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Abstract	28	

Economic	decisions	are	guided	by	highly	subjective	reward	valuations	(SVs).	Often	these	SVs	29	

are	overridden	when	individuals	conform	to	social	norms.	Yet,	the	neural	mechanisms	that	30	

underpin	the	distinct	processing	of	such	normative	reward	valuations	(NV)	are	poorly	31	

understood.	The	dorsomedial	and	ventromedial	portions	of	the	prefrontal	cortex	32	

(dmPFC/vmPFC)	are	putatively	key	regions	for	processing	social	and	economic	information	33	

respectively.	However,	the	contribution	of	these	regions	to	economic	decisions	guided	by	34	

social	norms	is	unclear.	Using	fMRI	and	computational	modelling	we	examine	the	neural	35	

mechanisms	underlying	the	processing	of	SVs	and	NVs.	Subjects	(n	=	15)	indicated	either	36	

their	own	economic	preferences	or	made	similar	choices	based	on	a	social	norm	-	learnt	37	

during	a	training	session.	We	found	that	that	the	vmPFC	and	dmPFC	make	dissociable	38	

contributions	to	the	processing	of	SV	and	NV.	Regions	of	the	dmPFC	processed	only	the	39	

value	of	rewards	when	making	normative	choices.	In	contrast,	we	identify	a	novel	40	

mechanism	in	the	vmPFC	for	the	coding	of	value.	This	region	signalled	both	subjective	and	41	

normative	valuations,	but	activity	was	scaled	positively	for	SV	and	negatively	for	NV.	These	42	

results	highlight	some	of	the	key	mechanisms	that	underpin	conformity	and	social	influence	43	

in	economic	decision-making.	 	44	
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Introduction	45	

Behaviour	 is	 frequently	 driven	 by	 evaluations	 of	 the	 value	 of	 different	 courses	 of	 action	46	

(Kahneman	and	Tversky	1984;	Rushworth	and	Behrens	2008).	In	humans,	these	evaluations	47	

form	 part	 of	 our	 everyday	 lives	 when	 we	 make	 economic	 decisions	 and	 place	 value	 on	48	

behaviours	 that	 result	 in	 rewarding	 outcomes.	 Such	 decisions	 can	 be	 highly	 subjective	49	

(Green	et	al.	1994;	Mazur	2001).	For	example,	whilst	some	people	are	impulsive	and	favour	50	

small	 immediate	 rewards	 to	 larger	delayed	benefits,	others	are	patient	and	prefer	 to	wait	51	

much	longer	in	order	to	obtain	only	slightly	larger	rewards.		52	

The	 neural	 basis	 of	 such	 subjective	 impulsivity	 in	 economic	 decision-making	 is	 becoming	53	

increasingly	 understood	 (McClure	 et	 al.	 2004;	 Kable	 and	 Glimcher	 2007,	 2010;	 Kim	 et	 al.	54	

2008;	Peters	and	Buchel	2009;	Figner	et	al.	2010;	Louie	and	Glimcher	2010).	However,	such	55	

economic	 decisions	 are	 often	 made	 in	 the	 context	 of	 groups	 of	 individuals	 interacting	56	

together.	Within	these	groups	behaviour	is	often	dictated	by	social	norms	which	determine	57	

what	behaviours	are	permissible	or	preferred	(Asch	1956;	Kahneman	and	Miller	1986;	Boyd	58	

et	 al.	 2003;	 Fehr	 and	 Fischbacher	 2004).	 Such	 normative	 preferences	 often	 override	59	

subjective	evaluations,	with	people	 flexibly	 switching	between	making	economic	decisions	60	

based	 on	 subjective	 or	 normative	 valuations.	 However,	 there	 is	 currently	 a	 very	 limited	61	

understanding	of	how	reward	valuations	based	on	normative	preferences	are	recalled	and	62	

influence	activity	in	the	brain	(Izuma	2013;	Ruff	and	Fehr	2014).	How	does	the	brain	process	63	

rewards	that	are	valued	subjectively,	or	through	recalled	social	norms?	64	

The	medial	prefrontal	cortex	(mPFC)	is	understood	to	contribute	to	the	processing	of	social	65	

norm	 information,	 but	 also	 to	 impulsive	 economic	 decision-making	 (Izuma	 2013).	 The	66	

prevailing	 view	 of	 functional	 organisation	 in	 the	 mPFC	 suggests	 that	 these	 functions	 are	67	

localised	to	distinct	zones	of	the	mPFC	(Rudebeck	et	al.	2008).	It	is	often	claimed	that	dorsal	68	

sub-regions	 (DmPFC)	 are	 specialised	 for	 processing	 social	 information,	 whereas	 ventral	69	

portions	 (VmPFC)	 are	 specialised	 for	 processing	 information	 about	 the	 value	 of	 rewards	70	

(Amodio	and	Frith	2006;	Rushworth	and	Behrens	2008).		71	

Anatomical	 evidence	 supports	 the	notion	of	 a	 functional	 dissociation	between	 the	DmPFC	72	

(comprising	areas	BA	6,8	and	9)	and	VmPFC	(area	11	and	32).	These	regions	contain	distinct	73	

cytoarchitectonic	zones	and	each	have	a	distinct	connectional	fingerprint	(Barbas	et	al.	1999;	74	

Cavada	et	al.	2000;	Petrides	and	Pandya	2006,	2007;	Sallet	et	al.	2013;	Neubert	et	al.	2015).	75	

Notably,	 portions	 of	 the	 VmPFC	 are	 strongly	 connected	 to	 regions	 implicated	 economic	76	

decision-making	 but	 have	 weaker	 connections	 to	 areas	 engaged	 when	 processing	 social	77	
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information	(Barbas	et	al.	1999;	Cavada	et	al.	2000;	Petrides	and	Pandya	2006,	2007;	Kable	78	

and	Glimcher	2007;	Sallet	et	al.	2013;	O’Doherty	2014;	Neubert	et	al.	2015).	In	contrast,	sub-79	

regions	 of	 the	 DmPFC	 (Ongur	 et	 al.	 2003;	 Petrides	 and	 Pandya	 2006)	 -	 are	 strongly	80	

connected	 to	areas	of	 the	brain	 that	are	more	 typically	engaged	during	 social	 information	81	

processing	 (Apps	 and	 Sallet,	 2017;	 Barbas	 et	 al.	 1999;	 Cavada	 et	 al.	 2000;	 Petrides	 and	82	

Pandya	 2006,	 2007;	 Behrens	 et	 al.	 2009;	 Kilner	 2011;	Apps	 and	 Tsakiris	 2013;	 Sallet	 et	 al.	83	

2013;	Neubert	et	al.	2015).	Functional	evidence	also	supports	claims	of	a	dissociation	(Frith	84	

and	Frith	2006;	Izuma	2013;	Ruff	and	Fehr	2014).	Portions	of	areas	6,	8	and	9	are	engaged	85	

when	processing	others	intentions	or	mental	states	(Ramnani	and	Miall	2004;	Behrens	et	al.	86	

2008;	Hampton	et	al.	2008;	Gabay	et	al.	2014),	when	learning	what	attitudes	are	normative	87	

(Spitzer	et	al.	2007;	Klucharev	et	al.	2009),	and	when	social	norms	are	violated	(Berthoz	et	al.	88	

2002;	 Spitzer	 et	 al.	 2007;	 Buckholtz	 et	 al.	 2008;	 Prehn	 et	 al.	 2008;	 Buckholtz	 and	Marois	89	

2012).	In	contrast,	the	ventral	portions	of	the	mPFC	(VmPFC),	including	BA	32	and	11	(Ongur	90	

et	al.	2003;	Petrides	and	Pandya	2006),	have	been	shown	to	signal	the	value	of	both	primary	91	

and	 secondary	 reinforcers	 and	 particularly	 in	 processing	 the	 subjective	 value	 of	 economic	92	

rewards	(Kable	and	Glimcher	2007;	Luhmann	et	al.	2008;	Pine	et	al.	2009;	Smith	et	al.	2010;	93	

O’Doherty	2011;	Peters	2011;	Hunt	et	al.	2012;	Strait	et	al.	2014).	Moreover,	damage	to	this	94	

region	in	humans	has	been	linked	to	impulsive	economic	decisions	(Koenigs	et	al.	2010;	Mar	95	

et	al.	2011).		96	

More	recent	evidence	has	cast	doubt	on	whether	there	is	such	a	strong	dissociation.	Studies	97	

examining	 the	 neural	 mechanisms	 that	 underlie	 the	 learning	 of	 another’s	 subjective	98	

valuation	of	a	reward	(Garvert	et	al.	2015),	or	choosing	on	behalf	of	another	based	on	their	99	

preferences	 (Nicolle	 et	 al.	 2012)	 have	 shown	 the	 involvement	 of	 both	 the	 VmPFC	 and	100	

DmPFC.	 They	 found	 that	 both	 the	 DmPFC	 and	 VmPFC	 can	 be	 engaged	 by	 the	 value	 of	 a	101	

reward	according	to	either	ourselves	or	another	person.	However,	these	results	suggest	that	102	

DmPFC	is	engaged	when	this	valuation	is	not	guiding	the	execution	of	one’s	current	actions	103	

(it	 is	engaged	 in	 ‘offline’	valuations)	and	 the	VmPFC	 is	engaged	by	 the	value	guiding	one’s	104	

current	 choices	 (‘online’	 valuation’).	 This	would	 therefore	point	 to	neither	 the	VmPFC	nor	105	

DmPFC	 being	 engaged	 by	 social	 or	 non-social	 information	 specifically.	 However,	 these	106	

decisions	were	made	 either	 to	 reward	 the	 subjects	 themselves,	 or	 one	 other	 person.	 The	107	

mechanisms	that	underlie	how	the	brain	processes	the	value	of	a	reward	when	required	to	108	

conform	to	a	norm	are	unclear.	Moreover,	 it	 is	unclear	how	different	regions	of	 the	mPFC	109	

contribute	to	the	processing	of	both	subjective	and	normative	valuations.	110	
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In	 this	 study	 we	 dissect	 out	 the	 contribution	 of	 different	 regions	 of	 the	mPFC	 to	making	111	

decisions	based	on	subjective	(SV)	and	normative	valuations	(NV).	We	designed	a	paradigm	112	

based	on	previous	delay-discounting	economic	decision-making	 tasks	 that	have	been	used	113	

to	 examine	 subjective	 impulsive	 behaviours	 (Mazur	 2001;	 Kable	 and	 Glimcher	 2007).	114	

