
On Using the System
Management Mode for
Security Purposes

William Augusto Rodrigues de Souza

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

2016

On Using the System Management
Mode for Security Purposes

Department of Mathematics
Royal Holloway, University of London

Seeing much, suffering much and studying much are the three pillars
of learning.

(Benjamin Disraeli)

Declaration of Authorship

I, William Augusto Rodrigues de Souza, hereby declare that this thesis and
the work presented in it is entirely my own. Where I have consulted the
work of others, this is always clearly stated.

Signed:

(William Augusto Rodrigues de Souza)

Date:

Summary

Computer systems are by design insecure and therefore are many security issues
around them. So, security practitioners are always trying to enhance security and
performing verification tasks to minimise the risk of potential threats become suc-
cessful attacks. These tasks are usually performed by security tools.

Thus concepts as: isolation, privilege and view are important in the context of
computer systems. Security tools must have good isolation, privilege and view of
the system. Then, security tools must operate isolated, have high privilege and
must have a global view of the system, but also good ability to view and act timely
in its own environment to enhance the chances of success when performing their
tasks and for not being hit by the problems they are trying to solve.

In this context, this research investigates the System Management Mode (SMM)
in the context of Intel processors, current security tools capitalising on SMM and
attacks and misuses of SMM to establish a set of requirements and then design
a generic architecture for SMM-based security tools. That generic architecture is
tested by building a proof of concept to measure the integrity of a file of the Xen
hypervisor. This measurement is limited to the minimum necessary to prove the
concept of the architecture.

The problem context addressed is a cloud computing environment, compris-
ing of one or more machines (chipsets). Each chipset hosts in its main memory
(DRAM) a virtualised environment comprising of one manager virtual machine,
one or more guest virtual machines and a hypervisor. We address our research in-
vestigation in two levels: the vertical and the horizontal security level. The vertical
security level puts the problem in context, relating it to security issues on: cloud,
chipset, memory, virtualisation layer and cache memory. The horizontal security
level considers the research problem in its environment, relating it to security is-
sues on components of the bootup process and the processor, such as: Intel VMX,
TXT and SGX, BIOS and so on.

First, we investigate the SMM, its resources and components. Then, we analyse
SMM-based security tools and the opportunities to improve them. We also analyse
SMM attacks and how to thwart them. From the acquired knowledge, we establish
a set of requirements to use SMM for security purposes. Having the requirements,
we design a generic architecture for SMM-based security tools. To test the architec-
ture, we build a proof of concept comprising of a module to probe chipsets and a
SMM-based hypervisor integrity measurement tool.

The implementation of that architecture was done in a proof of concept de-
signed to have two modules: a manager and an agent. The manager module is
used for learning about and researching on the target machine, as for probing, set-
ting and clearing registers related to SMM. The manager can be used in the target

i

machine or in a machine with the same chipset of the target machine. So, it can be
deployed in main memory. The agent basically comprises of two parts: a basic code
embodying management functions and a payload, where the security functions are
implemented. So the use of a payload is what makes the architecture generic since
any security task might be implemented and added in the agent by changing the
payload.

We conclude that any security tool can capitalising on SMM resources provided
that it meets the set of requirements established in this research: small, fast, per-
sistent, cooperative, isolated, resistant, complete and SMI-independent (meaning
that it can be started by any System management interruption, which occur in the
chipset); and stick to the proposed generic architecture.

ii

Acknowledgments

My heartfelt thanks to my supervisor Dr. Allan Tomlinson for his guidance, encourage-
ment, patience and dedication.
I would like to also thank my examiners Professor William Buchanan and Professor Lorenzo
Caballaro for taking the time to examine my thesis.
I gratefully acknowledge all professors, specially Professors Chris Mitchell and Carlos Cid,
colleagues and staff at ISG and at the Department of Mathematics for making my life easier
and for all support, guidance and fruitful discussions.
I would like to also thank all support and encouragement I received from The Centre for
Naval System Analysis of Brazilian Navy.
I am also so grateful for all support and understanding received from my family.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Limits and Scope . 3
1.3 Significance . 8
1.4 Research Questions . 9
1.5 Contribution . 11
1.6 List of Publications . 12
1.7 Overview of the Research . 13

2 Background 15
2.1 Introduction . 15
2.2 Definitions . 17
2.3 Context and Technologies . 19
2.4 Environment and Technologies . 35
2.5 Data Integrity with Hash Functions . 39
2.6 Related work: System Executive Software Integrity Issues 40
2.7 Discussion . 43
2.8 Summary . 44

3 The System Management Mode (SMM) 45
3.1 Introduction . 45
3.2 Components . 46
3.3 SMM operation and relations . 54
3.4 Security implementations using SMM 58
3.5 Launching attacks using SMM resources 62
3.6 Discussion . 66
3.7 Summary . 66

4 Requirements 69
4.1 Introduction . 69
4.2 Threat model . 69
4.3 Assumptions . 72
4.4 Requirements for using SMM for security purposes 72
4.5 Discussion . 74
4.6 Summary . 76

5 A Generic Architecture for SMM-Based Security Tools 79
5.1 Introduction . 79

v

CONTENTS

5.2 Requirements Specification . 79
5.3 General Architecture . 82
5.4 Architecture Design . 82
5.5 Discussion . 97
5.6 Summary . 99

6 Implementation and Evaluation - Manager Module and SBST 105
6.1 Introduction . 105
6.2 Functions in the Manager Module . 108
6.3 Manager Module Computational Experiments 117
6.4 SBST Implementation and Evaluation 130
6.5 SBST Limits and Constraints . 132
6.6 Manager Limits and Constraints . 133
6.7 Discussion . 133
6.8 Summary . 133

7 Conclusion 135
7.1 Directions for Future work . 137
7.2 Investigate the interaction of an SBST with technologies in the chipset137
7.3 Investigate the Impact of SMI Latency 137
7.4 Optimize the Proof of Concept Execution Time 138
7.5 Embed the Tool in a BIOS to Test It in a More Realistic Scenario . . . 138

A Specific SMM Registers 139
A.1 Chipset 1 Specific Registers . 139
A.2 Chipset 2 System Management RAM Control register 148

Bibliography 155

vi

List of Figures

1.1 Machine and Chipset 1 . 4
1.2 Machine and Chipset 2 . 5
1.3 First set of machines used in the experiments 5
1.4 Second set of Machines used in the experiments 6
1.5 General architecture . 8

2.1 Security Context . 16
2.2 The Cloud Reference Model (figure from [131]) 21
2.3 Virtualisation Layer . 24
2.4 Consolidation . 24
2.5 Containment . 25
2.6 Full virtualisation (figure from[140]) . 28
2.7 Paravirtualisation (figure from [140]) . 29
2.8 Hardware-assisted virtualisation (figure from [140]) 30
2.9 Xen Architecture . 31
2.10 Intel Hub Architecture, based on [57] . 32
2.11 The Intel Platform Controller Hub . 33
2.12 Ring security scheme, based on [57] . 35
2.13 The PI and UEFI layers, based on [153] . 37
2.14 TPM Overview (figure from [54]) [57] . 39

3.1 SMM components . 47
3.2 SMRAM space for 32-bit machines . 48
3.3 SMRAM space for 64-bit machines . 49
3.4 SMRAM control register . 50
3.5 SMRAMC state before SMRAM initialisation 51
3.6 SMRAMC state after SMRAM initialisation 51
3.7 SMI Frequency Graph . 54
3.8 SMI Frequency Graph . 55
3.9 Entering and exiting from SMM . 56
3.10 Current SMM-based security tools architecture 59

4.1 Threat model . 71
4.2 Mitigating threats . 75

5.1 General architecture . 80
5.2 Execution flow of the algorithms . 85
5.3 Algorithm Measure Integrity . 86
5.4 Algorithm Manage Load Data . 90

vii

LIST OF FIGURES

5.5 Algorithm Load Data . 92
5.6 Algorithm Manage Compute Hash . 94
5.7 Algorithm Compute Hash . 96
5.8 Algorithm Manage Verify Hash . 98
5.9 Algorithm Verify Hash . 101

6.1 Manager program files . 107
6.2 Manager main menu . 109
6.3 SMRAMC status reported by the manager module for machine 12. Off-

set 88H. 118
6.4 SMRAMC status reported by the manager module for machines 1 to 5

and 13. Offset 90H for machines 1 to 5 and 9dH for machine 13. 119
6.5 All PMBASE SMM Related Registers Status. 120
6.6 SMI EN Register Status. 120
6.7 SMI STS Register Status. 121
6.8 GPE0 EN Register Status. 123
6.9 GPE0 STS Registers Status. 124
6.10 ALT GPI SMI EN Register Status. 125
6.11 ALT GPI SMI STS Register Status. 126
6.12 ALT GPI SMI EN2 Register Status. 126
6.13 ALT GPI SMI STS2 Register Status. 127
6.14 GEN PMCON 1 Register Status. 128

viii

List of Tables

1.1 Main SMM-Based security tools (SBST) 7

2.1 Intel Chipsets . 34

3.1 SMI latency . 53
3.2 SMI average latency . 53
3.3 SMI frequency . 54
3.4 Reported execution time . 62

5.1 Persistant variables . 88
5.2 Non-persistant variables . 88

6.1 Execution time . 132

ix

List of Theorems

2.1 Virtual Machine Monitor . 26

xi

List of Definitions

2.1 System Executive Software . 17
2.2 Code . 17
2.3 Agent . 17
2.4 Basic Code . 17
2.5 Atomic Function . 17
2.6 Task . 17
2.7 Set of Tasks . 17
2.8 Round . 17
2.9 Payload . 18
2.10 Set of Payloads . 18
2.11 Set of Data . 18
2.12 Memory Unit . 18
2.13 SMI Handler . 18
2.14 Set of Registers . 18
2.15 Resume Instruction . 18
2.16 Set of SMI . 18
2.17 Maximum Latency . 18
2.18 Maximum Memory Size . 18
2.19 Set of Requirements . 18
2.20 Set of Threats . 18
2.21 Set of Assumptions . 19
2.22 Time Elapsed Measurement Function . 19
2.23 SMM-Based Security Tool . 19

xiii

List of Algorithms

5.1 Measure the integrity of hypervisor dynamic data 87
5.2 Manage to call function LoadData() 91
5.3 Load the data to be measured from DRAM to SMRAM 93
5.4 Manage to call function ComputeHash() 95
5.5 Compute data hash . 97
5.6 Manage to call function VerifyHash() 99
5.7 Verify data hash . 100
5.8 Verify and set registers to reinforce SMM security 101
5.9 Verify SMMR interface integrity and trigger a late launch instruction . 102

xv

Chapter 1

Introduction

Only the paranoid survive.

ANDREW S. GROVE

1.1 Motivation

There are many security issues around computer systems. Thus, it is necessary to
enhance security and perform verification tasks to minimize the risk of potential
threats become successful attacks. These tasks are usually performed by security
tools, such as anti-virus.

In this context some concepts, such as isolation, privilege and view, are funda-
mental. Security tools must operate isolated to perform their tasks with minimal
risk of being hit by the problems they are trying to solve. Security tools need to
have high privilege to get in action at the right time and must have a global view
of the system, but also good ability to view and deal of its own environment to
enhance the chances of success when performing their tasks.

A common security task demanding isolation and high privilege is to measure
for checking the integrity of system components, such as the System executive soft-
ware (operating system or hypervisor). Such verification can be static or dynamic
(at run-time).

Generally speaking, to measure the integrity of hypervisors in a static manner,
a tool performs a cryptographic service to generate a hash code of the hypervisor
static code or data laid out in the main memory. To check the integrity it is necessary
and sufficient to generate again the hash code of the same hypervisor static code
or data in the memory and compare them. If the hash codes are equal, no changes
have happened and then the integrity is preserved. The dynamic measurement
is much more complex because the hypervisor dynamic code and data will vary
along the hypervisor execution. In both cases, the tool must be deployed in an
isolated environment, with enough access privilege whilst preserving the view of
the hypervisor code and data.

Then, the problem security analysts are facing is to deploy a security tool in
an isolated and high privileged environment, with good view of the system and
minimal risk to be tampered with by any threat.

When a System Management Interruption (SMI) is generated the processor en-
ters in the System Management Mode (SMM). So a set of powerful resources, as
isolated and protected memory, become available to the SMM executive software
(called SMI handler). Those resources can be used by a security tool so it becomes

1

1. INTRODUCTION

as resourceful as the SMI handler. More details about the SMM resources on Chap-
ter 3.

The System Management Mode (SMM) was introduced in IA-32 architecture
into Intel 386SL processor released in 1990, aiming to provide resources to manage
the system [87]. Since then, SMM has been a standard architectural feature in IA-64
and IA-32 processors [57]. A key feature of SMM is its high privilege; consequently,
the SMM executive software (SMI handler) has higher privileges than the system
executive software (operating system or hypervisor), allowing it to manage critical
system tasks.

The Intel 386SL processor is mobile version of the Intel 386 processor [66, 71, 87,
97]. Mobile computers have strong requirement for power saving, so they need a
robust way to manage power in the system. Thus, SMM was developed to meet
such a demand and provide power management and other system management
functions, such as hardware control. Prior to SMM, most of these functions were
accomplished by In-Circuit Emulation (ICE) tools.

Due to its powerful resources, as: isolated memory, high privilege, high priority
and complete view of the system; SMM has been used for purposes other than those
described in the Intel manuals [85, 86, 87].

In recent years, SMM was exploited successfully in different ways. For exam-
ple, by circumventing its protection mechanisms using a technique called “cache
poisoning” as described in [45, 148] and by exploiting a fail in implementation in
the SMM executive software (SMI handler), which lead to breach the Intel TXT
security to exploit the Xen hypervisor, as described in [147]. On the other hand, se-
curity researchers have been presenting solutions that capitalise on SMM resources
to design and implement new security tools, as HyperSentry [14] to measure the
integrity of hypervisors, SICE [15] to provide an isolated execution environment
and AppCheck [142] to protect applications by inspecting their code in the physi-
cal memory. A discussion about those tools in the context of this work can be seen
in 3.4.

Because of this, Intel, OEMs, BIOS and other related manufacturers, have been:
1) extending specifications, such as the addition of a new register to deal with
”cache poisoning” attacks [87, 46, 148] (section 3.2.3); 2) changing implementations,
such as setting the BIOS to lock the SMM access control register [87, 23, 47] (section
3.2.3 and section 3.5); and 3) introducing new technologies, such as (those tech-
nologies, their interrelations and interactions with SMM are discussed at particular
sections in chapter 3, as detailed ahead): the Intel Trusted Execution Technology
(Intel TXT) [57, 58] (section 2.4.3), the Dual-Monitor Treatment in the Virtual Ma-
chine Extensions (VMX) [87] (section 3.3.4) and the Intel Software Guard Exten-
sions (SGX) [111, 60, 10] (section 3.3.5). These changes and their impact on security
are discussed later in this thesis, mainly in chapter 3. Observing previous Intel
Architecture Software Developers Manual (as[66, 71]) and the chipsets manuals
[64, 65, 80, 81], considered in our target chipsets for this research, one can notice
that those characteristics and technologies were not or are not present in all ma-
chines.

Despite of a considerable number of works capitalising on SMM, there are a
lack of research on investigating the SMM itself and its fundamentals. The found
works report the use of SMM resources and how they take advantage of some SMM

2

1.2 LIMITS AND SCOPE

characteristics, as the use of the SMM isolated memory space (SMRAM), discussed
in 3.4. In spite of that, there is a lack of research to understand SMM, establish
requirements to use it for security purposes and define an architecture to use SMM
as a platform for security tools.

In particular, the SMM-based security tools studied have not been taking full
advantage from the SMM resources, as isolation and transparency (the SMI han-
dler executes unnoticed by the system executive software). Also, many of those
tools do not abide all the SMM constraints and limits, as latency time. In general,
their architectures are modular, being partially deployed in SMM and making con-
nections with their other parts deployed in unprotected areas in the system, which
let them subject to general attacks.

Thus, this research investigates the System Management Mode in the context of
Intel processors to establish a set of requirements and then design a generic archi-
tecture for SMM-based security tools. That generic architecture is tested by build-
ing a proof of concept to dynamically measure the integrity of the Xen hypervisor.
This measurement is limited to the minimum necessary to prove the concept of the
architecture.

1.2 Limits and Scope

This research limits its scope to Intel processors and chipsets in the x86 platform.
We chose Intel due to the amount of open publications, research, attacks and secu-
rity tools on Intel chipsets and processors available and due to Intel has the biggest
market share for processors in the world. However, AMD processors based on the
x86 architecture are similar to Intel processors, including the SMM.

We will develop a proof of concept and a manager module for being used in
two machines with different chipsets. The reason behind that is because SMM is
specific for each machine and the set of resources and registers, SMM or non-SMM,
vary depending on the chipset and processor in use at the considered machine. So,
any SMM-based tool must be developed specifically for a particular machine. We
use Linux as the operating system in all machines utilised in our experiments due
to easiness to access PCI bus and the components connected to that bus. In our
early experiments we noticed that the Linux distribution CentOS 5.11 is the most
appropriated operating system for our work, since that operating system installs
Xen hypervisor during its own installation and the tests with a version of our proof
of concept using the library libpci was successful in accessing the set of registers
we targeted in this work.

The proof of concept aims to perform measurement of essential data of a hyper-
visor. We choose the Xen hypervisor 4.0 because the amount of open publications
and researches available for that hypervisor and because it fits well in the CentOS
5.5 operating system. We focus on xend-config.sxp file for the measurement (more
details can be found in chapter 6). It is noteworthy that the focus of this work is not
to provide a research around measuring the integrity of hypervisors, but capital-
ising on SMM resources to provide an environment isolated, high privileged and
with good view for security tools. In general, the term SMM is used to refer to
the set of resources available in the system when the processor is operating in the
System Management Mode.

3

1. INTRODUCTION

Figure 1.1: Machine and Chipset 1. The Acer Aspire X1935, endowed with Intel
i5-3450 processor, has the SMRAMC register locked and SMRAM not opened after
the bootup process.

The main chipsets considered in this research are (For checking all machines
used in this thesis, please check table 3.1):

• Machine and Chipset 1. ACER Aspire X1935, Intel core i5-3450, 3.1GHz, 8GB
RAM, Northbridge Ivy Bridge 3rd generation, Southbridge B75, socket Intel
LGA 1155. Year of releasing: 2012 [9].

• Machine and Chipset 2. Compac Evo N410c, Intel Pentium III-M, 1.2 GHz,
8GB RAM, Northbridge 82830M, Southbridge ICH3-M. Year of releasing: 2001
[32].

The criteria for choosing those machines was to have one old computer where
potentially the SMRAMC register (System Management RAM Control Register see
sections and , for more details on this register) is unlocked and SMRAM is opened
after the bootup process and another modern computer where potentially the SM-
RAMC register is locked and SMRAM is not opened after the bootup process. The
SMRAMC register is discussed in details in section 3.2.3.2 and the SMRAM in sec-
tion 3.2.2.

From the previous paragraph comes our main limitation in this research: to
test our proof of concept and met requirements r3 (persistent) and r4 (cooperative)
(the requirements are discussed in 4.4), we need to insert our tool in the the SMM
executive software code (called SMI handler), which is available in coreboot [36]
(more details about coreboot in section 2.4.1), compile coreboot, record the compi-
lation into a ROM-BIOS chip, install that chip in the target chipset and them test the
whole system. However, we do not have all resources for doing these steps in this
research. Thus, we assume that our proof of concept is already compiled and em-
bedded in the BIOS, as described in section 4.3. An implication from this limitation
is that we just can test our proof of concept in machines which has the SMRAMC
register unlocked and SMRAM opened after the bootup process, by copying it from

4

1.2 LIMITS AND SCOPE

Figure 1.2: Machine and Chipset 2. The HP Compac Evo N410c, endowed with In-
tel Pentium III processor, has the SMRAMC register unlocked and SMRAM opened
after the bootup process.

Figure 1.3: First set of machines used in the experiments. This is the first set of
machines used in this research (table 3.1).

DRAM to SMRAM. Although this can have implications to requirements r5 (iso-
lated) and r8 (complete) (section 4.4), our assumption also guarantee us to meet
requirements r5 and r8, considering the objectives of this thesis.

5

1. INTRODUCTION

Figure 1.4: Second set of Machines used in the experiments. The second set of
machines used in our research (table 3.1).

This research is focusing on the issue of using SMM for security purposes. At-
tacks or exploits related to SMM are just considered when they are useful for im-
proving the issues related to security.

1.2.1 Scope considering other SMM-Based Security tools

In this section we aim to highlight the main differences, meaning the points not
covered for other SBST (those one described in table 1.1) and how to make those
tools take more advantage from SMM, as by using more SMM resources or by using
those resources more intensively.

Section 3.4.1 details those tools and presents a brief analysis of them. First, we
identify the opportunities for improvement in the tools. For example: HyperCheck
[141], HyperSentry [14], auditing tool [61], AppCheck [142], MUSHI [151], SPEC-
TRE [149] and IOCheck [150] use a similar architecture, taking in account a remote
machine to analyse the collected data and for other management functions (figure
1.5). Although that modularised architecture might address and even overcome is-
sues around the limited amount of SMM memory [87] and time limit constraint of
150 µs, which is the maximum amount of time the processor must spend when exe-
cuting in SMM [90], it opens new ways for attacking the host machine and the tool,
as the communication channel (although some tools use attestation mechanisms to
prevent that), the drivers and devices used to enable communication and the own
remote machine. Moreover, they enlarge the trusted computing base (TCB), since
all those items should be in the TCB.

Thus in our proposal all SBST components must be deployed in the SMM
memory (the SMRAM) to take advantage from the isolation provided by SMM and
to minimise the TCB. The SBST must execute in the available time according to the
algorithms described in chapter 5. Note that, according to chapter 6 our proposal
has also a manager module, which does not need to be deployed in the SMM mem-
ory or even in the target machine. Since the manager module is used for learning
about and researching the target machine, the manager might be used in a machine
endowed with the same chipset of the target machine.

Another important issue is that since when entering SMM the processor looks
for the first instruction to be executed at the address formed by the content of the

6

1.2 LIMITS AND SCOPE

SMBASE register + 8000H (by default the SMBASE register content is 30000H, see
section 3.2.3.1 for more details) in SMRAM, where the SMM executive software
(SMI handler) is located. This implies that any SBST must be a modified version
of the SMI handler. So, tools use a modified version of the original SMI handler.
For example HypeBIOS, SPECTRE and IOCheck use an SMI handler from Coreboot
[36], but it is not clear what happens to the original functions of the SMI handler
after the modifications have been made, or the level of cooperation between tools
and the original SMI handler. So in our proposal we preserve the code and de
functions of the original SMI handler, by working cooperatively with it.

To start the SMI handler and consequently the SBST , a System Management In-
terruption (SMI) must be generated in the chipset. There are common ways to trig-
ger an SMI to start the security tools as writing to the Programmed I/O Port 0xB2H
[23, 45]. Because it is a common way to trigger an SMI any attacker might aim to
thwart such action by denying the use of that port. Thus, an SBST should take
advantage from any SMI generated to start executing its job, which is the simplest
way to start and keeping the tool operating. Then our proposal is SMI-independent
(requirement r7, the requirements are discussed in 4.4), which means it can start at
any SMI.

More details on our proposed architecture can be find in chapters 4, 5 and 6.

Table 1.1: SMM-Based security tools (SBST). This table list the main SMM-Based
Security tools considered in this work, providing their objectives and the target
platform (as Intel and AMD)

Tool Objective CPU
HyperCheck [141] Check integrity of hypervisors Intel
HyperSentry [14] Check integrity of hypervisors Intel
HyperGuard [146] Check integrity of hypervisors *
SICE [15] Provide an isolated workload AMD
SPECTRE [149] Virtual machine introspection AMD
IOCheck [150] Check integrity of I/O devices AMD
Auditing tool [61] Auditing cloud computing systems *
AppCheck [142] Protect integrity of processes Intel
MUSHI [151] Provide isolated environment for VM **
hypeBIOS [152] Provide isolated environment for VM AMD
BIOS Chronomancy[25] Fix fails in a implementation of a CRTM Intel

(*) Not defined in the paper.
(**) Not Implemented. It was only a proposal of framework for AMD platforms.

1.2.2 Scope considering other technologies present in the chipset

Considering our scope of Intel processors, the main technologies which might be
present in the chipset and which might have some interaction with an SBST are
Intel TXT, Intel VMX, Intel SGX, TPM, UEFI. Again note that not all chipsets are
endowed with VMX support (see section 3.3.4 for more details) and that SGX tech-
nology is not yet available commercially (see section 3.3.5 for more details).

7

1. INTRODUCTION

Chipset

Bootup

Processing

Processor

SGXVMXI/O

Cache

DRAM

Virtualisation

Hypervisor

VM0 VM1 VM2 VMn. . .

Communication
Hardware

BIOS
SMM-based
Security tool

Communication
channel

Remote machine

Agent

Figure 1.5: Present SBST architecture. This figure presents the current architecture
used for most SBST s. The figure reflects a comum chipset, where the host machine
is using a virtualization layer (section 2.3.2). It is noteworthy that not all chipsets
are endowed with VMX support (see section 3.3.4 for more details) and that SGX
technology is not yet available commercially (see section 3.3.5 for more details).

We have not identified any issue related to those technologies, which can have
impact in our proposal, as making an SBST stops working or behaving in an un-
predictable way. However, it is noteworthy that: Intel VMX and its interactions
with SMM are well defined (see section 3.3.4). Our proposal is based on BIOS,
so we do not considerer the interaction of SMM with UEFI, however those interac-
tions are specified in [2] and can be subject of a new research topic as also, TPM and
SGX. We do not use TPM in this work, but we believe it can be used to improve our
SBST as discussed in HyperCheck [141]. SGX is not available yet commercially
but there is some documentation available (see section 3.3.5 for details). Intel SGX
might be a good answer for low-level security issues since it takes security to the
processor level. However, we believe our SBST proposal may work cooperatively
with SGX. We do not identify any issue related to Intel TXT (see section 2.4.3, on
Intel TXT).

1.3 Significance

An intended outcome of this research is to identify and establish a set of require-
ments, which should be met when developing a SMM-based security tool. Those
requirements arise out of the limits and constraints of the SMM. The requirements
contributes to harden the SMM-based security tool and make it more likely to be us-
able in a real environment, by enabling the tool to utilise more resources of SMM.
A second intended outcome is to design a generic architecture for a SMM-based

8

1.4 RESEARCH QUESTIONS

security tool in compliance with the requirements. Generic architecture in this con-
text means that the architecture holds for any SMM-based security tool, no matter
its security task, provided that the requirements are met. The last intended out-
come is to built a proof of concept to test and then demonstrating the validity of
the architecture. This proof of concept should consist of a agent module, which is
deployed in the SMM memory and implements the security task of the tool; and
a manager module to help the tool developer to understand the particularities of
a target chipset. The manager module does not need to be deployed in the SMM
memory, since it is used to probe and research a target machine and then under-
stand the capabilities and limitations of such a machine. The machine probed is
not necessarily the machine where the agent will be deployed, but it needs to have
the same or similar chipset.

1.4 Research Questions

This section defines a main research question and three specifics questions to guide
this work. The subject of this research is how to use the System Management Mode
to offer a resourceful environment to a security tool.

1.4.1 Main Research Question

The main research question aims to provide the direction for this work, guiding the
research efforts.

Main question. Can we specify a hardened and isolated security tool capitalising on
SMM resources, while considering the limits and constraints of those resources?

The System Management Mode has a set of powerful resources available to its
executive software (SMI handler), which can be used to build a hardened and iso-
lated security tool. However, those resources have firm limits, as amount of mem-
ory available, and constraints, as maximum latency time. A SMM-based security
tool must abide by such limits and constraints. Some security tools capitalising
on SMM resources, as HyperSentry [14], HyperCheck [141], auditing tool [61], Ap-
pCheck [142], SPECTRE [149] and IOCheck [150] use a modularised architecture,
where a security task is divided in subtasks and each module is responsible to per-
form one subtask. Then, the modules are deployed in different parts of the system
and in another machine. A common configuration in this scenario is to have a mod-
ule in the SMM memory (SMRAM), another one in the DRAM or in a PCI card and
another module in a remote machine. The remote machine is normally responsible
for analysing the collected data in the target machine. That architecture is designed
to deal mainly with the SMM memory limitation and the maximum latency time.
Although it is a good approach, it lost the main reasons to use SMM: the strong iso-
lation. Besides, this enlarge the TCB by adding, for example, a PCI card or another
machine. In chapter 3 there are details, explanations and schemes about SMM and
those tools

9

1. INTRODUCTION

1.4.2 Specific Research Questions

To help answering the main questions, we propose three specific research ques-
tions. Each question addresses a specific phase of this research and serves as input
to the next one. First one deals with the establishment of requirements to harden,
isolate and improve a SMM-base tool, while dealing with the limits and constraints
of SMM resources. The second question addresses the issue of design a generic
architecture to meet the requirements. The last question addresses the feasibility of
such a generic architecture.

Q1.Can we establish a set of requirements to harden, isolate and improve an SMM-
based security tool?

Security tools can take advantage from SMM resources to harden themselves
and enhance the capacity to accomplish their designed task. For example, The
SMM memory offers strong isolation to the SMM executive code and data. Also,
the SMM executive code has total control and global vision of the system when
the processor enters in the SMM. Thus, to understand the limits, constraints, re-
sources, mechanisms and components of SMM, it is required to investigate SMM,
its resources and the system components involved in the SMM operation. As this
research is considering Intel processors, it is also required to understand the rela-
tionship between SMM and other technologies present around Intel processor, such
as Intel Trusted Execution Technology (Intel TXT) [57, 58], Intel Virtual Machine Ex-
tensions (Intel VMX) [87] and Intel Software Guard Extensions (Intel SGX) [111].

Q2.Can we design a generic architecture to fit SMM-based security tools with different
tasks, while meeting a set of requirements to harden, isolate and deal with SMM limits and
constraints (by generic architecture, we meant one able to fit different security tools with
different tasks)?

Most existent SMM-based security tools, as HyperSentry [14] and HyperCheck
[141], employ a modularised architecture comprising of modules deployed in dif-
ferent parts of the system to perform their tasks. Although such an architecture
addresses some limitations and constraints of SMM, they leave modules out of the
isolation protection of SMM memory. Allegedly, the majority of SMM-based secu-
rity tools use SMM to achieve strong isolation. So, that modularised architecture
does not make much sense. Besides, that architecture enlarges the TCB by adding
system components, as PCI cards and remote machines. To take full advantage of
SMM resources, a new architecture must be designed. That new designed architec-
ture for SMM-based security tools must deal with all limitations and constraints of
SMM and use SMM resources to harden themselves and guarantee the maximum
isolation for the whole tool. Also, it need to be generic enough to fit security tools
with different tasks.

Q3.Can we build a proof of concept to demonstrate the feasibility of a generic architec-
ture, which fits SMM-based security tools, addresses SMM limits and constraints, hardens
the fit tool and isolate the whole code and data of the tool?

Build a SMM-based tool is a tricky job, since SMM resources has firm limits and

10

1.5 CONTRIBUTION

constraints. For example, the maximum latency time recommend by Intel is 150 µs.
Above that time there is the risk of system executive software time-outs [90]. Per-
forming any security task in such a time limit is hard. Observe, for instance, table
3.4 with the execution time reported for some SMM-based security tools. There are
other challenges, as how to deploy the tool into SMM memory to guarantee isola-
tion, since the SMM memory access is locked when the processor is not in SMM.
The access to SMM memory is allowed when the processor is in SMM, but the full
control of the system is passed to the SMM executive software. Another challenge
is how to start the tool once it is deployed in SMM, since de processor always starts
the SMM executive software when entering in SMM. From this, arise out another
challenge: the security tool needs to cooperate with the SMM executive software,
since the SMM executive software is exclusive user of SMM resources and after
the deployment of the security tool both will be in the same memory space and
competing for the processor time. Another important issue is the chipset model of
the target machine. Each chipset model and sometimes each chipset family (a set of
chipset models) may specify SMM in a different ways. Also, any OEM manufactur-
ing chipsets can implement SMM components in different ways too. Thus, a prove
of concept should consist of two part: a security agent, to perform the designed
security task; and a probe module to investigate the target chipset. Note that the
probe module does not need to be deployed into SMM and it can investigate the
chipset in any machine, provided that the chipset model is the same in the probed
machine and in the target machine.

1.5 Contribution

1. A detailed review and description of the SMM resources and components.
SMM resources and components have been changing over the years. Some
changes were motivated by attacks, as locking the SMRAMC register (Sys-
tem Management RAM Control Register see sections 3.2.3.2 and A.2 after the
bootup process. Other changes were motivated by the introduction of differ-
ent technologies in the processor, as the dual-monitor treatment for SMM in
the Intel Virtual Machine Extensions (Intel VMX) [87]. A deep understand-
ing of SMM is essential to use it. So, this research investigate SMM and de-
scribe its resources according to Intel definitions. From a practical context,
this research investigate SMM in two chipsets, identifying and describing its
components. More details can be found in chapter 3.

2. Analysis of SMM-based security tools and the opportunities to improve
them. This research analyses the implementation and architecture of security
tools capitalising on SMM resources and their security tasks, as: HyperCheck
[141], to check the integrity of hypervisors; AppCheck [142], to check the in-
tegrity of applications; SPECTRE [149], to perform virtual machine introspec-
tion; and IOCheck [150], to check integrity of I/O devices. After analysing
the tools, this research describes opportunities to improve the security tools.
More details in section 3.4.

3. Analysis of SMM attacks and how to thwart them. Attackers also have been
capitilising on SMM resources by exploiting SMM to attack specific targets,

11

1. INTRODUCTION

as the Xen hypervisor in [145], or to have a isolated and resourceful platform
to deploy malwares [23, 47]. Thus, this research analyses the main published
attacks against SMM and indicates how they can be thwarted. More details
in section 3.5.

4. Establishment of a set of requirements to use SMM for security purposes.
The SMM was created to manage high priority system management tasks.
Moreover, Intel recommends in its Software Developer’s Manual [87] that
SMM should not be used for “General-purposes”. Such a recommendation
aims to preserve the important SMM functions, since SMM resources have
strict limits and constraints and is too risky let a “General-purpose” software
violates those limits and constraints and disturb the correct function of SMM
components, as by overwriting the SMM executive software SMI Handler
(more details in section 3.2.4 and 3.4). However, the fact that the system offers
timely and powerful resources when the processor is in SMM is motivating
enough to investigate a way to use SMM in the more transparently way pos-
sible. So, this research establishes a set of requirements, which a security tool
must met to overcome those limits and constraints, allowing the use of SMM
for “Security-purpose”. More details about the requirements in chapter 4.

5. Design of a generic architecture for SMM-based security tools. This re-
search designs an architecture generic enough to fit SMM-based security tools
with different functions. While there are many works designing tools for spe-
cific security purposes, this research focus on providing a architecture to be
used for many security tools aiming to accomplish different security tasks.
More details in chapter 5.

6. A proof of concept to probe chipsets and manage and deploy a SMM-based
hypervisor integrity measurement security tool. Although the generic archi-
tecture is designed to fit SMM-based security tools with different functions it
is neither convenient nor possible to build a proof of concept for all possible
security tasks. Then, this research focus in build a proof of concept to one
security tasks: measure the integrity of a hypervisor. In the context of this
research to measure the integrity of a hypervisor means to define some por-
tions of code or data or both and check the their integrity. So, this research
focus on Xen Hypervisor, version 4, performing on CentOS 5.11, to perform
measurement of file xend-config.spx. More details can be found in chapter 6

1.6 List of Publications

1. Article: William de Souza and Allan Tomlinson. Virtualisation Without a Hyper-
visor in Cloud Infrastructures: An Initial Analysis - PGNet 2013, Liverpool, UK.

2. Article: William de Souza and Allan Tomlinson. Understanding threats in a cloud
infrastructure with no hypervisor - WorldCIS 2013, London, UK.

3. Article:William de Souza and Allan Tomlinson. A Threat Model for a Cloud In-
frastructure with no Hypervisor - International Journal of Intelligent Computing
Research (IJICR), ISSN 2042 4655, Issues 1/2, Volume 5 (2014), pp. 405-411.

12

1.7 OVERVIEW OF THE RESEARCH

4. Article: William de Souza and Allan Tomlinson. SMM Revolutions - IEEE Big-
DataSecurity 2015, New York, USA.

5. Article: William de Souza and Allan Tomlinson. SMM-based hypervisor integrity
measurement - IEEE CSCloud 2015, New York, USA.

1.7 Overview of the Research

The remain of this work is organised as follow:
Chapter 2 brings the background knowledge of this work, explaining the con-

text and technologies involved in this research and building the definitions neces-
sary to provide the answer to the research questions.

Chapter 3 investigates and details the SMM resources and components in chipsets.
It presents related works and SMM-based security tools, analysing opportunities to
improve those tools. It also presents the attacks capitalising on SMM and discusses
if they are feasible nowadays and ways to thwart such attacks.

From the previous discussions, chapter 4 defines a set of requirements, which
should be met for any SMM-based security tool.

Chapter 5 outlines a generic architecture for SMM-based security tools, describ-
ing and discussing how the requirements can be meet and the algorithms to imple-
ment the solution.

Chapter 6 discusses the implementation and evaluation of the manager module
and the agent (the SBST itself).

Chapter 7 presents the conclusion of this work and directions for future works
in sub-areas of this research.

13

Chapter 2

Background

Sorry to be a wet blanket.
Writing a bitcoin description for
general audiences is bloody hard.
There’s nothing to relate it to.

”SATOSHI NAKAMOTO”

2.1 Introduction

Chapter 1 introduced the problem around security tools, which need to protect
themselves, to have high privileges and good view of the system and of their own
environment. In summary: strong isolation, high privilege and good view. Those
issues motivated research to use SMM for security purposes. However, capitalis-
ing on SMM is a challenging task, considering its limitations, constraints and the
components.

The present chapter contextualise the security problem addressed in this re-
search, positioning that problem in the big picture of security in the computational
system. The chapter presents a set of definitions required to formulate and design
the answers for research questions. It discusses the context of security in an abstract
view from the highest level considered in this work, a cloud, to the lowest, SMM
and its resources in a machine hosting a virtualised environment, by looking at the
security issues on cloud computing and virtualisation and describing the princi-
ples behind those technologies. We call this contextual issue as vertical security
level. Then, it discusses the environmental issues around the SMM: the compo-
nents in the host machine competing for processor time, memory space and with
concurrent security tasks; by analysing and describing the current state-of-art of
technologies as UEFI and Trusted Computing. We call this environmental issue as
horizontal security level. Finally, the chapter analysis and discusses works related
to the system executive software integrity, as integrity measurement, hardening
and new architectures, which are considered when building the proof of concept in
chapter 6. Section 3.4 addresses security tools capitalising on SMM.

Figure 2.1 presents a overview of the security problem discussed in this re-
search. The context of the problem is a cloud computing environment, comprising
of one or more machines represented in the figure by their chipset. The chipset, as
defined in section 2.3.3, is a more useful artefact to be considered in this research
than the complete machine. Each chipset hosts in its main memory (DRAM) a vir-
tualised environment comprising of one manager virtual machine (VM0), one or

15

2. BACKGROUND

 Cloud
Chipset

Bootup

BIOS

UEFI

TXT

TPM

Processing

Processor

SGXVMX I/O

Cache

DRAM

Virtualisation

Hypervisor

VM0 VM1 VM2 VMn. . .

. . .

Chipset 2

Chipset nChipset 1 V
e

rtical Secu
rity Le

ve
l

Horizontal Security Level

Figure 2.1: Security Context. The security context of this research problem com-
prises of a vertical security level from the more general concept of a cloud com-
puting, which is more visible for users, to the more specific component the SMM,
which is chipset specific; and a horizontal security level considering the bootup
process and processing issues and the technologies related to them.

more guest virtual machines (VM1 to VMn) and a hypervisor. The cache mem-
ory takes part of the problem, since some SMM attacks are perpetrated via cache
[45]. Then, we have two low-level blocks: bootup, consisting of components and
technologies related more to the security issues during bootup process, as BIOS,
UEFI, Intel TXT, TPM; and processing, consisting of components and technologies
related more to the security issues during the processing tasks. So, the vertical se-
curity level puts the research problem in context, relating it to security issues in
the: cloud, chipset, memory, virtualisation layer and cache. The horizontal secu-
rity level considers the research problem in its environment, relating it to security
issues in the components of the bootup and processing blocks.

The chapter is organised in four main sections and a discussion and a summary
section. The first section presents the set of definitions built to develop the solution
for the research problem presented in the chapter 1. Second section addresses the
vertical security level around the SMM and third section addresses the horizontal
security level around SMM. The fourth section presents the works related the sys-
tem executive software integrity. After, a discussion and a summary of the work
reported in this chapter are presented.

16

2.2 DEFINITIONS

2.2 Definitions

This section presents the definitions used when establishing the requirements and
designing the generic architecture.

In this work, the term “Technology” is used to designate an implementation of a
technique. For example, a hypervisor is a technique for managing virtual machines.
Xen [18, 28, 137, 59] is an implementation of a Hypervisor. So, in that example the
hypervisor is the technique and Xen is the technology.

Numerical bases are represented by a letter in the rightmost end of each num-
ber, as follow: H for hexadecimal, B for binary and D or no letter for decimal.

In this work we use the verb “set” to indicate the action in which a register or
a bit in a register (a position in the register, as in figure 3.4) have its value changed
to “1” and the verb “clear” to indicate the action in which a register or a bit in a
register (a position in the register) have its value changed to “0”.

Definition 2.1 (System Executive Software)
The system executive software SES is a code artefact with management functions in a
computational system. Examples of system executive software are operating system and
hypervisors.

Definition 2.2 (Code)
Code is a set of instructions written in any programming language to perform designed
actions in a deterministic way.

Definition 2.3 (Agent)
An agent is a code artefact designed to take a preprogrammed action autonomously, when-
ever it perceives a determined change in its environment.

Definition 2.4 (Basic Code)
A basic code bc is a piece of code comprising of basic management functions in a SMM-
based security tool. The rationale behind the bc is to perform tasks which are independent
of the payload loaded into the SMM-based security tool.

Definition 2.5 (Atomic Function)
An atomic function is a set consisting of one or more instructions performed in sequence,
without interruption and constrained by a time limit. That time limit must be less than 150
µs. An example of atomic function is computing the hash code of a memory region.

Definition 2.6 (Task)
A task ti is a well-defined function of a SMM-based security tool, which can be divided into
a finite set of subtasks as ti = {ti1, ti2, ..., tnm}, where each subtask tij performs an atomic
function. An example of well-defined task is measure the integrity of essential hypervisor
data.

Definition 2.7 (Set of Tasks)
A set of tasks T = t1, t2, ..., tn is a set, where each task ti performs a well-defined function.
It is not possible to say, a priori, that the set of tasks is a finite set.

Definition 2.8 (Round)
A round is the amount of work done by a function related to a task or a sub-task being exe-
cuted, without crossing the time limit available, which in general is not enough to complete

17

2. BACKGROUND

a task or a sub-task. A round starts with when an smii is triggered and finishes when a
rsm instruction is performed.

Definition 2.9 (Payload)
A payload p is a piece of code embedded into bc to perform a well-defined task. A payload
can be thought as a task implementation.

Definition 2.10 (Set of Payloads)
A set of payloads P = {p1, p2, ..., pn} is a set, where each payload pi performs a well-
defined task. It is not possible to say, a priori, that the set of payloads is a finite set.

Definition 2.11 (Set of Data)
A set of data D = {d1, d2, ..., dn} is a finite set of data to support the execution of a
SMM-based security tool.

Definition 2.12 (Memory Unit)
A memory unitmemSPACE [i] is a memory space, such asmemRAM [i], memSMRAM [i],
memBIOS [i], where i is an index in the memory space, indicating a specific location in that
memory space.

Definition 2.13 (SMI Handler)
The SMI handler SH is the SMM executive software, which is implementation, chipset
and OEM dependent.

Definition 2.14 (Set of Registers)
A set of registers REG = {reg1, reg2, ..., regn} is a finite set of registers related to
SMM .

Definition 2.15 (Resume Instruction)
The resume instruction rsm is an instruction to signal the processor to exit from SMM.

Definition 2.16 (Set of SMI)
A set of SMI SMI = {smi1, smi2, ..., smin} is a finite set of interrupts to signal the
processor to enter SMM, which is implementation, chipset and OEM dependent.

Definition 2.17 (Maximum Latency)
The maximum latency ml is the maximum time a SMM-based security tool can spend
when executing in SMM.

Definition 2.18 (Maximum Memory Size)
The maximum memory size ms is the maximum memory size a SMM-based security
tool can use in memSMRAM [i].

Definition 2.19 (Set of Requirements)
A set of requirements R = {r1, r2, ..., rn} is a finite set of requirements that must be met
by a SMM-based security tool.

Definition 2.20 (Set of Threats)
A set of threats H = {h1, h2, ..., hn} is a finite set of threats identified in the current
SMM-based security tool architecture.

18

2.3 CONTEXT AND TECHNOLOGIES

Definition 2.21 (Set of Assumptions)
A set of assumptions A = {a1, a2, ..., an} is a finite set of assumptions made to deal with
complexity and time constraints due to impossibility or inconvenience to tackle all issues or
threats identified in the research work.

Definition 2.22 (Time Elapsed Measurement Function)
The time elapsed measurement function te(f()) is a function to measure the time
elapsed of a function f().

Definition 2.23 (SMM-Based Security Tool)
A SMM-based security tool SBST is defined as SBST = {bc, pi, ti, D,memSMRAM ,
rsm}. Thus, an SBST has a basic code, responsible for management functions and a pay-
load performing a well-defined security task. SBST has a set of data D to support its exe-
cution and it should be laid in the SMRAM; the instruction rsm must be used by SBST to
finalise its execution.

2.3 Context and Technologies

This section explains and contextualises the problem addressed in this research,
considering the abstract vertical security level, as showed in figure 2.1. We consider
the cloud the highest level because it is a more general concept and more visible to
users, whereas the SMM is the lowest level because it is more specific, depending
on the chipset, less visible to users and high privileged. As a general rule the lower
the component in the vertical security level, the higher the privilege. In the vertical
security level, cloud computing is considered the highest entity, comprising of one
or more machines, each machine represented for its own chipset. The chipset has
many parts, including the virtualisation layer, memories, components of bootup and
processing. The virtualisation layer are hosted by the DRAM memory and has the
virtual machines in its high level and the hypervisor in low level. Cache memory
is positioned in a lower level than DRAM, since it is accessed before the DRAM
by the processor, so this is a sort of privilege. Finally, we consider the SMM as the
lowest level due to its powerful resources and we also consider that an successful
attack to SMM can compromise all the higher components In the vertical security
level. The components of bootup block are discussed ahead in the present chapter
and the components of processing block are discussed in chapter 3.

