
The proceedings version of this paper appears in CRYPTO 2016. This is a preliminary full version.

Backdoors in Pseudorandom Number
Generators: Possibility and Impossibility Results

Jean Paul Degabriele1, Kenneth G. Paterson1, Jacob C. N. Schuldt2,
Joanne Woodage1

1 Royal Holloway, University of London,
2 AIST, Tokyo

Abstract. Inspired by the Dual EC DBRG incident, Dodis et al. (Eu-
rocrypt 2015) initiated the formal study of backdoored PRGs, showing
that backdoored PRGs are equivalent to public key encryption schemes,
giving constructions for backdoored PRGs (BPRGs), and showing how
BPRGs can be “immunised” by careful post-processing of their outputs.
In this paper, we continue the foundational line of work initiated by
Dodis et al., providing both positive and negative results.
We first revisit the backdoored PRG setting of Dodis et al., showing that
PRGs can be more strongly backdoored than was previously envisaged.
Specifically, we give efficient constructions of BPRGs for which, given a
single generator output, Big Brother can recover the initial state and,
therefore, all outputs of the BPRG. Moreover, our constructions are
forward-secure in the traditional sense for a PRG, resolving an open
question of Dodis et al. in the negative.
We then turn to the question of the effectiveness of backdoors in robust
PRNGs with input (c.f. Dodis et al., ACM-CCS 2013): generators in
which the state can be regularly refreshed using an entropy source, and
in which, provided sufficient entropy has been made available since the
last refresh, the outputs will appear pseudorandom. The presence of a
refresh procedure might suggest that Big Brother could be defeated, since
he would not be able to predict the values of the PRNG state backwards
or forwards through the high-entropy refreshes. Unfortunately, we show
that this intuition is not correct: we are also able to construct robust
PRNGs with input that are backdoored in a backwards sense. Namely,
given a single output, Big Brother is able to rewind through a number
of refresh operations to earlier “phases”, and recover all the generator’s
outputs in those earlier phases.
Finally, and ending on a positive note, we give an impossibility result:
we provide a bound on the number of previous phases that Big Brother
can compromise as a function of the state-size of the generator: smaller
states provide more limited backdooring opportunities for Big Brother.

1 Introduction

Background: In the wake of the Snowden revelations, the cryptographic research
community has begun to realise that it faces a more powerful and insidious ad-
versary than it had previously envisaged: Big Brother, an adversary willing to

subvert cryptographic standards and implementations in order to gain an advan-
tage against users of cryptography. The Dual EC DRBG debacle, and subsequent
research showing the widespread use of this NIST-standardised pseudorandom
generator (PRG) and its security consequences [11], has highlighted that insert-
ing backdoors into randomness-generating components of systems is a profitable,
if high-risk, strategy for Big Brother.

The threat posed by the Big Brother adversary brings new research chal-
lenges, both foundational and applied. The study of subversion of cryptographic
systems — how to undetectably and securely subvert them, and how to defend
against subversion — is a central one. Current research efforts to understand
various forms of subversion include the study of Algorithm Substitution Attacks
(ASAs) [6,13,24,29,2] and that of backdooring of cryptosystems [11,14,8,3]. These
lines of research have a long and rich history through topics such as kleptogra-
phy [35] and subliminal channels [32]. In an ASA, the subversion is specific to
a specific implementation of a particular algorithm or scheme, whereas in back-
dooring, the backdoor resides in the specification of the scheme or primitive itself
and any implementation faithful to the specification will be equally vulnerable.
There is a balancing act at play with these two types of attack: while ASAs
are arguably easier to carry out, their impact is limited to a specific implemen-
tation, whereas the successful introduction of a backdoor into a cryptographic
scheme, albeit ostensibly harder to mount and subsequently conceal, can have
much wider impact.

The importance of randomness: Many cryptographic processes rely heavily on
good sources of randomness, for example, key generation, selection of IVs for en-
cryption schemes and random challenges in authentication protocols, and the se-
lection of Diffie-Hellman exponents. Indeed randomness failures of various kinds
have led to serious vulnerabilities in widely deployed cryptographic systems, with
a growing literature on such failures [19,10,1,26,34,28,23,21,7]. Furthermore it is
well established in the theory of cryptography that the security of most crypto-
graphic tasks relies crucially on the quality of that randomness [15].

Since true random bits are hard to generate without specialised hardware,
and such hardware has only recently started to become available on commodity
computing platforms,3 Pseudorandom Generators (PRGs) and Pseudorandom
Number Generators with input (“PRNGs with input” for short) are almost uni-
versally used in implementations. These generate pseudorandom bits instead
of truly random bits; PRNGs with input can also have their state regularly
refreshed with fresh entropy, though from a possibly biased source of random-
ness. Typically, a host operating system will make PRNGs with input available
to applications, with the entropy being gathered from a variety of events, e.g.
keyboard or disk timings, or timing of interrupts and other system events; pro-
gramming libraries typically also provide access to PRG functionality, though of
widely varying quality.

3 See for example https://en.wikipedia.org/wiki/RdRand for a description of Intel’s
“Bull Mountain” random number generator.

2

https://en.wikipedia.org/wiki/RdRand

Backdooring Randomness: Given the ubiquity of PRGs and PRNGs with input
in cryptographic implementations, they constitute the ideal target for maximis-
ing the spread and impact of backdoors. This was probably the rationale behind
the Dual EC DRBG [11] which is widely believed to have been backdoored by
the NSA. Despite this generator’s low-speed, known output biases, and known
capability to be backdoored (which was pointed out as early as 2007 by Shumow
and Ferguson [31]), it managed to be covertly deployed in a range of widely used
systems. Such systems continue to be discovered today, more than three years
after the original Snowden revelations relating to Dual EC DRBG and project
Bullrun.4 The Dual EC DRBG provides a particularly useful backdoor to Big
Brother: given a single output from the generator, its state can be recovered, and
all future outputs can be recovered (with moderate computational effort). Pro-
tocols like SSL/TLS directly expose PRG outputs in protocol messages, making
the Dual EC DRBG exploitable in practice [11].

Formal analysis of backdoored PRGs: The formal study of backdoored PRGs
(BPRGs) was initiated by Dodis et. al. [14], building on earlier work of Vazirani
and Vazirani [33]. Dodis et al. showed that BPRGs are equivalent to public-key
encryption (PKE) with pseudorandom ciphertexts (IND$-CPA-security), pro-
vided constructions using PKE schemes and KEMs, and analysed folklore im-
munisation techniques. Understanding the nature of backdoored primitives to-
gether with their capabilities and limitations is an important first step towards
finding solutions that will safeguard against backdooring attacks. For instance
the equivalence of BPRGs with public key encryption shown in [14] suggests
that a PRG based on purely symmetric techniques is less likely to contain a
backdoor, since we currently do not know how to build public key encryption
from one-way functions.

