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many parts of the world, resulting in improved relative chronologies for 
fluviatile sequences.  Complementary fossil groups, such as insects, 
ostracods and plant macrofossils, are also increasingly used in multi-
proxy palaeoclimatic and palaeoenvironmental reconstructions, allowing 
direct comparison of the climates and environments that prevailed at 
different times across widely separated regions.  This paper reviews 
these topics on a regional basis, with an emphasis on the latest 
published information, and represents an update to the 2007 review 
compiled by the FLAG-inspired IGCP 449 biostratigraphy subgroup.  
Disparities in the level of detail available for different regions can 
largely be attributed to varying potential for preservation of fossil 
material, which is especially poor in areas of non-calcareous bedrock, 
but to some extent also reflect research priorities in different parts of 
the world.  Recognition of the value of biostratigraphical and 
palaeoclimatic frameworks, which have been refined over many decades in 
the 'core regions' for such research (particularly for the late Middle 
and Late Pleistocene of NW Europe), has focussed attention on the need to 
accumulate similar palaeontological datasets in areas lacking such long 
research histories.  Although the emerging datasets from these 
understudied regions currently allow only tentative conclusions to be 
drawn, they represent an important stage in the development of 
independent biostratigraphical and palaeoenvironmental schemes, which can 
then be compared and contrasted. 
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Abstract 15 
Fluvial sedimentary archives have the potential to preserve a wide variety of 16 
palaeontological evidence, ranging from robust bones and teeth found in coarse gravel 17 
aggradations to delicate insect remains and plant macrofossils from fine-grained 18 
deposits.  Over the last decade, advances in Quaternary biostratigraphy based on 19 
vertebrate and invertebrate fossils (primarily mammals and molluscs) have been made 20 
in many parts of the world, resulting in improved relative chronologies for fluviatile 21 
sequences.  Complementary fossil groups, such as insects, ostracods and plant 22 
macrofossils, are also increasingly used in multi-proxy palaeoclimatic and 23 
palaeoenvironmental reconstructions, allowing direct comparison of the climates and 24 
environments that prevailed at different times across widely separated regions.  This 25 
paper reviews these topics on a regional basis, with an emphasis on the latest 26 
published information, and represents an update to the 2007 review compiled by the 27 
FLAG-inspired IGCP 449 biostratigraphy subgroup.  Disparities in the level of detail 28 
available for different regions can largely be attributed to varying potential for 29 
preservation of fossil material, which is especially poor in areas of non-calcareous 30 
bedrock, but to some extent also reflect research priorities in different parts of the 31 
world.  Recognition of the value of biostratigraphical and palaeoclimatic frameworks, 32 
which have been refined over many decades in the 'core regions' for such research 33 
(particularly for the late Middle and Late Pleistocene of NW Europe), has focussed 34 
attention on the need to accumulate similar palaeontological datasets in areas lacking 35 
such long research histories.  Although the emerging datasets from these understudied 36 
regions currently allow only tentative conclusions to be drawn, they represent an 37 
important stage in the development of independent biostratigraphical and 38 
palaeoenvironmental schemes, which can then be compared and contrasted. 39 
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Figures: 45 
Fig. 1 Map showing regions, major river catchments and key fossil sites mentioned in 46 
the text. 47 

Fig. 2 Idealized tranverse section through the Lower Thames terrace sequence, east of 48 
London, including details of Mammal Assemblage Zones (after Bridgland and 49 
Schreve, 2001), updated to include biostratigraphically significant invertebrate 50 
species and archaeological data. 51 

Fig. 3 Correlation of Hoxnian fluvial sequences in the Lower Thames with the 52 
stratotype at Hoxne (after White et al., 2013). The occurrence of the 'Rhenish' suite of 53 
freshwater molluscs is critical to linking the Swanscombe and Clacton sequences and 54 
thence to the pollen stratigraphy of the type-Hoxnian (sub-stages labelled). Units for 55 
which there is clear palaeontological or sedimentological evidence for the prevailing 56 
climate are colour-coded, and tentative correlations with the marine oxygen isotope 57 
stages (MIS) of the deep-sea record are also shown.  58 

Fig. 4 Idealized cross-sections through the Middle Trent, Lower Trent and Witham 59 
terrace sequences (modified from Bridgland et al., 2015 and White et al., 2017), 60 
showing MIS correlation and biostratigraphically significant species. 61 

Fig. 5 Schematic diagrams showing the progressive appearance of forest land snail 62 
species during three interglacials in northern France: La Celle (MIS 11), Caours (MIS 63 
5e) and St Germain-le-Vasson (MIS 1). Modified from Limondin-Lozouet and Preece 64 
(2014). 65 

Fig. 6 Synthetic curves showing the development of ecological groups of molluscs 66 
during MIS 11 at the site of La Celle, northern France, and a comparison with 67 
malacological successions from other western European MIS 11 tufa sequences. The 68 
appearances of critical species at La Celle that permit correlation with other 69 
sequences are highlighted (after Limondin-Lozouet et al., 2015) 70 

Fig. 7 Biostratigraphical scheme for Eastern European mammalian faunas (after 71 
Markova, 2007). 72 

Fig. 8 Correlation chart showing faunal changes, the hominin fossil record and 73 
significant technological changes in the Indian subcontinent, mainland and insular SE 74 
Asia (after Mishra et al., 2010). 75 

Fig. 9 Pleistocene chronology of the Great American Biotic Interchange (GABI), 76 
showing details of major faunal exchanges between North and South America that 77 
began at around 2.8 Ma (modified from Woodburne, 2010). Marine oxygen isotope 78 
stages after Lisiecki and Raymo (2005).  79 

Fig. 10 Biostratigraphical significance of four species of glyptodont 80 
(Neosclerocalyptus) in the Pleistocene of South America (modified from Zurita et al., 81 
2009a). 82 

Fig. 11 Schematic diagram showing temporal occurrence of megafaunal taxa at 83 
Darling Downs, Australia, in relation to the widely-accepted hypothetical megafaunal 84 
extinction 'window' and the approximate timing of human arrival on the continent 85 
(after Price et al., 2011).86 
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1.  Introduction 87 
The study of fossil assemblages recovered from fluvial deposits is well-established as 88 
an important element of multi-disciplinary Quaternary research, providing a basis for 89 
regional relative dating frameworks (e.g. Gliozzi et al., 1997; Schreve, 2001a; 90 
Schreve and Bridgland, 2002; Bridgland et al., 2004; Markova, 2007; Megirian et al., 91 
2010) and for detailed palaeoclimatic and palaeoenvironmental analyses (e.g. Coope, 92 
2010; Schreve and Candy, 2010; Candy et al., 2010, 2015, 2016; Kahlke et al., 2011; 93 
Limondin-Lozouet et al., 2010; Rule et al., 2012; White et al., 2013).  The 94 
contribution of the Fluvial Archives Group (FLAG) to these research areas over the 95 
last 20 years has been considerable: two UNESCO-sponsored International 96 
Geological Correlation Programme (IGCP) projects, entitled 'Global correlation of 97 
Late Cenozoic fluvial deposits' (IGCP 449) and 'Fluvial sequences as evidence for 98 
landscape and climatic evolution in the Late Cenozoic' (IGCP 518), ran under the 99 
auspices of FLAG between 2000 and 2007 (Bridgland et al., 2007; Westaway et al., 100 
2009).  The former included a thematic biostratigraphy subgroup, which compiled 101 
data on faunal assemblages from fluvial sequences in different parts of the world, 102 
resulting in the publication of a review of progress in faunal correlation of Late 103 
Cenozoic fluvial sequences (Schreve et al., 2007); following the conclusion of these 104 
IGCP projects, data has continued to accumulate as part of the ongoing efforts of 105 
members of FLAG (Cordier et al., 2017).   106 
 107 
This paper provides updated reviews, organized on a regional basis, of advances in 108 
Pleistocene vertebrate and invertebrate biostratigraphy made during the 20-year life of 109 
FLAG; as such, it is intended to be a companion to the report of the IGCP 449 110 
biostratigraphy subgroup (Schreve et al., 2007), which remains a benchmark review 111 
of biostratigraphical frameworks derived from fluvial archives around the world.  As 112 
was the case with that paper, much of the most detailed work has been undertaken in 113 
regions such as NW and Central Europe, which have enjoyed long traditions of 114 
Pleistocene palaeontological research, particularly for the late Middle and Late 115 
Pleistocene (Fig. 1).  This review also extends its scope beyond that of its 116 
predecessors to include considerations of the palaeoenvironmental, palaeoecological 117 
and biogeographical information that can be derived from fossil assemblages, and the 118 
potential for Pleistocene fluvial archives to enhance knowledge of long-term 119 
Quaternary climate change.   120 
 121 
Insert Figure 1 hereabouts 122 
 123 
Fluvial archives have several advantages over other types of terrestrial sedimentary 124 
sequences that commonly preserve fossils (such as those from lake basins or caves), 125 
the most significant of these being the potential chrono-stratigraphical control 126 
provided by river terraces, which have great value as regional templates for the 127 
terrestrial Quaternary record (Bridgland, 2000, 2006; Antoine et al., 2007; Bridgland 128 
and Westaway, 2008a, 2014; Bridgland et al., 2004, 2006, 2017; Mishra et al., 2007; 129 
Vandenberghe, 2015).  The nature of rivers also means that Pleistocene fluvial 130 
sequences have the potential to preserve a variety of plant and animal fossils derived 131 
from terrestrial, freshwater and estuarine environments, recording concurrent changes 132 
in a diverse range of palaeoenvironmental settings.  Lacustrine sequences, although 133 
undoubtedly sources of more continuous and higher-resolution longer-timescale 134 
records than rivers, usually represent only the deepest part of a lake basin from which 135 
the longest sediment sequences can be obtained; such records are therefore often 136 
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lacking in fossils indicative of local terrestrial environments (with the notable 137 
exception of wind-borne pollen) and are (usually) isolated from marine influences.  138 
Conversely, cave sequences, which are often significant repositories of vertebrate 139 
fossils (particularly mammals), usually lack pollen and invertebrate assemblages.  140 
Fluvial archives therefore have an unrivalled capacity to provide insights into 141 
changing Quaternary climates and environments through time, due to the wide range 142 
of fossil types available (which include pollen, plant macrofossils, mammals, 143 
molluscs, ostracods and insects), coupled with the chronological control provided by 144 
river terraces.  Together, these proxies can be used to generate local biostratigraphical 145 
frameworks, which can then be extended into other regions and into different 146 
depositional contexts outside river valleys.  Moreover, where fluvial sequences 147 
interdigitate with other sediment types, such as glacigenic or estuarine-marine 148 
deposits, biostratigraphical evidence can be used to constrain the age of regional 149 
glacial and sea-level histories (e.g. Bridgland et al., 1999; Matoshko et al., 2004; 150 
White et al., 2010, 2013, 2017; Vis et al., 2010), which can then provide further 151 
stratigraphical (‘event stratigraphy’) markers.  It should be noted, of course, that this 152 
potential can only be realized in areas conducive to the preservation of fossils, and 153 
that fluvial sequences are subjected to the same taphonomic complications known to 154 
affect other Quaternary sedimentary archives.   155 
 156 
Much of the recent palaeontological research summarized here has been undertaken 157 
as part of multidisciplinary projects, often driven by archaeologically-motivated 158 
research questions (see Chauhan et al., 2017).  In Europe and Asia, these have often 159 
focussed on the timing of hominin occupations relative to changing Pleistocene 160 
climate and environments (e.g. Parfitt et al., 2005, 2010; Antoine et al., 2015, 2016; 161 
Maddy et al., 2015; Peretto et al., 2015), whereas further afield, in regions such as 162 
North America and Australia, attention has been more focussed on potential human 163 
impacts, particularly on megafaunal populations (e.g. Prideaux et al., 2010; Prescott et 164 
al., 2012; Sandom et al., 2014; Cooper et al., 2015; Stuart, 2015).  The potential for 165 
fossils to provide important chronological and palaeoenvironmental frameworks 166 
within which to interpret the archaeological record has also inspired research in 167 
(initially) less promising regions of the world that have previously received little 168 
attention, such as the deserts of the Arabian Peninsula (e.g. Groucutt et al., 2015; 169 
Stimpson et al., 2015, 2016).  The resulting palaeontological data have the potential to 170 
be interpreted on a variety of scales, ranging from considerations of changing climatic 171 
conditions during a single interglacial in a given region (e.g. Candy et al., 2016) to 172 
comparisons between different interglacials (e.g. Limondin-Lozouet and Preece, 173 
2014) and even identification of patterns at the marine oxygen isotope substage level 174 
(Schreve, 2001b; Candy and Schreve, 2007; Ashton et al., 2008; White et al., 2013).  175 
Key to such studies have been important advances in the application of independent 176 
geochronological methodologies to Quaternary fluvial archives (reviewed in detail by 177 
Rixhon et al., 2017).  Advances in radiometric dating techniques, such as optically 178 
stimulated luminescence (OSL), electron spin resonance (ESR) and uranium-series 179 
have provided crucial chronological control (e.g., Rittenour, 2008; Kock et al., 2009; 180 
Voinchet et al., 2015;).  In tectonically-active areas, the presence of interbedded 181 
volcanic deposits can provide further opportunities for constraining the age of the 182 
fluvial sediments through the application of argon–argon dating (e.g. Maddy et al., 183 
2012; Marra et al., 2016).  In addition, amino-acid racemization dating (AAR) based 184 
on the calcitic opercula of the freshwater gastropod genus Bithynia has been shown to 185 
be more reliable than previous AAR methodologies, allowing the development of a 186 
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robust aminostratigraphy for the British Quaternary with potential for application in 187 
other regions (Penkman et al., 2007, 2011, 2013; cf. Westaway, 2009).   188 
 189 
2.  NW and Central Europe 190 
A substantial body of research has been undertaken over the last decade in this 191 
important region, particularly in southern Britain and northern France.  This is partly a 192 
feature of preservation potential; the unequal global distribution of fossiliferous 193 
fluvial sediments corresponds closely with that of calcareous bedrock outcrops, which 194 
promote fossil preservation, limiting detailed biostratigraphical research to regions 195 
dominated by limestone and chalk.  Calcareous tufas have provided an important 196 
additional source of data (Dabkowski, 2014), albeit from sediment sequences usually 197 
outside major fluvial systems.  Tufa sequences have been recorded across Europe 198 
(Pentecost, 1995; Sancho et al., 2015), but are particularly well represented in 199 
northern France and Britain, where they have mainly been attributed to MIS 11, MIS 200 
5e and the Holocene (Dabowski, 2014; Limondin-Lozouet and Preece, 2014).  The 201 
Triassic Muschelkalk outcrop in Germany also gives rise to notable occurrences of 202 
calcareous spring deposits formed on former subaerial floodplains, although these are 203 
generally more lithified than their Ango-French counterparts and have thus generally 204 
been termed travertines.  Important multiple travertines are interbedded with the 205 
terrace deposits of the Ilm at Weimar (Schreve and Bridgland, 2002) and the Wipper 206 
at Bilzingsleben (Mania, 1995).  Although tufa and travertine deposits tend to be 207 
highly localized, they can preserve fossils that rarely survive in other fluvial 208 
sedimentary settings; this wide variety of palaeontological data is therefore 209 
particularly suitable for both biostratigraphy and palaeoclimatic reconstructions.  As 210 
well as molluscs and vertebrates, plant remains (sometimes in the form of imprints of 211 
rapidly-encrusted leaves or fruits) are also common, although pollen is rarely well 212 
preserved (Dabkowski, 2014).  The calcareous nature of tufas and travertines also 213 
means that they are suitable for a range of geochemical analyses (e.g. Dabkowski et 214 
al. 2012, 2015), and appropriate for radiometric dating using U-series techniques (e.g. 215 
Candy and Schreve, 2007; Sierralta et al., 2010).  216 
 217 
2.1 Britain 218 