Subjects	 made	 inter-temporal	 economic	 decisions	 choosing	 between	 a	 small	 immediate	115	

reward,	and	a	 larger,	delayed	reward.	On	half	of	the	trials	these	choices	were	made	based	116	

on	 their	 subjective	 preferences,	 and	 on	 half	 of	 the	 trials	 they	 were	 made	 based	 on	 a	117	

normative	 valuation	 that	 was	 learnt	 during	 a	 training	 session.	 Using	 this	 design	 in	118	

conjunction	 with	 functional	 magnetic	 resonance	 imaging	 (fMRI)	 and	 computational	119	

modelling,	we	were	able	to	examine	the	contribution	of	different	regions	of	the	mPFC	to	the	120	

processing	of	subjective	or	normative	reward	valuations.		 	121	
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Methods	122	

Subjects	123	

Sixteen	healthy	right-handed	participants	were	screened	for	neurological,	psychiatric	and	124	

psychological	disorders	(ages	18-32;	13	female).	This	study	was	approved	by	the	Royal	125	

Holloway,	University	of	London	Psychology	Department	Ethics	Committee	and	conformed	to	126	

the	regulations	set	out	in	the	CUBIC	MRI	Rules	of	Operation.	We	excluded	participants	who	127	

made	translations	or	rotations	of	>3mm	(or	>3°)	volume	to	volume,	or	subjects	who’s	total	128	

movement	was	greater	than	3mm.	One	(male)	subject	was	excluded	for	failing	to	respond	129	

on	30%	of	the	trials	and	excessive	head	motion.	Subjects	were	paid	for	their	participation	130	

(see	‘payment’	in	supp.	Methods).	Subjects	were	informed	that	a	previous	behavioural	131	

experiment	had	taken	place	with	100	participants.	They	were	told	that	these	participants	132	

received	payment	in	the	same	manner	that	they	had.	However,	in	fact	no	previous	study	133	

was	conducted.		134	

Task	135	

The	aim	of	this	experiment	was	to	examine	the	processing	of	rewards,	the	value	of	which	136	

was	either	discounted	by	temporal	delays	subjectively,	or	in	a	manner	that	conformed	to	a	137	

social	norm.	Subjects	were	engaged	in	the	experiment	over	two	consecutive	days.	On	the	138	

first	day,	subjects	performed	two	tasks.	First	they	indicated	their	own	preferences	on	a	139	

temporal	discounting	task	and	second	they	learnt	by	trial	and	error	what	they	believed	was	140	

normative	preferences	on	a	similar	delay-discounting	task.	Subjects	were	told	that	this	141	

preference	reflected	what	‘at	least	69%	of	people	chose	to	do	in	the	prior	pilot	experiment’.	142	

On	the	second	day,	subjects	performed	similar	trials	of	a	temporal	discounting	task	but	on	143	

half	of	the	trials	they	were	required	to	indicate	their	own	preferences	(Subjective	trials)	and	144	

on	the	other	half	they	were	required	to	conform	to	the	“normative”	preferences	that	they	145	

had	learnt	during	the	training	session	and	not	their	own	preferences.	Although	it	should	be	146	

noted	that	subjects	were	free	to	choose	on	both	types	of	trial.		147	

For	the	temporal	discounting	task,	subjects	were	required	to	choose	between	an	immediate	148	

reward	(£3)	and	a	delayed	reward	that	was	shown	on	the	screen	(sup.	Fig.1	and	Fig.1).	The	149	

magnitude	of	the	delayed	options	were	£3.10,	£3.75,	£5,	£8,	£12	and	£20	and	were	available	150	

at	delays	of	1	day,	15	days,	30	days,	60	days,	100	days	and	180	days.	Thus	there	were	36	151	

different	combinations	of	delay	and	magnitude	that	were	used	as	the	delayed	options.	The	152	

same	options	were	used	in	both	the	training	tasks	and	the	task	inside	the	scanner	in	both	153	

conditions,	although	trials	were	presented	in	different	pseudo-randomised	orders.		154	
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	155	

Payment	156	

Subjects	were	told	that	their	payment	would	be	based	on	their	choice	on	one	trial	each	from	157	

the	normative	or	subjective	trials	during	the	training	or	scanning	session.	This	payment	158	

would	be	determined	by	them	selecting	numbers	at	random	“out	of	a	hat”.	The	number	159	

would	correspond	to	one	of	the	trials	during	the	training	and	scanning	session	and	their	160	

payment	would	be	based	on	whichever	choice	they	indicated	on	that	trial.	This	approach	has	161	

previously	been	used	to	ensure	that	subjects	are	incentivised	to	accurately	indicate	their	162	

preferences	on	all	trials.	Subjects	were	informed	that	they	would	be	paid	by	cheque	for	their	163	

participation.	If	on	the	selected	trial	they	chose	the	delayed	option,	they	would	be	paid	that	164	

higher	reward	value,	but	the	cheque	would	be	dated	such	that	it	could	not	be	cashed	until	165	

the	delay	had	passed.	If	they	chose	the	immediate	option	then	the	cheque	would	be	dated	166	

the	same	day.	All	of	this	information	was	provided	to	the	subjects	before	the	experiment,	167	

thus	subjects	were	aware	that	their	decisions	during	the	experiment	were	real	economic	168	

decisions.	Importantly,	subjects	were	not	rewarded	during	the	training	or	scanning	session	169	

for	making	responses	that	were	congruent	or	incongruent	with	the	norm.	This	was	170	

important,	as	we	did	not	want	subjects	to	associate	making	decisions	on	the	normative	trials	171	

with	any	additional	rewards	–	other	than	that	being	offered	in	association	with	a	delay.	Such	172	

additional	associations	could	have	distorted	behaviour	and	the	processing	of	delayed	173	

rewards	in	the	main	experiment,	as	they	would	only	be	present	in	the	normative	condition	174	

and	not	in	the	subjective	condition.	Subjects	were	told	that	one	trial	from	the	normative	175	

condition	would	be	selected	at	random	and	would	affect	their	payment,	in	exactly	the	same	176	

manner	as	on	the	subjective	trials.	The	subjects	were	not,	therefore,	incentivized	to	conform	177	

but	were	simply	instructed	to	do	so.		This	ensured	that	subjects	believed	that	the	economic	178	

choices	made	during	the	main	tasks	were	the	only	choices	that	influenced	their	payment	for	179	

the	experiment.		180	

	181	

Apparatus	182	

Subjects	lay	supine	in	an	MRI	scanner	(3T	Siemens	Trio,	CUBIC,	Royal	Holloway,	University	of	183	

London)	with	the	fingers	of	the	right	hand	positioned	on	an	MRI-compatible	response	box.	184	

Stimuli	were	projected	onto	a	screen	behind	the	subject	and	viewed	in	a	mirror	positioned	185	

above	the	subjects	face.	Presentation	software	(Neurobehavioral	Systems,	Inc.,	USA)	was	186	
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used	for	experimental	control	(stimulus	presentation	and	response	collection).	A	custom-187	

built	parallel	port	interface	connected	to	the	Presentation	PC	received	transistor-transistor	188	

logic	(TTL)	pulse	inputs	from	the	response	keypad.	It	also	received	TTL	pulses	from	the	MRI	189	

scanner	at	the	onset	of	each	volume	acquisition,	allowing	events	in	the	experiment	to	190	

become	precisely	synchronized	with	the	onset	of	each	scan.	The	timings	of	all	events	in	the	191	

experiment	were	sampled	accurately,	continuously	and	simultaneously	(independently	of	192	

Presentation)	at	a	frequency	of	1	kHz	using	an	A/D	1401	unit	(Cambridge	Electronic	Design,	193	

UK).	Spike2	software	was	used	to	create	a	temporal	record	of	these	events.	Event	timings	194	

were	prepared	for	subsequent	general	linear	model	(GLM)	analysis	of	fMRI	data	(see	event	195	

definition	and	modelling	in	the	main	text).	196	

	197	

Trial	Structure	198	

During	the	scanning	session,	each	trial	began	with	a	trial-type	cue	(either	the	word	“YOU”	or	199	

“GROUP”),	that	indicated	whether	subjects	were	required	to	make	subjective	preferences	200	

(“YOU”)	or	indicate	normative	preferences	(“GROUP”)	on	the	trial.	Following	the	trial-type	201	

cue,	after	a	variable	delay,	an	offer	cue	was	presented	that	indicated	the	magnitude	and	202	

delay	of	the	delayed	option.	After	a	further	variable	delay,	a	trigger	cue	was	presented	203	

where	subjects	were	required	to	indicate	their	choice	(for	full	timings	see	Fig.1).	A	“now”	204	

stimulus	was	used	to	signify	the	£3	immediate	option	and	a	“wait”	stimulus	was	used	for	the	205	

delayed	option.	Subjects	were	required	to	indicate	their	choice	at	the	time	of	the	trigger	206	

cue,	by	pressing	one	of	two	buttons	on	a	keypad.	The	trigger	cue	was	presented	for	1000ms,	207	

any	responses	before	or	after	this	time	period	resulted	in	the	trials	being	classified	as	208	

“missed”	(All	subjects	included	missed	less	than	3%	of	trials).	Subjects	were	instructed	to	209	

press	the	button	that	corresponded	to	“now”	if	the	preference	was	the	£3	immediate	option	210	

or	“wait”	for	the	larger	delayed	option.	In	order	to	prevent	subjects	from	preparing	a	211	

specific	motor	response	at	the	time	of	the	offer	cue,	the	position	of	the	“now”	and	“wait”	212	

stimuli	were	pseudorandomly	organised,	such	that	subjects	could	not	predict	which	button	213	

would	be	“now”	and	which	would	be	“wait”	at	the	time	of	the	offer	cue.	All	stimuli	were	also	214	

colour-coded	to	ensure	that	is	was	clear	whether	a	subjective	or	normative	preference	was	215	

required	on	each	trial.	Yellow	cues	indicated	that	a	normative	choice	should	be	made	and	216	

white	cues	indicated	that	a	subjective	choice	should	be	made.	By	introducing	variable	jitters	217	

between	offer	cues	and	responses	we	decreased	the	possibility	of	finding	reaction	time	218	

related	behavioural	or	neuroimaging	findings,	due	to	extended	and	variable	fore-periods	219	
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before	subjects	indicated	choices.	As	expected,	therefore,	we	found	no	behavioural	effects	220	

on	reaction	times.	221	

	222	

Procedure	223	

Training	224	

Subjects	were	trained	in	two	phases	one	day	prior	to	scanning.	In	the	first	phase	the	subject	225	

was	presented	with	a	series	of	visual	stimuli	on	a	monitor	and	performed	a	series	of	delay-226	

discounting	trials	where	they	were	required	to	indicate	their	own	preferences	between	the	227	

delayed	and	an	immediate	options.	Each	trial	consisted	of	an	offer	cue	(an	amount	of	money	228	

and	a	delay	period)	and	a	trigger	cue	(two	lines	corresponding	to	two	buttons	on	the	229	