A basic question that was posed – and partly answered – in [14] is: to what
extent can a PRG be backdoored while at the same time being provably secure?
This question makes perfect sense in the context of subversion via backdooring,
where the backdoor resides in the specification of the PRG itself, and where the
PRG can be publicly assessed and its security evaluated. The Dual EC DRBG
has notable biases which directly rule out any possibility of it being provably
secure as a PRG. Nevertheless, in [14] it is noted that by using special encodings
of curve points as in [25,36,9], these biases can be eliminated and the Dual
EC DRBG can be turned into a provably forward-secure PRG under the DDH
assumption.

Yet the backdoor in the Dual EC DRBG, while relatively powerful and cer-
tainly completely undermining security in certain applications like SSL/TLS,
has its limitations. In particular, it does not allow Big Brother (who holds the

4 See for example http://www.realworldcrypto.com/rwc2016/program/

rwc16-shacham.pdf?attredirects=0&d=1 for the Dual EC DRBG being used
as a backdoor in Juniper networking equipment; see also http://www.theguardian.

com/world/2013/sep/05/nsa-gchq-encryption-codes-security for the original
reporting on project Bullrun.

3

http://www.realworldcrypto.com/rwc2016/program/rwc16-shacham.pdf?attredirects=0&d=1
http://www.realworldcrypto.com/rwc2016/program/rwc16-shacham.pdf?attredirects=0&d=1
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

backdoor key) to predict previous outputs from a given output but only future
ones. The random-seek BPRG construction of [14] provides a stronger type of
backdoor: given any single output, it allows Big Brother to recover any past
or future output with probability roughly 1

4 . But the random-seek BPRG con-
struction of [14] attains this stronger backdooring at the expense of no longer
being a forward-secure PRG (in the usual sense). Indeed, forward-security and
the random-seek backdoor property would intuitively seem to be opposing goals,
and it is then natural to ask whether this tradeoff is inherent, or whether strong
forms of backdooring of forward-secure PRGs are possible. If the limitation was
inherent, then a proof of forward-security for a PRG would serve to preclude
backdoors with the backward-seek feature, so a forward-secure PRG would be
automatically immunised, to some extent, against backdoors.

1.1 Our Contributions

In this work we advance understanding of backdoored generators in two distinct
directions.

Stronger backdooring of PRGs: We settle the above open question from [14]
in the negative by providing two different constructions of random-seek BPRGs
that are provably forward-secure. In fact we demonstrate something substantially
stronger:

– Firstly, both of our constructions allow Big Brother to succeed with probabil-
ity 1 (rather than the 1/4 attained for the random-seek BPRG construction
of [14]).

– Secondly, the backdooring is much stronger, in that for both of our BPRG
constructions, Big Brother is able to recover the initial state of the BPRG,
given only a single output value. This then enables all states and output
values to be reconstructed.

Our constructions require a number of cryptographic tools. Unsurprisingly,
given the connection between BPRGs and PKE with pseudorandom ciphertexts
that was shown in [14], they both make use of the latter primitive. To give a
flavour of what lies ahead, we remark that our simplest construction, shown in
Figure 7, uses such a PKE scheme to encrypt its state s, with the resulting
ciphertext C forming the generator’s output; s is also evolved using a one-way
function, to provide forward security. Clearly, Big Brother, with access to a
single output and the decryption key, can recover the state s. But we use a
trapdoor one-way function so that Big Brother can then “unwind” s back to its
starting value. For the security proof, we need to use a random oracle applied to
s to generate the encryption randomness, making our construction reminiscent
of the “Encrypt-with-hash” construction of [5], while for technical reasons, we
require the trapdoor one-way function to be lossy [27]. Our second construction
is in the standard model and combines, in novel ways, other primitives such as
re-randomizable PKE schemes.

4

Backdooring PRNGs with input: We then turn our attention to the study of
backdoored PRNGs with input (BPRNGs). This is a very natural extension to
the study of BPRGs conducted in [14] and continued here, particularly in view
of the widespread deployment of PRNGs with input in real systems.

The formal study of PRNGs with input (but without backdooring) com-
menced with Barak and Halevi’s work in [4], later extended in [16,18]. Various
security notions have been proposed in the literature for PRNGs with input,
namely resilience, forward security , backward security and robustness. Of these,
robustness is the strongest notion. It captures the ability of a generator to both
preserve security when its entropy inputs are influenced by an attacker and to re-
cover security after its state is compromised, via refreshing (provided sufficient
entropy becomes available to it). Robustness is generally accepted as the de
facto security target for any new PRNG design, though several widely-deployed
PRNGs fail to meet it (see, for example, [16,12]).

Given that we are in the backdooring setting for subversion, in which the full
specification of the cryptographic primitive targeted for backdooring is public,
any construction can be vetted for security. It is therefore logical to require any
BPRNG to be robust. (This is analogous to requiring a BPRG to be forward-
secure, or at least, a PRG in the traditional sense.) As such, a BPRNG cannot
just ignore its entropy inputs and revert to being a PRG. One might then hope
that, with additional high entropy inputs being used to refresh the generator
state, and with this entropy not being under the direct control of Big Brother
(since, otherwise, no security at all is possible), backdooring a PRNG with input
might be impossible. This would be a positive result in the quest to defeat
backdooring. Unfortunately, we show that this is not the case.

As a warm-up, we show how to adapt the robust PRNG of [16] to make
it backdoored. This requires only a simple trick (and some minor changes to
the processing of entropy): replace the PRG component of the generator with a
BPRG. Given a single output from the generator, this then allows Big Brother to
compute all outputs from the last refresh operation to the next refresh operation.
Yet the generator is still robust.

Much more challenging is to develop a robust PRNG with input in which
Big Brother can use his backdoor to “pass through” refresh operations when
computing generator outputs. We provide a construction which does just that,
see Figure 11. Our construction is based on the idea of interleaving outputs of a
(non-backdoored) PRNG with encryptions of snapshots of that PRNG’s state,
using an IND$-CPA secure encryption scheme to ensure pseudorandomness of
the outputs. By taking a snapshot of the state whenever it is refreshed and storing
a list of the previous k snapshots in the state (for a parameter k), the construction
enables Big Brother to recover, with some probability, old output values that
were computed as many as k refreshes previously. The actual construction is
considerably more complex than this sketch hints, since achieving robustness,
in the sense of [16], is challenging when the state has this additional structure.
We also sketch variants of this construction that trade state and output size for
strength of backdooring.

5

An impossibility result for BPRNGs: We close the paper on a more positive
note, providing an impossibility result showing that backdooring in a strong sense
cannot be achieved (whilst preserving robustness) without significantly enlarging
the state of the generator. More precisely, we show that it is not possible for Big
Brother to perform a state recovery attack in which he recovers more than some
number k of properly refreshed previous states from an output of the generator,
when k is large relative to the state-size of the BPRNG. A precise formalisation
of our result is contained in Theorem 5.

