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The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model
that yields insight into a host of physical phenomena including conduction, frustration, supercon-
ductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory.
Our ultimate aim, however, is not just to understand the properties of a physical system, but to
harness it for our own ends. We therefore study the possibilities for engineering a special class of
spin chain, envisaging the potential for this to feedback into the original physical systems. We pay
particular attention to the generation of multipartite entangled states such as the W (Dicke) state,
superposed over multiple sites of the chain.

I. INTRODUCTION

Spin chains are one of the simplest models that can exhibit any of a wide variety of properties and, as such, have been
instrumental in developing our understanding of those properties. This includes conductivity (the Hubbard model),
the transition from conduction to insulation (the Bose-Hubbard model) [I], and high temperature superconductivity
[2]. From localisation within random media [3], through quantum chaos [4], to transport in globally entangled
topological systems and the Kitaev chain [5H7] the entire gamut of strongly correlated systems can be studied, and
features such as phase transitions [8, ] elucidated, including the transition between the exact, efficient solubility of
gapped systems [10, [I1] and the believed intractability /universality of the calculation of ground state/time evolution
of a gapless Hamiltonian [12, [I3]. These spin chains can even be used as a technical tool to describe properties of
more complex systems, as demonstrated by the Onsager solution to the two dimensional Ising model [I4], and even
string theory [15] [16]!

The spin chain model arises directly in experiments: solid state [I7}, 18], optical lattices [19], trapped ions[20], or even
photonic systems [21H23] are all capable of realising the spin chain model that we study in this paper. Furthermore,
this description in terms of a Hamiltonian (along with some additional control parameters) is often more natural
than the gate model that they are attempting to emulate for the purposes of quantum computation. In fact, it is
remarkable how little control one has to add in order to create universal quantum computation from a very simple
spin chain [24].

Quantum information and quantum computation is the ultimate expression of our understanding of quantum
mechanics; instead of merely describing and explaining quantum phenomena, we are trying to understand how we
can manipulate quantum systems to an unprecedented level in order to realise the transformations that we desire,
whether this is some comparatively simple manifestation of quantum technology such as a Bell test [25], random
number generation [26] or quantum key distribution [27] or the complete package of universal quantum computation.
Given our history with the spin chain, and its experimental prospects, we should understand how these tasks might
be realised in this setting. As already mentioned, with a large enough local Hilbert space dimension [12} [I3], universal
quantum computation can be realised, just by initialising a suitable initial state and leaving the system to evolve.
Alternatively, with the smallest possible Hilbert space, a small amount of control can be added to one end of the
chain and, again, universal control can be realised [24]. What are the true limits here? If we only have a spin chain
with local dimension 2, and no other control, what evolution can be realised? Once these limits are understood, it
is easy to relax the conditions, and add in features that might be easy for a given experiment to implement, while
leaving out other features that might be more challenging.

For the past decade, specific tasks within this category have been intensively studied. Perfect state transfer (see,
for example, [28H33]) — making particular choices of the Hamiltonian parameters such that a single qubit state |¢)
on the first spin at time ¢ = 0 arrives perfectly at the last spin at the state transfer time, ¢y — is the typical case
examined. The same solutions generate entanglement, both bipartite [34] and that required for cluster states [35].
Simple modification of these coupling schemes permits fractional revivals [32] B6H38] — superposing the input state
over the two extremal sites of the chain. Meanwhile, modification of the form of the Hamiltonian has demonstrated
that other tasks can be achieved, such as the generation of a Greenberger-Horne-Zeilinger (GHZ) state [39].
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In this paper, we address the question of what other functions a spin chain can realise (specifically, a nearest-
neighbour Hamiltonian in one dimension that preserves the number of excitations on the chain), moving far away
from the small modifications around the central result of perfect state transfer. In response, we show that almost
all states comprised of a single excitation (a single |1) superposed across many sites, while all others are in the |0)
state) and real amplitudes can be deterministically generated by evolving an excitation initially located on a single
site, including the important case of the W state of N qubits. We do this by showing that it is sufficient to ensure
that the Hamiltonian H; has eigenvalues which satisfy a particular property, and by fixing one of the eigenvectors.

In section [T, we describe a set of sufficient properties that the Hamiltonian has to satisfy in order to guarantee
creation of a target state. In section [T, we then describe a numerical technique that is guaranteed to work to
arbitrary accuracy for almost all target states (and characterising the cases when it doesn’t work). In section we
realise that although the algorithm in section [[TI] provides a useful existence proof, the corresponding solutions have
excessively high times for producing the required states. As such, Sec. [V] constructs some analytic cases that yield
optimal state synthesis times, and Sec. [V]] uses these as the basis for a perturbative technique to find good solutions
— those that produce the target state with high accuracy in the minimum time.