keypad,	with	the	words	“wait”	above	one	line	and	“now“	above	the	other	line).	During	this	230	

phase	of	training	subjects	performed	108	trials.	This	stage	of	the	training	enabled	subjects	to	231	

familiarise	themselves	with	performing	delay-discounting	trials.	This	task	allowed	us	to	232	

examine	the	stability	of	subjective	preferences	pre	and	post	the	learning	of	normative	233	

preferences.		234	

	235	

In	the	second	phase	of	training,	subjects	performed	a	task	where	they	learned	the	normative	236	

preferences	for	each	delayed	option.	The	subjects	were	informed	that	a	previous	237	

behavioural	experiment	had	taken	place	with	100	participants	and	that	there	was	always	at	238	

least	69%	agreement	on	whether	people	should	wait	for	the	delayed	reward	or	take	the	239	

immediate	one.	Their	task	was	to	learn	what	this	majority/group	of	people	would	choose	to	240	

do	through	trial	and	error.	Each	trial	consisted	of	a	delayed	offer	cue	and	a	trigger	cue	but	241	

also	an	additional	feedback	cue.	The	feedback	cue	indicated	the	social	norm	preference	for	242	

the	delayed	option	on	each	trial.	The	cue	was	either	the	word	“NOW”	or	“WAIT”,	which	243	

indicated	whether	the	normative	preference	was	for	the	immediate	or	delayed	option	244	

respectively.	Subjects	were	instructed	to	indicate	the	normative	preferences	by	learning	245	

from	the	feedback.	The	normative	preferences	learnt	during	this	session	were	based	around	246	

the	behaviour	of	subjects	during	a	pilot	experiment	(see	“computational	modelling”	below	247	

for	more	details).	During	this	session,	subjects	performed	108	trials,	with	the	same	options	248	

presented	as	during	the	first	phase	of	the	training,	in	a	pseudo-random	order.	During	249	

training	every	subject	correctly	indicated	the	norm	response	at	greater	than	95%	accuracy	250	
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after	the	first	10	trials	during	this	session.	Moreover,	in	the	subsequent	scanning	session,	251	

subjects	performed	a	further	20	trials	of	this	task	with	feedback,	ensuring	that	subjects	252	

learnt	and	recalled	the	norm	during	the	main	experiment	(See	below).	253	

	254	

Scanning	Session	255	

On	the	day	following	the	training	session,	subjects	performed	a	similar	delay-discounting	256	

task	inside	the	MRI	scanner.	There	were	216	pseudorandomly	organised	trials,	108	where	257	

they	indicated	their	own	preference	(subjective	trials)	and	108	where	they	indicated	the	258	

preferences	according	to	the	majority	behaviour	they	had	learnt	during	the	training	259	

(normative	trials).	The	large	number	of	trials,	and	the	parametric	analysis,	were	approaches	260	

employed	that	can	increase	power	to	detect	within-subject	effects	(although	no	formal	261	

power	analysis	was	conducted,	due	to	difficulties	in	interpretation;	Mumford	2012).	In	this	262	

session,	there	was	no	feedback	cue	on	the	normative	trials.	Subjects	were	therefore	263	

required	to	recall	the	normative	preferences	they	had	learned	during	training.	In	this	264	

session,	all	stimuli	were	colour-coded,	with	a	different	coloured	font	used	for	each	265	

condition,	ensuring	that	subjects	were	able	to	distinguish	between	the	subjective	and	266	

normative	conditions.	This	design	enabled	us	to	examine	activity	in	the	brain	when	subjects	267	

made	identical	decisions,	but	when	these	decisions	were	based	on	subjective	or	normative	268	

valuations.	269	

	270	

	271	

Computational	Modelling	272	

Previous	research	has	shown	that	behaviour	in	delay-discounting	tasks	can	be	modelled	273	

using	a	number	of	different	functions	(Green	et	al.	1994;	Mazur	2001)	that	contain	discount	274	

factors	(free	parameters	that	explain	how	rewards	are	idiosyncratically	discounted	by	time).	275	

Two	models	were	compared	separately	in	terms	of	their	fit	to	the	subjective	preferences	of	276	

the	subjects	and	also	the	subject’s	behaviour	on	the	normative	trials.	The	first	was	a	277	

hyperbolic	model	(Mazur	2001)	in	which	the	subjective	value	of	a	reward	(V)	is	a	function	of	278	

its	magnitude	(M)	and	the	delay	(d)	on	a	given	trial:	279	

	280	

	281	



	 11	

(1)																																																														𝑉(#) = 	
'(()

()*+,(())
	282	

In	this	model	k	is	the	discount	factor,	an	idiosyncratic	free	parameter	that	discounts	the	283	

magnitude	(M)	of	the	reward,	such	that	the	subjective	value	(V)	is	less	than	its	objective	284	

magnitude.	The	value	of	k	therefore	reflects	the	extent	to	which	a	subject	discounts	a	285	

delayed	reward,	such	that	a	high	k	decreases	the	value	of	the	reward	quickly	as	the	delay	286	

becomes	greater.			287	

We	compared	the	hyperbolic	model	with	an	alternative	model,	to	examine	whether	he	288	

hyperbolic	model	best	reflected	choice	behaviour	in	both	the	normative	and	subjective	289	

trials.	In	this	second	model,	the	subjective	value	of	the	rewards	(V)	was	a	function	of	the		290	

exponential	effect	on	the	delay	where:	291	

	292	

(2)	 	 	 	 	 𝑉 = 		 𝑒.+.,(#)		x		𝑀#	293	

	294	

In	(2)	the	discounting	effect	of	the	delay	is	expressed	as	an	exponential	transform	(𝑒)	of	the	295	

discount	factor	(k)	multiplied	by	the	delay	period	(d).	As	such,	the	magnitude	of	a	reward	296	

(M)	is	idiosyncratically,	but	exponentially	discounted	by	the	length	of	delay	before	its	297	

receipt.	The	hyperbolic	and	exponential	models	were	fitted	separately	to	the	preferences	on	298	

the	subjective	trials	and	the	choices	on	the	normative	trials.	Thus,	separate	discount	factors	299	

(k)	could	be	estimated	for	the	subjective	and	normative	trials	and	also	each	model	could	be	300	

compared	in	terms	of	it’s	fit	to	the	data.		301	

As	in	previous	studies	the	models	were	fit	to	the	data	using	the	softmax	algorithm	and	302	

Maximum	Likelihood	Estimation	(Apps	et	al.	2015).	To	fit	the	two	models	to	the	behaviour	of	303	

the	subjects	on	both	the	subjective	and	normative	trials,	the	softmax	algorithm	(Sutton	and	304	

Barto	1998)	was	used.	The	softmax	approach	was	employed	separately	for	estimation	of	the	305	

normative	and	subjective	discount	factors.	This	method	assigns	a	probability	to	the	choices	306	

made	by	the	subjects:	307	

	308	

		(3)	309	

𝑃3	 𝑛 = 		
𝑒(𝛽. 𝑉6) # )

𝑒 𝛽. 𝑉6) # + 𝑒(𝛽. 𝑉68 # )
	310	
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	311	

This	equation	converts	the	subjective	values	of	the	choices	made	by	the	subjects	(𝑉	6)	)	into	312	

a	probability	(𝑃3	),	as	a	function	of	the	value	of	both	options.	On	trials	where	the	delayed	313	

option	is	chosen	Vo2	is	the	value	of	the	immediate	option	and	equal	to	3	(£3	was	always	the	314	

immediate	option).	On	trials	where	the	immediate	option	is	chosen	Vo2	is	the	value	of	the	315	

delayed	option.	The	coefficient	β	represents	the	stochasticity	(or	temperature)	of	the	316	

behaviour	(i.e.	the	sensitivity	to	the	value	of	each	option).	This	algorithm	therefore	317	

compared	the	value	of	the	chosen	option	to	the	other	options,	the	output	is	the	probability	318	

of	that	option	being	chosen,	given	the	value	of	the	free	parameters	(k	and	β).	The	values	319	

were	taken	from	the	two	models	(see	equation	(1)	and	(2))	outlined	above	and	fitted	320	

separately	to	both	the	subject’s	own	preferences	and	also	the	behaviour	on	the	normative	321	

trials.	This	allowed	for	comparisons	to	be	made	between	the	fit	of	the	exponential	and	322	

hyperbolic	models	for	both	the	subjective	and	normative	behaviours.		323	

Importantly	the	normative	preferences	that	subjects	learnt	during	the	training	session	were	324	

based	on	a	hyperbolic	model	which	was	set	with	a	fixed	discount	factor	(k	=	0.023).	Thus,	it	325	

would	be	expected	that	a	hyperbolic,	rather	than	an	exponential	model	would	better	explain	326	

subjects	behaviour	on	the	normative	trials,	as	we	found.	327	

This	approach	allowed	us	to	examine	the	BOLD	response	that	covaried	with	value	n	each	328	

trial.	Thus,	we	could	examine	activity	that	covaried	with	the	subjective	value	(SV)	of	a	329	

reward	on	subjective	trials	and	with	the	value	of	a	reward	according	to	the	social	norm	on	330	

the	normative	trials	(NV).	331	

	332	

It	is	important	to	note	that	we	did	not	compare	these	models,	in	which	there	were	separate	333	

parameters	for	subjective	and	normative	choices,	with	those	in	which	the	same	parameters	334	

could	account	for	choices	on	both	types	of	trial.	Whilst	such	models	may	have	provided	a	335	

parsimonious	account	of	the	choice	data,	such	an	approach	may	not	be	theoretically	valid	or	336	

allow	us	to	examine	shifts	in	preferences.	The	changes	in	subjective	preferences	from	the	337	

training	session	to	the	scanning	session	reveal	that	(i)	the	source	of	the	valuation	guiding	the	338	

decisions	is	distinct	and	(ii)	subjects	value	rewards	very	differently	prior	to	learning	the	norm	339	

compared	to	how	they	do	after	learning	it.	As	such,	assuming	a	single	discount	function	or	340	

single	temperature	parameter	may	be	parsimonious	for	explaining	the	data,	but,	would	not	341	

allow	us	to	examine	these	changes	in	behaviour.		342	
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Functional	imaging	and	analysis	343	

Data	acquisition	344	

	345	

878	EPI	scans	were	acquired	from	each	participant.	38	slices	(10%	distance	factor)	were	346	

acquired	in	an	ascending	manner,	at	an	oblique	angle	(≈30˚)	to	the	AC-PC	line	to	decrease	347	

the	impact	of	susceptibility	artefact	in	the	subgenual	mPFC	(Deichmann	et	al.	2003).		A	voxel	348	

size	of	3×3×3	mm	(20%	slice	gap,	0.6	mm)	was	used;	TR=3s,	TE=32ms,	flip	angle=85°.	The	349	

functional	sequence	lasted	51	minutes.	T1-weighted	structural	images	were	also	acquired	at	350	

a	resolution	of	1×1×1	mm	using	an	MPRAGE	sequence.	Immediately	following	the	functional	351	

sequence,	phase	and	magnitude	maps	were	collected	using	a	GRE	field	map	sequence	(TE1	=	352	