Note that the backdooring attack here requires more of Big Brother than
might be needed in practice, since he may be considered successful if he can
recover just one previous state, or a fraction of the previous BPRNG outputs.
Our construction shows that backdooring of this kind is certainly possible. Nor
does our result say anything about Big Brother’s capabilities (or lack thereof)
when it comes to recovering future states/outputs (after a generator has under-
gone further high-entropy refresh operations). It is an important open problem
to strengthen our impossibility results – and to improve our constructions – to
explore the limits of backdooring for PRNGs with input.

2 Preliminaries

2.1 Notation

The set of binary strings of length n is denoted {0, 1}n and ε denotes the empty
string. For any two binary strings x and y we write |x| to denote the size of x
and x‖y to denote their concatenation. For any set U we denote by u � U the
process of sampling an element uniformly at random from U and assigning it to
u. All logs are to base 2.

2.2 Entropy

We recall a number of standard definitions on entropy, statistical distance, and
(k, ε)-extractors in Appendix A.1.

Definition 1. An (k, ε)-extractor Ext : {0, 1}∗ × {0, 1}v → {0, 1}w is said
to be online-computable on inputs of length p if there exists a pair of effi-
cient algorithms iterate : {0, 1}p × {0, 1}p × {0, 1}v → {0, 1}p, and finalize :
{0, 1}p × {0, 1}v → {0, 1}w such that for all inputs Ī = (I1, . . . , Id) where each
Ij ∈ {0, 1}p, and d ≥ 2, then after setting y1 = I1, and yj = iterate(yj−1, Ij ; A)
j = 2, . . . , d, it holds that

Ext(Ī; A) = finalize(yd; A).

2.3 Cryptographic Primitives

In Appendix A.2, we recall a number of standard definitions for PKE schemes.
Throughout this work we require that PKE schemes be length-regular.

6

For the constructions that follow, we shall require an IND$-CPA-secure PKE
scheme; that is to say a PKE scheme having pseudorandom ciphertexts. We
define such schemes formally below. Concrete and efficient examples of such
schemes can be obtained by applying carefully constructed encoding schemes to
the group elements of ciphertexts in the ElGamal encryption scheme (in which
ciphertexts are of the form (gR,M · gRx) where g generates a group of prime
order p in which DDH is hard; (gx, x)← KGen with x� Zp; R� Zp; and M is
a message, encoded here as a group element); see for example [25,36,9].

Definition 2. A PKE scheme E = (KGen,Enc,Dec) is said to be
(t, q, δ)-IND$-CPA-secure if for all adversaries A running in time t and making

at most q oracle queries, it holds that Advind$-cpa
E (A) ≤ δ, where:

Advind$-cpa
E (A) =

∣∣∣Pr
[
(pk, sk)← KGen : A Enc(pk,·)(pk)⇒ 1

]
− Pr

[
(pk, sk)← KGen : A $(·)(pk)⇒ 1

] ∣∣∣
and $(·) is such that on input a message M it returns a random string of size
|Enc(pk,M)|.

It is straightforward to show that if E is (t, q, δ)-IND$-CPA-secure, then it is also
(t, q, 2δ)-IND-CPA-secure in the usual sense.

We shall also utilise PKEs which are statistically re-randomizable; again the
ElGamal scheme and its group-element-encoded variants have the required prop-
erty.

Definition 3. [20] A (t, q, δ, ν)-statistically re-randomizable encryption scheme
is a tuple of algorithms E = (KGen,Enc,Rand,Dec) where (KGen,Enc,Dec) is a
standard PKE scheme and Rand is an efficient randomised algorithm such that
for all (pk, sk)← KGen and for all M,R′0,

∆({Enc(pk,M ;R0) : R0 � Coins(Enc)},
{Rand(Enc(pk,M ;R′0);R1) : R1 � Coins(Rand) :}) ≤ ν.

That is, the distributions of an honestly generated ciphertext and a ciphertext
obtained by applying Rand to one generated with arbitrary randomness are sta-
tistically close. We write Rand(C0;R1, . . . , Rq) to denote the value of Cq where
Cj = Rand(Cj−1;Rj) for j = 1, . . . , q.

We now define encryption schemes which have the additional property of
being reverse re-randomizable. It is easy to see that ElGamal encryption and its
encoded variants has the required property.

Definition 4. A (t, q, δ, ν)-statistically reverse re-randomizable encryption
scheme E is a tuple of algorithms E = (KGen,Enc,Rand,Rand−1,Dec) such that:

– (KGen,Enc,Rand,Dec) is a (t, q, δ, ν) statistically re-randomizable encryption
scheme.

7

– Rand−1 is an efficient algorithm such that for all (pk, sk) ← KGen and for
all M ,R0,R1, it holds that, if C = Enc(pk,M ;R0), then:

Pr
[
Rand−1(Rand(C;R1);R1) = C

]
= 1.

Suppose Cq = Rand(C0;R1, . . . , Rq), so that Cj = Rand(Cj−1;Rj) for j =
1, . . . , q. Then, from the above, we know that Cj−1 = Rand−1(Cj ;Rj) for 1 ≤
j ≤ q; to denote C0, we write Rand−1(Cq;R1, . . . , Rq).

We recall the definitions of trapdoor one-way permutations, and lossy trap-
door permutations, in Appendix A.2.

2.4 Pseudorandom Generators

A pseudorandom generator (PRG) takes a small amount of true statistical ran-
domness as an input seed, and outputs arbitrary (polynomial) length bit-strings
which are pseudorandom. Following [14], we will equip PRGs with a parameter
generation algorithm, setup. This allows backdooring to be introduced into the
formalism.

Definition 5. A PRG is a triple of algorithms PRG = (setup, init, next), with
associated parameters (n, l) ∈ N2, defined as follows:

– setup : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ takes random coins as input and outputs
a pair of parameters (pp, bk), where pp denotes the public parameter for
the generator, and bk is the secret backdoor parameter. In a non-backdoored
PRG, we set bk =⊥.

– init : {0, 1}∗ × {0, 1}∗ → {0, 1}n takes pp and random coins as input, and
returns an initial state for the PRG, s0 ∈ {0, 1}n.

– next : {0, 1}∗×{0, 1}n → {0, 1}l×{0, 1}n takes pp and a state s ∈ {0, 1}n as
input, and outputs an output/state pair (r, s′)← next(pp, s) where r ∈ {0, 1}l
is the PRG’s output, and s′ ∈ {0, 1}n is the updated state.

Definition 6. Let PRG = (setup, init, next) be a PRG. Given an initial state
s0, we set (ri, si) ← next(pp, si−1) for i = 1, . . . , q. We write outq(next(pp, s0))
for the sequence of outputs r1, . . . , rq and stateq(next(pp, s0)) for the sequence of
states s1, . . . , sq produced by this process.

Definition 7 (PRG Security). Let PRG = (setup, init, next) be a PRG. Con-

sider the game PRG-DISTA ,q
PRG of Figure 1 in which the adversary receives either

q outputs from the PRG or q random strings of the appropriate size. We define
the PRG distinguishing advantage of A against PRG to be

Advdist
PRG(A , q) = 2|Pr

[
PRG-DISTA ,q

PRG⇒ true
]
− 1

2
|.

