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Abstract

Estimation of the intensity of a point process is considered within a nonparametric

framework. The intensity measure is unknown and depends on covariates, possibly many

more than the observed number of jumps. Only a single trajectory of the counting process

is observed. Interest lies in estimating the intensity conditional on the covariates. The

impact of the covariates is modelled by an additive model where each component can be

written as a linear combination of possibly unknown functions. The focus is on prediction

as opposed to variable screening. Conditions are imposed on the coe�cients of this linear

combination in order to control the estimation error. The rates of convergence are optimal

when the number of active covariates is large. As an application, the intensity of the buy

and sell trades of the New Zealand Dollar futures is estimated and a test for forecast

evaluation is presented. A simulation is included to provide some �nite sample intuition

on the model and asymptotic properties.
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1 Introduction

Suppose that you want to estimate and then predict the likelihood of a trade arrival for a

�nancial instrument that trades relatively frequently. The reason for doing so could be market

making or optimal execution. These problems are quite common in the �nancial industry.

In an application to be considered here, the instrument is the futures on the New Zealand

Dollar. A trade arrival for such an instrument may depend on the state of the order book,
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which contains 5 levels on the bid and the o�er. It may also depend on what happens with

other related instruments, their past prices and quoted volumes dynamics, as well as on past

trades. The number of possible covariates can grow quickly and become relatively large, even

for high frequency data.

Problems such as the one just described can be addressed considering trade arrivals as the

jump of a counting process whose intensity (the mean over an in�nitesimal time period) de-

pends on a set of covariates. This paper considers the estimation of such counting processes for

problems where the data are time series, the number of covariates is large, and the functional

form of the intensity does not need to be parametric.

Let (N (t))t≥0 be a counting process with intensity measure

Λ (A) =

ˆ
A

exp {g0 (X (t))} dt, (1)

for any Borel set A ⊆ [0,∞), where g0 is an unknown function, X (t) are K dimensional

covariates that can depend on t. Often, the intensity in (1) is intuitively understood to mean

lim
s↓0

Pr (N (t+ s)−N (t) = 1|Ft)
s

= exp {g0 (X (t))} ,

where Ft is the sigma algebra generated by (N (s) , X (s))s≤t. Given that the covariates are

time dependent, the intensity may depend on the time elapsed from the last jump of N (t).

The covariates are predictable, for example, adapted left continuous processes. If the process

is Poisson when conditioning on the covariates X (t), then the counting process is usually

referred to as a Cox or doubly stochastic process.

De�ne the stopping times Ti := inf {s > 0 : N (s) ≥ i}, T0 = 0, i.e., Ti is the time of the i
th

jump. In the empirical �nancial microstructure application to be considered in this paper, the

jump time Ti is the time of the i
th trade arrival for a speci�c security, and the covariates will be

information extracted from the order book, among other quantities. The statistical problem

is where one observes (N (t) , X (t)) up to time T . By de�nition of the stopping times, waiting

until T = Tn means that one observes n jumps. The goal is to estimate g0. This function g0 is

only known to lie in some class of additive functions, which will be introduced in due course.

The covariates and the durations between jumps are supposed to be stationary, but neither

independent nor Markovian.

The time series problem where only one trajectory of the process is observed and g0 in

(1) is possibly nonlinear with a large number of covariates has not been previously discussed

in the literature. The framework allows us to handle ultra-high dimensional problems where

the number of covariates is exponentially larger than the sample size (n when T = Tn). The

covariates could be time series and lagged variables. This setup is motivated by many applied

problems, such as the previously mentioned trading arrival estimation problem (Bauwens and
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Hautsch, 2009, for a survey and references for counting models applied to �nance). A traded

instrument may depend on updates and information from other instruments. This leads to a

proliferation of the possible number of variables, though one might expect that either a handful

of them might be relevant or many covariates could explain the intensity with a decreasing

degree of importance. In the modelling application in Section 4, one ends up with more than

one thousand variables with the number of trades n of about a thousand.

The main technical features of the present study are: 1. estimation of g0 in (1), when g0 is

only known to lie in some large set of functions; 2. the number of covariates is allowed to be

larger than the number of observed durations n; 3. a class of additive functions is de�ned and

it is shown that within this class one can obtain convergence rates that are optimal in the high

dimensional case; 4. the estimation problem can be solved by the Frank-Wolfe algorithm and

rates of convergence are given; 5. an empirical study provides applicability of the methodology

and a test for forecast superiority between counting models, showing that suitably constrained

large models can perform better out of sample.

From a theoretical point of view, restrictions on the absolute summability of linear coe�-

cients (the l1 norm of the coe�cients) in the additive model are imposed. Such a Lasso type

of constraint tends to produce models that are sparse. This means that if all the coe�cients

are nonzero but small, tightening the constraint leads to few nonzero coe�cients. It is well

known that tightening a constraint on the sum of the squared coe�cients (i.e., l2 norm as in

ridge regression) leads to all coe�cients being small, but none being zero.

From an empirical point of view, the paper considers an estimation of the intensity for the

arrival of buy and sell trades on the New Zealand Dollar futures contract. The intensity is

modelled using many covariates of the same order of magnitude as the number of durations.

Estimation of the intensity for buy and sell orders has been considered in the literature (e.g.,

Hall and Hautsch 2007). However, no study appears to consider market information (e.g., the

order book) on the traded instrument as well as other related instruments. The out of sample

results show that information provided by additional instruments is relevant. To evaluate the

out of sample performance of competing models, an out of sample test based on the likelihood

ratio is used.

Details concerning the proofs and in text derivations are provided online at Cambridge Core

in supplementary material to this article. Readers may refer to the supplementary material as-

sociated with this article, available at Cambridge Core (www.cambridge.org/core/journals/econometric-

theory).

1.1 Relation to the Literature

In the regression context, high dimensional additive modelling has been considered in the

literature (e.g., Bühlmann and van de Geer, 2011, and references therein). This paper seems
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to be the �rst to consider estimation with many covariates, allowing for a nonlinear link

function in a time series context. Here, time series means that only one single realization of

the process is observed over a window expanding in the future. This framework di�ers from

the Cox proportional hazard model and Aalen multiplicative and additive model. In that

context, estimation with many variables has been considered by various authors (e.g., Bradic

et al., 2011, Gai�as and Guilloux, 2012, amongst others) and the focus is often in recovering

the true subset of active variables. This often results in stringent restrictions on the covariates'

design and cross-dependence. In this paper, the focus is on prediction and on weak conditions

that can lead to consistency even when the number of non-negligible covariates grows with

the sample size. Beyond additivity, the estimation considered here is very general. Section 3.6

provides an overview of the applications. These include linear models, Hawkes processes with

covariates, threshold models, and additive monotone functions among other possibilities.

The analysis of estimators of the intensity function usually relies on martingale methods

(Andersen and Gill, 1982, van de Geer, 1995). In the context of a �xed number of covariates,

nonparametric estimators are not uncommon (Nielsen and Linton, 1995, Fan et al., 1997).

The results derived here apply to parametric as well as to certain nonparametric classes of

functions. In the �nancial econometrics literature, interest often lies in parametric modelling

of a single point process (Bauwens and Hautsch, 2009, for a survey). Hence, the current paper

considers the time series problem as in the �nancial econometrics literature, but allows for

a possibly nonparametric estimation and for a large number of covariates as done in high

dimensional statistics.

In a time series context, the intensity is often modelled by Hawkes processes and can

be written as a predictable function of durations (e.g., Bauwens and Hautsch, 2009). The

framework of this paper allows the aforementioned variables to be covariates.

1.2 Likelihood Estimation

It is well known (e.g., Brémaud, 1981, Ch.II, Theorem 16) that {Λ ((Ti−1, Ti]) : i ∈ N} (Λ as

in (1)) is i.i.d. exponentially distributed with mean 1. The likelihood is easily derived from

here, assuming that Λ has density λ with respect to the Lebesgue measure (e.g., Ogata, 1978,

eq.1.3).

De�ne the population log-likelihood

L (g) := Eg (X (0)) exp {g0 (X (0))} − E exp {g (X (0))} , (2)

assuming the expectations are well de�ned (see Section A.1.2 in the supplementary material).

Suppose that g0 in (1) lies in a set G, momentarily assumed to be countable to avoid distracting
technicalities. Then, g0 = arg supg∈G L (g) using concavity of the log-likelihood. Given that ex-

pectations are unknown, the above is replaced by the empirical estimator gT := arg supLT (g),

4



where the sup is over a class of functions to be de�ned in the next section and the sample

likelihood is

LT (g) :=

ˆ T

0
g (X (t)) dN (t)−

ˆ T

0
exp {g (X (t))} dt, (3)

where L (g) = limT LT (g) /T almost surely (see Section A.1.2 in the supplementary material

for the proof of this statement). Supposing that one waits until a time Tn such thatN (Tn) = n,

the above can be written as

LTn (g) :=

n∑
i=1

[
g (X (Ti))−

ˆ Ti

Ti−1

exp {g (X (t))} dt

]
.

The representation in the last display is useful for actual computations.

1.3 Outline of the Paper

The plan for the paper is as follows. Section 2 de�nes the model for the estimator and states

the goal of the paper. Section 3 states the consistency result and its optimality. A greedy

algorithm is discussed as a method to carry out the estimation in practice. Section 3.6 shows

applications of the main result to a variety of estimation problems and derives the convergence

rates. Additional details are also given and an out of sample test based on the likelihood ratio

is suggested for forecast evaluation. Section 4 applies the estimation procedure to the intensity

of buy and sell trades. Section 5 provides �nite sample evidence to better understand the role

of the di�erent parameters in the estimation. Section 6 contains further remarks. Proofs of

the results are in Section A.1 of the supplementary material.

2 The Model

The goal is to allow for a simple interpretation of the impact of the covariates on the inten-

sity. A good level of interpretability is gained by letting g (x) be linear in x. However, the

impact of each of the covariates might be nonlinear. Nonlinearities are documented in many

applications, including high frequency �nancial data (e.g., Hasbrouck, 1991, Lillo et al., 2003).

Whether these nonlinearities a�ect the intensity depends on the application. An additive

nonlinear model is considered a reasonable trade o� between interpretability and the possi-

bility of nonlinear relations. In this case, g (x) =
∑K

k=1 g
(k) (x), where the g(k)'s are bounded

functions, possibly zero, and for each k, g(k) (x) only depends on xk, the k
th coordinate of

x = (x1, x2, ..., xK) (i.e., with abuse of notation, g(k) (x) = g(k) (xk)). This is done to reduce

the notational burden.
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2.1 Representation for Additive Functions

For the purpose of controlling the estimation error, it is necessary to impose structure on

the set that the additive functions are supposed to lie within. Functions with the following

structure are considered

g(k) (x) =
∑
θ∈Θk

bθθ (x) (4)

where Θk is a set of functions that depends only on xk, Θk is a possibly uncountable set, and the

bθ's are real valued coe�cients. Given that Θk can be uncountable, the above representation

is more general than a standard series expansion. The sum is understood to mean

∑
θ∈Θk

bθ := sup

{∑
θ∈F

bθ : H ⊆ Θk, H is �nite

}
.

For example, we could have gk = bθθ for θ ∈ Θk, where Θk is a model, possibly in�nite

dimensional. In consequence of the additive structure of g,

g (x) =

K∑
k=1

∑
θ∈Θk

bθθ (x)

 , (5)

where the terms in the parenthesis are g(k) in (4), which is a function that depends on the kth

covariate only. This structure is suitable for estimation. Estimation within this framework

requires choice of the bθ's as well as the θ's. For practical purposes the latter might be

simple parametric functions or �xed functions rather than general in�nite dimensional models.

Details and examples are postponed to Section 3.6. The interested reader can skim through

that section for an overview. In order to impose general restrictions, suppose that the user

�xes a set of weights W := {wθ ∈ (0,∞) : θ ∈ Θ}, where Θ :=
⋃K
k=1 Θk. This means that

the weights wθ can be di�erent for each function θ of the kth explanatory variable. Then,

de�ne L (B) = L (B,Θ,W) :=
{∑

θ∈Θ bθθ :
∑

θ∈Θwθ |bθ| ≤ B,wθ ∈ W
}
. This is a subset of

the functions in (5) such that the weighted absolute sum of the coe�cients is bounded by

a �nite constant B > 0. The weights are often used to control the importance of each θ.

For example, one can let w2
θ = V ar (θ (X (t))) so that intuitively, all functions have the same

importance. A bound on the weighted absolute sum of the regression coe�cients is common

in Lasso estimation (e.g., Bühlmann and van de Geer, 2011).

Example 1 Let g (x) =
∑K

k=1 bkXk and πk be the map such that πkx = xk for any x ∈ RK

and xk is the kth element in x. Then, Θk := {πk} contains a single function that maps

x ∈ RK into its kth co-ordinate xk. Also, let w2
θ = V ar (Xk (0)) when θ ∈ Θk and Xk is the

kth co-ordinate of X. The constraint is
∑K

k=1 |bk|
√
V ar (Xk (0)) ≤ B.
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In other circumstances, the weight can serve the purpose of shrinkage within each function

g(k), which is important in in�nite dimensional spaces.

Example 2 To avoid distracting notation, suppose that g (x) =
∑∞

j=1 bjx
j
k, a polynomial

which depends on xk ∈ [0, 1] only. Also suppose that
∑∞

j=1 (j!) |bj | ≤ B, so that the weights

force the coe�cients to decay faster than j!. An in�nite di�erentiable function with derivatives

of all orders bounded by one can be written as the polynomial above where |bj | ≤ (j!)−1. Hence,

the weights allow us to account for this and the constraint induces an additional shrinkage e�ect

on the coe�cients because of the summability constraint.

From now on, dependence on Θ and W will be implicit when writing L (B). The approxi-

mation error of functions in L (B) for B <∞ can be related to the bound on the absolute sum

of the coe�cients. This is useful if one supposes that g0 ∈ L (B0) for some unknown but �nite

B0. If the user estimates the model with B < B0 , an approximation error will occur. However,

note that the results of the paper will allow for more general forms of misspeci�cation. Let

P (x) be the marginal distribution of X (t), which by stationarity does not depend on t. For

any function g : RK → R, let Pg =
´
g (x) dP (x). The Lr (P ) norm is |·|r =

(´
|·|r dP

)1/r
for

r ∈ [1,∞), with the standard modi�cation when r =∞. The following is a re-adaptation of a

result in Sancetta (2015) and can be used to control the approximation error of the estimator.