A. Setting

In this paper we consider a spin chain comprised on N spins, the Hamiltonian of which is

N
By,
H= 27( )+ Z (X X1+ YVaYni1), (1)

where X,,, Y,, and Z,, denote the usual Pauli matrices applied to site n (and 1 elsewhere). It is excitation preserving,

N
[H, Z Zn
n=1

(N-1)

meaning that any one-excitation state, such as |1) |()>® can only evolve into another one-excitation state,

—lHt |1> ‘0 ®(N 1) ZO[ |O ®(n 1) |1> |0>®(N 'rL)

where > |, (t)|? = 1. Indeed, the Hamiltonian when restricted to the first excitation subspace is described as
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where |n) := |0)2"7 1) [0)*N ™) yielding
an(t) = (nle” ™M1 |1).
The matrix H; is a real, symmetric, tridiagonal matrix where each of the elements can be independently specified,
making it ideal for the engineering tasks that we intend to study.
Our aim is to be able to initialise the spin chain in a separable one-excitation state, |n). Typically, this will be at

one end of the chain, say |1) [56]. We want to find the coupling strengths {J,,} and magnetic fields {B,} such that
the evolution produces

| — |wT Zan |7’L

for some particular set of coefficients {cv,} that we specify, perfectly and deterministically, i.e. there will be a time ¢
(the “synthesis time”) such that the state of the spin chain is the target state |¢r). Two states of particular interest
that satisfy these properties are W-states (Dicke states) of all, or odd numbered sites:

w) = Z\n

nl

5 (N+1)/2
[Woad) = VN1 ; |2n — 1)



Note that the second state is only valid as a target state if NV is odd, although an even N version can be defined.

A key assumption that we make here is that the target coefficients «,, are real. This need hardly be considered a
limitation — we envisage the use of such spin chains to be in producing specific resource states that might otherwise
be challenging to produce accurately and repeatedly. The central resource here is likely to be the entangled nature of
the state which is entirely determined by the real amplitudes; complex amplitudes can be generated by local unitaries
acting on the state.

B. Relevance to other Spin Chain Models

Our study will be far more widely applicable than the initial choice of spin chain, Eq. , might suggest - there
are two main classes of spin chain that arise in the literature. The first is the XXZ model,

N = -
B, Jn
Hp = — — (XX, Y, Y, AnZnZn
A ;::1 5 g 9 +1+ +1+ +1)5
of which the Heisenberg model is the special case A, = 1. As we are concentrating on the single excitation subspace

in this paper, there is a trivial mapping between magnetic fields B, <+ B, and couplings J,, <+ J,,, meaning our
results instantly translate. This is equally true of the Hubbard and Bose-Hubbard models. The second class are the
free-fermion models:

Hp = Z Bpala, + Z Jn(alaniq + an+1an + ’y(anaIH_l + anti1an)),

of which Eq. ([1]) is the special case v = 0 using a standard mapplng (the Jordan-Wigner transformation [40]) between
Pauli spin operators and the fermionic creation operators af. The key idea here, however, is that the coupling of the
fermions in an N-qubit system is described by a 2N x 2N trldlagonal matrix [41]. As soon as we understand how
to engineer the properties of H;, we know how to engineer the properties of these systems as well, it is only that
the corresponding initial and final states are different, requiring a little more analysis. Moreover, the beauty of these
systems is that the evolution of that 2N x 2N matrix conveys everything about the evolution of the entire system,
not just a specific subspace (unlike the XXZ, Hubbard and Bose-Hubbard models).

II. DESIGNER STATES

We aim to find Hamiltonians for which e=#1% |1) = |¢i1). In almost all cases [57], there is a very simple way
that one can attempt to do this — imagine H; has an eigenvector |n) of zero eigenvalue, and all other eigenvalues are
half-integer multiples of some factor A\. The evolution after a time tg = 27/ is

e " = 2n) (y —1

because all the eigenvectors have acquired a phase —1 except for |n). Consequently, the final state is just

2|n) (nl1) — 1)
Thus, by fixing
_ D)+ )
In) = 21+ ay)’

we have the evolution as desired. We shall denote the components of |n) by 7, = (n|n).

A. Constraints of the Technique

Fixing a single eigenvector, and imposing properties on the eigenvalues, immediately guarantees the desired evolution
of the single excitation subspace. What are the constraints on the target state for which this can be done? The isolated
problem of imposing that a tridiagonal matrix such as H; has a particular real-valued eigenvector (irrespective of the
other eigenvalues) is well understood [42]:



e the amplitudes of the eigenvector at either end of the chain, 7; and 7y, must be non-zero, i.e.
an 7é 0.

e two consecutive amplitudes cannot both be zero, i.e. if n, = 0foranyn =2,3,..., N—1, then 9,1, 7,11 # 0.[58]

Hence, this technique immediately rules out the previously studied special cases of perfect state transfer and end-to-
end entanglement generation, because these have as = a3 = ... = ay_1 = 0, emphasising the non-uniqueness of our
strategy. However, these are the only restrictions — for any other choice of |¢1), we can always find an arbitrarily
good approximation to a matrix with eigenvector |n) and the required spectral structure (and by continuity, a perfect
solution must exist).

To our knowledge, the task of finding a Hamiltonian with a specific eigenvector and spectrum has not previously
been studied, although specifying one or the other is quite common [42] [43]. This task is of independent mathematical
interest and as such, we elucidate some of its mathematical properties in Appendix[A]— showing that for specific choices
of spectra, sometimes the solution for the Hamiltonian parameters is non-unique, and sometimes no solution exists.
However, our task must not be mistaken for that — we are not constrained to using a specific spectrum, only by certain
general properties. We only have to show that for any desired |[¢)1), and hence |n), there exists at least one choice of
spectrum for which there is a solution.

III. ARBITRARILY ACCURATE SOLUTIONS

To show that, for any desired |ir) satisfying the conditions that ay # 0 and that no two consecutive amplitudes
are zero, there exists a spectrum for which H; can be constructed, we take a technique from [44], where we start with
a known Hamiltonian which, in this case will have the correct eigenvector but not spectrum, and find how to perturb
the Hamiltonian to correct the spectrum.