Definition 8. A PRG PRG = (setup, init, next) is said to be (t, q, δ)-secure if for
all adversaries A running in time at most t it holds that Advdist

PRG(A , q) ≤ δ.

8

Game PRG-DISTA ,q
PRG

(pp, bk) � setup

s0 � init(pp)

r01, . . . , r
0
q ← outq(next(pp, s0))

r11, . . . , r
1
q � ({0, 1}l)q

b� {0, 1}

b′ ← A (pp, rb1, . . . , r
b
q)

return (b = b′)

Game PRG-FWDA ,q
PRG

(pp, bk) � setup

s0 � init(pp)

r01, . . . , r
0
q ← outq(next(pp, s0))

r11, . . . , r
1
q � ({0, 1}l)q

s1, . . . , sq ← stateq(next(pp, s0))

b� {0, 1}

b′ ← A (pp, rb1, . . . , r
b
q, sq)

return (b = b′)

Fig. 1: The games for PRG-DISTA ,q
PRG and PRG-FWDA ,q

PRG.

Definition 9 (PRG Forward Security). Let PRG = (setup, init, next) be a

PRG. Consider the game PRG-FWDA ,q
PRG of Figure 1 in which the adversary

receives either q outputs from the PRG and the final state, or q random strings
of the appropriate size and the final state. We define the PRG forward-security
advantage of A against PRG to be

Advfwd
PRG(A , q) := 2|Pr

[
PRG-FWDA ,q

PRG⇒ true
]
− 1

2
|.

Definition 10. A PRG PRG is said to be (t, q, δ)-FWD-secure if for all adver-
saries A running in time at most t it holds that Advfwd

PRG(A , q) ≤ δ.

2.5 Backdoored Pseudorandom Generators

The first formal treatment of backdoored PRGs was that of Dodis et al. [14].
Intuitively, a backdoored cryptosystem is a scheme coupled with some secret
backdoor information. In the view of an adversary who does not know the back-
door information, the scheme fulfils its usual security definition. However an
adversary in possession of the backdoor information will gain some advantage
in breaking the security of the cryptosystem. The backdoor attacker is modelled
as an algorithm which we call B (for ‘Big Brother’), to distinguish it from an
attacker A whose goal is to break the usual security of the scheme without ac-
cess to the backdoor. Whilst the backdoor attacker B will be external in the
sense that it will only be able to observe public outputs and parameters, the
attack is also internalised as the backdoor algorithm is designed alongside, and
incorporated into, the scheme.

We define backdoored PRGs (BPRGs) in conjunction with different games

BPRNG-TYPEB,q

PRG
which capture specific backdooring goals, each game having

a corresponding advantage term. The three games considered in [14] are defined
in Figure 2.

9

Game BPRG-DISTB,q

PRG

(pp, bk) � setup

s0 � init(pp)

r01, . . . , r
0
q ← outq(next(pp, s0))

r11, . . . , r
1
q � ({0, 1}l)q

b� {0, 1}

b∗ ← B(pp, bk, r01, . . . , r
0
q)

return (b = b∗)

Game BPRG-NEXTB,q

PRG

(pp, bk) � setup

s0 � init(pp)

r01, . . . , r
0
q ← outq(next(pp, s0))

s1, . . . , sq ← stateq(next(pp, s0))

s∗q ← B(pp, bk, r01, . . . , r
0
q)

return (sq = s∗q)

Game BPRG-RSEEKB,q

PRG
(i, j)

(pp, bk) � setup

s0 � init(pp)

r01, . . . , r
0
q ← outq(next(pp, s0))

s1, . . . , sq ← stateq(next(pp, s0))

r∗j ← B(pp, bk, i, j, ri)

return (rj = r∗j)

Fig. 2: Security games for backdooring of PRGs.

Definition 11. A tuple of algorithms PRG = (setup, init, next,B) is defined to
be a (t, q, δ, (type, ε))-secure BPRG if:

– PRG = (setup, init, next) is a (t, q, δ)-secure PRG;
– Advtype

PRG
(B, q) ≥ ε.

Definition 12. Let PRG = (setup, init, next,B) be a BPRG. We define

– Advdist
PRG

(B, q) := 2|Pr
[
BPRG-DISTB,q

PRG
⇒ true

]
− 1

2 |,

– Advnext
PRG

(B, q) := Pr
[
BPRG-NEXTB,q

PRG
⇒ true

]
,

– Advrseek
PRG

(B, q) := min1≤i,j,≤q Pr
[
BPRG-RSEEKB,q

PRG
(i, j)⇒ true

]
.

In Figure 2, game BPRG-DISTB,q

PRG
challenges Big Brother to use the back-

door to break the security of the PRG in the most basic sense of distinguishing
real from random outputs. In game BPRG-NEXTB,q

PRG
, B aims to recover the

current state of the PRG given q consecutive outputs from the generator. This
is a far more powerful compromise since it then allows B to predict all of the gen-
erator’s future outputs. In the third game, BPRG-RSEEKB,q

PRG
(i, j), B is given

10

only the ith output (rather than q outputs) and index j, and tries to recover the
jth output (but not any state).

It is noted in [14] that an adversary B winning in game BPRG-NEXTB,q

PRG
represents a stronger form of backdooring than an adversary B winning in game
BPRG-DISTB,q

PRG
for the same parameters, whilst an adversary B winning in

game BPRG-RSEEKB,q

PRG
(i, j) may be more or less powerful than one for game

BPRG-NEXTB,q

PRG
depending on the circumstances. The paper [14] presents con-

structions of BPRGs that are backdoored in the BPRG-NEXTB,q

PRG
and

BPRG-RSEEKB,q

PRG
(i, j) senses, but does also note that their construction for a

scheme of the latter type is not forward-secure.
Both for their intrinsic interest, and because they will be needed in our later

constructions of backdoored PRNGs with input, we are interested in BPRGs
that are forward secure against normal adversaries. For a generic type of game
BPRNG-TYPEB,q

PRG
, these are formally defined as follows.

Definition 13. A tuple of algorithms PRG = (setup, init, next,B) is said to be
a (t, q, δ, (type, ε))-FWD-secure BPRG if:

– PRG = (setup, init, next) is a (t, q, δ)-FWD-secure PRG;
– Advtype

PRG
(B, q) ≥ ε.

2.6 Pseudorandom Number Generators with Input

Definition 14 (PRNG with input). A PRNG with input is a tuple of algo-
rithms PRNG = (setup, init, refresh, next) with associated parameters (n, l, p) ∈
N3, where:

– setup : {0, 1}∗ → {0, 1}∗ takes as input some random coins and returns a
public parameter pp.

– init : {0, 1}∗ × {0, 1}∗ → {0, 1}n takes the public parameter pp and some
random coins to return an initial state s0.

– refresh : {0, 1}∗×{0, 1}n×{0, 1}p → {0, 1}n takes as input the public param-
eter pp, the current state S, and a sample I from the entropy source, and
returns a new state s′.