5.19ms,	TE2	=	7.65ms).	353	

	354	

Image	preprocessing	355	

	356	

Scans	were	pre-processed	using	SPM8	(www.fil.ion.ucl.ac.uk/spm).	The	EPI	images	from	357	

each	subject	were	corrected	for	distortions	caused	by	susceptibility-induced	field	358	

inhomogeneities	using	the	FieldMap	toolbox	(Andersson	et	al.	2001).	This	approach	corrects	359	

for	both	static	distortions	and	changes	in	these	distortions	attributable	to	head	motion	360	

(Hutton	et	al.	2002).	The	static	distortions	were	calculated	using	the	phase	and	magnitude	361	

maps	acquired	after	the	EPI	sequence.	The	EPI	images	were	then	realigned,	and	coregistered	362	

to	the	subject’s	own	anatomical	image.	The	structural	image	was	processed	using	a	unified	363	

segmentation	procedure	combining	segmentation,	bias	correction,	and	spatial	normalization	364	

to	the	MNI	template	(Ashburner	and	Friston,	2005);	the	same	normalization	parameters	365	

were	then	used	to	normalize	the	EPI	images.	Lastly,	a	Gaussian	kernel	of	8	mm	FWHM	was	366	

applied	to	spatially	smooth	the	images	in	order	to	conform	to	the	assumptions	of	the	GLM	367	

implemented	in	SPM8.	368	

	369	

Event	definition	and	modelling	370	

	371	

In	this	study,	two	GLM	analyses	were	performed	to	investigate	activity	that	varied	372	

parametrically	with	the	subjective	(SV)	and	normative	values	(NV)	of	temporally	discounted	373	
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rewards.	The	first	GLM	was	employed	to	examine	activity	that	varied	with	the	normatively	374	

and	subjectively	discounted	values.	In	the	second	GLM	an	analysis	was	performed	to	375	

examine	whether	activity	on	subjective	and	normative	trials	might	be	better	explained	by	376	

“offline”	vs	“online”	valuations	as	in	Nicolle	et	al.,	(2012)	–	see	supplementary	materials.	377	

	378	

	Each	GLM	design	matrix	contained	regressors	modelling:	379	

• Trial-type	cue	(informing	the	subject	whether	they	should	indicate	their	own	380	

preference	or	the	normative	preference	on	the	trial)		381	

• Subject	offer	cue	(the	delayed	reward	option	on	the	trials	where	the	subjects	382	

indicated	their	own	preferences)	383	

• Norm	offer	cue	(cuing	the	subject	to	indicate	the	normative	preference)	384	

• Subject	trigger	cue	(the	trigger	cue	when	the	subject	indicated	their	own	385	

preference)	386	

• Norm	trigger	cue	(cuing	the	subject	to	indicate	the	normative	preference)	387	

• Missed	trials	(a	regressor	modelling	the	onsets	of	the	trial-type	cue,	option	and	388	

trigger	cues	of	missed	trials)	389	

	390	

Regressors	were	constructed	for	each	of	these	events	by	convolving	the	event	timings	with	391	

the	canonical	Haemodynamic	Response	Function	(HRF).	The	residual	effects	of	head	motion	392	

were	modelled	in	the	analysis	by	including	the	six	parameters	of	head	motion	acquired	393	

during	preprocessing	as	covariates	of	no	interest.	We	ran	two	GLMs	at	the	single-subject	394	

level	that	each	contained	different	additional	parameters.	In	addition	to	the	regressors	395	

defined	for	the	event	types	outlined	above,	each	GLM	also	contained	regressors	which	were	396	

first	order	parametric	modulations	of	the	offer	cue	and	trigger	cue	events.	These	modulators	397	

scaled	the	amplitude	of	the	HRF	in	line	with	either	the	SV	and	NV	on	the	subjective	or	398	

normative	trials	respectively.	The	values	from	SV	and	NV	were	taken	from	the	hyperbolic	399	

model	as	outlined	above.	Thus,	we	were	able	to	examine	whether	the	BOLD	signal	covaried	400	

with	SV	and	NV	at	the	time	the	options	were	presented	and	at	the	time	when	subjects	401	

indicated	their	choices.		402	

	403	
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The	second	GLM	had	the	same	structure	except	that	different	parametric	modulators	were	404	

used.	Specifically,	we	used	the	offline	SV	as	a	parametric	modulator	on	the	normative	option	405	

and	trigger	cues,	and	the	offline	NV	was	used	as	a	parametric	modulator	of	the	subjective	406	

option	and	trigger	cues.	This	allowed	us	to	examine	whether	different	regions	of	the	mPFC	407	

showed	the	same	‘online/offline’	profile	as	suggested	by	Nicolle	et	al.,	(2012).		 	408	

Group	analysis,	Contrasts	and	Thresholding	409	
	410	

Random	effects	analyses	were	applied	to	determine	voxels	significantly	different	at	the	411	

group	level.	SPM{t}	images	from	all	subjects	at	the	first-level	were	input	into	second-level	412	

Flexible	Factorial	design	matrices.	T	and	F-contrasts	were	conducted	on	the	regressors	to	413	

examine	differences	between	SV	and	NV	and	the	effects	of	SV	and	NV	independently.	These	414	

contrasts	identified	voxels	in	which	activity	varied	parametrically	in	the	manner	predicted	by	415	

the	subjective	or	normative	value	parameters.	The	main	analysis	is	reported	from	activity	416	

time-locked	to	the	offer	cues.	An	additional	analysis	from	the	trigger	cues	was	also	417	

conducted	(supplementary	table.1).	To	examine	the	effects	of	shifts	in	subjects’	preferences	418	

in	subjective	value	from	before	and	after	learning	the	social	norm,	covariates	were	entered	419	

on	t-tests	for	SV	and	NV	in	second-level	design	matrices.		420	

To	 correct	 for	 multiple	 comparisons	 we	 first	 identified	 a	 large	 cluster	 by	 using	 a	 cluster-	421	

threshold	as	recommended	by	Woo	et	al.	2014	to	identify	an	initial,	 large	mPFC	cluster.	To	422	

then	be	more	anatomically	specific	we	used	masks	of	putatively	areas	8,	9,	11,	32	and	pre-423	

SMA	 from	 Neubert	 et	 al.	 (2015)	 as	 small	 volume	 corrections.	 In	 addition,	 we	 used	 these	424	

same	masks	in	a	region	of	interest	(ROI)	analysis.	The	masks	of	Neubert	et	al.,	(2015)	were	425	

created	 based	 on	 resting-state	 and	 diffusion-weighted	 imaging	 in	 both	 humans	 and	426	

macaques,	 and	 highlight	 the	 largely	 preserved	 connectional	 properties	 of	 these	 regions	427	

across	species.	These	masks	therefore	provide	a	detailed	anatomically	derived	parcellation	428	

of	the	mPFC	that	we	can	use	to	delineate	the	contributions	of	different	regions	of	the	mPFC	429	

to	 value	 processing	 in	 this	 study.	Note	 that	 by	 using	 this	 approach	we	 could	 examine	 the	430	

effects	of	SV	and	NV	in	different	regions	of	the	mPFC	in	a	manner	that	would	not	be	possible	431	

using	the	traditional	approach	of	contrasting	SV	with	NV	and	examining	the	peak	response	432	

or	averaging	over	the	effects	across	the	whole	cluster.		433	

	434	
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In	addition	to	the	small	volume	correction	approach,	we	also	performed	a	ROI	analysis	using	435	

MARSBAR.	In	this	approach,	we	averaged	over	the	effects	of	all	of	the	voxels	in	each	mask.	436	

This	analysis	is	reported	in	full	in	Supp.	Fig.2.		437	

	 	438	
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Results	439	

We	 designed	 a	 novel	 version	 of	 an	 inter-temporal	 decision-making	 task	 to	 investigate	440	

activity	 covarying	with	 subjective	 or	 normative	 valuations	 of	 rewards	 (fig.1).	 During	 fMRI,	441	

subjects	made	 choices	 between	 a	 low	 (£3),	 immediately	 received	 reward,	 and	 a	 larger	 in	442	

magnitude	 (£3.10	 -	 £20)	 but	 delayed	 (1	 –	 180	 days)	 reward.	On	half	 of	 the	 trials	 subjects	443	

were	instructed	to	indicate	their	own	preference,	but	crucially,	on	the	other	half	of	the	trials,	444	

subjects	 were	 required	 to	 indicate	 the	 preference.	 The	 normative	 preferences	 had	 been	445	

learnt	 through	 trial	 and	 error	 during	 a	 training	 session	 (See	Methods	 &	 Supp.	 material).	446	

Thus	 on	 half	 the	 trials	 subjects	 choices	 were	 made	 based	 on	 a	 subjective	 valuation	 of	 a	447	

delayed	reward,	but	on	the	other	half	of	the	trials	the	same	kind	of	valuation	was	dictated	448	

by	a	social	norm.	449	

	450	

	451	

Behavioural	Results	452	

Rewards	are	hyperbolically	discounted	by	delays	453	

Are	 rewards	devalued	by	 temporal	delays?	Consistent	with	a	 large	body	of	previous	work,	454	

rewards	were	 subjectively	 devalued	 by	 the	 temporal	 delay	 before	 receipt	 (fig.2a,b;	 Supp.	455	

Results).	 Crucially,	 however,	 there	 was	 no	 difference	 between	 subjects’	 choices	 on	 the	456	

subjective	 and	 normative	 trials	 at	 the	 group	 level	 during	 scanning	 (p	 >	 0.1).	 This	 result	457	

importantly	 ensures	 that	 activity	 identified	 in	 neural	 analyses	 is	 not	 driven	 by	 systematic	458	

differences	 in	 valuation	 of	 delayed	 rewards	 by	 subjects	 in	 the	 normative	 and	 subjective	459	

conditions	(see	Supp.	results).		460	

To	 characterise	 the	nature	of	 the	discounting	effect,	we	 fitted	hyperbolic	 and	exponential	461	

‘discount’	models	separately	to	the	choices	on	the	normative	and	subjective	trials,	using	the	462	

softmax	 algorithm	 and	 maximum	 likelihood	 estimation	 (see	Methods,	 (fig.2c)	 and	 Supp.	463	