We start by considering the eigenvector equation H; |n) = 0:

Mn—1Jn—1 + MBn + Mpy1Jn, =0 vn. (2)
We fix J; = 1 and work iteratively. At step n (starting with n = 2), we know J,,_1, allowing us to choose J,, = J,,_1
and hence set By, = —J—1(n—1+Mn+1)/Mn if 7 # 0. Otherwise, we fix J,, = —1,—1Jn—1/Mn, and choose B, = 0. At

the end of the iteration, all the parameters of H; are set, and the 0 eigenvector is |n). This is precisely the technique
for solving inverse eigenmode problems in [42]. We refer to this matrix as H,, and follow the process:

e Pick an accuracy parameter € (smaller than half the smallest gap between eigenvalues in H).
e Truncate the eigenvalues of H, to the nearest multiple of .

e Shift all the eigenvalues except the 0 value by :t%a. This defines the target spectrum. The choice of + does not
matter, and can be made in order to minimise the change in the eigenvalues, which need never be larger than
£/4. This ensures that the ordering of the eigenvalues is maintained.

e Take the values {(1|\,,)}, where |),) are the eigenvectors of H,, and use these along with the target spectrum
to calculate a new Hamiltonian H. This follows a standard technique for inverse eigenvalue problems known as
the (inverse) Lanczos algorithm [45], which takes these two sets of parameters as input and returns a tridigaonal
matrix with the specified spectrum and values {(1|\,)}.

The output, H, is guaranteed to have a spectrum that achieves the desired phases in a time to = 2m/e. A solution to
this always exists [45]. While the 0 eigenvector is no longer |n), but |factual), since H is only a perturbation of H,, it
should not be significantly different.

By continuity of the spectral properties of the Hamiltonian (as we tend € — 0), we infer that a perfect realisation
must exist, albeit with arbitrarily long state synthesis time. Thus, as a special case, we can create any state with real,
non-zero amplitudes on every site of the chain, including states such as the W state. For example,

0.80985122 1.00004543
1.00004543 0.23665936 1.00033274
H) = 1.00033274 —1.99911163 0.99971024 ,
0.99971024 —1.9996369 1.00055901
1.00055901 —0.99954444



with parameter ¢ = 0.001687714 evolves |1) — |a) where (a|W) > 1—2 x 1079,

How different is the state produced to what we wanted? The state produced by H is e~iflto |1) = |[Yactual), and has
overlap with the target of

<¢T|wactual> =1- 2(1 - 041)(1 - <77|77actual>)

Now, note that a Hamiltonian perturbation V' gives, up to normalisation,

N—-1
(Al V)
[Mactual) = |1) + ; T |An)

where we crudely estimate | (A,|V |n) | < e and |\, > Amin to yield

e2N-1
2 A2

min

<77|77actual> Z 1-
Let us take the typical case where we start from the system where all the J,, are equal. The original spectrum is

7r
/\k—2Jcos<N+1).
With NV odd, then there is a 0 eigenvalue which we will choose to correspond to the O-value eigenvector that we will
tune. Of the other eigenvalues, A, we have that [\ > A(x_1)/2) = Amin ~ 1/N. Meanwhile, the smallest gap, that
determines € arises at A\; — Ay ~ 1/N2. So, once perturbed, all the .J,, are approximately equal, and if we assume 0
magnetic fields, we get (9|nactual) ~ 1 — O(1/N), with a to scaling as O(N?).

In fact, it is not a priori obvious that a perturbation that only shifts the eigenvalues by no more than /4 should
satisfy | (An|V'|In)| < e. A more rigorous analysis is provided in Appendix [B| that improves the error scaling to
<77|nactual> ~1- O(l/NS)

It must be emphasised that we do not propose this algorithm as one that should practically be used; there are a
number of shortcomings including that in order for ¢ — 0, we require t — oco. Also, from a practical perspective,
perturbations to the Hamiltonian would have to be at the level of O(¢2) in order to not have too significant an effect,
but this is a ridiculous level of accuracy. Instead, the purpose of the algorithm was to show that there is always a
solution. It is the focus of the rest of this paper to convey that there are many improvements that can be made
such that the state can be created in a time that is independent of the desired accuracy, and at a speed close to the
theoretical limits.

IV. SPEED LIMITS

For a given target state |¢r), how small can the synthesis time, t;, be made? The shorter the time, the less
opportunity there is for noise to build up and overwhelm the device. The crucial issue is the spectral gap — if the
smallest eigenvalue gap is A, then the minimum value of ¢y is 7/A. Indeed, if that smallest gap arises between a
pair of eigenvectors that does not include the 0-eigenvector, to > 27/A. We consequently want to understand how
large A can be made, subject to the physically motivated constraint that the maximum coupling strength of the
chain is bounded, i.e. J,, < Jmax for all n. In the explicit constructions above, A ~ 1/N? yielding a state synthesis
time of O(N?). From the history of perfect state transfer, we know that the uniform coupling chain (on which that
construction was based) is far from optimal in terms of transfer time; O(N) is possible. We aim to show that the same
is possible for state synthesis. In the abstract, we note that by bounding all coupling strengths .J,, € [—Jmax; Jmax], all
eigenvalues are constrained in the range A € [—2Jmax, 2Jmax]. With N such gaps, the smallest gap between eigenvalues
can be no more than O(1/N), so the synthesis time must be O(N).