Lemma 1 Let g0 ∈ L (B0) for B0 < ∞ and θ̄r := supθ∈Θ |θ|r < ∞. Then, for any B < ∞,

and r ∈ [1,∞], ming∈L(B) |g0 − g|r ≤ w−1θ̄r max {B0 −B, 0}.

When g0 /∈ L (B), de�ne the best uniform approximation gB = arg inf |g − g0|∞ where the

in�mum is over L (B). We shall de�ne

B0 = arg inf
B<∞

|gB − g0|∞ . (6)

This means that gB0 is the best uniform approximation of g0 for any g ∈
⋃
B>0 L (B).

2.2 The Goal

The user supposes that g0 ∈ L (B0), but ignores the value of B0. They guess a value B̄ <∞.

If it is the case that g0 ∈ L (B0) , and B̄ ≥ B0, there will be no approximation error. The

estimation error could be high, especially if B̄ is much larger than B0. Once B̄ is chosen, the

log-likelihood in (3) is maximized over L
(
B̄
)
.

Let λ = dΛ/dµ, where Λ is the intensity measure (1) and µ is the Lebesgue measure. Then,

λ (X (t)) = exp {g0 (X (t))} with the right hand side as in (1). Suppose that g is �xed and

bounded. De�ne the random norm

|g − g0|λ,T :=

√
1

T

ˆ T

0
(g (X (t))− g0 (X (t)))2 dΛ (t).
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By stationarity and ergodicity (e.g., Lemma 2 in Ogata, 1978),

|g − g0|2λ,T → P (g − g0)2 λ =

ˆ
(g (x)− g0 (x))2 λ (x) dP (x) , (7)

almost surely. The goal is to de�ne an estimator gT in L
(
B̄
)
and obtain rates of convergence

to zero of |gT − g0|λ,T . By (7), this convergence also implies convergence of P (gT − g0)2 λ,

though the rate of convergence for the latter cannot be derived unless we impose dependence

conditions on the covariates. If |g0| is bounded - as will be assumed here - the right hand side

(r.h.s.) of (7) is proportional to P (g − g0)2 = |g − g0|22, hence the results to be derived also

hold in P -integrated square error. The proofs show that the convergence results hold for the

Hellinger distance between exp {gT } and exp {g0}. To minimise the notational burden, this

is not explicitly stated in the text. Details can be found in Section A.1 of the supplementary

material. Note that elements g, g′ ∈ L
(
B̄
)
will be considered the same if P (g − g′)2 λ = 0.

2.2.1 Connection to Lasso

Given the constraint on the coe�cients bθ's, minimization over L
(
B̄
)
is just the primal of an

l1 penalized likelihood estimator, i.e., Lasso. Conditioning on the sample, for each B̄, there

is a constant πB̄ (the Lagrange multiplier, which increases with T but at a possibly di�erent

rate than LT ), such that the left side of the following two displays are the same:

arg sup
θ,bθ

LT

(∑
θ∈Θ

bθθ

)
,

where the supremum is taken over those θ's and bθ's such that
∑

θ∈Θ bθθ ∈ L
(
B̄
)
;

arg sup
θ,bθ

LT

(∑
θ∈Θ

bθθ

)
− πB̄

∑
θ∈Θ

wθ |bθ| , (8)

where the supremum is taken over those θ's and bθ's such that θ ∈ Θ and bθ is a real number. If

L
(
B̄
)
is a �nite dimensional space, πB̄/T → 0 (in probability) when the estimator is consistent

for g0 inside L
(
B̄
)
. However, when L

(
B̄
)
is in�nite dimensional, norms are not equivalent

and consistency under the norm we consider in this paper does not mean consistency under the

norm implied by the constraint. Hence, for in�nite dimensional L
(
B̄
)
, πB̄/T may converge

to a constant even when the estimator is consistent and g0 lies inside L
(
B̄
)
.

Estimation of the primal or dual problem gives the same solution when we are able to

map the constraint into the Lagrange multiplier πB̄. In general, this is not straightforward.

A solution for the Lasso problem is often via co-ordinate descent, though rates of convergence

are usually not derived (e.g., Bühlmann and van de Geer, and references therein). Here, we
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solve the constrained optimization and suggest an algorithm to do so in practice and derive

the convergence rates of the algorithm (Section 3.5).

3 Consistency of the Estimator

3.1 Conditions

The following conditions are imposed. Remarks on these are in Section 3.4. To aid intuition,

the conditions can be divided into three groups: stochastic restrictions, parameter space re-

strictions, and estimator restrictions. The conditions use the notation de�ned around (1) and

in Section 2.1.

Condition 1 Stochastic Restrictions.

1. (X (t))t≥0 is a stationary, ergodic, predictable K dimensional process with values in a

set X ⊆ RK (K > 1);

2. The cumulative intensity Λ has a density λ with respect to the Lebesgue measure (as in

(1));

3. T0 = 0 is the time of the last jump before the jump at time T1.

Condition 2 Parameter Space Restrictions.

1. The functions in Θ =
⋃K
k=1 Θk are measurable, and uniformly bounded by a �nite

constant θ̄ := supθ∈Θ supx∈X |θ (x)|. The set Θk has an L∞ (P ) ε-bracketing number

N (ε,Θk) such that the entropy integral
´ 1

0

√
ln (1 +N (ε,Θk))dε is �nite for every k

(not bounded and can grow with the sample size); the weights in L (B,Θ,W) satisfy

w := infθ∈Θwθ > 0;

2. In (1), ḡ0 := |g0|∞ <∞ and if g0 6= gB0, then B0 <∞ (see (6)).

Condition 3 Estimator Restrictions. The estimator gT satis�es:

1. Pr
(
gT /∈ L

(
B̄,Θ,W

))
= o (1);

2. LT (gT ) ≥ supg∈L(B̄,Θ,W) LT (g)−Op
(
T
r2
T

)
, where rT is as in (9) in Section 3.2.

In general, from (9) one can deduce that r2
T . T 1/2, where throughout, . is inequality up

to a multiplicative universal �nite absolute constant.
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3.2 Consistency Results

It will be shown that the overall complexity in the statistical estimation depends on three

factors: the logarithm of the number of variables K, B̄ (in L
(
B̄
)
), and the entropy integral

of the largest of the sets Θk . To ease notation, dependence on θ̄ and w is suppressed in what

follows. More explicit bounds can be found in the proof of the results.

Theorem 1 Suppose that there is a nondecreasing sequence rT such that

r2
T . min

 B̄−1T 1/2

√
lnK + maxk≤K

´ 1
0

√
ln (1 +N (ε,Θk))dε

,
1

infg∈L(B̄) |g − g0|2∞

 . (9)

Under Conditions 1, 2, and 3, |gT − g0|λ,T = Op
(
r−1
T

)
.

Note that the condition that rT is nondecreasing implicitly imposes restrictions on B̄, K

and N (ε,Θk). The daunting expression (9) does simplify, but it is stated in this form for

�exibility. Section 3.6 considers applications of this result to a variety of problems so that the

bound becomes considerably simple. To provide a sense for the sharpness of the bound, it

might be convenient to suppose that the approximation error infg∈L(B̄) |g − g0|∞ is zero. Also

suppose that the entropy integral is bounded by a �nite constant. In this case, the rate of

convergence of |gT − g0|λ,T is O
(

(ln (K) /T )1/4
)
. By stationarity and ergodicity, it is easy to

see that for T = Tn (Tn is the time of the nth jump), Tn � n where � means equality up to a

multiplicative �nite absolute constant. In consequence, the bound becomes the more familiar

O
(

(ln (K) /n)1/4
)
for K > 1. Results in Tsybakov (2003) show that in a regression context

with Gaussian errors, no linear estimator of the convex combination of K bounded terms can

achieve a rate faster than Op

(
(ln (K) /n)1/4

)
when K is of a larger order of magnitude than

n1/2 (see Theorem 2 in Tsybakov, 2003). Hence, without further assumptions, one can suppose

that the convergence rate derived here is optimal in this context. Theorem 2 in Section 3.3

lends some rigor to this supposition.

In order to show the e�ect of the approximation error when g0 ∈ L (B0) for an unknown

but �nite B0, consider the following scenario. Let B̄ → ∞ so that eventually B̄ ≥ B0. By

Lemma 1 we deduce that the approximation error is eventually exactly zero for a �nite B̄. In

consequence, the following holds true.

Corollary 1 Suppose that g0 ∈ L (B0). Under the conditions of Theorem 1, for any B̄ →∞,

|gT − g0|2λ,T = Op

B̄
[√

lnK + maxk≤K
´ 1

0

√
ln (1 +N (ε,Θk))dε

]
T 1/2


When g0 /∈ L (B) for any B, the approximation error in Theorem 1 can be bounded using

the following, which follows from the triangle inequality and Lemma 1.
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Lemma 2 Under Condition 2,

inf
g∈L(B̄)

|g0 − g|∞ . inf
B>0

{
max

{
B − B̄, 0

}
+ inf
g∈L(B)

|g0 − g|∞
}
.

The reader interested in the scope of the possible applications can go directly to Section

3.6. The next sections provide remarks on optimality, conditions, and details for the solution

of the estimation problem.

3.3 Optimality

From the previous remarks, it is reasonable to infer that the rates of convergence in Theorem

1 are optimal for K large. To avoid technicalities, consider the following simpli�ed scenario.

One may argue that less stringent conditions should make the estimation problem harder and

as such, if the lower bound holds under restrictive conditions it should hold under more general

conditions. Recall that Xk (t) is the kth element in the vector of covariates X (t).

Theorem 2 Suppose L (1) := L (1,Θ,W), where the sets Θk's contain bounded functions, and

the weights in W have been set to one. Suppose that X (t+ Ti−1) = X (Ti−1) for t ∈ (0, Ti],

i.e., X (t) is constant between jumps of the point process N , and T0 = 0. Also suppose that

(X (Ti))i≥0 forms a sequence of i.i.d. random variables and that the Xk (Ti)'s are independent

across k, with continuous distribution function. For K > T
1/2
n with K = O (T pn) for any

p <∞, and n→∞,

inf
gT

sup
g0∈L(1)

ˆ Tn

0
|gTn (X (t))− g0 (X (t))|2 exp {g0 (X (t))} dt &

√
Tn ln

(
1 +KT

−1/2
n

)
in probability, where the in�mum is taken over all possible estimators gTn of the intensity.

Theorem 2 says that even under rather restrictive conditions, as long as the number of

variables K is of order of magnitude greater than T
1/2
n the convergence rate under |·|λ cannot

be faster than ((lnK)/Tn)1/4.

3.4 Remarks on Conditions

It is worth emphasizing that the conditions do not restrict g0 ∈ L (B) for B <∞.

Condition 1 is mild. For all practical cases, one usually restrictsX to be an adapted process

that is left continuous. This implies predictability (e.g., Brémaud, 1981). In consequence, the

time from last jump R (t) := inf {t− Ti : t− Ti > 0, i = 0, 1, 2...} can be used as a covariate,

as it is a predictable process. This will be the case when estimating certain nonlinear Hawkes

processes in Section 3.6. T0 = 0 is used to keep notation simple. Similarly, the condition

K > 1 is used to avoid writing ln (1 +K) instead of lnK in various places.

11



In Condition 2, the entropy integral restriction on the class of functions is standard. It is

needed as the framework is quite general, hence it requires some control of the complexity of

the functions in Θk. The entropy integral is �nite, but can grow with the sample size even

though this is not made explicit in the notation (see Section 3.6.6 and the proof of Lemma 5

in the supplementary material). The L∞ (P ) ε-bracketing number of a set Θk is the number

of pairs of elements in a set V such that for each θ ∈ Θk, there is a bracket [θL, θU ] satisfying

θL ≤ θ ≤ θU , and |θL − θU |∞ ≤ ε. The uniform norm can be replaced by the random norm

T−1
´ T

0 |θL − θU |
2 dΛ, which is actually the norm used in the proofs. This is di�cult to control

and in the applications considered in this paper, the (stronger) uniform norm is used instead.

To cover the case of sieve estimation and/or misspeci�cation, g0 is not restricted to lie in L,
but needs to be uniformly bounded.

Condition 3 only requires that asymptotically, the estimators satisfy the complexity re-

strictions discussed in this paper. This is weaker than assuming that the absolute sum of the

coe�cients is bounded by B̄ for any sample size and that the estimators of the functions θk's

are always in Θk. This setup allows us to cover di�erent approaches for estimation without

restricting attention to a speci�c one. Moreover, the estimator gT only needs to maximize the

sample likelihood LT asymptotically, rather than exactly. Section 3.5 provides details on a

computationally feasible estimation method.

In some circumstances we do not observe the true covariates and can only estimate the

intensity using approximate data, which may not be stationary. A typical example is in the

context of Hawkes processes (see Section 3.6) or when a covariate is a moving average of the

past values. In the aforementioned cases, the true covariates are a causal �lter of some quantity,

but we can only construct the �lter using an initial condition rather than observations prior

to time T0 = 0. Note that the true covariates still satisfy Condition 1. However, we perform

optimization on surrogate data so that the last point in Condition 3 does not directly hold.

The following allows us to consider such cases.

Corollary 2 Suppose Conditions 1 and 2 hold and let rT be as in Theorem 1. De�ne B̄w :=

B̄/w. Let X̃ (t) be arbitrary covariates, but such that

E sup
θ∈Θ

ˆ T

0

∣∣∣θ (X̃ (t)
)
− θ (X (t))

∣∣∣ dt = O
(
e−B̄w θ̄

√
T lnK

)
. (10)

Suppose that g̃T satis�es Pr
(
g̃T /∈ L

(
B̄,Θ,W

))
= o (1), and

L̃T (g̃T ) ≥ sup
g∈L(B̄,Θ,W)

L̃T (g)−Op
(
T

r2
T

)
(11)

where L̃T is the log-likelihood LT when we use covariates X̃ (t) instead of X (t), as data.