Quaternary palaeontology in Britain has benefitted from government funding of 219 
multidisciplinary research projects through bodies such as English Heritage (now 220 
Historic England) and schemes such as the Aggregates Levy Sustainability Fund 221 
(ALSF).  The English Rivers Palaeolithic Survey (TERPS), which commenced in 222 
1991, resulted in an important baseline archive for Pleistocene archaeological 223 
research (Wymer, 1999), but provided only basic information pertaining to the 224 
palaeontological evidence that accompanied Palaeolithic assemblages.  More detailed 225 
reviews of regional Pleistocene fossil records were subsequently provided by projects 226 
funded by the ALSF, such as the Trent Valley Palaeolithic Project (TVPP), which 227 
conducted an exhaustive review of both the palaeontological and archaeological 228 
records of the English Midlands (Schreve, 2007; Bridgland et al., 2014), and the 229 
Medway Valley Palaeolithic Project (MVPP), which conducted similar research in 230 
Kent (Briant et al., 2012; Chauhan et al, this volume).  These projects were able to 231 
study fossiliferous localities that lacked archaeological material, adding valuable 232 
palaeontological and palaeoclimatic data to the underlying TERPS dataset. An 233 
overview of all the ALSF-funded projects was provided by White (2016). Additional 234 
data was accumulated during the lifetime of the Ancient Human Occupation of 235 
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Britain Project (AHOB), funded by the Leverhulme Trust, which underook research at 236 
numerous fluvial localities (Ashton et al., 2011; see http://ahobproject.org/database).  237 
 238 
The data accumulated by these research projects have continued to test and reinforce 239 
the biostratigraphical model developed by Schreve (2001a; Fig. 2), which proposed a 240 
succession of Mammal Assemblage-Zones (MAZs) representing post-Anglian (MIS 241 
12) interglacials.  An important aspect of recent research has been the recognition of 242 
greater climatic complexity recorded in terrestrial interglacial sequences, leading to a 243 
renewed appreciation of the potential ability of multi-proxy palaeontological analyses 244 
to discern marine oxygen isotope substages (e.g. Schreve, 2001b; Ashton et al., 2008; 245 
Koutsodendris et al., 2010, 2011; White et al., 2013; Candy et al., 2014, 2016).  In 246 
Britain and northern Europe, this has been especially relevant to sequences attributed 247 
to the MIS 11 Hoxnian/Holsteinian Interglacial (e.g. Preece et al., 2007; Ashton et al., 248 
2008; Candy et al., 2014), which is particularly well represented in the terrestrial 249 
record. 250 
 251 
2.1.1 The Lower Thames 252 

The terrace deposits of the River Thames, particularly in its lower reach, represent 253 
one of the most important terrestrial archives of the Middle and Late Pleistocene in 254 
the world.  In addition to key MIS 9 and MIS 7 sites published earlier in the lifetime 255 
of FLAG (Schreve et al., 2007 and references therein), new data have been obtained 256 
from several important Lower Thames localities over the last decade, including 257 
several MIS 11 sites: Dierden's Pit, Swanscombe (White et al., 2013), Southfleet 258 
Road, Swanscombe (Wenban-Smith, 2013), East Hyde, Tillingham (Roe, 2001; 259 
White, 2012) and Clacton-on-Sea (White, 2012).  Further work has also been 260 
undertaken on the MIS 9 sequence at Purfleet (Bridgland et al., 2013) and other MIS 261 
9 localities downstream in eastern Essex (Roe and Preece, 2011; Roe et al., 2009, 262 
2011), providing further insight into the differentiation of MIS 11 and MIS 9 in the 263 
British terrestrial record (Bridgland et al., 2001; Thomas, 2001; Roe et al., 2009). 264 
Over the wider Thames valley, mammalian fossils have assisted with the correlation 265 
of the Upper and Middle Thames terraces (Bridgland and Schreve, 2009). 266 
 267 
Insert Figure 2 hereabouts 268 
 269 
At Swanscombe, the biostratigraphical and palaeogeographical significance of the 270 
'Rhenish' suite of freshwater molluscs, an important feature of the MIS 11 faunal 271 
succession in the Lower Thames, has been firmly established by new evidence from 272 
Dierden's Pit (White et al., 2013).  The Swanscombe sequence, together with its 273 
downstream correlatives at East Hyde and Clacton, indicates that the six ‘Rhenish’ 274 
species did not colonize the Thames simultaneously, but appeared in a distinctive 275 
sequence that can be tied to particular stages in the development of the vegetation.  At 276 
both Swanscombe and Clacton, ‘Rhenish’ taxa are largely absent from the earliest 277 
fluvial deposits, with the pioneer species Pisidium clessini and Theodoxus danubialis 278 
first appearing during pollen zone Ho II.  These, together with Belgrandia marginata, 279 
become established at the onset of Ho III, just before the first evidence for estuarine 280 
conditions (in the form of brackish indicator species) appears at both sites.  They are 281 
followed by Corbicula fluminalis, which appears during Ho IIIb, and Borysthenia 282 
naticina, which is absent from Clacton but appears in significant numbers slightly 283 
later than Corbicula at both Swanscombe and East Hyde (White et al., 2013).  The 284 
timing of the first appearance of the final 'Rhenish' species, Viviparus diluvianus, is 285 
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less clear-cut, since it is a rare component of the Swanscombe fauna (Kerney, 1971) 286 
and is only represented by derived shells at Clacton.  However, at East Hyde it 287 
appears to be present from early in the sequence, suggesting it was established in the 288 
lower Thames by at least pollen zone Ho IIIa (White et al., 2013). It has therefore 289 
been possible, on the basis of multiple strands of fossil evidence, to correlate MIS 11 290 
fluvial sequences in the Lower Thames and to establish the timing of sea-level change 291 
and the migration of the estuarine environment during that interglacial (White et al., 292 
2013; Fig. 3).  This has shown that sea-levels rose relatively late in the interglacial, 293 
during Ho III, with a significant period during which the Thames was confluent with 294 
continental rivers such as the Scheldt; this was presumably also true of other fluvial 295 
systems flowing into the southern North Sea basin.  This palaeogeographical situation 296 
allowed distinctive groups of invertebrate and vertebrate species (including humans) 297 
to colonize Britain (White et al., 2013). 298 
  299 
Insert Figure 3 hereabouts 300 
 301 
Other significant recent advances in knowledge of the Lower Thames sequence have 302 
arisen from work undertaken as part of developer-funded archaeological appraisal, 303 
particularly that related to construction of the high-speed railway connection to the 304 
Channel Tunnel (e.g. Bridgland et al., 2013; Wenban-Smith 2013) and within the 305 
remit of work funded by the ALSF.  The construction of the Channel Tunnel Rail 306 
Link led to the unexpected discovery of an elephant-butchery site, preserved within 307 
deposits of a south-bank Thames tributary at Southfleet Road, Swanscombe (Wenban-308 
Smith et al., 2006; Wenban-Smith, 2013).  The carcass of an extinct straight-tusked 309 
elephant (Palaeoloxodon antiquus) was surrounded by an undisturbed scatter of flint 310 
tools (Wenban-Smith, 2015).  Fossil assemblages recovered from the Southfleet Road 311 
sequence included vertebrates, molluscs, ostracods and pollen; the absence of 312 
'Rhenish' molluscs indicates that the sequence pre-dates the Middle Gravels at 313 
Swanscombe and is therefore probably equivalent to the Lower Loam at Barnfield Pit, 314 
a conclusion consistent with the presence of Clactonian artefacts (Wenban-Smith, 315 
2013).  The vertebrate assemblage is strikingly similar to those from Swanscombe 316 
(Basal Gravel-Lower Loam) and Clacton, both of which have been assigned to the 317 
Swanscombe MAZ (Schreve, 2001a). 318 
 319 
Work at the important MIS 9 sequence at Purfleet, undertaken as part of various 320 
developer-funded projects, allowed assessment of the palaeontological assemblages 321 
from the site, together with new analyses of stable isotopes and geochronology 322 
(Bridgland et al., 2013).  This work confirmed the attribution of the interglacial to 323 
MIS 9 through the application of OSL and AAR and contributed new 324 
palaeoecological information.  The MIS 9 interglacial has also been studied at various 325 
sites downstream in eastern Essex (Roe and Preece, 2011; Roe et al., 2011), allowing 326 
enhancement of knowledge of the evolution of the highstand MIS 9e estuary in the 327 
Lower Thames valley.  Further south, the MVPP produced amino acid racemization 328 
data from several fossiliferous localities in eastern Essex, including the MIS 11 329 
sequences at Clacton-on-Sea, East Hyde, Bradwell Hall, the MIS 9 sequences at 330 
Shoeburyness, Cudmore Grove, East Wick and the Last Interglacial (MIS 5e) site at 331 
East Mersea.  The famous Levallois site at Baker’s Hole, located in the Ebbsfleet 332 
Valley, NW Kent, has also been the subject of recent research following the 333 
construction of the Channel Tunnel Rail Link and Ebbsfleet International station 334 
(Scott et al., 2010; Wenban-Smith, 2014). This locality, dated to MIS 7, represents the 335 
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last surviving remnant of what was (before quarrying) a wide area containing 336 
Levalloisian lithic remains in undisturbed primary context, associated with 337 
assemblages of large mammals, molluscs, small vertebrates and ostracods; publication 338 
of detailed biostratigraphical and palaeoenvironmental analyses is in progress.   339 
 340 
2.1.2 The River Trent and its tributaries 341 