2.3.1 Cloud Computing

Cloud computing provides an infrastructure for customers to run their applications
and store their information. It allows several virtual machines, from different cus-
tomers, to exist on the same physical machine capitalising on economy of scale,
in a dynamic and scalable computational environment at a cost affordable for cus-
tomers [48, 131]. Although this is the main appeal for a cloud infrastructure it is also
the main concern for customers, since the shared environment is prone to threats
that can be exploited for a malicious party [30, 38, 63]. For example, a malicious
VM can start an attack against the whole infrastructure, targeting components as:
another VM running on the same server, the hypervisor or the underlying hard-
ware; and potentially exploiting a wide range of vulnerabilities in the virtualised
environment [108, 126].

19

2. BACKGROUND

The importance of cloud computing is more related to the benefits for busi-
nesses than its technical aspects. So, the discussion about cloud computing should
start in a business environment, where a company needs to decide to keep its own
infrastructure or migrate it to the cloud environment [62]. Migrate means to move
IT issues and resources to the Cloud Provider, with potential cost reduction, faster
time to market, greater market share, innovation and customer loyalty [55].

There are some confusion about the term cloud, specially because the own In-
ternet was referred as a cloud because users access resources through a browser
with no idea where such resources are located. To clarify that issue a set of features
based on [55, 112, 114, 131] is defined and listed below, so that any pool of resources
must have those features to be considered as a cloud computing environment:

• Internet technologies. The pool of resources must be available by means of
internet technologies.

• Services-based. The pool of resources is offered as well-defined services,
ready to be used by users.

• Scalable and elastic resources. Resources available for any user in the pool
must increase or decrease, according to the demands of such a user.

• Measured use. The use of resources in the pool, formatted as a services, must
be accounted, measured and billed to clearly express their utilisation by any
user.

• Shared resources. The resources in the pool are used by one user or shared
by two or more users, transparently, allowing economy of scale.

• Fault tolerant. The resources in the pool must be fault tolerant in such a way
that whenever a failure occurs, the resources of users must be migrated from
failed resources to working resources, transparently for users.

• Security. The pool of resources must be protected against internal and exter-
nal threats, including the protection and isolation among users.

Once a pool of resources can be recognised as cloud computing and considering
the Services-based features, a cloud computing provider can adopter three service
models, as described below [55, 112, 131]:

• Software-as-a-Service (SaaS). This model has a rich variety of services and
offers software as service in the cloud environment. Some examples are: the
Google app suite, offering a wide range of application, the Salesforce, offering
an applications to manage the sales process and customer relationship, and
Symantec, offering security services as anti-virus and firewall from the cloud.
Some variations of SaaS are Application-as-a-Service, Security-as-a-Service
(as McAfee [7]), Information-as-a-Service and Management-as-a-Service [55].

• Platform-as-a-Service (PaaS). In this service model, the cloud provider offers
a platform of hardware (network, processor, storage and so on) and software
(operating system, compilers, libraries and so on), so the users can deploy

20

2.3 CONTEXT AND TECHNOLOGIES

Figure 2.2: The Cloud Reference Model (figure from [131]). An abstract view of
the cloud computing environment layers.

or migrate their applications to the cloud computing environment without
worry about the amount of resources necessary in the moment of migration
or in the future. Examples of such service model are: the Microsoft Azure
[34], Red Hat [6] and Engine Yard [55].

• Infrastructure-as-a-Service (IaaS). This service model offers infrastructure to
specific needs of users, as storage, processing power and communication ca-
pabilities, so that the user has control over those resources to a certain ex-
tent. Amazon Web Services is an example of this model [1]. Some variations
of IaaS are Storage-as-a-Service, Database-as-a-Service, Network-as-a-Service
and Computer-as-a-Service [55].

Figure 2.2 depicts an abstract view of the cloud computing environment layers,
considering the concepts discussed before. This abstract view is also know as The
Cloud Reference Model [131].

One last taxonomy is important about cloud computing. It is related to the
deployment model, as listed below from the more restrict to the more embracing
[55, 112, 131]:

• Private cloud. This model refers to a cloud computing environment built to
serve a particular organisation. It can be built on or off premises and can be
managed or operated by the organisation or a third party.

• Community cloud. A community cloud is built for two or more organisations
which have common interest, as two or more Universities. It can be built on
or off premises of one or more organisations sharing the community cloud
and can be managed or operated by the organisations or a third party.

21

2. BACKGROUND

• Public cloud. This model refer to a open cloud computing environment, nor-
mally built in the public interest and managed and operated on premises by
a government, educational organisation or a large company.

• Hybrid cloud. A hybrid cloud is formed by two or more of the previous
deployment models, which keep their unities and identities, but are linked in
some extent to form a unique cloud computing environment.

Most of the discussion about security in the cloud computing environment
focuses on the upper layers of Cloud Reference Model (figure 2.2) and discus-
sions about security related to hardware limits this scope to physical access con-
trol [30, 63, 108, 126]. However, as we will discuss in details in this research, to
have good isolation, high privileges and good view of the system, security tools
must capitalise on resources from the low layer in the abstract model (figures 2.1
and 2.2). In this sense, the SMM may be the right place to deploy security tools to
defend the cloud computing environment [40].

A huge source of information about cloud is the Cloud Standards Customer
Council. Its Wiki contains standards, use cases and a comprehensive set of technical
documentation, ranging from “Cloud Customer Architecture for IoT” to “Impact
of Cloud Computing on Healthcare” [5].

2.3.2 Virtualisation

Virtualisation is a central technology in data centres, where it has laid the foun-
dation for advances and enabled the cloud infrastructure and cloud computing
[129, 131]. Generally speaking, it is a technique used to simulate one or more com-
puters in a single physical machine. By physical machine we mean a hardware
device, such as a PC, a server or mobile device. It enables the execution of several
and different environments with multiple operating systems on the same physical
machine (host hardware).

The term virtualisation can be associated to different concepts. In this section,
we will expose some of those concepts. However, this work is focuses on hardware
virtualisation (physical machine resources).

2.3.2.1 Virtualisation Layer

Figure 2.3 presents an abstract view of the virtualisation layer. There are two main
components in the layer: virtual machines (VM) and the hypervisor.

Virtual machines are software containers enabling operating systems to per-
form their applications in an isolated environment. In the example of figure 2.3 the
VM0 is a management VM and VM1 to VMn are the VMs containing the operating
systems. Note that in VM0 the operating system is called Host OS, since it manager
some functions of the VM1 to VMn, whose operating systems are called Guest OS,
meaning they are guest of the host OS.

A hypervisor also known as virtual machine monitor (VMM) is a high priv-
ileged component that manages the virtual machines in the same virtualised en-
vironment [129]. In an abstract view, it consists as a layer between the VMs and
the hardware, and controls the guest OSs access to the machine resources. Two re-
quired features of a hypervisor are security, since it is a main target for attacks, and

22

2.3 CONTEXT AND TECHNOLOGIES

resource scalability on-the-fly, i.e. the hypervisor should be able to allocate more
resources from the host system without stopping the VM that needs the resource.
The hypervisor manages all external interactions of VMs, including access to the
host resource [116]. External interactions are done by means of VM exits. Conse-
quently, the communication among different VMs or VMs and other components
in the infrastructure is done indirectly through the hypervisor, by means of VM
exits [135]. The exception for that rule is when a management VM is being used,
since part of the management function are done by the management VM, as in the
Xen Hypervisor [18].

A VM exit is a trap-and-emulate virtualisation implementation, similar to what
happens in operation systems. It occurs when the VM code tries to execute a priv-
ileged instruction. When this happens, a VM exit occurs, the VM execution is in-
terrupted (trap) and the hypervisor takes over execution to handle the privileged
instruction (emulate) [129]. VM exits are rather frequent. As reported in [135], an
idle VM running on Xen 4.0, VM exits occur approximately 600 times/s.

Figure 2.3 exposes the communication scheme in the virtualisation layer. VM0

accesses the hypervisor via special calls (for example, hypercalls or binary transla-
tion). VM1 to VMn communicate with hypervisor via VM exit and the other way
around via VM entry. VM1 to VMn access hardware resources by VM0 through the
hypervisor. VM1 to VMn can communicate each other and form a virtual network,
using virtual network interface cards (NIC) via a virtual switches [116].

The virtualisation layer can be arranged in many ways, depends on the im-
plementation. So, not all implementations have a management VM. One reason
for have a management VM is to minimise the hypervisor size. In general, device
drivers are located in the management VM. So, management VM (VM0) and the
hypervisor share management functions.

2.3.2.2 The Importance of Virtualisation

Besides the importance for enabling cloud computing, virtualisation allowed ad-
vancements in data centres, solving at least a fundamental problem, as follows: in
many data centres, the demand for new physical servers had been increasing in a
way that approached the physical room limits. This scenario contrasted with the
situation of physical servers: while data centres were full of servers, the servers
themselves were quite underutilised [116]. The adoption of virtualisation solves
this issue by enabling the use of two procedures called consolidation (figure 2.4)
and containment (figure 2.5).

Consolidation is when physical servers are converted into virtual servers, such
that each physical server is converted to one equivalent virtual server and all vir-
tual servers are hosted by only one physical server, which can be called virtual-
isation server. This new physical server adopting virtualisation can host several
virtual servers. This brings some advantages, such as: decrease the numbers of
physical servers, release room in the data centre, save power and allow a greater
use of hardware resources (figure 2.4).

Containment is a similar concept, but with a subtle difference. After, consolida-
tion in a data centre, containment is the next logical step. It consists in, whenever
a new physical server is needed in the data centre its workload is virtualised in a
new virtual server and hosted in an existent virtualisation server, instead of buying

23

2. BACKGROUND

Virtualisation Layer

Hypervisor

VM1

. . .App1 App2 Appn. . .

Guest OS

VM2

App1 App2 Appn. . .

Guest OS

VMn

App1 App2 Appn. . .

Guest OS

VM0

Host OS

Management Apps

Hardware (Chipset)

. . .

. . .

Figure 2.3: Virtualisation Layer. This example shows a particular arrangement of
a virtualsation layer comprising of a Management VM (VM0), VM1 to VMn (vir-
tual machines containing guest operating systems) and a hypervisor. The arrows
express the communication scheme in this particular arrangement.

Physical Servers

Virtualisation Server

Virtualised Servers

Figure 2.4: Consolidation. It consists in virtualising one or more physical servers
and migrated them to only one new physical server. For example, four servers
offering services of: database, web, web service and firewall; are virtualised and
consolidated in just one physical server. That new physical server can be called
virtualisation server.

a new physical server. The main advantages of containment are eliminating the
necessity for more room in the data centre and decrease the physical servers’ base,

24

2.3 CONTEXT AND TECHNOLOGIES

New Physical Servers Virtualisation Server

Virtualised Servers

Figure 2.5: Containment. It is the next logical step after Consolidation. When-
ever a new physical server is required, it is virtualised and hosted in a existent
virtualisation server. For example, in a data centre, four new servers are required:
name server, payment server, file server and email server. Instead of purchasing
new physical servers, they are virtualised and hosted in the existent virtualisation
server.

and the consequent hardware upgrades (figure 2.4).

2.3.2.3 Virtusalisation Historical Facts

Virtualisation is by no means a new subject in Computer Science. It arose almost
with the advent of digital computer and the first works related to it are dated from
the 1950’s [116]. To a certain extent, virtualisation arose as natural evolution of
time-sharing system [35]. In the early life of virtualisation, the main concerns were
to determine whether a computer could be virtualised and understanding that vir-
tualisation was not simply a time-sharing system, but a new technique that did not
necessary exclude time-sharing systems [115].

In the past, virtualisation was associated mainly with cost concerns, since com-
puters were expensive and in general could only perform one task at a time, leaving
valuable hardware resources underused. Then, it was a paramount matter to look
for a way to increase the resources ratio of use and serve more users. Nowadays,
virtualisation regains its space and has becoming a growing research area, since it
has many possible application besides those ones which motivated it to arise out
[116].

2.3.2.4 Formalisation and Fundamentals of Virtualisation

With the rise of virtualisation, one of the main concerns was determining if a com-
puter could support virtual machines, which meant whether a computer could be
virtualised or not. In this direction Popek and Goldberg [115] presented formal
requirements that test sufficient conditions for a computer architecture to support
virtual machines. Although that work refers to virtual machines, in fact all tech-

25

2. BACKGROUND

niques and new components presented in Popek and Goldberg’s paper were basi-
cally the same as is present in todays virtualisation. That includes the definition
of a virtual machine monitor (or hypervisor) and its properties and the classifica-
tion of instructions for virtualised environments, based on the behaviour of such
instructions. The authors also use the term control program to refer to the hypervi-
sor.

Three properties for a hypervisor were defined [115, 56]:

1. Efficiency property. Statically proved dominant instructions must be exe-
cuted directly on the real processor, with no intervention by hypervisor.

2. Resource control property. The hypervisor must be in exclusive control over
system resources and regain resources previously allocated to virtual ma-
chines, whenever necessary.

3. Equivalence property. All programs executed under the hypervisor must
behave identically when running directly on a physical machine.

Popek and Goldberg proposed a classification of instructions for supporting
virtualised environments, based on the behaviour of such instructions, as follow
[115, 54]:

1. Privileged instructions. They can only be executed if the processor is in a
supervisor state, or privileged mode and they cause a trap to the privileged
mode, if executed with insufficient privileges.

2. Control sensitive instructions. Instructions that affect the resource configu-
ration of a platform.

3. Behaviour sensitive instructions. They are those instructions whose behaviour
depends on the configuration of resources.

Then, following the properties established for a hypervisor and the classifica-
tion of instructions above, the follow theorem is defined [115]:

Theorem 2.1 (Virtual Machine Monitor)
For any conventional third generation computer, a virtual machine monitor may be con-
structed if the set of sensitive instructions for that computer is a subset of the set of privi-
leged instructions .

Although the theorem 2.1 refers to hypervisors, it can be extrapolated to the
whole virtualised layer, since by constructing a hypervisor for any computer means
enable such a computer to host a virtulisation layer and the hypervisor is a central
piece in the virtualised environment. Moreover, it does not make sense to have a
hypervisor without the virtualision layer. Also, the ”third generation computer”, as
defined by the authors, can be extrapolated to contemporary commodity hardware.

26

2.3 CONTEXT AND TECHNOLOGIES

2.3.2.5 Techniques of Virtualisation

There are different virtualisation techniques, which were developed for specific
purposes. Sometimes those techniques can be used together to build resourceful
environment, as a private cloud computing. Some of virtualisation techniques are
described below. This research focuses on hardware virtualisation.

• Hardware virtualisation. This technique virtualises hardware resources from
a physical machine. It offers to one or more virtual machines physical re-
sources of a host machine, as memory and processor, giving them the illusion
that all physical resources are available to virtual machines. In general, the
access to physical resources is controlled by a hypervisor (figure 2.3). Some
products that implement hypervisors to virtualise hardware are VMwares
virtualization products, Microsoft Virtual Server, Citrix XenServer and the
Xen hypervisor.

• Server virtualisation. This technique is used to virtualise physical servers. In
this sense, a physical server is converted to a software workload. This work-
load is migrated to a virtual machine and from then on it is a virtual server.
A single physical machine can host several virtual servers. This approach
has many advantages, as scalability, power saving, eliminate the necessity for
room in data centres or in IT spaces, easy to maintain, easy to upgrade, high
ratio of hardware resources use in the host physical machines (see figures 2.5
and 2.4).

• Desktop virtualisation. Desktops can be virtualised by means of thin clients,
which are physical machines with less hardware resources than a common
computer (as a personal computer) can have. In this scenario, a virtualised
desktop has a minimal set of resources necessary to connect to a server, down-
load its workload and work as a common personal computer, but all heavy
processing and storage are done by the server. The virtualised desktop user
has limited access to the system resources. For example, to configure their
workload, tasks, installing programs or executing anti-virus, must be per-
formed by the server. Commercial solutions for this kind of virtualisation are
Citrix’s XenDesktop and VMware View.

• Operating system virtualisation. Operating systems can be virtualised to
create an isolated environment to them. So, a virtual machine can be created
and an operating system installed into it, allowing the operating system runs
in a full-fledged way, as if it has all physical machine for it (figure 2.3). This
kind of virtualisation has many applications (ways of using it). For instance:
it can be used as a sandbox, allowing security and performance tests; and
it can allow different and incompatible operating systems to execute concur-
rently in the same physical machine. Those applications take advantage of the
strong isolation features provided by the virtualised environment. Another
way to look to operating system virtualisation is observing the isolated envi-
ronment provided by operating systems to their processes, as FreeBSD (jails),
OpenVZ, Virtuozzo and Solaris (containers or zones) provide [59, 137], so
that a process running in such operating systems can only accesses resources

27

2. BACKGROUND

allocated to it. CentOS, our target Operating System, has many supports to
virtualisation, as virtual hosts and the Xen hypervisor and KVM [16].

• Application virtualisation. Applications can also be virtualised. This has
many applications; for instance, to allow incompatible applications to run in
the same physical machine, enabling a desktop user to have access to both ap-
plications. It is also useful to deploy and upgrade applications. Some exam-
ples of commercial products to virtualise applications are Microsoft’s App-V,
Citrix’s Application Streaming and VMware ThinApp.

2.3.2.6 Virtualisation Categories

The three main categories of virtualisation are: Full virtualisation, Paravirtualisa-
tion and Hardware-assisted virtualisation [129, 140]. Those categories are some-
times referred as virtualisation implementations [129] or hypervisor implementa-
tions [54]. By design, the x86 architecture does not support virtualisation, since it
has 17 non-virtualisable instructions that can be classified as sensitive instructions
[115, 118] (see 2.3.2.4). Then, that is the issue to be solved by the categories or
hypervisor implementations discussed below.

• Full Virtualisation. It provides a complete abstraction of the guest OS (fig-
ure 2.3), simulating the underlying hardware in such a manner that the guest
OS is not aware about the virtualisation and has the impression that all hard-
ware resources are allocated to it (figure 2.6). This is achieved by a combi-
nation of binary translation and direct execution [140]. Binary translation is
a technique that replaces non-virtualisable instructions with new sequences
of instructions. In order to improve the performance, user level code is di-
rectly executed on the processor. No modifications are necessary to either the
guest OS or the underlying hardware. VMwares virtualization products and
Microsoft Virtual Server are examples of full virtualisation.

Figure 2.6: Full virtualisation (figure from [140]). It simulates the underlying hard-
ware by combining binary translation, a technique that replaces non-virtualisable
x86 instructions with new sequences of instructions, and direct execution of user
level instructions (non-privileged instructions).

28

2.3 CONTEXT AND TECHNOLOGIES

• Paravirtualisation. It addresses the problem of non-virtualisable instructions
by modifying the guest OS kernel and replacing these instructions with hy-
percalls that communicate directly with the virtualization layer and provides
hypercall interface for other critical kernel operations [140]. Thus, hyper-
calls play the same role in paravirtualisation that binary translation plays in
the full virtualization techniques (figure 2.7). For instance, the instruction
IOINSR, used when the guest software attempts to execute an I/O instruc-
tion, should be replace with a new sequence of instructions in binary trans-
lation, or transformed in a hypercall if paravirtualisation is being used. A
hypercall is similar to a system call used in an OS, that is why in order to
use paravirtualisation it is necessary modify the guest OS. In this case, com-
modity OS cannot be used. However, some operating systems as Ubuntu and
Red Hat also offer support for paravirtualisation. The Citrix XenServer is an
example of paravirtualisation.

Figure 2.7: Paravirtualisation (figure from [140]). It replaces the non-virtualisable
x86 instructions with hypercalls, which communicate directly with the virtualiza-
tion layer. It is required that the guest OS kernel is modified to implement the
hypercalls.

• Hardware-assisted virtualisation. It refers to a set of features developed
by hardware vendors to provide hardware mechanisms to simplify the use
of virtualisation. It targets non-virtualisable instructions (privileged instruc-
tions) and includes a new CPU feature that allows the hypervisor to run in a
new root mode below ring 0, sometimes referred as ring -1 [45, 46, 145]. Thus
privileged and sensitive calls are set to automatically trap to the hypervisor,
eliminating the need for either binary translation or paravirtualization (fig-
ure 2.8). Examples of this technology include Intel Virtualization Technology
(VT-x) and AMDs AMD-V [140].

2.3.2.7 Hypervisor

The hypervisor, also known as virtual machine monitor or control program [56,
115], is the virtualised environment component that manages virtual machines and
controls the access to the system resources. Considering an abstract view, the hy-
pervisor is inserted between the virtual machines and the hardware (figure 2.3).

29

2. BACKGROUND

Figure 2.8: Hardware-assisted virtualisation (figure from [140]). It provides hard-
ware mechanisms to simplify the use of virtualisation, targeting non-virtualisable
instructions and includes a new CPU feature that allows the hypervisor to run in
a new root mode below ring 0. It needs neither binary translation nor paravirtual-
ization.

Hypervisors can classified in one of three types [116, 118]:

• Bare-metal hypervisor (type 1). It executes on top of the hardware platform.
It is a kind of thin operating system and controls the hardware, handles re-
source scheduling and access and monitors virtual machines. It is normally
the choice when performance is a strong requirement. Examples of type 1
hypervisor are: VMware ESX, Citrix XenServer and Microsoft Hyper-V.

• Hosted hypervisor (type 2). It executes on top of an operating system envi-
ronment, as a process. System resources are presented by the underlying host
operating system. Examples of type 2 hypervisors are: Parallels workstation,
Microsoft virtual server, QEMU, VMware server and VMware workstation.

• Hybrid hypervisor. It has a control structure running directly on hardware
and employs a high privileged virtual machine to management functions
(VM0 in figure 2.3). Example of management function is the access to device
drivers. In a hybrid hypervisor, device drivers are located in the management
virtual machine and it can have access to the hardware without interference
of the hypervisor 2.3. Examples of hybrid hypervisors are: Xen hypervisor
and Microsoft’s Viridian.

2.3.2.8 The Xen Hypervisor

Xen is a hypervisor implementation, based on paravirtualization (section 2.3.2.6).
However, paravirtualization implemented in Xen is different from other one imple-
mented in other works, since Xen was designed to deal with popular and standard
applications and services, overcoming limitations present in other works, as in De-
nali Project [8], which among other things does not support x86 segmentation [18].

Operating systems running as guests in any Xen virtual machine need to be
modified to run over Xen [28]. Although this can be a drawback at first glance, Xen

30

2.3 CONTEXT AND TECHNOLOGIES

achieves high-performance and strong resource isolation because of those modifi-
cations required by their guest operating systems [137, 18].

In Xen context, virtual machines are called domains. So, Xen has a domain
0 (dom0) and one or more unprivileged domains (domU). The dom0 contains re-
sources necessary to manage Xen and the other domains and also possesses privi-
leged access to the underlying hardware. Then, whenever an unprivileged domain
needs to access the hardware resource, this is made by means of domain 0 (fig-
ure 2.9) [28, 59]. It also contributes to minimise the hypervisor size. Thus, general
speaking, dom0 manages accesses to disks, network and other devices and the hy-
pervisor manages accesses to the CPU, memory and handle interruptions [137].
Xen interacts with domains by means of hypercalls.

Xen Architecture

Xen

domU1

. . .App1 App2 Appn. . .

Modified Guest OS

domU2

App1 App2 Appn. . .

Modified Guest OS

domUn

App1 App2 Appn. . .

Modified Guest OS

dom0

Host OS

Management Apps

Hardware resources

. . .

. . .

Drivers

Figure 2.9: Xen Architecture. In Xen architecture virtual machines containers are
called domains. So, Xen comprises of a privileged domain 0, to manage hypervisor
and the other domains, and one or more unprivileged domains. This arrangement
contributes to minimise the hypervisor.

2.3.3 Chipset: Intel x86 Architecture

Chipset is an important concept in the computational system. According to [57],
a chipset is a coordinated specific unit comprising of CPU, Memory Controller
Hub (MCH), also known as Northbridge and Input/Output Controller Hub (ICH),
also known as Southbridge. This is a simplification of a chipset architecture since
chipsets have other components, including special purpose chips and circuitry [85].
It is noteworthy that this arrangement does not mean a hierarchy: there is not a
chip in the chipset to control the CPU and the CPU does not control all the chipset
components. Instead, the chipset components work in a coordinated way.

However, the Intel x86 architecture has evolved since the introduction of SMM
into Intel 386SL processor. Then, contemporary chipsets have an architecture com-
prising of more components than CPU, MCH and ICH, which are organised to deal

31

2. BACKGROUND

CPU

Memory Controller
Hub (MCH)

Northbridge

Input/Output
Controller Hub (ICH)

Southbridge

RAM
Graphics
adapter

USB
controller

Keyboard
and Mouse

Frontside Bus (FSB)

Hublink

TPM
LPC Bus

Figure 2.10: Intel Hub Architecture, based on [57]. The key components in the Hub
Architecture, which are generally present in machines based in Intel processors
released up to 2008. According to [57], LPC is the Intel’s choice to connect ICH
with TPM chips, when a TPM chip is in use.

with issues related to the previous platform. Such issues are described in section
2.3.3.2.

Thus, this section explains the Intel Hub Architecture (1999 - 2008) and the Plat-
form Controller Hub (from 2008 on), presenting the components of both architec-
tures, considering the interaction with SMM. Also, this section explains the proces-
sor (CPU) operating modes and the security issues related to them.

2.3.3.1 Intel Hub Architecture

The basic components of Intel Hub Architecture are presented in figure 2.10 in a
simplified block diagram. It introduces the interactions of the main components of
that platform.

The CPU is responsible for performing the main tasks of processing in the sys-
tem. By CPU, we mean one or more processor cores. The Memory Controller Hub
(MCH), also known as Northbridge, controls the CPU access to the RAM. The I/O
Controller Hub (ICH), also known as Southbridge, connects the input/output de-
vices to the system.

Three buses are present in figure 2.10: The Front Side Bus (FSB), the Hublink
and Low Pin Count (LPC). The FSB is the way to connect CPU and the MCH. In
turn, the Hublink connects MCH and ICH. Both are high speed buses. The LPC
connects low-bandwidth devices to the ICH and it is a slow bus. According to [57]
the LPC is the Intel’s choice to connect ICH with Trusted Platform Module (TPM),
when TPM is in use.

TPM is the main component of the trusted platform proposed by the Trusted
Computing Group (TCG) [138] and it is generally deployed in a chip. By defini-

32

2.3 CONTEXT AND TECHNOLOGIES

CPU

Platform Controller
Hub (PCH)

RAM [DDR]
Graphics

adapter [PCI-E]

USB
controller

Keyboard and
Mouse

Flexible Display
Interface (FDI)

TPM
LPC Bus

IMCiGFX

Direct Media
Interface (DMI)

IMEDisplay

I/O Controller

System clock

Figure 2.11: The Intel Platform Controller Hub. This platform is basically a re-
arrangement of functions and components from the Hub Architecture. However,
improved components where deployed.

tion, a trusted platform is the one that can be trusted by a user of this platform.
This user can be any entity local or remote. The trusted platform should be able to
prove its identity and its security an entity which challenges the trusted platform.
This process requires some attestation process, normally using cryptographic algo-
rithms and protocols [42, 57, 138].

2.3.3.2 Intel Platform Controller Architecture (PCH)

Intel had released in 2008 the Platform Controller Hub (PCH) (Figure 2.11) [81, 82,
89], which was introduced in the Intel 5 Series processors and supersedes the Intel
Hub Architecture. Observing figure 2.11, there is a simple block diagram with two
main components: CPU and PCH.

Comparing figures 2.10 and 2.11, they are about the same, but some rearrange-
ment of functions and components were done. The motivation behind that im-
provement was the bottleneck between the CPU and the MCH, caused by the FSB
bandwidth limitation. To avoid FSB bottleneck, in the new architecture the MCH
components were distributed between the CPU and the PCH blocks and the ICH
components were embodied into PCH block[89].

The CPU embodies the Intel Graphics Accelerator (iGFX) and the Intel Mem-
ory Controller (IMC) components, which are improved versions from the previous
MCH video and memory management components.

The CPU and PCH are connected by means of the Flexible Display Interface
(FDI) and the Direct Media Interface (DMI). The FDI connects the graphic com-
ponent (the engine) in the CPU and the graphic component (the interface) in the
PCH [81] as shown in figure 2.11. A detailed discussion about FDI and other dis-
play technologies used in Intel’s platforms can be seen in [51]. The DMI is a high

33

2. BACKGROUND

Table 2.1: Intel chipsets. Those are the main Intel chipsets produced, since the
release of PCH architecture. Among those main chipsets, other one were produced
and released [89].

Codename Series Released Processor
Ibex Peak Intel 5 2008 Nehalem
Cougar Point Intel 6 2011 Sandy Bridge
Panther Point Intel 7 2012 Ivy Bridge
Lynx Point Intel 8 2013 Haswell
Wildcat Point Intel 9 2014 Broadwell
Sunrise Point Intel 100 2015 Skylake
Union Point Intel 200 2017* Cannonlake

* To be released.

speed communication interface between CPU and PCH, allowing the newest and
legacy software to operate transparently and concurrently. The Intel Management
Engine (IME) is a multiple components resource to execute functions of control and
management in the platform [81].

Intel chipsets are under ongoing evolution. Table 2.1 exhibits the Intel chipsets
models, since the first release of PCH. The table presents the chipset codename,
the chipset series, the year of releasing and the main processor (microarchitecture)
codename that use the chipset.

It is noteworthy that each chipset has its own variations, as workstation, server,
desktop, mobile and so forth. Besides, those chipset codenames are the main ones
and among them there are other chipsets released. For example, between the re-
lease of Ibex Peak and Cougar Point chipsets, there were also the release of chipsets
Langwell (smartphone), Tiger Point (netbook) and Topcliff (embedded system) [89].

Then, table 2.1 exposes partially the complexity associated to low-level security:
each chipset has its one particularity that must be taken in account when address-
ing security.

2.3.3.3 Processor Operating Modes

The CPU operates in five modes: protected mode, real-address mode, virtual-8086
mode, IA-32e mode and system management mode (SMM) [85]. In machines that
support Virtual Machine Extensions (VMX), the processor can operate in VMX
root operation (privileged and used by the hypervisor) and VMX operation (non-
privileged and used by guest VMs) (more on that in section 3.3.4).

The protected mode is based in four rings. Those rings are numbered from
zero to three (0 to 3), zero being the most privileged and three the least privileged.
Although that protected mode was designed by Intel to reinforce security, there is a
difference between the Intel designed ring scheme and what is really implemented
for OS vendors [57, 85, 86].

Figure 2.12 (left side) exposes the design proposed by CPU architects [57]. Since
ring 0 is the most privileged, only the kernel should be there. Drivers, as essential
complementary part to the work of operating system, should stay in ring 1. Oper-
ating system services do not need such a privileged status, so they should stay in

34

2.4 ENVIRONMENT AND TECHNOLOGIES

Processor

Ring 3

Ring 2

Ring 1

Ring 0

Applications

Services

Drivers

Kernel

Processor

Ring 3

Ring 2

Ring 1

Ring 0

Applications

Operating System

Figure 2.12: Ring security scheme, based on [57]. The first figure presents the ring
scheme design proposed by Intel CPU architects and the second one presents as
this scheme is really used by operating systems vendors, according to [57].

ring 2, just a layer below the applications, which should be in the least privileged
ring 3.

The ring scheme in figure 2.12 (left side) was designed to provide isolation
among components in the system by separating the kernel from the non-fundamental
parts of an operating system (or hypervisor). It means, ring 0 should contain just
the minimal essential functions to guarantee the correct and safe work of the op-
erating system. However, as exposed in figure 2.12 (right side), operating system
vendors just use ring 0 and ring 3.

The consequence from the usage in figure 2.12 (right side) is that operating sys-
tem components (kernel, drivers and services) have the same privilege, which com-
promises the designed ring scheme security. For instance, any device driver in the
system is granted the ring 0 security level, the same as the kernel, allowing a great
avenue of attacks, using those drivers.

Real-address mode offers an Intel 8086 processor 16 bits environment with ex-
tensions. Those extensions allow, for instance, its use with other operating modes.

Virtual-8086 mode allows software written to real-address mode being executed
in a protected environment. In essence, Virtual-8086 is not a processor mode [85];
it is the protected mode enabled to execute multiples Intel 8086 real-address mode
software [24].

IA-32e mode was introduced in 64-bit Architectures. It comprises of two sub-
modes: Compatibility mode and 64-bit mode. Compatibility mode allows most
legacy 16-bit and 32-bit software to run without re-compilation under a 64-bit op-
erating system. 64-bit mode permits software written to access 64-bit linear address
space to run in 64 bit architectures and with 64-bit operating systems [85].

The SMM will be detailed in Chapter 3.

2.4 Environment and Technologies

This section discusses the environmental issues around the SMM: the components
in the host machine competing for processor time, memory space and with concur-
rent security tasks; by analysing and describing the current state-of-art of technolo-

35

2. BACKGROUND

gies as UEFI, Trusted Computing and Intel Software Guard Extensions (Intel SGX).
We call this environmental issue as horizontal security level.

The SMM will be addressed in chapter 3 and Virtual Machine Extensions (VMX)
in section 3.3.4.

2.4.1 Coreboot

Coreboot is an open source project which can be an alternative to the proprietary
BIOS. It initialises the hardware and executes additional boot logic, called payload,
in a fast and secure way on modern computers [36].

We consider in this work the coreboot version 4.4. It has 58 SMI handler im-
plementation, with a average size of 6.57 Kbytes. The smaller size is 743 bytes and
the biggest one is 22.62 Kbytes. Those numbers are important for the desing of the
SBST .

We find a suitable SMI handler is this release for our chipset 2 (section 1.2)
whose source code size written in C language is 9.97 Kbytes. Thus, we estimate
that its executable code is estimated in 5.5 Kbytes. So, it leave around 25 Kbytes
available for our SBST source code.

2.4.2 Unified Extensible Firmware Interface (UEFI)

UEFI is an interface specification providing interaction between personal computer
operating systems and platform firmware, which acts in the bootup process and
passes control to next component in the system. Normally, this next component
is an operating system loader. That specification does not impose the way such a
firmware should be built.

It provides a standard environment for secure booting process and for running
pre-boot applications. Legacy booting processes, based on BIOS, continue to be
supported for platforms using UEFI [2, 44]. UEFI also provides a secure boot. UEFI
Secure Boot aims primarily improve security in the pre-boot environment [144].
Another fundamental part of UEFI is the Platform Initialisation (PI) specifications.
In fact PI is the part that specifies how to build the components to initialise the
platform and it is largely platform dependent [139].

UEFI and PI specifications are under responsibility of The UEFI Forum [3].
Figure 2.13 shows where UEFI and PI specifications fit into the platform boot

flow.

2.4.3 Intel Trusted Execution Technology

The Intel Trusted Execution Technology (Intel TXT) provides secured system start
(or restart), such that the system executive software can be loaded in a trusted way
[57]. In the context of Intel TXT, the operating system or hypervisor are called
generically Measured Launched Environment (MLE). Intel TXT uses and extends
the Virtual Machine Extensions (VMX) and Safer Mode Extensions (SMX) to enter
and exit from the secure environment provided by Intel TXT [57, 58].

SMX instructions are implemented by GETSEC CPU instructions set. Thus, In-
tel TXT uses the GETSEC instruction SENTER (secure enter) to enter and SEXIT
(secure exit) exit from the secure environment. Basically, Intel TXT execution flow

36

2.4 ENVIRONMENT AND TECHNOLOGIES

UEFI

OS
Pre-boot

tools

Platform
Drivers

Silicon
Component

Modules

Hardware

Framework

Modular components

PI
Specification

UEFI
Specification

Figure 2.13: The PI and UEFI layers, based on [153]. The Platform Inicialisation
(PI) and the Unified Extensible Firmware Interface (UEFI) together forms an inter-
face between the platform (chipset) firmware and the operating system, providing
an environment for secure booting and for running pre-boot applications.

is: it starts using GETSEC [SENTER], load the MLE and pass control to the MLE;
by finishing the execution, it removes the MLE using GETSEC [SEXIT] [57].

Intel TXT uses Trusted Boot (tboot) [95] to launch the MLE and it takes in ac-
count the use of TPM to perform and store the measurements and verifications
[57, 58].

The Intel TXT ability of issuing a SENTER instruction at any time is called late
launch [57].

2.4.4 Trusted Computing

The notion of trust can vary depends on the person using it. Even when talking
about trusted computing, this notion can vary, for example, depending on the kind
of resources that are in use and whether the stakes are high or not. Besides, define
trust can be a hard work. Then, we chose to follow the definition proposed by the
Trusted Computing Group (TCG) [57, 138]: ”An entity can be trusted if it always
behaves in the expected manner for the intended purpose”.

It noteworthy the fundamental work on trust computing by Bell and LaPadula
[20] which proposed a mathematical model for security systems. A comprehensive
work on trusted computer systems, criteria for evaluation and how to use such a
kind of systems can be found in the Orange Book [42].

37

2. BACKGROUND

2.4.4.1 Trusted Platform

By definition, a trusted platform is the one that can be trusted by a user of such a
platform. This user can be any entity local or remote. The trusted platform should
be able to prove its identity and that it is safe to an entity which challenges the plat-
form. This task requires some attestation process, normally using cryptographic
algorithms and protocols. In the context of TCG, the platform takes in account
the use of a Trusted Platform Module (TPM) and three so-called roots of trust to
provide that attestation and other security services.

The TCG established three roots of trust [57]:

• Root of Trust for Measurement (RTM). It provides an entity, which is implic-
itly trusted, with the ability of making reliable integrity measurements. An
RTM can be static or dynamic. The static RTM (SRTM) on PCs is a piece of
code embedded into the BIOS and is normally started on the bootup process.
That piece of code is called Core Root of Trust for Measurement (CRTM). The
dynamic RTM (DRTM) is started whenever the platform needs to be mea-
sured for an event that is not a platform reset. The task of measurement is
conducted by the platform CPU.

• Root of Trust for Reporting. It provides an entity, which is implicitly trusted,
with the ability to report information about the platform to local or remote
entity. This information can be verifiable by the attestation process. This
process is conducted by the TPM.

• Root of Trust for Storage. It provides an entity, which is implicitly trusted,
with the ability to store critical information in way that this information can-
not be tamper or leaked. Some examples of that critical information are the
integrity measurements and cryptographic keys used in the attestation pro-
cess. This process is conducted by the TPM.

2.4.4.2 Trust Computing Base

The Trusted Computing Base (TCB) is all platform components, technologies and
services that an entity needs to trust in, so that platform can be considered trusted.
The TCB is responsible for the correct functionality and security of a computing
platform [42, 54, 57, 138].

2.4.4.3 Trusted Platform Module (TPM)

The TPM is the main component of the trusted platform proposed by the Trusted
Computing Group. It is generally deployed in a chip. Figure 2.14 presents the main
components of the TPM. Those components enable the roots of trust.

In this work, we are considering TPM v1.2, where applicable. The new standard
(TPM v2.0) was released in 2013 with better support for virtualisation and more
flexibility in cryptographic algorithms.

38

2.5 DATA INTEGRITY WITH HASH FUNCTIONS

Figure 2.14: TPM Overview (figure from [54]) [57]. The Trusted Platform Module
(TPM) based on the version 1.2 specification.

2.5 Data Integrity with Hash Functions

Data integrity is a cryptographic service that can be provided by the cryptographic
mechanism of Hash Function. Hash functions take some data and compute a “fin-
gerprint” of such a data [134]. That fingerprint can be also called: message digest
or hash code or hash value [132].

We can define a hash function as a three-tuple (X,Y,H), where the conditions
below are satisfied (based on [134]):

1. X = x1, x2, ..., xn is a set of possible messages (or data).

2. Y = y1, y2, ..., yn is a finite set of possible message digests.

3. H = h1, h2, ..., hn is a finite set of possible hash functions.

4. There is a hash function hi ∈ H , where hi : X → Y such that yi = hi(xi)

Hash functions are used in insecure environments where we can protect Y , but
not X . Thus, to use it for data integrity, we compute a hash code hi(xi) = yi, with
xi ∈ X and yi ∈ Y , and protecting yi. If xi has changed to x′i, we can compute
the hash code again hi(x

′
i) = y′i and show that y′i 6= yi. So, considering that the

hash function is secure and having yi safely stored, we can always compute the
hash code again and compare the stored one with the fresh computed hash value
to check the integrity of xi [134].

The hash code or fingerprint or message digest is called this way because it
generates a fix length of yi. Thus, xi has variable size and yi is a fix length and, in
general, xi > yi [132].

Some examples of hash functions are MD5 (yi = 128−bit) [117], SHA (yi = 160−
bit) [49], SHA-256 (yi = 256−bit), SHA-384 (yi = 384−bit), SHA-512 (yi = 512−bit)
[50], Whirlpool (yi = 512− bit) [19].

The security of hash functions are in general associated to three features: preim-
age resistant, second preimage resistant and collision resistant [132, 134]. For more
details about those features and about hash functions, see [113, 123, 132, 134].

39

2. BACKGROUND

2.6 Related work: System Executive Software Integrity
Issues

This research is investigating the issues around using SMM resources to build a
security tool. It is intending to propose a general architecture where any security
tool can fit. However, this research aims built a proof of concept to validate the
proposed architecture. This proof of concept is tackling the issue of measuring
the integrity of a system executive software, more specifically the Xen hypervisor.
Thus, this section investigates some of the main works published about measur-
ing the system executive software integrity. In chapter 3, section 3.4 are discussed
security tools capitalising on SMM.

Integrity measurement is the process where some entity can obtain information
from a platform, based on a metric or in an algorithm [57]. Another important re-
lated concept is re-measurement, which is the process of determining if a previous
measurement is still the same or not [57]. Therefore, an integrity measurement tool
must be able to measure and re-measure its target and spot possible differences.
So, the aim of system executive software integrity measurement is to verify that its
code and data remains the same since the last measurement.

It is noteworthy that sometimes defending the integrity of the system execu-
tive software might mean eliminate the cause of problem or even the measurement
target or reduce it.

2.6.1 Integrity Measurement

Bringing those concepts on Integrity Measurement to hypervisor security context,
we can state that the aim of integrity measurement on hypervisors is to guarantee
that the hypervisor, its code and data, remains the same since the last measurement.

Some research in that direction has been successfully presented to measure the
integrity of the hypervisor, its components and related entities in the virtualised
environment. Those approaches may add extra code to the hypervisor or to the
kernel.

IMA [121] is an integrity measurement architecture used to measure executable
code in Linux operating systems on load-time, capitalising on the use of the TPM
and following the TCG standards. Using IMA measurement agents and the ser-
vices provided by the TPM, a remote agent can attest the integrity of a target plat-
form. However, measurement during the load-time does not accurately reflect run-
time behaviour, if someone is considering load-time measurements alone.

Since measurement during the load-time does not accurately reflect runtime
behaviour, if one is considering load-time measurements alone, PRIMA [99] is an
extension of IMA and was built on IMA code, but takes a new approach to the
problem by basing the measurements on information flow integrity. However, both
IMA and PRIMA are vulnerable to attacks that have the kernel as the target. Iso-
lation is a fundamental security principle for an integrity measurement agent to
protected itself against being tampered by malicious code. Besides, from their ar-
chitecture, one can note that they lack good isolation.

Since the virtualised environment has become more prevalent and since virtu-
alisation, by definition, needs to offer strong isolation, new approaches showed up

40

2.6 RELATED WORK: SYSTEM EXECUTIVE SOFTWARE INTEGRITY ISSUES

to take advantage from this characteristic. For example, Terra [52] provides strong
isolation by means of a trusted virtual machine monitor (TVMM), a trusted hyper-
visor, which offers an open-box VM, for VMs with low security requirements, and
a close-box VM, for VMs with high security requirements. Terra provides integrity
measurement for the VM, but not runtime measurement. Moreover, although it
implements an trusted hypervisor, there are no measurements for the integrity of
TVMM itself.

By trying to reinforce the security in virtualised environment, an architecture
called vTPM [21] was designed, which virtualises the TPM (more on TPM in sec-
tion 2.4.4.1), allowing each VM access to its own vTPM, as a physical or unique
TPM. Although it can reinforce security by making use of the TPM resources inside
of a VM, the VM itself continues to be vulnerable to many others classes of attack,
especially attacks that tamper with the hypervisor.

In a different direction, some approaches try to identify rootkits or malwares
[130] in systems using hypervisors. That is the case of Patagonix [107] that aims to
identify covertly executing binaries. Patagonix guarantees that any executing bina-
ries will be reported to the system administrator. In fact, it realises its objective by
measuring the integrity of those binaries. Its architecture comprises of a Patogonix
VM, which plays the main role in the system, a component inserted in the hyper-
visor. That component eliminates the semantic gap [27] between the monitored
VM and the hypervisor. However, we believe that the main drawback of Patago-
nixmight be its strong assumption that the hypervisor will provide self-protection
and it will defend itself against attacks from rootkits and malwares, while also de-
fending Patagonix from such attacks. It noteworthy to mention Subvirt [101] that
conversely uses a hypervisor and virtual machines to implement a new class of
malware called virtual-machine based rootkit (VMBR).

HIMA [13] is an integrity measurement agent residing in the hypervisor and
with a part of its architecture inserted in the management VM (Dom0), since HIMA
is implemented over Xen Hypervisor. It aims to measure the integrity of VMs. It
offers strong isolation and a solution for the problem of ‘Time of Check to Time of
Use’ (TOCTTOU). That solution is basically a re-measurement, as described by [57].
HIMA is to some extent an evolution of the previous work of IMA and PRIMA, but
which is suitable for the virtualised environment and which capitalise on the privi-
leges of hypervisors. However, like Patagonix, HIMA assumes a trusted hypervisor
and platform.

HyperSafe [141] is a lightweight approach that provides lifetime control-flow
integrity for hypervisors. Specifically, it protects the hypervisor’s code and static
data from being compromised, even if memory bugs are present. However, Hy-
perSafe just consider attacks that exploit vulnerabilities in the hypervisor’s code.
Attacks that come from low level, such as cache exploitation (“Cache poisoning”)
[148], SMM exploitation [47, 45], Intel TXT attack [147] or hardware attacks, can
compromise the security of HyperSafe.

Those aforementioned approaches insert extra code in the hypervisor, enlarging
the attack surface.

41

2. BACKGROUND

2.6.2 Minimising the Attack Surface

Conversely, other approaches minimise the hypervisor in order to diminish the
attack surface, leaving just the essential functionality in the hypervisor. For exam-
ple, SecVisor [124] is a tiny hypervisor that ensures that only approved code can
execute in kernel mode, guaranteeing code integrity (kernel integrity). TrustVi-
sor [109] is a minimised hypervisor that provides code and data integrity, with a
small code base. BitVisor [128] is a thin hypervisor, introducing and implementing
parapass-through drivers, which allow remove device drivers from the hypervisors,
since device drivers are more prone to errors than other hypervisor components
and degrade the general level of security [29]. The main limitation of those works
is the fact that they just support one single VM and they are not able to run over a
multi-core or multi-CPU platform. NOVA [133] minimises the amount of hypervi-
sor code and reduces the TCB of VMs, by moving most functionality to user level.
Different from the last approaches, NOVA supports multi-core and multi-tenancy.