Then, g̃T is also an approximate minimiser of LT , i.e., it satis�es Condition 3 (with error

12



Op
(
T/r2

T

)
). Hence,

|g̃T − g0|2λ,T =
1

T

ˆ T

0
|g̃T (X (t))− g0 (X (t))|2 exp {g0 (X (t))} = Op

(
r−2
T

)
.

Moreover,
1

T

ˆ T

0

∣∣∣g̃T (X̃ (t)
)
− g0 (X (t))

∣∣∣2 exp {g0 (X (t))} dt = Op
(
r−2
T

)
.

Corollary 2 says that we obtain the same rates of convergence even when the estimator is

computed from the log-likelihood L̃T based on surrogate covariates, as long as the surrogate

covariates satisfy (10). The last display in Corollary 2 says that g̃T

(
X̃ (t)

)
is close to g0 (X (t))

even though they are evaluated at di�erent data.

3.5 Estimation Algorithm

Maximization of the log-likelihood over L
(
B̄
)
leads to a unique maximum (within an equiva-

lence class) because of concavity of the objective function and the convex and closed constraint.

However, while suitable for theoretical derivations it is too abstract for practical implementa-

tion. The algorithm in Figure 1 can be used to solve the constrained minimization. For real

valued functions g and h on RK , the following derivative of the log-likelihood in the direction

of a function h is used

DT (g, h) :=

ˆ T

0
h (X (t)) dN (t)−

ˆ T

0
h (X (t)) exp {g (X (t))} dt.

There is a line search to �nd the coe�cient ρj . To speed up the computations, this can be

set to the deterministic value ρj = 2/ (j + 1). The updated approximation to the constrained

maximum at step j is denoted by Fj . The bound to be given in Theorem 3 holds in this case

as well.
Figure 1. Log-Likelihood Optimization

Set:

m ∈ N
F0 := 0

B̄ <∞
For: j = 1, 2, ...,m

θj := arg supθ∈Θ |DT (Fj−1, θ)| /wθ
bj := B̄

wθ
sign (DT (Fj−1, θj))

ρj := arg maxρ∈[0,1] LT ((1− ρ)Fj−1 + ρbjθj) or ρj := 2/ (j + 1)

Fj (X) := (1− ρj)Fj−1 (X) + ρjbjθj (X)

13



Theorem 3 Let Fm be the resulting estimator from Figure 1. De�ne B̄w := B̄/w. Then,

LT (Fm) ≥ sup
g∈L(B̄)

LT (g)−
8TeB̄w θ̄

(
B̄wθ̄

)2
m+ 2

where the notation is from Condition 2.

The algorithm in Figure 1 belongs to the family of Frank-Wolfe algorithms (e.g., Jaggi,

2013, for the general proof of the convergence towards the optimum point, and Sancetta, 2016,

for its statistical properties for linear models). The following identi�es a suitable number of

iterations for the purpose of consistent estimation.

Corollary 3 If m−1 = o
(
T−1/2e−B̄w θ̄

(
B̄wθ̄

)−2
)
, then Fm in Figure 1 satis�es Condition 3.

Hence, if B̄ is bounded, m−1 = o
(
T−1/2

)
.

3.6 Application to Various Estimation Methods and Model Speci�cations

The class of functions is general and can accommodate various estimation methods and model

speci�cations. Below, di�erent models, function classes, and estimators are discussed. There

is overlap for some of the applications, but the variations in terms of approximation error

make them di�erent enough to justify their individual treatment.

To avoid some oddities in the discussion, de�ne the map (x1, x2, ..., xK) = x 7→ πk (x) = xk

so that by composition, for any f on R, f ◦ πk (x) = f (xk). In all the examples, it is

tacitly assumed that the support of each covariate is [0, 1]. This is done for simplicity to

avoid distracting technicalities even when not necessary. In various occasions, we may have a

nontrivial approximation error. In this case, the following will be used to indicate a set that

contains the true g0,

G (B) :=

{
g =

K∑
k=1

bkfk ◦ πk : fk ∈ H,
K∑
k=1

|bk| ≤ B

}
, (12)

where H is a class of univariate functions which will be de�ned within each section below,

depending on the application. In all the examples of this section, all the weights wθ's in W
are supposed to be equal to one without further mention. Then, when Θk = {f ◦ πk : f ∈ H},
L (B) = G (B). Suppose that fV,k is an approximation to a function fk ∈ H, then∣∣∣∣∣

K∑
k=1

bkfk −
K∑
k=1

bkfV,k

∣∣∣∣∣
∞

≤ Bmax
k≤K
|fk − fV,k|∞ (13)

when
∑K

k=1 |bk| ≤ B. This will be used in some of the examples in order to estimate the

approximation error. In this case, (13) will be used in conjunction with Lemma 2 where B is
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just a bounded constant (e.g., B = B0). Finally, to avoid trivialities K > 1 in all the bounds

below. The bounds are of particular interest when K & T 1/2. Note that in the examples, we

can have bounds such as |gT − g0|2λ,T . B̄
√

(lnK) /T . It is tacitly assumed that we require

the r.h.s. to be O (1). Proofs of the following corollaries to Theorem 1 can be found in Section

A.1.5 of the supplementary material.

3.6.1 Linear Model with Many Variables

Let Θk := {πk} which maps x ∈ RK into its kth co-ordinate xk. Then, g (x) =
∑K

k=1 bkxk.

The following holds true.

Corollary 4 Suppose that g0 ∈ L
(
B̄
)
. Under Conditions 1 and 3, |gT − g0|2λ,T .

(
lnK
T

)1/2
in probability.

The corollary implies that the estimator is consistent even in the ultra high dimensional

case K = O
(
eT

c)
for c ∈ [0, 1).

3.6.2 Hawkes Process with Many Covariates

There are many versions of the Hawkes process. For the sake of illustration, consider a

nonlinear function of the standard exponential decay case (e.g., Brémaud and Massoulié,

1996). De�ne the family of processes

{(
f̃a (t)

)
t≥0

: a ∈ [a, ā] ⊂ (0,∞)

}
, where for each a,

f̃a (t) := f
(´

[0,t) e
−a(t−s)dN (s)

)
and f is a bounded Lipschitz function. The process f̃a (t) is

not stationary because it is initiated at t = 0. In consequence, it fails Condition 1 and cannot

be used as one of the covariates. De�ne the family
{

(fa (t))t≥0 : a ∈ [a, ā] ⊂ (0,∞)
}
, where

fa (t) = f
(´

(−∞,t) e
−a(t−s)dN (s)

)
and f is as before. The processes fa's are stationary, but

not observable. Despite the notational di�erence, one can verify the conditions of Corollary 2

to see that Theorem 1 still holds. We also need to verify that using fa (t) the counting process

is stationary.

Corollary 5 Under Condition 1, the point process with intensity density λ (t) = exp {fa0 (t) + g0 (X (t))}
(for any a0 ∈ (a, ā)) has a stationary distribution. Moreover, suppose that the log-likelihood

with intensity exp
{
f̃a (t) + g (X (t))

}
is maximized w.r.t. g ∈ L

(
B̄
)
and a ∈ [a, ā] by gT and

aT (even approximately with the same error as in Condition 3). Suppose that B̄ is �xed, and

g0 ∈ L
(
B̄
)
, then, in probability,

∣∣∣(gT + f̃T

)
− (g0 + f0)

∣∣∣2
λ,T

.

√
lnK +

√
lnT + maxk≤K

´ 1
0

√
ln (1 +N (ε,Θk))dε√

T
. (14)

Also suppose that Θk := {πk}, then
∣∣∣(gT + f̃T

)
− (g0 + f0)

∣∣∣2
λ,T

.
(

lnKT
T

)1/2
in probability.
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Note that to ease notation, we use lnKT = ln (KT ), throughout the paper.

3.6.3 Threshold Model with Many Variables

Suppose that ϕ : R→ [0, 1] is Holder's continuous with parameter α ∈ (0, 1], i.e., |ϕ (x)− ϕ (y)| .
|x− y|α. Consider the class of linear threshold functions f (x, z) := a1x + a2xϕ (c1z − c2),

x, z ∈ R, where a1, a2, c1, c2 are unknown real coe�cients, with a1, a2, c1, c2 ∈ [−1, 1]. Denote

the set of such functions by H.
Let (Z (t))t≥0 be a predictable stationary and ergodic real valued process taking values in

[0, 1] as for the Xk's. Refer to it as a threshold variable. Then, f (Xk (t) , Z (t)) is a transition

process, for the kth covariate: the impact of Xk depends on the threshold variable Z. Hence,

f (x, z) is a smooth transition function (see van Dijk et al., 2002, for a survey of smooth

regression models based on this functional speci�cation).

The class of functions with elements ϕ (c1z − c2) with bounded z has �nite entropy integral

(e.g., deduce this from Theorem 2.7.11 in van der Vaart and Wellner, 2000). Given that

a1, a2 ∈ [−1, 1], it follows that H has �nite entropy integral. Let Θk := {f ◦ (πk, ι) : f ∈ H},
where ι is the identity map ι (z) = z (i.e., f ◦ (πkx, ιz) = f (xk, z)).

Corollary 6 Let Z be as described before. Suppose that g0 ∈ L (B0). Under Conditions 1 and

3, for the estimator gT ∈ L
(
B̄
)
, for any B̄ → ∞, |gT − g0|2λ,T . B̄

(
lnK
T

)1/2
, eventually, in

probability.

3.6.4 Expansion in Terms of a Fixed Dictionary under l1 Constraint

Consider the case of univariate functions with representation f =
∑∞

v=1 avev where {ev : v = 1, 2, ...}
is a dictionary and

∑∞
v=1 |av| < ∞. Subspaces of such functions are considered in Barron et

al. (2008). A typical example is when f is a polynomial. Then, let
∑V

v=1 avev (xk) be the

(truncated) representation for the functions of the kth covariate for some �nite V . Then,

suppose that g0 can be written as

g (x) =

K∑
k=1

bk

V∑
v=1

avk,kevk (xk) (15)

so that Θk = {ev ◦ πk : v = 1, 2, ..., V } and
∑K

k=1

∑V
v=1 |bkavk,k| ≤ B0. In this case, one can

directly estimate the coe�cients bkavk,k and reduce the optimization over Θ to the selection of

an element ev ◦ πk in Θ. There are V �xed elements in each Θk. Hence, the entropy integral

for each Θk is a constant multiple of
√

lnV . If no approximation error is incurred (i.e. g0 can

be written as (15)), then |gT − g0|2λ,T .
(

lnKV
T

)1/2
, as in the linear case (Section 3.6.1), but

with KV variables instead of K.
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This framework adapts to sieve estimation of smooth functions, in which case an approx-

imation error is incurred. For de�niteness suppose that {ev : v = 1, 2, ...} are trigonometric

polynomials with period one, rather than a general dictionary. Let H be the class of Holder

continuous functions on [0, 1] with exponent α > 1/2, constant one and uniformly bounded

by one, i.e., |f (x)− f (y)| ≤ |x− y|α and |f |∞ ≤ 1, if f ∈ H. By Bernstein Theorem (e.g.,

Katznelson, 2002, p. 33), if f ∈ H, there is a �nite absolute constant cα depending only

on α > 1/2 such that f =
∑∞

v=1 avev and
∑∞

v=1 |av| ≤ cα, where the equality holds in the

sup norm. Hence, in what follows we can take H to be equivalent to the class of functions

with such series expansion. Let HV be the set of trigonometric polynomials up to order V .

By Jackson Theorem (e.g., Katznelson, 2002, p.49), for any f ∈ H, there is a trigonometric

polynomial of order V , say fV ∈ HV , such that |fV − f |∞ . V −α. Suppose that g0 ∈ G (1)

(in (12)), then using subscript 0 to denote the coe�cients of g0,

g0 =
K∑
k=1

b0k

( ∞∑
v=1

a0vkev

)
=

K∑
k=1

(ā0kb0k)

( ∞∑
v=1

(
a0vk

ā0k

)
ev

)

setting ā0k :=
∑∞

v=1 |a0vk|. By the aforementioned remarks concerning Bernstein Theo-

rem, there is a �nite constant cα such that ā0k ≤ cα. Hence,
∑K

k=1 (ā0kb0k) ≤ cα, us-

ing the constraint on the b0k's implied by restricting attention to g0 ∈ G (1). Let Θk :={∑V
v=1 avev ◦ πk :

∑V
v=1 |av| ≤ 1

}
. Using (13) we can derive the approximation error for this

problem and deduce the following consistency rates.

Corollary 7 Let g0 ∈ G (1) (as in (12)) with H Holder continuous with exponent α > 1/2.

Under Conditions 1 and 3, for gT ∈ L
(
B̄
)
, there is a �nite constant cα such that |gT − g0|2λ,T .

B̄
(

lnKV
T

)1/2
+ V −2α + max

{
cα − B̄, 0

}2
in probability. Hence, for any B̄ → ∞, choosing

V � (T/ lnT )1/(4α), |gT − g0|2λ,T . B̄T−1/2 (lnKT )1/2, in probability.

3.6.5 Neural Networks

Suppose f (x) =
´
R
´
R ϕ (a1x+ a0) dν (a0, a1) for x ∈ [0, 1], where ν is a signed measure of

�nite variation equal to 1/2, and ϕ is as in Section 3.6.3. Up to a scaling constant, any

continuous bounded function on [0, 1] admits this representation (e.g., Yukich et al., 1995,

Section II). Denote such class of univariate functions by H. Usually, ϕ is a sigmoidal function,

a monotone function such that limx→∞ ϕ (x) = 1 and limx→−∞ ϕ (x) = 0. Consider the

truncated series expansion
∑V

v=1 a1vϕ (a2vx− a3v) for some �nite V . Denote the set of such

series expansions with V terms by

HV :=

{
f (x) =

V∑
v=1

a1vϕ (a2vx− a3v) :

V∑
v=1

|a1v| ≤ 1, a2v, a3v ∈ R

}
.