The challenge is to make a correspondence between the spectral properties of the Hamiltonian H;, which are well
characterised for the state synthesis task, and the coupling strengths. Let us assume that H; is symmetric, meaning
B, = Byyi1-n and J2 = J%_ ., and of odd size N = 2M + 1. Improving the proof technique of [46], we will argue
that

m 1
JmaxZ % M2_§~ (3)

We start by observing that if H; achieves the state synthesis task, then so does any H; + 1, because the 1 only
contributes a global phase to the evolution. We resolve this freedom in the magnetic fields by fixing By;41 = 0.



Next, observe that the symmetry assumption splits H; into anti-symmetric and symmetric subspaces with mutually
interlacing eigenvalues {ux}2L, and {22t respectively (v < pr < vit1). All eigenvalues must have an integer
spacing, except for a spacing of % either side of one special eigenvalue. Let’s assume this special eigenvalue is uj,
(which turns out to be the relevant case, rather than n;). We have that

AT2 e > 4T3 = Te(SH?) =Y ng = > pi,

where S = Zgil In) (N +1 —n|. If we use the bounds n, > m +2(k — 1) — 0, ; and p, < mgy1 — 1+ 36,_j, then
one readily derives

1
maxzn%+(2M_1)n1+2M2_M_fa

2
4J, 1
which is the smallest possible (M? — 1) for the choice m = 3 — M.

Importantly, this construction gives us insight as to how we could realise the optimal solution — by selecting a
spectrum 0, +1,+3,£5,..., £(N — 2), which is very far from the spectrum chosen in Sec. Of course, even for
a symmetric target eigenvector, it is not necessary that the Hamiltonian be symmetric, and even our basic premise
of fixing a single eigenvector and some basic spectral properties is far from unique, so this construction has limited
applicability. We can extend the technique at the cost of removing the possibility of the bound being tight. We start
with

N—
DO EE) WA W
fixing the B,, through eigenvector relation Eq. , so that, under the assumption 7, # 0,

ZA2_2ZJ2+Z<% 1Jn— 1+77n+1J>

n=1

By imposing |J,,| < Jmax, this reduces to

N N 9
ZA2 <22 mdx+z (|77n—1v]max+|77n+1|c]max> —Jiax < (N_1)+Z<|'r]n_1|—|—|77n+1|> ) .
n=1

n 1 n

Having fixed that the special eigenvalue is 0 (we did this implicitly, but we have the freedom to do that thanks to
the 1 shift), and recognising that all other eigenvalues in >~ A2 must be spaced by at least 27/, it is clear that the
smallest such sum arises from eigenvalues centred on 0, in + pairs, with the minimum spacing. Thus,

2 M 2

Zn:/\i > 2 (;) Y (@2n-1)% = ;r—th(N —1)(N - 2).

n=1

We finally have that

2
N n—1 n+1
Jwacto | 2OV = 1)+ 2 (sl 1
7r N(N —1)(N —2) RvER

(4)

For example, the W-state requires a time of at least 7N/(3v/2Jmax) in the large N limit.

If we wish to compare with all possible fixed Hamiltonians, or even time-varying excitation-preserving Hamiltonians,
subject to the constraint that all coupling strengths are bounded within a range [—Jmax, Jmax], then we can utilise
Lieb-Robinson bounds [47]. These convey that to generate a non-trivial correlation function between two regions
separated by a distance L requires at least a time ~ L because there is a finite group velocity for the propagation
of correlations. Conventionally, the group velocity in this situation would be evaluated as vy = 2Jmax, giving an
optimal evolution time of (N — 1)/(2Jmax). This velocity is borne out by detailed numerical calculations of optimal
quantum control in [48] (in the bulk; edge effects can affect finite sized systems), although rigorous calculations of
the Lieb-Robinson bound only give vy < 6Jmax [47). For instance, if we consider the two operators O4 = Z; and
Op = Zy, and evaluate

o([$)) = (Y| Oa0B [¢) = (V[ Oa[¥) (Y| Op |¢)



then at the start of the evolution we have o(|n)) = 0, while the final state has o(|a)) = —4afa%. Provided ajay is
not exponentially small, ¢g > (IV — 1) /vy, so the scaling relation is certainly optimal. Note that this Lieb-Robinson
time (which we shall take to be Jyaxto > (N — 1)/2 later in the paper) is independent of the target state. In fact,
this serves to illustrate the crude level of the bound in Eq. — it is easy to pick target states so that the bound it
gives is less strict that the Lieb-Robinson bound. For example, up to normalisation,

N
) = 3 @l )

n=1

with N = 21 has a worse bound if o < 0.9157.

V. ANALYTIC SOLUTIONS

We saw in the previous section that our original technique gives a state synthesis time that is far worse than we
might hope, scaling as O(N?) instead of O(N). One might hope that the same technique would continue to work
when using an initial coupling distribution of J, = y/n(N —n)/N [29] instead of J, = 1, which would give an
eigenvalue spacing of 1/N. This can be made to work. For example, starting from .J, = (—1)"/n(N —n)/N and
B, = —Jn_1 — Jn, the eigenvalue gap appears, numerically, to be O(1/N), and so a transfer time O(N) is possible.
However, there is necessarily a multiplicative constant overhead to such a scheme (having to choose ¢ well within
the size of the existing energy gap), meaning that state synthesis is, perhaps, an order of magnitude slower that it
could theoretically be. In the case of N = 7, for instance, we found a system that produced an output state |¢)
with (W) =1 —2 x 1075, but Jmaxto = 893, far worse than the Jyaxto > 4.51 suggested by Eq. . We therefore
pursue a different technique, starting by producing analytic solutions that have a particular target spectrum and fixed
0-eigenvector, and using these as the input to a perturbative technique to produce useful solutions.