2.6.3 Hardening the Hypervisor

The most intuitive approach is hardening the hypervisor. For example, by improv-
ing the security of VMs allowing them to run in potentially insecure management
OSs [26]. A management OS, According to [26], is the OS in the management VM
in a type 1 hypervisor environment (as in Xen hypervisor). Hyperwall [136] as-
sumes that a hypervisor is malicious and provides protection to its guest VMs, by
proposing and using Confidentiality and Integrity Protection tables (CIP tables)
and hardware mechanisms. sHype [120] inserts a trusted hypervisor layer below
the Guest OS to control the sharing of virtual resources based on security policies.

2.6.4 No Hypervisor Approach

The ’no hypervisor’ strategy proposes a new approach to tackle the security issues
of hypervisors: rather than defending, just remove the attack surface by getting rid
of the hypervisor, but preserving the semantics of virtualisation [100, 135]. NoHype
identifies the main roles of a hypervisor and searches for some other manner to do
the same thing, in order to eliminate the hypervisor. It is a feasible system that
can be implemented on commodity hardware and is focused on cloud computing
infrastructure. However, NoHype does not mitigate all threats that a hypervisor is
prone to in cloud architecture, and can introduce new kinds of threats [39]. Besides,
it has drawbacks that can hinder its use in a real world scenario. For instance, it
compromises scalability, which is one the stronger appeals to use cloud computing
[38].

2.6.5 Intrusion Detection System on Virtualisation

Other approaches try monitoring the virtual environment to detect intrusion and
the presence of malicious code. In this sense, a technique called Virtual Machine
Introspection (VMI) has been used to monitor the VM and for building intrusion
detection systems in virtualised environments [17, 53]. For example, Livewire [53]
allows IDS to monitor the state of a guest OS, but it was not built for taking in ac-
count distributed systems. On the other hand, HyperSpector [103] is a virtual dis-

42

2.7 DISCUSSION

tributed monitoring environment to allow secure intrusion detection in distributed
computer systems, using virtual machines and virtual network, performing iso-
lated monitoring without any additional hardware. Those techniques use measure-
ments similar as integrity measurement. However, they do measurements just to
detect intrusions and prevent attacks on the system and evasions from the IDS. Both
Livewire and HyperSpector capitalise on the use of virtualisation to secure the IDS,
but not necessarily to improve the security in virtualised environments. For this
purpose, the approach used in [110] does a better job. By capitalising on multipro-
cessing environment, they employ multiple observers to perform measurements on
the system, including self-measurement. We can define an observer as an agent fol-
lowing our aforementioned definition for agents (see definition 2.3). Each observer
is instantiated in a thread, and then multiple observers are employed to perform
the same measurement, using multiple communication channels to convey their
findings. Those findings are then compared to look for inconsistencies. Since, this
measurement is also performed over the observers themselves; it creates an addi-
tional self-defence mechanism. The difficulty to attack such a system is related to
the number of observers. Let n be the numbers of observers. Since all of them
are performing the same measurement and communicating their findings to each
other, an attacker needs to subvert n(n− 1) individual communication channels to
be successful. That paper [110] presents insights about formalisation and defence
and self-defence mechanisms for our work.

2.7 Discussion

This chapter exposed the complexity of the investigation performed in this work.
To dominate that complexity, this chapter has approached the security problem
considering a vertical and horizontal security level and describing the components
of each one.

We can observe that the technology developed to offer more computing power
and facilitate the use of computational resources have introduced new threats. That
is the case o cloud computing and virtualisation. Those technologies enabled users
to increase their computing power capacities and reduce their costs, but made them
vulnerable to news classes of attack, as those one perpetrated by malicious virtual
machines. To certain extent, those technologies create a single failure point: the
hypervisor, which became a main target for attacks. In fact, successful attacks have
been performed against hypervisors, both commercial hypervisors[102] and open
source ones[145].

Because of the importance of hypervisors, a great deal of research has been
done in securing them. In general, those works approaches lack of: isolation, good
view of the system and enough privileges to protect the hypervisor. Also, they
address the problem of measure the hypervisor integrity, but do not take action
when a violation is identified. So, the protection of hypervisors comprises of just
detecting an integrity violation, in most of the cases. We observed that in some
cases defend the hypervisor integrity means eliminate the cause of problem or even
the measurement target, as the own hypervisor. That is the case of NoHype [135].
However, it eliminates some security issues, but it introduces other security issues
and drawbacks in the cloud environment, as described in [38].

43

2. BACKGROUND

A main threat against hypervisors and potentially all the cloud comes from the
chipset. The cloud and the virtualised layer are sort of the big picture in the com-
putational security. However, in the single machine, the chipset is yet the platform
from where attackers can lunch the more devastating atttacks and take over of the
more powerful resources. For example the SMM, a resourceful component of the
chipset, which can enable isolation and high privileges for security tools, can also
be used for deploying resourceful SMM-based malwares, as described in section
3.5.

The chipset is specially a complex component in this scenario. Different ver-
sions of them are around and some part of the chipsets, as firmwares and device
drivers, are OEM specific, which tangling even more the relation among compo-
nents.

2.8 Summary

This chapter discussed the security context whereupon this research is investigat-
ing. We determined a set of definitions required to formulate and design the an-
swers for the research questions and then we established a vertical and a hori-
zontal security level to deal with the complexity of the security problem we are
addressing. Then, the components of those security levels were presented and dis-
cussed. By investigating the chipset, we found the complexity related to address
security concerns related to chipsets, since there are many different versions of it
installed into contemporary machines. Finally, we investigated and discussed the
main works addressing issues around measurement and protection of the system
executive software, since this research aims to build a proof of concept to measure
the integrity of a Xen hypervisor.

Our analysis of the main works on measure the integrity of the system executive
software identified that in general works lack of: good isolation, good view of the
system and enough privileges to address that problem. As we stated in chapter 1
those capabilities are fundamental in such a security context. So, this motivates the
search for those capabilities by using SMM resources.

Thus, in the next chapter we will deeply investigate the system management
mode, presenting its components, investigates the SMM related registers, explor-
ing the registers directly and indirectly related to SMM, investigating SMM oper-
ation and some of its relationship with components in the system and other Intel
technologies. The chapter also presents the motivations to use the SMM resources
and security tools capitalising on SMM, discussing issues around those implemen-
tations. On the other hand, it describes the attacks using SMM as a platform and
attacks against the SMM itself, offering ways to thwart such attacks.

44

Chapter 3

The System Management Mode
(SMM)

Sorry to be a wet blanket.
Writing a description for bitcoin
for general audiences is bloody
hard. There’s nothing to relate it
to.

‘‘Satoshi Nakamoto”

SMM is one of the operating modes that a CPU can operate in (section 2.3.3.3).
Whenever the processor is in SMM, a set of high privileged resources is avail-
able to its executive software (called SMI handler) to perform priority manage-
ment functions. In general, code artefacts trying to capitalising on those resources
must emulate the SMM executive software. So, SMM provides privileged and iso-
lated environment where priority system code can perform and sensitive related
data is stored. Those codes and data are related to system management and hard-
ware functions. The implementation of SMM components are platform, chipset
and Original Equipment Manufacturer (OEM) specific. It means that, even among
Intel processors, a processor family may have different SMM components when
compared with another family and an OEM is free to implement those components
in its own way, provided that the components work as specified by Intel [87].

SMM and its resources were designed and are implemented to be use by sys-
tem firmware (generally OEM code), not by “general-purpose” systems software
[87]. For example, an SMM-based security tool is a use case of “general-purpose”
software. So, any use different of the original design and purpose is considered
a workaround and must be carefully planned to avoid or minimise side effects.
That recommendation aims to preserve the important SMM functions to avoid that
a “general-purpose” software violates the strict limits and constraints of SMM re-
sources and disturb the correct function of SMM components, as by overwriting
the SMI Handler (details in sections 3.2.4 and 3.4). So, this research establishes a
set of requirements, which a security tool must met to overcome those limits and
constraints, allowing the use of SMM for “Security-purpose”.

3.1 Introduction

Chapter 2 has contextualised and positioned the problem addressed in this re-
search, considering the vertical and horizontal security level in computational sys-
tems and specified a set of definitions required to formulate and design the answers

45

3. THE SYSTEM MANAGEMENT MODE (SMM)

for the research questions proposed. As exposed, there are many security implica-
tions related to SMM and system components and technologies, in both vertical
and horizontal levels, as malicious virtual machines, oversized hypervisors and
non-flushed cache memories. Also, most of the found works addressing issues on
system executive software measurement and protection lack one or more of: good
isolation, privilege and good view; to accomplish their security task.

This chapter discusses the SMM components, explaining how each one con-
tributes to the SMM operations. It takes in account the evolution of SMM according
to the chipsets considered in this research (section 1.2) [66, 71, 87, 97]. It also inves-
tigates the SMM related registers, exploring the registers directly related to SMM,
as the System Management RAM Control (SMRAMC), an 8-bit register working
as an access control mechanism to the SMRAM, and the register indirectly related
to SMM, as the Advanced Configuration and Power Interface (ACPI) Base Address
Register (PMBASE), a 32-bit register setting the base address for ACPI I/O regis-
ters and other ones, including the SMM register SMI EN and SMI STS. After, it
investigates the operation of SMM, its relationship with main components in the
system, as cache memory, and relationship with other Intel technologies, as In-
tel Virtual Machine Extensions (Intel VMX) and Intel Software Guard Extensions
(Intel SGX). The chapter also presents security tools capitalising on SMM and dis-
cusses the issues around those implementations. On the other hand, it describes
attacks to SMM and offers procedures to thwart such attacks.

The chapter is organised in four content sections and a discussion and summary
section. The first one investigates and describes the SMM components. The second
section investigates SMM operation, relations and associated issues. Third section
deals with SMM security tools pointing out opportunities for improving them and
section four discusses SMM attacks and ways to thwart them.

3.2 Components

The System Management Mode comprises of a processor operating mode (SMM),
a memory space (SMRAM), a set of registers (SMBASE, SMRAM control register,
PMBASE, SMI EN, SMI STS and other), an executive software (SMI handler), an in-
terruption (SMI), processor pins (SMI# and SMIACT#) and a processor instruction
(RSM). All those components are spread over the chipset (figure 3.1). The rationale
behind including, for example, an SMI pin as a component of SMM is that such a
component could not exist if SMM does not exist. Some of those components are
discussed ahead and other ones, as the system management interrupt (SMI), are
addressed in together with other components.

3.2.1 The mode System Management

In SMM, the processor changes the system to an alternate environment, that has its
own and separated memory space (SMRAM). Such an environment is transparent
and inaccessible for any other code in the system, even high privileged ones as code
executing in ring 0, as operating system kernels. The BIOS contains SMM related
code and data, loading them into the SMRAM during the boot up process [57] and,
since the SMRAM content is volatile, it needs to be loaded every time the system

46

3.2 COMPONENTS

SMRAM

State save map

SMI handler

Non SMM

CPU

SMM

 SMI SMIACT#

SMBASE + 8000H

SMBASE

SMRAMC

PMBASE

SMI_EN

SMI_STS

...

MSR_SMM_BLOCKED

SMI#

CR0

CR3

RFLAGS

IA32_EFER

RIP

...

GDT Base (upper)

CPU state RSM

Registers set

Figure 3.1: SMM components. Those components are available when the processor
enters in SMM: A processor operating mode, a memory space, a set of registers, an
executive software, an interruption, processor pins and a processor instruction.

start (or restart). Because of so powerful resources, some authors refer to SMM as
ring -2 (ring -1 would be hardware hypervisors) [148].

3.2.2 System Management Memory (SMRAM)

SMRAM is the work memory used when the processor enters into the SMM. Upon
SMM, paging is disabled. Then, all memory access is mapped to the low 4 GBytes
of the processor’s physical address space.

Figure 3.2 exhibit the SMRAM scheme for the Intel 32-bit architecture. There are
basically two areas: SMI handler area, which contains SMI handler code and data,
and the state save area, which contains the processor context (or processor state)
just before an SMI is triggered. The SMBASE register contains the base address
for the SMRAM (section 3.2.3.1). The default SMRAM size is 64 KBytes, but it
can range from 32 KBytes to 4 GBytes. Figure 3.2 shows that the minimum 32
KBytes (FFFFH - 8000H = 7FFFH = 32768) refers to the SMI handler area (from

47

3. THE SYSTEM MANAGEMENT MODE (SMM)

SMBASE + 8000H to SMBASE + 8000H + 7E00H) plus the state save area (from
SMBASE + 8000H + 7E00H to SMBASE + 8000H + 7FFFH). Then, the SMI handler
area is equal to 32,256 bytes (7E00H = 32,256) and the state save area is equal to
512 bytes (7FFFH - 7E00H = 01FF = 512). The beginning of SMRAM is indicated
by the register SMBASE, which default value is 30000H, after boot up process or
hardware reset [66, 71, 87, 97].

Maximum
4 Gbytes

SMBASE + 8000H + FFFFH

State save area

SMI handler area

SMBASE + 8000H + 7FFFH

SMBASE + 8000H + 7E00H

SMBASE + 8000H

SMBASE

SMI handler
entry point

512
bytes

32,256
bytes

Minimum
32,768
bytes

SMRAM
(default 64 Kbytes)

Intel 32-bit Architecture
Main memory (or other memory)

Figure 3.2: SMRAM space for 32-bit machines. The SMRAM space can be located
in any part of the chipset, as specified by Intel [66, 71, 87, 97]. It is the OEM’s choice
where to put it. It can lay on the main memory or in other memory. The processor
always looks for the SMI handler first instruction at SMBASE + 8000H address in
the SMRAM.

Figure 3.3 exhibit the SMRAM scheme for the Intel 64-bit architecture. The dif-
ference between the 32-bit and 64-bit architecture is basically the size of the state
saved map, which is equal to 512 bytes (7FFFH - 7E00H = 01FF = 512) in the 32-
bit architecture and it is equal to 1024 bytes (7FFFH - 7C00H = 03FF = 1024) in the
64-bit architecture and [87, 97].

By entering in SMM, the processor looks for the first instruction at the ad-
dress SMBASE + 8000H (by default 38000H), using registers CS = 3000H and EIP
= 8000H. The CS register value (3000H) is due to the use of real mode memory ad-
dresses by the processor when in SMM. In this case, the CS is internally appended
with 0H on its rightmost end [24, 87]. The SMI handler can change the value of SM-
BASE by altering that value at the address SMBASE + 8000H + 7EF8H in the state
save map (Intel 64-bit Architecture), but this change would have practical effect
just after the processor enters in SMM again, which is known as SMBASE reloca-
tion [87, 97]. Many works cite that relocation is done to A0000H [69, 70, 45, 23, 47].

The “relocation” indicates that some registers values stored in the SMRAM state

48

3.2 COMPONENTS

Intel 64-bit Architecture
Main memory (or other memory)

Maximum
4 Gbytes

SMBASE + 8000H + FFFFH

State save area

SMI handler area

SMBASE + 8000H + 7FFFH

SMBASE + 8000H + 7C00H

SMBASE + 8000H

SMBASE

SMI handler
entry point

1024
bytes

31,744
bytes

Minimum
32,768
bytes

SMRAM
(default 64 Kbytes)

Figure 3.3: SMRAM space for 64-bit machines. For the 64-bit architecture, the SM-
RAM space can be located in any part of the chipset, as specified by Intel [87, 97].
As in 32-bit architecture, it can lay on the main memory or in other memory. How-
ever, the state save area is bigger than in 32-bit architecture, since there are more
registers and tables to be saved. The processor always look for the SMI handler
first instruction at SMBASE + 8000H address in the SMRAM.

save map are changeable, including the SMBASE value. Basically, the state save
area stores the value of registers in addresses (or positions) in the SMRAM, so the
SMI handler can alter the registers values by writing to those addresses. Then,
the processor will operate with the new values when exiting from SMM. However,
some values are read-only and change them would cause a processor unpredictable
behaviour [87, 97]. For example, for Intel 64-bit architecture: register CR0 is stored
at SMBASE + 8000H + 7FF8H and may not be altered; register RFLAGS is stored at
SMBASE + 8000H + 7FE8H and may be altered; register RIP is stored at SMBASE
+ 8000H + 7FD8H and may be altered; and register RAX is stored at SMBASE +
8000H + 7F5C8H and may be altered [87, 97].

SMRAM can receive information other than the processor state or SMI handler
code and data. However, any code and data handling should be performed by the
SMI handler. This capability is useful to use SMM for “general-purposes” or for
our objective for “security-purposes”. About using SMM for “general-purposes”
see details on the opening of this chapter and in contribution 4.

3.2.3 SMM Related Registers

There are several registers related to the SMM in the chipset. This section inves-
tigates and describes those registers and clarify issues about their functions and

49

3. THE SYSTEM MANAGEMENT MODE (SMM)

values. This section is based on our target chipsets, described in section 1.2. More
on SMM register can be find at (appendix A).

In general, registers with a suffix “EN” are used to enable functions and devices,
registers with a suffix “STS” are used to report the status of functions and devices
and registers with a suffix “CNT” are used to control functions and devices in the
system.

The Model-Specific Registers (MSR) can be read with the instruction RDMSR
and written with the instruction WRMSR. They are supported by a finite number
of families and/or models of Intel processors. The instruction CPUID is used to
verify the available of MSR for any families and/or models of Intel processors.

3.2.3.1 SMBASE register

This register contains the base address for the SMRAM. It is a internal proces-
sor register and contains the default value of 30000H and it is can be relocated
to A0000H [45, 69, 70, 92, 93, 66, 71].

The next sections describe the registers related to SMM in our two target chipsets.

3.2.3.2 Chipset 1 System Management RAM Control

Probably the more important register to the SMM is System Management RAM
Control (SMRAMC) [69, 70, 92, 93]. This 8-bit register is a sort of access control
mechanism to the SMRAM (figure 3.4). In our target chipset 2, it is located at PCI
device 0, address offset 88H [92, 93].

Reserved D_OPEN D_CLS D_LCK G_SMRAME 0 1 0

 7 6 5 4 3 2 1 0

 C_BASE_SEG

Figure 3.4: SMRAM control register. It acts as access control to the SMRAM. The
bit D OPEN indicates if the SMRAM space is accessible or not. The bit D CLS indi-
cates if the SMRAM is accessible for data references. Bit D LCK blocks or unblocks
writing access to the SMRAMC register. Bit G SMRAME enables the use of the
three previous bit. Bit 7 is reserved and bits 0 to 2 are hardwired to 010B.

Bit 7 is reserved. The bit 6 (D OPEN) indicates that if the SMRAM space is
accessible (D OPEN = 1) or not (D OPEN = 0). The bit 5 (D CLS) when set (D CLS
= 1) makes the SMRAM inaccessible for data references, although code references
still accessible. Bit 4 (D LCK) blocks all writing access to the SMRAMC register
when it is set (D LCK = 1). Bit 3 (G SMRAME) enables the use of D OPEN, D CLS
and D LCK, when it is set (G SMRAME = 1). The field C BASE SEG is composed
by the bits 0, 1 and 2. It indicates the location of SMRAM and it is hardwired to
010B.

Figure 3.5 shows the SMRAMC state before BIOS initialises the SMRAM space.
As C BASE SEG is hardwired, its value remains the same during all time. G SM-
RAME is set to allow the BIOS operate over the SMRAM. D OPEN is set to allow

50

3.2 COMPONENTS

Reserved 1 0 0 1 0 1 0

 7 6 5 4 3 2 1 0

 C_BASE_SEG

Figure 3.5: SMRAMC state before SMRAM initialisation. Bit D OPEN is set to
allow the BIOS to upload the SMI handler code and data to the SMRAM. Bit D LCK
is cleared to allow the BIOS to change the register values after finishing the SMI
handler upload process. Bit D CLS is cleared to allow data references.

BIOS writes the SMI handler and all the necessary code and data for SMM opera-
tion in the SMRAM.

Reserved 0 0 1 1 0 1 0

 7 6 5 4 3 2 1 0

 C_BASE_SEG

Figure 3.6: SMRAMC state after SMRAM initialisation. After BIOS finishes the
SMI handler upload, it clears bit D OPEN, set bit D CLS and D LCK. So, now SM-
RAM and SMRAMC are inaccessible and no data reference is allow to the SMRAM.

Figure 3.6 shows the SMRAMC state after BIOS initialises the SMRAM space.
D LCK is set and the D OPEN is cleared (necessarily) and then SMRAM space and
SMRAMC register are both locked.

In machines released about 2004 or before, it is quite common the situation
where D LCK is cleared and the D OPEN is set after the boot up process [69, 70].
Then, considering that SMBASE was relocated to A0000H, if D OPEN is set and
the processor is in SMM, the access using address A0000H is routed to the SMRAM
space. If D OPEN is set and the process is in protected mode, the access is routed to
the SMRAM space too. If D OPEN is cleared and the process is in protected mode
the access is redirected to the legacy VGA memory space [45, 69, 70, 92, 93].

3.2.4 SMI handler

The SMI handler is the SMM executive software. There are several events that can
trigger an SMI, each event requesting a different action. For example, in our target
chipset 1 there are 38 reasons to cause an SMI [81] and in the target chipset 2 there
are 35 reasons to cause an SMI [64].

SMI handler is a powerful software. So, it is necessary to understand its details
and features before developing a SMM-based security tool. Since the BIOS can be
updated, and it loads the SMI handler in the SMRAM, the SMI handler can be used
as a workaround to patch bugs on hardware [143].

51

3. THE SYSTEM MANAGEMENT MODE (SMM)

The first issue is the SMI handler size. This depends on the OEM or BIOS man-
ufacturer that creates it, as established by Intel, it is important to handle the system
event which causes an SMI, but not how [66, 71, 97]. In fact, the SMI handler has
32256 bytes available for its code, data, heap and stack (figure 3.2) in the 32-bit ar-
chitecture and 31744 bits in the 64-bit architecture (figure 3.3). So, when developing
a SMM-based security tool, it is mandatory to stick to those sizes.

We have performed some compilation experiments with the SMI handlers in
Coreboot 4.4 2.4.1. We could not get a precise size of the SMI handlers executable
code, since there are many external code dependencies in the SMI handlers codes
and all of them call other functions in many other codes around Coreboot code.

Another issue is the quantity of SMI handlers in the system. This depends
on the OEM or BIOS manufacturer strategy to deal with the system management
events. But, even if there is more than one SMI handler deployed in the SMRAM,
the processor will always search for the SMI handler at SMBASE + 8000H address.
Probably in this case an SMI handler would call the other one. In [143] is described
some experiments on disassembling a BIOS of ASUS P5Q motherboard, which is
based on AMIBIOS 8. Those experiments report more than one SMI handler present
in the BIOS static code, each one seeming to deal with a different set of tasks, but
it is not clear if all of them are loaded in the SMRAM space during the boot up
process or if a specific SMI handler is chose depending on the host chipset.

It is not clear if the SMI handler call another code in the system, which would
be located out of SMRAM space. Nonetheless, since SMI handler can access any
part of the system, with full privilege, it is plausible that it calls some firmware to
complete specific management tasks, depending on the strategy planned to deal
with the system management events by the manufacturer.

A critical issue to the SMI handler is how many times are SMIs triggered in
an interval “t”? There are several factors that can influence the numbers of SMI
triggered in the system, for instance: chipset, architecture, platform, OEM and BIOS
manufacturer. It is hard to determine a general or global figure to answer this
question. However, it is possible to probe systems to get clues. The Intel BIOS
Implementation Test Suite (BITS) [90, 98] provides a set of functionalities to test a
system endowed with Intel processors. BITS tests the SMI latency and frequency
among others things. The next section presents an experiment with BIOS tool.

An important issue is how long does the SMI handler take to accomplish its
tasks? Since each event triggers an SMI to deal with a specific task, the time SMI
handler spends to accomplish it depends on the kind of task to be performed. The
next section presents an experiment with BIOS tool to shade some light in that
matter.

From that comes another issue: what would be acceptable in terms of time
spend in SMM? Since the system executive software stands still when the proces-
sor is in SMM, the SMI handler must be as fast as possible. But, how fast? The
BITS tool defines that the SMI latency must be less than 150 µs to minimise the risk
of system executive software time-out [90, 98]. Some experiments conduct in [41]
demonstrated that different devices are affected differently depending on the SMI
latency. For instance, latency-sensitive applications, like USB audio, can be affected
by SMI with duration ranging from 20 to 50 ms.

52

3.2 COMPONENTS

3.2.4.1 SMI Experiments

In table 3.1, it is showed an experiment done in this work with for 13 machines, us-
ing BITS. Considering the recommended limit of 150 µs, machines from 1 to 8 failed
the test. Again, it is noteworthy that BITS was developed for Intel x86 processors.

Table 3.1: SMI latency. In the latency experiment, we considerer the maximum
latency time of 150 µs as established by Intel in the BITS tool [98]. Values are tabu-
lated in microseconds.

OEM Processor MCH ICH Max Ref
1 - Gigabyte Dual Core E2160 945P ICH7 853 µs [74, 75]
2 - Gigabyte Dual Core E2160 945P ICH7 395 µs [74, 75]
3 - Gigabyte Pentium 4 945P ICH7 320 µs [74, 75]
4 - Gigabyte Pentium 4 945P ICH7 318 µs [74, 75]
5 - Asus Tek Pentium 4 not id ICH7 350 µs [75]
6 - Dell i5-2500 Sandy Bridge H67 191 µs [83, 84]
7 - Asus Atom N270 82945GSE ICH7-M 597 µs [77, 88]
8 - Foxconn Core 2 Duo E7500 ICH3-S 290 µs [68, 76]
9 - HP i5-650 Clarkdale P55 0.031 µs [78, 79]
10- Fujitsu Pentium 4-M 548 82845 ICH3-M 7.8 µs [72, 73]
11- HP i7-2670QM Sandy Bridge HM65 0.069 µs [83, 84]
12- Acer i5-3450 Ivy Bridge B75 0.039 µs [80, 81]
13- Compaq Pentium III-M 82830M ICH3-M 69 µs [64, 65]

Table 3.2: SMI average latency. measured by BITS tool [98]. Values are tabulated
in microseconds. We can notice that most SMIs occurs in the 0 to 1 µs.

Machine 0 to 1 µs 1 to 10 µs 10 to 100 µs 100 µs to 1 ms
1 - Gigabyte 0.051 0 0 781
2 - Gigabyte 0.051 0 0 388
3 - Gigabyte 0.037 0 0 318
4 - Gigabyte 0.037 0 0 312
5 - Asus Tek 0.051 0 0 347
6 - Dell Inc 0.008 3.64 14 169
7 - Asus 0.046 0 0 0.583
8 - Foxconn 0.019 0 0 245
9 - HP 0.011 0 0 0
10 - Fujitsu 0.038 5.355 0 0
11 - HP 0.016 0 0 0
12 - Acer 0.011 0 0 0
13 - Compaq 0.066 0 0 0

53

3. THE SYSTEM MANAGEMENT MODE (SMM)

Table 3.3: SMI frequency. Obtained by Intel BITS tool [98]. Values are tabulated
in unites, we have reported in this table the raw numbers produced by BITS tool.
But not all of those unites are properly an SMI. AS one of the author clarified by
e-mail communication: “The SMI latency test runs rdtsc repeatedly in a loop, and
looks for long gaps between iterations”. So those numbers are not necessarily all
trigerred SMIs. Again, we can notice that most SMIs occurs in the 0 to 1 µs.

Machine 0 to 1 µs 1 to 10 µs 10 to 100 µs 100 µs to 1 ms
1 - Gigabyte 291696327 0 0 20
2 - Gigabyte 292672876 0 0 5
3 - Gigabyte 395342184 0 0 5
4 - Gigabyte 396355043 0 0 5
5 - Asus Tek 340636951 0 0 702
6 - Dell Inc 1686431294 243 15 30
7 - Asus 324413121 0 0 58
8 - Foxconn 768134799 0 0 20
9 - HP 1282771330 0 0 0
10 - Fujitsu 295877313 669040 0 0
11- HP 882002283 0 0 0
12- Acer 1271119669 0 0 0
13- Compaq 223088353 0 0 0

Figure 3.7: SMI Frequency Graph. In general, the graphics shows that newer ma-
chines trigger SMI more often.

3.3 SMM operation and relations

3.3.1 Entering and exiting from SMM

Figure 3.9 explains the process of entering in and exiting from SMM. To enter SMM,
a system management interruption (SMI) must be generated. There are several
reasons to an SMI be generated, depending on the chipset in use. But, all of them

54

3.3 SMM OPERATION AND RELATIONS

Figure 3.8: SMI Latency Graph. Observing this graphic, we can see that newer
machines have, in general, smaller latency time.

are related to system management functions 1 . No matter the reason, the only
way to generate an SMI is by signalling it in the SMI# pin on the processor, which is
referred as SMI triggered by hardware, or by an SMI message received through the
Advanced Programmable Interrupt Controller (APIC) bus, which can be referred
as SMI triggered by software 2 . Then, the processor informs external hardware
that an SMI handling has begun, by generating an SMI acknowledge transaction on
the system bus (P6 family processors) or by asserting the SMIACT# pin (Pentium
and Intel 486 processors) 3 [87, 11]. SMIACT stands for SMI active [11, 127].

Upon entering SMM, the current processor state is saved in the SMRAM 4 and
no other interruptions can affect or be handled in the system, including another
SMI. Then the processor looks for the first SMI handler instruction at the address
SMBASE + 8000H 5 . SMI handler set or clear SMM related register, which just
can be manipulated in SMM 6 (section 3.2.3).

To exit from SMM, the SMI handler executes its exclusive RSM instruction 7 .
There is no other way to exit from SMM. Upon exiting from SMM, the processor
always comes back to the mode it was before enter in SMM 8 , restoring the state
saved 9 and passing control to the interrupted process before entering to SMM or

dealing with other interrupts which might be generated during the SMM time 10
[87, 24, 127].

The BIOS uploads the SMI handler code and data to the SMRAM during bootup
process 0 .

3.3.2 Caching

IA-32 processors do not invalidate their caches before entering or exiting from
SMM, which can allow information leakage. The main recommendation is avoid
make SMRAM space cacheable (section 4.4). So, Intel recommends three methods,

55

3. THE SYSTEM MANAGEMENT MODE (SMM)

SMRAM

State save map

SMI handler

Non SMM

CPU

SMM

 SMI SMIACT#

SMBASE + 8000H

SMBASE

SMRAMC

PMBASE

SMI_EN

SMI_STS

...

MSR_SMM_BLOCKED

System bus

Chipset
management

event
SMI#

APIC bus

CR0

CR3

RFLAGS

IA32_EFER

RIP

...

GDT Base (upper)

 other SMI
NMI
INIT
INTR

Restore

Save

CPU state RSM

Registers set

1 2

3

4

5

7

6

9

10

BIOS SMI handler
0

8

Figure 3.9: Entering and exiting from SMM. This figure exposes the process of
entering and exiting from SMM.

that can be adopted by BIOS manufacturers and OEM in general when developing
SMM resources to deal with this caching issue [87]:

1. Place the SMRAM in a memory region inaccessible for operating system and
applications and allow this region be cacheable. This method might avoid
that a malicious code jumps to the SMRAM space, after successful attack the
cache. However, it does not prevent leakage of information stored in the
cache if a successful attack occurs.

2. Place the SMRAM in a memory region that can be overlapped for operat-
ing system and applications and encode SMRAM as uncacheable (see section
3.2.3 and [86, 87] for more on memory encode). This will reduce the SMI
handler performance, impacting in latency time.

3. Place the SMRAM in a memory region that can be overlapped by operating
system and applications, but flushing the caches before entering and exiting
the SMM. It can be done by asserting the FLUSH# pin and then the SMI# pin
after an SMI has been triggered. This will cause some overhead due to two
flush operations.

56

3.3 SMM OPERATION AND RELATIONS

3.3.3 Multiple-processor systems

In a system with multiples processors, one or more processors can be in SMM at the
same time. When more than one processor is in the SMM, each one needs its own
SMRAM space. However, this space can be overlapped and code and static data
can be shared [87]. Nonetheless, each process needs its own state save map and
dynamic data storage areas. Because of this requirement and since the state saved
map is fixed at SMBASE + FE00H, the SMI handler needs to initialise the SMBASE
register for each processor.

3.3.4 SMM and Virtual Machine Extensions (VMX)

VMX provides the processor support for virtualization. VMX operates with two
mode of operation: VMX root operation, that is privileged and used by the hyper-
visor; and VMX operation, that is non-privileged and used by guest VMs. The Vir-
tual Machine Control Structure (VMCS) controls several functions related to VMX
and it can only be accessed by the hypervisor [57].

Processors supporting VMX can deal with SMM in Default Treatment or Dual-
monitor Treatment. The Default Treatment is quite similar to the SMM operation
showed before.

In the Dual-Monitor Treatment, the system uses two hypervisors (or virtual ma-
chine monitors or VMM): an executive monitor (as Xen [18]), which operates out-
side the SMM and provides virtualisation services for guest virtual machines (guest
VM); and the SMM-transfer monitor (STM), operating “inside SMM” and offering
SMM functions to guests VM executing in VMX operation mode [87].

Then, in the dual-monitor treatment there is a cooperative work between the
executive monitor and the STM. The control is transferred from executive monitor
(or from its guests) to STM by means of a SMM VM exit and from STM to executive
monitor by means of a SMM VM entry [57, 91]. Note that, when using STM, the
processor does not use a RSM instruction to exit from SMM, but a SMM VM entry.
STM operates in VMX root operation mode.

With VMX, the SMM code used to be loaded by using three aliases memory ad-
dresses: HSEG, TSEG and CSEG [57]. Those aliases specify regions in the memory.
However, the contemporary platform does not support HSEG and CSEG anymore
[93]. Nonetheless, the only alias important to STM is TSEG. TSEG is divided to in-
clude an area called monitor segment area (MSEG). The BIOS loads STM code and
data in the MSEG area inside of SMRAM [87] and the remaining SMM code in the
TSEG area [57].

Not all processors support the Dual-Monitor Treatment. It is necessary to con-
sult the IA32 VMX BASIC register to check information about support [87].

3.3.5 The Intel Software Guard Extensions (SGX)

The reason behind to use SMM for security purposes is because it has powerful
resources in the system.

In fact, using SMM for security purposes is a sort of workaround. The real ne-
cessity is something in the system that can provide the same resources as SMM
provides, especially a fair amount of protection and isolation for the security so-

57

3. THE SYSTEM MANAGEMENT MODE (SMM)

lution code and data themselves. Possibly, with efficient protection and isolation
even a security tool would not be necessary: applications could perform on such
protected and isolated environment directly.

In this context, the potential answer for security purposes can be the Intel Soft-
ware Guard Extensions (SGX). SGX is a Intel architecture that allows applications
to execute in the native operating system in an isolated environment, enabling con-
fidentiality and integrity. SGX provides an isolated and protected container, called
enclave, established in the application’s address space [111].

This new architecture is enabled by means of 18 news instructions added to the
Instruction Set Architecture (ISA), a new processor mode, called enclave mode and
new data structures [111]. It can provide security for different kinds of applica-
tions, ranging from streaming of video to high security demand financial transac-
tions [60]. SGX also provides strong mechanisms for attestation and sealing. The
attestation can be local, between two enclaves executing on the same platform, or
remote, when it is necessary to proves identification to a third party [10]. The Intel
SGX is not yet available commercially.

From the previous description, we can see that the enclaves are like virtual ma-
chines, managed essentially by instruction in the processor. Then, we might under-
stand SGX as the feasibility of a “hypervisor in processor”. Since SGX is embedded
in the CPU it can be very safe.

3.4 Security implementations using SMM

The current SMM-based security architecture is presented in figure 3.10. In the
next subsections, we present SMM-based security tools and point out opportunities
to improve them. Although AMD processor are not targeted in this research, we
believe it is useful to discuss some of the SMM-based security tools developed for
AMD processors.

3.4.1 Measuring the Hypervisor Integrity

In [141] is presented HyperCheck, a hardware-assisted framework to protect the
integrity of hypervisors, using SMM. HyperCheck comprises of three components:
memory acquiring module, analysis module and CPU register checking module.

The memory Acquiring Module reads the contents of the physical memory and
sends them to a remote machine where the analysis module checks their integrity. It
is implemented as a network interface card (NIC) driver and placed into SMRAM.
The CPU register checking module reads the registers and validates their integrity.
This former module is in the SMRAM. The acquiring module is located in a PCI
NIC and the analysis module is located in a remote machine.

Like HyperCheck, HyperGuard [146] uses the SMM to provide hypervisor in-
tegrity protection. It combines the SMM with chipset integrity scanning and takes
a different approach to integrity measurement: rather than measure the code and
data of the hypervisor to guarantee that they are correct, it ensures that there is no
malicious code in the hypervisor. HyperGuard requires the cooperation of BIOS
developers.

58

3.4 SECURITY IMPLEMENTATIONS USING SMM

Chipset

Bootup

Processing

Processor

SGXVMXI/O

Cache

DRAM

Virtualisation

Hypervisor

VM0 VM1 VM2 VMn. . .

Communication
Hardware

BIOS
SMM-based
Security tool

Communication
channel

Remote machine

Agent

Figure 3.10: Current SMM-based security tools architecture. Any tool capitalising
on SMM must somehow emulate SMI handler. In general, tools count on an agent
inside of DRAM and a remote machine to analyse collected data.

According to [14] HyperCheck and HyperGuard cannot always check the state
of the hypervisor since the hypervisor context can be hidden, depending on the
moment an SMI is triggered. This is the case for machines with VMX capabilities,
since the CPU can be in a root mode or in a guest mode [87, 57]. When in guest
mode, if an SMI is triggered, the CPU context would be invisible for those tools.
Moreover, another potential issue indicated by [14] is that HyperCheck and Hyper-
Guard do not provide a way to start the integrity measurement without alerting
the hypervisor. This might allow an attacker to perform a scrubbing attack (like
deleting evidences of the attacker actions).

HyperSentry [14] capitalises on the hardware architecture and the SMM to im-
plement a framework supporting stealthy in-context integrity measurement for hy-
pervisors. The framework uses a measurement agent running in the hypervisor
code base to check the integrity of the running hypervisor. HyperSentry uses a
remote verifier machine, which triggers the measurement agent. To keep the invo-
cation of HyperSentry stealthy, the remote verifier uses a Intelligent Platform Man-
agement Interface (IPMI) as communication channel. IPMI connects to a Baseboard
Management Controller (BMC) in the target machine, which triggers an SMI. Af-
ter SMI triggering HyperSentry, HyperSentry invokes the measurement agent and
executes an RSM, in such a way that the next instruction to be executed will be a
measurement agent instruction. It is not clear in [14] how that is done, but, it is
likely to be done by writing the measurement agent address to the EIP (or RIP)
register. Besides isolation and stealthy, HyperSentry tries to address the issue of
hypervisor integrity measurement during runtime; but it addresses that issue in
superficial way, since the main purpose of the work is to provide the framework.

59

3. THE SYSTEM MANAGEMENT MODE (SMM)

3.4.2 Other security solutions

The Strongly Isolated Computing Environment (SICE) [15] is another framework
that capitalises on SMM to provide an isolated execution environment. Its archi-
tecture involves only the hardware, the BIOS and the SMM. SICE is implemented
on AMD processors and its main function is to manage isolated environments. The
idea behind SICE is to execute in parallel with the SMI handler. Then, SICE oper-
ates under two modes: time-sharing mode and multi-core mode. In time-sharing
mode, SICE uses time multiplexing to share the hardware platform between the
system executive software and the isolated environments. In multi-core mode, one
or more core is used by the isolated environment and the remains are used by the
system executive software. The system executive software and its drivers are re-
quired to be modified to provide services to the isolated environments.

Essentially, SICE uses SMM resources to prepare the isolated environments. So,
the isolated environments are put into the SMRAM, within the limit of 4GB; and,
by setting the SMM Addr and SMM Mask AMD registers, SICE shrinks the SM-
RAM space in such way that they stay out of the SMRAM space. Thus they can be
executed out of SMM, but keeping the same level of isolation provided by SMRAM.

In [61] a scheme is presented for auditing cloud computing systems, making use
of SMM, TPM and HyperSentry [14]. It uses the same mechanism described above,
in HyperSentry, to provide stealthy measurement aiming to detect persistent and
non-persistent threats in the system.

AppCheck [142] is a similar tool to HyperCheck, implemented in the Intel plat-
form. However, it aims to protect applications by inspecting their code in the phys-
ical memory. In this sense an application means a user level process.

MUSHI stands for Multiple level security cloud with strong hardware level iso-
lation [151]. It is a framework that uses SMM and TPM to provide isolation for
guest Virtual Machines in cloud environments. MUSHI, a modified version of an
SMI handler, copies certain parameters to SMRAM, measures them and sends the
results to a remote party, which verifies the integrity of the data sent. As far as we
noticed from [151], MUSHI was not implemented.

HypeBIOS [152], like MUSHI, aims to provide isolation for Virtual Machines
and is implemented on AMD platforms. It reduces the virtualised environment’s
TCB by eliminating some components from the boot-up process. Then, HypeBIOS
includes two additional layers in the system: a master layer (modified SMI handler)
in SMRAM to perform measurements in general; and a slave layer positioned be-
tween the master layer and the hypervisor, intercepting and mediating some com-
munication between VMs and the master layer.

BIOS Chronomancy [25] capitalises on SMM, TPM and time-based attestation
[104] to implement a Core Root of Trust for Measurement (CRTM) to demonstrate
and fix fails on the implementation requirements described in TPM recommenda-
tions.

Another proposed framework is SPECTRE [149]. However, its objective is to
inspect the system state, using techniques of virtual machine introspection (VMI)
[53]. VMI makes use of on virtualisation resources to obtain visibility of a moni-
tored host system, while maintaining a good level of isolation. In this sense, VMI
balances the power of visibility achieved by host intrusion detection system (HIDS)
with the isolation and protection provided by a network intrusion detection system

60

3.4 SECURITY IMPLEMENTATIONS USING SMM

(NIDS). So, the main goal of SPECTRE is detecting malicious code running in the
host machine.

In this system, the host machine periodically triggers an SMI by means of a
timer in the chipset, so that the SMI handler (SPECTRE) monitoring module is per-
formed. After concluding, a status message is sent to a remote monitor machine.
This architecture is reported as being able to identify different kinds of attacks, such
as heap spray, heap overflow and root-kits The implementation was done using an
AMD machine and, as with HyperCheck, SPECTRE uses a custom NIC driver.

IOCheck [150] is a framework to improve security of I/O devices at runtime
by checking their configuration and firmware integrity. Its architecture is closely
related to SPECTRE: the host (or target) machine triggers an SMI, using a random-
polling (triggered periodically) or an event-driven approach (triggered whenever
particular events happen). Then IOCheck (a modified SMI handler) verifies the in-
tegrity of configuration and firmware files on the target device. If a potential attack
is detected, the host machine emits a sound alert and sends an alert message to a
remote machine. After concluding its tasks, IOCheck executes an RSM instruction.

3.4.3 Brief Analysis of the Security Implementations

HyperCheck [141], HyperSentry [14], auditing tool [61], AppCheck [142], MUSHI
[151], SPECTRE [149] and IOCheck [150] use a similar architecture, taking in ac-
count a remote machine to analyse the collected data and for other management
functions.

These tools assume that SMRAM is tamper-proof and that an attacker has no
access to the physical machine. This is a quite strong assumption, since the reported
attacks (see section 3.5) have shown how to compromise the SMM. HyperSentry,
auditing tool [61], HyperCheck, SPECTRE and IOCheck further assume that the
components involved in communications (as the channel, the NIC and the remote
machine) are safe.

The tools use modified versions of the original SMI handler. HypeBIOS, SPEC-
TRE and IOCheck use SMI handler from Coreboot [36]. The SMI handler has crucial
system management functions. However, it is not clear what happens to the origi-
nal functions of the SMI handler after the modifications have been made, or to the
level of cooperation between tools and the original SMI handler. Moreover, these
tools need some form of cooperation to be installed, since they require changing
the BIOS. HyperGuard, for example, is a project supported by a BIOS manufac-
turer. No further information has been found about HyperGuard.

In HyperCheck, the memory Acquiring Module is implemented as a NIC driver
deployed into SMRAM. However, it is not clear how the SMI is triggered to start
that module.

In HyperSentry architecture the weakest security point is the measurement agent,
since it resides in the hypervisor. After an SMI has triggered the HyperSentry’s SMI
handler, the handler invokes the measurement agent and executes an RSM in such
a way that the next instruction to be executed will be a measurement agent instruc-
tion inside the hypevisor. It is not clear how this operation is performed, but it is
likely to be done by altering the EIP register. Then, that agent performs the mea-
surement. So another SMI is triggered and the measurement results are stored in
SMRAM space.

61

3. THE SYSTEM MANAGEMENT MODE (SMM)

There are two more unclear issues in the operation above. Firstly, how does the
measurement agent trigger the SMI to store results in the SMRAM? Secondly, since
the measurement agent is not an SMM code, it cannot store data in SMRAM space
at all.

Although HyperSentry is focused on the framework, the measurement agent
deployment strategy might prevent HyperSentry from delivering the proposed se-
curity. Firstly, the agent is common code in the hypervisor, so it can be tampered
with by the same hypervisor’s threats. Secondly, If the agent cannot trigger the SMI
in the same way as the remote verifier does, it will prevent the proposed stealthy
operation. Finally, since the agent has no way to write to the SMRAM space, it
will probably deliver the measurements to some unprotected memory space for
subsequent collection by HyperSentry’s SMI handler. This memory space could be
tampered with by malicious code.

Another issue is the execution time for the tools. As seen in section 3.2.4 the
SMI latency must be less than 150 µs [90]. However, table 3.4 shows that most of
the tools have execution time superior to that limit.

It is noteworthy that the time report by SICE (67 µs) is the time required to man-
age the isolated environment (create, enter, exit and terminate) and not the execu-
tion time for any workload. This means that the workload in SICE executes in an
isolated memory space, but the processor is no longer in SMM mode. So although
the workload benefits from the memory isolation property, it cannot capitalise on
any other SMM resources.

Table 3.4: Reported execution time. Almost all tools were not able to keep their
execution time under the maximum latency time recommended by Intel: 150 µs
[90]

Tool Time Objective CPU
HyperCheck 40 ms Check integrity of hypervisor Intel
HyperSentry 35 ms Check integrity of hypervisor Intel
SICE 67 µs* Provide isolated workload AMD
SPECTRE 62.5 ms** Virtual machine introspection AMD
IOCheck 10.4 ms Check integrity of I/O devices AMD

(*) Time to prepare the isolated environment.
(**) Worst case scenario.

