants of Γ known as
polymorphisms [13]. This gave rise to the algebraic approach to characterizing the
complexity of CSP(Γ) by studying algebraic properties. It has been conjectured
that for every Γ , CSP(Γ) is either in P or NP-complete, and that the tractability
of a CSP problem can be characterized by a finite list of polymorphisms [3].

Recently, several independent results appeared, claiming to settle this conjecture
in the positive [1,26,27]. However, for purposes of parameterized and fine-
grained complexity questions, looking at polymorphisms alone is too coarse.
More technically, the polymorphisms of Γ characterize the expressive power
of Γ up to primitive positive definitions, i.e., up to the use of conjunctions,
equality constraints, and existential quantification, whereas for many questions a
liberal use of existentially quantified local variables is not allowed. In such cases,
one may look at the expressive power under quantifier-free primitive positive
definitions (qfpp-definitions), allowing only conjunctions and equality constraints.
This expressive power is characterized by more fine-grained algebraic invariants
called partial polymorphisms. For example, there are numerous dichotomy results
for the complexity of parameterized SAT(Γ) and CSP(Γ) problems, both for
so-called FPT algorithms and for kernelization [17,18,19,24], and in each of
the cases listed, a dichotomy is given which is equivalent to requiring a finite
list of partial polymorphisms of Γ . Similarly, Jonsson et al. [16] showed that
the exact running times of NP-hard SAT(Γ) and CSP(Γ) problems in terms
of the number of variables n are characterized by the partial polymorphisms
of Γ . Unfortunately, studying properties of SAT(Γ) and CSP(Γ) for questions
phrased in terms of the size parameter n is again more complicated than for more
permissive parameters k. For example, it is known that for every finite set P
of strictly partial polymorphisms, the number of relations invariant under P is
double-exponential in terms of the arity n (hence they cannot all be described
in a polynomial number of bits) [20, Lemma 35]. It can similarly be shown
that the existence of a polynomial kernel cannot be characterized by such a
finite set P . Instead, such a characterization must be given in another way (for
example, Lagerkvist et al. [22] provide a way to finitely characterize all partial
polymorphisms of a finite Boolean language Γ).

Our results.We generalize and extend the results of Jansen and Pieterse [12]
in the case of linear kernels to a general recipe for NP-hard SAT and CSP
problems in terms of the existence of aMaltsev embedding, i.e., an embedding
of a language Γ into a tractable language Γ ′ on a larger domain with aMaltsev
polymorphism. We show that for any language Γ with a Maltsev embedding
into a finite domain, CSP(Γ) has a kernel with O(n) constraints. Attempting an
algebraic characterization, we also show an infinite family of universal partial
operations which are partial polymorphisms of every language Γ with a Maltsev
embedding, and show that these operations guarantee the existence of a Maltsev
embedding for Γ , albeit into a language with an infinite domain. Turning to
lower bounds against linear kernels, we show that the smallest of these universal
partial operations is also necessary, in the sense that for any Boolean language
Γ which is not invariant under this operation, SAT(Γ) admits no kernel of size

O(n2−ε) for any ε > 0. We conjecture that this can be completed into a tight
characterization – i.e., that for Boolean languages Γ , SAT(Γ) admits a linear
kernel if and only if it is invariant under all universal partial Maltsev operations.

Generalizations for kernels of higher degree are possible, but have been
omitted for reasons of length, and we refer the reader to the extended preprint [21].

2 Preliminaries

2.1 The Constraint Satisfaction Problem and Kernelization

A relation R over a set of values D is a subset of Dk for some k ≥ 0,
and we write ar(R) = k to denote the arity of R. A set of relations Γ is
referred to as a constraint language. An instance (V,C) of the constraint
satisfaction problem over a constraint language Γ over D (CSP(Γ)) is a set V
of variables and a set C of constraint applications R(v1, . . . , vk) where R ∈ Γ ,
ar(R) = k, and v1, . . . , vk ∈ V . The question is whether there exists a function
f : V → D such that (f(v1), . . . , f(vk)) ∈ R for each R(v1, . . . , vk) in C? If
Γ is Boolean we denote CSP(Γ) by SAT(Γ), and we let BR denote the set of
all Boolean relations. As an example, let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
Then SAT({R1/3}) can be viewed as an alternative formulation of the 1-in-3-
SAT problem restricted to instances consisting only of positive literals. More
generally, if we let R1/k = {(x1, . . . , xk) ∈ {0, 1}k | x1 + . . .+ xk = 1}, then
SAT({R1/k}) is a natural formulation of 1-in-k-SAT without negation.

A parameterized problem is a subset of Σ∗ × N where Σ is a finite alphabet.
Hence, each instance is associated with a natural number, called the parameter.

Definition 1. A kernelization algorithm, or a kernel, for a parameterized problem
L ⊆ Σ∗ × N is a polynomial-time algorithm which, given an instance (x, k) ∈
Σ∗ × N, computes (x′, k′) ∈ Σ∗ × N such that (1) (x, k) ∈ L if and only if
(x′, k′) ∈ L and (2) |x′|+ k′ ≤ f(k) for some function f .

The function f in the above definition is sometimes called the size of the kernel.
In this paper, we are mainly interested in the case where the parameter denotes
the number of variables in a given CSP(Γ) instance.

2.2 Operations and Relations

An n-ary function f : Dn → D over a domain D is typically referred to as an
operation onD, although we will sometimes use the terms function and operation
interchangeably.We let ar(f) = n denote the arity of f . Similarly, ann-ary partial
operation over a set D of values is a map f : X → D, where X ⊆ Dn is called

the domain of f . Again, we let ar(f) = n, and furthermore let domain(f) = X .
If f and g are n-ary partial operations with domain(g) ⊆ domain(f) and
f(x1, . . . , xn) = g(x1, . . . , xn) for each (x1, . . . , xn) ∈ domain(g), then g is
said to be a subfunction of f .