– next : {0, 1}∗×{0, 1}n → {0, 1}n×{0, 1}l takes as input the public parameter
pp and the current state s, and returns a new state s′ together with an output
string r.

Definition 15 (Distribution Sampler). A distribution sampler D : {0, 1}∗ →
{0, 1}∗×{0, 1}p×R≥0×{0, 1}∗ is a probabilistic and possibly stateful algorithm
which takes its current state σ as input and returns an updated state σ′, a sample
I, an entropy estimate γ, and some leakage information z about I. The state σ
is initialised to the empty string.

A distribution sampler D is said to be valid up to qr samples, if for all
j ∈ {1, . . . , qr} it holds (with probability 1) that:

H∞ (Ij | I1, . . . , Ij−1, Ij+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γj
where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qr} and σ0 = ε.

11

Game ROBD,A
PRNG,γ∗

pp� setup

σ ← ε; c←∞
s� init(pp)

b� {0, 1}

b′ ← A Ref,Ror,Get,Set(pp)

return b′ = b

Ref

(σ, I, γ, z) � D(σ)

s← refresh(pp, s, I)

c← c+ γ

return (γ, z)

Ror

(s, r0)← next(pp, s)

r1 � {0, 1}l

if c < γ∗

c← 0

return r0

else return rb

Get

c← 0

return s

Set (s∗)

c← 0

s← s∗

Fig. 3: PRNG with input security game ROBD,A
PRNG,γ∗ .

2.7 Security for Pseudorandom Number Generators with Input

We now turn to discussing security definitions for PRNGs with input. We fol-
low [16], with some minor differences noted below.

Definition 16 (Security of PRNG with Input). With references to the secu-
rity game shown in Figure 3, a PRNG with input PRNG = (setup, init, refresh, next)
is said to be (t, qr, qn, qc, γ

∗, ε)-ROB-secure if, for any distribution sampler D
valid up to qr samples, and any adversary A running in time at most t, mak-
ing at most qr queries to Ref, qn queries to Ror and a total of qc queries to
Get and Set, the corresponding advantage in game ROBD,A

PRNG,γ∗ is bounded by
ε, where

Advrob
PRNG(A ,D) := 2|Pr

[
ROBD,A

PRNG,γ∗⇒ true
]
− 1

2
|.

Our definition here deviates from that in [16] in the following ways.

– We generalise the syntax so as to allow the state to be initialised according to
some arbitrary distribution rather than requiring it to be uniformly random.
In particular we allow this distribution to depend on pp. This facilitates our
backdooring definitions to follow.

– We have removed the Next oracle from the model, without any loss of
generality (as was shown in [12]).

One of the key insights of [16] is to decompose the somewhat complex notion
of robustness into the two simpler notions of PRE and REC security. We recall
these definitions below, generalised here to include the init algorithm.

Definition 17 (Preserving and Recovering Security). Consider the secu-
rity games described in Figure 4. The PRE security advantage of an adversary
A against a PRNG with input PRNG is defined to be

AdvprePRNG(A) := 2|Pr
[
PREA

PRNG⇒ true
]
− 1

2
|.

12

Game PREA
PRNG

b� {0, 1}
pp� setup

s0 � init(pp)

I[1 : d]← A (pp)

for i = 1 to d

si ← refresh(pp, si−1, I[i])

(s0, r0)← next(pp, sd)

s1 � init(pp); r1 � {0, 1}l

b′ ← A (pp, sb, rb)

return b′ = b

Game RECD,A ,qr
PRNG,γ∗

k ← 0; σ[0]← ε

b� {0, 1}
pp� setup

for i = 1 to qr

(σ[i], I[i],γ[i], z[i]) � D(σ[i− 1])

(s0, d)← A Sam(pp,γ, z)

for i = k + 1 to k + d

si ← refresh(pp, si−1, I[k + i])

(s0, r0)← next(pp, sd)

s1 � init(pp); r1 � {0, 1}l

b′ ← A (pp, I[k + d+ 1 : qr], sb, rb)

return b′ = b

Sam

k ← k + 1

return I[k]

Fig. 4: PRNG with input security games PREA
PRNG and RECD,A ,qr

PRNG,γ∗ .

The REC security advantage with respect to parameters qr, γ
∗ of an adver-

sary/sampler pair (A , D) against a PRNG with input PRNG is defined to be

AdvrecPRNG(A ,D) := 2|Pr
[
RECD,A ,qr

PRNG,γ∗⇒ true
]
− 1

2
|.

In the REC security game, it is required that the γ[i] values output by D and the

value d output by A satisfies
∑k+d
j=k+1 γ[j] ≥ γ∗.

Definition 18 (Preserving Security). A PRNG with input PRNG is said to
have (t, εpre)-PRE security if for all attackers A running in time t, it holds that
AdvprePRNG(A) ≤ εpre.

Definition 19 (Recovering Security). A PRNG with input PRNG is said to
have (t, qr, γ

∗, εrec)-REC security if for any attacker A and sampler D valid up
to qr samples and running in time t, it holds that AdvrecPRNG(A ,D) ≤ εrec.

Informally, preserving security concerns a generator’s ability to maintain se-
curity (in the sense of having pseudorandom state and output) when the adver-
sary completely controls the entropy source used to refresh the generator but
does not compromise its state. Meanwhile, recovering security captures the idea
that a generator whose state is set by the adversary should eventually get to a
secure state, and start producing pseudorandom outputs, once sufficient entropy
has been made available to it. The proof of Theorem 1 is given in Appendix A.3.

Theorem 1. Let PRNG be a PRNG with input. If PRNG has both (t, εpre)-PRE
security, and (t, qr, γ

∗, εrec)-REC security, then PRNG is ((t′, qr, qn, qc), γ
∗, ε)-

ROB secure where t ≈ t′ and ε = qn(εpre + εrec).

13

evolve(PRNG, pp, s, rp,D)

parse rp as (a1, b1, . . . , aρ, bρ)

S ← ();σ ← ε

for i = 1 to ρ

for j = 1 to ai

(r, s)← next(pp, s)

S ← S‖(r, s)
for k = 1 to bi

(σ, I, γ, z)← D(σ)

s← refresh(pp, s, I)

return S

Fig. 5: The evolve algorithm.

To simplify notation, we will make use of an algorithm, evolve, to generate
output values and update the internal state of a PRNG. It takes as input a PRNG
with input PRNG = (setup, init, next, refresh), public parameter pp, an initial state
s, a refresh pattern rp = (a1, b1, . . . , aρ, bρ), and a distribution sampler D . The
refresh pattern rp denotes a sequence of calls to next and refresh; for each i, ai
denotes the number of consecutive calls to next and bi denotes the subsequent
number of consecutive calls to refresh. More specifically, evolve proceeds as shown
in Figure 5.

The output of evolve is a sequence, (r1, s1, . . . , rqn , sqn), of PRNG output
and state pairs, where qn =

∑ρ
i=1 ai. Based on evolve, we define an additional

algorithm, out, which takes the same input, runs evolve, and returns only the
output values (r1, . . . , rqn).