17



Let Θk := {f ◦ πk : f ∈ HV }. Suppose that g0 ∈ G (B0) (in (12)). The uniform error incurred

by the best approximation in HV for H is V −1/2 P -almost surely (Theorem 2.1 in Yukich et

al., 1995). Hence, using (13), the sieve with V −1 = O
(
T−1/2

)
leads to an approximation error

for g0 that is O
(
T−1/4

)
. By the arguments in Section 3.6.4 and the fact that ϕ is Holder's

continuous as in Section 3.6.3, the following is deduced.

Corollary 8 Suppose that g0 ∈ G (B0). Under Conditions 1 and 3, for the estimator gT ∈
L
(
B̄
)
, for any V ≥ 1,

|gT − g0|2λ,T . B̄

(
lnKV

T

)1/2

+ max
{
B0 − B̄, 0

}2
+ V −1

in probability. Hence, choosing V � T 1/2, for any B̄ → ∞, |gT − g0|2λ,T . B̄
(

lnKT
T

)1/2
in

probability.

3.6.6 Shape Constrained Estimator: Many Monotone Lipschitz Functions

Consider estimation under monotone function constraints. Suppose H is the class of mono-

tone increasing Lipschitz functions with domain [0, 1] and bounded by one. Let the Lip-

schitz constant be known and equal to α. Let HV be the class of univariate Bernstein

polynomials of order V . Recall that fV is a Bernstein polynomial of order V if fV (x) =∑V
v=0

(
V
v

)
avx

v (1− x)V−v, x ∈ [0, 1], for any real av. If av ≥ av−1 for all v's, the polynomial

is monotonically increasing. If also av−av−1 ≤ α/V for all v's, it is Lipschitz with constant α

(e.g., Lorentz, 1986, Ch.1.4). Hence, under these constraints on the coe�cients of the polyno-

mial, HV is a subset of functions with Lipschitz constant bounded by α. Moreover, for each

f ∈ H there is an fV ∈ HV such that |fV − f |∞ . αV −1/2 (e.g., Lorentz, 1986, Theorem

1.6.1). Let Θk := {f ◦ πk : f ∈ HV }. Estimation of monotone functions with known Lipschitz

constraint can be conveniently performed by Bernstein polynomials, using the algorithm in

Section 3.5. The estimation problem becomes a linear programming problem at each step. To

see this, de�ne qv (x) :=
(
V
v

)
xv (1− x)V−v. In particular, DT (g, θ) in Section 3.5 is linear in

θ. Hence, maximization of DT (Fj−1, θ) w.r.t. θ ∈ Θk is equivalent to

max
{av :v≤V }

V∑
v=0

av

[ˆ T

0
qv (Xk (t)) dN (t)−

ˆ T

0
qv (Xk (t)) exp {g (X (t))} dt

]

such that 0 ≤ av−1 ≤ av ≤ 1, and av − av−1 ≤ α/V , v = 1, 2, ..., V . This is routinely solved

by the simplex method for each k. From Corollary 2.7.2 in van der Vaart and Wellner (2000),

deduce that the entropy integral for functions in HV is a constant multiple of α1/2. The

following uses this observation when applying Theorem 1.
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Corollary 9 Let g0 ∈ G (B0). Under Conditions 1 and 3, for gT ∈ L
(
B̄
)
, V & α3/2 × T 1/2,

and B̄ →∞, |gT − g0|2λ,T . B̄
(
α+lnK
T

)1/2
, in probability.

If the Lipschitz constant is not known, we can let α→∞ in the estimation. In this case,

the entropy integral is �nite, but not bounded.

3.7 Choice of B̄

Given the relation with l1 penalization (see (8)), the model degrees of freedom can be ap-

proximated by the resulting number of active variables (e.g. Bradic et al., 2011). Hence, the

value B̄ can be chosen by maximizing the Akaike's penalized likelihood (AIC): AICT (B) :=

supg∈L(B) LT (g)−KB where KB is the number of nonzero parameters in gT = arg supg∈L(B).

This is less computationally intensive than cross-validation. (In a time series context, cross-

validation requires some care except for a special few cases; e.g., Burman et al., 1994).

For very large sample size, AIC will select models that are also very large. In this case

cross-validation with a large validation sample (i.e., leaving out a large proportion of the data)

tends to select smaller models. Hence, the method to be used depends on the context. See

Sections 4.2 and 5 for further discussion and applications. Finally, note that to speed up the

calculations for the choice of B̄, the algorithm in Section 3.5 can be used without line search.

3.8 Model Fit and Out of Sample Evaluation

Model adequacy can be carried out in large samples using the log-likelihood evaluated out of

sample. The out of sample log-likelihood ratio for two competing models gt, g
′
t ∈ L

(
B̄
)
which

are predictable at time t is

LS
(
g, g′

)
=

ˆ S

0

[
gt (X (t))− g′t (X (t))

]
dN (t)−

ˆ S

0

[
exp {gt (X (t))} − exp

{
g′t (X (t))

}]
dt.

In practice, one may split the sample and estimate gt and g
′
t on the �rst half or every so often

using past observations. The predictable part of the log-likelihood ratio is

HS

(
g, g′

)
=

ˆ S

0

[
gt (X (t))− g′t (X (t))

]
dΛ (t)−

ˆ S

0

[
exp {gt (X (t))} − exp

{
g′t (X (t))

}]
dt,

where Λ (t) is a short for Λ ([0, t]). Model g outperforms g′ if HS (g, g′) > 0. (If g = g0,

HS (g, g′) ≥ 0, with equality only if g′ = g0, see Lemma 4 in the supplementary material.) The

following null hypothesis can be tested: HS (g, g′) = 0 against a one or two sided alternative.

Under the null,

LS
(
g, g′

)
=

ˆ S

0

[
gt (X (t))− g′t (X (t))

]
d (N (t)− Λ (t)) .
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The following martingale result is the justi�cation for the testing procedure.

Proposition 1 Suppose that gt and g
′
t are predictable bounded processes and HS (g, g′) = 0.

Suppose that as S →∞

1

S

ˆ S

0

[
gt (X (t))− g′t (X (t))

]2
dΛ (t)→ σ2 > 0

in probability. Let σ̂2
S := 1

S

´ S
0 [gt (X (t))− g′t (X (t))]2 dN (t). Then, LS (g, g′) /

√
Sσ̂2

S con-

verges in distribution to a standard normal random variable.

The testing framework falls within the prequential framework of Dawid (e.g., Seillier-

Moiseiwitsch and Dawid, 1993, for applications).

This methodology can be applied in various ways. As an example, consider a sample of

size 2T . Use [0, T ] to �nd the estimators gT and g′T . Conduct the test on (T, 2T ] so that,

mutatis mutandis, S = T in the proposition. In this case, gT and g′T are predictable. We need

to suppose that the testing sample size S increases to in�nity in order to apply the result. If

the size T of the testing sample is large, the asymptotic result is applicable.

4 Application to Estimation and Forecasting of Trade Arrivals

of New Zealand Dollar Futures

One motivation for the estimation method discussed here was to understand the variables

that a�ect the trade arrivals of the New Zealand Dollar futures, i.e. the futures on NZDUSD

traded on the Chicago Mercantile Exchange (CME). The New Zealand Dollar is a liquid

currency futures, but not as much as other currency futures (Fx futures) such as the Euro,

Australian Dollar, and the Swiss Franc (against the Dollar). What are the variables that

a�ect a trade arrival such as a buy trade? Are these variables, and relations if any, stable in

the sense that one can forecast a buy trade arrival tomorrow having estimated a model with

today's data? These questions are important to the understanding of market microstructures,

and the general etiology of the Fx futures markets and its relation to other instruments like

equity markets, commodities, etc. In fact, the New Zealand Dollar belongs to the commodity

Fx group that includes the Australian Dollar and Canadian Dollar. These are the currencies of

countries whose economy relies on commodity exports. Anecdotal evidence seems to suggest

that the New Zealand Dollar tends to increase in value when risk appetite increases.

Below, the data are described and subsequently the model is estimated.
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4.1 Data and Variables Description

The estimation of the intensity of trade arrivals is an important problem (e.g., Hall and

Hautsch, 2007). New Zealand Dollar futures (the NZDUSD futures front month contract,

whose ticker is 6N) are traded on the Chicago Mercantile Exchange. Two days of trading

between 8am to 5pm GMT are considered in particular, 10/09/2013 and 11/09/2013. The

time slot is based on liquidity considerations. Data are proprietary and were collected with

high precision time stamps by a Chicago proprietary trading �rm with co-located servers in

the Aurora data centre in Chicago. In consequence, trades were classi�ed as buy or sell with

minimal probability of error. The data has nanosecond time stamps, and trades time stamps

have been adjusted to account for delays in the CME network and reporting (these adjustments

are in the order of half a millisecond). This ensures that only information prior to the trade

is used to de�ne covariates. Buy and sell intensities are estimated separately. The covariates

are derived using information from 6N as well as from other contracts that are perceived as

likely to have an impact.

Covariates are constructed from the following CME futures: NZDUSD (6N), AUDUSD

(6A), EURUSD (6E), GBPUSD (6B), CADUSD (6C), JPYUSD (6J), CHFUSD (6S), MXNUSD

(6M), Crude Oil (CL), Gold (GC), and mini S&P500 (ES). For each instrument, covariates

were derived from order book and trade updates. In particular, the variables are mid-price

returns, bid-ask spread, volume imbalances for the �rst two levels, trade imbalances, and trade

duration. Variables are updated every time there is a change in their value. For example, the

return is computed when there is a mid price change from the previous mid. Volume imbal-

ances are computed as the di�erence of the bid and ask quantities on each level (the contracts

usually quote prices for 5 levels). These di�erences are then standardized by the sum on the

bid and ask quantity on that level. Trade imbalances are the signed traded size, positive if

a buy and negative if a sell. Excluding the spread, moving averages of all variables are also

computed. In particular, moving averages of order 1, 2, 4, 8, 16, 32, 64, and 128 are used. This

is to allow information at slightly di�erent frequencies to a�ect the intensity in a way similar

to MIDAS. Overall, the total number of variables is 508 including a constant. A model that

allows for squares and third powers of all the standardized variables is also estimated. In this

case, the total number of variables is 1,522 including a constant. Once the feature variables

are computed, in order to reduce the computational burden these are sampled only when there

is an update in the NZDUSD futures. The argument is that if an instrument leads 6N, then

the book for 6N would update before a trade.

4.2 Computational Details

The two-day sample is split into three parts. The �rst half of day one is the estimation sample.

The second half of day one is the validation sample. The second day is the testing sample.
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The variables are winsorized at the 95% quantile and then standardized by it so as to take

values in [−1, 1]. If a variable takes both positive and negative values, winsorization is applied

to the absolute value which is then signed. For estimation of the cubic polynomial, powers

of the variables are computed after having mapped the variables into [−1, 1]. The quantile is

computed using the data from day one only. Hence, winsorization on the testing sample is

based on the previous day 95% quantile. After winsorization, the set of weights W is chosen

equal to the sample estimator of the L2 norm, i.e. wθ =
(

1
T

´ T
0 θ2 (X (t)) dt

)1/2
over day

one. This ensures that all variables are given the same importance. The model is estimated

for B ∈ {2, 4, 8, 16} on the estimation sample. We set B̄ equal to the B that maximizes the

likelihood on the validation sample. This method is an alternative to AIC when the sample

size is large. With this choice of B̄, the model is then re-estimated using the data in the �rst

day, i.e. both estimation and validation sample. This approach is feasible in a large sample

and avoids some of the drawbacks of cross-validation for dependent observations.

4.3 Estimation Results

It is di�cult to clearly and concisely report the variables that appear to be most important for

the intensity. In fact, a large number of variables are included by the method described here,

though they have small coe�cients. For the linear model, the chosen B̄ results in a model for

buy and sell trades with 77 and 68 covariates, respectively. For the cubic case, the number

was slightly larger. Including many variables with relatively small coe�cients produces an

averaging e�ect across many variables and can provide a hedge against instability and noise,

in a similar way to forecast combination.

The intersection of the �rst ten variables in the linear model for buy and sell trades is

reported in Table 1. These variables can be seen as some form of a more stable subset of

variables (Meinshausen and Bühlmann, 2010, for formal methods on stability selection).

Table 1: Most important variables a�ecting buy and sell

trade arrival in linear model.

Instrument Variable

6N Volume Imbalance on Level 1

6N Volume Imbalance on Level 2

6N Spread

6A Duration from Last Trade

Interestingly, past durations of 6N (the New Zealand Dollar futures) do not seem to be as

important so they are not included in Table 1. However, the durations of 6A (the Australian
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Dollar) appear to be important. The Australian Dollar tends to correlate with the New

Zealand Dollar but it is more liquid. Hence, it might provide useful information on trade

arrival. Past durations have been found to be important predictors in some high frequency

�nancial applications (e.g., Engle and Russell, 1998). However, order book information seems

to have a greater impact (e.g., Cont et al., 2014). In the next section, linear and cubic models

using only the variables in Table 1 will also be used for comparison and will be referred to as

the restricted linear and cubic models.

4.3.1 Out of Sample Performance

Having estimated the model on the �rst day, it is of interest to see if the model can be used

to explain a trade arrival out of sample. This is done by computing the average log-likelihood

ratio LS (g, g′) /S, and σ̂S/
√
S on the second day (see Proposition 1). Con�dence intervals can

then be constructed using Proposition 1. The goal is to assess the out of sample performance

of the linear and cubic models as well as the restricted models (the ones with variables in Table

1). It is of interest to verify if restricting attention to a linear model might produce similar

out of sample results. When compared to the constant intensity (Conts.), the constant is

computed as the out of sample maximum likelihood estimator, i.e., the best constant intensity

with hindsight.

Table 2 shows that all of the models do improve on the constant intensity with overwhelm-

ing evidence. When looking at the relative merits of the unrestricted models, it becomes

unclear whether a cubic model adds value out of sample. Looking at the restricted linear

model relative to the unrestricted linear model, there is overwhelming evidence that the un-

restricted model should be preferable. It is interesting that when comparing the restricted

models, there is overwhelming evidence that a cubic model does improve on the linear one.