Table	 2.).	 Thus,	 for	 each	model	 we	 estimated	 a	 “discount	 factor	 (‘k’)”	 which	 dictates	 the	464	

extent	 to	which	 a	 reward	 is	 devalued	by	 a	 delay	 and	 a	 stochasticity	 parameter	 (β),	which	465	

represents	 how	 noisy	 valuations	 are.	 	 To	 determine	 which	 function	 best	 fitted	 the	466	

behavioural	 data,	 (fig.2c)	 we	 conducted	 a	 2x2	 repeated	 measures	 ANOVA	 on	 the	 log-467	

likelihood	for	each	condition	(subjective,	normative)	and	function	(exponential,	hyperbolic).	468	

We	 found	 a	 marginal	 effect	 of	 condition	 and	 a	 main	 effect	 of	 function,	 and	 a	 marginal	469	
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interaction	 (Condition	 (F(1,14)	 =	 	 4.391,	 p	 =	 0.055);	 Function	 (F(1,14)	 =	 17.554,	 P<0.001);	470	

Condition	x	Function	(F(1,14)	=	3.874,	p	=	0.07).	Examination	of	the	log-likelihood	estimates	471	

shows	 that	 the	 effect	 was	 driven	 by	 a	 better	 fit	 of	 the	 hyperbolic	 model	 to	 both	 the	472	

subjective	and	normative	choice	data,	in	line	with	previous	studies	examining	inter-temporal	473	

choice	 data	 (Mazur	 2001).	 Further	 analyses	 were	 therefore	 completed	 using	 only	 the	474	

hyperbolic	model.	 	475	

	476	

Social	norms	are	accurately	reproduced	477	

For	 the	 aims	 of	 this	 study	 it	 was	 important	 that	 subjects	 were	 able	 to	 reproduce	 the	478	

normative	 preferences	 that	 they	 had	 learnt	 during	 the	 training	 session	 accurately	 on	 the	479	

normative	 trials	 inside	 the	 scanner.	 To	examine	 this	we	 compared	 the	estimated	discount	480	

factor	from	the	hyperbolic	model	on	the	normative	trials	during	scanning	with	the	discount	481	

factor	which	was	used	to	create	the	normative	behaviour	that	subjects	 learnt	through	trial	482	

and	 error	 during	 training	 (k	 =	 0.023).	 We	 found	 no	 significant	 difference	 between	 these	483	

discount	factors	(t(14)	=	0.36,	p	>	0.7),	highlighting	that	subjects’	choices	on	the	normative	484	

trials	were	not	significantly	different	from	the	behaviour	that	they	had	learnt	as	normative	485	

during	training.	(fig.2d)		486	

Were	subjects	making	the	same	choices	on	both	the	normative	and	subjective	trials?	There	487	

was	no	significant	difference	between	the	discount	factors	in	the	normative	and	subjective	488	

conditions	(U(14)	=	0.47,	p	>	0.6).	However,	this	absence	of	a	difference	can	most	likely	be	489	

attributed	 to	 the	high	 levels	of	 variability	across	 subjects	 in	 the	 subjective	valuation	 trials.	490	

Importantly,	there	was	also	no	correlation	between	the	subjective	discount	parameters	and	491	

the	 normative	 discount	 parameters	 across	 subjects	 (rs	=	0.23,	p	 	 =	 0.4).	 This	 indicates	 that	492	

whilst	at	the	group	level	there	was	no	difference	in	behaviour	in	the	two	conditions,	subjects	493	

were	not	 simply	performing	 the	normative	 trials	using	 the	same	discount	 function	as	 they	494	

were	on	the	subjective	trials.	Thus,	they	were	behaving	differently	in	the	two	conditions,	and	495	

performing	 the	 normative	 trials	 in	 accordance	with	 the	 normative	 discount	 function	 they	496	

had	learned.		497	

	498	

	499	

	500	
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Shifts	in	subjective	preferences	after	learning	norms	501	

Seventy-three	 percent	 of	 subjects	 shifted	 their	 preferences	 in	 the	 direction	 of	 the	 norm	502	

between	 the	 subjective	 preferences	 task	 at	 the	 beginning	 of	 the	 training	 session	 and	 the	503	

subjective	trials	inside	the	scanner	after	they	had	learnt	the	norm	(fig.2).	A	Mann-Whitney	U	504	

test	on	the	difference	of	subjective	discount	factors	from	the	norm	discount	factors	prior	to	505	

learning	the	norm,	compared	to	the	difference	between	the	parameters	after	 learning	the	506	

norm	discount	factor,	showed	a	significant	effect	(U(14)	=	-1.7,	p	<	0.042,	one-tailed).	Overall	507	

subjects	were	significantly	closer	to	the	norm	in	the	scanning	session,	after	they	had	learnt	508	

the	 norm,	 than	 they	were	 during	 the	 training	 session	 before	 being	 exposed	 to	 the	 norm.	509	

However,	 there	 was	 a	 correlation	 between	 a	 subjects	 discounting	 parameter	 prior	 to	510	

learning	 the	norm	and	post	 learning	 the	norm,	 suggesting	 that	whilst	 there	was	 a	 shift	 in	511	

behaviour	 overall,	 subjects	 remained	 relatively	 impatient	 or	 patient	 with	 respect	 to	 the	512	

other	 subjects	 after	 learning	 the	normative	preferences	 (Rs	 =	0.8,	p	 <	 0.001).	 Thus,	 in	 line	513	

with	research	showing	that	minimal	group	exposure	can	have	powerful	effects	on	behaviour	514	

(Hewstone	et	al.	2002),	our	results	suggest	that	subjects	shifted	their	subjective	preferences	515	

towards	the	norm	following	the	learning	of	normative	preferences,	rather	than	shifting	their	516	

performance	on	the	normative	trials	towards	their	original	subjective	preferences.	However,	517	

we	note	 that	given	 the	 sample	 size	 that	 inferences	made	upon	all	 analyses	 related	 to	 this	518	

shift	in	preferences	should	be	made	with	caution.	519	

	520	

	521	

fMRI	results	522	

In	 this	 study	we	were	 interested	 in	 examining	 activity	 time-locked	 to	 the	 offer	 cue	when	523	

subjects	 evaluated	either	 the	 subjective	 value	 (SV)	 or	 normative	 value	 (NV)	of	 an	offered,	524	

delayed,	reward	(analysis	of	the	response	cues	are	included	in	the	supplementary	material).	525	

To	 examine	 the	 processing	 of	 SV	 and	 NV	 we	 used	 the	 values	 taken	 from	 the	 hyperbolic	526	

model	fitted	to	the	subjects	behaviour,	and	used	them	as	parametric	modulators	of	activity	527	

at	the	time	of	the	offer	cue	on	the	corresponding	trials	(see	supp.	Table	1	 for	results	from	528	

the	 response	 cue).	 That	 is,	 we	 examined	 activity	 that	 parametrically	 varied	 with	 NV	 on	529	

normative	trials	and	activity	that	parametrically	varied	with	SV	on	subjective	trials.		530	

	531	



	 20	

Main	Analyses	532	

The	mPFC	differentially	codes	subjective	and	normative	value	533	

The	first	hypothesis	was	that	sub-regions	across	the	DmPFC	and	VmPFC	might	signal	value	534	

differently	on	subjective	and	normative	trials.	To	examine	this	question	we	first	performed	a	535	

whole-brain	corrected	comparison	between	SV	and	NV.	An	F-contrast	between	the	SV	and	536	

NV	 parametric	 modulators	 revealed	 a	 large	 cluster	 extending	 over	 both	 the	 dorsal	 and	537	

ventral	portions	of	the	mPFC	(3095	voxels)	that	was	significant	at	a	cluster-wise	threshold	(Z	538	

=	 4.09,	 P	 <	 0.001	 uncorrected	 voxel-wise	 threshold,	 P	 <	 0.05	 FWE	 cluster	 threshold	 (as	539	

recommended	 by	 Woo	 et	 al.	 2014)).	 Although	 other	 regions	 also	 showed	 a	 significant	540	

difference	between	SV	and	NV	(See	Supp.	Results),	 for	the	aims	of	this	paper	we	focus	on	541	

the	mPFC	cluster.	However,	we	note	 that	we	also	 found	a	similar	pattern	of	 results	 in	 the	542	

posterior	 superior	 temporal	 sulcus	 to	 those	 we	 report	 in	 the	 mPFC,	 and	 at	 a	 reduced	543	

threshold	we	found	a	cluster	in	the	ventral	striatum	that	coded	SV	only	(Supp.	Figs.	3	and	5)		544	

In	line	with	our	hypotheses,	the	mPFC	cluster	contained	multiple	peaks	which	corresponded	545	

putatively	with	divisions	of	the	mPFC	based	on	cytoarchitectonic	and	connectional	anatomy	546	

Neubert	et	al	.,(2015).	In	line	with	our	predictions	peaks	were	identified	in	areas	BA	8,	9,	11	547	

and	 32.	 (see	 Supp.fig.2	 for	 masks	 of	 these	 regions).	 In	 the	 following	 sections	 we	548	

demonstrate	 that	each	of	 these	5	 zones	did	 in	 fact	 signal	SV	and	NV	differently,	however,	549	

they	clustered	into	three	sub-regions	that	each	had	a	distinct	signature	for	signalling	SV	and	550	

NV.	 For	 each	 region	 we	 highlight	 a	 small	 volume	 corrected	 result	 to	 demonstrate	 the	551	

difference	 in	 signalling	 of	 SV	 and	 NV	 in	 each	 region	 before	 then	 highlighting	 the	 specific	552	

nature	of	value	signalling	in	each	region.	553	

	554	

Coding	of	normative,	but	not	subjective,	value	in	the	anterior	DmPFC	555	

To	examine	effects	in	the	anterior	DmPFC	we	used	masks	corresponding	to	BA	8	and	9,	both	556	

regions	 which	 have	 been	 identified	 in	 studies	 examining	 the	 neural	 basis	 of	 social	 norm	557	

processing	(Izuma	2013).	Details	of	the	extent	of	these	masks	are	shown	in	supplementary	558	

material	(see	Supp.Fig.2).	We	identified	a	peak	within	the	spatial	extent	of	each	mask	for	the	559	

contrast	between	SV	and	NV	 (Area	8	mask:	 x	=	 -4,	 y	=	32,	 z	=	52;	Z	=	3.88,	p	<	0.05	small	560	

volume	correction	(SVC);	Area	9:	x	=	6,	y	=	52,	z	=	38;	Z	=	3.80	SVC)	demonstrating	that	both	561	

sub-regions	differentially	signaled	NV	and	SV.	Examination	of	the	response	in	the	peak	voxel	562	

in	 each	 region	 (fig.3)	 suggested	 that	 activity	 in	 both	 areas	 covaried	 only	 with	 NV	 on	563	
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normative	trials	and	not	with	SV	on	the	subjective	trials.	Statistically,	this	was	demonstrated	564	

by	clusters	in	the	same	regions,	with	the	same	peak	voxels,	showing	an	effect	of	NV	(Area	8:	565	

x	=	-4,	y	=	32,	z	=	52;	Z	=	3.8,	p	<	0.05	SVC);	Area	9:	x	=	6,	y	=	52,	z	=	38;	Z	=	3.69	svc)	but	no	566	

voxels	in	these	regions	showing	any	effect	of	SV	even	at	a	considerably	reduced	threshold	(p	567	