Definition 2. An n-ary partial operation f is a partial polymorphism of a k-ary
relation R if, for every sequence t1, . . . , tn ∈ R, either f(t1, . . . , tn) ∈ R or
(t1[i], . . . , tn[i]) /∈ domain(f) for some 1 ≤ i ≤ k, where f(t1, . . . , tn) =
(f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])).

If f is total we simply say that f is a polymorphism of R, and in both
cases we sometimes also say that f preserves R, or that R is invariant un-
der f . For a constraint language Γ we then let Pol(Γ) and pPol(Γ) denote
the set of operations and partial operations preserving every relation in Γ ,
respectively, and if F is a set of total or partial operations we let Inv(F)
denote the set of all relations invariant under F . It is known that Pol(Γ)
and pPol(Γ) are closed under composition of (partial) operations, i.e., if f ◦
g1, . . . , gm(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is included
inPol(Γ) (respectively pPol(Γ)) then f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is
included in Pol(Γ) (respectively pPol(Γ)) [23]. It is also known that Pol(Γ) and
pPol(Γ) for each n and i ≤ n contain every projection πni (x1, . . . , xi, . . . , xn) =
xi. On the relational side, if every operation in F is total, then Inv(F) is closed
under primitive positive definitions (pp-definitions) which are logical formulas con-
sisting of existential quantification, conjunction, and equality constraints. In sym-
bols, we say that a k-ary relation R has a pp-definition over a constraint language
Γ over a domainD if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1) ∧ . . . ∧Rm(xm),
where eachRi ∈ Γ ∪{Eq}, Eq = {(x, x) | x ∈ D} and each xi is an ar(Ri)-ary
tuple of variables over x1, . . . , xk, y1, . . . , yk′ . If F is a set of partial opera-
tions then Inv(F) is closed under quantifier-free primitive positive definitions
(qfpp-definitions), i.e., pp-definitions that do not make use of existential quan-
tification. As a shorthand, we let [F] = Pol(Inv(F)), 〈Γ 〉 = Inv(Pol(Γ)), and
〈Γ 〉 6∃ = Inv(pPol(Γ)). We then have the following Galois connections [8].

Theorem 3. Let Γ, Γ ′ be constraint languages. Then (1) Γ ⊆ 〈Γ ′〉 6∃ if and only
if pPol(Γ′) ⊆ pPol(Γ) and (2) Γ ⊆ 〈Γ ′〉 if and only if Pol(Γ′) ⊆ Pol(Γ).

Jonsson et al. [16] proved the following theorem, showing that partial
polymorphisms are indeed a refinement over total polymorphisms, since the latter
are only guaranteed to provide polynomial-time many-one reductions [15].

Theorem 4. If Γ , Γ ′ are finite languages and pPol(Γ) ⊆ pPol(Γ′) there exists
a constant c and a polynomial-time reduction from CSP(Γ ′) to CSP(Γ) mapping
(V,C) of CSP(Γ ′) to (V ′, C ′) of CSP(Γ) where |V ′| ≤ |V | and |C ′| ≤ c|C|.

Last, we will define a particular type of operation which is central to
our algebraic approach. A Maltsev operation over D ⊇ {0, 1} is a ternary
operation φ which for all x, y ∈ D satisfies the two identities φ(x, x, y) = y
and φ(x, y, y) = x. Before we can explain the powerful, structural properties of
relations invariant under Maltsev operations, we need a few technical definitions
fromBulatov andDalmau [2]. If t ∈ Dn is a tuple we let t[i] denote the ith element
in t andwe let pri1,...,in′ (t) = (t[i1], . . . , t[in′]),n′ ≤ n, denote the projection of t
on (not necessarily distinct) coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, ifR is
an n-ary relation we let pri1,...,in′ (R) = {pri1,...,in′ (t) | t ∈ R}. Let t, t

′ be two n-
ary tuples overD. We say that (t, t′) witnesses a tuple (i, a, b) ∈ {1, . . . , n}×D2

if pr1,...,i−1(t) = pr1,...,i−1(t
′), t[i] = a, and t′[i] = b. The signature Sig(R) of

an n-ary relation R over D is then defined as

{(i, a, b) ∈ {1, . . . , n} ×D2 | ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)},

and we say that R′ ⊆ R is a representation of R if Sig(R) = Sig(R′). If R′
is a representation of R it is said to be compact if |R′| ≤ 2|Sig(R)|, and it is
known that every relation invariant under a Maltsev operation admits a compact
representation. Furthermore, we have the following theorem from Bulatov and
Dalmau, where we let 〈R〉f denote the smallest superset of R invariant under f .

Theorem 5 ([2]). Let φ be a Maltsev operation over a finite domain, R ∈
Inv({φ}) a relation, and R′ a representation of R. Then 〈R′〉φ = R.

Hence, relations invariant under Maltsev operations are reconstructible from
their compact representations.

3 Maltsev Embeddings and Kernels of Linear Size

In this section we give general upper bounds for kernelization of NP-hard CSP
problems, utilising Maltsev operations. At this stage the connection between Malt-
sev operations, compact representations and tractability of Maltsev constraints
might not be immediate. In a nutshell, the Maltsev algorithm [2] works as follows
(where φ is a Maltsev operation over a finite set D). First, let (V, {C1, . . . , Cm})
be an instance of CSP(Inv({φ})), and let S0 be a compact representation of
D|V |. Second, for each i ∈ {1, . . . ,m} compute a compact representation Si of
the solution space of the instance (V, {C1, . . . , Ci}) using Si−1. Third, answer
yes if Sm 6= ∅ and no otherwise. For a full description of the involved procedures
we refer the reader to Bulatov and Dalmau [2] and Dyer and Richerby [6].