From these results one could infer that modelling nonlinearities does pay o� when looking

at small dimensional models. However, when models are linear but have many covariates,

nonlinear impact of book and trade variables is less obvious. The simulation results of Section

5 support this claim.

Table 2: Out of sample performance of models: g vs. g′ with

g and g′ as de�ned in the headings below.

Lin. vs. Const. Cubic vs. Const.

Buy Sell Buy Sell

Avg.Log-LR.×102 3.77 4.48 4.02 4.56

S.E.×102 0.33 0.25 0.31 0.26

P-Val. <0.01 <0.01 <0.01 <0.01

Cubic vs. Linear
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Buy Sell

Avg.Log-LR.×102 0.25 0.08

S.E.×102 0.08 0.07

P-Val. <0.01 0.22

Lin. Restr. vs. Const. Lin. Restr. vs. Lin.

Buy Sell Buy Sell

Avg.Log-LR.×102 1.14 1.24 -2.63 -3.25

S.E.×102 0.15 0.14 0.20 0.19

P-Val. <0.01 <0.01 <0.01 <0.01

Cubic Restr. vs. Lin. Restr.

Buy Sell

Avg.Log-LR.×102 0.26 0.25

S.E.×102 0.10 0.06

P-Val. <0.01 <0.01

5 Numerical Examples

As remarked in Section 1.2, {Λ ((Ti−1, Ti]) : i ∈ N} (Λ as in (1)) is i.i.d. exponentially dis-

tributed with mean 1. For simplicity in the simulations, it is assumed that the covariates

only update immediately after each jump time Ti. Hence, the intervals (Ti−1, Ti] are sim-

ulated from an exponential distribution with parameter exp {g (X (Ti−1))}, i.e., with mean

exp {−g (X (Ti−1))}. The covariates are standard Gaussian random variables with Toeplitz

covariance Cov (Xk (t) , Xl (t)) = ρ|k−l| and uncorrelated over time. The variables have been

capped to 2 in absolute value, i.e., they take values in [−2, 2].

The parameters in the simulation are K ∈ {10, 50} number of covariates, T = T100 (recall

N (Tn) = n) sample size, and ρ ∈ {0, 0.75}. Di�erent choices of g0, and Θ are considered.

These are summarized as follows. For estimation simplicity, Θ is a �nite set of functions.

5.1 True Unknown Model g0

Here we describe various options for the true function g0. The true function g0 takes the form

g0 (x) =
∑K

k=1 g
(k)
0 (x), where the functions g

(k)
0 are de�ned as follows.

True additive functions. Linear: g
(k)
0 (x) = b0kxk; NonLinear: g

(k)
0 (x) = b0k (|xk|+ 0.5xk).

Active variables. FewLarge b0k = 1 for k = 1, 2, 3, b0k = 0 for k > 3; ManySmall

b0k = 1/
√

10 for k ≤ 10, b0k = 0 for k > 10. Even when there is no model misspeci�cation,

these values are unknown to the researcher.
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5.2 Estimator in L (B,Θ,W)

Here we de�ne the parameter space L (B,Θ,W) used by the researcher. Estimation is carried

out allowing for model misspeci�cation. Hence, depending on the design the choice of functions

does not need to correspond to the true functions g
(k)
0 (Section 5.1). The estimated models

are of the form g (x) =
∑K

k=1

∑
θ∈Θk

bθθ (x). Details regarding Θk and the estimation of the

bθ's are as follows.

Functions in Θ. Linear (Lin): θ (x) = xk for θ ∈ Θk; Monomials (Poly): θ (x) = (xk/2)a

for θ ∈ Θk with a = 1, 2, 3. A constant is added by default in the estimations. When the

true function is linear (i.e., g
(k)
0 (x) = b0kxk) there is no misspeci�cation error. However, the

coe�cients still need to be estimated and many of them can be zero. When the true function

is nonlinear, misspeci�cation error will be incurred even when the estimation is carried out

using a polynomial (Poly). However, in this case the degree of misspeci�cation will be small.

Choice of B̄ and W The parameter B̄ is chosen as the B ∈ {1, 4, 8, 16} that maximizes
AICT as de�ned in Section 3.7. In this case, the sample size is relatively small and the

performance of AICT and cross-validation (leaving out many variables) was similar. Hence,

AICT is preferred for computational convenience. We applied the algorithm in Section 3.5

with F0 = ln (N (T ) /T ) rather than F0 = 0. In this case eF0 is an estimator of Pλ, the

expected intensity. The main reason was to reduce �ne tuning of the set of possible values of

B to the di�erent functions and simulation designs. The simulation design is such that as the

number of active variables increases, Pλ increases and in consequence the optimal B.

The weights in W are chosen to be the sample L2 norm as in Section 4.2. Note that no

winsorization is applied to the variables, as they are already bounded.

5.3 Simulation Results

The following loss function is considered to assess the model �t,

Loss (g) :=

´ T+S
T [g0 (X (t))− g (X (t))]2 dN (t)´ T+S

T [g0 (X (t))− γ0]2 dN (t)
(16)

where γ0 :=
´ T+S
T g0(X(t))dN(t)

N(T+S)−N(T ) . This loss function is justi�ed noting that when S is large,

Loss (g) ' |g0 − g|2λ /
[
infγ>0 |g0 − γ|2λ

]
. Hence, the numerator in Loss is an approximation

to the convergence criterion of Theorem 1, while the denominator is the error incurred by γ0

which is the best constant approximation with hindsight. The standardization ensures that

Loss (g) ∈ [0, 1) if g improves over γ0, if not Loss (g) ≥ 1. The denominator in Loss is

the benchmark for the �nite sample experiment carried out here. In the simulations, data
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are generated for a sample period [0, T1100], and the model is estimated on [0, T100] and out

of sample performance is evaluated on [T100, T1100]. Hence, in Loss, T = T100 and S =

T1100 − T100. Table 3 reports the median of Loss (gT100) (LOSS) together with the 75% and

25% quantile.

Overall, di�erent choices of true model (linear or convex) and basis functions allow us

to gauge the main features of the estimator. The results in Table 3 can be summarized as

follows. There is a clear advantage in using a nonlinear model when the true model is nonlinear,

but also a considerable loss (mostly due to estimation error) when the true model is linear.

For nonlinear estimators such as polynomials, a judicious choice of W to dump the e�ect of

higher order coe�cients can make the estimator more robust. The present choice of W is

equivalent to standardizing the variables by their L2 norm. This is simple, but might lead

to big oscillations if the order of polynomial is not as small as it is here. The choice of W is

an important part of the modelling and estimation procedure when dealing with polynomials.

An increase in variables correlation produces better forecasts. This is in contrast with the

problem of variable screening. Numerical experiments of the author - not reported here - as

well as related results in the literature (e.g., Bradic et al., 2011) show that in this context,

false discovery of active variables increases substantially with correlation. This is natural, as

correlation confounds the merits of each single variable. The forecasting and variable screening

are related but complementary problems, which require separate treatment.

Table 3: Simulation results relative to the best constant in-

tensity with hindsight. Estimation is based on samples of size

T100 corresponding to N (T100) = 100 number of jumps. The

table reports the median (Med.) and the 25 (Q25%) and 75

(Q75%) percent quantiles of Loss× 100 (Loss as in (16)). A

number below 100 means a relative improvement on the best

constant intensity with hindsight.

Loss×100 Loss×100
Med. Q25% Q75% Med. Q25% Q75%

ρ = 0 ρ = 0.75

g0 is Linear FewLarge K = 10

Lin 3.70 2.37 5.72 1.69 1.11 2.61

Poly 5.54 3.60 8.10 2.76 1.85 4.19

g0 is Linear FewLarge K = 50

Lin 6.83 4.92 9.41 3.64 2.34 5.26

Poly 10.61 8.01 13.66 4.30 2.82 6.65

g0 is Linear ManySmall K = 10

Lin 13.42 9.90 19.16 2.72 1.93 3.87
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Poly 32.88 24.93 41.65 4.05 2.63 5.90

g0 is Linear ManySmall K = 50

Lin 47.02 35.29 57.26 4.81 3.42 6.22

Poly 60.83 51.45 74.57 6.23 4.64 8.30

g0 is Convex FewLarge K = 10

Lin 81.08 75.13 92.10 70.08 63.90 77.56

Poly 19.92 15.03 26.82 9.35 7.19 12.77

g0 is Convex FewLarge K = 50

Lin 110.23 90.67 123.28 83.53 72.46 95.66

Poly 35.47 28.08 45.36 14.70 11.86 19.36

g0 is Convex ManySmall K = 10

Lin 97.95 87.20 112.47 73.59 66.67 82.64

Poly 17.16 14.42 20.58 5.49 4.60 6.90

g0 is Convex ManySmall K = 50

Lin 104.12 94.80 114.59 67.38 62.55 74.41

Poly 48.24 40.72 57.95 10.67 8.86 13.13

5.3.1 Simulations with Dynamics: Hawkes Process with Covariates

The previous simulations considered time independent covariates. Here, we make the covari-

ates time dependent, following an autoregressive process and also allow the intensity to follow

a Hawkes process. Consider the intensity

λ (t) = exp

{
ln

(
c0 +

ˆ
(0,t)

e−a0(t−s)dN (s)

)
+ g0 (X (t))

}
(17)

This is in the form of Section 3.6.2, though the function f (·) = ln (c0 + ·) is bounded below

(because its domain is positive), it is not bounded above. Here, c0 > 0 is required to avoid de-

generacy. To directly apply the results in Section 3.6.2 we could use f (·) = max {ln (c0 + ·) , c̄}
instead for some �nite c̄, in which case the process is assured to be stationary (see Corollary

5). The process simpli�es to

λ (t) =

(
c0 +

ˆ
(0,t)

e−a0(t−s)dN (s)

)
exp {g0 (X (t))} . (18)

Using results for marked Hawkes processes (e.g., Brémaud et al., 2002), one could surmise that

(18) would be stationary if a0 > E exp {g0 (X (t))}. To the author's knowledge, formal existing
results do not �t exactly into the framework of (18). In the simulations we add a constant

to the true model, i.e., g0 (x) = γ +
∑K

k=1 g
(k)
0 (x) where γ = −E exp

{∑K
k=1 g

(k)
0 (X (t))

}
, so
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that E exp {g0 (X (t))} = 1. This should ensure the aforementioned stationarity of (18) when

a0 > 1. Other than that, the true models for g0 are as in Section 5.1. In the simulations

we veri�ed that the term in parenthesis on the r.h.s. of (18) remains bounded, thus ensuring

stationarity with no need of a capping constant c̄. This model can be simulated and estimated,

and details concerning this and some of the calculations to be discussed below can be found

in Section A.2 of the supplementary material.

As in the previous simulation, we let X (t) = X (Ti−1) for t ∈ (Ti−1, Ti]. However, the

X (Ti)'s now follow the vector autoregression X (Ti) = 0.95X (Ti−1) + εi, X (T0) = ε0, where

theK dimensional innovations εi's are generated as the i.i.d. truncated Gaussian with Toeplitz

covariance exactly as the i.i.d. X (Ti)'s used in Section 5.3. If the X (Ti)'s were independent

as in the previous simulation, the dependence in the Hawkes component would be confounded

by the independent variability in exp {g0 (X (Ti))}. Given the dependence structure, we use a

larger sample size Tn with n = 200. In the simulations, we set c0 = 2 and a0 = 1.3.

Except for these di�erences, the set up is the same as in the previous simulation. However,

we have c0 and a0 as extra parameters to be estimated. The goal of the simulations is to see

how the remarks made in the case of time independent variables may hold in this case. Results

are reported in Table 4. Results in Table 3 and Table 4 are not directly comparable because of

the scaling required for stationarity. However, we can establish conclusions in relative terms.

Table 4 con�rms the overall situation of Table 3. However, time series dependence makes

the problem harder, as expected. The relative bene�t of estimating a nonlinear model when

the true g0 is nonlinear decreases substantially in the present scenario. For example, in the

case of Convex ManySmall with K = 50, the ratio of the loss for Lin and Poly in Table 3 is

104.12/48.24 = 2.16, while in Table 4 is 52.55/42.55 = 1.23.

Table 4: Simulation results relative to the best constant in-

tensity with hindsight. The model is as in (17). Estimation is

based on samples of size T200 corresponding to N (T200) = 200

number of jumps. The table reports the median (Med.) and

the 25 (Q25%) and 75 (Q75%) percent quantiles of Loss×100

(Loss as in (16)). A number below 100 means a relative im-

provement on the best constant intensity with hindsight.

Loss×100 Loss×100
Med. Q25% Q75% Med. Q25% Q75%

ρ = 0 ρ = 0.75

g0 is Linear FewLarge K = 10

Lin 1.04 0.71 1.51 0.54 0.37 0.81

Poly 1.53 1.01 2.34 0.95 0.70 1.31
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g0 is Linear FewLarge K = 50

Lin 3.53 1.78 7.78 2.72 1.96 3.74

Poly 4.76 2.87 8.29 4.15 3.26 5.60

g0 is Linear ManySmall K = 10

Lin 2.53 1.70 3.76 0.95 0.59 1.38

Poly 5.22 3.57 7.01 1.77 1.27 2.52

g0 is Linear ManySmall K = 50

Lin 19.70 13.32 28.09 4.66 3.13 6.96

Poly 20.49 14.23 28.27 6.22 4.28 8.88

g0 is Convex FewLarge K = 10

Lin 45.96 37.24 57.86 36.94 29.25 48.42

Poly 5.82 4.38 8.16 3.26 2.40 4.70

g0 is Convex FewLarge K = 50

Lin 72.03 56.68 91.19 44.44 36.51 55.90

Poly 26.40 20.22 36.27 14.58 11.59 20.43

g0 is Convex ManySmall K = 10

Lin 33.96 26.78 46.12 21.46 17.07 28.86

Poly 14.35 10.79 19.01 5.43 3.93 7.84

g0 is Convex ManySmall K = 50

Lin 52.55 42.57 68.41 32.56 24.28 42.81

Poly 42.55 34.79 50.73 23.48 17.94 29.86

6 Concluding Remarks

This paper introduced a general framework for estimation of high dimensional point processes

with a focus on forecasting. The estimation methodology is feasible using a greedy algorithm.