<	0.05	uncorrected).	Thus,	anterior	DmPFC	sub-regions	were	specifically	sensitive	to	NV	on	568	

normative	trials,	but	not	SV	on	subjective	trials.	That	is	the	region	was	sensitive	to	value	but	569	

only	in	the	normative	condition.	570	

	571	

Opposing	coding	of	subjective	and	normative	value	in	the	VmPFC	572	

We	applied	the	same	approach	to	examine	activity	 in	 the	VmPFC,	using	masks	of	areas	11	573	

and	 32	 (See	 Supp.Fig.2	 for	 spatial	 extent).	 Both	 of	 these	 regions	 have	 been	 identified	 as	574	

signalling	 subjective	 value	 (Kable	 and	 Glimcher	 2007;	 Neubert	 et	 al.	 2015)	 in	 human	575	

neuroimaging	tasks.		576	

	577	

Similar	 to	 the	DmPFC,	clusters	 in	both	regions	showed	a	significant	difference	between	SV	578	

and	NV	(Area	32	mask:	x	=	6,	y	=	46,	z	=	10;	Z	=	3.56,	p	<	0.05	svc;	Area	11:	x	=	-8,	y	=	42,	z	=-579	

10;	Z	=	3.58,	p	<	0.05	svc).	Activity	in	these	regions	showed	an	effect	of	both	SV	and	NV,	but	580	

in	 the	opposite	 direction	 (fig.3).	 This	was	demonstrated	 statistically	 by	 clusters	within	 the	581	

spatial	extent	of	both	masks	-	each	containing	the	peak	voxel	from	the	contrast	between	SV	582	

and	NV	-	showing	a	positive	effect	of	SV	and	a	negative	effect	of	NV	alone,	albeit	at	a	slightly	583	

reduced	 threshold	 (p	 <	 0.002	 uncorrected).	 Activity	 in	 these	 regions	 showed	 an	 effect	 of	584	

both	SV	and	NV,	but	in	the	opposite	direction	(fig.3).	This	was	demonstrated	statistically	by	585	

clusters	within	 the	spatial	extent	of	both	masks	 -	each	containing	 the	peak	voxel	 from	the	586	

contrast	between	SV	and	NV	 -	 showing	a	positive	effect	of	SV	and	a	negative	effect	of	NV	587	

alone,	albeit	at	a	slightly	reduced	threshold	(p	<	0.002	uncorrected).	This	suggests	that	both	588	

sub-regions	of	 the	VmPFC	showed	a	significant	effect	of	value,	but	activity	covaried	 in	 the	589	

opposite	direction	for	SV	and	NV	in	both	regions.	Our	claim	is	supported	by	the	ROI	analyses	590	

in	 which	 both	 clusters	 had	 significant	 effects	 of	 SV	 and	 NV	 when	 correcting	 for	 multiple	591	

comparisons	(See	Methods,	Supp.	Results	and	Supp.	Fig.2).	Although	the	effects	for	SV	in	the	592	

VmPFC	were	slightly	weaker	than	our	other	reported	results,	there	is	considerable	evidence	593	

that	 the	 VmPFC	 does	 signal	 such	 information,	 particularly	 in	 temporal	 discounting	 tasks	594	
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(Kable	&	Glimcher,	2007)	and	in	this	study	the	reduced	significance	may	have	been	driven	by	595	

the	variability	in	this	region	for	signalling	SV	(see	below).	596	

	597	

	598	

Subjective	and	Normative	value	in	the	posterior	DmPFC	599	

To	examine	whether	any	regions	processed	the	value	of	rewards	regardless	of	whether	the	600	

valuation	was	normative	or	subjective	we	performed	a	conjunction	between	SV	and	NV.	This	601	

contrast	revealed	voxels	in	in	a	more	posterior	region	of	the	DmPFC	(p	<	0.001	uncorrected	602	

voxel-wise	 threshold,	 P	 <	 0.05	 FWE	 cluster	 corrected).	 This	 region	 lying	 anterior	 to	 the	603	

border	between	 the	precentral	gyrus	and	 the	superior	 frontal	gyrus	on	 the	medial	 surface	604	

fell	within	the	region	often	referred	to	as	the	pre-supplementary	motor	area	(Pre-SMA;	(x	=	-605	

8,	 y	 =	 20,	 z	 =	 44;	 Z	 =	 4.96,	 p	 <	 0.05	 SVC).	 A	 cluster	 and	 also	 the	 peak	 voxel	 from	 the	606	

conjunction	was	also	identified	independently	as	showing	a	significant	effect	of	both	SV	and	607	

NV	 in	 the	 same	 direction	 (p	<	 0.001	 uncorrected).	 Activity	 in	 the	 posterior	 regions	 of	 the	608	

DmPFC	therefore	covaried	both	with	SV	on	subjective	trials	and	NV	on	the	normative	trials	in	609	

the	same	manner.		610	

Shifts	in	subjective	valuations	and	conformity	to	social	norms	611	

Behaviourally	we	found	a	shift	of	subjects’	valuations	towards	the	normative	valuations	on	612	

the	subjective	trials	after	learning	the	normative	preferences.	Previous	studies	have	shown	613	

that	 regions	 of	 the	DmPFC	 and	VmPFC	 are	 engaged	when	updating	 behaviour	 in	 order	 to	614	

conform	 to	 social	 norms	 (Klucharev	et	 al.	 2009;	Garvert	 et	 al.	 2015).	 To	examine	whether	615	

this	effect	was	related	to	the	processing	of	SV	and	NV	in	the	mPFC,	we	used	the	difference	in	616	

discount	factors	between	subjective	discount	factor	during	the	first	part	of	training	to	that	617	

during	scanning	as	a	covariate.	We	then	examined	whether	the	extent	to	which	activity	that	618	

varied	 with	 SV	 on	 subjective	 trials	 or	 NV	 on	 normative	 trials	 covaried	 with	 the	 extent	 to	619	

which	subjects	shifted	their	choices.	We	found	3	separate	clusters	in	the	mPFC	that	survived	620	

correction	 for	 multiple	 comparisons	 using	 the	 masks	 of	 area	 32	 (14,48,	 4,	 Z	 =	 3.69,	 p	 <	621	

0.05svc),	8	 (-12,	32,	50,	Z	=	4.11,	p	<	0.05svc)	and	9	 	 (-10,	48,	42	Z	=	3.64,	p	<	0.05svc)	 in	622	

which	 activity	was	 correlated	with	 SV	 on	 subjective	 trials	 (see	 supp.fig.4).	 Clusters	 in	 the	623	

same	regions	also	showed	a	significant	correlation	between	the	degree	of	SV	coding	and	the	624	

extent	 to	which	 subjects	 got	 closer	 to	 the	norm	 from	 the	 first	 to	 the	 second	 session,	 at	 a	625	

reduced	 threshold	 (p<0.005	uncorrected.	We	 found	no	clusters	 in	which	activity	 covarying	626	
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with	NV	correlated	with	shifts	in	subjective	valuations.	).	These	findings	are	consistent	with	627	

the	notion	that	activity	in	these	regions	is	related	to	shifts	in	behaviour	based	on	learning	a	628	

norm.	However,	we	note	that	given	the	sample	size	that	inferences	made	upon	all	analyses	629	

related	to	this	shift	in	preferences	should	be	made	with	caution.	630	

	631	

	632	

Supplementary	and	Control	Analyses	633	

Memory	demands	634	

To	examine	whether	our	effects	could	be	driven	simply	by	memory	demands	on	the	635	

normative	trials	compared	to	the	subjective	trials,	we	performed	a	contrast	between	activity	636	

at	the	time	of	the	offer	cues	on	the	normative	trials	to	those	on	the	subjective	trials.	We	637	

found	no	voxels	in	the	medial	prefrontal	cortex	showing	a	significant	effect	(p<0.05FWE-svc	638	

corrected	for	each	ROI).	This	would	therefore	argue	against	the	notion	that	activity	may	be	639	

related	to	simply	recalling	what	decision	to	make	against	choosing	one	based	on	one’s	own	640	

valuation.	641	

	642	

Value	not	Conflict	643	

Could	activity	on	either	trial-type	be	related	to	‘conflict’	between	the	choice	options?	To	644	

examine	this	we	performed	two	additional	analyses.	We	created	a	parametric	regressor	of	645	

the	difference	between	the	subjective	and	normative	valuation	on	each	trial.	In	these	646	

regressors	covarying	activity	would	be	dependent	on	the	degree	of	conflict	between	the	two	647	

valuations.	We	then	examined	in	the	ROIs	used	in	the	main	analyses	whether	activity	648	

covaried	with	these	regressors	on	the	subjective	or	normative	trials.	We	found	that	none	of	649	

the	ROIs	showed	a	significant	effect	of	these	“conflict	regressors”	even	at	a	reduced	650	

threshold	(P<0.01	uncorrected)	on	either	type	of	trial.	Secondly,	we	then	examined	whether	651	

activity	in	these	regions	signalled	“decision	conflict/difficulty”,	regardless	of	trial	type.	This	652	

decision	difficulty	regressor	was	the	absolute	value	on	each	trial	type	subtracted	from	the	653	

value	of	the	immediate	offer	(£3).	This	examined	activity	that	would	be	highest	when	the	654	

value	of	the	immediate	and	delayed	option	was	closest	to	each	other	and	thus	choosing	655	

between	them	would	be	most	difficult.	None	of	the	ROIs	in	the	mPFC	showed	activity	that	656	

significantly	covaried	with	this	this	decision	difficulty/conflict	regressor,	even	at	a	reduced	657	
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threshold	(p<0.01	uncorrected).	There	is	therefore	little	evidence	of	any	conflict	related	658	

signals	in	the	regions	we	examined.	 	659	
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Discussion	660	