In [49], a set of matrices which we call the Hahn matrices, were introduced. These are M x M symmetric tridiagonal
matrices with diagonal elements

hnz(M_1)(M2“+a>—2<n—M2+1>2

and off-diagonal elements

K, =+/nn+a) (M —n)(M+a —n).

The Hahn matrices have a spectrum k(k + 2a+ 1) for k=0,...,M — 1 [49] and « > 0 [59]. While this spectrum is
not the one we desire, the Hahn matrices motivate our new construction of an N x N symmetric tridiagonal matrix
(N =2M + 1) with 0 on the main diagonal and off-diagonal couplings that satisfy

200+ 1
2

2
J22n71 + J22n = hn + ( > J2nJ2n+1 = Kna

. i\ M . . . . .
which has a spectrum 0 and + {(k + %) } x—1- In particular, integer values of a yield a spectrum that is compatible
with our spectral condition and give tg = 27. Furthermore, imposing that our new matrix is symmetric requires that

Iy = Jpr41- Hence,
Ty — 1/h<M+1>/22+(a+%)2 M odd

VEuye M even.

which is sufficient to define all the coefficients.
In the case of @ = 0, the spectrum is the one that was used to give the minimum state synthesis time, Jyaxto =

2 _ 1
M 3

For example, with M = 3 and o = 1, we start with the Hahn matrix

4 23 0
23 6 23
0 23 4

(SIE]



and subsequently create the size 7 Hamiltonian (in the first excitation subspace)

H,y

33
2

2

2
1

=

3

2

4

2
0

This has a 0-eigenvector, up to normalisation, of approximately

[1) +17) + 1.072(|3) + |5)).

5

To see that its spectrum is 0,:&%7:|:%7:|:2,

we first observe that for any eigenvector 22:1 An 1) of eigenvalue A,

there is an eigenvector 22:1 A (=1)"H1 |n) with eigenvalue —)\, so all eigenvalues occur in £\ pairs, except for 0,
which must be there given the odd size of the system. Now we evaluate H? — %17

12 0 14v6
11 11
0 4 0 23
146 0 421 0 33
11 88 8
23 0 6 0 2V3 :
33 421 146
8 0 88 0 11
23 0 4 0
146 0 12
11 11
and recognise that it splits into two subspaces corresponding to the even and odd matrix elements:
12 14V6
e a1 s 4 23
8 8 ws el 2v3 6 2v3
I 2v3 4
11 1

The second of these is our original Hahn matrix. Hence, some of the eigenvalues A are the related to those of the
Hahn matrix by A2 — %, and we know those values to be 0,4,10. Overall, this imposes that the spectrum must be
0, j:%, :&:%, ig (and this proof strategy is the same for any size of matrix).

VI. PERTURBATIVE MANIPULATIONS

If we want a different vector |n) to be the 0-eigenvector, we must start from our analytic solution and try to iterate
towards an improved solution. It is interesting to observe that for a = 1, the 0 eigenvector of the previous construction
is very close to |[Wyqq) — numerically we have created matrices of (odd) size up to 10003, and (Woqq|n) is always at
least 0.999 [60]. Equally this means that the overlap with the W state is approximately 1/4/2. Consequently, it can
serve as a crude starting point for numerical schemes — by judiciously changing the signs of the coupling strengths we
can guarantee an overlap with any target state of approximately (Y, |a,—1|) vV2/v/N + 1 which is never too small.

We start with a Hamiltonian H 1(0) which has magnetic fields B7(LO) and couplings J7(LO)7 which can be used to calculate

the characteristic polynomial p(x) of H 1(0). We aim to find the first order correction to the fields and couplings that
steps us towards having the desired spectrum {\,,} (for all eigenvalues except 0) and desired O-vector |n). Let us write

1GO©Y = (B, g B ... BP)T. Then it
(ml1) (nl|2)
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FIG. 1: Time evolution of probability of excitation being at each site in a 21 qubit chain, approximating the evolution of |1)
evolving to the W-state.

the conditions for |n) to be the 0-eigenvector of our new solution are represented as M ‘G(1)> = 0. Combined with
the N — 1 conditions for getting the eigenvalues (except for the 0-value) correct,

yp(x”z:)\ = *p()‘)a

this specifies a linear problem to be solved for the next step, |6G) = ‘G(1)> — ‘G(0)>. Moreover, the entries of the
vector Vp(x) are easily evaluated:
dp
dB,

dp
dJ,

= det[H® — 1], = —2J,det[H® — 21],, ,, 11

where [R],, denotes a matrix R with its n*” row and column removed.

This technique works in theory, although in practice the matrices involved are poorly conditioned, meaning that
the radius of convergence is too small and anything other than modest system sizes gets trapped too readily in
local maxima. Nevertheless, there is significant scope for improvement by, for example, applying appropriate pre-
conditioning, and using higher order techniques such as Runge-Kutta, should it prove desirable to go to system sizes
larger than N ~ 100. However, we have not explored these options since, as we will argue in Sec. [VII] there are
practical reasons why it is unlikely to be necessary.