3.5 Launching attacks using SMM resources

In our research, we have not identified any work addressing the issue of establish-
ing requirements to use SMM for security purposes. But, there are works attack-
ing, misusing and implementing security tools capitalising on SMM. We describe
briefly these works in the following subsections. An attack targeting SMM is essen-
tially neither a hardware attack nor software attack. But it is classified closer to the
hardware than to the software, since it needs sort of physical access and low-level
system components access.

62

3.5 LAUNCHING ATTACKS USING SMM RESOURCES

3.5.1 The first wave of attacks

Duflot et al. [45] published one of the first known works on exploiting SMM. That
work explains how to use SMM to circumvent operating system protection mech-
anisms, permitting privilege escalation. The authors establish and demonstrate a
scheme comprising of six sequential steps: 1) enable SMI; 2) open SMRAM space;
3) replace default SMI Handler by a customised one; 4) close SMRAM space; 5)
trigger SMI and 6) gain full access to the system.

Although this attack is practical, it is operating system dependent, mainly in
Linux-like systems since Linux allows more control over low-level system func-
tions. Moreover, the attack assumes an attacker with system administration privi-
leges.

Branco [23] presents a more generic attack and shows how to use the SMM to
deploy malwares. Essentially this follows the same steps described in the work
of Duflot et al. [45]. However, the way some steps are performed differs. For in-
stance, in the step “open SMRAM space” the SMRAMC register is manipulated to
accomplish this in both [45] and [23]. However, Duflot et al. use the operating sys-
tem functions to do it, while Branco uses libpci [12, 106] to manipulate the register,
which makes this attack more generic than that described in [45].

Embleton et al.[47] presents a generic attack using SMM. They demonstrate
their ideas by implementing a key-logger and a network back-door which work
together to capture keystrokes and send them to a remote machine using the UDP
protocol. They trigger an SMI by software via the APIC bus in such a way that each
time a key is pressed an SMI is triggered and the key-logger is launched. The key-
logger then logs the key, sends it to the remote machine and triggers the normal
interruption for the keystroke as would be expected by the CPU.

That attack has limitations, some of which were reported in the paper. One
limitation is the high overhead. The paper reports that the overhead is negligible.
However, since any key pressed triggers an SMI and at least three steps are needed
to be accomplished after that, it will generate a high overhead, potentially causing
the operating system or hypervisor to freeze.

Another issue is that is not clear what happens with the original SMI handler.
Considering the design of the SMM, the original SMI handler was most likely over-
ridden by the key-logger code. If the original SMI handler is not launched to handle
an SMI, the system may crash. This would be a denial of service, which has value
to an attacker, but was not intended by the attacker. One more issue is what would
happen when a legitimate SMI is triggered. Most likely, in the advent of a legiti-
mate SMI, since the CPU always searches for the SMI handler code at SMBASE +
8000H, the key-logger would be executed. This would try to log a keystroke and
would launch a keystroke interruption, which may cause an unpredictable error on
the system.

3.5.2 The second wave of attacks

In 2009, Duflot et al. [46] presented another paper reporting a new attack using
a technique called “caching poisoning” to circumvent the D LCK bit protection,
allowing access to the SMRAM. It consists of making the SMRAM cache-able, by
encoding it to “writeback” (WB) triggering an SMI to have the SMI handler in the

63

3. THE SYSTEM MANAGEMENT MODE (SMM)

cache and then replacing the memory content at SMRAM address with a malicious
SMI handler (for example), modifying its image in the cache.

The tough point in this attack is “making the SMRAM cachable”. However,
since the attacker must have system administrator privileges, the attacker just needs
to execute a set of assembler instructions to manipulate the MTRR registers to ac-
complish this task.

Another attack uses the same cache poisoning technique was published in [148].
The steps described there are quite similar to those ones published in [46]. The
paper [148] provides detailed information about the attack, emphasising that it is
hardware-dependent. In particular, that attack is based on Intel DQ35JO mother-
board with 2 Gbytes of RAM. This motherboard was reported in [119] as having a
bug, which would allow bypassing the Xen hypervisor protection. That attack was
called ”Q35 remapping bug” [147]. The paper also presents a variant of the attack,
which allows the attacker to obtain more information about the SMI handler by
reading its code. This attack variant crafts the malicious code to read data cached
without polluting it with new and undesirable data.

In [147] an attack against Intel TXT is successful in demonstrating the power of
malicious code capitalising on SMM resources. This attack uses the techniques de-
scribed in [148] to exploit, via malicious code inserted in SMRAM, a Xen hypervisor
loaded by Intel TXT.

One limitation in attacking the SMM is reported in [147]. They argue that there
is no way to get access to the SMI handler code image running inside SMRAM,
since it is locked for non-SMM code. In this context, [143] describes how to analyse
the SMI handler by means of reversing engineering the BIOS firmware. This exploit
allows also the SMI handler to be modified to embed malicious code in it. The
paper presents an SMM keystroke logger and its respective detection code, which is
more sophisticated and with more details than that one described in [47]. However,
it is hardware specific, designed to exploit the BIOS of ASUS P5Q motherboards,
based on AMIBIOS 8 [143].

A more recent misuse of SMM is reported in [122]. Using an AMD platform,
the authors introduce a root-kit into the SMM to intercept events and capture data
from USB devices. Thus, they are able to intercept, replace and inject keystrokes
stealthily. The reported time for each keystroke is 61µs.

The authors gained an advantage, compared to the previous key-loggers [47,
143], by intercepting the communication before it reaches the OS kernel. To do
that, they take advantage of a feature in the Host Controller Control Register (HC
Control register) defined in the Open Host Controller Interface (OHCI) specifica-
tion, supporting the USB 1.1 devices [33]. Generally speaking, the Host Controller
(HC) is the hardware that controls the USB devices connected in a host machine
and the HC control register is used to define the operating modes for the HC [33].
Its 8th bit is the interrupt routing bit (IR). When cleared, interrupts are routed to the
host bus interrupt mechanism. When set, interrupts are routed to the SMM. Since
the keylogger is a modified version of the SMI handler, by setting the IR bit, the
key-logger is able to intercept all USB events.

Some limitations of this work [122] are: 1) the ex-filtration technique, which is
done by saving the logged keys in a memory region outside of SMRAM; 2) As dis-
cussed previously, the modification of the original SMI handler could cause several

64

3.5 LAUNCHING ATTACKS USING SMM RESOURCES

problems in the system; 3) The installation process needs physical access to exploit
possible bugs present in the chipset [148] or to use a customised BIOS, such as core-
boot [36, 23]; 3) The attack is based on an old specification. Even the old Enhanced
Host Controller Interface Specification (EHCI) for Universal Serial Bus, supporting
USB 2.0 devices has a complex scheme to allow SMI and has a set of register to
deal with that, such as the USB Legacy Support Control/Status (USBLEGCTLSTS),
which enables SMIs for every EHCI/USB event the BIOS needs to track [67].

3.5.3 Thwarting the Attacks

The attacks in the first wave assume that bit D LCK is cleared or that the attacker
is able to manipulate SMRAMC register. Because of that, BIOS manufacturers have
been deploying BIOS and setting the D LCK bit after the SMM code and data are
loaded into SMRAM thus blocking SMRAMC register access.

One way to overcome this protection, as suggested in [23], is replacing the BIOS
by an open source BIOS, as Coreboot [36], or circumventing the BIOS protection
mechanism to install the malicious code in the original BIOS space, taking advan-
tage of BIOS updating features, as described in [22]. BIOS replacement attacks are
hardware attacks [57] and can be avoided by access control to the hardware.

The attack described by Embleton et al. [47] might be detected by checking the
APIC table integrity and might be avoided by preserving the APIC table integrity,
since it triggers an SMI by means of the APIC bus.

The “cache poisoning” attack is possible, because IA-32 processors do not in-
validate their caches before entering or exiting from SMM. This allows information
leakage. To mitigate these attacks, Intel recommends in [87] that BIOS manufac-
turers and OEM should deal with the issue by placing the SMRAM in a memory
region that:

1. is inaccessible for operating system and applications, and allow this region
be cache-able

2. can be overlapped for operating system and applications and encode SM-
RAM as not cache-able.

3. can be overlapped for operating system and applications, but flushing the
caches before entering and exiting SMM.

Another improvement that mitigates “cache poisoning” attacks is the System-
Management Range Register (SMRR) Interface. This restricts access to the memory
address range in the SMRAM used by the SMI handler code and data. Thus, cache-
able address references to SMI handler are limited. To check if the processor sup-
ports the SMRR interface, one needs to check if the bit 11 of IA32 MTRRCAP reg-
ister is set. The SMRR interface contains two Model Specific Registers (MSR): The
IA32 SMRR PHYSBASE defines the base address for the SMRAM and the memory
type used to access it; the IA32 SMRR PHYSMASK determines the SMRAM ad-
dress range protected. They can only be written to when the processor is in SMM
mode [87].

65

3. THE SYSTEM MANAGEMENT MODE (SMM)

Two other registers must also be considered to improve security: the MSR
SMM FEATURE CONTROL register, which is used to restrict the SMI handler ad-
dress range; and the MSR SMM MCA CAP register, which offers additional write
protection to the MSR SMM FEATURE CONTROL register [87].

3.6 Discussion

This chapter described the SMM components and discusses how each one con-
tributes to the SMM operation. We investigated and mapped the registers related
to SMM and how those register influences the SMM operation. Some registers have
great influence on SMM, as the System Management RAM Control (SMRAMC),
which working as an access control mechanism to the SMRAM and other are only
flags to indicate the SMM components status as the SMI Status register (SMI STS).
There are SMM related register related to control (CTN), enabling functions (EN),
indicating status (STS) and so forth. We described the SMM operation and why it
has timely resources to be used by security tools.

We investigated the SMI handler since it is potentially the more powerful soft-
ware artefact in Intel architecture. In fact, any security tool (or any software) cap-
italising on SMM must emulate the SMI handler in some way. The SMI handler
is in a certain extent obscure and some questions related to it are fundamental to
develop SMM-based tools, for instance, the size of SMI handler, how many times
an SMI occurs in a space of time and how long it can stay on execution without
compromise the host machine operation. About this last subject, we conducted an
experiment in this chapter with 13 Intel based machines using the BITS tool [90] to
determine the SMI latency and we find that eight machines failed in the test (table
3.1).

Intel architecture comes with different architectures to improve the capacities,
ability or security of the Intel-based machines, as Virtual Machine Extensions (VMX),
Intel Trusted Execution (TXT) and Intel Software Guard Extensions (SGX). Those
technologies have interactions with SMM. Then, this chapter identified and dis-
cussed such interactions.

The security tools capitalising on SMM were discussed. An analysis of their de-
sign and opportunities of improvement were indicated in this chapter. On the other
hand, published attacks against SMM were reported and analysed. We presented
ways to thwart those attacks and discussed if they are feasible nowadays.

3.7 Summary

The SMM-based security tools discussed in this research were not able to fully use
the main resources of SMM, as isolation and transparency on execution. They also
were not able in keeping their execution time under the maximum latency time for
the SMI handler recommended by Intel, according to [90]. We say, SMI handler
because SMM was not design for general-purpose. Moreover, Intel recommends
not using SMM for general-purposes [87]. That recommendation aims to preserve
the important SMM functions to avoid that a “general-purpose” software violates
the strict limits and constraints of SMM resources and disturb the correct function
of SMM components, as by overwriting the SMI Handler (details in sections 3.2.4

66

3.7 SUMMARY

and 3.4). So, this research establishes a set of requirements, which a security tool
must met to overcome those limits and constraints, allowing the use of SMM for
“Security-purpose”. About using SMM for “general-purposes” see details on the
opening of this chapter and in contribution 4. It is important to notice why security
tools need to capitalise on the SMM. And that is Because the system environment is
insecure; the tools need to be protected themselves and SMM can offer an isolated
and protected environment. On the attacks, they only work on specific chipsets
and when certain conditions are satisfied, as when the bit D LCK in the SMRAMC
register is cleared.

SGX may be the Intel’s answer for the security demanded by the SMM-based
tools. Applications using SGX Essentially use the set of new instructions provided
by SGX to handle the data structures and then manage their enclaves. An enclave
itself is similar to a virtual machine in concept and the process of managing the en-
clave is similar to that used by hypervisors to manage virtual machines. Since, the
instructions to manage enclaves comes from the processor, SGX could be thought
as a “hypervisor in processor” or as a “hypervisor on a chip”. Naturally, enclaves
from SGX and hypervisors have different threat models, but this comparison is
useful to understand the general idea behind SGX.

It should be emphasised that SGX does not supersede the functionality of SMM.
In fact, SGX instructions are only available when the processor is in protected mode
and Intel clearly defines the interactions among Intel SGX and SMM. Note that
SGX is a future feature to be added in Intel processors, therefore, it is not available
commercially yet [94].

This chapter successful investigated and described SMM components and SMM
operation. It identified the SMM relationship with other Intel technologies, as Intel:
VMX, TXT and SGX; and analysed security tools and attacks capitalising on SMM.
Then, in the next chapter, we analyses all findings and results from the present
chapter to build a threat model for an SMM-based security tool. From the threat
model, we make the assumptions considered when formulating and designing the
answers for the research questions proposed and when building the proof of con-
cept. Finally, we establish a set of requirements for using SMM for security pur-
poses.

67

Chapter 4

Requirements

4.1 Introduction

The last chapter investigated and detailed SMM components and how those com-
ponents work together during SMM operation. The SMM related registers were
investigated and mapped. We have learned that SMI handler is potentially the
more powerful software artefact in Intel architecture, due to the resources available
to it when the processor is in SMM. Also, SMM needs to co-exist with different Intel
technologies, as Virtual Machine Extensions (VMX), Intel Trusted Execution (TXT)
and Intel Software Guard Extensions (SGX). The interaction among those technolo-
gies were discussed, emphasizing that SGX is not available commercially yet. Fi-
nally, last chapter analysed the security tools capitalising on SMM and pointed out
opportunities of improvement for those tools. Also, it has analysed known attacks
against SMM, suggesting ways to thwart those attacks and discussing their feasi-
bility nowadays.

In this chapter, we examine the findings in chapters 2 and 3 to construct a
threat model to the current SMM-based security tools architecture. From that threat
model, we make assumptions and then we establish a set of requirements which
SMM-based security tools must meet to overcome the limits and constraints of
SMM, while dealing with the threats. By meeting the requirements, an SBST
can take more from SMM resources, ensuring strong isolation, high privileges and
good view of the system. Finally, we indicate what requirement (or assumption)
mitigates each threat.

This chapter is organised in three content sections and a discussion and a sum-
mary section. In the first section, we analyse the platform around SMM and built
a threat model, defining 10 threats in the platform. Section two discusses the as-
sumption made, considering the complexity and the time frame available for this
work. Then, third section establishes and discusses the requirements that must be
met by SMM-based security tools.

4.2 Threat model

To understand the threats around SMM, we have analysed the current architecture
for SMM-based software (not just security tools), considering the attacks reported,
the characteristics of the x86 platform and the SMM. By analysing them, we noticed
that most of those tools are modularised and their architecture addresses the SMM
constrains and limitations, as limited space and maximum SMM latency (execution
time limit) with that modularised architecture. However, such an architecture en-
larges the TCB, by adding a communication channel, a remote machine and drivers

69

4. REQUIREMENTS

and devices, as those ones used to enable communication. A remote machine is
generally used in that architecture to analyse the data collect in the target platform,
so the analysing task is done by the remote machine eliminating the overhead of
analysing using the local processor in the target platform (figure 3.10).

Thus, we have identified the following threats (figure 4.1):

• h1 - Tamper with the analyser. An attacker can tamper with the remote ma-
chine and compromise the result of measurements, so no action would be
taken in the measured machine with its integrity is violated. Counting on a
remote machine is a common strategy to deal with SMM constraints and lim-
itations, as used in HyperCheck [141], HyperSentry [14], auditing tool [61],
AppCheck [142], MUSHI [151], SPECTRE [149] and IOCheck [150]. An at-
tacker can also impersonate the remote machine to receive the collected data
when an authentication service is not present between the analyser and the
target machine.

• h2 - Information disclosure. The communication channel used to send in-
formation to the remote machine, as described in the previous threat, can
be monitored and measurement information disclosed or the channel can be
disrupted avoiding that collected data can arrive at the analyser. Yet, a man-
in-the-middle attack can tamper the collect data, compromising the result of
measurements. Some tools as Hypersentry and hypercheck use attestation to
address the Information disclosure issue.

• h3 - Denial of service. An attacker can disable the hardware used to establish
the communication channel between the analyser and the target machine, as
described in the previous threats, denying the communication service.

• h4 - BIOS replacement. An attacker may replace the BIOS by accessing the
target machine or try replacing the BIOS software during a BIOS update pro-
cess, removing the security tool and inserting or not a SMM-based malware
in the BIOS to upload it in the SMRAM.

• h5 - Security tool replacement. An attacker can try replacing the security tool
after the bootup process have started and before the BIOS upload the tool in
the SMRAM. So, the attacker would have their one tool in the SMRAM.

• h6 - Cache poisoning. It consists in modifying the SMI handler image present
in cache memory, as described in section 3.5.2 and in [46] and [148]. For that
attack works, the attacker needs to make SMRAM cachable, by encoding it
to “writeback” (WB) and the target machine is not following the strategies
suggested in 3.3.2.

• h7 - Tamper with the hypervisor. An attacker may tamper with the hyper-
visor and take over of it and all the code present in it. So, an agent or any
software in the hypervisor environment can be tampered with or denied of
working. There are successful attacks against hypervisors, as in the case of
a successful execution of code on the host machine from a guest OS in a
VMware environment [102] and an exploitation of the Xen hypervisor that
allows including a backdoor functionality inside of it [145].

70

4.2 THREAT MODEL

• h8 - Tamper with the management VM. The management VM share with the
hypervisor the management function in the virtualised layer. Thus, it is as
important as the hypervisor. An attacker may tamper with the management
VM and launch attacks against the hypervisor and the other virtual machines.
So, the attacker can escalate its exploitation to another parts of the virtualised
layer or the host machine.

• h9 - Malicious Virtual machines. An attacker using a malicious VM could
force a VM exit to occur, trying to simulate an execution of privileged in-
structions, and than the attacker could try either to inject malicious code , as
described in the vulnerability CVE-2007-5497 [31] or to cause a malfunction
in the hypervisor [135, 31]. By doing this, an attacker might violate confiden-
tiality, integrity and availability of other VMs, the hypervisor and ultimately
compromise all the cloud infrastructure.

• h10 - Malicious chipset. A malicious chipset normally requires attackers with
a big amount of resources, which can anticipate their attacks by inserting ma-
licious firmware or hardware trojans in the chipset of machines, which may
become a target in the future. A malicious chipset is a very powerful platform
to launch any kind of attack and may compromise the whole infrastructure
around it.

In general, our threat model assumes that an attacker might have complete con-
trol over any software and can violate the hypervisor or any other software outside
SMRAM.

Chipset

Bootup

Processing

Processor

SGXVMXI/O

Cache

DRAM

Virtualisation

Hypervisor

VM0 VM1 VM2 VMn. . .

Communication
Hardware

BIOS
SMM-based
Security tool

Communication
channel

Remote machine

Agent

h1
h2

h3

h4

h5

h7

h6

Threats
h1. Tamper with the analyser
h2. Information disclosure
h3. Denial of service
h4. BIOS replacement
h5. Security tool replacement
h6. Cache poisoning
h7. Tamper with the hypervisor
h8. Tamper with the management VM
h9. Malicious Virtual machines
h10. Malicious chipset

h9h8

h10

Figure 4.1: Threat model. Threats identified in the current SMM-based security
tools architecture.

71

4. REQUIREMENTS

4.3 Assumptions

Those assumptions are related to security issues. Then, since it is neither possi-
ble nor convenient to address all threats related to environment considered in this
research we make assumptions to render this research problem treatable. Some
threats are out of the scope of this research and other ones are difficult to address in
the time frame available for this work. In this context, the following assumptions
are made:

• a1 - No physical access. The attacker does not have physical access to the machine
and cannot replace the BIOS. An attacker with physical access to the machine
can perform hardware attacks or replace the BIOS. By replacing the BIOS,
an attacker could be able to inject an SMM-based malware or simply use a
pristine BIOS version, without the SMM-based security tool.

• a2 - Trustworthy BIOS. At the target platform, the BIOS is trustworthy and safely
uploads and sets up the SMI handler in the SMRAM. a trustworthy BIOS con-
tributes to mitigate attacks against the SMM-based security tool before it is
deployed in the SMRAM. In fact, many BIOS manufacturers implement some
sort of authentication when updating their BIOS [143, 153].

• a3 - Trustworthy chipset. The chipset in the target platform is not malicious and
cannot be tampered with. We assume that the chipset will work always in a
trustworthy way and attackers cannot tamper with firmware and other com-
ponents in the chipset.

4.4 Requirements for using SMM for security purposes

Based on what was investigated up to now, some remarks about SMM and its re-
sources are possible. Thus, SMM is: chipset specific, platform specific, OEM spe-
cific, executive software specific, limited in execution time (however, there is no
mechanism to pre-empt it), limited available space for code and data, high priv-
ileged, important to manage the system, code and data non-persistent and real-
address mode.

Then, using SMM for security purposes means to use its components to perform
tasks, which they were not designed for, according to the Intel’s manuals [66, 71, 87,
91, 92, 93, 97], as the previous works did. Because of this, all reported works exhibit
some limitation. To take more advantage from SMM, an SMM-based security tool
needs to deal with the limits and constraints imposed by SMM. Then, this research
establish a set of requirements which must be met by an SBST to optimise it for
the SMM.

This research establishes a set of requirements for an SBST , considering the
threat model, the assumptions, the architecture and analysis of security tools pre-
sented and the analysis of attacks reported in this research. These requirements
aim to overcome the limits and constraints of SMM and allow an SMM-Based se-
curity tools take more advantage from SMM resources. Therefore, an SMM-based
security tool must be small, fast, persistent, cooperative, isolated, resistant, SMI-
independent and complete, as discussed ahead.

72

4.4 REQUIREMENTS FOR USING SMM FOR SECURITY PURPOSES

• r1 - Small. There are 32512 bytes available for the SMI handler code, data,
heap and stack (section 3.2.2). In fact, SMRAM can be up to 4 Gbytes, but
it is recommended to keep the minimum size [87]. Observing HyperCheck
[141], HyperSentry [14], auditing tool [61], AppCheck [142], MUSHI [151],
SPECTRE [149] and IOCheck [150], we notice that those tools use a similar
architecture, taking in account a remote machine to analyse the collected data
and for other management functions. That architecture addresses the issue of
limited space, modularising the tools. Although this remedies the problem, it
opens new venues of attack, as the communication channel, the drivers and
devices used to enable communication and as the remote machine. Moreover,
they enlarge TCB, since all those items should be in the TCB, so they lose
the SMM isolation protection by using other modules of the tool outside of
SMRAM. Thus, a SMM-based security application should be small enough to
fit in the minimum size available.

• r2 - Fast. Intel specifies that the SMI latency must be less than 150 µs to min-
imise the risk of system executive software time-outs [90]. The modularised
architectures of HyperCheck [141], HyperSentry [14], auditing tool [61], Ap-
pCheck [142], MUSHI [151], SPECTRE [149] and IOCheck [150] deals with
this problem by leaving just a part of their tool in SMRAM. This architecture
minimises the time spent executing the tool when in SMM. Anyway, the ex-
ecution time reported when in SMM is 35 ms for HyperSentry and 40 ms for
HyperCheck, which is much greater than the time specified by Intel.

• r3 - Persistent. The SMRAM is volatile. A reboot or system restart will clean
the whole SMRAM content. So, the SMM related code and data need to be
loaded again. Thus, the design of a SMM-based security tool needs to con-
sider that the tool must be embedded in the BIOS (or equivalent entity), since
the BIOS contains the SMM related code and data and loads them into the
SMRAM during the boot up process (figure 3.9) [57].

• r4 - Cooperative. The SMI handler functions need to be preserved since they
have important tasks to perform. The SMM-based security tools reported in
section 3.4 use modified versions of the SMI handler. But the implications and
the extension of modifications to the original SMI handler code are not spec-
ified. So, the SMI handler integrity cannot be guaranteed. Any SMM-based
security tool must preserve the original SMI handler functions, by adding its
own code to the SMI handler and not overwriting any part of it. Since when
entering SMM the processor looks for the first instruction to be executed at
the address SMBASE + 8000H (by default 38000H) in SMRAM, where the
SMI handler is located, this implies that any SMM-based security tool must
be a modified version of the SMI handler.

• r5 - Isolated. SMI handler, and consequently any SMM-based security tool,
performs its tasks without notifying or being recognised by the system execu-
tive software [57]. Moreover, since the system executive software stands still
during the whole time the processor is in SMM, its execution is transparent
for other software in the system. Then SMM-based security application using

73

4. REQUIREMENTS

memory outside of SMRAM is sort of counter-intuitive, since the main moti-
vation to use SMM is to benefit from its powerful resources, such as isolation
and transparency. Moreover code and data outside of SMRAM can be tam-
pered. Then, a SMM-based security tool needs to be protected by isolation
and its code and data, even temporary, should be kept in the SMRAM.

• r6 - Resistant. The “cache poisoning” attack is an effective attack against
SMM [46, 148]. This attack is possible by manipulating MTRR registers to
make SMRAM cacheable. To thwart this attack, the SMRR Interface should be
used to protect the related MTRRs registers (section 3.2.3). Then, any resource
in the system available to reinforce security in SMM must be compulsorily
used.

• r7 - SMI-independent. To start any SMM-based security tool, an SMI needs
to be generated. A common approach to trigger an SMI to start such a soft-
ware is writing to the Programmed I/O Port 0xB2H [23, 45]. Since this is a
well-known approach an attack might aim to thwart such action by identify-
ing the code signature [142] and then denying the use of that port. Thus, a
SMM-based security tool should take advantage from any SMI generated to
start executing its job. Conversely, whenever the tool needs to start, it should
be able to use different ways to trigger an SMI, considering the APIC table,
which contains the SMI trigger events.

• r8 - Complete. As discussed in requirement r1 and r5, HyperCheck [141],
HyperSentry [14], auditing tool [61], AppCheck [142], MUSHI [151], SPEC-
TRE [149] and IOCheck [150] need a remote machine to analyse the collected
data and for other management functions. Some tools need to keep part of
their code in the system executive software. For example, HyperSentry uses
an agent deployed in the hypervisor code base. While that model of architec-
ture overcomes some SMM limitations, they lose the main benefits from using
SMM as: isolation and transparency. Then, the SMM-based security tool must
have all functionalities to execute its tasks and all needed data completely de-
ployed in the SMRAM.

4.5 Discussion

In this chapter, we built a threat model to understand the threats to the current
SBST architecture. Then, we made assumptions and established a set of require-
ments which an SBST must meet to overcome the limitations and constraints of
SMM and to improve the security of an SBST . By meeting the requirements, those
tools can take better advantage from SMM resources, ensuring strong isolation,
transparency, high privileges and good view of the system.

The requirements were established to deal with the limitations and constraints
of SMM and to mitigate the threats identified in the threat model (figure 4.1). Thus,
we can classify requirements r1, r2, r3, r4 and r7 (small, fast, persistent, coopera-
tive and SMI-independent, respectively) as functional requirements, since they are
related to functioning of SBST and must be met to overcome the limitations and
constraints of SMM. Requirements r5, r6 and r8 (isolated, resistant and complete,

74

4.5 DISCUSSION

respectively) can be classified as security requirements, since they must be met to
mitigate the threats SBST s are prone to. In the same direction, the assumptions
were made considering the complexity and time frame available for this work,
since it is neither possible nor convenient tackle all threats identified. Therefore,
figure 4.2 indicates the requirement or assumption mitigating a specific threat.

Chipset

Bootup

Processing

Processor

SGXVMXI/O

Cache

DRAM

Virtualisation

Hypervisor

VM0 VM1 VM2 VMn. . .

Communication
Hardware

BIOS
SMM-based
Security tool

Communication
channel

Remote machine

Agent

h1
h2

h3

h4

h5

h7

h6

Threats
h1. Tamper with the analyser
h2. Information disclosure
h3. Denial of service
h4. BIOS replacement
h5. Security tool replacement
h6. Cache poisoning
h7. Tamper with the hypervisor
h8. Tamper with the management VM
h9. Malicious Virtual machines
h10. Malicious chipset

h9h8

h10

a1

a2

a3

r5

r6

r8
r8

r8

r5 r5

Figure 4.2: Mitigating threats. Threats h4, h5 and h10 are eliminated by the as-
sumptions made and threats h1, h2, h3, h6, h7, h8 and h9 are mitigate by the re-
quirements r5, r6 and r8.

Assumption a1 (no physical access) eliminates threat h4 (BIOS replacement),
since an attacker would not have access to the target machine. Assumption a2
(trustworthy BIOS) eliminates threat h5 (Security tool replacement), since SBST
would be uploaded in the memSMRAM by a trustworthy BIOS; and assumption
a3 (trustworthy chipset) eliminates threat h10 (malicious chipset), since the chipset
would be trustworthy.

Requirement r5 (isolated) mitigates threats h7 (Tamper with the hypervisor), h8
(Tamper with the management VM) and h9 (Malicious Virtual machines), since by
deploying the SBST in the memSMRAM , its code is unreachable by code outside
memSMRAM .

Requirement r6 (resistant) mitigates threat h6 (Cache poisoning), since by set-
ting the appropriated values in MTRR registers we can make memSMRAM un-
cacheable, avoiding any kind of attack related to the cache memory while in SMM.

Requirement r8 (complete) mitigates threats h1 (Tamper with the analyser), h2
(Information disclosure) and h3 (Denial of service), since by having all SBST func-
tionalities laid out in memSMRAM , we do not need neither the communication
hardware and channel nor the remote analyser machine.

Requirement r1 (small) does not directly mitigate threats, but it contributes to
security by diminishing the TCB.

75

4. REQUIREMENTS

An SBST may require characteristics and capacities to work properly and to
enforce security, which are not mandatory as requirements but can be desirable in
the tool. For instance, the characteristic of being “unique” in the SMRAM. This
means that a SBST would need to prevent another SMM-based code (except SMI
handler) to be deployed in the SMRAM, controlling the SMRAM space and regis-
ters related to SMM, as those ones related to the SMRR Interface to limit cacheable
addresses references to the SMRAM and to restrict access to the memory address
range of SMI handler code and data in the SMRAM (section 3.2.3).

A desirable capacity is “self-cleaning”. For example, the Intel Trusted Execu-
tion Technology (Intel TXT) (section 2.4.3) provides secured system start (or restart
at any time), such that the system executive software (Measured Launched Envi-
ronment (MLE) in Intel TXT context) can be loaded in a trustworthy way. The ca-
pacity of launching a restart at any time is called late launch [57]. A SBST may be
endowed with the capacity to perform a “late launch”, a system restart or similar
operation to load a pristine version of itself, if something goes wrong, as in the case
of the attack called “Memory Sinkhole”, which exploits a flaw in the CPU designed
to compromise SMRAM [43] or when an “SMM Handler Code Access Violation”, is
detected in one of the IA32 MCi STATUS registers, which means that “an attempt
was made by the SMM Handler to execute outside the ranges specified by SMRR”
(see section A.1.1 in this research and section 15.9 and 16 in [87, 97]). We are not
assuming that a target machine is endowed with Intel TXT capabilities. However,
if the target machine has such a capability, it may be used.

Those characteristics and capacities are considered supplementary and they are
just discussed in this work, as they are considered in the architecture design dis-
cussion. However, they are not implemented in our proof of concept.

4.6 Summary

The threat model designed in this chapter contributes to establish the requirements,
since some requirements deal with security issues and other with functional ones.
The threat model pointed out some issues, which might be subject of a complete
new research, as the issue of a malicious chipset. So, we made assumptions to
address those issues which are neither possible nor convenient to be addressed in
this research.

In the same way, the characteristics and capacities an SBST might have, besides
the requirements, can be the subject of a completely new research. For example, the
characteristic of being “unique” can be very difficult to implement, since it implies
the capacity of identifying executable code in the SMRAM and block those “other”
codes to be written to the SMRAM. Also, the feature of being “self-cleaning” is also
difficult to implement, since that implies simple actions as check some registers (as
the IA32 MCi STATUS registers), but also complex ones as the capacity of self-
measurement and measure the SMRAM space.

SMM has limitations and constraints which have imposed severe performance
and security penalties to SMM-based security tools. However, by investigating
those tools, attacks, chipsets and the SMM components and operation, we were able
to build a threat model and make assumptions to establish a set of requirements,

76

4.6 SUMMARY

which if met, can ensure, strong isolation, transparency, high privileges and good
view of the system.

In this chapter, we built a threat model to the current SBST architecture and
successful established a set of requirements that should be met by an SBST . Then,
in the next chapter we will specify each requirement, detailing how they can con-
tribute to build a general architecture for SBST s. We will propose a general ar-
chitecture and then design our answer to the research questions, step by step, by
inserting one requirement at a time in such an SBST general architecture.

77

Chapter 5

A Generic Architecture for
SMM-Based Security Tools

5.1 Introduction

The previous chapter built the threat model to the current SBST architecture, con-
sidering the findings in chapters 2 and 3. Then, assumptions were made to deal
with the complexity of the problem and the time available. After that, we estab-
lish a set of requirement, which must be met to overcome the limitations and con-
straints of SMM and to mitigate the threats identified in our threat model described
in chapter 4.

This chapter specifies the requirements detailing how they can be built to fit
in the general architecture proposed. Then, we propose that general architecture,
offering a global view of our solution. After, we design the proposed architecture
to answer the research questions (section 1.4). The design is made step by step, by
inserting the requirements in the SBST general architecture. Finally, we specify the
algorithms to implement the SBST functions by means of a payload study case.

This chapter is organised in three content sections and a discussion and sum-
mary section. First section specifies and discusses the requirements. In the second
section, we present the general architecture (figure 5.1) to answer the research ques-
tions proposed in section 1.4 and the third questions design the general architecture
and specify the algorithms to implement the SBST .

5.2 Requirements Specification

In this section, we analyse the requirements and elaborate how they can be speci-
fied to build the generic architecture for an SBST .

Thus, considering: the definitions in section 2.2; ml = 150µs; ms = 32512 bytes;
and R = {r1, r2, ..., r8} the requirements described in section 4.4. To meet the set of
requirements R, SBST should be built in an architecture, as follows:

5.2.1 Requirement r1: SMALL

Specification: |SH|+ |bc|+ |pi|+ |D| <= ms.
Discussion. The solution to make SBST small is to divide it in two parts: a

basic code as defined in definition 2.4 and a payload as defined in definition 2.9.
Then, SBST comprises of a bc (definition 2.4) to deal with management functions,
a payload pi (definition 2.9) to perform a well-defined task and set of data |D|.
SBST should be small and flexible to receive a different payload pi+1 to perform

79

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

SMI handler

Chipset

Bootup

Processing

Processor

SGXVMXI/O

Cache

DRAM

Virtualisation

Hypervisor

VM0 VM1 VM2 VMn. . .

Set of registers

BIOS
SMM-based
Security tool

Manager

Basic Code

Payload
[p_i]

TXT

R 1

R 2

R 3

R 4

R 5

R 6

R 7

R 8

SMI handler data

SBST data

Figure 5.1: General architecture. The requirements are met by implementing an
SBST , deploying it in the BIOS and uploading it in the SMRAM. A second soft-
ware artefact is implemented: a Manager that contribute to meet the requirements
and to probe and to learn about the target platform. Note that the Manager does
not need to reside in the target machine.

a different task as often as required. So, the summation of the size of: SH , bc, pi
and D must be smaller than ms. We have included SH (definition 2.13) due to the
strategy chosen to meet the requirement r4.

5.2.2 Requirement r2: FAST

Specification: te(SBST : X → Y) < ml.
Discussion. The SBST execution time must be smaller than ml, with ml =

150µs, whenever transforming some X in Y . For example, supposing the SBST
is loaded with a payload pi to measure the integrity of the Xen hypervisor essen-
tial data [18], what can be an simple file, as the file used in this research: xend-
config.sxp. So, when measuring that file (X) to produce a measurement value (Y),
the total time spent on that should be less than ml. The use of payloads contributes
to reduce the execution time. Considering that each pi executes a task ti and ti is
divided in subtasks ti1, ti2, ..., tnm, to avoid exceeding the maximum latency limit,
each time SBST starts by an smii ∈ SMI , it performs a subtask tij , saves the
result in the memSMRAM and finishes its execution. Next time SBST starts, it per-
forms another subtask tij+1 and must concatenate the result with the previous one
in memSMRAM . SBST may keep this procedure up to complete a whole task ti.
The algorithm 5.1 describes how to meet the requirement r2.

5.2.3 Requirement r3: PERSISTENT

Specification: memBIOS [i]← SBST .

80

5.2 REQUIREMENTS SPECIFICATION

Discussion. SBST must be deployed in the memBIOS , considering require-
ment r4. Every bootup process in the target machine will load the SBST into
memSMRAM [i]. Essential data in D is loaded from memBIOS during the bootup.
Other data must persist among SBST executions, during the time the target ma-
chine is executing, to complete a task as described in requirement r2 and in the
algorithm 5.1.

5.2.4 Requirement r4: COOPERATIVE

Specification: SH ← SH ∪ SBST ∪ bc ∪ pi ∪D.
Discussion. SH should be modified to embed the bc, pi and D, in such a way

that all previous functions of SH remains integral. Then, when any smii (require-
ment r7) trigger SH the original code portion is executed and, after that, it passes
control to the instructions implement bc and pi.

5.2.5 Requirement r5: ISOLATED

Specification: memSMRAM [i]← SBST ≡ memSMRAM [i]← SH ;
Discussion. The SBST must be restricted to the memSMRAM . After meeting

requirement r4, SBST ≡ SH . The whole set D must remain in the memSMRAM ,
no part, even temporally, can be stored outside memSMRAM .

5.2.6 Requirement r6: RESISTANT

Specification: SBST : REGx → REGy

Discussion. SBST must have control of the REG and set the appropriate val-
ues, whenever they are not set by the chipset, such as enforcing the use of SMRR
interface. It noteworthy that some functions in the chipset may set values in the
registers without SBST control, as discussed in section 3.2.3. In some situations
SBST can change the values of some registers and in other it cannot be changed,
as, once bit SMI LOCK (bit 0) in the SMI EN register is set, it cannot be cleared.

5.2.7 Requirement r7: SMI-INDEPENDENT

Specification: bcsmii : SBSTx → SBSTy.
Discussion. bc is designed to start at any smii ∈ SMI , which take SBST from

a status x to a status y, where x is the stopped status and y is a continuous execution
status, as describe in the requirement r2.

5.2.8 Requirement r8: COMPLETE

Specification: ∀pi ∈ P, pi ∈ SBST and SBST ⊂ memSMRAM

Discussion. All functions designed to be performed by an SMM-based security
tool must be implemented in the SBST and it must be deployed in thememSMRAM

after the bootup process. SBST must not depending onto any code or data outside
of memSMRAM . Note that after meeting requirement r4, SBST ≡ SH .

81

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

5.3 General Architecture

Based on the previous section, in this section we propose a generic architecture as
described into the figure 5.1. According to the figure: requirements r1, r2 and r4
are met by coding them in the SBST as specified in the last section; requirement
r3 is met by inserting SBST in the memBIOS ; requirement r5 is met by uploading
SBST from memBIOS to memSMRAM ; requirement r6 can also be codified in the
SBST since it is about to handle registers values; requirement r7 is met by coding
it in the SBST and by using another software artefact called “Manager”, which
contributes to discover the event that can trigger an SMI in the target platform.
The manager resides in the DRAM, but it is not necessarily in the target machine.
So, there is not isolation problem in this concept; and requirement r8 is met by
designing SBST to be a monolithic code, deployed into memSMRAM .

The functional requirements r1, r2, r3, r4 and r7 (small, fast, persistent, cooper-
ative and SMI-independent, respectively) are implemented as follow: requirements
r1 (small) and r2 (fast) are met by implementation techniques and should be veri-
fied to not allow an SBST bigger than the size limit, and controlled during the ex-
ecution time to pre-empt the tool whenever the time limit is reached. Requirement
r3 (persistent) is met by embedding the SBST in the memBIOS . Requirement r4
(cooperative) is met by inserting the basic code bc and a payload pi code in the SMI
handler code, without disable or override any SMI handler function. Requirement
r7 (SMI-independent) is met by designing and implementing the tool to trigger the
SBST whenever an SMI occur in the system and by using another software arte-
fact called “Manager”, which contributes to discover the event that can trigger an
SMI in the target platform.

The security requirements r5, r6 and r10 (isolated, resistant and complete, re-
spectively) are implemented as follow: requirement r5 (isolated) is met by upload-
ing the whole SBST code and data from the memBIOS to the memSMRAM . Re-
quirement r6 (resistant) is met by setting the appropriated registers in the set of
SMM related registers (section 3.2.3) to use the SMRR interface. Requirement r8
(complete) is met by implement SBTS as a monolithic software artefact, which
does not take in account any other code out of SMRAM.

5.4 Architecture Design

In this section we design the architecture, adding step by step the requirements to
the architecture. As presented in figure 5.1, the architecture consists of two software
artefacts: an agent (the SBST), designed to perform a security task, consisting of
a basic code bc and a payload pi, where some steps are implemented into the bc,
other in the pi and other considering the whole SBST , as described ahead. As dis-
cussed in the definition 2.4, bc exists to perform tasks which are independent of the
payload loaded into the SBST ; and a manager module to help the payload devel-
oper to understand the particularities of a target chipset. The manager module is
used to probe and research a target machine and then understand the capabilities
and limitations of such a machine, so it must be laid out in DRAM. The machine
probed and research is not necessarily the target machine, but it must have the same
chipset family or a similar chipset. Then, there is not isolation problem caused by

82

5.4 ARCHITECTURE DESIGN

the manager module deployment.
The index i used in the algorithms in this chapter represents any position in the

memory unit considered, respecting and preserving the previous occupied mem-
ory indexes. For example, for memSMRAM [i], the index i can be any value between
SMBASE + 8000H and SMBASE + 8000H + FFFFH, respecting and preserving the
memory space of SMI handler and state saved area (figures 3.2 and 3.3).

5.4.1 Step 1: SBST Small and Cooperative

Requirements r1 and r4 are met in step 1, by making SBST small and coopera-
tive. Realise this is a matter of how SBST architecture is designed and how it is
implemented. This step in implemented considering the whole SBST .

We designed the SBST architecture to use payloads, where each payload re-
alises a well-defined task (definitions 2.6 and 2.9). This architecture contributes
to meet most of the requirements and allow flexibility to the security tool designer
who might change the purpose of the tool by replacing payloads. It also contributes
to make the tool faster since it just execute one well-defined function.

When planning the SBST , it is required to plan the functions into bc and pay-
loads in P to keep the tool under the size limit discussed. Also, it is necessary
to find an SMI handler code small enough to embed the bc and a payload pi, while
keeping SBTS <= ms (section 5.2.1) and preserving the SMI handler original code
(section 5.2.4). Note that SMI handler implementation depends on the manufac-
turer, consequently its size too and, more important yet, an SMI handler imple-
mentation is chipset specific. The general approach in this research is to use an
open source SMI handler, as that one released with Coreboot [36] (section 2.4.1).
As we saw in section 3.2.4 and 2.4.1, we found our target SMI handler source code
in the coreboot 4.4 set of source code in the file smihandler.c which is 9.97 Kbytes
size and its executable code is estimated in 5.5 Kbytes. So, we have established that
there are around 25 Kbytes available for the proof of concept of our SBST code.

The bc can implement functions like those described in the algorithm 5.8 in step
5 5.4.5 that must be applied for any payload. A payload pi may implement any
well-defined task according to definition 2.9 provided that it not make the SBST
size surpasses the limit imposed. The total D is the summation of the SMI handler
and bc and pi data, if and when they exist. The size of SMI handler data depends on
the OEM implementation and the bc and pi data depends on the task considered,
remembering that they need to obey our specification |SH|+|bc|+|pi|+|D| <= ms.

5.4.2 Step 2: SBST Fast, SMI-independent and Complete

Requirements r2, r7 and r8 are met in step 2. Those requirements are implementa-
tion dependent too. Therefore, we need a study case on a security task to help us
designing this part of our generic architecture, because a payload implementation
(its set of instructions) depends on the task to be performed, since a payload might
execute any well-defined task (definitions 2.6 and 2.9). This step in implemented
as a payload.

Let’s assume that this well-defined task is: checking the integrity of some data
related to a hypervisor, comprising of a unique table (in a file, as the xend-config.sxp
file), and that it takes three subtasks (definitions 2.6 and 2.5) to be accomplished.

83

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

It is import to emphasize that this integrity check task is just to make our proof of
concept feasible and to demonstrate it. So, we are not too concerned about the in-
tegrity check task itself, but in how to fit a security task in the proposed architecture
by means of our proof of concept. So, to make SBST fast, we design it to depend
on the time elapsed when executing a subtask. So, the SBST needs to execute a
pre-emptive rsm instruction before the subtask reaches the time limit. However,
since monitoring a subtask execution adds overhead to the elapsed time and it is
required to count on another system component (e.g. a clock) to measure the time
and it adds some complexity to the development of the SBST , we decided that the
better approach in this case is to estimate the time needed to perform each subtask
before implement it. In this way, we control the execution by job done and not by
execution time, in that way, we assure that the time constraints are respected.

To deal with step 2, it is necessary to understand the features of the host ma-
chine where the SBST will be deployed, as CPU family and memory technology,
to discover the memory timing cycles to read and write information in the main
memory and the CPU timing cycles to compute the required tasks. Cache memory
will not be considered, since it is required to make memory uncacheable to meet
requirement r6. It is also necessary to know the amount of data or code to read and
write and the amount of computation needed. It is mandatory to sum up the time
elapsed during the SH execution, according to the requirement r4.

The technological details discussed above are not imperative during the archi-
tecture design. Those issues are addressed in the next chapters. Then, we can use
values of our experiments with SMI handler (section 3.2.4) and use approximated
values in the other cases.

Let’s consider our chipset 2 and assume the following example of configuration
to make our algorithm simpler for designing and presenting the architecture:

• SH execution time: The SMI handler latency time for any management func-
tion is 69µs triggered after an SMI (according to table 3.1). So, any subtask
can spend up to 81µs performing its instructions.

• SHA 256(): A function implementing algorithm SHA-256 to compute a
hash code [4, 50].

• xend-config.sxp: One of the configuration files of Xen hypervisor, where
some important configurations are done. For instance, configure a IP ad-
dress, enable migration and scripts to run, change memory configurations
and so on. It is located in /etc/xen [137]. Let’s consider this file has 12 Kbytes
(it was a common size found for that file in our research).