Example 6. We review two familiar special cases of this result. First, consider a
linear equation

∑
i αixi = b, interpreted over a finite field F. It is clear that the

set of solutions to such an equation is invariant under x1 − x2 + x3 (over F),
hence systems of linear equations are a special case of Maltsev constraints, and
can in principle be solved by the Maltsev algorithm. Second, for a more general
example, let G = (D, ·) be a finite group, and let s(x, y, z) = x · (y−1) · z be
the coset generating operation of G. Then s is Maltsev, hence CSP(Inv({s}))
is tractable; this was shown by Feder and Vardi [7], but also follows from the
Maltsev algorithm. In particular, if G = (D,+) is an Abelian group where |D|
is prime, then R ∈ Inv({s}) if and only if R is the solution space of a system of
linear equations modulo |D| [14].

Since CSP(Γ) is tractable whenever Γ is preserved by a Maltsev operation,
it might not be evident how the Maltsev algorithm can be used for constructing
kernels for NP-hard CSPs. The basic idea is to embed Γ into a language Γ̂ over a
larger domain, which is preserved by a Maltsev operation. This allows us to use
the advantageous properties of relations invariant under Maltsev operations, in
order to compute a kernel for the original problem.

Definition 7. A constraint language Γ over D admits an embedding over the
constraint language Γ̂ over D′ ⊇ D if there exists a bijection h : Γ → Γ̂ such
that ar(h(R)) = ar(R) and h(R) ∩Dar(R) = R for every R ∈ Γ .

If Γ̂ is preserved by a Maltsev operation then we say that Γ admits aMaltsev
embedding. We do not exclude the possibility thatD′ is infinite, but in this section
we will only be concerned with finite domains, and therefore do not explicitly
state this assumption. If the bijection h is efficiently computable and there exists a
polynomial p such that h(R) can be computed inO(p(|R|)) time for eachR ∈ Γ ,
then we say that Γ admits a polynomially bounded embedding. In particular, an
embedding over a finite domain of any finite Γ is polynomially bounded.

Example 8. Recall from Section 2 thatR1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. We
claim that R1/3 has a Maltsev embedding over {0, 1, 2}. Let R̂1/3 = {(x, y, z) ∈
{0, 1, 2}3 | x + y + z = 1 (mod 3)}. Then R̂1/3 ∩ {0, 1}3 = R1/3, and from
Example 6 we recall that R̂1/3 is preserved by a Maltsev operation. Hence, R̂1/3

is indeed a Maltev embedding of R1/3. More generally, for every k, R1/k has a
Maltsev embedding into equations over a finite field of size at least k.

For a CSP(Γ) instance I = ({x1, . . . , xn}, C) we let ΨI be the rela-
tion {(g(x1), . . . , g(xn)) | g satisfies I}, and if φ is a Maltsev operation
and I = (V, {C1, . . . , Cm}) an instance of CSP(Inv({φ})) we let Seq(I) =
(S0, S1 . . . , Sm) denote the compact representations of the relations Ψ(V,∅),
Ψ(V,{C1}), . . ., Ψ(V,{C1,...,Cm}) computed by the Maltsev algorithm. We remark
that the ordering of the constraints in Seq(I) does not influence the upper bound
for the kernel.

Definition 9. Let φ be a Maltsev operation, p a polynomial and let ∆ ⊆
Inv({φ}). We say that ∆ and CSP(∆) have chain length p if |{〈Si〉φ | i ∈
{0, 1, . . . , |C|}}| ≤ p(|V |) for each instance I = (V,C) of CSP(∆), where
Seq(I) = (S0, S1, . . . , S|C|).

We now have everything in place to define our kernelization algorithm.

Theorem 10. LetΓ be a constraint language overDwhich admits a polynomially
bounded Maltsev embedding Γ̂ with chain length p. Then CSP(Γ) has a kernel
with O(p(|V |)) constraints.

Proof. Letφ ∈ Pol(Γ̂) denote theMaltsev operationwitnessing the embedding Γ̂ .
Given an instance I = (V,C) of CSP(Γ) we can obtain an instance I ′ = (V,C ′)
of CSP(Γ̂) by replacing each constraint Ri(xi) in C by R̂i(xi). We arbitrarily
order the constraints as C ′ = (C1, . . . , Cm) wherem = |C ′|. We then iteratively
compute the corresponding sequence Seq(I ′) = (S0, S1, . . . , S|C′|). This can be
done in polynomial time with respect to the size of I via the same procedure as
the Maltsev algorithm. For each i ∈ {1, . . . ,m} we then do the following.

1. Let the ith constraint be Ci = R̂i(xi1 , . . . , xir) with ar(Ri) = r.
2. For each t ∈ Si−1 determine whether pri1,...,ir(t) ∈ R̂i.
3. If yes, then remove the constraint Ci, otherwise keep it.