3 Stronger Models and New Constructions for
Backdoored Pseudorandom Generators

In this section, we first present two new, strong backdooring security models for
PRGs. The stronger of the two implies all the backdooring notions in [14]. We
then give two new constructions of BPRGs which achieve our two backdooring
notions. In contrast to the strongest constructions in [14], all of our constructions
are forward-secure.

3.1 Backdoored PRG Security Models

In the first of our two new models, the BPRG is run with initial state s0 to
produce q outputs r1, . . . , rq. The Big Brother adversary B is then given a
particular output ri, and challenged to recover the initial state s0 of the BPRG.

14

Game BPRG-FIRSTB,q

PRG
(i)

(pp, bk) � setup

s0 � init(pp)

r1, . . . , rq ← outq(next(pp, s0))

s∗0 ← B(pp, bk, ri)

return (s0 = s∗0)

Game BPRG-OUTB,q

PRG
(i)

(pp, bk) � setup

s0 � init(pp)

r1, . . . , rq ← outq(next(pp, s0))

r∗1 , . . . , r
∗
q ← B(pp, bk, ri)

return ((r1, . . . rq) = (r∗1 , . . . , r
∗
q))

Fig. 6: Backdoored PRG security games BPRG-FIRST and BPRG-OUT.

In the second model, the BPRG is again run with initial state s0 to produce q
outputs, one of which is given to B. However B is now asked to reproduce the
remaining q − 1 unseen output values. We formalise these two models as games
BPRG-FIRST and BPRG-OUT in Figure 6.

Definition 20. Let PRG = (setup, init, next,B) be a BPRG. We define

– Advfirst
PRG

(B, q, i) := Pr
[
BPRG-FIRSTB,q

PRG
(i)⇒ true

]
, and

– Advout
PRG

(B, q, i) := Pr
[
BPRG-OUTB,q

PRG
(i)⇒ true

]

Discussion We observe that our first backdooring notion, as formalised in
BPRG-FIRSTB,q

PRG
and Advfirst

PRG
(B, q, i), is strictly stronger than the three notions

for BPRGs defined in [14] and discussed in Section 2.5: it is straightforward to see
that any (t, q, δ, (first, ε))-secure BPRG is also a (t, q, δ, (type, ε))-secure BPRG
for type ∈ {dist, state, rseek}.

Moreover, simple comparison of definitions shows that any (t, q, δ, (out, ε))-
secure BPRG is also a (t, q, δ, (type, ε))-secure BPRG for type ∈ {dist, rseek}.
However, a BPRG backdoored in the out sense need not be backdoored in the
state sense, since the latter concerns state prediction rather than output predic-
tion. (And indeed it is easy to construct separating examples for the out and
state backdooring notions.)

Since the initial state of a PRG determines all of its output, it is also clear
that any (t, q, δ, (first, ε))-secure BRPG is also a (t, q, δ, (out, ε))-secure BPRG.
However, the converse need not hold, and first backdooring is strictly stronger
than out backdooring. To see this, consider PRG, a (t, q, δ, (out, ε))-secure BPRG,

and define a modified BRPG PRG
′

in which the initial state s0 is augmented
to s0||d for d � {0, 1}n, but where d is not used in any computations and all
other algorithms of PRG are left unchanged. In particular, the output produced

by PRG
′

is identical to that of PRG. Then it is easy to see that PRG
′

is a
(t, q, δ, (out, ε))-secure BPRG, but that Advfirst

PRG
(B, q, i) ≤ 2−n, since B can do

no better than guessing the n extra bits of state d.

15

In most attack scenarios, and taking Big Brother’s perspective, the ability
of B to compute all unseen output (as in out) is as useful in practice as being
able to compute the initial state (as in first), since it is the output values of
the BPRG that will be consumed in applications. This makes the out notion a
natural and powerful target for constructions of BPRGs. That said, in the sequel
we will obtain constructions for the even stronger first setting.

A (t, q, δ, (rseek, ε))-secure BPRG is also a (t, q, δ, (out, εq−1))-secure BPRG,
implying an exponential loss in going from rseek backdooring to out backdooring.
This means that achieving either first or out backdooring with a high value of ε
is significantly more powerful than achieving rseek backdooring with the same ε.

3.2 Forward-secure BPRGs in the Random Oracle Model

We present our first construction for a forward-secure BPRG that is backdoored
in the first sense in Figure 7. This construction uses as ingredients an LTDP
family and an IND$-CPA-secure PKE scheme. Its security analysis is in the
Random Oracle Model (ROM). It achieves our strongest first notion with ε = 1.

The scheme is reminiscent of the “Encrypt-with-Hash” paradigm for con-
structing deterministic encryption schemes from [5]. At each stage, the generator
encrypts its own state s, with randomness derived from hashing s, to produce
the next output. The IND$-CPA-security of the PKE scheme ensures these out-
puts are pseudorandom. The state s is also transformed by applying a one-way
function F at each stage. This is necessary to provide forward security against
non-B adversaries. The function is trapdoored, enabling B to decrypt an out-
put to recover a state, then reverse the state update repeatedly to recover the
initial state, thereby realising first backdooring. For technical reasons that will
become apparent in the proof, we require the one-way function F to be a lossy
permutation. The proof of the following theorem is in Appendix B.1.

Theorem 2. Let E = (KGen,Enc,Dec) be a (t, q, δ)-IND$-CPA secure PKE
scheme. Let LTDP = (G0,G1,S,F,F

−1) be a family of (n, k, t, ε)-lossy trapdoor
permutations. Then PRG = (setup, init, next,B) with algorithms as shown in Fig-
ure 7 is a (t′, q, (2δ + 3ε + (q + 1)2−(k−1)), (first, 1))-FWD secure BPRG in the
ROM, where t′ ≈ t.

3.3 Standard Model, Forward-secure BPRGs from Reverse
Re-randomizable Encryption

Our second construction dispenses with the ROM and the use of lossy trapdoor
permutations, at the expense of requiring as a component an IND$-CPA-secure
reverse re-randomizable PKE scheme (see Definition 4). It is instantiable in the
standard model using a variant of the ElGamal encryption scheme. The scheme
is again backdoored in the first sense with ε = 1.

The scheme, shown in Figure 8, uses algorithm next′ from a normal (forward-
secure) PRG PRG′ to generate the next state s′ and a pseudorandom value t

16

setup

(pk, sk)← KGen

(PK, SK) � G1

pp← (pk,PK)

bk ← (sk, SK)

return (pp, bk)

init (pp)

(pk,PK)← pp

s0 � S(PK)

return (s0)

next (pp, s)

(pk,PK)← pp

r ← Enc(pk, s; RO(s))

s′ ← FPK(s)

return (r, s′)

B(bk, i, ri)

(sk, SK)← bk

s∗i−1 ← Dec(sk, ri)

s∗0 ← F
−(i−1)
SK (s∗i−1)

return (s∗0)

Fig. 7: Construction of a forward-secure BPRG (setup, init, next,B) from an
LTDP family LTDP = (G0,G1,S,F,F

−1) and an IND$-CPA-secure PKE scheme
E = (KGen,Enc,Dec).

using the current state s as a seed. The value t is then used to re-randomise a
ciphertext C that encrypts an initial state value s0, and the ‘old’ value C is used
as the generator’s output r. The re-randomisation at each step ensures that the
outputs collectively appear pseudorandom to a regular PRG adversary; the fact
that PRG′ is forward-secure ensures that the constructed BPRG is too.