• LoadData(): A function able to read data from main memory and write it
to the SMRAM at a rate of 200 bytes per 1µs.

• ComputeHash(): A function able to compute the hash for any code or data
at a rate of 70 bytes per 1µs.

• VerifyHash(): A function able to compute the hash for any code or data at
a rate of 70 bytes per 1µs and compare a pair of hash digest at a rate of 10µs.

84

5.4 ARCHITECTURE DESIGN

From the configuration above, we beginning to design the algorithms to meet
r2, r7 e r8. We designed the SBST to work non-stop, starting from the bootup
process, when the tool is uploaded into the memSMRAM [i] and after the first SMI
occurs in the system, and finishing when the target machine is restarted, rebooted
or switched off. However, when the time limit is reached, SBST saves the state
of its current execution and executes a rsm instruction. When a new SMI is trig-
gered the SBST recovers the state saved (figures 3.2 and 3.3) and restarts its exe-
cution. Then, to meet r2 (section 5.2.2) we control the execution of each subtask,
focusing on the amount of data processed. To meet r7 (section 5.2.7) we design the
algorithms to start executing by any SMI. To meet r8 (section 5.2.8) we design all
functions in the bc and pi to be embedded in a monolithic software artefact, laying
it out in memSMRAM [i] and not allowing it to count on any other software outside
of SMRAM. Figure 5.2 presents the execution flow of the algorithms.

Load Data

Compute Hash Verify Hash

hashed = 1hashed = 0

First SMI#

Figure 5.2: Execution flow of the algorithms. When the first SMI occurs, the SBST
calls function load data, then calling functions compute hash or verify hash, de-
pending on the value of ”hashed”. It works non-stop from that point on.

Algorithm 5.1 represents the main functions and calls the other algorithms to
perform the integrity measurement. Thereby, the SBST should work in a con-
tinuous base, in the sequence: load data (algorithms 5.2 and 5.3), compute hash
(algorithms 5.4 and 5.5), verify hash (algorithms 5.6 and 5.7), according to figure
5.3. Then, considering our execution times, file xend-config.sxp can be copied into
memSMRAM [i] in one SBST invocation, but it requires three invocations to mea-
sure and three invocation to remeasure the file. In this way, the file in our study
case is measured and remeasured in two data sections of 5670 bytes and one data
section of 948 bytes, one by one, totalising 12 Kbytes. So, the SBTS try to iden-
tify and report inconsistencies section by section. To recap, the SBST invocation is
done every time an smii is triggered.

Algorithm 5.1 has two constants: DATA BY ROUND = 16200 and HASH
BY ROUND = 5670; those constants reflect the previous information assumed

85

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Measure

Integrity

Erase

Read Memory

Manage

Load Data

Manage

Compute Hash

Manage

Verify Hash

di+1di di+7

monitor

index

hashed

Global

variables

Figure 5.3: Algorithm Measure Integrity. This function represents a payload to
measure the integrity of a file. It calls functions LoadData(), ComputeHash()
and VerifyHash() to measure the integrity and ReadMemory() during the exe-
cution. In the end, all variables are erased to clean the memDRAM [i]

that the functions to integrity check are able to deal with 16200 bytes and 5670
bytes size before reach the time limit. It means that at each round (definition 2.8),
SBST can deal with 16200 bytes of data, since the LoadData() function can read
data from memDRAM [i] and write it to the memSMRAM [i] at a rate of 200 bytes per
1µs or 16200 bytes per 81µs; and the ComputeHash() function can compute the
hash for any code or data at a rate of 70 bytes per 1µs or 5670 bytes per 81µs.

For the efficiency and simplicity sake, all variables are global. Thus, algorithm
5.1 holds all variables used in the integrity check process. All variables, their type
and persistence are discussed below (tables 5.1 and 5.2).

The integer variables are: size, non-persistent and containing the amount of
data remaining to be loaded; round, non-persistent and indicating the amount of
rounds required yet; previous round, persistent (stored in di+2) and indicating the
order of last round performed; monitor, persistent (stored in di) and indicating
which function is called in a certain point; index, persistent (stored in di+1) and in-
dicating the position in memSMRAM [i] where the data read from memDRAM [i] will
be stored; hashed, persistent (stored in di+7) and indicating if the data is already
hashed or not. If hashed == 0 the data in memSMRAM [i] was not hashed or it was
verified yet and the execution flow can go through the hash computing process. If
hashed == 1 the data in memSMRAM [i] was hashed; size section indicates the total
of data already loaded in a round. This variable is only persistent in algorithm 5.5,
where it is stored in memSMRAM [di+6];

The long variables are: address, persistent (stored in di+3) and storing the read
memory address in the current round; previous address, non-persistent and storing

86

5.4 ARCHITECTURE DESIGN

Algorithm 5.1: Measure the integrity of hypervisor dynamic data. This is
the main algorithm and calls functions: LoadData(), ComputeHash() and
VerifyHash(); to perform integrity measurement, according to the variable
monitor value.

Input : Table xend-config.sxp.
Output: The integrity measurement of file xend-config.sxp.

1 constant integer DATA BY ROUND = 16200;
2 constant integer HASH BY ROUND = 5670;
3 integer size, round, previous round,monitor, index, hashed, size section;
4 long address, previous address;
5 string data, total data, digest, stored digest;
6 Function Main
7 Begin
8 monitor ← ReadMemory(memSMRAM [di]);
9 index← ReadMemory(memSMRAM [di+1]);

10 hashed← ReadMemory(memSMRAM [di+7]);
11 if monitor == NULL then
12 monitor ← 0;
13 if index == NULL then
14 index← 0;
15 if hashed == NULL then
16 hashed← 0;
17 if monitor == 0 then
18 ManageLoadData();
19 else if monitor == 1 then
20 ManageComputeHash();
21 else if monitor == 2 then
22 ManageVerifyHash();
23 Erase(size, round, previous round,monitor, index, hashed, size section,

address, previous address, data, total data, digest, stored digest);
24 rsm
25 End-Main

the read memory address from the previous round.
The string variables are: data, non-persistent and storing the read data from

memory, eithermemDRAM [i] ormemSMRAM [i], during one loop iteration. total data,
non-persistent and concatenating the data variable content, during all loop itera-
tions. digest is persistent (stored in di+5) and stores the hashes computed by data
section; stored digest is non-persistent and stores a hash read from memSMRAM

[di+5], during the hash verification process.
Since each time an smii is triggered that algorithm starts and it may not be able

to accomplish its task in only one round (by reading 16200 bytes or by computing
hash for 5670 bytes), those variables are demanded to persist in memSMRAM [i].
So, the variable monitor is stored in di and the variable index is stored in di+1,
according to definition 2.11 and in compliance with requirement r3. The variable
di represents the data stored into memSMRAM [i], in the index i, and variable di+1

87

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Table 5.1: Persistant variables. These variables must persist along the SBST life
cycle. To comply with the established requirements, they must be stored in the
memSMRAM [i]. The index i indicates the first free position in memSMRAM [i] to be
used for storing the persistant variables. So i + n, indicates the next ones, where n,
indicates a number between 1 and 7.

Location Variable Description
di monitor Which function should be called
di+1 index Where to store file data in memSMRAM [i]

di+2 previous round The last round
di+3 address Memory read address in the current round
di+4 total data Data read from memDRAM [i]

di+5 digest The hashes already computed
di+6 size section Total of data already loaded
di+7 hashed Indicating if data was hashed or not

Table 5.2: Non-persistant variables. These variables are non-persistant, so their
content can be lost among SBST calls. However, to comply with the established
requirements, they must be erased before getting out of SMM.

Variable Description
size The amount of data remaining to be loaded
round The amount of rounds required yet
previous address The read memory address from the previous round
data The read data from memory during one loop iteration
total data The data concatenated during all loop iterations
stored digest A hash read from memSMRAM [di+5]

represents the data stored intomemSMRAM [i], in the index i plus the size of the data
stored into di. From this point on, all variables di or di+j will follow that previous
scheme. The algorithm call functions to load data, compute hash or verify hash,
according to the monitor value.

The control structure chose to control the algorithm execution flow imposes one
or another kind of penalty to the SBST execution: cross the time limit or spend
more rounds to complete a task. For example, consider the nested If control struc-
ture like below:

if monitor == NULL then
monitor ← 0

if monitor == 0 then
ManageLoadData(index)

if monitor == 1 then
ManageComputeHash(index)

if monitor == 2 then
ManageVerifyHash(index)

The nested if above would make the SBST to cross the time limit in at least
two cases: when the variable round == 0 in algorithms 5.2 and 5.4, those algo-
rithms update the variable monitor value, clean values in memSMRAM [i] and fi-

88

5.4 ARCHITECTURE DESIGN

nalise their execution, passing control to algorithm 5.1. Then, the execution flow
continues, calling ManageComputeHash(index) or ManageVerifyHash(index), ac-
cording to the case. But, some time will have passed and these functions will have
less time then what was planned.

Now, let’s consider the nested If control structure like below:

if monitor == NULL then
monitor ← 0

else if monitor == 0 then
ManageLoadData(index)

else if monitor == 1 then
ManageComputeHash(index)

else if monitor == 2 then
ManageVerifyHash(index)

In this case, when the same situation as above happens and the execution flow
continues in algorithm 5.1, it will call function Erase(list variable) and the rsm in-
struction. Thus, one round is used just for transition between functions and spend
one more round to complete a task.

The integer variables size, round, previous round are global variables and they
are used by all algorithms called by algorithm Algorithm 5.1.

Function Erase(list variable) erases variables created in the the algorithm, before
leaving the SMM.

Algorithm 5.2 prepares the environment to call function LoadData() (algo-
rithm 5.4). Information from the previous rounds should persist along all execu-
tions of SBST . For example, di+2 persists information about the current round
of the load data process. To control de number of rounds, we use the equation
round ← dsize/DATA BY ROUNDe − previous round, which gets the file size,
divide it by the maximum data size by round (DATA BY ROUND), rounding
(ceiling) the result, which is subtracted by the previous round. This equation will
work even if xend-config.sxp size increase or decrease.

If round == 0 it means that no more rounds are needed. So, the algorithm
passes control to the next function, ComputeHash(), by writing 1 to the monitor
(di) and clearing: the index (di+1), the previous round (di+2) and the previous ad-
dress (di+3); by writing 0 to them. The previous address (di+3) stores the reading
memory position from the previous round during load data process. All those data
are located in memSMRAM [i], as demanding by requirement r5.

If more rounds are required yet, it calls LoadData(), passing index to the func-
tion; and, then, it increments index, to position the correct place where the next
data blocked will be stored into memSMRAM [i] and previous round, since a new
round was completed. Finally, the functions write index and previous round to
memSMRAM [i].

Function Increment() adds a new unit to the memory space considered, accord-
ing to the variable type.

Although previous address is not explicitly updated in the algorithm 5.2 pseudo-
code, the value of previous address is updated during the execution of this algo-
rithm. Note that line 14 calls function LoadData() (algorithm 5.3) and that func-
tion reads from and writes to the variable di+3.

89

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Manage

Load Data
Read Memory

Write Memory

Get Size

di+2

previous round

xend-config.sxp

Load Data

Increment

di di+1 di+2 di+3

 1 or 2

size

 0 or index

 0

0 or previous round

Figure 5.4: Algorithm Manage Load Data. This function prepares the environment
to load data. Data is loaded by function LoadData(). It reads from and writes to
variables (di+j) located in memSMRAM [i] to save the round context.

Function ReadMemory() reads a value from a memory position. It has one
parameter indicating the memory unit where the data will be written, with its re-
spective index.

Function GetSize(string file) obtains the size of a file or table.
Function WriteMemory(long place, data value) writes a value to a memory posi-

tion and has two parameters: first parameter is the memory unit where the data
will be written. The address where the data will be written is indicated by the vari-
able di. The i + 1 in the subscript of variable d indicates the address offset for the
d variable. The second parameter is the value to be written. Note when imple-
menting the SBST that di must have enough space to store the type and amount
of data required. For example, di+4 must have enough space to store the whole
xend-config.sxp file and di+5 must have enough space to store all hashes computed.

Algorithm 5.3 describes the data loading process (Figure 5.5). If there is a pre-
vious address, it gets previous address frommemSMRAM [di+3] and increment it by
the maximum data size by round to access the correct position to be read. It also
gets the size of file xend-config.sxp and subtract that size from the size of the data

90

5.4 ARCHITECTURE DESIGN

Algorithm 5.2: Manage to call function LoadData(). It prepares the envi-
ronment to call function LoadData(). If no more rounds are needed, it saves
the state and passes control to the next function. If rounds are required yet, it
calls the LoadData() again.

Input : An integer index indicating the next position in the memSMRAM [i]
to store data.

Output: Call function LoadData().

1 Function ManageLoadData()
2 Begin
3 previous round← ReadMemory(memSMRAM [di+2]);
4 if previous round == NULL then
5 previous round← 0;
6 size← GetSize(xend− config.sxp);
7 round← dsize/DATA BY ROUNDe − previous round;
8 if round == 0 then
9 WriteMemory(memSMRAM [di+1], 0);

10 WriteMemory(memSMRAM [di+2], 0);
11 WriteMemory(memSMRAM [di+3], 0);
12 if memSMRAM [di+7] == 0 then
13 WriteMemory(memSMRAM [di], 1);
14 else
15 WriteMemory(memSMRAM [di], 2);
16 else
17 LoadData();
18 WriteMemory(memSMRAM [di+1], Increment(index));
19 WriteMemory(memSMRAM [di+2], Increment(previous round));
20 End-ManageLoadData

already loaded in memSMRAM [di+4], assigning the result to variable size.
If there is not a previous address, it means we are in the first round, so the

algorithm obtains the file xend-config.sxp address in DRAM and assign it to vari-
able address. It gets the size of file xend-config.sxp, assigning that to variable size.
Then, a loop manages the loading process, which is controlled by size section <=
DATA BY ROUND, which means that the loop stops when the size section reaches
the maximum data size by round, and by size section <= size, which means that
the loop can stop if the file size is reached, even if the maximum data size by round
has not been reached.

Inside the loop, it starts reading data from the file and store it in the variable
data and accumulates in size section the total loaded up to the point. The data read
is concatenated in total data. After the loop terminates, the read address is stored in
di+3, which will become the previous address in the next round; and the total data
is stored intomemSMRAM [i] in the data structure di+4[index], in the index indicated
by index. Finally, the local variables created are erased.

Algorithm 5.3 has a new function called GetAddress(), which obtain the mem-
ory address of a file or table.

91

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Load DataRead Memory

Write Memory

Get Size

di+3

previous address

di+4

Get Address

di+3 di+4

size

 address total data

xend-config.sxp

size

address

xend-config.sxp

data

Figure 5.5: Algorithm Load Data. The function obtains the file address and from
that, it reads the file, copying its content into memSMRAM [di+4].

Algorithm 5.4 is similar to the algorithm 5.2. But now, it needs to get the size of
di+4 that is the data structure loaded from memDRAM [i] into memSMRAM [i] (figure
5.6). To control de number of rounds, we use the equation round← dsize/HASH
BY ROUNDe−previous round, which gets the file size, divide it by the maximum
data size that can be hashed by round (HASH BY ROUND), rounding (ceiling)
the result, which is subtracted by the previous round.

When no more rounds are needed (round == 0), it passes control to the next
function, VerifyHash(), by writing 2 to the monitor (di) and clears the index
(di+1), the previous round (di+2), the previous address (di+3) and the total data
loaded (di+6) by writing 0 to them. Here there is a difference: the ComputeHash(
) function stores the value of total data, which will be hashed and represents the
data get from memSMRAM [d i+ 4]. This value is stored in memSMRAM [d i+ 6].
If some round is required yet, it calls the ComputeHash(), passing index to the
function; and incrementing index and previous round and writing them into the
memSMRAM [i].

Algorithm 5.5 describes the process of get data from memSMRAM [i], compute
the digest and save that digest to the data structure d i+ 5[index], using the index
received from the algorithm 5.4 (figure 5.7). If there is a previous address, it gets
previous address from memSMRAM [di+3] and increment it by the maximum data
size that can be hashed by round to access the correct position to be read. It also
gets the size of file stored in memSMRAM [di+4] and subtract from the total of data

92

5.4 ARCHITECTURE DESIGN

Algorithm 5.3: Load the data to be measured from DRAM to SMRAM. It
loads data to be measured from DRAM to SMRAM, considering data previ-
ously loaded.

Input : An integer index indicating the next position in the memSMRAM [i]
to store data.

Output: Data loaded.

1 Function LoadData()
2 Begin
3 previous address← ReadMemory(memSMRAM [di+3]);
4 if previous address <> NULL then
5 address← previous address+DATA BY ROUND;
6 size← GetSize(xend− config.sxp)−GetSize(memSMRAM [di+4]);
7 else
8 address← GetAddress(xend− config.sxp);
9 size← GetSize(xend− config.sxp);

10 size section← 0;
11 while ((size section <= DATA BY ROUND)&(size section <= size)) do
12 data← ReadMemory(memDRAM [address]));
13 size section← size section+GetSize(data);
14 total data← total data+ data;
15 WriteMemory(memSMRAM [di+3], address);
16 WriteMemory(memSMRAM [di+4[index]], total data);
17 End-LoadData

already hashed (memSMRAM [di+6]), assigning the result to variable size (global).
If there is not a previous address, it means we are in the first round of Compute-

Hash(), so the algorithm gets memSMRAM [di+4] address and assign it to variable
address. It also gets the size of memSMRAM [di+4], assigning that to variable size.
Then, a loop manages the loading process, which is controlled by size section <=
HASH BY ROUND, which means that the loop stops when the size section reaches
the maximum data size that can be hashed by round, and by size section <= size,
which means that the loop can stop if the di+4 size is reached, even if the maximum
data size by round has not been reached yet.

Function SHA-256(data) is the SHA hash function [50], as discussed in section
2.5.

After the loop terminates, the data digest is computed by SHA−256(total data),
the read address is stored inmemSMRAM [di+3], the digest is stored intomemSMRAM

[di+5[index]] at the data structure di+5[index], in the memory position indicated by
index and the total of data already hashed is stored in di+6.

Algorithm 5.6 is similar to the algorithm 5.4, but the data structure considered
now ismemSMRAM [d i+ 5], where the hash digests are stored (figure 5.8). Another
difference is when no more rounds are needed, it passes control to the function
LoadData(), by writing 0 to the monitor (di), restarting the integrity check cycle.
If it remains any round yet, it calls VerifyHash(), passing index to the function;
after concluding the verify hash round, it increments index and previous round,

93

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Manage

Compute Hash
Read Memory

Write Memory

Get Size

di+2

previous round

di+4

Compute Hash

di+3 di+6

size

 0 or index 0

di

di+2

di+1 di+7

0

0 or previous round

1

0

Increment

Figure 5.6: Algorithm Manage Compute Hash. This function prepares the envi-
ronment to compute hash. Digest is computed by function ComputeHash(). It
reads from and writes to variables (di+j located inmemSMRAM [i]) to save the round
context.

writing them to memSMRAM [i].
Algorithm 5.7 works similarly to algorithm 5.5. However, after the loop, it com-

putes the hash of loaded data (in fact, the reloaded data), retrieves the respective
stored digest by section and compare those two digests (figure 5.9). If they are
equals, a message is displayed informing that it passes the integrity check for the
data section indicated by index. If they are different, a message reports that the
integrity of data section indicated by index is compromised.

By executing continuously the above algorithms requirements r2, r7 and r8 are
met.

5.4.3 Step 3: Persisting the SBST

This step aims to meet requirement r3 (persistent) specified in section 5.2.3. To per-
sist SBST , it is embedded into the memBIOS [i]. Thereby, any time the target ma-
chine executes the bootup process, the BIOS uploads SBST into memSMRAM [i].
An alternative to embed SBST into memBIOS [i] is to use the manager module in
the target machine to copy the agent from memDRAM [i] to memSMRAM [i], where
the follow situation described in section 3.2.3 occurs: most machines released about
2004 or before that have the bit D LCK cleared and the bit D OPEN is set after

94

5.4 ARCHITECTURE DESIGN

Algorithm 5.4: Manage to call function ComputeHash(). It prepares
the environment to call function ComputeHash(). If no more rounds are
needed, it saves the state and passes control to the next function. If rounds
are required yet, it calls the ComputeHash() again.

Input : An integer index indicating the next position in the memSMRAM [i]
to store the hash digest.

Output: Call function ComputeHash().

1 Function ManageComputeHash()
2 Begin
3 previous round← ReadMemory(memSMRAM [di+2]);
4 if previous round == NULL then
5 previous round← 0;
6 size← GetSize(memSMRAM [di+4]);
7 round← dsize/HASH BY ROUNDe − previous round;
8 if round == 0 then
9 WriteMemory(memSMRAM [di], 0);

10 WriteMemory(memSMRAM [di+1], 0);
11 WriteMemory(memSMRAM [di+2], 0);
12 WriteMemory(memSMRAM [di+3], 0);
13 WriteMemory(memSMRAM [di+6], 0);
14 else
15 ComputeHash();
16 WriteMemory(memSMRAM [di+1], Increment(index));
17 WriteMemory(memSMRAM [di+2], Increment(previous round));
18 WriteMemory(memSMRAM [di+7], 1);
19 End-ManageComputeHash

the boot up process in the SMRAMC register [69, 70, 47] as presented in figure
3.5. As this is a matter of implementation, it is discussed in chapter 6. Although
this alternative can be viable for testing the agent, we just recommend it for test
purposes, not for production environment since SBST would fail to meet require-
ments r5 (isolated) and r10 (complete). This step is implemented considering the
whole SBST .

5.4.4 Step 4: Uploading SBST into memSMRAM [i]

Step 4 aims to meet requirement r5 (isolated), according to section 5.2.5. Isolate
SBST means to upload the complete SBST as monolithic software frommemBIOS [i]
to memSMRAM [i] during the bootup process. Alternatively, it can be uploaded by
the manager module, as described in step 3 (Section 5.4.3), which has security and
requirements implications. To meet requirements r3, r4 and r8 contribute to meet
requirement r5. This step is implemented considering the whole SBST .

95

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Compute HashRead Memory

Write Memory

Get Size

di+3

previous

address

di+6

Get Address

di+3

di+5

size

 address digest

di+4

size

address

di+4

data

di+6

 di+6 + size section

SHA 256

 total data

Figure 5.7: Algorithm Compute Hash. The compute hash function computes the
data hash read from memSMRAM [di+4], which was loaded in the previous round.

5.4.5 Step 5: SBST Resistant

Step 5 aims to meet requirement r6. Algorithm 5.8 describes a basic approach to
meet this requirement, by enforcing the use of SMRR interface and by setting up
the SMRAM address range protected. It is done by setting the appropriated reg-
isters as described in section 3.2.3. This step is implemented in the bc, since it is a
management function which should be performed whenever the SBST starts.

Thus, algorithm 5.8 tests bit 11 in the IA32 MTRRCAP register to check the
support to the SMRR interface. Intel recommends that such a bit is tested, before
try to access SMRR registers, because in the case SMRR interface is not supported,
a attempt to read or writes those registers will cause general-protection exceptions
[87, 97]. If this bit is set, it means that the processor support SMRR interface.

Function ReadRegister() receives two parameters: a register to be read and
position indicating the bit or bits to be read.

So, it configures registers IA32 SMRR PHYSBASE and IA32 SMRR PHYSMASK
to enforce the use of SMRR interface, thwart attacks as “cache poisoning” and to
determine SMRAM address range protected. Such a range can be increased or de-
creased, according to the security design.

96

5.5 DISCUSSION

Algorithm 5.5: Compute data hash. It computes the hash code from the data
load in by the previous function.

Input : Data to be computed the hash digest.
Output: Hash digest.

1 Function ComputeHash()
2 Begin
3 previous address← ReadMemory(memSMRAM [di+3]);
4 if previous address <> NULL then
5 address← previous address+HASH BY ROUND;
6 size← GetSize(memSMRAM [di+4])−GetSize(memSMRAM [di+6]);
7 else
8 address← GetAddress(memSMRAM [di+4]);
9 size← GetSize(memSMRAM [di+4]);

10 size section← 0;
11 while ((size section <= HASH BY ROUND)&(size section <= size)) do
12 data← ReadMemory(memSMRAM [address]));
13 size section← size section+GetSize(data);
14 total data← total data+ data;
15 digest← SHA− 256(total data);
16 WriteMemory(memSMRAM [di+3], address);
17 WriteMemory(memSMRAM [di+5[index]], digest);
18 WriteMemory(memSMRAM [di+6], (ReadMemory(memSMRAM [di+6]) +

size section));
19 End-ComputeHash

5.5 Discussion

In this chapter we specified and discussed the requirements, detailing how they
can be built. We also proposed a general architecture, explaining where each re-
quirement fit in the global view. Then, we designed the architecture to answer the
proposed research questions adding the requirements step by step to the SBST
general architecture. Finally, we designed the algorithms to realize the require-
ments by means of a study case on a payload to measure the integrity of a simple
table (file xend-config.sxp) of a hypervisor (xen 4.0).

The algorithms designed ignore most of the implementations issues and com-
plexities, since they are addressed in the next chapters. However, those algorithms
describe the steps necessary to meet the requirements, pointing out specifics com-
ponents, as register, which must be address to implement an SBST .

Technological details as memory and CPU speed to read and write were not im-
perative during the design of the architecture presented in this chapter. However,
we used results of obtained in our experiments with SMI handler, as decribed in
section 3.2.4 and use approximated values in the other cases.

In section 4.5 we discussed on some desirable characteristics and capacities
as the characteristic of being “unique” in the SMRAM and the capacity of “self-
cleaning”. So, here we expand a bit more that discussion. The characteristic of

97

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Manage

Verify Hash
Read Memory

Write Memory

Get Size

di+2

previous round

di+5

Verify Hash

di+3 di+6

size

 0 or index 0

di

di+2

di+1 di+7

0

0 or previous round

 0

0

Increment

Figure 5.8: Algorithm Manage Verify Hash. This function prepares the environ-
ment to verify the data hash. The digest is verified by function VerifyHash().
It reads from and writes to variables (di+j) located in memSMRAM [i] to save the
round context.

being “unique” can be achieved by setting appropriated registers in the set of
SMM related registers to shrinking the SMRAM size after uploading the SBST
and allowing no more codes to be deployed into SMRAM. It can be specified as
memSMRAM = SBST ≡ memSMRAM = (SH), where memSMRAM is represented
as an unitary set, since it must not be any other code sharing memSMRAM with
SBST . Note that the state save map (sections 3.3.1 and 3.2.2) still in memSMRAM ,
stored in its own area (figures 3.2 and 3.3). Also, note that after meeting require-
ment r4 (cooperative), SBST ≡ SH . So, the available mechanisms to protect
memSMRAM and SH , as that describe in requirement r6, can be used and enforced
to SBST too.

The capacity of being “self-cleaning” can be achieved by implement a function
to issue GETSEC[SENTER] and GETSEC[SEXIT] instructions whenever necessary.
It can be specified as bcLateLaunch : memSMRAMx → memSMRAMy , meaning that bc
would have the capacity to start a late launch or another equivalent operation to
get memSMRAM cleaned. The defined function bcLateLaunch take memSMRAM from
a status x to a status y, where x is a potential tampered status and y is a pristine
one. The algorithm 5.9 presents a potential design for this capacity.

Thus, algorithm 5.9 checks the status of the IA32 MCn STATUS register and
triggers a late launch operation to clean the memSMRAM . The algorithm receives

98

5.6 SUMMARY

Algorithm 5.6: Manage to call function VerifyHash(). It prepares the en-
vironment to call function VerifyHash(). If no more rounds are needed, it
saves the state and passes control to the next function. If rounds are required
yet, it calls the VerifyHash() again.

Input : An integer index indicating the next position in the memSMRAM [i]
to read the hash digest.

Output: Call function VerifyHash().

1 Function ManageV erifyHash()
2 Begin
3 previous round← ReadMemory(memSMRAM [di+2]);
4 if previous round == NULL then
5 previous round← 0;
6 size← GetSize(memSMRAM [di+5)];
7 round← dsize/HASH BY ROUNDe − previous round;
8 if round == 0 then
9 WriteMemory(memSMRAM [di], 0);

10 WriteMemory(memSMRAM [di+1], 0);
11 WriteMemory(memSMRAM [di+2], 0);
12 WriteMemory(memSMRAM [di+3], 0);
13 WriteMemory(memSMRAM [di+6], 0);
14 else
15 V erifyHash();
16 WriteMemory(memSMRAM [di+1], Increment(index));
17 WriteMemory(memSMRAM [di+2], Increment(previous round));
18 WriteMemory(memSMRAM [di+7], 0);
19 End-ManageComputeHash

two integers: number of cores, indicating the number of processor cores presents
in the target machine, and an integer number of registers, indicating the number
of IA32 MCn STATUS registers present in the processor, since those registers are
unique by core (section 3.2.3). Then, it checks the status of IA32 MCn STATUS reg-
isters by probing bit 31, which indicates when an error has happened, and the bit
2, which indicates when the error was a violation of the ranges configured in the
SMRR interface. In the case of a SMRR interface violation, a GETSEC[SEXIT]-like
instruction is triggered to flushmemSMRAM load a pristine SBST intomemSMRAM .

Those characteristics and capacities are discuss but not implemented in our
proof of concept.

5.6 Summary

The requirements identified in this research are classified as functional require-
ments (r1, r2, r3, r4 and r7) and security requirements (r5, r6 and r8). Functional
requirements are related to functionality of the SBST (as r3 - persistent) or related
to the way it needs to work (as fast). Security requirements are needed to improve
the SBTS security (as r5 - isolate and r6 - resistance). Some requirements can be

99

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Algorithm 5.7: Verify data hash. It computes the hash code from the data load
in by the previous function, retrieve the hash code stored in memSMRAM [i]
and compare those two hash code. Then, the algorithm exhibit a message
with the result of verification.

Input : Hash digest.
Output: The result of integrity check.

1 Function V erifyHash()
2 Begin
3 previous address← ReadMemory(memSMRAM [di+3]);
4 if previous address <> NULL then
5 address← previous address+HASH BY ROUND;
6 size← GetSize(memSMRAM [di+4])−GetSize(memSMRAM [di+6]);
7 else
8 address← GetAddress(memSMRAM [di+4]);
9 size← GetSize(memSMRAM [di+4]);

10 size section← 0;
11 while ((size section <= HASH BY ROUND)&(size section <= size)) do
12 data← ReadMemory(memSMRAM [address]));
13 size section← size section+GetSize(data);
14 total data← total data+ data;
15 digest← SHA− 256(total data);
16 stored digest← ReadMemory(memSMRAM [di+5[index]]);
17 if digest == stored digest then
18 Print(“The integrity of xend-config.sxp table IS PRESERVED in section

%d”, index);
19 else
20 Print(“The integrity of xend-config.sxp table IS COMPROMISED in section

%d”, index);
21 WriteMemory(memSMRAM [di+3], address);
22 WriteMemory(memSMRAM [di+6], (ReadMemory(memSMRAM [di+6]) +

size section));
23 End-VerifyHash

100

5.6 SUMMARY

Verify HashRead Memory

Write Memory

Get Size

di+3

previous

address

di+6

Get Address

di+3

size

 address

di+4

size

address

di+4

data

di+6

di+6 + size section

SHA 256

di+5

stored digest

Print

Figure 5.9: Algorithm Verify Hash. Verify hash function computes the data
hash read from memSMRAM [di+4], which was load in the previous round and
compare with the hashes computed by function ComputeHash() stored in
memSMRAM [di+5], printing a message to inform the result.

Algorithm 5.8: Verify and set registers to reinforce SMM security. It verifies
if the target machine supports SMRR interface. If yes, the algorithm sets regis-
ters IA32 SMRR PHYSBASE and IA32 SMRR PHYSMASK to enforce the use
of SMRR interface and avoid attacks as “cache poisoning”.

Output: Registers configured.

1 Function Main;
2 Begin;
3 integer smrr support;
4 smrr support← ReadRegister(IA32 MTRRCAP, 11);
5 if smrr support == 1 then
6 Print(”This processor support SMRR interface”);
7 Configure(IA32 SMRR PHY SBASE);
8 Configure(IA32 SMRR PHY SMASK);
9 else

10 Print(”This processor does NOT support SMRR interface”);
11 End-Main;

101

5. A GENERIC ARCHITECTURE FOR SMM-BASED SECURITY TOOLS

Algorithm 5.9: Verify SMMR interface integrity and trigger a late launch
instruction. It probes IA32 MCn STATUS registers to check if a violation of
the addresses ranges configured in the SMRR interface happened. If yes, it
triggers a GETSEC[SEXIT]-like instruction to flush memSMRAM and reload
SBST from memBIOS .

Input : An integer number of cores indicating the number of processor
cores and an integer number of registers the number of
IA32 MCn STATUS registers present in the processor.

Output: Restart the system and reload SBST .

1 Function Main(integer number of cores, integer number of registers);

2 Begin;
3 integer counter1, counter2, smram integrity;
4 counter1 ← 0;
5 while counter1 < number of cores do
6 counter2 ← 0;
7 while counter2 < number of registers do
8 smram integrity ← ReadRegister(IA32 MCcounter2 STATUS, 31);
9 if smram integrity == 1 then

10 Print(“An error reported in the register IA32 MC STATUS = %d”,
IA32 MCn+counter2 STATUS);

11 smram integrity ←
ReadRegister(IA32 MCn+counter2 STATUS, 2);

12 if smram integrity == 1 then
13 Print(“SBST integrity violated! Starting a late launch

operation...”);
14 GETSEC[SEXIT];
15 else
16 Print(“Error not related to SMM!”);
17 else
18 Print(“No error reported in the register IA32 MC STATUS = %d”,

IA32 MCn+counter2 STATUS);
19 Increment(counter2);
20 Increment(counter1);
21 End-Main;

102

5.6 SUMMARY

met by implementation (as r10 - complete) and other by following some opera-
tional procedure (as r5 - isolated).

According to the figure 5.1: requirements r1, r2 and r4 are met by coding them
in the SBST as specified in the last section; requirement r3 is met by inserting
SBST in thememBIOS ; requirement r5 is met by uploading SBST frommemBIOS

to memSMRAM ; requirement r6 can also be codified in the SBST since it is about
to handle registers values; requirement r7 is met by coding it in the SBST and by
using another software artefact called “Manager”, which contributes to discover
the event that can trigger an SMI in the target platform. The manager resides in
the DRAM, but it is not necessarily in the target machine. So, there is not isolation
problem in this concept; and requirement r8 is met by designing SBST to be a
monolithic code, deployed into memSMRAM .

We developed a payload study case on measuring the integrity of hypervisor
essential data. That data consisted of a simple table. So, our design have focused on
making r2 (fast) dependent on the time elapsed when executing a subtask, in such
a way that SBST pre-empts before a subtask reach the time limit. We estimate the
time needed to perform each subtask assuming experiments on time elapsed for
our functions in the study case. However, in a real case, it is necessary to know the
technological details about DRAM and CPU to calculate the execution time and
pre-empt SBST .

This chapter has specified and discussed the requirements established in chap-
ter 4, detailing how they can fit in the architecture. Then, we proposed a general
architecture and design the algorithms to built that architecture. In the next chap-
ter, we will tackle implementation issues, detailing the function in the manager
module.

103

Chapter 6

Implementation and Evaluation -
Manager Module and SBST

Ignota nulla curatio morbi (do
not attempt to cure what you do
not understand).

OLD PRINCIPLE OF MEDICINE ,
AS DESCRIBED BY ANDRZEJ M.

ŁOBACZEWSKI IN HIS BOOK
POLITICAL PONEROLOGY.

The proof of concept developed in this work was planned to be implemented
in two parts: a manager module and an agent module. The agent (properly the
SBST , as defined in 2.23) does not need the manager to operate. The planned
actions for the manager are probe and research a target platform to understand
and learn about the environment where an agent (SBST) will be deployed.

Some requirements are implemented in the manager module and others in the
agent (figure 5.1). That issue will be made clear in this chapter.

6.1 Introduction

In the previous chapter, the requirements established were specified and discussed.
Those requirements were mapped in a general architecture, where they were clas-
sified as functional or security requirements. Then, we designed the architecture
and its respective algorithms to answer the proposed research questions adding the
requirements step by step to general architecture. The algorithms were designed
considering a payload study case to measure the integrity of a simple table (file
xend-config.sxp) of a hypervisor (the Xen hypervisor 4.0).

Since it is impossible remove the SMM from x86 architecture [57] and since the
reported SMM violations are platform specific or operating system specific. It is
better to understand and learn about SMM.

In this chapter we consider the findings in chapter 2 and 3 to build the man-
ager module targeting the machine 12 at table 3.1, considering that the actions and
functions planned to the manager is probe and research a platform to understand
and learn about the environment where the agent will be deployed. The manager
module is useful to understand and learn about a target chipset, mainly about the
status of some SMM related registers.

105

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

This chapter is organised in four content sections and a discussion and sum-
mary section. In the first section, we discuss the constraints and limits of the man-
ager module. The second section discusses some of the implementations issues.
Section three details the functions implemented in the manager. Then, section four
presents some results from the execution of the manager module targeting a subset
of the machines presented in table 3.1.

This chapter is organised in three content sections and a discussion and a sum-
mary section. In the first section, we discuss the limits and constraints of the tool.
Second Section discusses some of the proof of concept itself. Section three details
the functions implemented in the tool and other related issues and report the ex-
periments with the tool.

6.1.1 Manager Module Implementation particularities

In this section, we briefly discuss some implementation issues from our computa-
tional experiments.

We implement the manage module in eight files (Figure 6.1), writing it in C
language. That implementation was inspired in the Inteltools project [37] and [23].
The manager.c file implements the main functions and it calls all the other files.
The manager.h file implements the header file used for all other files, including
manager.c. The file smramc.c implements functions to report information and
manage controls related to the SMRAM and SMRAMC. The file msr.c implements
functions to report information about the Architectural Model-Specific Registers.
The file chipset.c implements functions to report information about the chipset spe-
cific registers, as detailed in section 3.2.3. File info.c implements functions to re-
ports information about the host platform. The file smi.c implements functions to
enable, disable and generate SMI. File inject.c implements functions to inject the
SBST in to the memSMRAM [i], alternatively to embed it into memBIOS [i], but not
meeting requirements r5 and r10, as discussed in section 5.4.3.

Functions implemented in smramc.c file:

void set_SMRAM_OFFSET(unsigned int offset);
void print_smramc(uint8_t smramc_status);
void lock_smramc(struct pci_dev *smramc, uint8_t smramc_status);
void unlock_smramc(struct pci_dev *smramc, uint8_t smramc_status);
void open_smram(struct pci_dev *smramc, uint8_t smramc_status);
void close_smram(struct pci_dev *smramc, uint8_t smramc_status);
uint16_t get_pmbase(void);
uint16_t get_smi_en_iop(void);
uint16_t get_smi_sts_iop(void);
uint16_t get_pm1_cnt_iop(void);
uint16_t get_gen_pmcon_1_iop(void);
uint32_t get_smi_en_content(uint16_t smi_en_iop);
uint32_t get_smi_sts_content(uint16_t smi_sts_iop);
void write_to_apm_cnt(void);
void print_gen_pmcon_1(uint16_t gen_pmcon_1_status);
void print_apm_cnt_sts(uint8_t apm_cnt_status, uint8_t apm_sts_status);
void print_gpi_rout(uint32_t gpi_rout_status);
void print_gpi_rout2(uint32_t gpi_rout2_status);

Functions implemented in msr.c file:

unsigned int cpuid(unsigned int op);
msr_t rdmsr(int addr);
int print_intel_core_msrs(void);
int verify_smrr_support(void);

106

6.1 INTRODUCTION

manager.c

inject.csmramc.c msr.c chipset.c info.c smi.c

manager.h

Figure 6.1: Manager program files. The manager program comprises of eight
files written in C language with some code chunks in Assembly language. The
manager.c file is the main file and manager.h is header file used by all the other
programs in the manager module.

int verify_stm_support(void);
int verify_ia32_smbase_support(void);
int verify_ia32_smm_monitor_ctl_lock(void);
int print_mseg_revision_identifier(void);
int verify_stm_invocation(void);
int print_mseg_base(void);
int verify_freeze_support(void);
int verify_freeze_performance(void);
int check_smi_handler_violation(void);

Functions implemented in chipset.c file:

int print_pmbase(struct pci_dev *sb, struct pci_access *pacc);
void print_smi_en(uint32_t smi_en_status);
void print_smi_sts(uint32_t smi_sts_status);
void print_alt_gpi_smi_en(uint16_t alt_gpi_smi_en_status);
void print_alt_gpi_smi_en2(u16 alt_gpi_smi_en2_status);
void print_alt_gpi_smi_sts(u16 alt_gpi_smi_sts_status);
void print_alt_gpi_smi_sts2(u16 alt_gpi_smi_sts2_status);
void print_gpe0_en(uint32_t gpe0_en_status_high, uint32_t gpe0_en_status_low);
void print_gpe0_sts(uint32_t gpe0_sts_status_high, uint32_t gpe0_sts_status_low);

Functions implemented in info.c file:

void *map_physical(uint64_t phys_addr, size_t len);
void unmap_physical(void *virt_addr, size_t len);
int print_supported_chipsets();
int print_platform();

Functions implemented in smi.c file:

int enable_smi_gbl(u16 smi_en_iop);
int disable_smi_gbl(u16 smi_en_iop);
int enable_smi_on_apm(u16 smi_en_iop);
int disable_smi_on_apm(u16 smi_en_iop);
int enable_smi_xHCI(u16 smi_en_iop);
int enable_smi_Intel_ME(u16 smi_en_iop);
int enable_smi_GPIO_Unlock(u16 smi_en_iop);
int enable_smi_Intel_USB2_EN(u16 smi_en_iop);

107

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

int enable_smi_legacy_USB2_EN(u16 smi_en_iop);
int enable_smi_periodic(u16 smi_en_iop);
int enable_smi_TCO_logic(u16 smi_en_iop);
int enable_smi_MCSMI(u16 smi_en_iop);
int enable_smi_SWSMI_TMR_EN(u16 smi_en_iop);
int enable_smi_APM_CNT(u16 smi_en_iop);
int enable_smi_SLP_SMI_EN(u16 smi_en_iop);
int enable_smi_legacy_USB_EN(u16 smi_en_iop);
int enable_smi_BIOS_EN(u16 smi_en_iop);
int disable_smi_xHCI(u16 smi_en_iop);
int disable_smi_Intel_ME(u16 smi_en_iop);
int disable_smi_GPIO_Unlock(u16 smi_en_iop);
int disable_smi_Intel_USB2_EN(u16 smi_en_iop);
int disable_smi_legacy_USB2_EN(u16 smi_en_iop);
int disable_smi_periodic(u16 smi_en_iop);
int disable_smi_TCO_logic(u16 smi_en_iop);
int disable_smi_MCSMI(u16 smi_en_iop);
int disable_smi_SWSMI_TMR_EN(u16 smi_en_iop);
int disable_smi_APM_CNT(u16 smi_en_iop);
int disable_smi_SLP_SMI_EN(u16 smi_en_iop);
int disable_smi_legacy_USB_EN(u16 smi_en_iop);
int disable_smi_BIOS_EN(u16 smi_en_iop);
int generate_smi_periodic(u16 gen_pmcon_1_status_x, u16 address_gen_pmcon_1, int rate);
int generate_smi_SLP_SMI_EN(u16 smi_en_iop, u16 smi_sts_iop, u16 pm1_cnt_iop);
int generate_smi_BIOS_EN(u16 smi_en_iop, u16 smi_sts_iop, u16 pm1_cnt_iop);

The manager module is developed mainly in C language, with some code chunks
in Assembly language. We use two machines for that : an Acer Intel pentium i5 8GB
[80, 81] and a Compac Intel pentium III 1GB RAM [64, 65] (see table 3.1). The op-
erating system upon it is developed is CentOS 5.10. To access registers, we use the
“pciutils-3.2.1” library.

6.2 Functions in the Manager Module

As discussed in section 4.4, SMM is: chipset, platform, OEM and executive soft-
ware specific. These specificities imply that to develop an SBST is mandatory to
know deeply the target machine. Thereby, in this section we present the functions
that the manager module implements to: probe, identify components and obtain
information from a target machine. It basically covers items related to SMM in
platform x86, as described in figure 6.2:

6.2.1 Probe and Report the Target Machine Menu

This option offers a subset of functions to probe the platform to discover infor-
mation related to SMM, as registers content and memory details. It also identifies
information related to the target machine (the one hosting SBST). So, it can report:
all SMM information, the host chipset, SMRAMC register, PMBASE and SMM re-
lated registers, CPU’s SMM related registers, GEN PMCON 1 register, APM reg-
isters, GPI ROUT register, GPI ROUT2 register, MSEG revision identifier, MSEG
base and supported chipsets.

6.2.1.1 Report All SMM Information Function

This function consolidates and reports all the information provided by functions in
the probe and report the target machine menu, except function “Report Supported

108

6.2 FUNCTIONS IN THE MANAGER MODULE

Figure 6.2: Manager main menu. The manager module has seven options offering
functions to obtain information from the host machine, as: probe and report infor-
mation, verify supports and check errors related to SMM, manage controls related
to the SMRAM and SMRAMC and enable, disable and generating SMI.

Chipsets”. It is implemented by function print all SMM information().

6.2.1.2 Report the Host Chipset Function

This option is implemented by function print platform() and reports data from
CPU (id, Processor type, family, model and stepping), Northbridge (vendor and
device id and name), Southbridge (vendor and device id and name) and the IGF
(vendor and device id and name).

6.2.1.3 Report SMRAMC Register Function

This option is implemented by function print smramc(uint8 t smramc status) and re-
ports the status of memSMRAM [i] and the status of SMRAMC register.

109

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

6.2.1.4 Report PMBASE and SMM Related Registers Function

This option reports the status of the registers PMBASE, GPE0 EN, GPE0 STS, SMI
EN, SMI STS, ALT GPI SMI EN, ALT GPI SMI STS, ALT GPI SMI EN2, and ALT
GPI SMI STS2; and the information in the chipset related to them. It is imple-
mented by function int print pmbase(struct pci dev *sb, struct pci access *pacc).

6.2.1.5 Report CPU’s SMM Related Registers Function

This option reports the status of Model-Specific Registers shared with all cores in
the processor, as the IA32 MCi STATUS registers. It also report the status of regis-
ters IA32 SMM MONITOR CTL, IA32 MTRRCAP, IA32 VMX BASIC, IA32 VMX
MISC, IA32 DEBUGCTL, IA32 PERF CAPABILITIES, by core. It is implemented

by function print intel core msrs().

6.2.1.6 Report GEN PMCON 1 Register Function

This option reports the status of GEN PMCON 1 Register and the information
about the chipset this register provide. It is implemented by function print gen
pmcon 1(gen pmcon 1 status).