This can be done in polynomial time with respect to the size of the instance I ′,
since (1) |Si−1| is bounded by a polynomial in |V | and (2) the testpri1,...,ir(t) ∈ R̂i
can naively be checked in linear time with respect to |R̂i|. We claim that
the procedure outlined above will correctly detect whether the constraint Ci
is redundant or not with respect to 〈Si−1〉φ, i.e., whether 〈Si−1〉φ = 〈Si〉φ.
First, observe that if there exists t ∈ Si−1 such that pri1,...,ir(t) /∈ R̂i, then the
constraint is clearly not redundant. Hence, assume that pri1,...,ir(t) ∈ R̂i for every
t ∈ Si−1. Then Si−1 ⊆ 〈Si〉φ, hence also 〈Si−1〉φ ⊆ 〈Si〉φ. On the other hand,
〈Si〉φ ⊆ 〈Si−1〉φ holds trivially. Therefore, equality must hold. Let I ′′ = (V,C ′′)
denote the resulting instance. Since CSP(Inv({φ})) has chain length p it follows
that (1) the sequence 〈S0〉φ, 〈S1〉φ, . . . , 〈S|C′|〉φ contains at most p(|V |) distinct
elements, hence |C ′′| ≤ p(|V |), and (2) ΨI′ = ΨI′′ . Clearly, it also holds that
ΨI = (ΨI′ ∩ {0, 1}|V |) = (ΨI′′ ∩ {0, 1}|V |). Hence, we can safely transform I ′′

to an instance I∗ of CSP(Γ) by replacing each constraint R̂i(xi) with Ri(xi).
Then I∗ is an instance of CSP(Γ) with at most p(|V |) constraints, such that
ΨI = ΨI∗ . In particular, I∗ has a solution if and only if I has a solution. ut

All that remains to be proven now is that there actually exist Maltsev
embeddings with bounded chain length.

Theorem 11. CSP(Inv({φ})) has chain length O(|D||V |) for every Maltsev
operation φ over a finite D.

Proof. Let I = (V,C) be an instance ofCSP(Inv({φ})), with |V | = n and |C| =
m, and letSeq(I) = (S0, S1, . . . , Sm) be the sequence of compact representations
computed by the Maltsev algorithm. First, we claim that Sig(Si+1) ⊆ Sig(Si)
for every i < m. To see this, pick (j, a, b) ∈ Sig(Si), where j ∈ {1, . . . , |V |}
and a, b ∈ D. Then there exists t, t′ ∈ Si such that (t, t′) witnesses (j, a, b),
i.e., pr1,...,j−1(t) = pr1,...,j−1(t

′), and t[j] = a, t′[j] = b. Since 〈Si−1〉φ ⊇
〈Si〉φ ⊇ Si, it follows that t, t′ ∈ 〈Si−1〉φ, and hence also that (j, a, b) ∈
Sig(〈Si−1〉φ). But since Si−1 is a representation of 〈Si−1〉φ, Sig(Si−1) =
Sig(〈Si−1〉φ), from which we infer that (j, a, b) ∈ Sig(Si−1). Second, we claim
that the sets (j, a, b) ∈ Sig(Si) induce an equivalence relation on prj(〈Si〉φ) for
every i ≤ m, j ≤ n3. Let a ∼ b hold if and only if (j, a, b) ∈ Sig(Si). Note
that (j, a, a) ∈ Sig(Si) if and only if a ∈ prj(Si), and that (j, a, b) /∈ Sig(Si)
for any b if a /∈ prj(Si). Also note that ∼ is symmetric by its definition. It
remains to show transitivity. Let (j, a, b) ∈ Sig(Si) be witnessed by (ta, tb) and
(j, a, c) ∈ Sig(Si) be witnessed by (t′a, t

′
c). We claim that tc := φ(ta, t

′
a, t
′
c) ∈ Si

is a tuple such that (tb, tc) witnesses (i, b, c) ∈ Sig(Si). Indeed, for every
i′ < i we have φ(ta[i

′], t′a[i
′], t′c[i

′]) = φ(ta[i
′], t′a[i

′], t′a[i
′]) = ta[i

′], whereas
φ(ta[i

′], t′a[i
′], t′c[i

′]) = (a, a, c) = c. Since ta[i′] = tb[i
′] for every i′ < i, it

follows that (tb, tc) witnesses (j, b, c) ∈ Sig(Si). Hence ∼ is an equivalence
relation on prj(Si). We wrap up the proof as follows. Note that if Sig(Si+1) =
Sig(Si), then 〈Si〉φ = 〈Si+1〉φ since Si+1 is a compact representation of 〈Si〉φ.
Hence, we need to bound the number of times that Sig(Si+1) ⊂ Sig(Si) can hold.
Now, whenever Sig(Si+1) ⊂ Sig(Si), then either prj(〈Si〉φ) ⊂ prj(〈Si+1〉φ)
for some j, or the equivalence relation induced by tuples (j, a, b) ∈ Sig(Si+1)
is a refinement of that induced by tuples (j, a, b) ∈ Sig(Si) for some j. Both of
these events can only occur |D| − 1 times for every position j (unless Sm = ∅).
Hence the chain length is bounded by 2|V ||D|. ut

This bound can be slightly improved for a particular class of Maltsev
operations. Recall from Example 6 that s(x, y, z) = x · y−1 · z is the coset
generating operation of a group G = (D, ·).

Lemma 12. Let G = (D, ·) be a finite group and let s be its coset generating
operation. Then CSP(Inv({s})) has chain length O(|V | log |D|).