In	many	social	situations	our	subjective	valuations	of	economic	rewards	are	overridden	by	661	

our	desire	to	conform	to	social	norms.	In	this	study,	we	examined	how	the	brain	processes	662	

the	value	of	rewards	according	to	a	social	norm	and	whether	such	valuations	are	coded	663	

similarly	to	subjective	value	in	the	mPFC.	Subjects	performed	inter-temporal	choices	that	664	

were	either	based	on	their	own	subjective	preferences	or	on	a	learnt	social	norm.	We	found	665	

that	a	large	portion	of	the	mPFC	was	sensitive	to	reward	valuations	and	showed	a	difference	666	

between	the	processing	of	subjective	and	normative	valuations.	Across	this	region,	three	667	

distinct	sub-regions	were	identified	that	processed	the	value	of	rewards	differently	if	the	668	

valuation	was	driven	by	subjective	or	normative	information.	In	support	of	previous	research	669	

examining	the	processing	of	social	norms,	our	results	implicated	the	anterior	portions	of	the	670	

DmPFC	(areas	8	and	9).	However,	we	show	that	this	region	covaried	exclusively	with	value	671	

on	the	normative	trials,	and	not	on	the	subjective	trials.	However,	activity	in	posterior	672	

regions	of	the	DmPFC	covaried	with	value	on	both	subjective	and	normative	trials	and	673	

activity	in	the	VmPFC	varied	with	subjective	value	positively	but	normative	values	negatively.	674	

In	addition,	we	found	that	the	extent	to	which	parts	of	the	anterior	DmPFC,	and	area32	of	675	

the	VmPFC,	signal	SV	is	correlated	with	shifts	in	subjective	preferences.	Specifically	how	676	

much	individuals	have	shifted	their	subjective	valuations	after	being	exposed	to	a	norm	677	

correlates	with	the	degree	to	which	these	regions	signal	SV.	These	results	highlight	that	678	

normative	valuations	are	coded	distinctly	from	subjective	valuations	in	the	mPFC.	679	

Research	examining	the	neural	basis	of	social	norm	processing,	social	influence	and	680	

conformity	has	consistently	implicated	the	DmPFC	(Izuma	2013).	Neuroimaging	studies	have	681	

shown	that	activity	across	the	Pre-SMA,	BA	8	and	BA	9	tracks	how	different	one’s	opinions	682	

are	from	those	of	another	group	or	individual,	and	these	regions	are	engaged	when	683	

updating	one’s	own,	or	when	learning	another	group	or	persons	opinions	(Berns	et	al.	2005;	684	

Klucharev	et	al.	2009;	Campbell-Meiklejohn	et	al.	2010;	Zaki	et	al.	2011;	Nicolle	et	al.	2012;	685	

Izuma	and	Adolphs	2013;	Garvert	et	al.	2015;	Nook	and	Zaki	2015).	Moreover,	Transcranial	686	

Magnetic	Stimulation	(TMS)	studies	have	shown	that	information	processing	in	the	DmPFC	is	687	

causally	linked	to	social	norm	guided	behaviours	and	conformity	(Klucharev	et	al.	2011;	688	

Izuma	et	al.	2015).	As	a	result,	it	is	often	argued	that	the	DmPFC	processes	information	that	689	

guides	behaviours	when	operating	in	social	groups	and	when	under	social	influence.	690	

Alternatively,	some	have	argued	that	the	mPFC	plays	an	important	role	in	signalling	decision-691	

difficulty	or	conflict	monitoring	(Botvinick	et	al.	2004).	However,	we	found	little	evidence	of	692	



	 26	

such	signals	in	this	experiment.	This	may	be	down	to	the	fact	that	the	region	which	has	often	693	

been	debated	as	signalling	conflict,	lies	in	the	ACC	in	areas	24	or	32,	and	not	in	areas	8	and	9.	694	

Our	results	are	therefore	much	more	consistent	with	the	DmPFC	signalling	social	695	

information	that	guides	behaviour	when	interacting	in	social	groups.	We	show	that	such	696	

social	specificity	is	only	present	in	the	anterior	portions	of	the	DmPFC	(areas	8	and	9).	In	697	

addition,	we	show	that	specificity	for	processing	NV	in	the	DmPFC	may	depend	on	the	extent	698	

to	which	people’s	subjective	preferences	are	influenced	by	normative	information.	That	is,	699	

the	extent	to	which	activity	in	sub-regions	of	the	DmPFC	(area	9)	varied	with	SV	was	700	

dependent	on	how	much	an	individual’s	subjective	preferences	were	influenced	by	the	701	

learning	of	normative	information.	This	suggests	that	the	extent	to	which	people	are	702	

influenced	by	social	information	might	influence	how	the	DmPFC	codes	our	own	valuations.	703	

This	is	in	line	with	evidence	that	the	DmPFC	may	be	a	key	region	for	learning	about	the	social	704	

norms	(Izuma	2013;	Izuma	et	al.	2015)	and	also	by	how	influenced	people	are	by	the	705	

behaviour	of	another	individual	(Garvert	et	al.	2015)	706	

However,	our	results	suggest	that	these	properties	are	not	shared	across	all	of	the	DmPFC.	707	

Specifically,	we	found	that	a	more	posterior	portion	of	the	DmPFC	(putatively	in	the	pre-708	

SMA),	signalled	value	on	both	subjective	and	normative	trials.	This	would	support	accounts	709	

that	suggest	this	region	is	important	for	the	processing	the	value	of	choices,	but	does	not	710	

play	any	specific	role	in	social	or	non-social	behaviours	(Nachev	et	al.,	2008).	Specifically,	711	

there	is	evidence	that	neurons	that	direct	actions	towards	rewards	are	present	in	this	region	712	

and	also	that	this	region	is	important	for	initiating	behaviours	(Wang	et	al.	2001;	Nachev	et	713	

al.	2008).	Supporting	this	claim,	anatomical	evidence	shows	that	the	pre-SMA	is	strongly	714	

connected	to	parts	of	the	motor	system,	with	connections	of	the	premotor	cortex	and	parts	715	

of	the	basal-ganglia	that	are	putatively	important	for	valuing	and	selecting	actions	(Nachev	716	

et	al.	2008).	Our	results	support	the	notion	that	the	pre-SMA	is	sensitive	to	value.	However,	717	

we	show	the	importance	of	accurate	localisation	for	understanding	DmPFC	function.	Using	718	

the	approach	implemented	here	and	localising	activity	to	specific	regions	that	are	known	to	719	

have	distinct	functions,	connections	and	anatomical	properties,	we	were	able	to	show	that	720	

the	Pre-SMA	may	signal	value	regardless	of	the	source	of	the	valuation	with	greater	721	

precision.		722	

A	wealth	of	research	has	suggested	that	the	VmPFC	processes	information	that	is	consistent	723	

with	a	role	in	value-guided	choice	(Kable	and	Glimcher	2007;	Rushworth	and	Behrens	2008;	724	

O’Doherty	2014;	Strait	et	al.	2014;	Manohar	and	Husain	2016).	Such	a	notion	is	supported	by	725	
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its	anatomical	connections	to	other	regions	of	the	brain	that	process	the	subjective	value	of	726	

rewards	including	portions	of	the	intraparietal	sulcus,	amygdala	nuclei,	both	medial	and	727	

lateral	portions	of	the	orbitofrontal	cortex,	and	the	ventral	striatum	(Haber	et	al.	2006;	728	

Kable	and	Glimcher	2007,	2010;	Petrides	and	Pandya	2007;	Kim	et	al.	2008;	Hunt	et	al.	2012;	729	

Neubert	et	al.	2015).	In	addition	a	plethora	of	neuroimaging	studies	highlight	that	activity	in	730	

this	region	scales	with	the	subjective	value	of	a	chosen	reward	(O’Doherty	2014).	These	731	

findings	have	led	many	to	suggest	that	this	region	plays	a	crucial	role	in	integrating	732	

information	about	the	value	of	rewards	in	order	to	select	behaviours	that	have	the	highest	733	

value.	Our	results	do	not	support	this	account.	Instead,	activity	in	both	areas	11	and	32	in	734	

the	VmPFC	scaled	positively	with	SV	but	crucially	scaled	negatively	with	the	NV	of	rewards.	735	

This	suggests	that	this	region	is	sensitive	to	the	value	of	rewards,	but	its	processing	of	value	736	

is	context-dependent	and	the	nature	of	the	value-computations	performed	in	this	region	737	

may	differ	depending	on	whether	a	reward	valuation	is	a	function	of	social	information	or	is	738	

subjective.			739	

There	is	in	fact	a	plethora	of	evidence	supporting	the	notion	that	the	VmPFC	processes	740	

information	that	influences	social	behaviour	is	supported	by	anatomical	and	functional	741	

evidence.	Medial	portions	of	areas	11	and	32	in	the	VmPFC	have	connections	to	portions	of	742	

the	amygdala,	dysgranular	portions	of	the	anterior	insula,	posterior	portions	of	the	superior	743	

temporal	sulcus,	the	anterior	cingulate	gyrus,	and	regions	in	the	DmPFC	that	we	found	to	744	

process	only	normative	value	(Morecraft	et	al.	1992;	Petrides	and	Pandya	2007).	These	745	

regions	are	well	known	for	their	roles	in	processing	social	information	(Amodio	and	Frith	746	

2006;	Behrens	et	al.	2009;	Hurlemann	et	al.	2010;	Apps	and	Tsakiris	2013;	Blair	2013;	Gu	et	747	

al.	2015;	Lockwood	et	al.	2015;	Apps	et	al.	2016).	Neuroimaging	studies	have	also	shown	748	

that	the	VmPFC	processes	information	about	the	value	of	rewards	that	others	will	receive	749	

and	is	engaged	by	the	value	of	monetary	rewards	donated	to	charity	and	when	enforcing	750	

social	norms	(Krajbich	et	al.	2009;	Cooper	et	al.	2010;	Hare	et	al.	2010;	Tricomi	et	al.	2010;	751	

Baumgartner	et	al.	2011;	Buckholtz	and	Marois	2012;	Janowski	et	al.	2013;	Zaki	et	al.	2014;	752	

Apps	et	al.	2015).	In	addition,	there	is	considerable	evidence	that	lesions	to	the	VmPFC,	and	753	

structural	changes	to	this	region	in	healthy	individuals,	are	linked	to	antisocial	behaviour	and	754	

influence	the	extent	to	which	people	conform	to	social	norms	(Blair	2013;	Gu	et	al.	2015;	755	

O’Callaghan	et	al.	2016).	Our	results	therefore	go	against	the	viewpoint	that	the	VmPFC	does	756	

not	process	social	information	(Rudebeck	et	al.	2008)	and	support	emerging	evidence	that	757	

this	region	may	play	an	important	role	in	processing	value-related	information	during	social	758	

interactions.		759	
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Recently	studies	have	examined	the	processing	of	value	in	a	context	where	the	beneficiary	760	

of	the	value-guided	choice	was	either	the	subject	themselves,	or	another	individual.	Sul	et	761	

al.,	(2015)	suggested	that	when	choosing	to	benefit	either	ourselves	or	another,	when	the	762	

choices	are	based	on	our	own	preferences,	more	ventral	portions	of	the	mPFC	encode	value	763	

for	ourselves	but	more	dorsal	portions	signal	value	for	other	people	–	although	this	differs	764	

between	prosocial	and	selfish	individuals.	In	contrast,	Nicolle	et	al.,(2012)	and	Garvert	et	al.,	765	