6.2.1.7 Report APM Registers Function

This option reports the status of registers APM CNT and APM STS and it is imple-
mented by function print apm cnt sts(apm cnt status, apm sts status).

6.2.1.8 Report GPI ROUT Register Function

This option is implemented by function print gpi rout(gpi rout status) and re-
ports register GPI ROUT status and reports information about the General Purpose
I/O devices, from GPI0 to GPI15.

6.2.1.9 Report GPI ROUT2 Register Function

This option is implemented by function print gpi rout2(gpi rout2 status) and re-
ports register GPI ROUT2 status and reports information about the General Pur-
pose I/O devices: GPI17, GPI19, GPI21, GPI22, GPI43, GPI56, GPI57 and GPI60.

6.2.1.10 Report MSEG Revision Identifier Function

This option is implemented by function int print mseg revision identifier(void)
and probes bit63 to bit32 of IA32 VMX MISC register to report the 32-bit MSEG
revision identifier used by the processor [87], by core.

6.2.1.11 Report MSEG Base Function

This option is implemented by function int print mseg base(void) to report the
MSEG base contained into bit31 to bit12 of the IA32 SMM MONITOR CTL register.

110

6.2 FUNCTIONS IN THE MANAGER MODULE

6.2.1.12 Report Supported Chipsets Function

This option is implemented by function int print supported chipsets() and report
all the chipsets supported by the manager module.

6.2.2 Verify Supports for SMM Menu

This option offers a subset of functions to verify different supports to SMM tasks,
as support for SMRR interface and for dual-monitor treatment.

6.2.2.1 Verify support for SMRR Interface Function

This option is implemented by function int verify smrr support(void) to verify
bit11 of the IA32 MTRRCAP register and report per core if the processor in the
host machine supports the SMRR interface.

6.2.2.2 Verify support Dual-Monitor Treatment Function

This option is implemented by function int verify stm support(void) to verify bit17
of the IA32 VMX BASIC register and report per core if the processor in the host
machine supports the Dual-Monitor Treatment.

6.2.2.3 Verify support to read IA32 SMBASE Function

This option is implemented by function int verify ia32 smbase support(void) to
verify and report per core if the RDMSR instruction is allowed to read the IA32
SMBASE register when in SMM. VMXOFF instruction unblocks SMIs unless bit2 in
IA32 SMM MONITOR CTL register is set (equals to 1).

6.2.2.4 Verify IA32 SMM MONITOR CTL bit 2 lock Function

This option is implemented by function int verify ia32 smm monitor ctl lock(void)
to verify and report per core if bit2 in IA32 SMM MONITOR CTL register can be
set to 1. VMXOFF instruction unblocks SMIs unless bit2 in IA32 SMM MONITOR
CTL register is set (equals to 1).

6.2.2.5 Verify if STM may be invoked by a VMCALL Function

This option is implemented by function int verify stm invocation(void) to verify
and report per core if STM can be invoked using a VMCALL instruction (section
3.3.4). It verifies bit0 in SMM MONITOR CTL register. The support is activated if
bit0 is set.

6.2.2.6 Verify support to “freeze while in SMM” Function

This option is implemented by function int verify freeze support(void) and ver-
ifies and reports per core if the processor supports the FREEZE WHILE SMM EN
feature. This supports is active when bit12 in IA32 PERF CAPABILITIES register
is set (equals to 1).

111

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

6.2.2.7 Verify if “freeze performance” is active Function

This option is implemented by function int verify freeze performance(void) to
verify and report per core if the ”freeze performance” is activated in the processor.
It is done by verifying the bit14 in the IA32 DEBUGCTL register.

6.2.3 Check SMM Errors Menu

It checks SMI handler code access violation defined in the SMRR interface (al-
gorithm 5.9). In this manager module version it offers only the option “Check
SMI handler code access violation”, which is implemented by the function int
check smi handler violation(void).

6.2.4 Manage SMRAM and SMRAMC Menu

It makes available functions to attempt to lock or unlock the SMRAMC register and
to open or close the SMRAM.

6.2.4.1 Lock SMRAMC register Function

This option is implemented by function void lock smramc(struct pci dev∗smramc,
uint8 t smramc status) to try locking SMRAMC register by setting bit D LCK in
SMRAMC register (section A.1 and figure 3.4).

6.2.4.2 Unlock SMRAMC register Function

This option is implemented by function void unlock smramc(struct pci dev∗smramc,
uint8 tsmramc status) to try unlocking SMRAMC register by clearing bit D LCK
in SMRAMC register (section A.1 and figure 3.4).

6.2.4.3 Open SMRAM Function

This option is implemented by function void open smram(structpci dev ∗ smramc,
uint8 tsmramc status) to try opening memSMRAM by setting bit D OPEN in the
SMRAMC register (section A.1 and figure 3.4).

6.2.4.4 Close SMRAM Function

This option is implemented by function void close smram(structpci dev ∗smramc,
uint8 tsmramc status) to try closing memSMRAM by clearing bit D OPEN in the
SMRAMC register (section A.1 and figure 3.4).

6.2.5 Enabling SMI Menu

As stated in section 3.3.1, There are many reasons to generate an SMI, depending
on the chipset in use. Thereby, in this section we explain a set of functions offered to
enable SMI to be generated in the chipset for a specific reason, by setting specifics
bits in registers, as APM CNT register and PM1 CNT register. There is also a func-
tion to enable SMI globally in the chipset. This last function is quite important to
generate SMI in general. For example, to generate an SMI in the APM CNT, for

112

6.2 FUNCTIONS IN THE MANAGER MODULE

example, SMI must be globally enable. In general, writing to those kind of registers
requires high privileges. So, when using Linux OSs one can use the command line
iopl(3), this command changes the I/O privilege level of the calling process.

In the subsections described ahead, we use the verb “try”, for example, “try to
enable”, “try to disable”, “try to control”, “try to generate”, for the functions de-
scribed by those subsections because even if the implemented function have the
iopl(3) privilege, it might not be always able to change the values in the registers.
The reason for that needs to be investigated and will not be addressed in this re-
search.

6.2.5.1 Enable SMI in xHCI function

This function try to enable an SMI to be generated by a xHCI device, by setting
bit31 in the SMI EN register. It is implemented by function int enable smi xHCI
(u16 smi en iop).

6.2.5.2 Enable SMI in Intel Management Engine function

This function try to enable an SMI to be generated by Intel Management Engine, by
setting bit30 in the SMI EN register. It is implemented by function int enable smi
Intel ME(u16 smi en iop).

6.2.5.3 Enable SMI in GPIO unlock function

This function try to enable the GPIO registers lockdown logic to launch an SMI, by
setting bit27 in the SMI EN register. It is implemented by function int enable smi
GPIO Unlock(u16 smi en iop).

6.2.5.4 Enable SMI in Intel specific EHCI SMI logic function

This function try to enable Intel-Specific EHCI SMI logic to cause an SMI, by setting
bit18 in the SMI EN register. It is implemented by function int enable smi Intel
USB2 EN(u16 smi en iop).

6.2.5.5 Enable SMI in legacy EHCI logic function

This function try to enable legacy EHCI logic to cause an SMI, by setting bit17 in
the SMI EN register. It is implemented by function int enable smi legacy USB2
EN(u16 smi en iop).

6.2.5.6 Enable SMI in periodic function

This function try to enable the chipset to generate an SMI periodically, by setting
bit14 in the SMI EN register. It is implemented by function int enable smi periodic
(u16 smi en iop).

113

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

6.2.5.7 Enable SMI in TCO logic function

This function try to enable the TCO logic to generate an SMI, by setting bit13 in the
SMI EN register. It is implemented by function int enable smi TCO logic(u16 smi
en iop).

6.2.5.8 Enable SMI in trap access to microcontroller range function

This function try to enable the chipset to trap accesses to the microcontroller range
and generate an SMI, by setting bit11 in the SMI EN register. It is implemented by
function int enable smi MCSMI(u16 smi en iop).

6.2.5.9 Enable SMI in SMI Timer function

This function try to start Software SMI Timer, by setting bit6 in the SMI EN register.
When the timer expires, an SMI is generated. It is implemented by function int
enable smi SWSMI TMR EN(u16 smi en iop).

6.2.5.10 Enable SMI in APM CNT register function

This function try to enable writing to the APM CNT register to generate an SMI,
by setting bit5 in the SMI EN register. It is implemented by function int enable smi
APM CNT (u16 smi en iop).

6.2.5.11 Enable SMI in PM1 CNT register function

This function try to enable the PM1 CNT register to generate an SMI, by setting bit4
in the SMI EN register. It is implemented by function int enable smi SLP SMI
EN(u16 smi en iop).

6.2.5.12 Enable SMI in legacy USB circuit function

This function try to enable legacy USB circuit to cause an SMI, by setting bit3 in the
SMI EN register. It is implemented by function int enable smi legacy USB EN
(u16 smi en iop).

6.2.5.13 Enable SMI in ACPI software function

This function try to enable the generation of an SMI when ACPI software writes
a 1 to the GBL RLS bit, by setting bit2 in the SMI EN register. The GBL RLS bit
(Global Release) is the bit2 in the PM1 CNT register. It is implemented by function
int enable smi BIOS EN(u16 smi en iop).

6.2.5.14 Enable SMI in the whole system function

This function try to enable the generation of SMI in the system upon any enabled
SMI event, by setting bit0 in the SMI EN register. When the SMI LOCK bit is set,
this bit cannot be changed. The SMI LOCK bit is the bit4 in the GEN PMCON 1
register. It is implemented by function int enable smi gbl(u16 smi en iop).

114

6.2 FUNCTIONS IN THE MANAGER MODULE

6.2.6 Disabling SMI Menu

As in previous section, it is offered a set of functions to disable SMI to be gen-
erated in the chipset by clearing specifics bits in registers, as APM CNT register
and PM1 CNT register. Also as in previous section, it is offer a function to disable
an SMI globally in the chipset. In general, writing to those register requires high
privileges. So, when using Linux OSs one can use the command line iopl(3), this
command changes the I/O privilege level of the calling process.

6.2.6.1 Disable SMI in xHCI function

This function try to disable an SMI to be generated by a xHCI device, by clearing
bit31 in the SMI EN register. It is implemented by function int disable smi xHCI
(u16 smi en iop).

6.2.6.2 Disable SMI in Intel Management Engine function

This function try to disable an SMI to be generated by Intel Management Engine,
by clearing bit30 in the SMI EN register. It is implemented by function int disable
smi Intel ME(u16 smi en iop).

6.2.6.3 Disable SMI in GPIO unlock function

This function try to disable the GPIO registers lockdown logic to launch an SMI, by
clearing bit27 in the SMI EN register. It is implemented by function int disable smi
GPIO Unlock(u16 smi en iop).

6.2.6.4 Disable SMI in Intel specific EHCI SMI logic function

This function try to disable Intel-Specific EHCI SMI logic to cause an SMI, by clear-
ing bit18 in the SMI EN register. It is implemented by function int disable smi Intel
USB2 EN(u16 smi en iop).

6.2.6.5 Disable SMI in legacy EHCI logic function

This function try to disable legacy EHCI logic to cause an SMI, by clearing bit17 in
the SMI EN register. It is implemented by function int disable smi legacy USB2
EN(u16 smi en iop).

6.2.6.6 Disable SMI in periodic function

This function try to disable the chipset to generate an SMI periodically, by clearing
bit14 in the SMI EN register. It is implemented by function int disable smi periodic
(u16 smi en iop).

6.2.6.7 Disable SMI in TCO logic function

This function try to disable the TCO logic to generate an SMI, by clearing bit13 in
the SMI EN register. It is implemented by function int disable smi TCO logic (u16
smi en iop).

115

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

6.2.6.8 Disable SMI in trap access to micro-controller range function

This function try to disable the chipset to trap accesses to the micro-controller range
and generate an SMI, by clearing bit11 in the SMI EN register. It is implemented
by function int disable smi MCSMI(u16 smi en iop).

6.2.6.9 Disable SMI in SMI Timer function

This function try to starts Software SMI Timer, by clearing bit6 in the SMI EN reg-
ister. When the timer expires, an SMI is generated. It is implemented by function
int disable smi SWSMI TMR EN(u16 smi en iop).

6.2.6.10 Disable SMI in APM CNT register function

This function try to disable writing to the APM CNT register to generate an SMI, by
clearing bit5 in the SMI EN register. It is implemented by function int disable smi
APM CNT (u16 smi en iop).

6.2.6.11 Disable SMI in PM1 CNT register function

This function try to disable the PM1 CNT register to generate an SMI, by clearing
bit4 in the SMI EN register. It is implemented by function int disable smi SLP SMI
EN(u16 smi en iop).

6.2.6.12 Disable SMI in legacy USB circuit function

This function try to disable legacy USB circuit to cause an SMI, by clearing bit3 in
the SMI EN register. It is implemented by function int disable smi legacy USB
EN(u16 smi en iop).

6.2.6.13 Disable SMI in ACPI software function

This function try to disable the generation of an SMI when ACPI software writes
a 1 to the GBL RLS bit, by clearing bit2 in the SMI EN register. The GBL RLS bit
(Global Release) is the bit2 in the PM1 CNT register. It is implemented by function
int disable smi BIOS EN(u16 smi en iop).

6.2.6.14 Disable SMI in the whole system function

This function try to disable the generation of SMI in the system upon any enabled
SMI event, by clearing bit0 in the SMI EN register. When the SMI LOCK bit is set,
bit0 in the SMI EN register cannot be changed. The SMI LOCK bit is the bit4 in
the GEN PMCON 1 register. It is implemented by function int disable smi gbl(u16
smi en iop).

6.2.7 Generating an SMI Menu

A set of functions to generate SMI in the chipset immediately (it means without
waiting for a system management event) are offered. For example, an SMI can be
programmed to be generated at every 64 seconds. Again, in general, writing to

116

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

those register requires high privileges. So, when using Linux OSs one can use the
command line iopl(3), this command changes the I/O privilege level of the calling
process.

6.2.7.1 Generating an SMI by Periodic Seconds Function

This function try to control the rate at which periodic SMI is generated, by handling
bit1 and bit0 in GEN PMCON 1 register, following the schema: bit1 = 0 and bit0 =
0, then rate = 64 seconds; bit1 = 0 and bit0 = 1, then rate = 32 seconds; bit1 = 1 and
bit0 = 0, then rate = 16 seconds; and bit1 = 1 and bit0 = 1, then rate = 8 seconds. It
is implemented by function int generate smi periodic(u16 gen pmcon 1 status x,
u16address gen pmcon 1, int rate). Before executing that function, it is a good
practice to verify the GBL SMI EN bit (bit0 in the SMI EN register) to check if SMIs
are globally enabled.

6.2.7.2 Generating an SMI by APM CNT Register Function

This function try to generate an SMI by writing any value to the APM CNT reg-
ister. Write any value to this register generates an SMI when the APMC EN bit
(bit5 in SMI EN register) is set. It can be accomplished by a command line as
outb(0x00, 0xb2), where the first parameter is the value to be written and the second
one is the address of the register. The first parameter can be any 8-bit value. Before
executing that command, it is important to verify if the APMC EN bit is set.

6.2.7.3 Generating an SMI by PM1 CNT register Function

This function try to generate an SMI by setting the SLP EN bit, bit13 in the PM1
CNT register. Set SLP EN bit generates an SMI when the SLP SMI EN bit (bit4
in SMI EN register) is set. It can be verified if an SMI was generated by check-
ing if the SLP SMI STS bit (bit4 in the SMI STS register) is set. It is implemented
by function int generate smi SLP SMI EN(u16 smi en iop, u16 smi sts iop, u16
pm1 cnt iop). Before executing that command, it is important to verify if the SLP
SMI EN bit is set.

6.2.7.4 Generating an SMI by ACPI software Function

This function try to generate an SMI by setting the GBL RLS bit, bit2 in the PM1
CNT register. Set GBL RLS bit generates an SMI when the BIOS EN bit (bit2 in
SMI EN register) is set. It can be verified if an SMI was generated by checking if
the BIOS STS bit (bit2 in the SMI STS register) is set. It is implemented by function
int generate smi BIOS EN (u16 smi en iop, u16 smi sts iop, u16 pm1 cnt iop).
Before executing that command, it is important to verify if the GBL RLS bit is set.

6.3 Manager Module Computational Experiments

In this section we perform experiments in different machines and chipsets to test
the manager module ability to execute its functions. We test some of the registers,
which are of primary interest when considering to develop an SBST . We consider

117

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

in this experiment the different chipsets listed in table 3.1. All figures and reports
are presented as they are presented by the manager module.

6.3.1 Reporting SMRAMC Register Status Machine 12

The 8-bit SMRAMC register is potentially the most important register related to
SMM, since it acts as an access control to the isolated SMM memory space the
memSMRAM . Then, in this section, we follow the path “Probe and report this ma-
chine” and “Report SMRAMC register” in the manager module menu to invoke
the function to report that register.

Figure 6.3 reports the SMRAMC status in the very moment of function print
smramc(uint8 t smramc status) was launched in the target machine.

Figure 6.3: SMRAMC status reported by the manager module for machine 12. Off-
set 88H.

Below, we can see the manager automatic interpretation of the SMRAMC status.
That report indicates that we cannot access the memSMRAM to inject any code and
we cannot modify the SMRAMC status. This is consistent with section A.1, where
is stated that in old machines (released up to 2004), there is the situation where
D LCK is cleared and the D OPEN is set after the boot up process. Since this chipset
was released in 2012, this situation is corrected. We say “corrected” because the
previous situation opened a venue for attacks, as described in section 3.5.

• SMRAM is closed.

• SMRAM is accessible for code and data references.

• Writing access to SMRAMC register is blocked.

• The use of bits D OPEN, D CLS and D LCK is enabled.

• Bit 7 is reserved.

• Bit 2, 1 and 0 are hardwired too 010B.

6.3.2 Reporting SMRAMC Register Status Machines 1 to 5 and 13

The 8-bit SMRAMC register status for machines 1 to 5 an 13 is reported in figure
6.4. As can be seen, all of allowing access to SMRAM. Those machines have the
linux CentOS i386 version 5.11 installed.

118

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

Figure 6.4: SMRAMC status reported by the manager module for machines 1 to 5
and 13. Offset 90H for machines 1 to 5 and 9dH for machine 13.

ahead, it is presented the manager automatic interpretation of the SMRAMC
status. The report indicates that we can access the memSMRAM to move code and
data to there and we can modify the SMRAMC status. This is consistent with sec-
tion A.1, where is stated that in old machines (released up to 2004), there is the
situation where D LCK is cleared and the D OPEN is set after the boot up process.

• SMRAM is closed.

• SMRAM is accessible for code and data references.

• Writing access to SMRAMC register is opened.

• The use of bits D OPEN, D CLS and D LCK is enabled.

• Bit 7 is reserved.

• Bit 2, 1 and 0 are hardwired too 010B.

Since D LCK is cleared we can easily change its value by software. For example,
the small set of instruction below can be used to lock the register SMRAMC, using
the libpci. For the manager works full-fledged it needs to be executed with root
rights.

unsigned int D_LCK = 0x01 << 4;
struct pci_dev *smramc;
uint8_t smramc_status;
unsigned int SMRAM_OFFSET = 0x90;
smramc_status = pci_read_byte(smramc, SMRAM_OFFSET);
pci_write_byte(smramc, SMRAM_OFFSET, (smramc_status & ˜D_LCK));

6.3.3 Reporting PMBASE and SMM Related Registers Status Machine
12

This section reports the registers PMBASE, SMI EN, SMI STS, GPE0 EN, GPE0 STS,
ALT GPI SMI EN, ALT GPI SMI STS, ALT GPI SMI ENS and ALT GPI SMI STS2.
Those registers are quite important to the SMM operation, being related to devices
and events whose generate SMI. We follow the path “Probe and report this ma-
chine” and “Report PMBASE and SMM related registers” in the manager module
menu to invoke the function int print pmbase(struct pci dev *sb, struct pci access *pacc)
to report those register. Figure 6.5 brings all registers status with values in hexadec-
imal. The next eight sections report and detail each register.

119

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

Figure 6.5: All PMBASE SMM Related Registers Status.

6.3.4 Reporting SMI EN Register Status Machine 12

In this section, we describe the manager report of the 32-bit SMI EN register. Figure
6.6 presents the SMI EN register status, which is equivalent to the value 80020023H
presented in figure 6.5. After, there is the manager interpretation of the register
status.

Figure 6.6: SMI EN Register Status.

• Bit xHCI SMI EN [bit 31] is set: xHCI is able to generate an SMI.

• Bit ME SMI EN [bit 30] is cleared: ME cannot generate an SMI.

• Bit GPIO UNLOCK SMI EN [bit 27] is cleared: PCH will NOT generate an
SMI when bit GPIO UNLOCK SMI STS [bit 27] at SMI STS register is set.

• Bit INTEL USB2 EN [bit 18] is cleared: Intel-Specific EHCI SMI logic cannot
to cause an SMI.

120

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

• Bit LEGACY USB2 EN [bit 17] is set: Legacy EHCI SMI logic is able to cause
an SMI.

• Bit PERIODIC EN [bit 14] is cleared: PCH will NOT generate an SMI when
bit PERIODIC STS [bit 14] at SMI STS register is set.

• Bit TCO EN [bit 13] is cleared: TCO logic cannot generate an SMI [Except if
bit NMI2SMI EN [bit 9] in TCO1 CNT register is set].

• Bit MCSMI EN [bit 11] is cleared: PCH cannot trap accesses to the microcon-
troller range (62H or 66H) and generate an SMI.

• Bit SWSMI TMR EN [bit 6] is cleared: Software SMI timer is disabled or reset.

• Bit APMC EN [bit 5] is set: Writes to the APM CNT register will cause an
SMI.

• Bit SLP SMI EN [bit 4] is cleared: Generation of SMI on SLP EN [bit 13] in
PM1 CNT register is disabled.

• Bit LEGACY USB EN [bit 3] is cleared: Legacy USB circuit cannot generate
an SMI.

• Bit BIOS EN [bit 2] is cleared: An SMI cannot be generated when ACPI soft-
ware set the bit GBL RLS [bit 2] in PM1 CNT register.

• Bit EOS [bit 1] is set: SMI signal will be de-asserted for 4 PCI clocks before its
assertion.

• Bit GBL SMI ES [bit 0] is set: The generation of SMI in the system upon any
enabled SMI event is enabled. When SMI LOCK bit is set, this bit cannot be
changed!

6.3.5 Reporting SMI STS Register Status Machine 12

In this section, we detail the manager report of the 32-bit SMI STS register. Figure
6.7 presents the SMI STS register status, which is equivalent to the value 00004100H
presented in figure 6.5. After, there is the manager interpretation of the register
status.

Figure 6.7: SMI STS Register Status.

121

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

• Bit GPIO UNLOCK SMI STS [bit 27] is cleared: GPIO registers lockdown
logic is NOT requesting an SMI [Writing a 1 to this bit clears it to 0].

• Bit SPI STS [bit 26] is cleared: SPI logic is NOT generating an SMI.

• Bit MONITOR STS [bit 21] is cleared: The trap/SMI logic has NOT caused
the SMI.

• Bit PCI EXP SMI STS [bit 20] is cleared: No PCI Express SMI event has oc-
curred.

• Bit INTEL USB2 STS [bit 18] is cleared: The INTEL USB2 EN [bit 18] in SMI EN
register is cleared and Intel-Specific EHCI SMI logic is NOT able to cause an
SMI.

• Bit LEGACY USB2 STS [bit 17] is cleared: The LEGACY USB2 EN [bit 17] in
SMI EN register is cleared and Legacy EHCI SMI logic is NOT able to cause
an SMI.

• Bit SMBUS SMI STS [bit 16] is cleared: The SMI was NOT caused by a SMBUS
related event [Writing a 1 to this bit clears it to 0].

• Bit SERIRQ SMI STS [bit 15] is cleared: The SMI was NOT caused by the
SERIRQ decoder.

• Bit PERIODIC STS [bit 14] is set: PCH will generate an SMI when bit PERI-
ODIC EN [bit 14] at SMI EN register is set. This bit is set a the rate deter-
mined by the PER SMI SEL bits [Writing a 1 to this bit clears it to 0].

• Bit TCO STS [bit 13] is cleared: The SMI was NOT caused by TCO logic.

• Bit DEVMON STS [bit 12] is cleared: SMI was not caused by Device Monitor.

• Bit MCSMI STS [bit 11] is cleared: There has been NO access to the power
management microcontroller range (62H or 66H) [Writing a 1 to this bit clears
it to 0].

• Bit GPE1 STS [bit 10] is cleared: SMI was NOT generated by a GPI assertion.

• Bit GPE0 STS [bit 9] is cleared: SMI was NOT generated by a GPE event.

• Bit PM1 STS REG [bit 8] is set: SMI was generated by a PM1 STS event.

• Bit SWSMI TMR STS [bit 6] is cleared: Software SMI timer has NOT expired.

• Bit APMC STS [bit 5] is cleared: No SMI was generated by a write access to
the APM CNT register with bit APMCH EN bit set [Writing a 1 to this bit
clears it to 0].

• Bit SLP SMI STS [bit 4] is cleared: No SMI was generated by a write of 1 to
SLP EN bit when SLP SMI EN bit is also set [Writing a 1 to this bit clears it to
0].

122

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

• Bit LEGACY USB STS [bit 3] is cleared: SMI was NO generated by USB Legacy
event.

• Bit BIOS STS [bit 2] is cleared: No SMI generated due to ACPI software re-
questing attention [Writing a 1 to this bit clears it to 0].

6.3.6 Reporting GPE0 EN Register Status Machine 12

In this section, we detail the manager report of the 64-bit GPE0 EN register. Fig-
ure 6.8 presents the GPE0 EN register status, which is equivalent to the value
0000000040000046H presented in figure 6.5. After, there is the manager interpre-
tation of the register status.

Figure 6.8: GPE0 EN Register Status.

• Bit WADT EN [bit 38] is cleared: Bit WADT STS [bit 38] in GPE0 STS register
is NOT enabled to be set to cause an SMI [WADT stands for Wake Alarm
Device Timer].

• Bit GPI27 EN [bit 35] is set: Bit GPI27 STS [bit 35] in GPE0 STS register is
NOT enabled to be set to cause an SMI.

• Bit PME B0 EN [bit 13] is set: Bit PME B0 STS [bit 13] in GPE0 STS register is
NOT enabled to be set to cause an SMI.

• Bit PME EN [bit 11] is set: Bit PME STS [bit 11] in GPE0 STS register is NOT
enabled to be set to cause an SMI.

• Bit SWGPE EN [bit 2] is set: Bit SWGPE STS [bit 2] in GPE0 STS register is
enabled to be set to cause an SMI.

123

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

6.3.7 Reporting GPE0 STS Register Status Machine 12

In this section, we detail the manager report of the 64-bit GPE0 STS register. Fig-
ure 6.9 presents the GPE0 STS register status, which is equivalent to the value
0000000006000000H presented in figure 6.5. After, there is the manager interpre-
tation of the register status.

Figure 6.9: GPE0 STS Registers Status.

• Bit WADT STS [bit 38] is cleared: No WADT signal. No SMI was generated
[WADT stands for Wake Alarm Device Timer].

• Bit GPI27 STS [bit 35] is cleared: An SMI was NOT generated.

• Bit PME B0 STS [bit 13] is cleared: An SMI was not generated.

• Bit PME STS [bit 11] is cleared: An SMI was not generated.

• Bit SMB WAK STS [bit 7] is cleared: A wake event was NOT caused by the
PCH’s SMBus logic.

• Bit SWGPE STS [bit 2] is is cleared: An SMI was not generated.

6.3.8 Reporting ALT GPI SMI EN Register Status Machine 12

In this section, we detail the manager report of the 16-bit ALT GPI SMI EN register.
Figure 6.10 presents the ALT GPI SMI EN register status, which is equivalent to the
value 0000H presented in figure 6.5. After, there is the manager interpretation of
the register status.

• GPI15 is NOT able to cause an SMI.

• GPI14 is NOT able to cause an SMI.

124

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

Figure 6.10: ALT GPI SMI EN Register Status.

• GPI13 is NOT able to cause an SMI.

• GPI12 is NOT able to cause an SMI.

• GPI11 is NOT able to cause an SMI.

• GPI10 is NOT able to cause an SMI.

• GPI9 is NOT able to cause an SMI.

• GPI8 is NOT able to cause an SMI.

• GPI7 is NOT able to cause an SMI.

• GPI6 is NOT able to cause an SMI.

• GPI5 is NOT able to cause an SMI.

• GPI4 is NOT able to cause an SMI.

• GPI3 is NOT able to cause an SMI.

• GPI2 is NOT able to cause an SMI.

• GPI1 is NOT able to cause an SMI.

• GPI0 is NOT able to cause an SMI.

6.3.9 Reporting ALT GPI SMI STS Register Status Machine 12

In this section, we detail the manager report of the 16-bit ALT GPI SMI STS regis-
ter. Figure 6.11 presents the ALT GPI SMI STS register status, which is equivalent
to the value 0600H presented in figure 6.5. After, there is the manager interpretation
of the register status.

• GPI15 is inactive!

• GPI14 is inactive!

• GPI13 is inactive!

• GPI12 is inactive!

• GPI11 is inactive!

125

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

Figure 6.11: ALT GPI SMI STS Register Status.

• GPI10 is active!

• GPI9 is active!

• GPI8 is inactive!

• GPI7 is inactive!

• GPI6 is inactive!

• GPI5 is inactive!

• GPI4 is inactive!

• GPI3 is inactive!

• GPI2 is inactive!

• GPI1 is inactive!

• GPI0 is inactive!

6.3.10 Reporting ALT GPI SMI EN2 Register Status Machine 12

In this section, we detail the manager report of the 16-bit ALT GPI SMI EN2 regis-
ter. Figure 6.12 presents the ALT GPI SMI EN2 register status, which is equivalent
to the value 0000H presented in figure 6.5. After, there is the manager interpretation
of the register status.

Figure 6.12: ALT GPI SMI EN2 Register Status.

• Bits 15 - 8 are reserved.

• GPI60 is NOT able to cause an SMI.

126

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

• GPI57 is NOT able to cause an SMI.

• GPI56 is NOT able to cause an SMI.

• GPI43 is NOT able to cause an SMI.

• GPI22 is NOT able to cause an SMI.

• GPI21 is NOT able to cause an SMI.

• GPI19 is NOT able to cause an SMI.

• GPI17 is NOT able to cause an SMI.

6.3.11 Reporting ALT GPI SMI STS2 Register Status Machine 12

In this section, we detail the manager report of the 16-bit ALT GPI SMI STS2 regis-
ter. Figure 6.13 presents the ALT GPI SMI STS2 register status, which is equivalent
to the value 0000H presented in figure 6.5. After, there is the manager interpretation
of the register status.

Figure 6.13: ALT GPI SMI STS2 Register Status.

• Bits 15 - 8 are reserved.

• GPI60 is inactive!

• GPI57 is inactive!

• GPI56 is inactive!

• GPI43 is inactive!

• GPI22 is inactive!

• GPI21 is inactive!

• GPI19 is inactive!

• GPI17 is inactive!

127

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

6.3.12 Reporting GEN PMCON 1 Register Status Machine 12

This 16-bit register is important because it controls the access to bits in some of the
previously discussed register, for example, it lock or unlock the access to the bit
GBL SMI EN [Bit 0] in SMI EN register. That bit is used to enable or disable SMI
in this system.

Figure 6.14 presents the GEN PMCON 1 register status, which is equivalent to
the value 0E08H presented in figure 6.5. After, there is the manager interpretation
of the register status.

Figure 6.14: GEN PMCON 1 Register Status.

• Bit SMI LOCK GP22 [bit 6] is cleared: Bit ALT GPI22 SMI EN [Bit 3] in ALT
GPI SMI EN2 registers unlocked.

• Bit SMI LOCK GP6 [bit 5] is cleared: Bit GPI6 [Bit 6] in ALT GPI SMI EN
register is unlocked.

• Bit SMI LOCK [bit 4] is cleared: Bit GBL SMI EN [Bit 0] at SMI EN register is
unlocked. SMI CAN be enabled or disabled in this system.

• The rate at which periodic SMI is generated: 64 seconds [That control is set
by software].

6.3.13 Verifying Support for SMRR Interface Machine 12

In this section we verify the support for the SMRR Interface, which contributes to
enhance the security of SMRAM, mitigating attacks as “cache poisoning” described
in section 3.5. We report below the manager module analysis after probing the
IA32 MTRRCAP register. Note that this support is verified by core and our target
machine is a quad-core processor. We follow the path “Verify supports for SMM”
and “Verify support for SMRR Interface” in the manager module menu to invoke
the function int verify smrr support(void) to report that support.

• SMRR Interface is supported in core 0.

• SMRR Interface is supported in core 1.

• SMRR Interface is supported in core 2.

• SMRR Interface is supported in core 3.

128

6.3 MANAGER MODULE COMPUTATIONAL EXPERIMENTS

6.3.14 Verifying Support for Dual-Monitor Treatment Machine 12

In this section, we verify the support for the Dual-Monitor Treatment related to
SMM, as described in section 3.3.4. Below, we can see the report provided by the
manager module, after probing IA32 VMX BASIC register to verify if that proces-
sor supports the Dual-Monitor Treatment. Note that this support is verified by
core and our target machine is a quad-core processor. We follow the path “Verify
supports for SMM” and “Verify support Dual-Monitor Treatment” in the manager
module menu to invoke the function int verify stm support(void) to report the sup-
port.

• This processor supports the Dual-Monitor Treatment in core 0.

• This processor supports the Dual-Monitor Treatment in core 1.

• This processor supports the Dual-Monitor Treatment in core 2.

• This processor supports the Dual-Monitor Treatment in core 3.

6.3.15 Enabling and Disabling SMI Globally in the System Machine 12

In this section, we try to enable and disable SMI globally in the target machine
by setting (to enable) or clearing (to disable) the GBL SMI ES [bit 0] in SMI EN
register. We try the follow steps to test the globally enable and disable functions:
enable, disable, disable and enable. The objective is verify the initial status of the
SMI globally and test if the manager can detect the globally enabled status and
leave it as it is. After, if SMI is globally enabled, we try to disable. If successful, we
try to disable again to verify it the manager can leave the status as it is. Finally, we
try to globally enable SMI again.

Thus, we first try to globally enable SMI in the target machine, by following
the path “Enabling SMI” and “ENABLE SMI IN THE WHOLE SYSTEM” in the
manager module menu. The result of execution is presented below:

SMI_EN initial value: 0x80020023
SMI is already globally enabled!
Double-checking...
Global SMI is enabled at SMI_EN!
SMI_EN final value: 0x80020023

The manager starts probing the SMI EN register and then getting the initial reg-
ister value of 80020023H, which is consistent with figure 6.5. Since SMI is already
globally enabled, no changes are made.

After, we try to globally disable SMI in the target machine, by following the path
“Disabling SMI” and “DISABLE SMI IN THE WHOLE SYSTEM” in the manager
module menu. The result of execution is presented below:

SMI_EN initial value: 0x80020023
Trying to disable SMI globally...
SMI is now globally disabled!
Double-checking...
Global SMI is disabled at SMI_EN!
SMI_EN final value: 0x80020022

129

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

The manager probes the SMI EN register and get the initial register value of
80020023H, which is consistent with the previous execution. Then, it tries to glob-
ally disable SMI, by clearing the GBL SMI ES [bit 0]. It is successful, so the new
register value is 80020022H (3H = 0011B = Enabled, 2H = 0010B = Disabled).

Now, we try to globally disable again SMI in the target machine, by following
the path “Disabling SMI” and “DISABLE SMI IN THE WHOLE SYSTEM” in the
manager module menu. The result of execution is presented below:

SMI_EN initial value: 0x80020022
SMI is already globally disabled!
Double-checking...
Global SMI is disabled at SMI_EN!
SMI_EN final value: 0x80020022

The manager probes the SMI EN register and get the initial register value of
80020022H. Then, it tries to globally disable SMI, by clearing the GBL SMI ES [bit
0]. Since SMI is already globally enabled, no changes are made.

Finally, we try to globally enable back SMI in the target machine, by following
the path “Enabling SMI” and “ENABLE SMI IN THE WHOLE SYSTEM” in the
manager module menu. The result of execution is presented below:

SMI_EN initial value: 0x80020022
Trying to enable SMI globally...
SMI is now globally enabled!
Double-checking...
Global SMI is enabled at SMI_EN!
SMI_EN final value: 0x80020023

The manager verifies the SMI EN register and obtain the value of 80020022H
and then it tries to globally enable SMI, by setting the GBL SMI ES [bit 0]. It is
successful, so the new register value is 80020023H (3H = 0011B = Enabled, 2H =
0010B = Disabled).

6.4 SBST Implementation and Evaluation

In the previous sections, we presented the manager module and its implementa-
tion details. That module is useful to understand and learn about a target chipset,
mainly about the status of some SMM related registers.

From this section on, we consider the findings in chapter 2 and 3, what we have
built in chapter 5 and what we learned in the previous sections to build our proof
of concept.

6.4.1 Proof of Concept

Hypervisors are high privileged entities and play a main role in virtualised envi-
ronments, enabling virtualisation in many hardware platforms. A great deal of
research has been done to improve functionality, performance and usability of hy-
pervisors, which gives rise to different hypervisor architectures proposals.

In recent years the focus of hypervisor’s research has changed. Because of its
importance in virtualised environments, hypervisors are a prime target for attacks.

130

6.4 SBST IMPLEMENTATION AND EVALUATION

In this way, different kinds of attacks have been arising, exploiting flaws in the hy-
pervisor design and implementation and in the environment hosting it. Successful
attacks have been performed against hypervisors, both commercial [102] and open
source [145].

Then, research efforts on hypervisors have been concentrating in mitigating or
eliminating threats, which hypervisors are prone to. However, it led attackers to
look for other venues of attack, trying to tamper or circumvent the new protections,
for example, by exploiting system components with high execution privileges and
launching their attacks from there. One of those components is the System Man-
agement Mode (SMM), which is one of the most powerful and resourceful system
component in x86 platforms.

In this work we aimed to build a proof of concept to the generic architecture de-
scribed in chapter 5 and to meet the requirements proposed in chapter 4. Then we
built all the basic code as defined in 2.4 and a payload as defined in 2.9 to measure
the integrity of a Xen hypervisor configuration file. We have chose that file as we
could chose any other one, it is just to test our proof-of-concept. In developing that
proof-of-concept, we follow the algorithms designed in chapter 5.

The Measurement target file: xend-config.sxp file is one the configuration files
of Xen and many important configurations are done there. For instance, configure
an IP address, enable migration, enable scripts to run, change memory configura-
tions and so forth. It is located in /etc/xen [137].

6.4.2 Implementation particularities and experiments

In this section, we briefly discuss some implementation particularities from our
computing experiments.

In our proposed architecture, we recommended the use of payloads to make
the sbst code smaller and to deal with the maximum latency time issue. About
the implementation, we recommend that the payload should be written partially
in Assembly language. It may help meeting the requirements about size and maxi-
mum latency [105]. Since portability is a difficult issue when using Assembly [125],
the payload strategy would have an advantage to make each payload suitable for
a given machine model. For the basic code part, the C language is suitable.

We implemented our proof-of-concept in C language and compile it using gcc in
the linux Centos i386 5.11. Our source code is 12723 bytes and the compiled file for
32-bits platform is 13780 bytes, considering the discussion in section 5.4.1. Then,
we met the requirement r1 - Small. As described in algorithm 5.5 we are using
the SHA-256 to measure the integrity. We use the implementation of the SHA-
512 available in [4]. Since we will call our tool from DRAM, we need to simulate
an SMI in the system. We did it by creating a launcher program to call our tool
5.000 times with a chance of 25% of executing the tool each time. In our basic
code we implemented a function called map memory to map our persistent data
to the SMRAM space area. We did it the same way as [23] and [45] by using the
“/dev/mem” resources.

We use the functions in the librt.so “Real Time” shared library to get the execu-
tion time of the functions. We did these experiments for machines 1 to 3 and 13 at
table 3.1, since they have the SMRAM opened and all of them are 32-bits machines,
so we use the figure 3.2 memory scheme.

131

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

The main function in basic code is map mamory which map the memory which
will be used by our persistent data acording to figure 3.2. We have 32768 bytes after
the state save map area to use for persisting our data So, we map the memory from
address 00040000H to address 0x00048000H, follow the scheme below.

variable monitor = SMBASE(30000) + 8000H + 8000H to 40000H (1 byte)
variable index = SMBASE(30000) + 8000H + 8001H to 40001H (1 byte)
variable previous_round = SMBASE(30000) + 8000H + 8002H to 40002H (1 byte)
variable hashed = SMBASE(30000) + 8000H + 8003H to 40003H (1 byte)
variable address = SMBASE(30000) + 8000H + 8004H to 40007H (4 bytes)
variable sized_section = SMBASE(30000) + 8000H + 8008H to 40009H (2 bytes)
variable total_data_load= SMBASE(30000) + 8000H + 800aH to 4000bH (2 bytes)
variable digest = SMBASE(30000) + 8000H + 800cH to 4008bH (1 byte * 128)
data_loaded = SMBASE(30000) + 8000H + 808cH to 48000H (1 byte * 32628)

The main function in the payload are: prepare for hashing. Execute tasks to
prepare data to be loaded from the file to the SMRAM for being hashed. Compute
SHA-256. Compute the 256-bit digest. Move digest. Move the computed digest
from SMRAM to DRAM and from DRAM to SMRAM. This is associated to the
function prepare for hashing. Verify hash. Compute the new digest from the fresh
data got from the file and compare it with the digest stored in the SMRAM. Move
data from file to SMRAM. This function get the data in the target file and store it
in the designed area at SMRAM.

Table 6.1 shows the time execution for the experiments with machines 1, 2, 3
and 13, according to table 3.1. Any time the tool verify the integrity of the Xen file,
a message is showed to the user so it can decide which action take.

Table 6.1: Execution time. In this experiment, we are considering the basic code
execution plus payload execution plus the maximum latency for each machine con-
sidered reported by the BITS TOOL at table 3.1. Values are tabulated in microsec-
onds.

OEM bc payload Adding max latency
1 - Gigabyte 510 118 1481
2 - Gigabyte 408 130 993
3 - Gigabyte 472 140 930
13- Compaq 560 175 759

6.5 SBST Limits and Constraints

The tool was implemented assuming that it is embedded in the SMI handler code
and then deployed in the BIOS set of programs and finally laid out in the SMRAM
space during the bootup process.

The idea was to insert our proof of concept code in the smihandler.c from core-
boot 4.4 and then compile it, in such a way that after finishing its tasks the smi
handler code would call our tool as specified in chapter 5. Since this was not pos-
sible, we assume that our tool is inside of the SMI handler, so we can kept meeting
our requirement r4 - Cooperative. Since we did not find a way to embed our proof
of concept in the BIOS in such a way that when the bootup process occurs our
tool would be embedded in the SMRAM space we need another assumption that

132

6.6 MANAGER LIMITS AND CONSTRAINTS

it is done so we can test our proof-of-concept into DRAM without jeopardise our
requirement r5 - Isolated. But, to make our experiments more real, we consider
the time the smi handler requires to execute at each platform in our experiments,
considering the measurements reported in table 3.1.

6.6 Manager Limits and Constraints

The manager module is chipset specific. To work properly, it is required to codify
the specificities of the target chipset in the manager, as the offset address of base
address registers. the PMBASE is an example of register, whose content is a base
address for many others registers, as SMI EN and SMI STS. Moreover, as we saw
in chapter 3 and appendix A each chipset has its own set of register. So it is nec-
essary to check the target chipset documentation to implement functionalities to
probe the registers related to SMM in the machine considered. The manager imple-
mentation reported in this text was codified to target machine 12 at Table 3.1. That
machine has the linux CentOS amd64 version 5.11 installed and for the manager
works full-fledged it needs to be executed with root rights. However, we adapted
and experimented the manage module with Machines 1 to 5 and 13. Anyway, the
manager module is able to work in many different chipsets and different processors
families and generations with slight adaptation.

6.7 Discussion

In this chapter we discussed the manager module implementation and the func-
tions designed in this module to probe and research a platform to understand and
learn about the environment where the tool will be deployed. It was implemented
to target the machine 12 at table 3.1. That machine has the linux CentOS amd64
version 5.11 installed and for the manager works full-fledged it needs to be exe-
cuted with root rights. it was also adapted and experimented with Machines 1 to 5
and 13.

We also discussed the SBST implementation. We develop the tool considering
the characteristics of SMM. Two new assumptions were necessary in this point: we
assume that our tool is inside of the smi handler since we could not solve compi-
lations problems with the coreboot version we had at hands and we assumed that
when the bootup process occur our tool would be embedded in the SMRAM space
so we can test our tool, since we did not find a way to embed our proof of concept
in the BIOS in such a way that when the bootup process occur our tool would be
embedded in the SMRAM space. We can observe total time (table 6.1) consider-
ing the basic code execution plus payload execution plus the maximum latency for
each machine considered reported by the BITS TOOL at table 3.1 is quite above the
maximum 150 µs recommend by intel.

6.8 Summary

In this chapter we have considered the implementation of the manager module and
the SBST and discussed particularities about those implementations. Although all

133

6. IMPLEMENTATION AND EVALUATION - MANAGER MODULE AND SBST

machines in the experiments are reported quite above the maximum 150 µs recom-
mend by intel we can observe in table 3.1 that all those machines, but 13 had failed
in the maximum latency test. So we believe it is not a big problem at all. Another
thing is in a more realistic environment our tool would execute with more processor
resources than in our experiments, since some other operating systems processes
were competing for resources with our tools. Such a situation would not happen in
a more realistic experiment. Moreover, by design, we may regulate or calibrate the
amount of data our tool will load and verify at each round, as described in chapter
5. So those time can decrease at our will.

Observing the experiments, we can see that the manager is useful to learn about
the target chipset, for example the status of SMM related registers.

As discussed in chapter 3 the impact of the SMM latency is not quite strict. If
it was, we believe the machines at table 3.1 should pass the BITS TEST. Anyway,
an developer can decide to implement the tool or not observing the information
reported in the table.

This chapter discussed details about the manager module and how it is uselful
in the context of this work and about implementation particularities of the manager
module and the SBST implementation, detailing the function in the SBST and
presenting experiments. Here we discussed the limits and constraints of the tool.
We also presented our proof of concept, reporting the experiments conduct with it.
In the next chapter we make a conclusion of this work and indicate future works in
the same area as the one reported in this thesis.

134

Chapter 7

Conclusion

In this work we investigated the Sistem Managment Mode (SMM), presenting a
detailed review and description of its resources and components. The Attacks
against the SMM, misuses and attacks using SMM as a platform to lunch stronger
attacks were analysed and presented together with a discussion about their feasi-
bility nowadays and ways to thwart them. We also analyse works using SMM for
security purposes presenting opportunities to improve them.