Proof. Let I = (V,C) be an instance of CSP(Inv({s})), where |V | = n and
|C| = m. Let Seq(I) = (S0, S1, . . . , Sm) be the corresponding sequence. First

3 This property is essentially folklore in universal algebra, and follows from the rectangularity
property of relations invariant under Maltsev operations.

observe that S0 is a compact representation ofDn and that (Dn, ·) is nothing else
than the nth direct power of G. It is well-known that R is a coset of a subgroup
of (Dn, ·) if and only if s preserves R [4]. In particular, this implies that S1 is a
compact representation of a subgroup of (Dn, ·), and more generally that each
Si is a compact representation of a subgroup of 〈Si−1〉s. Lagrange’s theorem
then reveals that |〈Si〉s| divides |〈Si−1〉s|, which implies that the sequence
〈S0〉s, 〈S1〉s, . . . , 〈Sm〉s contains at most n log2 |D|+ 1 distinct elements. ut

Note that the bound |V | log |D| is in fact a bound on the length of a chain
of subgroups of Gn; thus it can be further strengthened in certain cases. In
particular, if |D| is prime then the bound on chain length is simply |V |+1 and the
resulting kernel has at most |V | constraints. Thus, Theorem 10 and Lemma 12 (via
Example 8) give an alternate proof of the result that SAT({R1/k}) has a kernel
with at most |V | constraints. More generally, we get the following cases. First, if
Γ can be represented via linear equations over a finite field, then CSP(Γ) has a
kernel with at most |V | constraints. This closely mirrors the result of Jansen and
Pieterse [12]. Second, if Γ can be embedded into cosets of a finite group over a set
D, thenCSP(Γ) has a kernel ofO(|V | log |D|) constraints, but not necessarily |V |
constraints (for example, x = 0 (mod 2) and x = 0 (mod 3) are independent
overZ6). Third, in the general case, where Γ has an embedding into a language on
domain D with some arbitrary Maltsev polymorphism with no further structure
implied, CSP(Γ) has a kernel with O(|V ||D|) constraints. (More generally, for
|Γ | finite, we may use different Maltsev embeddings for different R ∈ Γ , and
apply the above kernel to each relation R in turn, for a kernel of O(|Γ ||D||V |)
constraints, where |D| is the largest domain used in these embeddings.) Each
case is more general than the previous: there are groups whose coset generating
operations cannot be represented by Abelian groups (for example An, the group
of all even permutations over {1, . . . , n} for n ≥ 3), and it is known that a
Maltsev operation φ over D is the coset generating operation of a group (D, ·) if
and only if φ(φ(x, y, z), z, u) = φ(x, y, u), φ(u, z, φ(z, y, x)) = φ(u, y, x) for
all x, y, z, u ∈ D [4]. Hence, any Maltsev operation which does not satisfy these
two identities cannot be viewed as the coset generating operation of a group.

4 Partial Polymorphisms and Lower Bounds

We have seen that Maltsev embeddings provide an algebraic criterion for deter-
mining that a CSP(Γ) problem admits a kernel of a fixed size. In this section
we develop a connection between the partial polymorphisms of a constraint
language and the existence of a Maltsev embedding, and leverage these results
in order to prove lower bound on kernelization for SAT(Γ). Let f : Dk → D
be a k-ary operation over D ⊇ {0, 1}. We can then associate a partial Boolean

operation f|B with f by restricting f to the Boolean arguments which also
result in a Boolean value. In other words domain(f|B) = {(x1, . . . , xk) ∈
{0, 1}k | f(x1, . . . , xk) ∈ {0, 1}}, and f|B(x1, . . . , xk) = f(x1, . . . , xk) for ev-
ery (x1, . . . , xk) ∈ domain(f|B).We then characterize the partial polymorphisms
of Boolean constraint languages admitting Maltsev embeddings as follows.

Theorem 13. Let Γ be a Boolean constraint language, φ a Maltsev operation,
and Γ̂ = {〈R〉φ | R ∈ Γ}. Then Γ̂ is a Maltsev embedding of Γ if and only if
f|B ∈ pPol(Γ) for every f ∈ Pol(Γ̂).

Proof. For the first direction, assume that Γ̂ is a Maltsev embedding of Γ ,
and assume that there exists R ∈ Γ and an n-ary f ∈ Pol(Γ̂) such that
f|B(t1, . . . , tn) /∈ R for t1, . . . , tn ∈ R. By construction, f|B(t1, . . . , tn) = t is a
Boolean tuple. But since R̂ ∩ {0, 1}ar(R) = R, this implies (1) that t /∈ R̂ and
(2) that f|B(t1, . . . , tn) = f(t1, . . . , tn) = t /∈ R̂. Hence, f does not preserve
R̂ or Γ̂ , and we conclude that f|B ∈ pPol(Γ). For the other direction, assume
that {f|B | f ∈ Pol(Γ̂)} ⊆ pPol(Γ) but that there exists R̂ ∈ Γ̂ such that
R̂ ∩ {0, 1}ar(R) ⊃ R. Let t ∈ R̂ ∩ {0, 1}ar(R) \ R. By construction of R̂ it
follows that there exists an n-ary f ∈ [{φ}] and t1, . . . , tn ∈ R such that
f(t1, . . . , tn) = t /∈ R. But then it follows that f|B(t1, . . . , tn) is defined as
well, implying that f|B(t1, . . . , tn) /∈ R. This contradicts the assumption that
f|B ∈ pPol(Γ) for every f ∈ Pol(Γ̂). ut

Hence, the existence of a Maltsev embedding can always be witnessed by the
partial polymorphisms of a constraint language. We will now describe the partial
operations that preserve every Boolean language with a Maltsev embedding.
Therefore, say that f is a universal partial Maltsev operation if f ∈ pPol(Γ) for
every Boolean Γ admitting a Maltsev embedding. Due to Theorem 13 this is
tantamount to finding a Maltsev operation φ such that every Boolean language
with a Maltsev embedding admits a Maltsev embedding over φ.