Instead, we have found that sub-optimal techniques, while not providing monotonic convergence, often happen to
yield higher quality solutions by not getting trapped in local maxima (or reach a sufficiently accurate point that the
above calculation does converge). In particular, the supporting calculations provided via a Mathematica workbook,
[61], adopt the technique of

e Start with a Hamiltonian H; (couplings J,, and fields B,,).
e Change the signs of the couplings to

sign(Jn) := —sign <7]n_1(]n_1) '

77n+1

This does not change the spectrum of the Hamiltonian, but given the sign changes in the couplings determine
the ordering of the eigenvalues, it may be that the 0-eigenvector is changed.

e Define a perturbation

3

N
nn—ljn—l + 77n+1<]n
V=->" o, n) (n|

n=1

and corresponding perturbed Hamiltonian H, = H; + ¢V, with § = min(1,e/||V]|) for some ¢ < 1. Note that
the sign choice of the {.J,} minimised the norm of V, making it as close to being a perturbation as possible.
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e Calculate the eigenvectors ’5‘”> of Hp.

e Calculate a new Hamiltonian with the desired spectrum starting from the eigenvector overlaps {<1|5\n>} by using
the (inverse) Lanczos algorithm.

The overall step is isospectral by construction, and should provide a small (O(e)) improvement in the accuracy of
the target eigenvector. Thus, repetition is anticipated to drive us towards a good solution, should one exist, modulo
some possible disturbance introduced by the reordering of the eigenvectors due to the sign changes of the coupling
strengths.

For example, Fig. |1 depicts the evolution of a 21 qubit system which performs the evolution |[1) — [¢)) where
(W) =~ 1—2x10~*°. It is clear, however, that our calculations can still be significantly improved — the results for
99 spins, as used in Fig. [2] demonstrate that random perturbations can easily find improvements in the Hamiltonian
over and above those which we realised with the above formulation.

With regards to the optimal speed, the 21-qubit example of Fig. |1| gives that Jy.xto = 33.1. Eq. specifies that
Jmaxto > 14.9; there appears to be some margin for improvement within the bounds of the technique presented in
this paper, but some proportion of this must be attributed to the crude nature of the bound — to saturate it would
require every coupling strength to be equal, which cannot happen. Equally, the bound for the symmetric case is
Jmaxto > 33.0; this does not apply because the output is not symmetric but as a tight constraint on those systems
perhaps gives a more realistic indication of the value. Moreover, comparing to the Lieb-Robinson bound for any
Hamiltonian, including time-dependent ones, the optimal relation (ignoring any edge effects) would be Jyaxto > 10,
surprisingly close!

VII. SUSCEPTIBILITY TO ERRORS

Any real-world implementation of these ideas will naturally experience some variance from the ideal, either in the
form of imperfections in the manufacturing process, and manifesting as a perturbation to the Hamiltonian, or in the
form of noise. Studying these effects is a broad topic, but we provide some preliminary indications about the effects
of these error sources.

For imperfections in the manufacturing process, we note that one of the advantages of the fixed Hamiltonian scheme
is that we can analyse the performance of a manufactured device in advance of using it, and potentially even make
slight adjustments (such as the evolution time) to partially compensate for errors. Indeed, we could manufacture
multiple copies of the device and use the best one. Nevertheless, errors will still creep in. We have chosen to
numerically study the effect on the final state of randomly altering each coupling strength and magnetic field by up to
a fixed percentage. This percentage shift, as opposed to an absolute shift, arises more naturally in some scenarios such
as evanescently-coupled waveguides [21], where the coupling of two waveguides separated by a distance = has the form
Joe M so an absolute error in position dz corresponds to a multiplicative error e #9%. The effects are demonstrated
in Fig. [2| for varying levels of inaccuracy for a chain of 99 spins attempting to create a W-state, constructed according
to Sec. [VI] The effects are remarkably modest.

On the other hand, noise is always going to be a greater problem that limits the practical useful size of a spin chain
(just as will be the case for state transfer, although error correction techniques are slowly being understood in that
context [50]). Consider dephasing noise as an example: the appearance of a single Z error randomly in the system is
not too detrimental to the final state. To see this, consider decomposing the error in terms of the Majorana fermions

Cp = leg...Zn_an Cn4+N :Z1Z2...Zn_1Yn.

The purpose in doing this is that under the action of our Hamiltonian (represented in the single excitation subspace
by Hi), these fermions evolve independently according to

2N

cn(t) =Y (mle™ M n) ey,

m=1
For an error Z,, at time ¢, we can consider the fidelity as a figure of merit:
F = | <7/1T| efiH(toft)Znefth |1> |
_ | <1| ethoefiH(toft)Znefth |1> |

= | (1] en(=t)entn(=t) 1) |
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FIG. 2: Overlap of output with target W state in a chain of 99 spins, comparing average over 400 instances with the best
sample, where each magnetic field and coupling strength is altered by multiplication of an amount chosen uniformly at random
from the range 1 4 x.

The majority of the terms in this sum don’t have any effect — typically, the fidelity is only reduced by an amount
1/N for each error. Hence, O(N) errors can be tolerated during the evolution, while only reducing the fidelity by
a finite amount. For a given chain length, there will certainly be a threshold per-qubit error rate below which the
resulting output state is of sufficiently high fidelity. However, the fastest evolution requires a time O(N), and there
are N qubits involved meaning that a constant per-qubit error rate introduces O(N?) errors during the evolution. As
system sizes scale, it will become impossible to find a practical working window for the noise rate, just as it does for
state transfer [50]. This is one motivating factor behind concentrating on only modest sized systems in Sec.