The chipset is a specially complex component in this scenario. Different ver-
sions of them are around and some part of the chipsets, as firmwares and device
drivers, are OEM specific, which tangling even more the relation among compo-
nents.

We identify that although there are many SMM-based security tools, SMM and
its resources were designed by Intel and are implemented to be use by system
firmware (as OEM and BIOS manufacturer codes), not by “general-purpose” sys-
tems software. So, an SBST is a use of SMM for general-purpose. Such a recom-
mendation aims to preserve the management SMM functions and avoid that such
a “General-purpose” software violates the limits and constraints of SMM resources
and interfere in the correct functioning of SMM components. So, this research es-
tablished a set comprise of eight requirements, which a security tool must met to
overcome the SMM limits and constraints and allow the use of SMM for “Security-
purpose”, without damaging the designed features of the SMM.

We pointed out the SMI handler is potentially the more powerful software arte-
fact in Intel architecture. In fact, any security tool (or any software) capitalising on
SMM must emulate the SMI handler in some way.

The set of requirements to use SMM for security purposes were established after
analysing the SMM features, attacks, misuses, the security implementations, capi-
talising on SMM and the threat model (10 threats identified) built from the analysis
of the current SMM-based security tools architecture and model. From those re-
quirements, a generic architecture for SMM-Based Security Tools was proposed.
The implementation of this architecture was done in a proof of concept designed
to have two modules: a manager and an agent. The manager module is used for
learning about and researching a target machine, as for probing the registers related
to SMM. The manager can be used in a machine endowed with the same chipset
of the target machine. So, it does not need to be deployed in the SMM memory
or even in the target machine. The agent basically comprises of two parts: a basic
code embodying management functions and a payload. The payload implements
the security function intended for the SBST and can be changed for another pay-
load with a different security task to give more flexibility to our SBST .

We reported the proof-of-concept and the experiments conduct with it and with

135

7. CONCLUSION

the manager module, presenting the constraint, limits and results of them.
We concludes that eight requirements must be met to build a SMM-based tool

for security purposes, which can be developed according to the architecture pro-
posed:

• r1 - Small. There are 32512 bytes available for the SMI handler code, data,
heap and stack. Thus, a SMM-based security application should be small
enough to fit in the minimum size available.

• r2 - Fast. Intel specifies that the SMI latency must be less than 150 µs to min-
imise the risk of system executive software time-outs. So we designed algo-
rithms based in payloads to deal with that requirement.

• r3 - Persistent. The SMRAM is volatile. A reboot or system restart will clean
the whole SMRAM content. So, the SMM related code and data need to be
loaded again. Thus, the design of a SMM-based security tool needs to con-
sider that the tool must be embedded in the BIOS or equivalent entity.

• r4 - Cooperative. The SMI handler functions need to be preserved since they
have important tasks to perform. Any SBST must preserve the original SMI
handler functions and code, by adding its own code to the SMI handler and
not overwriting any part of it. Since when entering SMM the processor looks
for the first instruction to be executed at the address SMBASE (register) +
8000H (by default 38000H) in SMRAM, where the SMI handler is located,
which implies that any SMM-based security tool must be a modified version
of the SMI handler.

• r5 - Isolated. SMI handler, and consequently any SBST needs to be pro-
tected by isolation and its code and data, even temporary, should be kept in
the SMRAM, since the main reason for using SMM is to benefit from its pow-
erful resources, such as isolation and transparency. Moreover code and data
outside of SMRAM can be tampered.

• r6 - Resistant. The SMRR Interface, if available in the target chipset, should be
used to protect the related MTRRs registers and thwart the “cache poisoning”
attack and any other attacks.

• r7 - SMI-independent. To start any SMM-based security tool, an SMI needs
to be generated. To avoid an attacker tries to deny an SMI to be triggered
by well-know ways as by writing to the Programmed I/O Port 0xB2H, an
SMM-based security tool should take advantage from any SMI generated to
start executing its job. Anyway, any SMI will make the processor execute
the SBST even if the tool is not designed to act that way, according to the
implication of requirement r4.

• r8 - Complete. As discussed before Some tools need to keep part of their code
in the system executive software. For example, HyperSentry uses an agent
deployed in the hypervisor code base. While that model of architecture over-
comes some SMM limitations, they lose the main benefit from using SMM:
isolation and transparency. Then, the SMM-based security tool must have all

136

7.1 DIRECTIONS FOR FUTURE WORK

functionalities to execute its tasks and all needed data completely deployed
in the SMRAM.

The requirements above were established to deal with the SMM limits and con-
straints and to mitigate the threats identified in our threat model. We classify the
requirements r1, r2, r3, r4 and r7 (small, fast, persistent, cooperative and SMI-
independent, respectively) as functional requirements, since they are related to the
functioning of SBST and must be met to overcome the limitations and constraints
of SMM. Requirements r5, r6 and r8 (isolated, resistant and complete, respec-
tively) are classified as security requirements, since they must be met to mitigate
the threats SBST s are prone to.

7.1 Directions for Future work

We consider that an SBST can be used in real world scenarios, as long as, some
issues as execution time and its impact in the system can be further investigated
and addressed. So, we provide directions for future work in three sub-areas of this
work, which considering the limitation of time and resources of our work could
not be addressed, as:

7.2 Investigate the interaction of an SBST with
technologies in the chipset

Considering that Intel processors were the focus of this work, we presented the
main technologies which might be present in the chipset of a target machine and
which might interact with an SBST : Intel TXT, Intel VMX, Intel SGX, TPM, UEFI.
Note that not all chipsets are endowed or offer support for all those technology,
which means that not always we will find all of them working together in a chipset
and that SGX technology is not yet commercially available.

Although we did not identify any issue related those technologies that can have
any impact in our proposal, we judge that is noteworthy investigate our proposal
when interacting with those technologies. For example: our proposal is based on
BIOS. Then since the use of UEFI has been increasing, it worthwhile to investigate
and adapt our proposal to be used in a UEFI scenario. Another example is how
might TPM be used to improve the proposal in this work, as discussed in Hyper-
Check [141]. A third example is Intel SGX which might be a good Intel answer
for low-level security issues since it takes security to the processor level. It is not
available yet commercially but the documentation available can help to identify in
which extent our proposal may work cooperatively with SGX (see section 3.3.5).

7.3 Investigate the Impact of SMI Latency

Intel specifies a strict time limit for the SMI latency: it must be less than 150 µs
to minimise the risk of system executive software time-outs [90]. However, as we
can see from our experiments in section 3.2.4.1 described in table 3.1 only machines
from 9 to 13 were able to keep below 150 µs. Thus, if the time limit for the SMI

137

7. CONCLUSION

latency is so important, why did not OEMs from machines 1 to 8 design their SMI
handlers to stick to the time limit? Then investigating that issue is an important
task to unveil, learn and use the SMM resources.

7.4 Optimize the Proof of Concept Execution Time

As we can see in table 6.1, the experiments with our proof-of-concept, considering
the addition of time-elapsed of the execution of the basic code and the payload
were close to 1 millisecond, which is too high considering the maximum latency.
In the table we can see also the maximum latency time which is added to the final
result but about it we can do nothing in terms of optimisation since it is the time
designed by the OEM (the SMI handler execution time). So, optimisation on the
basic code and reduce the workload of the payload should be the answer to make
the SBST faster, but further investigation is necessary.

7.5 Embed the Tool in a BIOS to Test It in a More Realistic
Scenario

Since the resources limitations we had to make an assumption to met our r3 - Per-
sistent, since we had no means to embed our proof of concept in a real BIOS. As
in HyperGuard [146], after perform the optimisations and code adjust we need to
find some kind of cooperation or use coreboot with other tools to test the capacity
of the tool to be embedded in a BIOS (or equivalent entity) and to be distributed in
large scale.

138

Appendix A

Specific SMM Registers

In this appendix, we discuss other specifics SMM registers related to the chipsets
considered in this work according to section 1.2 and table 3.1.

A.1 Chipset 1 Specific Registers

The chipset 1 specific registers related to SMM are: PMBASE, SMI EN, SMI STS,
GEN PMCON 1, ALT GP SMI EN, GPI ROUT, ALT GP SMI STS, GPE0 EN, GPE0
STS, APM CNT and APM STS. Those registers can vary their location, depending

on the chipset considered. For example, in chipset 1, the register SMRAMC is lo-
cated at PCI device 0, address offset 88H [92, 93]. But, in chipset 2, it is located at
PCI device 0, address offset 90H [65]. In other chipset, as in Intel 845 chipset, the
register SMRAMC is located at PCI device 0, address offset 9DH [69, 70].

PMBASE is the 32-bit Advanced Configuration and Power Interface (ACPI)
base address register. It can be accessed at device 31, function 0, offset 40H-43H and
sets the base address for ACPI I/O registers and other ones, including the SMI EN
and SMI STS. Those registers can be accessed by PMBASE + offset; for instance,
the SMI EN at PMBASE + 30H and the SMI STS at PMBASE + 34H [80, 81].

SMI EN is the 32-bit SMI Control and Enable register. Its rightmost bit (GBL
SMI EN) indicates that SMI is enabled in the system (GBL SMI EN = 1) or not
(GBL SMI EN = 0). A PCI reset event can reset this bit. This register is symmetrical
to the SMI STS, so they work together to generate and provide information about
SMI. The other bits of this register enable which devices can trigger an SMI and
other SMI related functions. Below, we describe the bits of interest for this research
[80, 81]:

• Bit xHCI SMI EN [bit 31]. When set this bit enables the extensible Host Con-
troller Interface (xHCI) to cause an SMI. The xHCI is a host controller that
supports up to four USB 3.0 ports.

• Bit GPIO UNLOCK SMI EN [bit 27]. Set this bit causes an SMI when the
GPIO UNLOCK SMI STS bit at SMI STS register is set too.

• Bit INTEL USB2 EN [bit 18]. Set this bit enables Intel-Specific Enhanced
Host Controller Interface (EHCI) SMI logic to cause SMI. The EHCI is a host
controller that support USB high-speed USB 2.0.

• Bit LEGACY USB2 EN [bit 17]. Set this bit enables legacy EHCI logic to
cause an SMI.

139

A. SPECIFIC SMM REGISTERS

• Bit PERIODIC EN [bit 14]. Set this bit causes an SMI when the PERIODIC STS
bit at SMI STS register is set too.

• Bit TCO EN [bit 13]. Set this bit enables the Total Cost of Ownership (TCO)
logic to generate SMI. There are a huge set of register related to TCO.

• Bit MCSMI EN [bit 11]. Set this bit enables PCH to trap accesses to the mi-
crocontroller range (62H or 66H) and then generate an SMI.

• Bit SWSMI TMR EN [bit 6]. Set this bit starts Software SMI Timer, such that
when the SWSMI timer expires, the SWSMI TMR STS bit at SMI STS is set
and an SMI is generated.

• Bit APMC EN [bit 5]. When this bit is set any write to the APM CNT register
will cause an SMI.

• Bit SLP SMI EN [bit 4]. When this bit is set, this enable that set the SLP EN
bit (bit 13 in PM1 CNT register) cause an SMI.

• Bit LEGACY USB EN [bit 3]. Set this bit enables legacy USB circuit to cause
an SMI.

• Bit BIOS EN [bit 2]. Set this bit enables the generation of SMI when ACPI
software writes a 1 to the GBL RLS bit (bit 2 in PM1 CNT register).

• Bit EOS [bit 1]. Set this bit cause an SMI signal to be deasserted for 4 PCI
clocks before its assertion.

• Bit GBL SMI EN [bit 0]. As explained before, set this bit enable SMI globally
in the system.

SMI STS is the 32-bit SMI Status register and indicates the device that have
caused an SMI. As a general rule, when a bit is set in this register, whenever the
correspondent bit is set in the SMI EN register an SMI is generated, since those reg-
isters are symmetrical. However, in some chipsets not all bits in SMI EN have cor-
respondent in SMI STS register that is the case of our target chipset 1: the SMI STS
register uses bit 26 (SPI STS), bit 21 (MONITOR STS), bit 20 (PCI EXP SMI STS),
bit 16 (SMBUS SMI STS), bit 15 (SERIRQ SMI STS), bit 12 (DEVMON STS), bit 10
(GPE1 STS), bit 9 (GPE0 STS) and bit 8 (PM1 STS REG); but the SMI EN register
does not. Conversely, the SMI EN register uses bit 1 (EOS) and 0 (GBL SMI ES), but
SMI STS does not. Also, the bits activated or valid in those registers differ from one
chipset to another. Below, we describe the bits of interest for this research [80, 81]:

• Bit xHCI SMI STS [bit 31]. This bit is set when the extensible Host Con-
troller Interface (xHCI) is requesting an SMI.

• Bit GPIO UNLOCK SMI STS [bit 27]. This bit is set when some of GPIO
registers lockdown logic is requesting an SMI.

• Bit SPI STS [bit 26]. This bit is set whenever the Serial Peripheral Interface
(SPI) logic is generating an SMI.

140

A.1 CHIPSET 1 SPECIFIC REGISTERS

• Bit MONITOR STS [bit 21]. This bit will be set if the Trap/SMI logic has
caused the SMI.

• Bit PCI EXP SMI STS [bit 20]. This bit will be set whenever a PCI Express
SMI event occurred.

• Bit INTEL USB2 STS [bit 18]. If this bit is set, the INTEL USB2 EN [bit 18]
in SMI EN register is set and the Intel-Specific EHCI SMI logic has caused an
SMI. This bit refers to all integrated EHCIs.

• Bit LEGACY USB2 STS [bit 17]. If this bit is set, the LEGACY USB2 EN [bit
17] in SMI EN register is set and the Legacy EHCI SMI logic has caused an
SMI. This bit refers to all legacy EHCIs.

• Bit SMBUS SMI STS [bit 16]. If this bit is set, an SMI was caused by an
SMBUS related event.

• Bit SERIRQ SMI STS [bit 15]. This bit is set when an SMI was caused by the
Serial Interrupt Request (SERIRQ) decoder.

• Bit PERIODIC STS [bit 14]. This bit is set at the rate indicated by the PER
SMI SEL (bits 1 and 0 in GEN PMCON 1 register). Then, if the PERIODIC
EN bit (bit 14 in SMI EN register) is also set, an SMI is generated.

• Bit TCO STS [bit 13]. If this bit is set, an SMI was caused by the Total Cost
of Ownership (TCO) logic.

• Bit DEVMON STS [bit 12]. This bit is set when an SMI was caused by a
Device Monitor.

• Bit MCSMI STS [bit 11]. If this bit is set, there was an access to the power
management microcontroller range (62H or 66H).

• Bit GPE1 STS [bit 10]. This bit is set when an SMI was generated by a Gen-
eral Purpose Input/Output (GPI) assertion.

• Bit GPE0 STS [bit 9]. This bit is set when an SMI was generated by an SMI
was generated by a General Purpose Event (GPE0) event.

• Bit PM1 STS REG [bit 8]. This bit is set when an SMI was generated by a
PM1 STS event.

• Bit SWSMI TMR STS [bit 6]. This bit is set by hardware whenever the Soft-
ware SMI Timer expires.

• Bit APMC STS [bit 5]. If this bit is set, this indicates that an SMI was gener-
ated due to a write access to the APM CNT register when the APMC EN bit
(bit 5 in SMI EN register) was set.

• Bit SLP SMI STS [bit 4]. When this bit is set, this indicates an SMI was
caused due to set the SLP EN bit (bit 13 in PM1 CNT register) when SLP SMI EN
bit (bit 5 in SMI EN) is also set.

141

A. SPECIFIC SMM REGISTERS

• Bit LEGACY USB STS [bit 3]. If this bit is set, an SMI was caused by a USB
Legacy event.

• Bit BIOS STS [bit 2]. This bit is set by hardware when the GBL RLS bit (bit 2
in PM1 CNT register) is set. In this case, if the BIOS EN bit (bit 2 in SMI EN
register) is also set, an SMI is generated.

GEN PMCON 1 is the 16-bit General Power Management Configuration 1 reg-
ister. It can be accessed at device 31, function 0, offset A0H. This register has two
main functions related to SMI. First, as said before the GBL SMI EN bit (bit0 in
SMI EN register) enable SMI in the system upon any enabled SMI event [81]. How-
ever, this can be blocked if the SMI LOCK bit (bit4) is set (SMI LOCK = 1). When
SMI LOCK is set, it locks itself and just can be cleared by asserting the PLTRST#
pin. This pin is located on the Power Management block in the PCH [80, 81]. Sec-
ond, the PER SMI SEL bits (bit1 and bit0) controls the rate at which periodic SMI
is generated, according to the following scheme: bit1 = 0 and bit0 = 0 equals 64
seconds, bit1 = 0 and bit0 = 1 equals 32 seconds, bit1 = 1 and bit0 = 0 equals 16
seconds and bit1 = 1 and bit0 = 1 equals 8 seconds. These bits are related to the
PERIODIC EN bit (bit14 in SMI EN register) and to the PERIODIC STS bit (bit14
in SMI STS register).

ALT GP SMI EN is the 16-bit Alternate GPI SMI Enable register, where each
bit indicates enable the corresponding GPIO (General Purpose I/O) to cause an
SMI. For example, set bit0 enables the GPI0 to cause an SMI, set bit1 enables GPI1
to cause an SMI and so forth. GPI stands for General Purpose Input. However, to
generate an SMI some conditions must be true, as the corresponding GPI must be
routed in the GPI ROUT (GPI Routing Control Register) register. GPI ROUT is a
32-bit register and routes the GPI to generate an SMI using pair of bits, where the
first bit must be 1 and the second bit must be 0 (0:1). For example, bit0 and bit1
route GPI0 to generated an SMI with bit0 = 1 (first bit) and bit1 = 0 (second bit),
bit2 and bit3 route GPI0 to generated an SMI with bit2 = 1 (first bit) and bit3 = 0
(second bit) and so forth. The ALT GP SMI STS (16-bit), Alternate GPI SMI Status
register, reports the corresponding GPIOs status. When a bit is set (equals to 1) the
GPIO is active. For example, bit0 = 1, GPI0 is active; bit1 = 0, GPI1 is inactive, and
so forth.

In more recent chipsets [91], those registers have a slightly different name: ALT
GP SMI EN and ALT GP SMI STS. They also have three complementary regis-
ters: ALT GPI SMI EN2 (16-bit), GPI ROUT2 (32-bit) and ALT GPI SMI STS2
(16-bit) to extend the range of GPI (GPIs: 17, 21, 22, 43, 56, 57, 60) to cause SMI [91].

GPE0 EN is the 64-bit General Purpose Event 0 Enable register and GPE0 STS
is the 64-bit General Purpose Event 0 Status register. Those registers are symmet-
rical to each other and they are used to manage wake events in the system. For
some functions, an SMI will be generated. For example, when the BATLOW EN
bit (bit10 in GPI0 EN register) is set, it enables the BATLOW# signal to cause an
SMI when the battery goes low. In this case, the hardware set the BATLOW STS bit
(bit10 in GPI0 STS register) as soon as the BATLOW# signal is asserted [80, 81].

APM CNT is the 8-bit Advanced Power Management Control Port register and
it is used to pass an APM command between the OS and the SMI handler. Writes
to this port not only store data in the APMC register, but also generates an SMI

142

A.1 CHIPSET 1 SPECIFIC REGISTERS

when the APMC EN bit (bit5) in the SMI EN register is set. APM STS it the 8-
bit Advanced Power Management Status Port register and it is used to pass data
between the OS and the SMI handler [80, 81].

A.1.1 Chipset 1 Architectural Model-Specific Registers

Architectural Model-Specific Registers (MSR) are registers carrying over through
IA-32 processors generations to Intel 64 processors and which will remain the same
in future generations of processors. The name of those registers starts with “IA-32”
(from Pentium 4 processors on) [87, 97].

Below, it is presented the Architectural Model-Specific Registers related to SMM
in chipset 1 and the family or model of processor where they can be found. As we
can notice, most of them are specific to a family/model, except the IA32 SMBASE
register which is implemented in the same way in all platform that support it.

• IA32 SMBASE: All.

• IA32 SMRR PHYSBASE: Silvermont Microarchitecture, Nehalem Microar-
chitecture, Sandy Bridge Microarchitecture and Xeon Phi Processors.

• IA32 SMRR PHYSMASK: Silvermont Microarchitecture, Nehalem Microar-
chitecture, Sandy Bridge Microarchitecture and Xeon Phi Processors.

• IA32 MTRRCAP: Core Microarchitecture, Atom Processor Family, Silvermont
Microarchitecture, Nehalem Microarchitecture, Sandy Bridge Microarchitec-
ture, Skylake Microarchitecture, Xeon Phi Processors, Pentium 4 and Xeon
Processors and Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV.

• IA32 VMX BASIC: Core Microarchitecture, Atom Processor Family, Silver-
mont Microarchitecture, Nehalem Microarchitecture, Sandy Bridge Microar-
chitecture, Xeon Phi Processors, Pentium 4 and Intel Xeon Processors and
Core Solo, Intel Core Duo Processors and Dual-Core Intel Xeon Processor LV.

• IA32 VMX MISC: Core Microarchitecture, Atom Processor Family, Silver-
mont Microarchitecture, Nehalem Microarchitecture, Sandy Bridge Microar-
chitecture, Xeon Phi Processors, Pentium 4 and Intel Xeon Processors and
Core Solo, Intel Core Duo Processors and Dual-Core Intel Xeon Processor LV.

• IA32 SMM MONITOR CTL: Pentium 4 and Intel Xeon Processors.

• IA32 DEBUGCTL: Core Microarchitecture, Atom Processor Family, Silver-
mont Microarchitecture, Nehalem Microarchitecture, Sandy Bridge Microar-
chitecture, Haswell or Haswell-E microarchitectures, Xeon Phi Processors and
Core Solo, Intel Core Duo Processors and Dual-Core Intel Xeon Processor LV.

• IA32 PERF CAPABILITIES: Core Microarchitecture, Atom Processor Fam-
ily, Silvermont Microarchitecture, Nehalem Microarchitecture, Sandy Bridge
Microarchitecture and Xeon Phi Processors.

143

A. SPECIFIC SMM REGISTERS

• IA32 MCi STATUS: Core Microarchitecture, Atom Processor Family, Silver-
mont Microarchitecture, Nehalem Microarchitecture, Sandy Bridge Microar-
chitecture, Xeon Phi Processors, Pentium 4 and Intel Xeon Processors, Core
Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon Processor LV and
Pentium M Processors.

IA32 SMBASE is the 32-bit register which contains the Base address of the log-
ical processors SMRAM image. To check if a processor supports this register, we
need to verify the bit15 in the IA32 VMX MISC register is set. If it is set, so the
IA32 SMBASE is supported. It is accessible just when the processor is in SMM.
Any attempt to read or write those registers will trigger a general-protection fault
(#GP(0)).

Some new processors support the System-Management Range Register (SMRR)
Interface. It allows restricting access to the memory address range in the SMRAM,
which is used by the SMI handler code and data. Also, cacheable addresses ref-
erences to SMI handler will be limited. SMRR interface comprise of two Model
Specific Registers (MSR): The IA32 SMRR PHYSBASE (64-bit) defines the base ad-
dress for the SMRAM and the memory type used to access it; and the IA32 SMRR
PHYSMASK (64-bit) determines the SMRAM address range protected. They just
can be written when in SMM and an attempt to write to them outside of SMM will
cause a general-protection exception [87, 97].

To check if a processor supports the SMRR interface, it is necessary to verify
the Memory Type Range Register (MTRR) IA32 MTRRCAP, specifically if its bit
11 is set. MTTRs are Model Specific Registers (MSR), which provide a mechanism
for associating the memory types with physical-address ranges in system memory.
Those registers are architecturally dependent on the microarchitecture in use, being
more complex in multi-core processors, where might exist one or more of the same
registers to be used by core. It can be generally referred as scope. For example,
in processors based on the Silvermont microarchitecture, the multi-core processor
(physical package) scope can be: Package, all cores share the same MSR or bit in-
terface; Shared, a MSR or bit field is shared by one or more cores; Core, each core
has a separate MSR or a bit field not shared with another core [87, 97].

The follow memory types can be encoded in MTRR registers, as IA32 MTRR
PHYSBASEi registers (with i = 1, 2, ...n) (section 11.11.2.3 in [97]), IA32 VMX
BASIC, IA32 SMRR PHYSBASE and other: Uncacheable (UC), Write Combining
(WC), Write-through (WT), Write-protected (WP) and Writeback (WB) [86, 87, 97,
96].

IA32 VMX BASIC is a 64-bit Model-Specific Register (MSR) used to report ba-
sic VMX capabilities (section 3.3.4). It should be consulted to check if the SMM
Dual-Monitor Treatment is supported by a processor or not. If bit 49 is set, it means
that the processor supports the dual-monitor treatment of system-management
interrupts and SMM. The Dual-Monitor Treatment is discussed in section 3.3.4
[87, 97].

IA32 VMX MISC is a 64-bit MSR used to report miscellaneous VMX capabili-
ties. This work is concerned with the SMM related functions. So, the bit15, when
set, allow the RDMSR instruction to read the IA32 SMBASE register when in SMM.
When bit28 is set, it means that bit2 of the IA32 SMM MONITOR CTL can be set
(to 1). This affect the VMXOFF instruction, which can be executed only with the

144

A.1 CHIPSET 1 SPECIFIC REGISTERS

default treatment (section 3.3.4) and only outside SMM. VMXOFF can unblock SMI
if bit2 of IA32 SMM MONITOR CTL is cleared. Finally, bit63 to bit32 contains the
32-bit MSEG revision identifier used by the processor [87, 97].

IA32 DEBUGCTL is the 32-bit Debug Control register. It controls many fea-
tures related to debug tasks. What concern to the SMM is the bit14 (FREEZE
WHILE SMM EN). If this bit is set, the processor will freeze performance coun-
ters during all time the processor is in SMM [87, 97].

IA32 PERF CAPABILITIES is the 64-bit performance capabilities register and
indicates in bit12 (SMM FREEZE) that the processor supports FREEZE WHILE
SMM EN (SMM FREEZE = 1) or not (SMM FREEZE = 0) [87, 97].

Processors have a set of 64-bit MSR registers denominated IA32 MCi STATUS,
with i = 1, 2, ...n, containing information related to machine-check error. The rel-
evant bits to SMM are, a priori: bit63 (VAL flag), which is set when the processor
find an error after a machine-check and indicates that the information in that reg-
ister is valid; and the MCA (machine-check architecture) error code field (bits from
0 to 15) (section 15.3.2.2 in [87, 97]). When MCA code is equals to 0006H, it con-
figures an “SMM Handler Code Access Violation”, which means that “an attempt
was made by the SMM Handler to execute outside the ranges specified by SMRR”
(section 15.9 and 16 in [87, 97]).

IA32 SMM MONITOR CTL is the 64-bit SMM Monitor Configuration. It can
be read any time by a RDMSR instruction, but just can be written when in SMM.
Bit0 is the valid bit. When the valid bit is set the STM may be invoked using VM-
CALL. Then, the dual-monitor treatment is activated only if the valid bit is set. As
discussed before, it controls SMI unblocking by VMXOFF in its bit2. Its bit31 to
bit12 contains the MSEG base. The other bits are reserved [87, 97]. We cite this reg-
ister here for illustration purposes since it is related to SMM, but it is not supported
by our chipset 1, just in Pentium 4 and Intel Xeon Processors.

A.1.2 Chipset 1 SMM Model-Specific Registers

This section describes the Model-Specific Registers related to the SMM, whose are
not categorized as architectural MSR. Below is listed those MSR and the family/model
of processor which supports them. As we can see, our chipset 1 is not supported.
This section is based on [87, 97].

• MSR SMM FEATURE CONTROL: Haswell microarchitecture.

• MSR SMM MCA CAP: Haswell microarchitecture, Xeon Processor E5 v3
Family, Xeon Processor D and Broadwell Microarchitecture.

• MSR SMM DELAYED: Haswell microarchitecture.

• MSR SMM BLOCKED: Haswell microarchitecture.

Those registers are accessible just when the processor is in SMM. Any attempt
to read or write those registers will trigger a general-protection fault (#GP(0)).

The 64-bit MSR SMM FEATURE CONTROL is the Enhanced SMM Feature
Control register and restricts SMI handler address range. The 64-bit MSR SMM

145

A. SPECIFIC SMM REGISTERS

MCA CAP it the Enhanced SMM Capabilities register and offers additional write
protection to that latter register.

MSR SMM DELAYED is the 64-bit SMM Delayed register and reports the in-
terruptible state of all logical processors in the physical package (and package, as
described before, comprises of the processor and its cores and other internal com-
ponents).

MSR SMM BLOCKED is the 64-bit SMM Blocked registers and reports the
blocked state of all logical processors in the physical package. Those logical pro-
cessor reported in the MSR SMM BLOCKED are the ones blocked from servicing
interrupts, including SMI [87, 97].

A.1.3 Other Registers Related to SMM in Chipset 1

There are plenty of registers related to SMM in chipset 1. It is neither possible nor
convenient to address all of them in this research. So, we list them below with a
short description, their size and the bits in those registers related to SMM to map
them for future works. Some bits related to SMM in those registers are reported in
the format “number to number”, as in the TRSR register, whose bits are reported
as 3 to 0. It means that a specific function related to SMM in this register requires
all those bits together to be defined [81].

• Register: TRSR. Description: Trap Status Register. Size: 32-bit. Bits related:
3 to 0.

• Register: TRCR. Description: Trapped Cycle Register. Size: 64-bit. Bits re-
lated: 3 to 0.

• Register: IOTRi. Description: I/O Trap Register (register from 0 to 3). Size:
64-bit. Bit related: 0.

• Register: GCS. Description: General Control and Status Register. Size: 32-
bit. Bit related: 5.

• Register: PCICMD. Description: PCI Command Register. Size: 16-bit. Bit
related: 8.

• Register: GC. Description: GPIO Control Register. Size: 8-bit. Bit related: 0.

• Register: ULKMC. Description: USB Legacy Keyboard / Mouse Control
Register. Size: 32-bit. Bits related: 15, 11, 10, 9, 8, 7, 5, 4, 3, 2, 1 and 0.

• Register: BIOS CNTL. Description: BIOS Control Register. Size: 8-bit. Bits
related: 5, 1 and 0.

• Register: PM1 STS. Description: Power Management 1 Status Register. Size:
16-bit. Bits related: 8, 4 and 0.

• Register: PM1 EN. Description: Power Management 1 Enable Register. Size:
16-bit. Bits related: 10, 8 and 0.

• Register: PM1 CNT. Description: Power Management 1 Control Register.
Size: 32-bit. Bit related: 0.

146

A.1 CHIPSET 1 SPECIFIC REGISTERS

• Register: DEVACT STS. Description: Device Activity Status Register. Size:
16-bit. Bit related: 12, 9, 8, 7 and 6.

• Register: TCO DAT IN. Description: TCO Data In Register. Size: 8-bit. Bits
related: 7 to 0

• Register: TCO DAT OUT. Description: TCO Data Out Register. Size: 8-bit.
Bits related: 7 to 0.

• Register: TCO1 STS. Description: TCO1 Status Register. Size: 16-bit. Bits
related: 10, 8, 7, 3, 2, 1 and 0.

• Register: TCO2 STS. Description: TCO2 Status Register. Size: 16-bit. Bits
related: 4 and 0.

• Register: TCO1 CNT. Description: TCO1 Control Register. Size: 16-bit. Bits
related: 9 and 8.

• Register: TCO2 CN. Description: TCO2 Control Register. Size: 16-bit. Bits
related: 2 to 1.

• Register: GPI INV. Description: GPIO Signal Invert Register. Size: 32-bit.
Bits related: 15 to 0.

• Register: ATC. Description: APM Trapping Control Register. Size: 8-bit.
Bits related: 3, 2, 1 and 0.

• Register: LEG EXT CS. Description: USB EHCI Legacy Support Extended
Control / Status Register. Size: 32-bit. Bits related: 31, 30, 29, 21, 20, 19, 18,
17, 16, 15, 14, 13, 5, 4, 3, 2, 1 and 0.

• Register: SPECIAL SMI. Description: Intel Specific USB 2.0 SMI Register.
Size: 32-bit. Bits related: 24 to 22, 21, 20, 19, 18, 17, 16, 13 to 6, 5, 4, 3, 2, 1 and
0.

• Register: HOSTC. Description: Host Configuration Register. Size: 8-bit. Bits
related: 1 and 0.

• Register: HST STS. Description: Host Status Register. Size: 8-bit. Bits re-
lated: 5, 4, 3, 2 and 1.

• Register: HST CNT. Description: Host Control Register. Size: 8-bit. Bits
related: 4 to 2, 1 and 0.

• Register: HOST BLOCK DB. Description: Host Block Data Byte Register.
Size: 8-bit. Bits related: 7 to 0.

• Register: SLV STS. Description: Slave Status Register. Size: 8-bit. Bit re-
lated: 0.

• Register: SLV CMD. Description: Slave Command Register. Size: 8-bit. Bits
related: 2 and 0.

147

A. SPECIFIC SMM REGISTERS

• Register: MPC. Description: Miscellaneous Port Configuration Register. Size:
32-bit. Bits related: 1 and 0.

• Register: SMSCS. Description: SMI/SCI Status Register. Size: 32-bit. Bits
related: 4, 1 and 0.

• Register: HSFS. Description: Hardware Sequencing Flash Status Register
(SPI Memory Mapped Configuration Registers). Size: 16-bit. Bit related:
0.

• Register: HSFC. Description: Hardware Sequencing Flash Control Register
(SPI Memory Mapped Configuration Registers). Size: 16-bit. Bit related: 15.

• Register: SSFS. Description: Software Sequencing Flash Status Register (SPI
Memory Mapped Configuration Registers). Size: 8-bit. Bit related: 2.

• Register: SSFC. Description: Software Sequencing Flash Control Register
(SPI Memory Mapped Configuration Registers). Size: 24-bit. Bit related:
15.

• Register: HSFS. Description: Hardware Sequencing Flash Status Register
(GbE LAN Memory Mapped Configuration Registers). Size: 16-bit. Bit re-
lated: 0.

• Register: SSFS. Description: Software Sequencing Flash Status Register (GbE
LAN Memory Mapped Configuration Registers). Size: 8-bit. Bit related: 2.

• Register: TSPC. Description: Thermal Sensor Policy Control Register. Size:
8-bit. Bits related: 3, 2, 1 and 0.

• Register: HIDM. Description: MEI Interrupt Delivery Mode Register. Size:
8-bit. Bits related: 1 and 0.

• Register: HIDM. Description: Intel MEI Interrupt Delivery Mode Register.
Size: 8-bit. Bits related: 1 and 0.

A.2 Chipset 2 System Management RAM Control register

Like in chipset 1, this is the 8-bit System Management RAM Control register (SM-
RAMC), the access control mechanism to the SMRAM (figure 3.4). In our target
chipset 2, it is located at PCI device 0, address offset 90H [65]. According to [70],
the SMRAMC in chipset 2 does not differ from the SMRAMC in chipset 1, as de-
scribed in section 3.2.3.2. However, the default value of this register is 02H, which
means that SMRAM is open after the bootup process. This chipset has an extra
control register, the Extended System Management RAM Control Register (ESM-
RAMC), that is described in section A.2.1. In chipset 2, this register also controls
access to the E SMRAM register (section A.2.1)

148

A.2 CHIPSET 2 SYSTEM MANAGEMENT RAM CONTROL REGISTER

A.2.1 Chipset 2 Extended System Management RAM Control register

This register appears in older chipsets, as 830 [65] and 845 [69, 70] chipset families.
The 8-bit Extended System Management RAM Control (ESMRAMC) register con-
trols the configuration of Extended SMRAM (E SMRAM) space. The E SMRAM
memory provides a write-back cacheable SMRAM memory space that is above 1
MB. it is located at PCI device 0, address offset 91H and the default value of this
register is 02H [65].

Bit7 (H SMRAME) controls the SMM memory space location, so that when
this bit is set and the G SMRAME bit (bit3 in SMRAMC register) is also set, the
high SMRAM memory space is enabled. In this case, the SMRAM accesses from
FEDA0000H to FEDBFFFFH are remapped to SDRAM address A0000H to BFFFFH.
E SMERR bit (Bit6) is set when CPU accesses the Extended SMRAM while not in
SMM and with the D OPEN bit cleared. Bit5 (SM CACHE), bit4 (SM L1) and bit3
(SM L2) are set by the chipset (hardwired). The bit2 is reserved. bit1 (T SZ) in-
dicates the size of the TSEG memory block if TSEG is enabled. When T SZ is
cleared (TOM-512K) to TOM 1 (TOM-1M) to TOM. When bit0 (T EN) is set and
bit G SMRAME (bit3 in SMRAMC register) is also set, it enables TSEG is enabled
to appear in the appropriate physical address space.

A.2.2 Chipset 2 Specific Registers

The chipset 2 specific registers related to SMM are: PMBASE, SMI EN, SMI STS,
GEN PMCON 1, GPI ROUT, GPE0 EN, GPE0 STS, APM CNT and APM STS [64].

PMBASE is the 32-bit Advanced Configuration and Power Interface (ACPI)
base address register. It can be accessed at device 31, function 0, offset 40H-43H
and sets the base address for ACPI I/O registers and other ones, including the
SMI EN and SMI STS. Those registers can be accessed by PMBASE + offset; for
instance, the SMI EN at PMBASE + 30H and the SMI STS at PMBASE + 34H [64].

SMI EN is the 32-bit SMI Control and Enable register. This register is symmet-
rical to the SMI STS, so they work together to generate and provide information
about SMI. The bits of this register enable which devices can trigger an SMI and
other SMI related functions. Below, we describe the bits of interest for this research
[64]:

• Bit PERIODIC EN [bit 14]. Set this bit causes an SMI when the PERIODIC STS
bit at SMI STS register is set too.

• Bit TCO EN [bit 13]. Set this bit enables the Total Cost of Ownership (TCO)
logic to generate SMI. There are a huge set of register related to TCO.

• Bit MCSMI EN [bit 11]. Set this bit enables PCH to trap accesses to the mi-
crocontroller range (62H or 66H) and then generate an SMI.

• Bit SWSMI TMR EN [bit 6]. Set this bit starts Software SMI Timer, such that
when the SWSMI timer expires, the SWSMI TMR STS bit at SMI STS is set
and an SMI is generated.

• Bit APMC EN [bit 5]. When this bit is set any write to the APM CNT register
will cause an SMI.

149

A. SPECIFIC SMM REGISTERS

• Bit SLP SMI EN [bit 4]. When this bit is set, this enable that set the SLP EN
bit (bit 13 in PM1 CNT register) cause an SMI.

• Bit LEGACY USB EN [bit 3]. Set this bit enables legacy USB circuit to cause
an SMI.

• Bit BIOS EN [bit 2]. Set this bit enables the generation of SMI when ACPI
software writes a 1 to the GBL RLS bit (bit 2 in PM1 CNT register).

• Bit EOS [bit 1]. Set this bit cause an SMI signal to be deasserted for 4 PCI
clocks before its assertion.

• Bit GBL SMI EN [bit 0]. Set this bit enable SMI globally in the system.

SMI STS is the 32-bit SMI Status register and indicates the device that have
caused an SMI. As a general rule, when a bit is set in this register, whenever the
correspondent bit is set in the SMI EN register an SMI is generated, since those
registers are symmetrical. However, in some chipsets not all bits in SMI EN have
correspondent in SMI STS register. Below, we describe the bits of interest for this
research [64]:

• Bit SMBUS SMI STS [bit 16]. If this bit is set, an SMI was caused by a SM-
BUS related event.

• Bit SERIRQ SMI STS [bit 15]. This bit is set when an SMI was caused by the
Serial Interrupt Request (SERIRQ) decoder.

• Bit PERIODIC STS [bit 14]. This bit is set at the rate indicated by the PER
SMI SEL (bits 1 and 0 in GEN PMCON 1 register). Then, if the PERIODIC EN
bit (bit 14 in SMI EN register) is also set, an SMI is generated.

• Bit TCO STS [bit 13]. If this bit is set, an SMI was caused by the Total Cost
of Ownership (TCO) logic.

• Bit DEVMON STS [bit 12]. This bit is set when an SMI was caused by a
Device Monitor.

• Bit MCSMI STS [bit 11]. If this bit is set, there was an access to the power
management microcontroller range (62H or 66H).

• Bit GPE1 STS [bit 10]. This bit is set when an SMI was generated by a Gen-
eral Purpose Input/Output (GPI) assertion.

• Bit GPE0 STS [bit 9]. This bit is set when an SMI was generated by an SMI
was generated by a General Purpose Event (GPE0) event.

• Bit PM1 STS REG [bit 8]. This bit is set when an SMI was generated by a
PM1 STS event.

• Bit SWSMI TMR STS [bit 6]. This bit is set by hardware whenever the Soft-
ware SMI Timer expires.

150

A.2 CHIPSET 2 SYSTEM MANAGEMENT RAM CONTROL REGISTER

• Bit APM STS [bit 5]. If this bit is set, this indicates that an SMI was generated
due to a write access to the APM CNT register when the APMC EN bit (bit 5
in SMI EN register) was set.

• Bit SLP SMI STS [bit 4]. When this bit is set, this indicates an SMI was
caused due to set the SLP EN bit (bit 13 in PM1 CNT register) when SLP
SMI EN bit (bit 5 in SMI EN) is also set.

• Bit LEGACY USB STS [bit 3]. If this bit is set, an SMI was caused by a USB
Legacy event.

• Bit BIOS STS [bit 2]. This bit is set by hardware when the GBL RLS bit (bit 2
in PM1 CNT register) is set. In this case, if the BIOS EN bit (bit 2 in SMI EN
register) is also set, an SMI is generated.

GEN PMCON 1 is the 16-bit General Power Management Configuration 1 reg-
ister. It can be accessed at device 31, function 0, offset A0H. In this chipset, GEN
PMCON 1 register has two main functions related to SMI [64], one different and

another similar to those one in chipset 1 [81]. First, the SWSMI RATE SEL bit (bit10)
sets up the SWSMI Timer timeout to 64 ms± 4 ms, which is the default value when
it is cleared. When that bit is set, it sets up the SWSMI Timer timeout to 1.5 ms ±
0.5 ms. That bit is related to the SWSMI TMR EN bit (bit6 in SMI EN register) and
to the SWSMI TMR STS bit (bit6 in SMI STS register). Second, the PER SMI SEL
bits (bit1 and bit0) controls the rate at which periodic SMI is generated, according
to the following scheme: bit1 = 0 and bit0 = 0 equals 1 minute, bit1 = 0 and bit0 =
1 equals 32 seconds, bit1 = 1 and bit0 = 0 equals 16 seconds and bit1 = 1 and bit0 =
1 equals 8 seconds. These bits are related to the PERIODIC EN bit (bit6 in SMI EN
register) and to the PERIODIC STS bit (bit6 in SMI STS register).

GPE0 EN is the 64-bit General Purpose Event 0 Enables register and GPE0 STS
is the 64-bit General Purpose Event 0 Status register. Those registers are symmet-
rical to each other and they are used to manage wake events in the system. For
some functions, an SMI will be generated. For example, when the BATLOW EN
bit (bit10 in GPI0 EN register) is set, it enables the BATLOW# signal to cause an
SMI when the battery goes low. In this case, the hardware set the BATLOW STS bit
(bit10 in GPI0 STS register) as soon as the BATLOW# signal is asserted [64].

APM CNT is the 8-bit Advanced Power Management Control Port register and
it is used to pass an APM command between the OS and the SMI handler. Writes
to this port not only store data in the APMC register, but also generates an SMI
when the APMC EN bit (bit5) in the SMI EN register is set. APM STS it the 8-
bit Advanced Power Management Status Port register and it is used to pass data
between the OS and the SMI handler [80, 81].

A.2.3 Chipset 2 Architectural Model-Specific Registers

In our target chipset 2 there is no Architectural Model-Specific Registers (MSR)
related to SMM. The follow registers are present in chipset 1, but not in chipset 2:
IA32 SMRR PHYSBASE, IA32 SMRR PHYSMASK, IA32 VMX BASIC, IA32 VMX
MISC and IA32 PERF CAPABILITIES. The IA32 MTRRCAP, IA32 MCi STATUS

and IA32 DEBUGCTL registers are present in chipset 2, but they have no function

151

A. SPECIFIC SMM REGISTERS

related to SMM in chipset 2. It is because, in newer chipset, those registers embody
modern features as the VMX technology (section 3.3.4 and SMRR interface (section
A.1.1 and sections 11.11.2.4 and 34.4.2.1 in [87, 97]), which were not developed
when chipset 2 was released.

A.2.4 Chipset 2 SMM Model-Specific Registers

This section describes the Model-Specific Registers related to the SMM, whose are
not categorized as architectural MSR. Below is listed those MSR and the family/
model which supports them. As we can see, our chipset 1 is not supported. This
section is based on [87, 97].

The follow registers are present in chipset 1, but not in chipset 2: MSR SMM
FEATURE CONTROL, MSR SMM MCA CAP, MSR SMM DELAYED and MSR
SMM BLOCKED.

A.2.5 Other Registers Related to SMM in Chipset 2

As in chipset 1, in chipset 2 there are many registers related to SMM too. So, we
list them below with a short description, their size and the bits in those registers
related to SMM to map them for future works. Again, some bits related to SMM in
those registers are reported in the format “number to number”, as in the GPE1 STS
register, whose bits are reported as 15 to 0. It means that a specific function related
to SMM in this register requires all those bits together to be defined [64, 65].

• Register: PCISTS. Description: PCI Status Register. Size: 16-bit. Bit related:
14.

• Register: RRBAR. Description: Register Range Base Address Register. Size:
32-bit. Bit related: 31 to 18.

• Register: CMD. Description: Command Register. Size: 16-bit. Bit related: 8.

• Register: PD STS. Description: Primary Device Status Register. Size: 16-bit.
Bits related: 14 and 12.

• Register: BRIDGE CNT. Description: Bridge Control Register. Size: 16-bit.
Bit related: 1.

• Register: ERR CMD. Description: Error Command Register. Size: 8-bit. Bits
related: 2 and 1.

• Register: PCISTA. Description: PCI Device Status Register. Size: 16-bit. Bit
related: 14.

• Register: BIOS CNTL. Description: BIOS Control Register. Size: 16-bit. Bits
related: 1 and 0.

• Register: TRP FWD EN. Description: I/O Monitor Trap Forwarding Enable
Register. Size: 8-bit. Bits related: 7, 6, 5, and 4.

• Register: MON[n] TRP RNG. Description: I/O Monitor [4:7] Trap Range
Register for Devices 47. Size: 16-bit. Bits related: 15 to 0.

152

A.2 CHIPSET 2 SYSTEM MANAGEMENT RAM CONTROL REGISTER

• Register: PM1 STS. Description: Power Management 1 Status Register. Size:
16-bit. Bits related: 8 and 0.