Definition 14. Let the infinite domainD∞ be recursively defined to contain 0, 1,
and ternary tuples of the form (x, y, z) where x, y, z ∈ D∞, x 6= y, y 6= z. The
Maltsev operation u over D∞ is defined as u(x, x, y) = y, u(x, y, y) = x, and
u(x, y, z) = (x, y, z) otherwise.

Wewill now prove that q|B is a universal partial Maltsev operation if q ∈ [{u}].

Theorem 15. Let q ∈ [{u}]. Then q|B is a universal partial Maltsev operation.

Proof. We provide a sketch of the most important ideas. Let q ∈ [{u}] be n-ary,
and let Γ be a Boolean constraint language admitting a Maltsev embedding

with respect to an operation φ. It is known that every operation in [{u}] can be
expressed as a term over u [9], and if we let p denote the operation defined by
replacing each occurence of u in this term by φ we obtain an operation included
in [{φ}]. We then claim that q|B can be obtained as a subfunction of p|B, which
is sufficient to prove the result since p|B ∈ pPol(Γ) via Theorem 13 and since
pPol(Γ) is known to be closed under taking subfunctions [23]. The intuition
behind this step is that q(x1, . . . , xn) for x1, . . . , xn ∈ {0, 1} may only return a
Boolean value through a sequence of Maltsev conditions, and since φ is also a
Maltsev operation, it has to abide by these conditions as well. Formally, this can
be proven straightforwardly through induction on the terms defining q and p. ut

We may thus combine Theorem 13 and Theorem 15 to obtain a com-
plete description of all universal partial Maltsev operations. Even though
these proofs are purely algebraic we will shortly see that universal Maltsev
operations have strong implications for kernelizability of SAT. For this pur-
pose we define the first partial Maltsev operation φ1 as φ1(x, y, y) = x
and φ1(x, x, y) = y for all x, y ∈ {0, 1}, and observe that domain(φ1) =
{(0, 0, 0), (1, 1, 1), (0, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1)}. Via Theorem 15 it fol-
lows that φ1 is equivalent to u|B, and is therefore a universal partial Maltsev
operation.Wewill now prove thatφ1 ∈ pPol(Γ) is in fact a necessary condition for
the existence of a linear-sized kernel for SAT(Γ), modulo a standard complexity
theoretical assumption. A pivotal part of this proof is that if φ1 /∈ pPol(Γ), then Γ
can qfpp-define a relationΦ1, which can be used as a gadget in a reduction from the
Vertex Cover problem. This relation is defined as Φ1(x1, x2, x3, x4, x5, x6) ≡
(x1∨x4)∧ (x1 6= x3)∧ (x2 6= x4)∧ (x5 = 0)∧ (x6 = 1). The following lemma
shows a strong relationship between φ1 and Φ1.

Lemma 16. If Γ is a Boolean constraint language such that 〈Γ 〉 = BR and
φ1 /∈ pPol(Γ) then Φ1 ∈ 〈Γ 〉6∃.

Proof. Before the proof we need two central observations. First, the assumption
that 〈Γ 〉 = BR is well-known to be equivalent to that Pol(Γ) consists only of
projections. Second, Φ1 consists of three tuples which can be ordered as s1, s2, s3
in such a way that for every s ∈ domain(φ1) there exists 1 ≤ i ≤ 6 such that
s = (s1[i], s2[i], s3[i]). Now, assume that 〈Γ 〉 = BR, φ1 /∈ pPol(Γ), but that
Φ1 /∈ 〈Γ 〉6∃. Then there exists an n-ary f ∈ pPol(Γ) such that f /∈ pPol({Φ1}),
and t1, . . . , tn ∈ Φ1 such that f(t1, . . . , tn) /∈ Φ1. Now consider the value
k = |{t1, . . . , tn}|, i.e., the number of distinct tuples in the sequence. If n > k
then it is known that there exists a closely related partial operation g of arity
at most k such that g /∈ pPol({Φ1}) [22], and we may therefore assume that
n = k ≤ |Φ1| = 3. Assume first that 1 ≤ n ≤ 2. Then, for every t ∈ {0, 1}n

there exists i such that (t1[i], . . . , tn[i]) = t. But then f must be a total operation
which is not a projection, which is impossible since we assumed that 〈Γ 〉 = BR.
Hence, it must be the case that n = 3, and that {t1, t2, t3} = Φ1. Assume without
loss of generality that t1 = s1, t2 = s2, t3 = s3, and note that this implies
that domain(f) = domain(φ1) (otherwise f can simply be described as a
permutation of φ1). First, we will show that f(0, 0, 0) = 0 and that f(1, 1, 1) = 1.
Indeed, if f(0, 0, 0) = 1 or f(1, 1, 1) = 0, it is possible to define a unary
total f ′ as f ′(x) = f(x, x, x) which is not a projection since either f ′(0) = 1
or f ′(1) = 0. Second, assume there exists (x, y, z) ∈ domain(f), distinct
from (0, 0, 0) and (1, 1, 1), such that f(x, y, z) 6= φ1(x, y, z). Without loss
of generality assume that (x, y, z) = (a, a, b) for a, b ∈ {0, 1}, and note that
f(a, a, b) = a since φ1(a, a, b) = b. If also f(b, b, a) = a it is possible to
define a binary total operation f ′(x, y) = f(x, x, y) which is not a projection,
therefore we have that f(b, b, a) = b. We next consider the values taken by f
on the tuples (b, a, a) and (a, b, b). If f(b, a, a) = f(a, b, b) then we can again
define a total, binary operation which is not a projection, therefore it must hold
that f(b, a, a) 6= f(a, b, b). However, regardless of whether f(b, a, a) = b or
f(b, a, a) = a, f must be a partial projection. This contradicts the assumption
that f /∈ pPol({Φ1}), and we conclude that Φ1 ∈ 〈Γ 〉6∃. ut

We will shortly use Lemma 16 to give a reduction from the Vertex Cover
problem, since it is known that Vertex Cover does not admit a kernel with
O(n2−ε) edges for any ε > 0, unless NP ⊆ co-NP/poly [5]. For each n and k let
Hn,k denote the relation {(b1, . . . , bn) ∈ {0, 1}n | b1 + . . .+ bn = k}.