The rates of consistency in the case of many additive components are optimal. A set of

examples for the applicability of di�erent estimation procedures and their convergence rates

are derived as corollaries of the main result. This asymptotic analysis di�ers from the one where

only a few variables are active, which is usually addressed in the high dimensional statistical

literature. In �nance, because of a very low signal to noise ratio it is often found that most

of the variables are cross-sectionally correlated but are weak predictors. As a consequence, no

one variable dominates. Hence the asymptotic analysis carried out here is in this vein. The

empirical study of the prediction of buy and sell trade arrivals for futures on the New Zealand

Dollar seems to con�rm that using a small subset of the variables might be suboptimal. Hence,

it is bene�cial to use many variables as long as they are properly aggregated.

More inferential procedures should be devised for high dimensional model estimation. In
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�nance, many applications require an assessment of model performance out of sample. In high

frequency, the size of the dataset is large and the estimation procedures must be computa-

tionally feasible. This paper provides some solutions in this direction. For very large sample

sizes, one may need to forego the use of the likelihood and work with approximations. In this

case, the intensity density could be directly modelled as an additive model and the likelihood

replaced with a square loss contrast estimator (e.g., Gai�as and Guilloux, 2012). Applications

in this vein will be the subject of future research.
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Supplementary Material to �Estimation for

the Prediction of Point Processes with Many

Covariates� by Alessio Sancetta

A.1 Proofs of Results

The notation is collected in the next subsection so that the reader can refer to it when needed.

A.1.1 Preliminary Lemmas and Notation

Write L0 := L (B0,Θ,W), L̄ := L
(
B̄,Θ,W

)
and L := L (B,Θ,W) for arbitrary, but �xed B.

By Condition 2, the envelope function of L̄, is

sup
g∈L̄

sup
z∈R
|g (z)| ≤ B̄θ̄/w =: ḡ. (A.1)

From the main text, recall that B̄w := B̄/w. Throughout, to keep notation simpler, suppose

that K > 1.

To ease notation, write Λ (t) for
´ t

0 dΛ (s) =
´ t

0 λ (X (s)) ds,
´ t

0 e
gdµ for

´ t
0 e

g(X(s))ds and

similarly for
´ t

0 gdN ,
´ t

0 gdΛ
´ t

0 gdµ, etc., where µ is the Lebesgue measure. Hence, arguments

X (t) and t are dropped, but this should cause no confusion: all integrals here are w.r.t. dN (t),

dµ (t) etc., and the argument of all the functions is X (t). Also, λ (X (s)) = eg0(X(s)), where

ḡ0 := |g0|∞. With no loss of generality, to keep notation simple also suppose that |gB0 |∞ ≤ ḡ0.

If this were not the case, we can just rede�ne ḡ0 to be an upper bound for the uniform norms of

g0 and gB0 (recall the de�nition of B0 in (6)). It then follows from (6) that supB>0 |gB|∞ ≤ ḡ0

because gB is the best uniform approximation for g0 in L (B), and for B ≥ B0, (6) implies

gB = gB0 . These facts will be used freely in the proofs without further mention. De�ne the

following random Hellinger metric dT (g, g0) =
√

1
2

´ T
0

(
eg/2 − eg0/2

)2
dµ. Sometimes, it will

be useful to consider the identity d2
T (g, 0) = 1

2

´ T
0

∣∣eg/2 − 1
∣∣2 dµ.

Lemma 3 Suppose that f, f ′ are functions on RK . Then,

1

8

ˆ T

0

(
f − f ′

)2
ef
′
dµ ≤ d2

T

(
f, f ′

)
. (A.2)

Proof. Multiplying and dividing by ef
′
,

d2
T

(
f, f ′

)
=

1

2

ˆ T

0
ef
′
(
e(f−f ′)/2 − 1

)2
dµ. (A.3)

1



Expand the square in the above display(
e(f−f ′)/2 − 1

)2
= e(f−f ′) − 2e(f−f ′)/2 + 1.

By Taylor expansion of the two exponentials, the above is equal to

∞∑
j=0

(f − f ′)j

j!
− 2

∞∑
j=0

(f − f ′)j

j!

(
1

2

)j
+ 1 =

∞∑
j=2

(f − f ′)j

j!

(
1− 1

2j−1

)
≥ (f − f ′)2

4
.

Inserting in (A.3) deduce (A.2).

Lemma 4 Suppose that |gB0 |∞ ≤ ḡ0. Then,

0 ≤
ˆ T

0
[(g0 − gB0) dΛ− (eg0 − egB0 ) dµ] ≤ 1

2
e2ḡ0

ˆ T

0
(g0 − g)2 dΛ.

Proof. By de�nition of dΛ = eg0dµ,

ˆ T

0
[(g0 − g) dΛ− (eg0 − eg) dµ] =

ˆ T

0
[(g0 − g) eg0 − (eg0 − eg)] dµ

=

ˆ T

0

[
(g0 − g) + e−(g0−g) − 1

]
eg0dµ. (A.4)

For any �xed real x, by Taylor series with remainder, for some x∗ in the convex hull of {0, x},

e−x − 1 + x =
x2

2
e−x∗ . (A.5)

Apply this equality to x = g0 − g and insert it in the square brackets on the r.h.s. of (A.4)

to deduce the upper bound in the lemma because |g0 − gB0 |∞ ≤ 2ḡ0. For any x > 0, the

following inequality holds:

0 ≤ (x− lnx− 1) (A.6)

with equality only if x = 1. Apply this inequality to x = exp {− (g0 − gB0)} and insert it in

the square brackets on the r.h.s. of (A.4) to deduce the lower bound in the lemma.

A.1.2 Solution of the Population Likelihood

For simplicity, as in Condition 1 suppose that T0 = 0. Then, by Lemma 2 in Ogata (1978),

L (g) = lim
T

LT (g)

T
= lim

T

1

T

ˆ T

0
(gdN − egdµ) = P (geg0 − eg)

almost surely, where LT is the log-likelihood at time T (e.g., Ogata, 1978, eq.1.3). Taking �rst

derivatives, the �rst order condition is P (heg0 − heg) = 0 for any h ∈ L̄. Hence, if g = g0,

2



the condition is satis�ed. To check uniqueness, verify that the second order condition for

concavity, i.e., −Ph2eg < 0, holds for any h 6= 0. Using the lower bound e−ḡ ≤ eg, deduce

that −Ph2eg ≤ −e−ḡPh2 < 0 holds for any h 6= 0 P -almost everywhere. Given that −L (g) is

convex and L̄ is convex and closed, the maximizer of L (g) is unique.

A.1.3 Proof of Theorem 1

The result is derived for the Hellinger distance dT rather than the norm |·|λ,T .
De�ne C2

T := C2 × T max
{
r−2
T , 2e3ḡ0 |g0 − gB̄|

2
∞

}
and the martingale M = N − Λ (Λ in

(1) is the compensator of N). Here, rT is a nondecreasing sequence which will be de�ned in

due course. With the present notation, the last display in the proof of lemma 4.1 in van de

Geer (1995) states that

1

2

ˆ T

0
(g − g0) dM ≥ d2

T (g, g0) +
1

2
LT (g, g0) , (A.7)

where LT (g, g0) := LT (g)− LT (g0) for any g, so also for g = gT . (The above display is only

valid when g0 is the true function, but it is not required that g0 ∈ L (B) for some B.) By

Condition 3, and the inequality LT (gT , gB̄) ≥ LT (gT )− supg∈L̄ LT (g), deduce that

LT (gT , g0) = LT (gT , gB̄) + LT (gB̄, g0) ≥ −
(
C2
T /2

)
+ LT (gB̄, g0) (A.8)

choosing C large enough, in the de�nition of CT . Hence, inserting (A.8) in (A.7), deduce that

Pr (dT (gT , g0) > CT )

≤ Pr

(
1

2

[ˆ T

0
(g − g0) dM − LT (gB̄, g0)

]
≥ d2

T (g, g0)−
C2
T

4
(A.9)

and d2
T (g, g0) > C2

T for some g ∈ L̄
)

To bound the term in the square bracket, add and subtract
´ T

0 gB̄dM and note that LT (gB̄, g0)

can be written as
´ T

0 [(gB̄ − g0) dM + (gB̄ − g0) dΛ− (egB̄ − eg0) dµ]. This implies that

ˆ T

0
(g − g0) dM − LT (gB̄, g0) =

ˆ T

0
[(g − gB̄) + (gB̄ − g0)] dM

−
ˆ T

0
[(gB̄ − g0) dM + (gB̄ − g0) dΛ− (egB̄ − eg0) dµ]

=

ˆ T

0
(g − gB̄) dM +

ˆ T

0
[(g0 − gB̄) dΛ− (eg0 − egB̄ ) dµ]

≤
ˆ T

0
(g − gB̄) dM +

1

2
e2ḡ0

ˆ T

0
(g0 − gB̄)2 dΛ

3



using Lemma 4 in the inequality. From the above calculations, and the fact that
´ T

0 (g0 − gB̄)2 dΛ ≤
Teḡ0 |g0 − gB̄|

2
∞, deduce that (A.9) is less than

Pr

(
1

2

ˆ T

0
(g − gB̄) dM ≥ d2

T (g, g0)−
C2
T

4
− 1

2
Te3ḡ0 |gB̄ − g0|2∞

and d2
T (g, g0) > C2

T for some g ∈ L̄
)

≤ Pr

(
1

2

ˆ T

0
(g − gB̄) dM ≥ d2

T (g, g0)−
C2
T

2
and d2

T (g, g0) > C2
T for some g ∈ L̄

)
,

using the de�nition of CT . The above is bounded by Pr
(

supg∈L̄
´ T

0 (g − gB̄) dM ≥ C2
T

)
, which

is further bounded by

1

C2
T

E

∣∣∣∣∣sup
g∈L̄

ˆ T

0
(g − gB̄) dM

∣∣∣∣∣ ≤ 2

C2
T

E

∣∣∣∣∣sup
g∈L̄

ˆ T

0
gdM

∣∣∣∣∣
using Markov inequality and then the triangle inequality because gB̄ ∈ L̄. Write g =

∑
θ bθθ.

Note that

sup
g∈L̄

∣∣∣∣ˆ T

0
gdM

∣∣∣∣ = sup
bθ,θ∈Θ

∣∣∣∣∣
ˆ T

0

(∑
θ

bθθ

)
dM

∣∣∣∣∣ ≤ B̄w sup
θ∈Θ

∣∣∣∣ˆ T

0
θdM

∣∣∣∣
where the supremum runs over all the bθ's such that

∑
θ |bθ| ≤ B̄w. According to these

calculations, to bound (A.9) it is su�cient to bound

2B̄w
C2
T

E sup
θ∈Θ

∣∣∣∣ˆ T

0
θdM

∣∣∣∣ . (A.10)

Let {Πl (ε) : v = 1, 2, .., NΠ} be a partition of Θ intoNΠ (ε) elements such that supθ,θ′∈Πl(ε)
|θ − θ′| ≤

ε. By Condition 2, one can construct such partition with NΠ (ε) . N (ε,Θ) and such that

sup
θ,θ′∈Πl(ε)

∣∣θ − θ′∣∣∞ ≤ |θU,l − θL,l|∞ (A.11)

where [θL,l, θU,l] is an ε-bracket for the functions in Πl, under the uniform norm. It follows

that NΠ

(
2θ̄
)

= 1 because the diameter of Θ under the uniform norm is bounded by 2θ̄. To

bound (A.10), use the following maximal inequality from Nishiyama (1998, Theorem 2.2.3),

which is specialized to the present framework.

Lemma 5 Under Conditions 1 and 2,

E max
t∈[0,T ]

max
θ∈Θ

∣∣∣∣ˆ t

0
θdM

∣∣∣∣ . C1,T

ˆ 2θ̄

0

√
ln (1 +NΠ (ε))dε+

C2,T

θ̄C1,T
(A.12)

4



for any C2,T ≥
´ T

0 θ̄2dΛ, and C1,T ≥ |Θ|Π,T , where

|Θ|Π,T := sup
ε∈(0,θ̄]

max
l≤NΠ(ε)

√´ T
0

(
supθ,θ′∈Πl(ε)

|θ − θ′|
)2
dΛ

ε
.

From the discussion around (A.11) replace NΠ (ε) with N (ε,Θ). The application of Lemma

5 essentially requires to �nd a bound for C1,T and C2,T . Given that λ = dΛ/dµ is bounded

by eḡ0 , from the discussion around (A.11), |Θ|Π,T ≤
√
eḡ0T and we set C1T = C1

√
eḡ0T for

some C1 to be chosen later. Also, deduce that we can choose C2,T = θ̄eḡ0T . This implies that

C2,T /θ̄C1,T =
√
eḡ0T/C1. Hence, the �rst term on the r.h.s. of (A.12) is of no smaller order of

magnitude than the second (i.e., not smaller than a constant multiple of T 1/2). Thus, in what

follows, we can incorporate C2,T /θ̄C1,T into it without further mention. Hence, an application

of Lemma 5 bounds (A.10) by

2B̄w
C2
T

E sup
θ∈Θ

∣∣∣∣ˆ T

0
θdM

∣∣∣∣ . 2B̄w
√
eḡ0T

C2
T

ˆ 2θ̄

0

√
ln (1 +N (ε,Θ))dε. (A.13)

Using the de�nition of CT , and choosing r2
T .

[
e3ḡ0 |g0 − g|2∞

]−1
, the above is a constant

multiple of

r2
T

B̄we
ḡ0/2

T 1/2

ˆ 2θ̄

0

√
ln (1 +N (ε,Θ))dε

which is required to be O (1), as it is an upper bound for (A.9) . This implies

r2
T .

T 1/2

B̄weḡ0/2
´ 2θ̄

0

√
ln (1 +N (ε,Θ))dε

.

But, rT is also required not to go to zero, and in fact it is supposed to diverge to in�nity unless

the approximation error is nonvanishing. Therefore, the r.h.s. of the above display needs to

be bounded away from zero.