• Register: PM1 EN. Description: Power Management 1 Enable Register. Size:
16-bit. Bits related: 10, 8 and 0.

• Register: PM1 CNT. Description: Power Management 1 Control Register.
Size: 32-bit. Bit related: 0.

• Register: PROC CNT. Description: Processor Control Register. Size: 32-bit.
Bit related: 8.

• Register: GPE1 STS. Description: General Purpose Event 1 Status Register.
Size: 16-bit. Bits related: 15 to 0.

• Register: GPE1 EN. Description: General Purpose Event 1 Enable Register.
Size: 16-bit. Bits related: 15 to 0.

• Register: MON SMI. Description: Device Monitor SMI Status and Enable
Register. Size: 16-bit. Bits related: 15 to 12 and 11 to 8.

• Register: DEVACT STS. Description: Device Activity Status Register. Size:
16-bit. Bits related: 13 to 5 and 3 to 0.

• Register: DEVTRAP EN. Description: Device Trap Enable Register. Size:
16-bit.Bits related: 13 to 10, 5 and 3 to 0.

• Register: BUS ADDR TRACK. Description: Bus Address Tracker Register.
Size: 16-bit. Bits related: 15 to 0.

• Register: BUS CYC TRACK. Description: Bus Cycle Tracker Register. Size:
8-bit. Bits related: 7 to 4 and 3 to 0.

• Register: TCO1 DAT IN. Description: TCO Data In Register. Size: 8-bit. Bits
related: 7 to 0.

• Register: TCO1 DAT OUT. Description: TCO Data Out Register. Size: 8-bit.
Bits related: 7 to 0.

• Register: TCO1 STS. Description: TCO1 Status Register. Size: 16-bit. Bits
related: 12, 10, 8, 7, 3, 2, 1 and 0.

• Register: TCO2 STS. Description: TCO2 Status Register. Size: 16-bit. Bit
related: 4.

• Register: TCO1 CNT. Description: TCO1 Control Register. Size: 16-bit. Bits
related: 11, 9 and 8.

• Register: TCO2 CNT. Description: TCO2 Control Register. Size: 16-bit. Bits
related: 2 to 1.

• Register: GPI INV. Description: GPIO Signal Invert Register. Size: 32-bit.
Bits related: 13 to 11, 8, 7 to 0.

153

A. SPECIFIC SMM REGISTERS

• Register: USB LEGKEY. Description: USB Legacy Keyboard/Mouse Control
Register. Size: 16-bit. Bits related: 15, 13, 12, 11, 10, 9, 8, 7, 5, 4, 3, 2, 1 and 0.

• Register: HOSTC. Description: Host Configuration Register. Size: 8-bit. Bits
related: 1 and 0.

• Register: HST STS. Description: Host Status Register. Size: 8-bit. Bits re-
lated: 5, 4, 3, 2 and 1.

• Register: HST CNT. Description: Host Control Register. Size: 8-bit. Bits
related: 4 to 2, 1 and 0.

• Register: BLOCK DB. Description: Block Data Byte Register. Size: 8-bit. Bits
related: 7 to 0.

• Register: SLV STS. Description: Slave Status Register. Size: 8-bit. Bit re-
lated: 0.

• Register: SLV CMD. Description: Slave Command Register. Size: 8-bit. Bits
related: 2 and 0.

• Register: ERRSTS. Description: Error Status Register. Size: 16-bit. Bit re-
lated: 12.

• Register: ERRCMD. Description: Error Command Register. Size: 16-bit. Bit
related: 12.

154

Bibliography

[1] Aws case study: 6 waves limited. Site, 2011. Accessed in 17/04/2016. 21

[2] Unified Extensible Firmware Interface Specification, 2.4, errata b ed., April 2014.
Accessed on 14/05/2014. 8, 36

[3] Unified extensible firmware interface (uefi) forum. Site, March 2014. Ac-
cessed in 13/03/2014. 36

[4] Implementation of SHA-256 in C, 2015. 84, 131

[5] Cloud standards. Site, February 2016. Accessed in 18/04/2016. 22

[6] Platform-as-a-service: Develop and deliver apps faster with paas. Site, 2016.
Accessed in 17/04/2016. 21

[7] Security-as-a-service: Mcafee saas web protection. Site, 2016. Accessed in
17/04/2016. 20

[8] A. WHITAKER, M. S., AND GRIBBLE, S. D. Scale and performance in the de-
nali isolation kernel. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (Boston, MA, USA, December 2002), vol. Winter
2002 Special Issue of ACM Operating Systems Review, ACM, p. 195210. 30

[9] ACER. Acer Aspire X1935 Service Guide. Acer Corporation, 2012. 4

[10] ANATI, I., GUERON, S., JOHNSON, S. P., AND SCARLATA. Innovative tech-
nology for cpu based attestation and sealing. In Proceedings of the 2Nd In-
ternational Workshop on Hardware and Architectural Support for Security and
Privacy (New York, NY, USA, 2013), HASP ’13, ACM, pp. 10:1–10:1. doi:
10.1145/2487726.2488368. 2, 58

[11] ANDERSON, D., AND SHANLEY, T. Pentium processor system architecture,
2nd ed. MindShare, Reading, MA, 1995. 55

[12] ANDERSON, D., AND SHANLEY, T. PCI system architecture, 4th ed. Mind-
Share, Reading, MA, 1999. 63

[13] AZAB, A. M., NING, P., SEZER, E. C., AND ZHANG, X. Hima: A hypervisor-
based integrity measurement agent. In Proceedings of the 2009 Annual Com-
puter Security Applications Conference (Washington, DC, USA, 2009), ACSAC
’09, IEEE Computer Society, pp. 461–470. doi:10.1109/ACSAC.2009.50.
41

155

http://aws.amazon.com/solutions/case-studies/6waves
http://www.uefi.org/specifications
http://www.uefi.org
http://bradconte.com/sha256_c
http://cloud-standards.org/wiki/index.php?title=Main_Page
https://www.redhat.com/en/technologies/platform-as-a-service
http://www.mcafee.com/us/products/saas-web-protection.aspx
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1109/ACSAC.2009.50
http://dx.doi.org/10.1109/ACSAC.2009.50
http://dx.doi.org/10.1109/ACSAC.2009.50

BIBLIOGRAPHY

[14] AZAB, A. M., NING, P., WANG, Z., JIANG, X., ZHANG, X., AND SKALSKY,
N. C. Hypersentry: Enabling stealthy in-context measurement of hypervisor
integrity. In Proceedings of the 17th ACM Conference on Computer and Com-
munications Security (New York, NY, USA, 2010), CCS ’10, ACM, pp. 38–49.
doi:10.1145/1866307.1866313. 2, 6, 7, 9, 10, 59, 60, 61, 70, 73, 74

[15] AZAB, A. M., NING, P., AND ZHANG, X. Sice: A hardware-level strongly iso-
lated computing environment for x86 multi-core platforms. In Proceedings of
the 18th ACM Conference on Computer and Communications Security (New York,
NY, USA, 2011), CCS ’11, ACM, pp. 375–388. doi:10.1145/2046707.
2046752. 2, 7, 60

[16] BACLIT, R., SICAM, C., MEMBREY, P., AND NEWBIGIN, J. Foundations of
CentOS Linux: Enterprise Linux On the Cheap. The experts’s voice in Linux.
Apress, New York, NY, USA, 2009. 28

[17] BAIARDI, F., AND SGANDURRA, D. Building trustworthy intrusion detection
through vm in-strospection. In In Proceedings of the Third International Sympo-
sion on Information Assurance and Security (August 2007), vol. IAS 2007, IEEE,
pp. 209 – 214. 42

[18] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of vir-
tualization. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.
doi:10.1145/945445.945462. 17, 23, 30, 31, 57, 80

[19] BARRETO, S. L. M. P., AND RIJMEN, V. The Whirlpool Hash Function, May
2003. 39

[20] BELL, D. E., AND LAPADULA, L. J. Secure computer systems: Mathematical
foundations. Tech. Rep. 2547, MITRE, March 1973. 37

[21] BERGER, S., CÁCERES, R., GOLDMAN, K. A., PEREZ, R., SAILER, R., AND

VAN DOORN, L. vtpm: Virtualizing the trusted platform module. In Proceed-
ings of the 15th Conference on USENIX Security Symposium - Volume 15 (Berke-
ley, CA, USA, 2006), USENIX-SS’06, USENIX Association. 41

[22] BING, S. Bios boot hijacking by using intel ichx ”top-block swap” mode. In
Proceedings of XFocus Information Security Conference (2007), XFocus. 65

[23] BRANCO, R. R. System management mode hack: Using smm for ”other pur-
poses”, November 2008. 2, 7, 12, 48, 63, 65, 74, 106, 131

[24] BREY, B. The Intel microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486,
Pentium, Pentium Pro processor, Pentium II, Pentium III, Pentium 4, and Core2
with 64-bit extensions: architecture, programming, and interfacing, 8th ed. Pear-
son, Upper Saddle River, OH, 2008. 35, 48, 55

156

http://doi.acm.org/10.1145/1866307.1866313
http://doi.acm.org/10.1145/1866307.1866313
http://dx.doi.org/10.1145/1866307.1866313
http://doi.acm.org/10.1145/2046707.2046752
http://doi.acm.org/10.1145/2046707.2046752
http://dx.doi.org/10.1145/2046707.2046752
http://dx.doi.org/10.1145/2046707.2046752
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://dx.doi.org/10.1145/945445.945462
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://dl.acm.org/citation.cfm?id=1267336.1267357
http://phrack.org/issues/65/7.html
http://phrack.org/issues/65/7.html

BIBLIOGRAPHY

[25] BUTTERWORTH, J., KALLENBERG, C., KOVAH, X., AND HERZOG, A. Bios
chronomancy: Fixing the core root of trust for measurement. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security (New York, NY, USA, 2013), CCS ’13, ACM, pp. 25–36. doi:
10.1145/2508859.2516714. 7, 60

[26] C. LI, A. R., AND JHA, N. K. Secure virtual machine execution under an un-
trusted management os. In In Proceedings of the Conference on Cloud Computing
(CLOUD) (July 2010), IEEE, pp. 172 – 179. doi:10.1109/CLOUD.2010.29.
42

[27] CHEN, P. M., AND NOBLE, B. D. When virtual is better than real. In Proceed-
ings of the Eighth Workshop on Hot Topics in Operating Systems (Washington,
DC, USA, 2001), HOTOS ’01, IEEE Computer Society, pp. 133–. 41

[28] CHISNAL, D. The Definitive Guide to the Xen Hypervisor. Prentice Hall, Upper
Saddle River, NJ, USA, 2008. 17, 30, 31

[29] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER, D. An empir-
ical study of operating systems errors. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (New York, NY, USA, 2001), SOSP
’01, ACM, pp. 73–88. doi:10.1145/502034.502042. 42

[30] CHRISTODORESCU, M., SAILER, R., SCHALES, D. L., SGANDURRA, D., AND

ZAMBONI, D. Cloud security is not (just) virtualization security: a short
paper. In ACM workshop on Cloud computing security (2009), ACM, pp. 97–102.
19, 22

[31] CITRIX. Cve-2007-5497: Vulneravility in xenserver could result in privilege
escalation and arbitrary code execution. Website, November 2008. Accessed
in 27/01/2017. 71

[32] COMPAQ INFORMATION TECHNOLOGIES GROUP. Hardware Guide: Compaq
Evo Notebook N410c Series, document part number: 274039-001 ed., July 2002.
4

[33] COMPAQ, MICROSOFT, NATIONAL SEMICONDUCTOR. OpenHCI - Open Host
Controller Interface Specification for USB, revision 1.0a ed., September 1996. 64

[34] COPELAND, M., SOH, J., PUCA, A., MANNING, M., AND GOLLOB, D. Mi-
crosoft Azure: Planning, Deploying, and Managing Your Data Center in the Cloud.
Apress, New York, NY, USA, 2015. 21

[35] CORBATO, F. J., DAGGETT, M. M., AND DALEY, R. C. An experimental time-
sharing system. In Spring Joint Computer Conference (San Francisco, California,
May 1962), AIEE-IRE ’62, pp. 335–344. 25

[36] COREBOOT. Coreboot: fast and flexible Open Source firmware, 2014. 4, 7, 36, 61,
65, 83

[37] COREBOOT. Inteltool, November 2014. 106

157

http://doi.acm.org/10.1145/2508859.2516714
http://doi.acm.org/10.1145/2508859.2516714
http://dx.doi.org/10.1145/2508859.2516714
http://dx.doi.org/10.1145/2508859.2516714
http://dx.doi.org/10.1109/CLOUD.2010.29
http://dl.acm.org/citation.cfm?id=874075.876409
http://doi.acm.org/10.1145/502034.502042
http://doi.acm.org/10.1145/502034.502042
http://dx.doi.org/10.1145/502034.502042
https://support.citrix.com/article/CTX118766
https://support.citrix.com/article/CTX118766
ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.pdf
ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.pdf
http://www.coreboot.org/
http://www.coreboot.org/Inteltool

BIBLIOGRAPHY

[38] DE SOUZA, W. A. R., AND TOMLINSON, A. Understanding threats in a cloud
infrastructure with no hypervisor. In Proceedings of the 2013 World Congress on
Internet Security (WorldCIS), (London, UK, December 2013), IEEE, pp. 128 –
133. doi:10.1109/WorldCIS.2013.6751032. 19, 42, 43

[39] DE SOUZA, W. A. R., AND TOMLINSON, A. Virtualisation without a hyper-
visor in cloud infra-structures: An initial analysis. In Proceedings of the 14th
Annual Postgraduate Sympo-sium on the Convergence of Telecommunications, Net-
working & Broadcasting (Liverpool, UK, June 2013), Liverpool John Moores
University, Liverpool John Moores University. 42

[40] DE SOUZA, W. A. R., AND TOMLINSON, A. Smm-based hypervisor integrity
measurement. In 2015 IEEE 2nd International Conference on Cyber Security
and Cloud Computing (New York, NY, USA, November 2015), CSCloud, IEEE,
pp. 362 – 367. doi:10.1109/CSCloud.2015.57. 22

[41] DELGADO, B., AND KARAVANIC. Performance implications of system man-
agement mode. In Proceedings of the IEEE International Symposium on Workload
Characteriztion (September 2013), IISWC, pp. 163–173. 52

[42] DEPARTMENT OF DEFENSE. Trusted Computer System Evaluation Criteria (Or-
ange Book), volume dod 5200.28-std ed., December 1985. 33, 37, 38

[43] DOMAS, C. The memory sinkhole. In Black Hat Conference (Las Vegas, NV,
August 2015). 76

[44] DORAN, M., ZIMMER, V. J., AND ROTHMAN, M. A. Beyond bios: exploring
the many dimensions of the unified extensible firmware interface. In Intel
Technology Journal - UEFI Today: Bootstrapping the Continuum 15, 1 (October
2011), 8–21. ISBN 978-1-934053-43-0, ISSN 1535-864X. 36

[45] DUFLOT, L., ETIEMBLE, D., AND GRUMELARD. Using cpu system manage-
ment mode to circumvent operating system security functions. In Proceedings
of 7th CanSecWest Security Conference (2006). 2, 7, 16, 29, 41, 48, 50, 51, 63, 74,
131

[46] DUFLOT, L., LEVILLAIN, O., MORIN, B., AND GRUMELARD, O. Getting into
the smram: Smm reloaded. In Proceedings of 12th CanSecWest Security Confer-
ence (2009). 2, 29, 63, 64, 70, 74

[47] EMBLETON, S., SPARKS, S., AND ZOU, C. Smm rootkits: A new breed of os
independent malware. In Proceedings of the 4th International Conference on Se-
curity and Privacy in Communication Netowrks (New York, NY, USA, 2008), Se-
cureComm ’08, ACM, pp. 11:1–11:12. doi:10.1145/1460877.1460892.
2, 12, 41, 48, 63, 64, 65, 95

[48] ERL, T., MAHMOOD, Z., AND PUTTINI, R. Cloud computing: concepts, technol-
ogy and architecture. Prentice Hall, Upper Saddle River, NJ, 2013. 19

[49] (FIPS), F. I. P. S. Secure Hash Standard, publication 180 ed. National Institute
of Standards and Technology, USA, 1993. 39

158

http://dx.doi.org/10.1109/WorldCIS.2013.6751032
http://dx.doi.org/10.1109/CSCloud.2015.57
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation-wp.pdf
http://doi.acm.org/10.1145/1460877.1460892
http://doi.acm.org/10.1145/1460877.1460892
http://dx.doi.org/10.1145/1460877.1460892

BIBLIOGRAPHY

[50] (FIPS), F. I. P. S. Secure Hash Standard, publication 180-2 ed. National Insti-
tute of Standards and Technology, USA, 2002. 39, 84, 93

[51] GALUS, D. Migration to new display technologies on intel embedded plat-
forms. Tech. rep., Intel Corporation, 2012. 33

[52] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND BONEH, D.
Terra: A virtual machine-based platform for trusted computing. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2003), SOSP ’03, ACM, pp. 193–206. doi:10.1145/
945445.945464. 41

[53] GARFINKEL, T., AND ROSENBLUM. A virtual machine introspection based ar-
chitecture for intrusion detection. In Proceedings of the Network and Distributed
System Security Symposium (San Diego, CA, February 2003), The Internet So-
ciety, pp. 191–206. 42, 60

[54] GEBHARDT, C. Towards Trustworthy Virtualisation: Improving the Trusted Vir-
tual Infrastructure. Phd thesis, Royal Holloway, University of London, Egham
Hill, Egham, UK, October 2010. vii, 26, 28, 38, 39

[55] GENDRON, M. S. Business intelligence and the cloud: strategic implementation
guide. Wiley, Hoboken, NJ, USA, 2014. 20, 21

[56] GOLDBERG, R. P. A survey of virtual machine research. In Computer (June
1974), vol. 7, Honeywell Information Systems and Harvard University, IEEE
Computer Society, pp. 34–43. 26, 29

[57] GRAWROCK, D. Dynamics of a trusted platform: a building block approach,
2nd ed. Intel Press, Hillsboro, OR, 2008. vii, 2, 10, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 46, 57, 59, 65, 73, 76, 105

[58] GREENE, J. Intel trusted execution technology: Hardware-based technology
for enhancing server platform security. Tech. rep., Intel Corporation, 2012. 2,
10, 36, 37

[59] HAGEN, W. V. Professional Xen Virtualization. Wiley, Indianapolis, IN, USA,
2008. 17, 27, 31

[60] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND

DEL CUVILLO, J. Using innovative instructions to create trustworthy soft-
ware solutions. In Proceedings of the 2Nd International Workshop on Hardware
and Architectural Support for Security and Privacy (New York, NY, USA, 2013),
HASP ’13, ACM, pp. 11:1–11:1. doi:10.1145/2487726.2488370. 2, 58

[61] HOULIHAN, R., AND DU, X. An effective auditing scheme for cloud comput-
ing. In Proceeginds of Global Communications Conference (2012), GLOBECOM,
IEEE, pp. 1599 – 1604. doi:10.1109/GLOCOM.2012.6503342. 6, 7, 9, 60,
61, 70, 73, 74

[62] HUGOS, M. H., AND HULITZKY, D. Business in the Cloud: What Every Business
Needs to Know about Cloud Computing. Wiley, Hoboken, NJ, USA, 2011. 20

159

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/new-display-technologies-on-intel-embedded-platforms-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/new-display-technologies-on-intel-embedded-platforms-paper.pdf
http://doi.acm.org/10.1145/945445.945464
http://dx.doi.org/10.1145/945445.945464
http://dx.doi.org/10.1145/945445.945464
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://doi.acm.org/10.1145/2487726.2488370
http://doi.acm.org/10.1145/2487726.2488370
http://dx.doi.org/10.1145/2487726.2488370
http://dx.doi.org/10.1109/GLOCOM.2012.6503342

BIBLIOGRAPHY

[63] IBRAHIM, A., HARRIS, J., AND GRUNDY, J. Emerging security challenges
of cloud virtual infrastructure. In Cloud Workshop (Sidney, Australia, 2010),
APSEC 2010. 19, 22

[64] INTEL. Intel 82801CAM I/O Controller Hub 3 (ICH3-M), datasheet ed. Intel
Corporation, July 2001. 2, 51, 53, 108, 149, 150, 151, 152

[65] INTEL. Intel 830 Chipset Family: 82830 Graphics and Memory Controller Hub
(GMCH-M), datasheet ed. Intel Corporation, October 2001. 2, 53, 108, 139,
148, 149, 152

[66] INTEL. Intel IA-32 Architecture Software Developer’s Manual. Volume 3: System
Programming Guide, order number 245472 ed. Intel Corporation, Denver, CO,
USA, 2001. 2, 46, 48, 50, 52, 72

[67] INTEL. Enhanced Host Controller Interface Specification for Universal Serial Bus,
revision 1.0 ed. Intel Corporation, March 2002. 65

[68] INTEL. Intel 82801CA I/O Controller Hub 3-S (ICH3-S), datasheet document
number 290733-002 ed. Intel Corporation, March 2002. 53

[69] INTEL. Intel 845 Chipset: 82845 Memory Controller Hub (MCH) for DDR,
datasheet ed. Intel Corporation, January 2002. 48, 50, 51, 95, 139, 149

[70] INTEL. Intel 845 Chipset: 82845 Memory Controller Hub (MCH) for SDR,
datasheet ed. Intel Corporation, January 2002. 48, 50, 51, 95, 139, 148, 149

[71] INTEL. Intel IA-32 Architecture Software Developer’s Manual. Volume 3: System
Programming Guide, order number 245472-012 ed. Intel Corporation, Denver,
CO, USA, 2003. 2, 46, 48, 50, 52, 72

[72] INTEL. Mobile Intel Pentium 4 Processor-M, datasheet order number: 250686-
007 ed. Intel Corporation, June 2003. 53

[73] INTEL. Mobile Intel Pentium 4 Processor Supporting Hyper-Threading Technol-
ogy on 90-nm Process Technology, datasheet document number: 302424-003 ed.
Intel Corporation, January 2005. 53

[74] INTEL. Intel CoreTM 2 Duo E6400, E4300, and Intel Pentium Dual-Core E2160
Processor Thermal Design Guide, order number 315279-003us ed. Intel Corpo-
ration, October 2007. 53

[75] INTEL. Intel Pentium Dual-Core Desktop Processor E2000 Series, datasheet doc-
ument number 316981-005 ed. Intel corporation, March 2008. 53

[76] INTEL. Intel Core 2 Duo Processor E8000 and E7000 Series, datasheet document
number 318732-006 ed. Intel Corporation, June 2009. 53

[77] INTEL. Mobile Intel 945GSE Express Chipset for Embedded Computing (2010),
product brief 320217-002us ed. Intel Corporation, January 2010. 53

160

http://www.intel.co.uk/content/dam/www/public/us/en/documents/technical-specifications/ehci-specification-for-usb.pdf
http://www.intel.com.br/content/dam/doc/datasheet/82801ca-io-controller-hub-3-datasheet.pdf
http://www.intel.com/content/www/us/en/chipsets/845-chipset-82845-memory-controller-hub-ddr-datasheet.html
http://www.intel.com/content/www/us/en/chipsets/845-chipset-82845-memory-controller-hub-sdr-datasheet.html
http://download.intel.com/design/mobile/datashts/25068607.pdf
http://www.datasheetspdf.com/PDF/RK80546HE0721M/611814/1
http://www.datasheetspdf.com/PDF/RK80546HE0721M/611814/1
http://www.intel.com.br/content/dam/www/public/us/en/documents/guides/core2-duo-e6400-e4300-pentium-dual-core-e2160-tdg-guide.pdf
http://www.intel.com.br/content/dam/www/public/us/en/documents/guides/core2-duo-e6400-e4300-pentium-dual-core-e2160-tdg-guide.pdf
http://pdf1.alldatasheet.com/datasheet-pdf/view/394717/INTEL/E2160.html
http://download.intel.com/design/processor/datashts/318732.pdf
http://www.intel.com/content/www/us/en/intelligent-systems/navy-pier/mobile-945-express-chipset-brief.html

BIBLIOGRAPHY

[78] INTEL. Intel Core i5-600, i3-500 Desktop Processor Series, Intel Pentium Desktop
Processor 6000 Series (Volume 1), datasheet document number 322909-006 ed.
Intel Corporation, January 2011. 53

[79] INTEL. Intel Core i5-600, i3-500 Desktop Processor Series, Intel Pentium Desktop
Processor 6000 Series (Volume 2), datasheet document number 322910-003 ed.
Intel Corporation, January 2011. 53

[80] INTEL. Intel 5 Series Chipset and Intel 3400 Series Chipset, datasheet ed. Intel
Corporation, January 2012. 2, 53, 108, 139, 140, 142, 143, 151

[81] INTEL. Intel 7 Series C216 Chipset Family Platform Controller Hub (PCH),
datasheet ed. Intel Corporation, June 2012. 2, 33, 34, 51, 53, 108, 139, 140,
142, 143, 146, 151

[82] INTEL. Intel Platform Controller Hub EG20T, datasheet ed. Intel Corporation,
July 2012. 33

[83] INTEL. 2nd Generation Intel Core Processor Family Desktop, Intel Pentium Pro-
cessor Family Desktop, and Intel Celeron Processor Family Desktop (Volume 1),
datasheet document number 324641-008 ed. Intel Corporation, June 2013. 53

[84] INTEL. 2nd Generation Intel Core Processor Family Desktop, Intel Pentium Pro-
cessor Family Desktop, and Intel Celeron Processor Family Desktop (Volume 2),
datasheet document number 324642-003 ed. Intel Corporation, June 2013. 53

[85] INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1:
Basic Architecture., order number 253665-050us ed. Intel Corporation, Febru-
ary 2014. 2, 31, 34, 35

[86] INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 2
(2A, 2B & 2C): Instruction Set Reference, A-Z, order number 325462-050us ed.
Intel Corporation, February 2014. 2, 34, 56, 144

[87] INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume
3 (3A, 3B & 3C): System Programming Guide, order number 325462-050us ed.
Intel Corporation, February 2014. 2, 6, 10, 11, 12, 45, 46, 48, 49, 55, 56, 57, 59,
65, 66, 72, 73, 76, 96, 110, 143, 144, 145, 146, 152

[88] INTEL. Intel Atom Processor N270 Series (update), document number 320047-
009us ed. Intel Corporation, July 2014. Revision 009. 53

[89] INTEL. Intel Automated Relational Knowledgebase. Intel Corporation, 2014. 33,
34

[90] INTEL. The Intel BIOS Implementation Test Suite (BITS), version 1090 ed. Intel
Corporation, September 2014. 6, 11, 52, 62, 66, 73, 137

[91] INTEL. Intel C610 Series Chipset and Intel X99 Chipset Platform Controller Hub
(PCH), datasheet ed. Intel Corporation, September 2014. 57, 72, 142

[92] INTEL. Intel Core M Processor Family, datasheet ed. Intel Corporation, Septem-
ber 2014. Volume 1 of 2. 50, 51, 72, 139

161

http://www.intel.com/content/www/us/en/processors/pentium/core-i5-600-i3-500-pentium-6000-datasheet-vol-1.html
http://www.intel.com/content/www/us/en/processors/pentium/core-i5-600-i3-500-pentium-6000-datasheet-vol-1.html
http://www.intel.com/content/www/us/en/processors/pentium/core-i5-600-i3-500-pentium-6000-datasheet-vol-2.html
http://www.intel.com/content/www/us/en/processors/pentium/core-i5-600-i3-500-pentium-6000-datasheet-vol-2.html
http://www.intel.com/content/www/us/en/intelligent-systems/queens-bay/platform-controller-hub-eg20t-datasheet.html?wapkw=platform+controller+hub
http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-vol-2-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/2nd-gen-core-desktop-vol-2-datasheet.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals.
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals.
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-n270-specification-update.html
http://ark.intel.com/
http://biosbits.org
http://www.intel.com/content/www/us/en/chipsets/x99-chipset-pch-datasheet.html
http://www.intel.com/content/www/us/en/chipsets/x99-chipset-pch-datasheet.html
http://www.intel.co.uk/content/www/uk/en/processors/core/CoreTechnical Resources.html

BIBLIOGRAPHY

[93] INTEL. Intel Core M Processor Family, datasheet ed. Intel Corporation, Septem-
ber 2014. Volume 2 of 2. 50, 51, 57, 72, 139

[94] INTEL. Intel Software Guard Extensions Programming Reference, order number
329298-002us ed. Intel Corporation, October 2014. 67

[95] INTEL. Trusted Boot (tboot), version 1.8.2 ed. Intel Corporation, November
2014. 37

[96] INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 2
(2A, 2B & 2C): Instruction Set Reference, A-Z, order number 325383-057us ed.
Intel Corporation, December 2015. 144

[97] INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 3
(3A, 3B, 3C & 3D): System Programming Guide, order number 325384-056us ed.
Intel Corporation, September 2015. 2, 46, 48, 49, 52, 72, 76, 96, 143, 144, 145,
146, 152

[98] INTEL. The Intel BIOS Implementation Test Suite (BITS), version 2073 ed. Intel
Corporation, January 2016. 52, 53, 54

[99] JAEGER, T., SAILER, R., AND SHANKAR, U. Prima: Policy-reduced integrity
measurement architecture. In Proceedings of the Eleventh ACM Symposium on
Access Control Models and Technologies (New York, NY, USA, 2006), SACMAT
’06, ACM, pp. 19–28. doi:10.1145/1133058.1133063. 40

[100] KELLER, E., SZEFER, J., REXFORD, J., AND LEE, R. B. Nohype: Virtualized
cloud infrastructure without the virtualization. In Proceedings of the 37th An-
nual International Symposium on Computer Architecture (New York, NY, USA,
2010), ISCA ’10, ACM, pp. 350–361. doi:10.1145/1815961.1816010. 42

[101] KING, S. T., CHEN, P. M., WANG, Y.-M., VERBOWSKI, C., WANG, H. J.,
AND LORCH, J. R. Subvirt: Implementing malware with virtual machines.
In Proceedings of the 2006 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2006), SP ’06, IEEE Computer Society, pp. 314–327. doi:10.1109/
SP.2006.38. 41

[102] KORTCHINSKY, K. Hacking 3d (and breaking out of vmware). In Black Hat
Conference (Las Vegas, NV, July 2009). 43, 70, 131

[103] KOURAI, K., AND CHIBA, S. Hyperspector: Virtual distributed moni-
toring environments for secure intrusion detection. In Proceedings of the
1st ACM/USENIX International Conference on Virtual Execution Environments
(New York, NY, USA, 2005), VEE ’05, ACM, pp. 197–207. doi:10.1145/
1064979.1065006. 42

[104] KOVAH, X., KALLENBERG, C., WEATHERS, C., HERZOG, A., ALBIN, M.,
AND BUTTERWORTH, J. New results for timing-based attestation. In Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy (Washington, DC,
USA, 2012), SP ’12, IEEE Computer Society, pp. 239–253. doi:10.1109/
SP.2012.45. 60

162

. September 2014. http://www.intel.co.uk/content/www/uk/en/processors/core/CoreTechnical Resources.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://sourceforge.net/projects/tboot
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://biosbits.org
http://doi.acm.org/10.1145/1133058.1133063
http://doi.acm.org/10.1145/1133058.1133063
http://dx.doi.org/10.1145/1133058.1133063
http://doi.acm.org/10.1145/1815961.1816010
http://doi.acm.org/10.1145/1815961.1816010
http://dx.doi.org/10.1145/1815961.1816010
http://dx.doi.org/10.1109/SP.2006.38
http://dx.doi.org/10.1109/SP.2006.38
http://dx.doi.org/10.1109/SP.2006.38
http://doi.acm.org/10.1145/1064979.1065006
http://doi.acm.org/10.1145/1064979.1065006
http://dx.doi.org/10.1145/1064979.1065006
http://dx.doi.org/10.1145/1064979.1065006
http://dx.doi.org/10.1109/SP.2012.45
http://dx.doi.org/10.1109/SP.2012.45
http://dx.doi.org/10.1109/SP.2012.45

BIBLIOGRAPHY

[105] KUSSWURM, D. Modern X86 Assembly Language Programming: 32-bit, 64-bit,
SSE, and AVX. Apress, New York, 2014. 131

[106] THE LINUX KERNEL ARCHIVES. LibPCI for Linux, 2014. 63

[107] LITTY, L., LAGAR-CAVILLA, H. A., AND LIE, D. Hypervisor support for
identifying covertly executing binaries. In Proceedings of the 17th Conference
on Security Symposium (Berkeley, CA, USA, 2008), SS’08, USENIX Association,
pp. 243–258. 41

[108] MATHER, T., KUMARASWAMY, S., AND LATIF, S. Cloud Security and Privacy.
OReilly Media, Sebastopol, CA, USA, 2009. 19, 22

[109] MCCUNE, J. M., PARNO, B. J., PERRIG, A., REITER, M. K., AND ISOZAKI,
H. Flicker: An execution infrastructure for tcb minimization. In Proceedings of
the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008
(New York, NY, USA, 2008), Eurosys ’08, ACM, pp. 315–328. doi:10.1145/
1352592.1352625. 42

[110] MCEVOY, T. R., AND WOLTHUSEN, S. D. Host-based security sensor in-
tegrity in multiprocessing environments. In Proceedings of the 6th Interna-
tional Conference on Information Security Practice and Experience (Berlin, Hei-
delberg, 2010), ISPEC’10, Springer-Verlag, pp. 138–152. doi:10.1007/
978-3-642-12827-1_11. 43

[111] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS, C. V., SHAFI,
H., SHANBHOGUE, V., AND SAVAGAONKAR, U. R. Innovative instructions
and software model for isolated execution. In Proceedings of the 2Nd Inter-
national Workshop on Hardware and Architectural Support for Security and Pri-
vacy (New York, NY, USA, 2013), HASP ’13, ACM, pp. 10:1–10:1. doi:
10.1145/2487726.2488368. 2, 10, 58

[112] MELL, P., AND GRANCE, T. The nist definition of cloud computing. Special
Publication 800-145, National Institute of Standards and Technology, Septem-
ber 2011. 20, 21

[113] MENEZES, A., OORSCHOT, P. C., AND VANSTONE, S. A. Handbook of applied
cryptography. CRC Press, Boca Raton, FL, USA, 1996. 39

[114] PETTEY, C., AND GOASDUFF, L. Gartner highlights five attributes of cloud
computing. Site, June 2009. Accessed in 16/04/2016. 20

[115] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements for virtualizable
third generation architectures. In Communications of the ACM (July 1974),
vol. 17, ACM, pp. 412–421. 25, 26, 28, 29

[116] PORTNOY, M. Virtualization essentials. Wiley, Hoboken, NJ, 2012. 23, 25, 30

[117] RIVEST, R. The MD5 message-digest algorithm, rfc 1321, 37 ed., April 1992. 39

163

ftp://ftp.kernel.org/pub/software/utils/pciutils
http://dl.acm.org/citation.cfm?id=1496711.1496728
http://dl.acm.org/citation.cfm?id=1496711.1496728
http://doi.acm.org/10.1145/1352592.1352625
http://dx.doi.org/10.1145/1352592.1352625
http://dx.doi.org/10.1145/1352592.1352625
http://dx.doi.org/10.1007/978-3-642-12827-1_11
http://dx.doi.org/10.1007/978-3-642-12827-1_11
http://dx.doi.org/10.1007/978-3-642-12827-1_11
http://dx.doi.org/10.1007/978-3-642-12827-1_11
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/2487726.2488368
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://www.gartner.com/newsroom/id/1035013
http://www.gartner.com/newsroom/id/1035013

BIBLIOGRAPHY

[118] ROBIN, J. S., AND IRVINE, C. E. Analysis of the intel pentium’s ability to sup-
port a secure virtual machine monitor. In 9th conference on USENIX Security
Symposium (Berkeley, CA, USA, August 2000), SSYM ’00, USENIX Associa-
tion. 28, 30

[119] RUTKOWSKA, J., AND WOJTCZUK, R. Detecting and preventing the xen hy-
pervisor subervisions. In BlackHat Conference (Las Vegas, NV, 2008). 64

[120] SAILER, R., VALDEZ, E., JAEGER, T., PEREZ, R., DOORN, L. V., GRIFFIN,
J. L., BERGER, S., SAILER, R., VALDEZ, E., LINWOOD, J., AND BERGER, G. S.
shype: Secure hypervisor approach to trusted virtualized systems. Technical
Report RC23511, IBM Research, 2005. 42

[121] SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L. Design and imple-
mentation of a tcg-based integrity measurement architecture. In Proceedings
of the 13th Conference on USENIX Security Symposium - Volume 13 (Berkeley,
CA, USA, 2004), SSYM’04, USENIX Association, pp. 16–16. 40

[122] SCHIFFMAN, J., AND KAPLAN, D. The smm rootkit revisited: Fun with usb.
In Proceedings of the 2014 Ninth International Conference on Availability, Relia-
bility and Security (Washington, DC, USA, 2014), ARES ’14, IEEE Computer
Society, pp. 279–286. doi:10.1109/ARES.2014.44. 64

[123] SCHNEIER, B. Applied cryptography: protocols, algorithms and source code in
C, 2nd ed. Addison-Wesley Publishing Company Reading, Massashussets,
USA, 1996. 39

[124] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. Secvisor: A tiny hyper-
visor to provide lifetime kernel code integrity for commodity oses. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Prin-
ciples (New York, NY, USA, 2007), SOSP ’07, ACM, pp. 335–350. doi:
10.1145/1294261.1294294. 42

[125] SEYFARTH, R. Introduction to 64 bit Assembly Programming for Linux and OS X.
Hattiesburg, MS, USA, 2013. 131

[126] SHACKLEFORD, D. Virtualization Security: Protecting Virtualized Environments.
Sybex, 2013. 19, 22

[127] SHANLEY, T. Pentium Pro and Pentium II system architecture, 2 ed. MindShare,
Reading, MA, USA, 1998. 55

[128] SHINAGAWA, T., EIRAKU, H., TANIMOTO, K., OMOTE, K., HASEGAWA, S.,
HORIE, T., HIRANO, M., KOURAI, K., OYAMA, Y., KAWAI, E., KONO, K.,
CHIBA, S., SHINJO, Y., AND KATO, K. Bitvisor: A thin hypervisor for enforc-
ing i/o device security. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments (New York, NY, USA,
2009), VEE ’09, ACM, pp. 121–130. doi:10.1145/1508293.1508311. 42

[129] SILBERSCHATZ, A., GALVIN, P., AND GAGNE, G. Operating System Concepts,
9 ed. Wiley, Hoboken, NJ, USA, 2013. 22, 23, 28

164

http://dl.acm.org/citation.cfm?id=1251375.1251391
http://dl.acm.org/citation.cfm?id=1251375.1251391
http://dx.doi.org/10.1109/ARES.2014.44
http://dx.doi.org/10.1109/ARES.2014.44
http://doi.acm.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1508293.1508311
http://doi.acm.org/10.1145/1508293.1508311
http://dx.doi.org/10.1145/1508293.1508311

BIBLIOGRAPHY

[130] SKOUDIS, E., AND ZELTSER, L. Malware: fighting malicious code. Prentice Hall,
Upper Saddle River, NJ, USA, 2004. 41

[131] SOSINSKY, B. Cloud Computing Bible. Wiley, Hoboken, NJ, USA, 2011. vii, 19,
20, 21, 22

[132] STALLINGS, W. Cryptography and network security: principles and practice,
5th ed. Prantice Hall, Upper Saddle River, USA, 2010. 39

[133] STEINBERG, U., AND KAUER, B. Nova: A microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European Conference on
Computer Systems (New York, NY, USA, 2010), EuroSys ’10, ACM, pp. 209–
222. doi:10.1145/1755913.1755935. 42

[134] STINSON, R. D. Cryptography: theory and practice, 3rd ed. Chapman and
Hall/CRC, Boca Raton, FL, USA, 2006. 39

[135] SZEFER, J., KELLER, E., LEE, R. B., AND REXFORD, J. Eliminating the hyper-
visor attack surface for a more secure cloud. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (New York, NY, USA,
2011), CCS ’11, ACM, pp. 401–412. doi:10.1145/2046707.2046754. 23,
42, 43, 71

[136] SZEFER, J., AND LEE, R. B. Architectural support for hypervisor-secure
virtualization. SIGPLAN Not. 47, 4 (Mar. 2012), 437–450. doi:10.1145/
2248487.2151022. 42

[137] TAKEMURA, C., AND CRAWFORD, L. S. The Book of Xen : a Practical Guide for
the System Administrator. No Starch Press, San Francisco, CA, USA, 2010. 17,
27, 31, 84, 131

[138] TRUSTED COMPUTING GROUP. Trusted platform. 32, 33, 37, 38

[139] UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI). Platform Initialization
Specification, Pre-EFI Initialization Core Interface, version 1.3 ed., May 2014. Ac-
cessed on 14/05/2014. 36

[140] VMWARE. Understanding full virtualization, paravirtualization, and hard-
ware assist, 2007. Accessed in 20/03/2013. vii, 28, 29, 30

[141] WANG, J., STAVROU, A., AND GHOSH, A. Hypercheck: A hardware-assisted
integrity monitor. In Proceedings of the 13th International Conference on Recent
Advances in Intrusion Detection (Berlin, Heidelberg, 2010), RAID’10, Springer-
Verlag, pp. 158–177. 6, 7, 8, 9, 10, 11, 41, 58, 61, 70, 73, 74, 137

[142] WANG, J., SUN, K., AND STAVROU, A. Hardware-assisted application in-
tegrity monitor. In Proceedings of 45th Hawaii International Conference on Sys-
tem Science (January 2012), HICSS, IEEE Computer Society, pp. 5375 – 5383.
doi:10.1109/HICSS.2012.299. 2, 6, 7, 9, 11, 60, 61, 70, 73, 74

[143] WECHEROWSKI, F. A real smm rootkit: reversing and hooking bios smi han-
dlers, November 2009. 2009. 51, 52, 64, 72

165

http://doi.acm.org/10.1145/1755913.1755935
http://doi.acm.org/10.1145/1755913.1755935
http://dx.doi.org/10.1145/1755913.1755935
http://doi.acm.org/10.1145/2046707.2046754
http://doi.acm.org/10.1145/2046707.2046754
http://dx.doi.org/10.1145/2046707.2046754
http://doi.acm.org/10.1145/2248487.2151022
http://doi.acm.org/10.1145/2248487.2151022
http://dx.doi.org/10.1145/2248487.2151022
http://dx.doi.org/10.1145/2248487.2151022
http://www.Trustedcomputinggroup.org
http://www.uefi.org/specifications
http://www.uefi.org/specifications
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://dl.acm.org/citation.cfm?id=1894166.1894178
http://dl.acm.org/citation.cfm?id=1894166.1894178
http://dx.doi.org/10.1109/HICSS.2012.299
http://phrack.org/issues/66/11.html
http://phrack.org/issues/66/11.html

BIBLIOGRAPHY

[144] WILKINS, R., AND RICHARDSON, B. Uefi secure boot in modern computer
security solutions. White Paper (website Unified Extensible Firmware Inter-
face Forum), September 2013. 36

[145] WOJTCZUK, R. Subverting the xen hypervisor. In Black Hat Conference (Las
Vegas, NV, August 2008). 12, 29, 43, 70, 131

[146] WOJTCZUK, R., AND RUTKOWSKA. Xen 0wning trilogy. In Black Hat Confer-
ence (Las Vegas, NV, August 2008). 7, 58, 138

[147] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking intel trusted execution tech-
nology. In Black Hat Conference (Las Vegas, NV, July 2009). 2, 41, 64

[148] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking smm memory via intel cpu
cache poisoning. Article on Internet, 2009. 2, 41, 47, 64, 65, 70, 74

[149] ZHANG, F., LEACH, K., SUN, K., AND STRAVOU, A. Spectre: a dependable
instrospection framework via system management mode. In Proceedings of
the 43rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (2013), DSN. 6, 7, 9, 11, 60, 61, 70, 73, 74

[150] ZHANG, F., WANG, H. LEACH, K., AND STAVROU, A. A framework to se-
cure peripherals at runtime. In Proceedings of the 19th European Symposium on
Research in Computer Security (Wroclaw, Poland, September 2014), vol. 8712 of
Lecture Notes in Computer Science, LNCS, pp. 219–238. 6, 7, 9, 11, 61, 70, 73, 74

[151] ZHANG, N., LI, M., LOU, W., AND HOU, Y. Mushi: Toward multiple level
security cloud with strong hardware level isolation. In Proceedings of Military
Communications Conference (October 2012), MILCOM 2012, IEEE, pp. 1 – 6.
doi:10.1109/MILCOM.2012.6415698. 6, 7, 60, 61, 70, 73, 74

[152] ZHANG, Y., PAN, W., WANG, Q., BAI, K., AND YU, M. Hypebios: Enforcing
vm isolation with minimized and decomposed cloud tcb. Technical report,
Virginia Commonwealth University, 2012. 7, 60

[153] ZIMMER, V., ROTHMAN, M., AND MARISETTY, S. Beyond BIOS: developing
with the Unified Extensible Firmware Interface, 2 ed. Intel Press, Hillsboro, OR,
USA, 2010. vii, 37, 72

166

http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://dx.doi.org/10.1109/MILCOM.2012.6415698
http://www.people.vcu.edu/~myu/s-lab/publications/Zhang2012.pdf
http://www.people.vcu.edu/~myu/s-lab/publications/Zhang2012.pdf

	Introduction
	Motivation
	Limits and Scope
	Significance
	Research Questions
	Contribution
	List of Publications
	Overview of the Research

	Background
	Introduction
	Definitions
	Context and Technologies
	Environment and Technologies
	Data Integrity with Hash Functions
	Related work: System Executive Software Integrity Issues
	Discussion
	Summary

	The System Management Mode (SMM)
	Introduction
	Components
	SMM operation and relations
	Security implementations using SMM
	Launching attacks using SMM resources
	Discussion
	Summary

	Requirements
	Introduction
	Threat model
	Assumptions
	Requirements for using SMM for security purposes
	Discussion
	Summary

	A Generic Architecture for SMM-Based Security Tools
	Introduction
	Requirements Specification
	General Architecture
	Architecture Design
	Discussion
	Summary

	Implementation and Evaluation - Manager Module and SBST
	Introduction
	Functions in the Manager Module
	Manager Module Computational Experiments
	SBST Implementation and Evaluation
	SBST Limits and Constraints
	Manager Limits and Constraints
	Discussion
	Summary

	Conclusion
	Directions for Future work
	Investigate the interaction of an SBST with technologies in the chipset
	Investigate the Impact of SMI Latency
	Optimize the Proof of Concept Execution Time
	Embed the Tool in a BIOS to Test It in a More Realistic Scenario

	Specific SMM Registers
	Chipset 1 Specific Registers
	Chipset 2 System Management RAM Control register

	Bibliography