Lemma 17. Let Γ be a constraint language. If 〈Γ 〉 = BR then Γ can pp-define
Hn,k with O(n+ k) constraints and O(n+ k) existentially quantified variables.

Proof. We first observe that one can recursively design a circuit consisting of
fan-in 2 gates which computes the sum of n input gates as follows. At the lowest
level, we split the input gates into pairs and compute the sum for each pair,
producing an output of 2 bits for each pair. At every level i above that, we
join each pair of outputs from the previous level, of i bits each, into a single
output of i + 1 bits which computes their sum. This can be done with O(i)
gates by chaining full adders. Finally, at level dlog2 ne, we will have computed
the sum. The total number of gates will be

∑dlog2 ne
i=1 (n

2i
) ·O(i), which sums to

O(n). Let z1, . . . , zlog2 n denote the output gates of this circuit. By a standard
Tseytin transformation we then obtain an equisatisfiable 3-SAT instance with
O(n) clauses and O(n) variables. For each 1 ≤ i ≤ log2 n, add the unary
constraint (zi = ki), where ki denotes the ith bit of k written in binary. Each such
constraint can be pp-defined with O(1) existentially quantified variables over Γ .

We then pp-define each 3-SAT clause in order to obtain a pp-definition of R over
Γ , which in total only requires O(n) existentially quantified variables. This is
possible since if 〈Γ 〉 = BR then Γ can pp-define every Boolean relation. ut

Theorem 18. Let Γ be a finite Boolean constraint language such that 〈Γ 〉 = BR
and φ1 /∈ pPol(Γ). Then SAT(Γ) does not have a kernel of size O(n2−ε) for any
ε > 0, unless NP ⊆ co-NP/poly.

Proof. We will give a reduction from Vertex Cover parameterized by the
number of vertices to SAT(Γ ∪{Φ1}), which via Theorem 4 and Lemma 16 has a
reduction to SAT(Γ) which does not increase the number of variables. Let (V,E)
be the input graph and let k denote the maximum size of the cover. First, introduce
two variables xv and x′v for each v ∈ V , and one variable yi for each 1 ≤ i ≤ k.
Furthermore, introduce two variables x and y. For each edge {u, v} ∈ E
introduce a constraint Φ1(xu, x

′
v, x
′
u, xv, x, y), and note that this enforces the

constraint (xu ∨ xv). Let ∃z1, . . . , zm.φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm)
denote the pp-definition of H|V |+k,k over Γ where m ∈ O(k + |V |), and
consisting of at most O(k + |V |) constraints. Such a pp-definition must exist
according to Lemma 17. Drop the existential quantifiers and add the constraints
of φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm). Let (V ′, C) denote this instance of
SAT(Γ ∪ {Φ1}). Assume first that (V,E) has a vertex cover of size k′ ≤ k. We
first assign x the value 0 and y the value 1. For each v in this cover assign xv the
value 1 and x′v the value 0. For any vertex not included in the cover we use the
opposite values. Then set y1, . . . , yk−k′ to 1 and yk−k′+1, . . . , yk to 0. For the
other direction, assume that (V ′, C) is satisfiable. For any xv variable assigned 1
we then let v be part of the vertex cover. Since x1+ . . .+x|V |+y1+ . . .+yk = k,
the resulting vertex cover is smaller than or equal to k. ut

For example, letRk = {(b1, . . . , bk) ∈ {0, 1}k | b1+. . .+bk ∈ {1, 2} (mod
6)} and let P = {Rk | k ≥ 1}. The kernelization status of SAT(P) was left open
in Jansen and Pieterse [12], and while a precise upper bound seems difficult to
obtain, we can easily prove that this problem does not admit a kernel of linear size,
unless NP ⊆ co-NP/poly. Simply observe that (0, 0, 1), (0, 1, 1), (0, 1, 0) ∈ R3

butφ1((0, 0, 1), (0, 1, 1), (0, 1, 0)) = (0, 0, 0) /∈ R3. The result then follows from
Theorem 18. At this stage, it might be tempting to conjecture that φ1 ∈ pPol(Γ)
is also a sufficient condition for a Maltsev embedding. We can immediately rule
this out by finding a relation R and a universal partial Maltsev operation φ such
that R is invariant under φ1 but not under φ. For example, let q be the 9-ary
function defined by u(u(x1, x2, x3), u(x4, x5, x6), u(x7, x8, x9)). Then we by
computer experiments have verified that there exists a relation R of cardinality 9,
invariant under φ1 but not under q|B [21].