The Trent, Britain's third longest river, had until recently received considerably less 342 
attention than other British fluvial systems.  Significant new insights into the origin 343 
and evolution of the Trent system have resulted from the Trent Valley Palaeolithic 344 
Project (TVPP), which conducted an exhaustive review of the geological, 345 
palaeontological and archaeological records of the English Midlands (Howard et al., 346 
2007; White et al., 2007, 2010; Bridgland et al., 2014, 2015).  The dating of the Trent 347 
terraces has been underpinned by biostratigraphical data, together with 348 
aminostratigraphic and OSL dating programmes and uplift modelling (Penkman et al., 349 
2011, 2013; Bridgland et al., 2014; Westaway et al., 2015; Westaway, 2017).  350 
Pleistocene fossil assemblages from the Trent catchment are both less common and 351 
less well known than equivalent records from the aforementioned Lower Thames sites 352 
and adjacent catchments, such as the Warwickshire-Worcestershire Avon.  The upper 353 
and middle reaches of the Trent include few calcareous rocks, fossils being preserved 354 
there only under exceptional circumstances, such as within the Allenton Terrace 355 
deposits south-west of Derby (Bridgland et al., 2014) and the floodplain gravels at 356 
Whitemoor Haye (Schreve et al., 2013).  Both of these sites are located at the 357 
confluences of tributary rivers with the main Trent.  At Allenton, calcareous gravels 358 
enriched by Carboniferous limestone clasts from upstream in the tributary Derwent 359 
valley are responsible for the localized preservation of vertebrate assemblages that 360 
include hippopotamus, on the basis of which these deposits have been attributed to 361 
MIS 5e (Bridgland et al., 2014).  The younger Whitemoor Haye locality, at the Tame-362 
Trent confluence, is situated within low-lying 'floodplain terrace' deposits, dated by 363 
radiocarbon and OSL to around 41–43 k cal a BP, placing them within the Middle 364 
Devensian (MIS 3; Schreve et al., 2013).  This site is prone to waterlogging, another 365 
effective means of preserving organic remains; palaeotemperature reconstructions, 366 
based on beetle and chironomid assemblages, have indicated mean July temperatures 367 
of +8 to +11 °C and mean January temperatures of between −22 and −16 °C (Schreve 368 
et al., 2013).  369 

The most significant fossil assemblages from the Trent catchment have been 370 
recovered from its lower reach, where numerous sites have now been recorded in the 371 
Balderton–Southrey Terrace of the Trent and in the Fulbeck and Tattershall terraces 372 
of its tributaries, the Witham and Bain, respectively (Bridgland et al., 2014, 2015; Fig. 373 
4).  A significant aspect of the late Middle and Late Pleistocene record in the Trent is 374 
the absence of deposits belonging to the MIS 11 and MIS 9 interglacials, which are 375 
well represented in fluvial systems further south, most notably the Thames.  This has 376 
been attributed to extensive glaciation of the English Midlands during MIS 8 (White 377 
et al., 2010, 2017; Bridgland et al., 2014).  The oldest fossiliferous sediments known 378 
from the Trent system are therefore those preserved within the Balderton-Southrey 379 
terrace and its equivalents in the Witham and Bain valleys (Brandon and Sumbler, 380 
1988, 1991; Schreve, 2007; Bridgland et al., 2014).  The Balderton Terrace of the 381 
Lower Trent is predominantly a cold-climate aggradation, from which characteristic 382 
fossils such as Mammuthus primigenius (woolly mammoth), Coelodonta antiquitatis 383 
(woolly rhinoceros) and Ovibos moschatus (musk ox) have been recovered (Brandon 384 
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and Sumbler, 1988, 1991; Bridgland et al., 2014).  Earlier studies of these vertebrate 385 
assemblages also recognised the presence of interglacial species (Brandon and 386 
Sumbler, 1988, 1991; Lister and Brandon, 1991), which were subsequently 387 
established to have been derived from highly fossiliferous fine-grained deposits 388 
preserved low down in the sequence, typically filling channels cut into the Lias Clay 389 
bedrock or the lowermost part of the Balderton Formation (Bridgland et al., 2014).  390 
The fossil assemblages from these basal channels are representative of interglacial 391 
conditions and include molluscs, ostracods, small vertebrates, pollen, plant 392 
macrofossils and insects (White et al., 2007; Bridgland et al., 2014).  The best record 393 
to date has come from Norton Bottoms, where significant exposures of fine-grained 394 
organic-rich sediments were recorded between 2006 and 2008 (White et al., 2007; 395 
White, 2012; Bridgland et al., 2014).  Amongst the large mammal remains was a 396 
virtually complete cranium and horn cores of an adult aurochs (Bos primigenius), 397 
together with well-preserved molluscan assemblages (some specimens retaining their 398 
periostracum) that included the bivalves Corbicula fluminalis and Pisidium clessini 399 
and the land snail Candidula crayfordensis, none of which are known in Britain after 400 
MIS 7 (see Bridgland et al., 2014).  Insect assemblages from Norton Bottoms are also 401 
a close match with those from British MIS 7 sites, lacking the exotic components that 402 
characterize MIS 9 and MIS 5e (Coope, 2001; Murton et al., 2001; Green et al., 2006; 403 
Bridgland et al., 2014); these have provided mutual climatic range (MCR) estimates 404 
for July temperatures (Tmax) of +16 to +18°C and January temperatures (Tmin) of -11 405 
to +5°C (Bridgland et al., 2014).  Complementary data derived from ostracod 406 
assemblages using the mutual ostracod temperature range (MOTR) method (Horne, 407 
2007; Horne et al., 2012) have provided similar temperature estimates of Tmax +15 to 408 
+21°C and Tmin -4 and +3°C (Bridgland et al., 2014). 409 

Insert Figure 4 hereabouts 410 
 411 
Other sequences containing fine-grained sediments have been recorded in the Witham 412 
Valley, notably from boreholes at Coronation Farm and Stainfield (Bridgland et al., 413 
2014).  These yielded molluscs, pollen, plant macrofossil and insect remains; the 414 
molluscan assemblages contained no biostratigraphically-significant species, but the 415 
presence of Bithynia opercula allowed AAR dating to be applied, which suggested an 416 
age within MIS 7 (Penkman, 2007; Bridgland et al., 2014).  In the valley of the River 417 
Bain, a left-bank tributary of the Trent-Witham system, quarrying at Tattershall 418 
Thorpe revealed interglacial sediments that contained fossils not found in deposits 419 
attributed to MIS 5e (Holyoak and Preece, 1985 and references therein), providing 420 
some of the earliest indications that both MIS 7 and MIS 5e were preserved in the 421 
terrace deposits in that area.  The Last Interglacial (Ipswichian, MIS 5e) is represented 422 
in three parts of the Trent system, all of them areas where the main river is joined by a 423 
significant tributary.  In the Middle Trent, sites at the confluence of the River 424 
Derwent with the Trent, at Boulton Moor and Allenton, have yielded hippopotamus 425 
fossils, together with beetles and plant remains (Arnold-Bemrose and Deeley, 1896; 426 
Jones and Stanley, 1974, 1975).  In the Witham Valley, hippopotamus was also found 427 
at several sites in the vicinity of Fulbeck (Brandon and Sumbler, 1988, 1991; Howard 428 
et al., 1999; Bridgland et al., 2014), and further downstream MIS 5e sediments 429 
(without hippopotamus) were found at Tattershall Castle (Holyoak and Preece, 1985; 430 
Bridgland et al., 2014). 431 

As well as providing age constraints for the terrace deposits, the new recognition of 432 
widespread MIS 7 interglacial deposits in the Lower Trent has been critical in the 433 
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identification of a late Middle Pleistocene (post-Anglian–pre-Devensian) glaciation in 434 
Britain during MIS 8, a considerable rarity globally.  Indeed, widespread 435 
biostratigraphical evidence for MIS 7 deposits in Britain as far north as Bielsbeck in 436 
East Yorkshire appear to exclude the possibility of an eastern British glaciation south 437 
of the River Humber during MIS 6 (White et al., 2010, 2017).  No interglacial 438 
sequences attributable to MIS 11 or 9 have been identified in the Trent system, 439 
providing evidence (albeit negative) for widespread destruction of this part of the late 440 
Middle Pleistocene record (White et al., 2010, 2017).  Dating evidence from the Trent 441 
fluvial archive, in the form of biostratigraphy and aminostratigraphy, has been critical 442 
in constraining the age of this glaciation, demonstrating the utility of fluvial records 443 
where they interdigitate with glacial deposits (see Cordier et al., this issue). 444 

 445 
2.1.3 The Fenland rivers 446 

The rivers flowing into the basin of the Wash in eastern England were recently 447 
studied as part of another ALSF project (the Fenland Rivers of Cambridgeshire 448 
Project), which concluded in 2008 (Boreham et al., 2010).  These included the 449 
Witham (before the latest Pleistocene this was the lower Trent; see Bridgland et al., 450 
2014, 2015), Welland, Nene, Great Ouse and Cam, all of which have yielded well-451 
preserved fossil assemblages.  Morphostratigraphical approaches to fluvial deposits 452 
within the Fen Basin are extremely difficult to apply, since this is an area that has 453 
undergone very little uplift, resulting in poor differentiation of the Pleistocene 454 
terraces.  Biostratigraphical approaches have also been attempted (Bridgland and 455 
Schreve, 2001), although the precise correlations of several key interglacial deposits 456 
in the Fen Basin with the marine oxygen isotope stage record remain controversial 457 
due to mixed or inadequate biostratigraphical signals (Boreham et al., 2010).  This is 458 
largely due to the preservation of sediments representing more than one interglacial in 459 
close proximity beneath a single terrace surface (Boreham et al., 2010). Research in 460 
the Peterborough area has revealed considerable complexity in the fluvial deposits 461 
preserved there (Langford and Briant, 2004; White et al., 2010, 2016; Bridgland et al., 462 
2014; Langford et al., 2014a, b). Once again, occurences of Corbicula fluminalis and 463 
Hippopotamus amphibius have been key to distinguishing the Last Interglacial 464 
(Ipswichian, MIS 5e) from earlier interglacials in the Wash fluvial systems.  The 465 
resulting synthesis of data enabled common patterns in these archives to be discerned, 466 
but also highlighted many significant differences between these rivers, all of which 467 
have shared a downstream valley during periods of low sea-level. 468 
 469 
2.2 France  470 

Multidisciplinary research projects investigating fluvial archives in NW France have 471 
largely focussed on the Somme and Seine river valleys.  Over the last decade, several 472 
important palaeontological datasets from these areas have provided significant 473 
chronological and palaeoenvironmental information relevant to understanding 474 
Pleistocene climates and human occupation (see Chauhan et al., this issue). The 475 
French fluvial record is well-dated and includes several interglacial sequences 476 
particulary rich in diverse fossil groups that allow palaeoclimatic comparisons with 477 
nearby British records and other datasets at a European scale (e.g. Limondin-Lozouet 478 
and Preece, 2014).  Alongside mammalian evidence (see Auguste, 2009), molluscan 479 
evidence remains a key element of French biostratigraphical schemes. The 480 
Lateglacial–Holocene molluscan successions recorded at numerous fluvial sites have 481 
been central to understanding the palaeoenvironmental significance of Pleistocene 482 
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vegetational changes and climatic conditions (Limondin-Lozouet, 2011).  During 483 
transitional climatic phases, the stages of recolonization by molluscan faunas show 484 
common features, such as the occurrence of specific taxa and well-defined biotope 485 
successions.  These malacological characteristics have been correlated with climatic 486 
phases and botanical evolution. For example, in the early Holocene of NW Europe the 487 
replacement of the landsnail Discus ruderatus by its congener Discus rotundatus has 488 
been linked to the spread of Corylus (Preece and Day, 1994; Limondin-Lozouet et al., 489 
2005). The same faunal succession has also been identified within Pleistocene 490 
interglacial sequences at La Celle in the Seine Valley, dated to MIS 11, and at Caours 491 
in the Somme basin, dated to MIS 5e.  Although pollen was not preserved at either of 492 
these sites, the first appearance of D. rotundatus can be used to identify the 493 
development of deciduous forest, replacing the pioneer open forest biotope 494 
(Limondin-Lozouet, 2011; Fig. 5).  495 
 496 
Insert Figure 5 hereabouts 497 
 498 
2.2.1 The Somme and Nord Pas-de-Calais 499 

Research undertaken over the last 20 years on the fluvial terraces and loess sequences 500 
of the Somme Basin, and on the interactions between human populations and 501 
changing environmental conditions, has adopted interdisciplinary approaches for the 502 
analysis of Quaternary sequences and associated Palaeolithic sites (Antoine et al., 503 
2003, 2007, 2010; Bahain et al., 2007, 2010; Bridgland et al., 2006).  These studies, 504 
mainly targeting fluvial sequences, have highlighted the impact of cyclic climatic 505 
changes on sedimentation and river morphology, and especially the role of the 100 ka 506 
climatic cycles for the last million years, giving rise to stepped terrace formation 507 
(Antoine et al., 2007).  Interglacial climatic optima are recorded by calcareous tufa 508 
sequences, which are especially well preserved in the cases of MIS 11 and 5e. 509 