(2015)	found	that	value	was	coded	in	an	‘offline’,	modelled	frame	of	reference	in	more	766	

dorsal	portions	of	the	mPFC	and	in	a	more	‘online’	executed	frame	of	reference	in	the	767	

VmPFC.	That	is,	the	VmPFC	coded	the	value	of	rewards	according	to	whoever	might	receive	768	

the	outcome	of	a	decision,	whereas	the	DmPFC	signalled	value	according	to	the	preferences	769	

of	the	person	who	would	not	receive	the	reward	on	that	trial.	Our	results,	however,	do	not	770	

fully	support	either	viewpoint.	Our	results	support	the	suggestion	that	DmPFC	is	specialised	771	

for	processing	social	information,	as	argued	by	Sul	et	al.,	(2015),	but	would	not	support	their	772	

claim	that	the	VmPFC	processes	rewards	only	when	they	are	subjectively	valued.	Likewise,	773	

we	did	not	find	evidence	to	strongly	support	the	claim	that	the	findings	of	Garvert	et	al.,	774	

(2015)	and	Nicolle	et	al.,	(2012)	that	the	DmPFC	and	VmPFC	encode	value	in	an	offline	and	775	

online	reference	frame	respectively.		776	

How	can	we	reconcile	these	previous	studies	findings	with	our	results?	One	possible	777	

explanation	is	that	there	is	a	substantial	difference	in	the	nature	of	decisions	that	conform	778	

to	norms	compared	to	decisions	made	that	benefit	another.	Specifically,	when	making	779	

normative	decisions	an	individual	is	both	the	beneficiary	of	the	choice	and	decisions-maker,	780	

whereas	when	choosing	for	others	the	individual	is	not	the	beneficiary	of	the	outcome.	This	781	

key	distinction	in	the	frame	of	reference	for	the	beneficiary	of	the	choice	may	explain	why	782	

we	do	not	find	similar	results.	In	addition,	it	is	also	plausible	that	our	results	are	referring	to	783	

different	regions	of	the	mPFC	from	those	of	Sul	and	colleagues	and	Nicolle	and	colleagues.	784	

Specifically,	our	results	extended	across	a	large	portion	of	the	mPFC	(areas	8,9,32	and	11),	785	

whereas	the	distinctions	identified	in	previous	studies	refer	to	a	smaller	circumscribed	786	

region	potentially	restricted	to	distinctions	within	areas	32	and	area	9.	Thus,	our	results	787	

extend	these	previous	findings	by	examining	regions	that	extend	over	a	larger	spatial	extent	788	

of	the	mPFC.	Moreover	our	findings	highlight	the	contributions	of	several	mPFC	regions	to	789	

making	decisions	based	on	a	social	norm	guided	valuation	are	somewhat	distinct	from	the	790	

contributions	made	when	making	decisions	to	benefit	another.	791	

	792	
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Lastly,	could	these	results	be	accounted	for	by	differences	in	the	memory	demands	between	793	

subjective	and	normative	decisions?	Notably,	we	did	not	find	any	main	effect	differences	in	794	

the	mPFC	when	comparing	activity	time-locked	to	the	offer	cues	on	subjective	or	normative	795	

trials.	This	suggests	that	the	differences	in	activity	in	the	mPFC	related	to	the	discounted	796	

value	of	delayed	rewards	and	not	purely	to	the	requirement	to	recall	a	response	from	797	

memory.	Moreover,	subjects	showed	conformity	to	the	norm	even	on	subjective	trials,	798	

suggesting	that	recall	of	the	norm	was	guiding	behaviour	on	both	subjective	and	normative	799	

trials.	Behaviourally	therefore,	our	results	suggest	that	the	normative	and	subjective	trials	800	

were	comparable	in	terms	of	their	memory	demands.	Finally,	whether	the	dmPFC	processes	801	

information	in	a	domain-general	way	(i.e.	is	engaged	by	memory	processes	including	those	802	

that	are	socially	relevant)	or	processes	exclusively	social	information	is	a	question	that	has	803	

been	examined	extensively	in	social	neuroscience.	There	is	considerable	debate	over	804	

whether	parts	of	the	mPFC	operate	in	a	domain-general	or	socially	specific	manner	(Amodio	805	

and	Frith	2006;	Izuma	2013),	and	whether	operating	in	larger	social	groups	was	an	806	

evolutionary	pressure	for	greater	memory	capacity	and	the	expansion	of	the	prefrontal	807	

cortex	(Dunbar	and	Shultz	2007).	Theoretical	accounts	also	directly	link	the	evolution	of	the	808	

mPFC	to	the	requirement	to	process	increasingly	abstract	rules	about	how	to	interact	with	809	

others	(Murray	et	al.	2016)	and	prefrontal	cortex	development	is	linked	to	the	degree	to	810	

which	social	influence	changes	behaviour	through	ageing	(Steinberg	and	Monahan	2007;	811	

Steinberg	2008;	Tamnes	et	al.	2017).	To	base	one’s	behaviour	on	recalled	information	rather	812	

than	one’s	own	preferences	may	therefore	be	a	fundamental	aspect	of	social	norm	guided	813	

behaviour	and	a	key	mechanism	underlying	the	functional	properties	of	the	mPFC.	The	issue	814	

of	whether	information	processing	in	the	dmPFC	is	exclusively	‘social’	in	nature,	or	is	a	more	815	

domain-general	process,	cannot	be	resolved	by	this	study	alone.	However,	crucially	either	of	816	

these	possibilities	does	not	contradict	our	key	argument,	that	the	neural	mechanisms	817	

underlying	subjective	valuations	may	be	different	than	those	that	underlie	the	social	norm	818	

recalled	valuations.	819	

In	summary,	we	have	identified	three	zones	in	the	mPFC	that	process	value-related	signals	820	

but	each	has	a	different	profile	for	processing	subjectively	or	normatively	valued	rewards.	821	

Our	results	highlight	some	of	the	key	neural	and	computational	mechanisms	that	may	822	

underpin	reward	valuation	and	social	influence.	Moreover,	this	may	pave	the	way	for	823	

understanding	why	people	can	make	much	more	impulsive	or	patient	economic	decisions	824	

when	interacting	with	others	than	they	would	when	making	the	same	decisions	alone.		825	
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Figure	Legends	1032	

	1033	

	1034	

	1035	

	1036	

Fig.1.	Trial	Structure.	Each	trial	began	with	a	cue	that	indicated	whether	a	choice	should	be	1037	

made	based	on	a	subjective	preference	(“YOU”)	or	normative	(“GROUP”)	valuation.	The	font	1038	

used	throughout	the	trial	was	colour	coded	to	also	indicate	the	trial-type	to	the	participant.	1039	

Following	a	temporal	jitter,	an	offer	cue	indicated	the	magnitude	(£3.10	-	£20)	and	delay	1040	

(1day	–	180days)	that	was	on	offer	on	the	trial.	On	each	trial	subjects	were	required	to	1041	

evaluate	whether	they	would	prefer	this	offer	or	a	fixed	baseline	of	(£3)	following	no	delay.	1042	

Following	another	temporal	jitter	subjects	were	required	to	indicate	their	response	by	1043	

making	a	button	press	on	a	keypad.	To	avoid	activity	at	the	time	of	the	offer	cue	being	1044	

confounded	by	preparatory	motor	activity,	which	button	corresponded	to	taking	the	delayed	1045	

offer	(“wait”)	or	the	immediate	offer	(“now”)	varied	randomly	on	each	trial.	1046	

	1047	
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Figure	2.	Behavioural	Results.	Subjects	devalued	rewards	as	a	function	of	temporal	delays.	1048	

As	 delays	 increased	 subjects	 were	more	 likely	 to	 choose	 the	 immediate	 option	 (A)	 and	 as	1049	

rewards	 increased	 they	were	more	 likely	 to	 take	 the	delayed	option	 (B).	Overall	 choices	on	1050	

the	 inter-temporal	 choice	 trials	 were	 better	 explained	 by	 a	 hyperbolic,	 rather	 than	1051	

exponential	model	(C).	(D)	Subjective	or	normative	discount	parameters	estimated	based	on	1052	

the	 subjects	 choice	 behaviour	 did	 not	 differ	 from	 the	 normative	 discount	 factor	 that	 was	1053	

learnt	during	training	 (dotted	blue	 line).	Subjective	discount	 factors	 in	 the	scanning	session	1054	

correlated	with	subjective	discount	factors	during	the	training	before	subjects	had	learnt	the	1055	

normative	 behaviour	 (E).	 However,	 there	 were	 substantial	 shifts	 in	 subjective	 discount	1056	

factors	 from	 before	 to	 after	 learning	 the	 norm	 (F).	 73%	 of	 subjects	 discount	 factors	 were	1057	

closer	 to	 the	 norm	 after	 learning	 normative	 preferences	 during	 training,	 suggesting	 they	1058	

were	influenced	by	the	social	norm	based	preferences.	Error	bars	depict	standard	error	of	the	1059	

mean	 (SEM).1060	

	1061	

Figure	3.	Subjective	and	Normative	value	in	mPFC.	Different	profiles	of	response	to	SV	and	1062	

NV	in	different	mPFC	sub-regions	at	the	time	the	options	were	evaluated.	Clusters	in	anterior	1063	

regions	 of	 the	 DmPFC	 -	 	 areas	 9	 (A)	 and	 8	 (B)	 -	 	 showed	 a	 significant	 negative	 effect	 of	1064	

Normative	 value	 (NV)	on	 the	normative	 trials	but	no	effect	of	 Subjective	 value	 (SV)	on	 the	1065	

subjective	 trials.	Plots	 show	 response	 from	 the	peak	voxel	 (responses	of	 the	whole	 clusters	1066	
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are	 reported	 in	 supp.	 fig.2).	 Clusters	 in	 the	VmPFC	 -	 	 areas	 32	 (C)	 and	11	 (D)	 -	 	 showed	a	1067	

significant	negative	effect	of	NV	on	the	normative	trials	and	a	significant	positive	effect	of	SV	1068	

on	the	subjective	trials.	A	region	in	the	posterior	DmPFC	showed	a	significant	conjunction	(E),	1069	

signalling	both	SV	and	NV	and	no	difference	between	the	two.	Thus,	the	mPFC	is	sensitive	to	1070	

reward	valuations	in	inter-temporal	choice.	Error	bars	depict	SEM.	Results	are	shown	at	p	<	1071	

0.001	uncorrected	for	display	purposes.		1072	

	1073	