Meanwhile, the use of PKE allows B (who knows the decryption key) to re-
cover s0 from any of the generator’s outputs, run the component generator PRG′

from its starting state s0, and recover all the values t used for re-randomisation at
each step; finally B can run the re-randomisation process backwards to recover
the initial state. The proof of the following theorem is in Appendix B.2.

Theorem 3. Let E = (Key,Enc,Rand,Rand−1,Dec) be a (t, q, δ, ν)-IND$-CPA
secure reverse re-randomizable encryption scheme, and suppose that PRG′ =
(setup′, init′, next′) is a (t, q, εfwd)-secure PRG. Then PRG = (setup, init, next,B)
as defined in Figure 8 is a (t′, q, 6δ+ 2εfwd + q(q+ 3)ν/2, (first, 1))-FWD secure
BPRG, where t′ ≈ t.

4 Backdooring PRNGs with Input

In this section, we address the second main theme in our paper: backdooring of
PRNGs with input. To begin with, we show a simple construction for a PRNG
with input that is both robust and subject to a limited form of backdooring: given
a single output, B can recover the state and all outputs back to the previous
refresh and up to the next refresh operations (see Section 4.1). We then move on
to provide our formal definition for backdoored PRNGs with input (BPRNGs)
in Section 4.2; this definition demands much more of B, asking him to compute
outputs beyond refresh operations, at the same time as asking that the BPRNG
remain robust. Finally, in Section 4.3, we give a construction for a BPRNG
meeting our backdooring notion for PRNGs with input, with various extensions
to this construction being described in Section 4.4.

17

setup

(pk, sk)← KGen

(pp′,⊥) � setup′

pp← (pk, pp′)

bk ← sk

return (pp, bk)

init (pp)

(pk, pp′)← pp

s0 � init′(pp′)

C0 � Encpk(s0)

S ← (s0, C0)

return S

next (pp, S)

(pk, pp′)← pp

(s, C)← S

(t, s′)← next′(pp′, s)

C′ ← Rand(C, t)

r ← C

S ← (s′, C′)

return (r, S)

B(sk, ri, i)

C∗i−1 ← ri

s∗0 ← Decsk(Ci−1)

(t∗1, . . . , t
∗
q)← outq(next′(pp′, s∗0))

for j = 1, . . . , i− 1

C∗j−1 ← Rand−1(C∗j , t
∗
j)

S∗ ← (s∗0, C
∗
0)

return (S∗)

Fig. 8: Construction of a forward-secure BPRG (setup, init, next,B) from
a (t, q, δ, ν)-reverse-re-randomizable IND$-CPA-secure PKE scheme E =
(KGen,Enc,Dec) and a forward-secure PRG PRG′ = (setup′, init′, next′).

4.1 A Simple Backdoored PRNG

Let PRNG = (setup, init, refresh, next) be a ROB-secure PRNG with input. By

considering the special case of Game ROBD,A
PRNG,γ∗ in which the adversary A

makes no Set or Ref calls, and one Get call at the conclusion of the game, it is
straightforward to see that PRG = (setup, init, next) must be a FWD-secure PRG.
This suggests that in order to backdoor PRNG, we might try to replace PRG with
a BPRG. As long as this implicit BPRG is running without any refreshes, this
should enable B to carry out backdooring.

To make this idea concrete, we present in Figure 9 a construction of a ROB-
secure PRNG with input from a PRG PRG. This scheme is closely based on the
PRNG with input from [16]. It utilises an online-computable extractor and a
FWD-secure PRG; our main modification is to ensure that repeated next calls are
processed via a repeated iteration of a FWD-secure PRG. A proof of robustness
for this PRNG with input is easily derived from that of the original construction:

Lemma 1. Let Ext : {0, 1}∗ × {0, 1}v → {0, 1}n be an online-computable
(γ∗, εext)-extractor. Let PRG = (setup, init, next) be a (t, q, εprg)-PRG such that
s0 � init(pp) is equivalent to s0 � {0, 1}n. Then PRNG = (setup, init, refresh, next)
as shown in Figure 9 is a ((t′, qr, qn, qc), γ

∗, qn(2εprg + q2
rεext + 2−n+1))-robust

PRNG with input, where t′ ≈ t.

We now simply substitute a FWD-secure BPRG (such as that presented
in Theorem 2) for PRG in this construction. Now, during the period between

18

setup

(pp′,⊥) � setup

A � {0, 1}v

pp← (pp′,A)

bk ←⊥
return (pp, bk)

init(pp)

s1 � {0, 1}n

s2 ← 0p

flgRfrsh← 0

s← (s1, s2, flgRfrsh)

return (s)

refresh(pp, s, I)

parse pp as (pp′,A)

parse s as (s1, s2, flgRfrsh)

s2 ← iterate(s2, I; A)

flgRfrsh← 1

s← (s1, s2, flgRfrsh)

return (s)

next(pp, s)

parse pp as (pp′,A)

parse s as (s1, s2, flgRfrsh)

if flgRfrsh = 1

U ← finalize(s2; A)

s1 ← U ⊕ s1
s2 ← 0p

(s1, r)← next(pp′; s1)

flgRfrsh← 0

s← (s1, s2, flgRfrsh)

return (s, r)

Fig. 9: Construction of a robust PRNG PRNG from a FWD-secure PRG PRG,
based on [16].

any pair of refresh calls in which the PRNG is producing output, we inherit
the backdooring advantage of the BPRG in the new construction. However, the
effectiveness of this backdoor is highly limited: as soon as refresh is called, the
state of the PRNG is refreshed with inputs, which, if of sufficiently high entropy,
will make the state information-theoretically unpredictable. Then B would need
to compromise more output in order to regain his backdooring advantage.

One implication of this construction is that it makes it clear that, when con-
sidering stronger forms of backdooring, we must turn our attention to subverting
refresh calls in some way.

4.2 Formal Definition for Backdoored PRNGs with Input

To make our backdooring models for PRNGs with input as strong as possible, we
wish to make minimal assumptions about Big Brother’s influence, whilst allowing
the non-backdoored adversary A , to whom the backdoored schemes must still
appear secure, maximum power to compromise the scheme. To this end, we will
model B as a passive observer who is able to capture just one PRNG output,
which he is then challenged to exploit. Simultaneously, we demand that the
scheme is still secure in the face of a ROB-adversary A , with all the capabilities
this allows. Notably, the latter condition also offers the benefit of allowing us to
explore the extent to which a guarantee of robustness may act as an immuniser
against backdooring.