At the Carrière Carpentier site at Abbeville, sediments (the 'White Marl') dated to 510 
MIS 15 using ESR (584 ± 48 ka) and their stratigraphical position within the Somme 511 
terrace system have yielded molluscs, large vertebrates and small mammals (Antoine 512 
et al., 2015, 2016; Voinchet et al., 2015).  A noteworthy occurrence within the small 513 
vertebrate faunas are rodent molars tentatively attributed to Arvicola 514 
cantiana/mosbachensis.  The presence of this taxon is indicative of a younger age in 515 
the early Middle Pleistocene, i.e. younger than MIS19-17 (Antoine et al., 2016).  The 516 
large mammal fauna includes the Hundsheim rhinoceros (Stephanorhinus 517 
hundsheimensis), wild boar (Sus scrofa priscus) and red deer (Cervus elaphus), 518 
representing the Cromerian faunal association known from West Runton and 519 
Pakefield.  When compared with British Cromer Forest-bed sites, the mammalian 520 
fauna from Carrière Carpentier appears to be contemporaneous with Pakefield, more 521 
recent than West Runton, but older than the Boxgrove fauna (Antoine et al., 2016). 522 
The Carrière Carpentier sequence is within Alluvial Formation VII of the Somme 523 
system (Antoine, 1994, 2000) and is associated with two other sites located in the 524 
same terrace, Carrière Léon and Moulin Quignon (Bahain et al., 2016). Characteristic 525 
freshwater mollusc species from this alluvial formation include Tanousia cf. 526 
stenostoma), Borysthenia naticina and Bithynia troschelii, which form an assemblage 527 
typical of Cromerian interglacial fluvial deposits in NW Europe (Meijer and Preece, 528 
1996; Preece, 2001).  Specimens of of T. cf. stenostoma from Moulin Quignon are 529 
similar to those of Little Oakley (Bahain et al., 2016).  This occurrence represents the 530 
first record of this species in France; in Britain it is unknown after MIS 13.   531 
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Recent archaeological rescue excavations in the Somme valley have led to the 532 
discovery of several alluvial sequences containing molluscan faunas (Locht et al., 533 
2013).  At Rue Boileau in Amiens, a sequence exposed in a pit adjacent to the famous 534 
site of Saint Acheul includes a white silt horizon that has been correlated on 535 
morphostratigraphical grounds with the Saint Acheul tufa; the latter has been dated to 536 
MIS 11 on the basis of a characteristic 'Lyrodiscus assemblage' of land snails, 537 
supported by U/Th dating (Limondin-Lozouet and Antoine, 2006).  The molluscan 538 
fauna from Rue Boileau contains several critical species typical of this assemblage, 539 
together with several xerophilous taxa (Cernuella virgata, Candidula unifasciata) 540 
previously unknown from St Acheul (Locht et al., 2013). This assemblage has 541 
therefore been tentatively attributed to a later phase of the interglacial, post-dating the 542 
climatic optimum, when heavily-forested environments were being replaced by more 543 
open habitats characterised by xerophilous land snails (Limondin-Lozouet et al., 544 
2015). 545 
 546 
The important fluvial sequence preserved at Caours represents the only Eemian (MIS 547 
5e) interglacial sequence in the Somme basin (Antoine et al., 2006). Overlying a 548 
periglacial gravel bed allocated to MIS 6 (Alluvial Formation I of the Somme 549 
system), the fluvial fine-grained sequence consists of calcareous silts and tufa 550 
deposits including thin organic layers, from which a wealth of palaeontological 551 
material has been recovered, most notably non-marine molluscs.  These have 552 
provided a record of the glacial-interglacial transition between MIS 6 and MIS 5.  553 
Cold-tolerant faunas similar to those of the Younger Dryas, including some boreo-554 
alpine taxa (Columella columella), were replaced by numerous thermophilous taxa, 555 
highlighting a hiatus corresponding to the very earliest part of the interglacial 556 
(Limondin-Lozouet, 2011). Following this, the malacological succession indicates the 557 
development of forest environments during an early part of MIS 5, followed by the 558 
climatic optimum of MIS 5e and a subsequent cooling (Limondin-Lozouet and 559 
Preece, 2014).  Several species of Central European and Mediterranean origin (e.g. 560 
Daudebardia rufa, Ruthenica filograna, Platyla polita) occurred during the Eemian 561 
climatic optimum and constitute the first record of a regional biostratigraphical 562 
marker for the last interglacial (Limondin-Lozouet and Preece, 2014; Fig. 5).  In 563 
addition, the Caours site has yielded archaeological material, providing an important 564 
record of human occupation in northern France during the Last Interglacial. It has 565 
now been identified as a butchery site, with lithic industries directly associated with 566 
mammalian remains (Auguste, 2009). A further important aspect of the Caours 567 
sequence is evidence for palaeomagnetic reversal thought to represent the Blake 568 
Event; identification of this geomagnetic excursion, which has been correlated with 569 
the start of the continental Eemian Stage, indicates that the palaeoclimatic and 570 
archaeological records from Caours post-date the MIS 5e interglacial peak (Sier et al., 571 
2015). 572 

To the north of the Somme basin, in the neighbouring region of Nord Pas-de-Calais, a 573 
fluvial sequence was discovered in 2012 at Waziers (Hérisson et al., 2015).  This 574 
sequence comprises several peat layers overlying fluvial silts and sands, deposited in 575 
a large meandering system.  Preliminary geomorphological and palaeontological 576 
observations, including the presence of loess covering the fluvial deposits and the peat 577 
and the occurrence of assemblages of interglacial mammals (aurochs and red deer) 578 
and aquatic molluscs (Belgrandia marginata, Anisus septemgyratus) suggested an 579 
Eemian age for this sequence.  This was corroborated by a minimum age of 103 580 
+3.5/-3.4 ka obtained by U/Th dating of calcareous charophyte oogonia, extracted 581 
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from a fine-grained tufa layer directly underlying the peat (Hérisson et al., 2015). This 582 
site is only the second to provide evidence of Neanderthal occupation during the 583 
Eemian in Northern France. 584 
 585 
Finally, the late MIS 5 fluvial sequence at Ailly-sur-Noye, located ~30 km south of 586 
Amiens, includes three Palaeolithic levels (Locht et al., 2013). The oldest lithic 587 
industries and associated mammals (Bos primigenius, Equus sp.) lie at the top of a 588 
basal fluvial gravel attributed to the late Saalian/Eemian on the basis of its 589 
geomorphological position within the terrace system. The upper part of the sequence, 590 
consists of coarse gravels (also containing Palaeolithic artefacts), covered by a thin 591 
calcareous tufa crust with facies typical of interglacial tufa deposits like those 592 
described at Caours and likely to represent MIS 5e. Above this, the sediments consist 593 
of fine grey silts capped by a calcareous mud containing two further archaeological 594 
levels characterized by Levallois material.  Molluscan faunas from these deposits are 595 
‘Arianta’ assemblages typical of transitional climatic phases (Puisségur, 1976); 596 
further evidence for deteriorating climatic conditions is provided by a decline in the 597 
numbers of the aquatic snail Belgrandia marginata, a well-known thermophilous 598 
species typical of Pleistocene interglacial sequences that occurs in abundance at 599 
Caours (Antoine et al., 2006).  The molluscan evidence indicates a transitional context 600 
from an interglacial phase to an early glacial episode, thought to represent the period 601 
spanning MIS 5d to MIS 5a (Locht et al., 2013); this is the first regional 602 
malacological record for this time period in France. 603 

 604 

2.2.2 The Seine 605 

New research undertaken at the site of Saint-Pierre-lès-Elbeuf has provided additional 606 
evidence for the age and palaeontological content of the important sequence there 607 
(Cliquet et al., 2009). Above the lowermost palaeosol (Elbeuf IV) lies a white sand 608 
and a calcareous tufa from which a characteristic 'Lyrodiscus assemblage' was 609 
obtained: this fauna is a regional biostratigraphical marker correlated with the MIS 11 610 
interglacial. Systematic malacological sampling within this unit has demonstrated a 611 
high level of homogeneity within the molluscan population, which is largely 612 
dominated by forest land snails (up to 80 % of the total shells). This implies that the 613 
tufa accumulated relatively rapidly during the optimum phase of MIS 11. New IRSL 614 
dates obtained from the Elbeuf IV soil (475 ± 38 ka) and on the white sand (396 ± 32 615 
ka) confirm the MIS 11 correlation (Cliquet et al., 2009). 616 

The Upper Seine valley preserves another significant tufa sequence at the site of La 617 
Celle, which has been known for more than a century as an important source of non-618 
marine molluscs and plant macrofossil impressions.  New research at this site has 619 
been undertaken in order to improve understanding of the palaeontological 620 
assemblages and to provide additional chronological control, which has been 621 
correlated with MIS 11 (Limondin-Lozouet et al., 2006, 2010).  Dating evidence has 622 
been provided by the geomorphological position of the site, within an old terrace of 623 
the Seine deposited prior to the 'Nappe de Soucy' of the Yonne valley system dated at 624 
350–300 ka (Limondin-Lozouet et al., 2006), together with the occurrence of land 625 
snails characteristic of the 'Lyrodiscus fauna', known from several French and British 626 
tufa sequences of MIS 11 age (Rousseau et al., 1992; Limondin-Lozouet and Antoine, 627 
2006; Preece et al., 2007).  Additional age control has now been provided by 628 
radiometric dating (ESR/U-series on tooth enamel of horse and ESR quartz), which 629 
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have produced a mean age of ~400 ka (Bahain et al., 2010; Voinchet et al., 2015). 630 
However, although this geochronological evidence indicates an age equivalent to MIS 631 
11, the existing methods do not allow precise timing within the interglacial. The La 632 
Celle tufa provides the longest known MIS 11 malacological succession in NW 633 
Europe, which has been used to generate detailed reconstructions of the development 634 
of forest cover (Limondin-Lozouet et al., 2010, 2015) and as a biostratigraphical 635 
standard against which other MIS 11 malacological successions can be compared 636 
(Limondin-Lozouet et al., 2015). Successive appearances of forest species, first from 637 
an Atlantic corridor and later from central and southern Europe, allow 638 
characterization of vegetational development. The initial immigrants indicate the 639 
spread of closed habitats, while a peak in the diversity of thermophilous snails 640 
corresponds to the optimum phase of deciduous forest expansion. A subsequent 641 
decrease in forest species, together with an expansion of hygrophilous taxa, indicates 642 
the decline of closed canopy conditions. The occurrence of critical forest species, 643 
especially those now extinct or occurring far beyond their modern ranges, provides a 644 
framework within which molluscan successions from other tufa sites in northern 645 
France and southern Britain can be understood (Fig. 6).  646 
 647 
Insert Fig. 6 hereabouts 648 
 649 
Leaf impressions from La Celle have allowed the identification of 24 taxa, including 650 
some Mediterranean plants such as Buxus, Ficus and Celtis (Limondin-Lozouet et al., 651 
2010).  Mammalian remains from La Celle (Auguste, 2009; Limondin-Lozouet et al., 652 
2010) include Macaca sylvanus (Barbary macaque) and Hippopotamus amphibius; 653 
the former last occurred in Britain during MIS 9, whereas the latter was absent from 654 
Britain during MIS 11 (Schreve, 2001a); the occurrence of hippopotamus in northern 655 
France during MIS 11 is therefore of particular interest, perhaps indicating a 656 
biogeographical barrier that prevented this species colonizing Britain at that time. 657 
 658 
2.3 Germany and Belgium 659 
One of the key sites in this region is the multiperiod locality at Schöningen, Germany, 660 
the evidence from which was summarized by Schreve et al. (2007). Debate on the age 661 
of this sequence has continued over the last decade and was recently summarized by 662 
Urban and Bigga (2015).  As is the case in Britain, the occurrence of Theodoxus 663 
danubialis has been attributed biostratigraphical significance in Germany, where T. 664 
serratiliniformis (= danubialis) has been suggested to indicate an MIS 11 age (e.g. 665 
Meng and Wansa, 2005, 2008).  This is by no means certain; in the middle Neckar 666 
valley (SW Germany), an exposure of fluvial gravels at the site of Bietigheim-667 
Bissingen, ~20 m above the modern River Enz, yielded a molluscan fauna including 668 
Theodoxus serratiliniformis and Cochlostoma scalarinum saueri (Bibus and Rähle, 669 
2003).  On the basis of terrace stratigraphy and molluscan biostratigraphy, these 670 
deposits were dated to MIS 13, although this age is not accepted by Meng (2007).    671 
 672 
In the southern North Sea Basin the western coastal plain of Belgium preserves a 673 
complex sequence of Pleistocene marine and fluvio-estuarine deposits.  Recent 674 
analysis of brackish and freshwater fossil assemblages (including ostracods, pollen 675 
and Foraminifera) recovered from boreholes in this region have indicated deposition 676 
near the upper tidal limit of an estuary (Bogemans et al., 2016).  Of biostratigraphical 677 
and biogeographical significance is the occurrence, in the Zoutenaaie core, of a single 678 
valve of the freshwater ostracod Scottia browniana, which is unknown in the nearby 679 
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British record after MIS 11 (Whittaker and Horne, 2009).  Given that the oldest of the 680 
Belgian channel fills are suggested to date to MIS 9 (Bogemans et al., 2016; cf. 681 
Vanhoorne, 2003), it is possible that this fossil has been reworked; however, its 682 
presence might also indicate that S. browniana became extinct in continental Europe 683 
later than in Britain. This might well be expected, since the fluctuating island status of 684 
Britain from MIS 12 onwards enhances turnover in faunal composition and 685 
biogeographical differences. 686 
 687 
3. Eastern Europe and Russia 688 
Faunal evidence in this region has been recovered from the significant fluvial archives 689 
preserved in the valleys of the south-flowing rivers of the East European Platform, the 690 
Dniester, Dnieper, Don and Volga, and has been key to unravelling their age and 691 
evolution (Matoshko et al., 2002, 2004; Schreve et al., 2007; Bridgland and 692 
Westaway, 2008, 2014).  To the south-west of the Russian Plain, several fossiliferous 693 
localities are known within the Prut and Danube basins, although these are 694 
predominantly represented by lacustrine sequences (see Markova and van 695 
Kolfschoten, 2012).  Several important Middle Pleistocene faunal localities are 696 
known from the Dnieper, mostly recovered from fluvial deposits assigned to Terrace 697 
IV, correlated with the Likhvin Interglacial (=MIS 11) on the basis of pollen and 698 
mammalian biostratigraphy (Markova, 2006; Markova and van Kolfschoten, 2012; 699 
Fig. 7).  Amongst the best studied of these are the mammal assemblages from Gunki, 700 
Pivikha and Chigirin (Fig. 7).  The Gunki site has also yielded a molluscan fauna, 701 
considered to represent the Early Euksinian (Markova and van Kolfschoten, 2012).  In 702 
the Don and Desna basins, the earliest small mammal faunas have been correlated 703 
with the early Middle Pleistocene (Markova, 2007).  Here, faunal assemblages have 704 
been correlated with both interglacial and glacial stages (Fig. 7).  The 705 
biostratigraphical significance of several mollusc species from the Don Basin was 706 
highlighted by Kondrashov (2007), who noted that the occurrence of species such as 707 
Borysthenia intermedia, Lithoglyphus jahni and Viviparus fasciatus allows correlation 708 
of the Don basin faunas with the early Middle Pleistocene Cromerian faunas of 709 
Western Europe.  In the Volga basin, a small mammal fauna that includes Arvicola 710 
cantiana, Lagurus transiens-lagurus and Clethrionomys rufocanus has been described 711 
from a fluvial sequence at Rybnaya Sloboda, at the mouth of the right-bank tributary 712 
Kama River, and has been attributed to the Likhvin Interglacial on biostratigraphical 713 
grounds (Markova and van Kolfschoten, 2012; Fig. 7).  Similar faunas have been 714 
reported from sites in the middle and lower Volga, at Chernyi Yar and Spasskoe 715 
(Markova and van Kolfschoten, 2012).  To these can be added a considerable amount 716 
of vertebrate, molluscan and vegetational data that has been collected since the 1960s 717 
in the southern Urals region, summarized in a flurry of papers published since 2007 718 
detailing the records of the Belaya and Lemeza rivers (e.g. Chlachula, 2010; 719 
Danukalova et al., 2007, 2008, 2009, 2011, 2016; Puchkov and Danukalova, 2009; 720 
Yanina, 2013; Yakovlev et al., 2013).  Changes to the fauna and flora in this area 721 
appear to have been more muted than the adjacent northwestern territories due to the 722 
absence of local glaciers during some cold stages (Danukalova et al., 2009).   723 