VIII. CONCLUSIONS

We have shown that a spin chain can be engineered to deterministically create almost any single excitation state
of real amplitudes from its time evolution, vastly extending their utility. Numerically, our outputs give Hamiltonians
that yield close to the target state in a time that is within a modest (i.e. O(1)) multiplicative factor of being optimal,
and are remarkably robust to manufacturing imperfections. While we require manipulation of both magnetic fields
and coupling strengths, all the magnetic fields can be set to 0 simply by replacing the chain by one of length 2N + 1,
and instead trying to produce the state ) oy, |2n — 1) using a target spectrum whose non-zero eigenvalues occur in
£ pairs. For example, to generate a 7-qubit W-state, it could be easier to produce a 15-qubit |W,q4q) state and only
manipulate the coupling strengths. The cost is an approximate doubling of the state synthesis time. As described in
Sec. [[B] all our results can readily be applied to local free-fermion models such as the transverse Ising model, or any
one-dimensional excitation preserving nearest-neighbour Hamiltonian such as the Heisenberg model.

The assumption that the target state has real coefficients a,, was central to our derivation. We do not consider
this a serious limitation as the entanglement resource produced by the spin chain is not affected by the ability to
manipulate the complex phases — these are a local property of the state. Viewed from an alternative perspective, one
can suggest that if a party requests an N qubit state, that implies an ability to do something with those N qubits.
One wouldn’t request it in order to let it just decohere, unobserved. It might not be a universal computational
ability, and the state is required to elevate those abilities to greater computational power, as in the Local Operations
and Classical Communication paradigm, or measurement-based quantum computation. This might be as simple as
the ability to measure the qubits, wherein the implementation of local phases can be incorporated into the choice of
measurement basis. If the aim is more than just measurement, the user probably has the ability to implement the local
phases themselves. Either way, it doesn’t matter that we only produce a state with real amplitudes. Nevertheless, one
method to realise complex amplitudes «,, is by extending the Hamiltonian model and applying techniques described
in [51]. If the couplings J,, produce the target state with amplitudes |« |, then replacing each term in the Hamiltonian
using

Re(an+1)

Im(a’ﬂ-l‘l) (
|1

Jn(Xan+1 + YnYn+1) — Jn
|otn g1

(Xan+1 + YnYn+1) + Jn XnYn-H - Yan+1)

would be sufficient, as this is equivalent to applying a unitary rotation with diagonal elements e*A8(@n) on the first
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excitation subspace of the Hamiltonian.

Any target state with no consecutive zero amplitudes can be realised. To get consecutive zeros, one could examine
the technique that [42] specifies for fixing two eigenvectors of a matrix. While this gives no control over the spectrum,
the procedure of Sec. [[II] can be applied to get a high accuracy solution, and hence conveys that solutions exist.
However, this can give no more than two consecutive zeros [62]. The challenge is to design systems that produce
states with many 0 amplitudes, which is likely to require inordinate control over most of the eigenvectors. This
is addressed in [52]. The additional advantage of such tuning is that it should be possible to select a much tighter
spectrum, with eigenvalue gaps that are 7 /¢y, as compared to the majority being 27 /¢, as in this work. We anticipate
that this would approximately halve the value of Jy.xtg, substantially closing the gap to the Lieb-Robinson speed
limit.

While one might argue that, conceptually, our results are not new — the possibility of universal quantum computation
on a spin chain [I2] [13] implies that any state can be made — there is a world of difference. Perhaps most damning
is that results such as [I2] do not give deterministic operation. Instead, there is a very small success probability,
vanishing as some power of N, and one has to repeat until success. In that sense, those schemes are not free from
user interaction. This is in complete contrast to our scheme wherein the state is guaranteed to be produced with high
accuracy at a particular time, and we have shown that our scheme if within a modest overhead of being the fastest
that it could be. Furthermore, the universal Hamiltonian schemes require large local Hilbert spaces with unrealistic
Hamiltonians, while here our scheme is designed with ‘standard’ models in mind which are abstractions of commonly
arising interactions. System initialisation, while using a product state, is nevertheless complex in order to program
the necessary commands, the output is in a subspace, and possibly encoded (and production of an encoded version of
the target state is entirely different to producing the state itself). Meanwhile, our results create the state itself, and

system initialisation is as simple as ‘cooling’ to the \0)®N state, and setting a single spin to |1). The consequence is
a realistic proposition, with good, experimental prospects, particularly using evanescently-coupled waveguides. The
basic technology has already been shown to work for perfect state transfer in [21I], and the present setting is even
more appropriate; for the tasks considered here, the only input of interest is a single excitation, not a superposition
of states, so one does not require the additional lengths of more recent experiments [23] [63]. However, the efficacy of
such a scheme would have to be compared to other methods such as [22] [54].

Of course, the assumptions made here are not appropriate to all experimental scenarios, but should act as a bound.
Relaxing those assumptions and reintroducing some relatively simple-to-implement experiment-dependent controls
can only improve the situation, and we now know that such solutions are possible. This might be considered akin to
the vast explosion of state transfer schemes (see [33] and references therein), tuned to a variety of different physical
implementations and physical effects, after it was demonstrated that perfect transfer as a concept was possible [29].
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APPENDIX A: THE MATHEMATICAL TASK OF IMPOSING A SPECTRUM AND EIGENVECTOR ON
A TRIDIAGONAL MATRIX

Problem 1. Given a real, normalised vector

N

n=1

such that mny # 0 and no two consecutive values N, and 1,41 are both zero, and a set of distinct real numbers
A = {1, find a real, symmetric, tridiagonal matriz Hy with eigenvalues A such that Hy |n) =nn) (n € A).

To our knowledge, the construction of tridiagonal matrices with a specific spectrum and a specific eigenvector has
not been studied, although the independent questions of inverse eigenvalue [43] and inverse eigenmode [42] problems
have been examined. As such, we are interested in categorising when solutions to Problem [I] exist, and how to find
them.