To bound the entropy integral, recall that Θ =
⋃K
k=1 Θk. The bracketing number of a

union of sets is bounded above by the sum of the bracketing numbers of the individual sets.

Hence, N (ε,Θ) ≤
∑K

k=1N (ε,Θk). Using the inequality ln (1 + xy) ≤ lnx+ ln (1 + y) for real

x, y ≥ 1, this implies that

ˆ 2θ̄

0

√
ln (1 +N (ε,Θk))dε ≤

ˆ 2θ̄

0
max
k≤K

√
lnK + ln (1 +N (ε,Θk))dε

≤ 2θ̄
√

lnK + max
k≤K

ˆ 2θ̄

0

√
ln (1 +N (ε,Θk))dε.

5



Also, given that θ̄ is bounded and the entropy above is decreasing in ε, the above display can

be bounded by a multiple of

√
lnK + max

k≤K

ˆ 1

0

√
ln (1 +N (ε,Θk))dε. (A.14)

Also, we can discard the terms that are bounded, i.e., ḡ0 and θ̄, but kept so far just to highlight

what their contribution might be. Similarly, B̄w can be replaced by B̄ because it enters the

bound as a multiplicative constant. These calculations imply that there is a sequence rT as in

the statement in the theorem such that for C large enough,

Pr

(
r2
T

T
d2
T (gT , g0) > C

)
≤ 1

C2
.

By the relation between d2
T (gT , g0) /T and |gT − g0|2λ,T (see (A.2)), the theorem follows.

A.1.4 Proof of Theorem 2

To ease notation, T = Tn. We adapt the calculations in the proof of Theorem 2 in Tsybakov

(2003). This requires an upper bound for the Kullback-Leibler distance between two intensity

densities, and the construction of a suitable subset of L (1) (using the notation of our theorem).

The result in Tsybakov (2003) will then provide the necessary lower bound as stated in our

Theorem 2.

To this end, let N (1) and N (2) be point processes with intensities eg1 and eg2 such that

|gk|∞ ≤ ḡ, k = 1, 2. Let the sigma algebra generated by the process X = (X (t))t≥0 be denoted

by FX . The Kullback-Leibler distance between two intensity densities eg1 and eg2 , restricted

to [0, T ], and conditioning on FX is

K
(
g1, g2|FX

)
= EX

ˆ T

0
(g1 − g2) dN (1) −

ˆ T

0
(eg1 − eg2) dµ

where EX is the expectation conditional on FX . The above follows noting that conditioning

on FX , durations are exponentially distributed with intensity density exp {g1 (X (t))}). Then,

K
(
g1, g1|FX

)
=

ˆ T

0
(g1 − g2) eg1dµ−

ˆ T

0
(eg1 − eg2) dµ ≤ e3ḡ

2

ˆ T

0
|g1 − g2|2 dµ

using (A.5) and the fact that |gk|∞ ≤ ḡ, k = 1, 2. This provides the necessary upper bound

for the Kullback-Leibler distance, to be used in the proof of Theorem 2 in Tsybakov (2003).

Now, follow Bunea et al. (2007, p. 1693) with minor adjustments. For each k, we shall

construct a function, say fk, in Θk. Let Aj =
∑j

i=1 1 {Ti − Ti−1 ≥ a}, i.e. the number of

durations greater than a amongst the �rst j durations. Throughout, 1 {·} is the indicator

6



function. Clearly, An ≤ n with equality only if a = 0. De�ne

fk (x) = γ
n∑
j=1

φk

(
Aj
An

)
1 {xk = Xk (Tj−1)} 1 {Tj − Tj−1 ≥ a}√

Tj − Tj−1

where γ > 0 is a constant to be chosen in due course, and {φk (s) : k = 1, 2, ...,K} are bounded
functions w.r.t. s ∈ [0, 1], and such that 1

An

∑An
j=1 φk

(
j
An

)
φl

(
j
An

)
= δkl, where δkl = 1 if

k = l, zero otherwise (e.g., mutatis mutandis, as in Bunea et al., 2007, p. 1693). The functions

fk's are uniformly bounded in absolute value by a constant multiple of γ/
√
a. Hence fk ∈ Θk,

for each k, choosing γ small enough. It follows that

ˆ T

0
fk (X (t)) fl (X (t)) dt =

n∑
j=1

fk (X (Tj−1)) fl (X (Tj−1)) (Tj − Tj−1)

= γ2
An∑
j=1

φk

(
j

An

)
φl

(
j

An

)
= γ2Anδkl.

The �rst step follows because X (t) is predictable and only changes after a jump. The second

step follows by the de�nition of the fk's because by continuity of the distribution of X (0)

and stationarity, Pr (X (Ti) = X (Tj)) = 0 for i 6= j. Also, note that unless {Tj − Tj−1 ≥ a}
is true, the jth term in the de�nition of fk will be zero.

Let C be the subset of L (1) which consists of arbitrary convex combinations of m ≤ K/6

of the fk's with weight 1/m so that the weights sum to one. In consequence, for any g1, g2 ∈ C,

ˆ T

0
(g1 − g2)2 dµ � Anγ2/m.

Let pa := Pr (Tj − Tj−1 ≥ a). We claim that Pr (An < npa/2)→ 0 exponentially fast. Hence,

the r.h.s. of the above display is proportional to nγ2/m with probability going to one. This

claim will be veri�ed at the end of the proof.

Now, by suitable choice of small γ, it is possible to follow line by line the argument after eq.

(10) in Tsybakov (2003, proof of Theorem 2). This would give us a result for
´ T

0 (gT − g0)2 dµ

rather than
´ T

0 (gT − g0)2 λdµ and in terms of n rather than T = Tn. To replace n with Tn as

in the statement of the theorem, note that Tn/n converges almost surely to (Pλ)−1, which is

bounded. Finally,
´ T

0 (gT − g0)2 λdµ &
´ T

0 (gT − g0)2 dµ by the conditions of the theorem.

It remains to show that the claim on An holds true. For any positive decreasing func-

tion h on the reals, the sets {An < cn} and {h (An) > h (cn)} are the same; here c ∈ (0, 1)

is a constant to be chosen in due course. Hence, by Markov inequality Pr (An < cn) ≤

7



Eh
(
n−1/2An

)
/h
(
cn1/2

)
, which implies the following lower bound

Pr (An ≥ cn) ≥ 1− Eh (An/
√
n)

h (c
√
n)

.

It remains to show that the second term on the r.h.s. goes to zero. To this end, let h (s) = e−ts,

for some �xed t > 0. For pa as previously de�ned in the proof, write

An√
n

=
1√
n

n∑
i=1

(1 {Ti − Ti−1 ≥ a} − pa) +
√
npa.

The �rst term on the r.h.s. is a root-n standardized sum of i.i.d. centered Bernoulli random

variables. Hence, it has a moment generating function which is bounded (use the proof of the

central limit theorem for Bernoulli random variables). By this remark,

Eh (An/
√
n)

h (c
√
n)

=
E exp {−tAn/

√
n}

exp {−tc
√
n}

. e−t(pa−c)
√
n.

Choose c = pa/2 to see that the r.h.s. goes to zero exponentially fast for any t > 0, as

previously claimed.

A.1.5 Proof of Lemma 1 and Corollaries

Proof. [Lemma 1] The proof is a minor re-adaptation of Lemma 4 in Sancetta (2015). Note

that if B ≥ B0, the lemma is clearly true because in this case, L0 ⊆ L := L (B,Θ,W). Hence,

assume B < B0 and w.n.l.g. B = ρB0 for ρ ∈ (0, 1). Write

g0 =
∑
θ∈Θ

bθθ =
∑
θ∈Θ

λθ b̄θ

where the λθ's are nonnegative and add to one, and b̄ =
∑

θ∈Θ |bθ|. Note that the constraint∑
θ∈Θwθ |bθ| ≤ B0 for functions in L0 implies b̄ ≤ B0/w. De�ne g′ (x) = ρg0 (x) for ρ such

that B = ρB0 so that g′ ∈ L. Using this choice of g′, by standard inequalities,

∣∣g0 − g′
∣∣
r
≤

∣∣∣∣∣∑
θ∈Θ

λθ b̄θ −
∑
θ∈Θ

λθρb̄θ

∣∣∣∣∣
r

≤
∣∣b̄ (1− ρ)

∣∣∑
θ∈Θ

λθ |θ|r ≤ b̄ (1− ρ) max
θ∈Θ
|θ|r ≤

θ̄r
w

(B0 −B)

using the de�nition of ρ. This proves the result, because for g′ above, infg∈L |g0 − g|r ≤
|g0 − g′|r.

Proof. [Corollary 2] We need to show that LT (g̃T , gB) ≥ −
(
C2
T /2

)
with CT as in the

proof of Theorem 1 and rT as in (9), e.g., C2
T & B̄

√
T lnK. To this end, recall that L̃T (g) =´ T

0 g
(
X̃ (t)

)
dN (t)−

´ T
0 exp

{
g
(
X̃ (t)

)}
dt, which is the log-likelihood when we use X̃ instead

8



of X. Note that the counting process N is still the same whether we use X or X̃, as jumps

are observable. By de�nition, g̃ is the approximate maximizer of L̃T (g), but not necessarily

the maximizer of LT (g). It would be enough to show that LT (g̃T , gB) & −C2
T in probability,

as by a re-de�nition of the constant in CT , the proof in Theorem 1 would go through. Given

these remarks, write

LT (g̃T , gB) ≥ L̃T (g̃T , gB)−
∣∣∣LT (g̃T , gB)− L̃T (g̃T , gB)

∣∣∣ .
Using (11) we have that L̃T (g̃T , gB) & −C2

T as in (A.8). To bound the second term on the

r.h.s. of the above display, it is su�cient to bound a constant multiple of

sup
g∈L̄

∣∣∣LT (g)− L̃T (g)
∣∣∣

= sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dN (t)−

ˆ T

0

[
exp {g (X (t))} − exp

{
g
(
X̃ (t)

)}]
dt

∣∣∣∣
≤ sup

g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dN (t)

∣∣∣∣+ sup
g∈L̄

∣∣∣∣ˆ T

0

[
exp {g (X (t))} − exp

{
g
(
X̃ (t)

)}]
dt

∣∣∣∣
=: I + II.

First, �nd a bound for II. By the mean value theorem in Banach spaces,

II ≤ sup
g∈L̄

eḡ
ˆ T

0

∣∣∣g (X (t))− g
(
X̃ (t)

)∣∣∣ dt. (A.15)

Now,

sup
g∈L̄

ˆ T

0

∣∣∣g (X (t))− g
(
X̃ (t)

)∣∣∣ dt ≤ sup
{bθ:

∑
θ∈Θ|bθ|≤B̄w}

ˆ T

0

∑
θ∈Θ

|bθ|
∣∣∣θ (X̃ (t)

)
− θ (X (t))

∣∣∣ dt
≤ B̄w max

θ∈Θ

ˆ T

0

∣∣∣θ (X̃ (t)
)
− θ (X (t))

∣∣∣ dt
because the supremum over the simplex is achieved at one of its edges. By the conditions

of the corollary, the above display is Op

(
B̄e−ḡ

√
T lnK

)
. Hence, deduce that (A.15) is

Op

(
B̄
√
T lnK

)
= Op (CT ) (recall the notation in (A.1)).

It remains to bound I. Adding and subtracting
´ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dΛ (t) , and

using the triangle inequality,

I ≤ sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dM (t)

∣∣∣∣+ sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dΛ (t)

∣∣∣∣ .
The �rst term in the above display can be incorporated in the l.h.s. of (A.7) and bounded as

9



in the proof of Theorem 1. To bound the second term on the above display by de�nition of

dΛ,

sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
exp {g0 (X (t))} dt

∣∣∣∣ ≤ sup
g∈L̄

eḡ0

ˆ T

0

∣∣∣g (X (t))− g
(
X̃ (t)

)∣∣∣ dt.
From the derived bound for II deduce that the r.h.s. is Op

(
C2
T

)
. This completes the

proof of the �rst statement in the corollary, as all the conditions of Theorem 1 are satis-

�ed. To show the last statement of the corollary, use the inequality
∣∣∣g (X (t))− g

(
X̃ (t)

)∣∣∣2 ≤
2ḡ
∣∣∣g (X (t))− g

(
X̃ (t)

)∣∣∣ together with a trivial modi�cation of the previous display.

Proof. [Corollary 4] The approximation error is zero by assumption. Given that Θk

has one single element, the entropy integral is trivially �nite. Hence, (9) simpli�es as in the

statement of the corollary.

Proof. [Corollary 5] De�ne the set

B :=

{
sup
t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dN (s)

∣∣∣∣ ≤ β}
for some β <∞. In the proof of Theorem 1 write

Pr (dT (gT , g0) > CT , ) ≤ Pr (dT (gT , g0) > CT , and B) + Pr (Bc)

where Bc is the complement of B. We shall apply Corollary 2 to the �rst term on the r.h.s.,

and then show that the last term in the above display is negligible.

At �rst, show that the process with intensity density λ (t) = exp {fa0 (t) + g0 (X (t))} is sta-
tionary. To this end, we apply Theorem 2 in Brémaud and Massoulié (1996). Using their nota-

tion, their nonlinear function φ (·) in their eq.(1) is here de�ned as exp {f (·)} exp {g0 (X (t))},
which is random, unlike their case. However, in the proof of their Theorem 2 they only use

the fact that |φ (y)− φ (y′)| ≤ α |y − y′| for some �nite constant α (see their eq.(23) and �rst

display on p.1580). This is the case here as well. To see this, recall the de�nition of f (see

Section 3.6.2) which is bounded and Lipschitz. Then,

∣∣exp {f (y)} exp {g0 (X (t))} − exp
{
f
(
y′
)}

exp {g0 (X (t))}
∣∣ ≤ exp {ḡ0}

∣∣f (y)− f
(
y′
)∣∣

(recall ḡ0 is the uniform norm of g0). We also need to note that exp {g0 (X (t))} is stationary,
bounded and predictable. This ensures that the intensity λ (t) is bounded and predictable,

which is required in the lemmas used in Brémaud and Massoulié (1996). Hence Condition 1

is satis�ed.