Insert Figure 7 hereabouts  724 

Further afield, in Ukraine, mollusc and ostracod assemblages have been described 725 
from a sequence of Early–early Middle Pleistocene fluvial gravels and loams exposed 726 
in a quarry at Skala Podil'ska, in the valley of the River Dniester (Boguckyj et al., 727 



 16 

2009).  The freshwater mollusc assemblages from the basal fluvial gravels (Unit I) 728 
include Theodoxus serratiliniformis (=danubialis) and Viviparus lungershauseni (= 729 
fasciatus; Kondrashov, 2007).  Also present was the ostracod Limnocythere 730 
tuberculata, which is also indicative of the Early Pleistocene (Dykan, 2003).  The 731 
overlying loams of Unit III also contained T. danubialis, together with Lithoglyphus 732 
neumayri.  The ostracod fauna from this upper unit contained species characteristic of 733 
colder water bodies (Boguckyj et al., 2009).  Palaeoclimatic research in Russia has 734 
also been significantly advanced by the development of the QUINSIB database, 735 
which contains details of over 600 fossil insect localities (Kuzmina, 2014).  The 736 
development of this resource has allowed large amounts of unpublished data and 737 
published sources in Russian to be made widely accessible. 738 
 739 

4. Southern Europe and Iberia 740 
 741 
4.1 Spain and Portugal 742 
 743 
A surge of interest in Iberian fluvial systems followed the successful FLAG Biennial 744 
Meeting at Castelo Branco in 2010, particularly with the development of improved 745 
chronological frameworks for several fluvial systems in Spain and Portugal (such as 746 
the Tagus/Tejo, Minho, Douro/Duero, Mondego and Guadiana rivers), which have 747 
been considerably refined through the application of new luminescence techniques 748 
(Cunha et al., 2008; Vis et al., 2008; Martins et al., 2010; Antón et al., 2012; Ramos et 749 
al., 2012; Viveen et al., 2012, 2013; Carvalhido et al., 2014; Sancho et al., 2016).  750 
However, with the exception of a few notable regions previously summarized by 751 
Schreve et al. (2007), preservation of palaeontological material is generally poor 752 
across the Iberian Peninsula and the terraces of these rivers have yielded relatively 753 
little new fossil material (e.g. Cunha et al., 2012).  Fluvial archives such as that 754 
preserved in the Ter River basin, northeastern Spain, have proved difficult to date due 755 
to the absence of fossiliferous deposits (Garcia, 2015).  A notable recent discovery is 756 
the site of Barranc de la Boella (Catalonia, Spain), where vertebrate remains 757 
(including a butchered elephant) were recovered in association with stone tools from 758 
deposits of the Francolí river (Vallverdú et al., 2014).  Dating of this site was based 759 
on palaeomagnetic and cosmogenic determinations, supported by biostratigraphical 760 
evidence derived from the vertebrate faunas, which included Mimomys savini and 761 
Mammuthus meridionalis, suggesting a late Early Pleistocene age (Mosquera et al., 762 
2015). 763 
 764 
In central Spain, faunal assemblages have been recovered from the sites of Pinedo and 765 
Cien Fanegas near Toledo, in the +25–30 m terrace of the River Tajo (Tagus), which 766 
have also yielded Acheulian archaeology.  These gravels been dated to between 290 767 
and 220 ka using AAR and luminescence (pIR–IRSL) techniques, spanning a period 768 
between MIS 9 and 7 (López-Recio et al., 2015).  The gravel pit at Pinedo has yielded 769 
fossils of straight-tusked elephant, together with hippopotamus, rhinoceros, deer, 770 
horse and bovids (López-Recio et al., 2015).  Elsewhere in the Middle Tajo, large 771 
mammal assemblages have been recovered in association with stone tools from the 40 772 
m terrace at Toledo; these include Mammuthus trogontherii, Equus caballus, 773 
Hippopotamus amphibius, Megaloceros savini, Eliomys quercinus, Allocricetus 774 
bursae, Microtus brecciensis and Apodemus sylvaticus, all characteristic of the 775 
Middle Pleistocene (Sesé et al., 2000).  Palaeoclimatic studies from this region 776 
include reconstructions based on herpetofaunal assemblages from three Spanish 777 
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localities dated to MIS 11, including the fluvial deposits at Áridos-1, in the valley of 778 
the River Jarama SE of Madrid, and the fluvio-lacustrine sequence at Ambrona (Blain 779 
et al., 2015).  These herpetofaunal assemblages include numerous taxa of high 780 
environmental and climatic sensitivity, which can be used as valuable indicators of 781 
palaeoclimate, through the application of MCR analyses (e.g. Martínez-Solano and 782 
Sanchiz, 2005; Blain et al., 2008).  783 
 784 
4.2 Italy 785 
 786 
The Pleistocene vertebrate succession in the Italian peninsula is relatively well known 787 
(e.g. Gliozzi et al., 1997), although much of this evidence has been recovered from 788 
cave and fissure-fill sequences in karstic regions (e.g. Sardella et al., 2003; Pandolfi 789 
and Petronio, 2011a, b; Pandolfi et al., 2013).  The potential relationships between 790 
these isolated cave sequences and local fluvial systems have not yet been explored in 791 
detail, but research in other regions suggests that biostratigraphical schemes can be 792 
usefully developed in this way (e.g. Yang et al., 2011; Bridgland et al., 2014, 793 
Westaway, 2016).  In the mountainous regions of northern and central Italy, fossil 794 
assemblages have also been obtained from lacustrine sequences, with fluvio-deltaic 795 
deposits sometimes represented (e.g. Girotti et al., 2003; Limondin-Lozouet et al., 796 
2017).  Arguably the best known Italian fluvial archives are those from the Tiber 797 
River basin, the record for which spans much of the Pleistocene.  The palaeo-Tiber 798 
and its tributaries have been extensively studied in the area around Rome (Caloi et al., 799 
1998; Di Stefano et al., 1998; Milli et al., 2004; Petronio et al., 2011).  Recent work 800 
on this system has been undertaken by Marra et al. (2014), who identified six 801 
biochronological units (Slivia, Ponte Galeria, Isernia, Fontana Ranuccio, Torre in 802 
Pietra and Vitinia), spanning a period from ~600 ka to at least MIS 7, although this 803 
scheme has been criticised (Sardella et al., 2015; cf. Marra et al., 2015).   804 
 805 
In central Italy, fossiliferous fluvial sequences representing a period spanning the 806 
Early Pleistocene to the early Middle Pleistocene have been recorded in trenches and 807 
boreholes at several localities in the Anagni Basin (Bellucci et al., 2012, 2014).  The 808 
important Coste San Giacomo locality, known since the late 1970s, has yielded a 809 
Villafranchian large mammal fauna, including taxa such as Mammuthus meridionalis, 810 
Hippopotamus sp., Equus stononis, Gazella borbonica, Sus strozzi and Homotherium 811 
sp.  More recently, microfaunal assemblages obtained from the Coste San Giacomo 1 812 
core, drilled in 2009, have allowed more detailed palaeoecological reconstructions to 813 
be attempted (Bellucci et al., 2012, 2014). Analyses of small vertebrate, ostracod, 814 
pollen and charophyte assemblages, together with sedimentological data, indicate an 815 
initially forested landscape giving way to an open alluvial plain fed by sand-bed rivers 816 
(Bellucci et al., 2014).  In addition, the ostracod assemblage contained sufficient 817 
extant taxa to attempt summer and winter air temperature reconstructions using the 818 
MOTR method, providing estimates of mean July temperatures of between 15qC and 819 
22qC and mean January temperatures of between -5qC and 5.2qC. However, it should 820 
be noted that the assemblage used for these estimates was derived from 8 separate 821 
assemblages recovered from a large section of the borehole (Bellucci et al., 2014) 822 
and may therefore represent an averaging of a long period of time.  Small vertebrate 823 
assemblages included the biostratigraphically significant Early Pleistocene vole 824 
Mimomys pliocaenicus; this species, together with evidence from pollen 825 
biostratigraphy and magnetostratigraphy, suggests a Gelasian age for the Coste San 826 
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Giacomo faunal unit, falling somewhere between 2.2 and 1.95 Ma (Bellucci et al., 827 
2014). 828 
 829 
5.  The Levant and the Arabian Peninsula 830 
 831 
Fossil preservation in the Levant is relatively poor, despite the widespread presence of 832 
calcareous bedrock.  It has been suggested that the formation of calcreted gravels, a 833 
characteristic of such semi-arid regions (e.g. Candy et al., 2004, 2005), might be 834 
responsible for the loss of faunal remains - in the Upper Orontes, for example, 835 
cemented Pleistocene terrace deposits appear to have undergone repeated 836 
decalcification and re-cementation, resulting in the weathering-out of calcareous 837 
clasts and, presumably, calcareous fossils (Bridgland et al., 2012). The general 838 
absence of biostratigraphical data from fluvial sequences (although see Tchernov, 839 
1981, 1994 for reviews of data from cave and lake sequences in Israel) is mitigated by 840 
the presence of Pleistocene lava flows interbedded within the terrace sequences of 841 
many of the Turkish and Syrian fluvial systems that can be dated using various 842 
radiometric techniques (Sharkov et al., 1998; Bridgland et al., 2007; Demir et al., 843 
2007, 2012, Seyrek et al., 2008; Westaway et al., 2009; Maddy et al. 2012). 844 
  845 
Beyond the Levant, in the interior of the now hyper-arid Arabian Peninsula, 846 
significant fluvial archives are largely absent; however, fossils have been recovered 847 
from lacustrine sequences in the Nefud and Rub' al Khali deserts (e.g. Thomas et al., 848 
1998; Groucutt et al., 2014; Stimpson et al., 2014, 2016).  Most of these assemblages 849 
have been dated to the Late Pleistocene (MIS 5e and younger) and Holocene, 850 
although in exceptional circumstances older assemblages have been preserved (see 851 
below, Stimpson et al., 2014, 2016).  As new sites are discovered and recorded, there 852 
is increasing potential to develop biostratigraphical schemes linking Arabian lake 853 
sites to Levantine fluvial systems. 854 
 855 
5.1 The Levant 856 