We start by making an observation about the necessary pattern of signs of the coupling strengths such that a
specified eigenvector can correspond to a particular eigenvalue in the ordered sequence. Recall [42] that if all the J,
are negative, the eigenvector with the n* largest eigenvalue has N — n sign changes in its amplitudes. In order to
ensure that a particular eigenvector |n) has the n'” largest eigenvalue, find a diagonal matrix D, with D? = 1 such
that D |n) has N —n sign changes. If matrix H; has coupling strengths J,, which are all negative, and an eigenvector
D |n) which has N —n sign changes, and thus has the n'" largest eigenvalue, the matrix DH; D has the same magnetic
fields, the coupling strengths are the same up to sign changes

sign(Jp,) = =Dy D1,

and |n) is an eigenvector. Moreover, since D is unitary, the transformation was isospectral, and |n) must have the nth
largest eigenvector.

Lemma 1. Specifying a spectrum and a target eigenvector is insufficient to yield a unique solution.

Proof. By uniqueness, we mean choice of the values {J2} — changing the signs of the J,, is a triviality which we want
to discount. The Hamiltonian

—J1 J1
Ji —Si—J2 S
Jo 0 —Js
—Jy J1+J =
—J1 J1

where Jo = —/45/J; has spectrum 0, +3, &5 and the O-eigenvector is |W) for two distinct values of J?:

17 + 3v/5 + /10245 — 206
T .

Ji =

Lemma 2. Problem[]] does not always have a solution.

Proof. Tt suffices to find a counterexample. To that end, fix N = 5 and |n) = |[Woqq) with a target spectrum of
{0,43,£5} (note that this example is of particular relevance to our studies of state synthesis). Requiring H; |n) =0
immediately restricts the structure to

0 J
Ji By —Ji
H, = 0 —Jy
~J, By Ju
Ji 0

We then fix 0 = > A, = Tv(H1) = B + By, i.e. By = —Bs. Next, Tr(H}) = 0 = 6By(J7 — J7). We take the two
cases of By = 0 and J? = JZ separately. If By = 0, then we can solve J? and J? simultaneously in

Tr(H7) =34 =4(J;+J7)

Tr(H}) =706 = 4(2J7 +2J} + J2J3)
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There are no non-negative solutions. Similarly, for JZ = JZ, one has to simultaneously solve
Tr(H7) =34 =2(Bj+4J3)
Tr(H}) =706 = 2((B2 +4J%)* —6J3)

which, again, has no solutions. O

APPENDIX B: ERROR ANALYSIS OF PERTURBATIVE METHOD

In Sec. [[Tl] we described a method for creating arbitrarily good solutions, at the cost of increasing state synthesis
time. We gave a reasonable, but unjustified, assessment of the accuracy of the scheme. In this Appendix, we give
a more rigorous argument. Recall that |n) is the target O-eigenvector, while [9actual) is the O-eigenvector that our
perturbed system actually has. We estimate F' = (n|7actual) @s an accuracy parameter. By construction, F' is real
since both |) and |7actual) are real. If U and U diagonalise H, and H respectively, then the calculation of F' is

equivalent to (m|UtU |m) where m is the index of the relevant eigenvector: U |m) = |n). However, U and U must be
very similar, so we choose an expansion

U'U = (1 +ieK)(1 —icK)™?,
which maintains unitarity and the limit U — U as ¢ — 0, where K is Hermitian [55]. Expanding for small ¢,
= (m| 1+ 2ieK — 26 K? 4+ O(®) |m) .

Since F' is real, and the diagonal of K is real, the diagonal of K must be 0, such that we are left with the second
order term, as required.

Having shown that the error term scales as €2 (m| K2 |m), the £ dependence is immediate, but the N dependence
is suppressed. Following [55], we can derive that (m|K?|m) = > |U,m|>*G? where G is a diagonal matrix satisfying

> Unml’Gn =€ ¥m € [N] (B1)

and e,, is the difference between the m!”* largest intended and actual eigenvalues as a fraction of e. Consider

Y (mlK*m) =) G,

m

which is NV times larger than the average error, and no smaller than the worst-case error. If |G) solves

(anmﬁ m) n|> 6)= L emm

(which must have a solution, even if V =" |Upnm|?* |m) (n| is singular), then the error estimate is simply (G|G).
Thus, if ¢ is the smallest non-zero singular value of V', we have

1 1
< — 2<—.
<G|G>_C2 max e, < T6¢

To demonstrate that the scaling is not pathological, we study the special case in which H,, has J,, =1 and B,, =0
for all n. This is particularly pertinent to the creation of a W state. We have that

(N+1)/2 m
V:m Z sin? (N+1) In) (m].

n,m=1

To find the eigenvalues, observe that for N > 5, the states

’N;1> > lny, > 2n—1)

n n
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span a 3-dimensional subspace in which the Hamiltonian may be represented as

0 4 0
-1 4 VN+1+V/N=3 N =3mod 4
4/ N+1
“\o yNZ3 VN FI
8 4/N=1 0
o | WN—-1T N-3 N+1 | N=1mod4
0 N+1 N+1

The remaining subspace squares to 1/4(N + 1). Thus, the smallest absolute eigenvalue is 1/2v/N + 1. Hence,
S>> G? ~ N, and the error dependence is O(¢2N) in the worst case, but one anticipates that in typical cases, the
dependence on N is much weaker.
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