5 Concluding Remarks and Future Research

We have studied kernelization properties of SAT and CSP with tools from
universal algebra. We focused on problems with linear kernels, and showed that a
CSP problem has a kernel withO(n) constraints if it can be embedded into a CSP
problem preserved by a Maltsev operation; thus extending previous results in this
direction. On the other hand, we showed that a SAT problem not preserved by a
partial Maltsev operation does not admit such a kernel, unless NP ⊆ co-NP/poly.
This shows that the algebraic approach is viable for studying such fine-grained
kernelizability questions. Our work opens several directions for future research.
A dichotomy theorem for linear kernels? Our results suggest a possible di-
chotomy theorem for the existence of linear kernels for SAT problems. However,
two gaps remain towards such a result. On the one hand, we proved that if Γ is
preserved by the universal partial Maltsev operations then it admits a Maltsev em-
bedding over an infinite domain. However, the kernelization algorithm only works
for finite domains. Does the existence of an infinite-domain Maltsev embedding
for a finite language imply the existence of a Maltsev embedding over a finite
domain? Alternatively, can the algorithms be adjusted to work for languages with
infinite domains, since D∞ is finitely generated in a simple way? On the other
hand, we only have necessity results for φ1 out of an infinite set of conditions for
the positive results. Is it true that every universal partial Maltsev operation is a
partial polymorphism of every language with a linear kernel, or do there exist
SAT problems with linear kernels that do not admit Maltsev embeddings?
The Algebraic CSP Dichotomy Conjecture. Several solutions to the CSP
dichotomy conjecture have been announced [1,26,27]. If correct, these algorithms
solve CSP(Γ) in polynomial time whenever Γ is preserved by a Taylor term. One
can then define the concept of a Taylor embedding, which raises the question
of whether the proposed algorithms can be modified to construct polynomial
kernels. More generally, when can an operation f such that CSP(Inv({f})) is
tractable be used to construct improved kernels? On the one hand, one can prove
that k-edge operations, which are generalized Maltsev operations, can be used to
construct kernels with O(nk−1) constraints via a variant of the few subpowers
algorithm. On the other hand, it is known that relations invariant under semilattice
operations can be described as generalized Horn formulas, but it is not evident
how this property could be useful in a kernelization procedure.

Acknowledgements

We thank the anonymous reviewers for several helpful suggestions. The first
author is supported by the DFG-funded project “Homogene Strukturen, Bedin-
gungserfüllungsprobleme, und topologische Klone” (Project number 622397).

References

1. A. Bulatov. A dichotomy theorem for nonuniform CSPs. CoRR, abs/1703.03021, 2017.
2. A. Bulatov andV.Dalmau. A simple algorithm forMal’tsev constraints. SICOMP, 36(1):16–27,

2006.
3. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite

algebras. SICOMP, 34(3):720–742, March 2005.
4. V. Dalmau and P. Jeavons. Learnability of quantified formulas. TCS, 306(1–3):485 – 511,

2003.
5. H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the

polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.
6. M. Dyer and D. Richerby. An effective dichotomy for the counting constraint satisfaction

problem. SICOMP, 42(3):1245–1274, 2013.
7. T. Feder and M. Vardi. The computational structure of monotone monadic SNP and constraint

satisfaction: A study through datalog and group theory. SICOMP, 28(1):57–104, 1998.
8. D. Geiger. Closed systems of functions and predicates. Pac. J. Math., 27(1):95–100, 1968.
9. M. Goldstern and M. Pinsker. A survey of clones on infinite sets. Algebra universalis,

59(3):365–403, 2008.
10. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?

Journal of Computer and System Sciences, 63:512–530, 2001.
11. B. M. P. Jansen and A. Pieterse. Sparsification upper and lower bounds for graphs problems

and not-all-equal SAT. In Proceedings of IPEC 2015, Patras, Greece, 2015.
12. B. M. P. Jansen and A. Pieterse. Optimal sparsification for some binary CSPs using low-degree

polynomials. In Proceedings of MFCS 2016, volume 58, pages 71:1–71:14, 2016.
13. P. Jeavons. On the algebraic structure of combinatorial problems. TCS, 200:185–204, 1998.
14. P. Jeavons, D. Cohen, and M. Gyssens. A unifying framework for tractable constraints. In

Proceedings of CP 1995, pages 276–291, 1995.
15. P. Jeavons, D. Cohen, andM.Gyssens. Closure properties of constraints. JACM, 44(4):527–548,

July 1997.
16. P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the time

complexity of SAT problems. JCSS, 84:52 – 78, 2017.
17. S. Kratsch, D. Marx, and M. Wahlström. Parameterized complexity and kernelizability of

max ones and exact ones problems. TOCT, 8(1):1, 2016.
18. S. Kratsch and M. Wahlström. Preprocessing of min ones problems: A dichotomy. In ICALP

(1), volume 6198 of Lecture Notes in Computer Science, pages 653–665. Springer, 2010.
19. A. A. Krokhin and D. Marx. On the hardness of losing weight. ACM Trans. Algorithms,

8(2):19, 2012.
20. V. Lagerkvist andM.Wahlström. The power of primitive positive definitions with polynomially

many variables. JLC, 2016.
21. V. Lagerkvist and M. Wahlström. Kernelization of Constraint Satisfaction Problems: A Study

through Universal Algebra. ArXiv e-prints, June 2017.
22. V. Lagerkvist, M. Wahlström, and B. Zanuttini. Bounded bases of strong partial clones. In

Proceedings of ISMVL 2015, 2015.
23. D. Lau. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone

Theory (Springer Monographs in Mathematics). Springer-Verlag New York, 2006.
24. D. Marx. Parameterized complexity of constraint satisfaction problems. Comput. Complexity,

14(2):153–183, 2005.
25. G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and algorithms.

Math. Programming, 8(1):232–248, 1975.

26. A. Rafiey, J. Kinne, and T. Feder. Dichotomy for digraph homomorphism problems. CoRR,
abs/1701.02409, 2017.

27. D. Zhuk. The proof of CSP dichotomy conjecture. CoRR, abs/1704.01914, 2017.

	Kernelization of Constraint Satisfaction Problems: A Study through Universal Algebra