Productive new research in Syria, investigating the terraces of the River Orontes 857 
(Bridgland et al., 2003, 2012) and on the catchments of Mesopotamian rivers such as 858 
the Euphrates and Tigris (Demir et al., 2007, 2008, 2012; Westaway et al., 2009) has 859 
been curtailed in recent years due to ongoing conflicts in this war-torn region.  The 860 
summary of research provided by Schreve et al. (2007) therefore remains largely up 861 
to date, with the exception of a handful of recently-published papers detailing 862 
research undertaken before 2009 (e.g. Bridgland et al., 2012).  Fossiliferous 863 
sequences are also relatively rare in accessible reaches of these rivers in Turkey (e.g. 864 
Demir et al., 2007, 2008, 2012; Westaway et al., 2009; Seyrek et al., 2014a, b).  865 
Vertebrate faunas have provided important biostratigraphical evidence constraining 866 
the ages of the Orontes terraces (Bridgland et al., 2003, 2012; Bridgland and 867 
Westaway, 2007; Mishra et al., 2007). Biostratigraphical evidence provided by the 868 
vertebrate assemblages from Latamneh has necessitated the reattribution of the 869 
Orontes QfIII terrace in the Middle Orontes to an age of 1.2–0.9 Ma, leading to a 870 
revision of the age model for the Orontes terrace sequence (Bridgland et al., 2012; cf. 871 
2003). Given this revision, it is no longer tenable to attribute the Middle Orontes 872 
terraces to formation in response to 100 ka Milankovitch climatic forcing (cf. 873 
Bridgland and Westaway, 2008b). A revised model for the evolution of that reach of 874 
the Orontes, resulting from this modification of the supposed age of the key 875 
biostratigraphical marker, sees similarities between the incision history in the Hama – 876 
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Latamneh area and those determined from the Euphrates in its southern Turkish and 877 
Syrian reaches, related to the crustal characteristics of the Arabian Platform 878 
(Bridgland et al., 2017). Downstream from Latamneh, molluscan and ostracod faunas 879 
were obtained from river-cliff locations at Karkour, alongside the Orontes channel as 880 
it traverses the subsiding Ghab Basin, including the ostracod Cyprideis torosa. This 881 
taxon is generally associated with brackish environments, developing noded valves in 882 
salinities below ~5‰, but can also tolerate hypersaline conditions in lakes and water 883 
bodies prone to desiccation, which is presumably how it comes to be in the Ghab 884 
sediments. The faunas here also include freshwater elements, both ostracods and 885 
molluscs, the latter including the large viviparid gastropod Apameaus apameae 886 
(Bridgland et al., 2012), which is also recorded at the key comparator 887 
(biostratigraphically somewhat younger) Israeli locality at Gesher Benot Ya'aqov, in 888 
the Jordan Valley, where it is an index fossil for the definition of the ‘upper 889 
freshwater series’ or ‘Viviparus Beds’ of the Benot Ya'aqov Formation (Picard, 1963; 890 
Tchernov, 1973; Goren-Inbar and Belitzky, 1989; Bar-Yosef and Belmaker, 2010). 891 
The last appearance of Apameus apamae in the Jordan Valley was at ~ 240 ka, on the 892 
basis of U-series dating (Kafri et al., 1983; Moshkovitz and Magaritz, 1987; Heller, 893 
2007); its presence at two localities in the Ghab basin, Syria (Bridgland et al., 2012) 894 
and at the site of Alaattin Köyü in Turkey (Seyrek et al., 2014) therefore suggests a 895 
latest Early Pleistocene to late Middle Pleistocene age for these deposits. 896 
 897 
5.2 The Arabian Peninsula 898 
In recent years, the Arabian Peninsula (Saudi Arabia, Yemen, Oman and the United 899 
Arab Emirates) has emerged as an important region for research into low-latitude 900 
Quaternary environmental change (e.g. Petraglia, 2007; Parker, 2009; Armitage et al., 901 
2011; Groucutt and Petraglia, 2012; Delagnes et al., 2012).  Expansions of plant and 902 
animal communities, including humans, into and through the Arabian interior have 903 
occurred on several occasions, corresponding with humid climatic phases during the 904 
Pleistocene, when savanna-type landscapes prevailed in what are now hyper-arid 905 
regions (Vaks et al., 2007, 2013; Rosenberg et al., 2011, 2013; Breeze et al., 2015; 906 
Jennings et al., 2015a, 2017; Parton et al., 2015a).  However, the highly fragmentary 907 
nature of Arabian terrestrial sequences, compounded by poor stratigraphical and 908 
chronological control on associated palaeontological assemblages, has hampered the 909 
construction of biostratigraphical and palaeoenvironmental frameworks.  910 

A major hindrance to better regional understanding of the Arabian record is the lack 911 
of perennial fluvial systems and their resulting sedimentary archives; evidence for 912 
fluvial activity consists largely of poorly-dated gravels and alluvial deposits resulting 913 
from ephemeral and highly seasonal catchments (for recent reviews see Breeze et al., 914 
2015, 2016). The principal drainage across central Arabia consists of several 915 
eastward-flowing wadis that presently carry water only seasonally. It is likely that 916 
these systems were repeatedly activated during humid periods in the Pleistocene and 917 
early Holocene (Powers et al., 1966; Chapman, 1971; Anton, 1984; Edgell, 2006), 918 
although some are now choked in places by dunes (Holm, 1960), suggesting that they 919 
have been inactive as continuous systems for a considerable period of time. At a 920 
smaller scale, more localized alluvial fans have formed around the bases of steep-921 
sided jebels and dykes, from which intermittent streams flowed during wet phases 922 
(e.g. Parton et al., 2015b; Jennings et al., 2015b). It has been suggested that most of 923 
the trans-Arabian wadi systems were incised in their current configurations by the 924 
early Quaternary, based on relationships between basal gravel deposits and dated lava 925 
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flows (Al-Sayari and Zötl, 1978; Anton, 1984). Younger terraces have also been dated 926 
using early radiocarbon techniques (e.g. Jado and Zötl, 1984) but, given the 927 
unreliability of these methods, these ages require verification. More recent dating 928 
programmes have applied OSL and U-series techniques to fluvial deposits in south-929 
central Arabia (e.g. Maizels, 1987, 1990; Blechschmidt et al., 2009; Mclaren et al., 930 
2009; Parton et al., 2010, 2013; Rose et al., 2011; Sitzia et al., 2012; Atkinson et al., 931 
2013), contributing to an increasingly detailed chronology for the Late Pleistocene 932 
and Early Holocene. However, the general absence of substantial fluvial archives in 933 
Arabia is reinforced by the fact that the most significant stratified archaeological 934 
assemblages reported in recent years have been found in association with either 935 
lacustrine sequences, representing a source of fresh water, or raw materials suitable 936 
for stone tool production (e.g. Armitage et al., 2011; Delagnes et al., 2013; Hilbert et 937 
al., 2014; Groucutt et al., 2015; Jennings et al., 2015b; Scerri et al., 2015).   938 

 939 
6.  Data from other regions 940 
 941 
Beyond the 'core regions' of NW and Central Europe, palaeontological datasets from 942 
fluvial sequences are increasingly used as a basis for regional biostratigraphies and 943 
palaeoenvironmental reconstructions.  At the time of the last review (Schreve et al., 944 
2007), these consisted entirely of mammalian data; since then, significant new 945 
information, including invertebrate and floral assemblages, have been published and 946 
are included in the summaries below.  947 
 948 
6.1 China and the Far East 949 
In China, the Nihewan Formation, comprising fluvio-lacustrine sediments containing 950 
abundant mammalian fossils, is widely distributed in the Nihewan Basin of northern 951 
Hebei Province.  This region has yielded the densest concentration of Early 952 
Pleistocene Palaeolithic sites outside Africa (Dennell, 2013), together with fossil 953 
assemblages (vertebrates, molluscs, pollen) that have long been considered to be of 954 
Early Pleistocene age, although alternative ages ranging from late Pliocene to Middle 955 
or Late Pleistocene have also been proposed (Zhao et al., 2010).  ESR dating of quartz 956 
obtained from the Majuangou and Banshan sites provided ages of between 1.70 and 957 
1.35 Ma (Liu et al., 2014).  Further south in the Three Gorges region, located in the 958 
transitional zone between the upper and middle reaches of the Yangtze (Changjiang) 959 
River, several fossiliferous fluvial sequences have now been reported (Pei et al., 960 
2013).  Seven fluvial terraces (T7–T1) have been identified and dated using ESR, TL, 961 
OSL and radiocarbon techniques (Pei et al., 2013).  The site at Jingshuiwan, assigned 962 
to T2 and dated to 75.9 ± 3.7 to 64.5 ± 4.1 ka using OSL, yielded an assemblage of 58 963 
mammalian fossils including Stegodon orientalis (Pei et al., 2010). 964 
 965 
In northwest Hunan Province, the terraces of the Suoxi River have been dated using 966 
ESR and TL techniques, allowing them to be correlated with neighbouring karstic 967 
cave systems (Yang et al., 2011).  Although none of the dated localities in this study 968 
proved to be fossiliferous, presumably due to the local sandstone bedrock, such 969 
research highlights the potential for fluvial archives to provide chronological evidence 970 
that can be linked to calcareous sequences with potential to provide palaeontological 971 
data.  Palaeoclimatic research in East Asia using methods such as beetle MCR 972 
estimates has been hampered by a lack of knowledge of modern distributions of beetle 973 
species and the sparse distribution of meteorological stations, especially in Siberia 974 
(Shiyake, 2014).  Japan is exceptional in having conditions that have allowed 975 
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application of the Mutual Climatic Range (MCR) method, having a dense 976 
meteorological observation network and higher quality distribution data for its extant 977 
beetle fauna (Shiyake, 2014).  Experimental work at the site of Nojiriko, Nagano 978 
Prefecture has provided the first MCR reconstructions from East Asia (Shiyake, 979 
2014). 980 
 981 
 982 
6.2 South Asia 983 