To verify Condition 2, we verify that the entropy integral of the process f̃a is �nite in a

sense to be made clear below. We shall postpone this to the end of the proof.
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Hence, mutatis mutandis, we now verify (10) in Corollary 2. To this end, we bound

cT := Emaxa∈[a,ā]

´ T
0

∣∣∣fa (t)− f̃a (t)
∣∣∣ dt. Corollary 2 requires cT to be O

(
e−B̄w θ̄

√
T lnK

)
. By

the Lipschitz condition and a ∈ [a, ā],

ˆ T

0

∣∣∣fa (t)− f̃a (t)
∣∣∣ dt . ˆ T

0
e−at

(ˆ
(−∞,0)

easdN (s)

)
dt.

Using the fact that Λ is the compensator ofN , and that Λ has bounded density exp {fa0 (t) + g0 (X (t))},
deduce that

E max
a∈[a,ā]

ˆ T

0

∣∣∣fa (t)− f̃a (t)
∣∣∣ dt ≤ E

[(ˆ
(−∞,0)

easdN (s)

)(ˆ T

0
e−atdt

)]

.
1

a
E
ˆ

(−∞,0)
easdΛ (s) .

1

a2
<∞.

This veri�es (10) in Corollary 2.

To verify Condition 2 for f̃a, we need an estimate of the entropy integral for the family of

stochastic processes A :=

{(
f̃a (t)

)
t≥0

: a ∈ [a, ā]

}
. This means that we need to bound

sup
t>0

∣∣∣f̃a (t)− f̃a′ (t)
∣∣∣ . sup

t>0

∣∣∣∣ˆ t

0

(
e−a(t−s) − e−a′(t−s)

)
dN (s)

∣∣∣∣
≤ sup

t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dN (s)

∣∣∣∣ dt ∣∣a− a′∣∣
using a �rst order Taylor expansion, and the lower bound on a, a′. On B, the above is β |a− a′|.
It is then easy to see that the entropy integral is a constant multiple of β1/2 because the uniform

ε-bracketing number of [aβ, āβ] has size β (ā− a) /ε.

In consequence, we can apply Corollary 2. Let β = O (lnT )). There is no approximation

error, so that r−2
T (rT as in (9)) becomes as in (14). The term

√
lnT , in the numerator of (14),

is proportional to the entropy integral of A.
To conclude, we show that Bc, the complement of B, is such that Pr (Bc)→ 0 as β →∞.

By Markov inequality,

Pr (Bc) ≤
E supt>0

∣∣∣´ t0 (t− s) e−a(t−s)dN (s)
∣∣∣

β
.

Recalling that M = N − Λ, by the triangle inequality, the numerator on the r.h.s. can be

bounded by

E sup
t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dM (s)

∣∣∣∣+ E sup
t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dΛ (s)

∣∣∣∣ =: I + II.
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The �rst integral inside the square is a bounded predictable function w.r.t. a martingale, and

is a martingale. By the Burkholder-Davis-Gundy inequality,

I2 . sup
t>0

E
ˆ t

0

∣∣∣(t− s) e−a(t−s)
∣∣∣2 dΛ (s) ≤ eḡ0 sup

t>0

ˆ t

0

∣∣∣(t− s) e−a(t−s)
∣∣∣2 ds = O (1) .

By a similar argument II = O (1). These bounds imply that Pr (Bc)→ 0. The last statement

in the corollary is deduced from the proof of Corollary 4.

Proof. [Corollary 6] By Lemma 1, the approximation error will be zero as soon as B̄ ≥ B0,

which will be eventually the case as B̄ →∞ and B0 is �nite. By the remarks in Section 3.6.3

the entropy integral is �nite. Hence, the bound follows from (9).

Proof. [Corollary 7] By Lemma 2 and (13) the approximation error is a constant multiple

of V −2α + max
{
cα − B̄, 0

}2
. The univariate square uniform approximation rate V −2α follows

by the remarks in Section 3.6.4. Given that there are V elements in each Θk the entropy

integral is a constant multiple of
√

ln (1 + V ). Inserting in (9), the bound is deduced as long

as V > 1. In particular for V & (T/ lnT )1/(4α) the bound simpli�es further.

Proof. [Corollary 8] The proof is the same as for Corollary 7.

Proof. [Corollary 9] As stated in Section 3.6.6, the approximation rate of Bernstein

polynomials under the squared uniform loss is a constant multiple of α2V −1. Hence, by Lemma

2 and (13), the approximation error is a constant multiple of α2V −1 + max
{
B0 − B̄, 0

}2
.

In consequence, as B̄ → ∞, the approximation error is eventually O
(√

α/T
)
when V &

T 1/2α3/2. By the remarks in Section 3.6.6, the entropy integral is α1/2. Inserting in (9) the

bound follows.

A.1.6 Proof of Theorem 3

De�ne h := bθ, and let t ∈ [0, 1]. Let

hm := arg sup
h∈L̄

DT (Fm−1, h− Fm−1) .

By linearity, the maximum is obtained by a function h = bθ with θ ∈ Θk for some k and

|b| ≤ B̄. Hence, it is su�cient to maximize the absolute value of DT w.r.t. θ as the coe�cient

b is not constrained in sign. De�ne,

G (Fm−1) := DT (Fm−1, hm − Fm−1) ,

so that for any g ∈ L̄,
LT (g)− LT (Fm−1) ≤ G (Fm−1) (A.16)
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by concavity. For m ≥ 0, de�ne ρ̄m = 2/ (m+ 2). By concavity, again,

LT (Fm) = max
ρ∈[0,1]

LT (Fm−1 + ρ (h− Fm−1)) ≥ LT (Fm−1) +DT (Fm−1, h− Fm−1) ρ̄m +
C̄

2
ρ̄2
m

where

C̄ := min
h,g∈L̄,t∈[0,1]

2

t2
[LT (g + t (h− g))− LT (g)−DT (g, t (h− g))] < 0.

The above two displays together with (A.16), imply

LT (Fm)− LT (g) ≥ LT (Fm−1)− LT (g) + ρ̄mG (Fm−1) +
C̄

2
ρ̄2
m

≥ LT (Fm−1)− LT (g) + ρ̄m (LT (g)− LT (Fm−1)) +
C̄

2
ρ̄2
m

= (1− ρ̄m) (LT (Fm−1)− LT (g)) +
C̄

2
ρ̄2
m

≥ 2C̄

m+ 2
(A.17)

for the given choice of ρ̄m (mutatis mutandis, as in the proof of Theorem 1 in Jaggi (2013)).

It remains to bound C̄. By Taylor's expansion in Banach spaces,

LT (g + t (h− g)) = LT (g) +DT (g, t (h− g)) +
1

2
HT

(
g∗, t

2 (h− g)2
)
,

for g∗ = t∗g + (1− t∗)h, and some t∗ ∈ [0, 1], where

HT

(
g, t2 (h− g)

)
= −

ˆ T

0
t2 (h− g)2 egds.

This means that

C̄ ≥ min
h,g∈L̄,t∈[0,1]

2

t2

[
−1

2

ˆ T

0
t2 (h (X (s))− g (X (s)))2 eḡds

]
≥ −4Teḡ ḡ2 ≥ −4TeB̄θ̄/w

(
B̄θ̄/w

)2
using (A.1). Substituting in (A.17) gives the result.

A.1.7 Proof of Proposition 1

Let M := N − Λ and ht := gt − g′t. To ease notation, suppose for the moment that S is an

integer. Then, under the conditions of the proposition (the null hypothesis),

LS
(
g, g′

)
=

S∑
s=1

ˆ s

s−1
ht (X (t)) dM (t) =

S∑
s=1

Ys.
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Then, {Ys : s = 1, 2, ...} is a sequence of martingale di�erences. This follows from the law of

iterated expectations and the fact that ht is a predictable process. Denote the expectation

conditioning on {Yi : i ≤ s} by Es. The result will follow by an application of Theorem 2.3

in McLeish (1974). To this end, it is su�cient to show that (i.) E
∣∣∣ 1
S

∑S
s=1 Y

2
s

∣∣∣ → σ2, (ii.)

limS→∞ Emaxs≤S Y
2
s /S <∞ and (iii.) maxs≤S

∣∣∣Ys/√S∣∣∣→ 0 in probability. Note that

E

∣∣∣∣∣ 1S
S∑
s=1

Y 2
s

∣∣∣∣∣ = E

∣∣∣∣∣ 1S
S∑
s=1

Es−1Y
2
s

∣∣∣∣∣ (A.18)

using iterated expectations and the fact that the elements in the sum are positive. Note that

Es−1Y
2
s = Es−1

[ˆ s

s−1
ht (X (t)) dM (t)

]2

= Es−1

[ˆ s

s−1
h2
t (X (t)) dΛ (t)

]
(e.g., Ogata, 1978, e.q. 2.1). Hence,

1

S

S∑
s=1

Es−1Y
2
s =

[
1

S

S∑
s=1

Es−1

ˆ s

s−1
h2
t (X (t)) dΛ (t)

]
.

By these remarks, (A.18) is equal to

E

∣∣∣∣∣ 1S
S∑
s=1

Es−1

ˆ s

s−1
h2
t (X (t)) dΛ (t)

∣∣∣∣∣ =
1

S

S∑
s=1

E
ˆ s

s−1
h2
t (X (t)) dΛ (t)

= E
1

S

ˆ S

0
h2
t (X (t)) dΛ (t) ,

using the fact that the terms in the sum are positive. By the conditions of the proposition

σ2
S :=

1

S

ˆ S

0
h2
t (X (t)) dΛ (t)→ σ2 > 0

in probability. The sequence
(
σ2
S

)
S≥1

is uniformly bounded. In consequence, convergence in

probability implies convergence in L1, i.e. Eσ2
S → σ2. This veri�es the �rst condition (i.).

Now,

Emax
s≤S

Y 2
s

S
≤ 1

S
E

S∑
s=1

Y 2
s
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bounding the maximum by the sum. By the previous calculations deduce that the above is

bounded, which then veri�es the second condition (ii.). Finally,

max
s≤S
|Ys| /

√
S =

1√
S

max
s≤S

∣∣∣∣ˆ s

s−1
ht (X (t)) dM (t)

∣∣∣∣
.

1√
S

max
s≤S

∣∣∣∣ˆ s

s−1
dN (t)

∣∣∣∣+
1√
S

max
s≤S

∣∣∣∣ˆ s

s−1
dΛ (t)

∣∣∣∣
=

1√
S

max
s≤S

[N (s)−N (s− 1)] +
1√
S

max
s≤S

Λ ([s− 1, s])

where the inequality uses the fact that ht is bounded. The last term on the r.h.s. is Op
(
S−1/2

)
.

A counting process N is increasing with the intensity. Since λ (X (s)) ≤ eḡ0 uniformly in s,

there is a counting process N ′ with intensity density eḡ0 such Pr (N (s) > n) ≤ Pr (N ′ (s) > n).

In consequence, for any s, E [N (s)−N (s− 1)]4 ≤ E [N ′ (s)−N ′ (s− 1)]4 ≤ C for some

absolute constant C that depends on ḡ0 only. The last inequality follows because N
′ is Poisson

with intensity eḡ0 . By these remarks,

E
1√
S

max
s≤S

[N (s)−N (s− 1)] ≤ 1√
S

(
Emax

s≤S
|N (s)−N (s− 1)|4

)1/4

≤ 1√
S

(
S∑
s=1

E |N (s)−N (s− 1)|4
)1/4

bounding the maximum by the sum. Deduce that the above is (C/S)1/4 = o (1). This veri�es

the third condition (iii.) required for the application of Theorem 2.3 in McLeish (1974).

If S is not an integer, write bSc for its integer part. Then,

1√
S
LS
(
g, g′

)
=

(
bSc
S

)1/2 1√
bSc

bSc∑
s=1

Ys +
1√
S

ˆ S

bSc
ht (X (t)) dM (t) .

Clearly, bSc /S → 1. Moreover, by arguments similar to the ones used to verify the third

condition (iii.) above, we deduce that the last term on the r.h.s. is op (1). This shows the result

using σS as scaling sequence rather than σ̂S . However,
∣∣σ̂2
S − σ2

S

∣∣ =
∣∣∣ 1
S

´ S
0 h2

t (X (t)) dM (t)
∣∣∣→

0 a.s., and we can use σ̂2
S to de�ne the t-statistic. This completes the proof.
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A.2 Details Regarding Section 5.3.1

De�ne Yi := exp {g0 (X (Ti))} and Zi :=
∑

Tj≤Ti e
−a0(Ti−Tj), and recall R (Ti+1) = Ti+1 − Ti.

Note that for t ∈ (Ti, Ti+1], λ (t) =
(
c0 + Zie

−a0(t−Ti)
)
Yi. In consequence,

Λ ((Ti, Ti+1]) =

ˆ Ti+1

Ti

λ (t) dt =

[
c0R (Ti+1) +

Zi
a0

(
1− e−a0R(Ti+1)

)]
Yi

is exponentially distributed with mean one, conditioning on Fi := (Ti, Zi, Yi). Moreover,

Zi = Zi−1e
−a0(Ti−Ti−1) + 1 with Z0 = 1. Hence, de�ne c1 = c0Yi, c2 = YiZi, and simu-

late i.i.d. [0, 1] uniform random variables Ui's. We simulate R (Ti) setting it equal to the

s that solves c1s + c2
a0

(1− e−a0s) = − lnUi. Given an initial guess (2, 1.5) of of the true

(c0, a0) = (2, 1.3) we estimate exp {gT (X (t))}. Given exp {gT (X (t))} we estimate c and a in(
c+

∑
Ti<t

e−a(t−Ti)
)

exp {gT (X (t))}. We perform a second iteration.

Estimation of g is done using the algorithm in Section 3.5. In this case, the relevant part

of the likelihood is
n∑
i=1

g (Ti−1)−
n∑
i=1

exp {g (Ti−1)}∆i

where

∆i = cR (Ti) +
Zi−1

a

(
1− e−aR(Ti)

)
and c and a are set to their guess/estimated values. Estimation of c and a is via maximum

likelihood given exp {gT (X (t))}.
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