The Indian subcontinent has yielded a range of palaeoecological and 984 
biostratigraphical data, in the form of vertebrate and invertebrate fossil assemblages, 985 
pollen records and archaeological material, much of which has been recovered from 986 
fluvial sediments of the Narmada, Godavari, Manjra, Son, Ghod, Krishna and 987 
Mahanadi rivers (Chauhan, 2008).  Most of these deposits have been assigned ages no 988 
older than the Middle Pleistocene, although some formations in the Narmada Valley 989 
might date to the Early Pleistocene (Tiwari and Bhai, 1997; Tiwari, 2001).  The 990 
application of modern dating techniques has shown that many of these sedimentary 991 
units have the potential to be significantly older or younger than previously thought 992 
(Chauhan 2008 and references therein), a situation that is also prevalent in the Levant 993 
(Bridgland et al., 2012) and Arabia (e.g. Thomas et al., 1998, contra Stimpson et al., 994 
2014, 2015).  Until reliable chronological frameworks are available for these fluvial 995 
archives, their usefulness in terms of regional biostratigraphy remains somewhat 996 
limited. 997 
 998 
The Siwalik deposits of northern India, Pakistan, Nepal and Myanmar represent one 999 
of the best-studied fluvial sequences in Asia.  The Upper Siwaliks have been divided 1000 
into three subdivisions, the youngest two of which (the Pinjor and Boulder 1001 
Conglomerate Formations) represent most of the Quaternary, spanning the period 1002 
from 2.58 to 0.2 Ma (Prasad, 2001; Mishra et al., 2010).  Mammalian fossils are 1003 
adundant within the Pinjor Formation (2.58 to 0.6 Ma), which has yielded at least 98 1004 
vertebrate species including Elephas hysudricus, Stegodon insignis, Rhinoceros, 1005 
Sivatherium, Equus sivalensis, Bos acutifrons and Cervus palaeindicus, together with 1006 
carnivores such as Canis pinjorensis, Crocuta felina and Pachycrocuta brevirostris 1007 
(Nanda, 2002, 2008).  However, the stratigraphic range of most of these species 1008 
within the Pinjor Formation is unknown, limiting their biostratigraphical application 1009 
(Dennell et al., 2008).  Nevertheless, reconstructions of the palaeoecology of the 1010 
fluvial landscapes within which the Pinjor Formation was deposited have been 1011 
attempted (Dennell et al., 2008), including predator-prey interactions and the 1012 
circumstances under which fossil assemblages were accumulated and buried. 1013 
 1014 
Two younger faunal horizons, roughly equivalent to the late Middle and Upper 1015 
Pleistocene respectively, are preserved on the Indo-Gangetic plain in India and in Sri 1016 
Lanka (Nanda, 2008; Mishra et al., 2010), although these have yielded only 16 and 26 1017 
mammalian taxa, respectively.  These 'post-Siwalik' faunas suggest that a large 1018 
proportion of the Upper Siwalik Pinjor fauna became extinct during the Middle 1019 
Pleistocene.  Because the stratigraphical relationships between these numerous fluvial 1020 
localities remain unclear, it has not yet been possible to propose a testable 1021 
biostratigraphical framework for the region.  However, a relative chronostratigraphic, 1022 
biostratigraphic and archaeological correlation for the Narmada Basin formations has 1023 
been proposed (Badam, 2007; Patnaik et al., 2009).  At Hathnora, assemblages of 1024 
vertebrates (including herpetiles and fish), molluscs, ostracods, charophytes and 1025 
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pollen, in association with archaeological material, have been reported (Patnaik, 2000; 1026 
Patnaik et al., 2009).  Freshwater molluscs have also been recovered from the sites at 1027 
Bhedaghat and Devakachar (Hirdepur Formation), including 18 species of gastropods 1028 
and bivalves (Kotlia and Joshi, 2011).  Several lines of evidence suggest that 1029 
Southeast Asia was dominated by a mosaic of savannah, open woodland and 1030 
evergreen forest throughout much of the Pleistocene, leading to suggestions that this 1031 
region served as a refugium for hominins and other mammal species during glacial 1032 
periods (Louys and Turner, 2012) 1033 
 1034 
Well-dated fossiliferous sequences in Southeast Asia are relatively rare and are 1035 
predominantly preserved in caves, although the syntheses described here include 1036 
some data from fluvial deposits.  Broad characteristics of the extinctions of 1037 
Pleistocene large vertebrates in this region were recently reported by Louys et al. 1038 
(2007), together with consideration of the palaeoenvironmental requirements of many 1039 
of these species (Louys and Meijaard, 2010).  Many species which became extinct 1040 
appear to have been endemic to specific areas, with others suffering severe range 1041 
reduction before their eventual demise.  Members of the latter group include 1042 
proboscideans (Stegodon and Palaeloxodon), the pygmy hippopotamus 1043 
(Hexaprotodon), the orangutan (Pongo), hyenas (Crocuta and Hyaena), the giant 1044 
panda (Ailuropoda), tapirs (Tapirus and Megatapirus), rhinoceroses (Rhinoceros), 1045 
and the giant Asian ape, Gigantopithecus.  The loss of these species is likely to have 1046 
been the result of a combination of climatic changes (Louys et al., 2007) and human 1047 
impacts (Corlett, 2007).  Unlike other regions which experienced megafauna 1048 
extinctions, such as South America (see below), eustatic changes in sea level in 1049 
Southeast Asia seems to have been an important factor (Louys et al., 2007). 1050 
 1051 
On the island of Java, Indonesia, fluvial deposits of the Solo River have recently 1052 
yielded both vertebrate fossils and archaeological material.  An extensive survey of 1053 
the region around Matar, close to the site at Ngandong (where fossils of Homo erectus 1054 
were recovered in the early 1930s), revealed the presence of at least three river 1055 
terraces; palaeontological and archaeological assemblages were recovered from the 1056 
First and Second terraces (Fauzi et al., 2016).  Tentative comparisons with other 1057 
Pleistocene faunal localities on Java suggest that the Matar assemblage is younger 1058 
than the Middle Pleistocene Kedungbrubus Fauna but older than the Punung Fauna, 1059 
since it contains several species (such as Stegodon trigonocephalus, Bubalus 1060 
paleokarabau, Bibos paleosondaicus and Hexaprotodon sivalensis) that occur in the 1061 
former but not in the latter (Fauzi et al., 2016).  The Punung Fauna, the type locality 1062 
for which is Punung Cave, Indonesia, has been dated to 128±15 and 118±3 ka using 1063 
luminescence and U-series techniques (Westaway et al., 2007).  Further work is 1064 
required in order to understand fully the regional biostratigraphy. 1065 
 1066 
Insert Fig. 8 hereabouts 1067 
 1068 
6.3 North and South America 1069 

A significant proportion of Pleistocene palaeontological research on these continents 1070 
has been driven by a desire to understand the reasons for megafaunal extinctions (e.g. 1071 
Faith et al., 2009; Haynes, 2009; Scott, 2010; Doughty et al., 2013) and the timing of 1072 
the first human colonization of the Americas (e.g. Goebel et al., 2008; Rothammer 1073 
and Dillehay, 2009; Pitblado, 2011), as well as dynamics between the two (e.g. Gill et 1074 
al., 2009).  Fluvial archives are also potential sources of palaeontological evidence 1075 
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relevant to debates surrounding the Great American Biotic Interchange (GABI), a 1076 
period of faunal exchanges between North and South America.  The isolation and 1077 
faunal endemism of South America ended with the formation of the Panamanian land 1078 
bridge and the onset of the GABI, with the first of four major faunal exchanges now 1079 
thought to coincide with the base of the Pleistocene at ~2.6 Ma (Reguero et al., 2007; 1080 
Woodburne, 2010).  Further major pulses, at 1.8, 0.7 and 0.125 Ma (Fig. 8) appear to 1081 
have coincided with periods of lower sea-level, leading to the suggestion that 1082 
expanded coastal regions, cooler climates and associated changes to local flora 1083 
promoted animal dispersals at these times (Woodburne, 2010).  1084 
 1085 
Insert Fig. 9 hereabouts 1086 
 1087 
There are few Pleistocene sites in South America from which well-dated fossil 1088 
material has been recovered from secure stratigraphical contexts; correlations between 1089 
localities have therefore frequently been based on the biostratigraphical scheme 1090 
proposed for the fossiliferous beds of the Pampean region of Argentina, which has 1091 
been periodically updated over the last two decades (e.g. Cione and Tonni, 1999, 1092 
2001, 2005).  The Quaternary mammal faunas of South America have also been 1093 
reviewed from time to time by several authors (see Prado and Alberdi, 2009 and 1094 
references therein).  Major phases of mammalian dispersal occurred during the 1095 
Pleistocene Ensenadan and Lujanian biochrons (Fig. 9), which have also been dated 1096 
on the basis of the Pampean sequence (Cione and Tonni, 1999, 2001, 2005).  1097 
Biostratigraphical significance has been ascribed to four species of Neosclerocalyptus 1098 
(Glyptodontidae) which occurred during the Pleistocene in the Pampean region of 1099 
Argentina (Zurita et al., 2009a).  Two of these, Neoclerocalyptus pseudornatus and N. 1100 
ornatus are indicative of the Ensendan Stage, the former occurring between 1.07 and 1101 
0.98 Ma and the latter between 0.98 and 0.40 Ma (Fig. 9).  Two other species, N. 1102 
gouldi and N. paskoensis, are thought to reperesent the Bonaerian and Lujanian 1103 
stages, respectively (Zurita et al., 2009a; Fig. 9).  This biostratigraphical scheme has 1104 
therefore become a standard with which other South America sequences are now 1105 
routinely compared (e.g. Lopes et al., 2010; Tonni et al., 2009; Beilinson et al., 2015). 1106 
 1107 

In Bolivia, the Tarija Valley preserves some of the richest Pleistocene mammal 1108 
localities in South America, although the dating of these assemblages remains unclear 1109 
(Coltorti et al., 2007; Tonni et al., 2009; Zurita et al., 2009b).  A Middle Pleistocene 1110 
age has been suggested on the basis of mammalian biostratigraphy (e.g. Tonni et al, 1111 
2009 and references therein), although they have also been attributed to a much 1112 
younger period on the basis of radiocarbon dating (~44 – 21 ka BP).  A similar lack of 1113 
reliable dating for fossiliferous sites has hampered the bio- and chronostratigraphical 1114 
correlation of South American Pleistocene faunas elsewhere; in Brazil, Lopes et al. 1115 
(2 1 ) published E R dates of between 226 and 34 ka for a vertebrate assemblage 1116 
from Chu  Creek; this broad age range, spanning a time period encompassing the final 1117 
part of MIS 7 until MIS 4, is probably due to the reworked nature of the Chu  Creek 1118 
vertebrate assemblages (Pereira et al., 2012).  In Venezuela, strata such as the Taima 1119 
Taima fossil bed and fluvial sites at Muaco, Cucuruchú, and Quebrada Ocando have 1120 
been dated on the basis of biostratigraphy (Carlini et al., 2008).   1121 

In Uruguay, the fossiliferous beds of the Sopas Formation have yielded vertebrate 1122 
faunas, together with freshwater molluscs, plant remains and other trace fossils 1123 
(Ubilla et al., 2004, 2009, 2016; Ubilla and Martínez, 2016).  The mammalian 1124 
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assemblage includes extinct taxa, such as the capybara Neochoerus aesopi, the 1125 
glyptodont Neuryurus rudis, and two extinct species of deer (Antifer ultra and 1126 
Morenelaphus brachyceros).  This assemblage has been correlated on the basis of 1127 
biostratigraphy with the Lujanian Stage (Late Pleistocene–Early Holocene) of the 1128 
Pampean region of Argentina; this is supported by radiocarbon AMS dates from the 1129 
vertebrate material range from 39,900 ± 1,100 to 33,560 ± 700 BP (cal 45,389 to 1130 
42,025 ya) and TL/OSL ages derived from the sediments range from 1131 
71,400 ± 11,000 to 27,400 ± 3,300, indicating a MIS 3 age for the fauna (Ubilla et al., 1132 
2016).  Palaeoenvironmental evidence suggests that the Sopas formation represents 1133 
open habitats, savannahs and woodlands (Ubilla et al., 2016). 1134 
 1135 
Insert Fig. 10 hereabouts 1136 
 1137 
6.4 Australia 1138 

In Australia, Quaternary palaeoenvironmental research based on fluvial archives has a 1139 
long pedigree in two important regions of the continent: the arid interior of the Lake 1140 
Eyre Basin, where fluvial, lacustrine and aeolian sequences representing the last ~300 1141 
ka are preserved (recently reviewed in detail by Habeck-Fardy and Nanson, 2014), 1142 
and the extensive meandering river systems of southeastern Australia, particularly the 1143 
well-dated terraces of the Lachlan and Macquarie rivers in the Murray-Darling Basin 1144 
(Kemp and Spooner, 2007; Yonge and Hesse, 2009; Kemp and Rhodes, 2010).  1145 
Faunal and floral responses to Pleistocene climate change in these regions remain less 1146 
well understood, primarily due to the rarity of stratified fossil assemblages and 1147 
significant issues with directly dating fossil material (Price et al., 2013; Westaway et 1148 
al., 2017).  As is the case in North America, much research in Australia has been 1149 
focussed on the extinction of megafaunal species during the Late Pleistocene; 1150 
approximately 96 % of the large mammal fauna was extinct by ~45 ka, a period 1151 
broadly concurrent with human colonisation, although the extent to which these 1152 
extinctions can be directly related to human activity remains a source of considerable 1153 
debate (e.g. Koch and Barnosky, 2006; Prideaux et al., 2007, 2010; Price et al., 2015; 1154 
Dortch et al., 2016; Johnson, 2016; Johnson et al., 2016; Westaway et al., 2017; Fig. 1155 
11).  Overhunting and the burning of the landscape by people, with a corresponding 1156 
abrupt reduction in plant diversity, have been suggested as causal factors (Porch and 1157 
Kershaw, 2010; Rule et al., 2012), but significant climate change in the period 1158 
between 50 and 46 ka, resulting in a major shift to more arid conditions and a 1159 
corresponding drop in water levels in Lake Eyre and Lake Frome, is also considered 1160 
to have played an important role (Murphy et al., 2011; Cohen et al., 2012, 2015; 1161 
Sakaguchi et al., 2013).   1162 
   1163 
In the Lake Eyre Basin, fossils of 21 megafaunal mammal species have now been 1164 
recorded (Webb, 2008, 2009), including a giant wombat-like marsupial (Diprotodon), 1165 
giant short-faced kangaroo (Procoptodon goliah), a large flightless bird (Genyornis 1166 
newtoni), giant goanna (Varanus priscus) and the 'marsupial lion' (Thylacoleo 1167 
carnifex).  In addition, smaller mammal species have been recovered from the upper 1168 
Katipiri Formation (MIS 6–4), including the Southern brown bandicoot (Isoodon 1169 
obesulus), the extinct Eastern hare wallaby (Lagorchestes leporides), the Pale field rat 1170 
(Rattus tunneyi) and the Western grey kangaroo (Macropus fuliginosus); the fossil 1171 
occurrences of the three extant species are well beyond their modern distributions 1172 
(Webb, 2009).  However, the lack of chronological control for much of this fossil 1173 
material means that the first and last appearances of many mammal species in the 1174 
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wider Lake Eyre Basin remain poorly understood.  Better biostratigraphical evidence 1175 
has been forthcoming in eastern Australia, where vertebrate and molluscan 1176 
assemblages (44 taxa in total) have been recovered from the Darling Downs, within 1177 
fluvial deposits of the Kings Creek (Price and Sobbe, 2005; Price et al., 2011).  1178 
Palaeoenvironmental analyses have indicated that a mosaic of local habitats, including 1179 
vine thickets, scrublands and open grasslands, prevailed during the late Pleistocene; 1180 
increasing aridity led to a contraction of the more wooded environments in favour of 1181 
grassland.  Dating of the Kings Creek sequences using a variety of techniques (OSL, 1182 
U-series and radiocarbon) has shown that individual megafaunal species responded 1183 
independently to climatic and environmental change, revealing a more complex 1184 
staggered extinction pattern in southeastern Austrial prior to the arrival of humans 1185 
(Price et al., 2011; Fig. 11). 1186 
 1187 
Insert Fig. 11 Australian biostrat chart 1188 
 1189 
 1190 
7. Synthesis 1191 
 1192 
Regional biostratigraphies based on mammalian and molluscan assemblages continue 1193 
to contribute significantly to the dating and correlation of Pleistocene fluvial deposits 1194 
on a global scale.  However, the quality of these datasets varies widely, depending on 1195 
the potential for preservation of fossils in a given region and the priority given to 1196 
palaeontological and biostratigraphical research.  The period since the 2007 review of 1197 
regional biostratigraphies has seen a steady accumulation of data in many parts of the 1198 
world.  Those based on mammalian and molluscan assemblages, in particular, have 1199 
continued to be tested and developed, especially in NW Europe, and clearly have a 1200 
significant role to play in the dating and correlation of Quaternary deposits.  1201 
Biostratigraphical frameworks are still predominantly based on mammals and other 1202 
vertebrates, which is not surprising considering the robust nature of their fossils. 1203 
Molluscs are also commonly used.  Other groups, such as reptiles, amphibians, 1204 
ostracods and insects are still only infrequently used as a dating tools (e.g. Gleed-1205 
Owen, 1988, 1999, Coope, 2001; Griffiths, 2001; Whittaker and Horne, 2009; 1206 
Borodin et al., 2013), but can provide invaluable complementary information as 1207 
palaeoclimatic indicators.  The relative rarity of non-mammalian vertebrate remains, 1208 
which has been noted in fluvial sequences in regions such as Europe (Holman, 1998; 1209 
Roe et al., 2009), Australia (Price and Sobbe, 2005) and Africa (Stoetzel et al., 2012) 1210 
is usually attributed to taphonomic biases caused by the relative fragility of these 1211 
fossils, although only a few studies specifically addressing this issue have been 1212 
published (e.g. Pinto Llona and Andrews, 1996, 1998).  1213 
 1214 
The predominance of work in the cooler temperate regions is in large part a result of 1215 
the common preservation there of vertebrate and molluscan faunas in fluvial contexts 1216 
that coincide with calcareous settings. In the warmer temperate Mediterranean region 1217 
limestone abounds but dryland soil processes have led to reprecipitation of calcareous 1218 
cements that seems to have coincided with the destruction of fossils.  It is probably no 1219 
accident that the key late Early Pleistocene fauna site of Latamneh in the Orontes in 1220 
Syria is in one of the few reaches of that river with terrace gravels that are not 1221 
calcareously cemented (Bridgland et al., 2012). The only other Orontes sites with 1222 
significant faunas are preserved in the Ghab, where the presence of fossils might owe 1223 
much to waterlogging in this fluvio-lacustrine subsiding basin (see Section 5). 1224 
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 1225 
There is an increasing need for research to address the validity of inferred patterns of 1226 
faunal (including hominin) exchange between neighbouring regions. These have the 1227 
potential to address important questions about the timing and nature of 1228 
palaeoenvironmental change in response to climate change, by identifying key drivers 1229 
of dispersal and the waxing and waning of biogeographical barriers.  Of critical 1230 
importance when comparing adjacent regions is the accuracy of chronological 1231 
frameworks, which are required to establish whether significant palaeoenvironmental 1232 
changes and faunal turnovers occured synchronously in different regions, or whether 1233 
leads and lags can be identified.  It is often not possible to detect diachroneity in 1234 
faunal change due to the lack of precision in radiometric methods, especially in the 1235 
Early and Middle Pleistocene. Improved dating is thus required to determin patterns 1236 
of north–south exchange between refugia (in the Northern Hemisphere), an issue of 1237 
further relevance in respect of Latamneh, which has been suggested as a possible 1238 
cold-stage assemblage that includes taxa represented in interglacials further north 1239 
(Bridgland et al., 2012). 1240 
 1241 
Detailed analyses are also important when it comes to reconstructing 1242 
palaeoenvironmental change through longer fluvial sequences, with the potential to 1243 
detect smaller-scale climatic oscillations, potentially correlateable with oxygen 1244 
isotopic substages (e.g. Schreve, 2001b; White et al., 2013).  These problems are well 1245 
known to Quaternary biostratigraphers and palaeoecologists.  The value of 1246 
biostratigraphical and palaeoecological data has led to such studies becoming an 1247 
increasingly common element of multi-disciplinary research; such projects are often 1248 
driven primarily by archaeological research questions. Evidence corroborating and 1249 
strengthening established biostratigraphical frameworks (Schreve, 2001a, b) has been 1250 
obtained, together with substantial new understanding of the palaeoclimatic and 1251 
palaeoecological significance of numerous plant and animal species that occur 1252 
commonly within fossil assemblages (e.g. Candy et al., 2012, 2015, 2016).   1253 
 1254 
Certain taxa appear to have been extremely widespread at particular times during the 1255 
Pleistocene, only for their ranges to fragment in response to subsequent 1256 
environmental pressures.  The distribution of the hippopotamus (Hippopotamus 1257 
amphibius) has long had significance in Britain, where it is a distinctive marker-fossil 1258 
for the Last Interglacial (MIS 5e) (Sutcliffe, 1964; Currant and Jacobi, 2001; Schreve, 1259 
2001a, 2009).  Similarly, distinctive freshwater mollusc species such as those of the 1260 
'Rhenish suite' characteristic of the MIS 11 Thames were clearly able to disperse 1261 
rapidly across large parts of Europe.  These two examples illustrate the potential for 1262 
fluvial systems to connect otherwise separate biogeographic provinces, linking 1263 
regional biostratigraphic schemes at certain times.  Terrestrial species, for which large 1264 
rivers are potential barriers to dispersal, are less likely to be able to profit from fluvial 1265 
connectivity.  However, in the case of the 'Lyrodiscus' fauna that characterises 1266 
molluscan faunas in Britain and northern France during MIS 11, some continuity in 1267 
woodland habitat was clearly required to allow this biome to develop. 1268 
 1269 
Some of the most significant patterns in the palaeontological record are evident at the 1270 
extremities of regions and in differences between continental and island records.  For 1271 
example, in NW Europe the well established British biostratigraphical record differs 1272 
from that of its nearest continental neighbours; both regions benefit from excellent 1273 
preservation of fossils and well-dated fluvial stratigraphies, allowing direct 1274 
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comparison of the faunas and floras of Pleistocene interglacials.  The occurrence of 1275 
hippopotamus in Britain and on the near-continent continues to be a point of 1276 
difference, for example. This taxon occurs in abundance in Britain during the Late 1277 
Pleistocene only during the Last Interglacial (MIS 5e, Ipswichian), whereas in 1278 
northern France it has been found in assemblages dated to MIS 11 and MIS 7. 1279 
 1280 
Palaeoclimatic reconstructions based on multiple fossil proxies have proved 1281 
particularly useful for understanding interglacials, especially on the northern fringes 1282 
of Europe.  This sort of research has only been possible in regions where long, 1283 
detailed sedimentary sequences are preserved.  In Britain, much of this evidence has 1284 
been derived from fossils of a diverse range of thermophilous flora and fauna that 1285 
now occur in more southerly parts of continental Europe, or even further afield.  At a 1286 
basic level, qualitative measures of enhanced warmth (or cold) can be shown by the 1287 
relative abundances of thermophilous or cryophilous species within fluvial deposits.  1288 
More precise palaeotemperature estimates can be obtained from quantitative methods 1289 
based on palaeoecological proxies, which now have a long pedigree within 1290 
Quaternary research in northwest Europe (e.g. Atkinson et al., 1987; Zagwijn, 1996; 1291 
Horne et al., 2012).  Such approaches employ the known climatic tolerances, or the 1292 
mapped climatic range, of extant plant or animal species in order to infer the warmest 1293 
(Tmax) and coldest (Tmin) temperatures under which a given assemblage of species 1294 
could survive (Candy et al., 2010).  Fossils of these indicator species (or assemblages 1295 
of groups of species) within Pleistocene fluvial deposits can thus be used as proxies 1296 
for the palaeotemperature regime that prevailed at the time the deposit accumulated; 1297 
within longer sequences, it is also possible to infer significant climatic changes from 1298 
the fossil record. 1299 

Consideration of the ecological preferences of mollusc and ostracod species is 1300 
important and can bolster arguments from faunal comparison data that can otherwise 1301 
seem circular or overly reliant of negative (absence) evidence. An interesting 1302 
observation from recent years has been the occurrence of halophytic taxa in warm-1303 
climate fluvio-lacustrine settings, where evaporation enhances salinity. This was 1304 
noted in the reach of the Orontes in northern Syria, where the aforementioned 1305 
subsiding Ghab basin is crossed (Bridgland et al., 2012). At that land-locked locality 1306 
there is a low potential for confusion with an estuarine environment, but in more 1307 
coastal settings the co-occurrence of certain species could raise problems for 1308 
environmental interpretation.    1309 
 1310 
8. Conclusions 1311 
Since the last major review of biostratigraphical data derived from Quaternary fluvial 1312 
archives in 2007, significant new research on Pleistocene fossil assemblages has been 1313 
undertaken on almost every continent.  Established regional biostratigraphical 1314 
frameworks have been challenged, modified and, in many cases, strengthened by the 1315 
new data generated by this work.  Over the 20-year lifespan of FLAG, much of the 1316 
evidence summarized here has been obtained from fluvial sequences in the NW 1317 
European 'hotspot' that includes Britain and France, together with important archives 1318 
from Germany, Iberia and Italy and Eastern Europe.  Research in Europe has included 1319 
the reporting of new sites, dating or re-dating of known localities to improve 1320 
chronological control, and the development of high-resolution palaeoenvironmental 1321 
reconstructions based on fossil assemblages and geochemical analyses.  There have 1322 
also been important advances in understanding of the palaeoclimatic and 1323 
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palaeoecological significance of numerous plant and animal species that occur 1324 
commonly within Pleistocene fossil assemblages; in combination with improved 1325 
chronological frameworks, these provide important evidence for changing climate and 1326 
environments through time.   1327 
 1328 
In the Levant and South Asia, where the archaeological record has driven the research 1329 
agenda, the recognition of the utility of fossil assemblages as chronological and 1330 
palaeoevironmental tools has led to them being increasingly studied, despite 1331 
considerable taphonomic difficulties.  The Arabian Peninsula, in particular, has been 1332 
the subject of an increased focus of studies relating to hominin dispersals out of 1333 
Africa, but because well preserved fluvial deposits are largely absent in this arid 1334 
region, fossils have mainly been derived from lacustrine and cave sequences.  The 1335 
potential for developing biostratigraphical correlation schemes, linking the Arabian 1336 
record to better-preserved fluvial archives in neighbouring regions such as the Levant, 1337 
is therefore an exciting possibility for future research. 1338 
 1339 
Europe and the Middle East have in common long-timescale records of human 1340 
occupation; beyond these areas, in the Americas and Australia, human impacts came 1341 
much later and have been studied mainly in the context of human contributions to the 1342 
extinctions of Pleistocene megafaunas.  The chronology of the Great American Biotic 1343 
Interchange, together with refinements in South American biostratigraphical schemes 1344 
in countries such as Brazil, Argentina and Bolivia continue to be major areas of 1345 
research.  Similarly, in Australia, frameworks of faunal extinctions have been 1346 
developed.  Australia has an apparently impoverished Middle and Late Pleistocene 1347 
biostratigraphical record compared with other parts of the world, and many of the 1348 
species that went extinct during this period are poorly dated.  Archaeological sites 1349 
attesting to potential human impact are rare and detailed ecological information for 1350 
most extinct megafauna is lacking.  As a result, the processes leading to megafaunal 1351 
extinction remain unclear, although the weight of evidence points to a direct human 1352 
impact as a major cause of extinction. 1353 
 1354 
Although it is now possible to generate reliable radiometric dates for river terrace 1355 
sequences in many parts of the world, enabling their correlation with the globally 1356 
applicable marine oxygen isotope record, in some regions this remains extremely 1357 
difficult.  Where such robust chronological frameworks exist, providing fossils are 1358 
also well preserved, it is possible to explore more detailed patterns in the occurrences 1359 
of plant and animal species during the Pleistocene. 1360 
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Highlights 
 

x Research over the last decade into biostratigraphical data recorded in fluvial archives 
is reviewed 

x Consideration of biogeography and palaeoclimatic evidence is also included 
x This emphasizes the disparities in research priorities and fossil preservation on a 

global scale 

*Highlights (for review)