In our models to follow, we do not allow B any degree of compromise over
the distribution sampler D . This is again to fit with our ethos of making mini-
mal assumptions on B’s capabilities. It strengthens the backdooring model by

19

Game BPRNG-STATEB
PRNG,D

(rp, i, j)

(pp, bk) � setup

s0 � init(pp)

(r1, s1, . . . , rqn , sqn)

← evolve(PRNG, pp, s0, rp,D)

s′j ← B(pp, bk, ri, i, j, rp)

return (s′j = sj)

Game BPRNG-OUTB
PRNG,D

(rp, i, j)

(pp, bk) � setup

s0 � init(pp)

(r0, . . . , rqn)← out(PRNG, pp, s0, rp,D)

r′j ← B(pp, bk, ri, i, j, rp)

return (r′j = rj)

Fig. 10: Backdooring security games BPRNG-STATEB
PRNG,D

and

BPRNG-OUTB
PRNG,D

for BPRNGs.

demanding that the backdoor be effective against all samplers D valid up to qr
samples, including in particular those not under the control of B. We also note
that, in the extreme case where B has complete knowledge of all the inputs used
in refresh calls, then B’s view of the evolution of the state is deterministic and
the PRNG is reduced to a FWD-secure PRG which is periodically reseeded with
correlated values. Thus this restriction on Big Brother’s power ensures a clear
separation between the results of Section 3 and those which follow.

Next consider a PRNG with input which produces its output via a sequence
of refresh and next calls. The evolution of the state, and subsequent production
of output, is determined not only by the number of such calls, but also by their
position in the sequence. To reflect this, each backdooring game below will take
as input the specific refresh pattern rp which was used to produce the challenge.
In line with this, and to reflect the fact that the refresh pattern may impact B’s
ability to subvert the scheme, the advantage of B in our formal definition will
be allowed to depend on the refresh pattern rp.

We present two new backdooring models for PRNGs with input in Figure 10.
In the first game, the PRNG is evolved according to the specified refresh pattern.
Big Brother is given an output ri, and challenged to recover state sj . In the
second game, Big Brother is again given output ri, but now we ask him to
recover a different output value rj . In both games, Big Brother is additionally
given the refresh pattern. Stronger notions can be achieved by considering games
in which Big Brother is not given the refresh pattern, but for simplicity, we will
consider the games shown in Figure 10. In Section 4.4 we will discuss how our
concrete construction of a BPRNG presented in Section 4.3 can be extended to
the stronger setting in which Big Brother is not given the used refresh pattern.
As with the corresponding PRG definitions in Section 3.1, a BPRNG backdoored
in the state sense is strictly stronger than one backdoored in the out sense.

Definition 21. A tuple of algorithms PRNG = (setup, init, next, refresh, B) is
said to be a (t, qr, qn, qc, γ

∗, ε, (type, δ))-robust BPRNG, where type ∈ {state, out},
if

20

– PRNG = (setup, init, refresh, next) is a (t, qr, qn, qc, γ
∗, ε)-robust PRNG with

input;
– For all refresh patterns rp = (a1, b1, . . . , aρ, bρ), where ai, bi, n are polyno-

mial in the security parameter, for all distribution samplers D , for all 1 ≤
i, j ≤

∑ρ
ν=1 aν , where i 6= j, it holds that Advtype

PRNG,D
(rp, i, j) ≥ δ(rp, i, j)

where

Advtype

PRNG,D
(rp, i, j) := Pr

[
BPRNG-TYPEB

PRNG,D
(rp, i, j)⇒ true

]
.

We note that by replacing the index j with a vector of indices (j1, . . . , jk),
we can immediately extend both of the above games to challenge Big Brother
to recover multiple outputs and states.

4.3 Backdoored PRNG Construction

In Figure 11, we present our construction of a BPRNG. The construction makes
use of an ordinary non-backdoored PRNG with input, PRNG, and is based on
the simple idea of interleaving outputs of PRNG with encryptions of snapshots of
the state of PRNG, using an IND$-CPA secure encryption scheme. By taking a
snapshot of the state whenever this is refreshed and storing a list of the previous k
snapshots, the construction will enable B to recover, with reasonable probability,
the previous output values that were computed up to k refreshes ago. Of course,
this means that the state of the final construction is large compared to that of
the PRNG with input used as a component in its construction.

More specifically, the construction maintains a list of ciphertexts, (C1, . . . , Ck),
encrypting k snapshots of the state of PRNG. A snapshot of the state is taken
in the next algorithm of our construction, whenever the previous operation was
a refresh (see line 6-9 of next). This ensures that if the state is successively
refreshed multiple times, only a single snapshot will be stored. To produce an
output value, the construction will use the next function of PRNG to compute
a seed r which will either be used to directly compute an output value r via
a pair of PRGs, or used to re-randomize (C1, . . . , Ck), which will then be used
as r. The combination of the IND$-CPA-security of the encryption scheme and
the re-randomization will ensure that the output value in the latter case will
remain pseudorandom to a regular PRNG adversary. Which of the two different
output values the construction will produce is decided based on the seed r (see
line 11-17 of next).

We prove robustness of the generator by going via preserving and recovering
security. To be able to achieve these notions, the ciphertexts (C1, . . . , Ck) are re-
randomized a second time in next to ensure that the overall state returned by next
appears independent of the output value r. Furthermore, to ensure recovering
security, in which the adversary is allowed to maliciously set the state, the con-
struction requires that the validity of ciphertexts can be verified. In particular,
we assume the used encryption scheme is equipped with an additional algorithm,
invalid, which given a public key pk and a ciphertext C, returns 1 if C is invalid
for pk, and 0 if it is valid. This is used to ensure that the state of the construction

21

always contains valid ciphertexts (see line 3-5 of next). Additionally, we require
the used encryption scheme to satisfy a stronger re-randomization property than
was introduced in Section 2: the re-randomisation of an adversarially chosen ci-
phertext should be indistinguishable from the encryption of any message. We
will formalize this property below.

For the Big Brother algorithm B in the construction to be successful, it is
required that the output value ri given to B corresponds to (C1, . . . , Ck), and
that the output value rj that B is required to recover corresponds to a value
computed directly from the then current state of PRNG. Since the type of the
produced output is decided from the output of PRNG and a PRG which are both
assumed to be good generators, this will happen with probability close to 1/4.
Furthermore, it is required that the number of refresh periods between rj and ri
is less than k. More precisely, for a refresh pattern rp = (a1, b1, . . . , aρ, bρ), the
number of refresh periods PRNG has undergone when ri and rj are produced,
are iref = maxσ[

∑σ
ν=1 aν < i] and jref = maxσ[

∑σ
ν=1 aν < j], respectively. If

iref − jref < k, the initial refreshed state used to compute rj will be encrypted
in Ciref−jref+1. Hence, all B has to do is to decrypt and iterate this state

jit = j −
∑jref
ν=1 aν times to obtain the seed used to compute rj .

The full construction, shown in Figure 11, is based on a (non-backdoored)
(n, l, p)-PRNG with input, PRNG = (setup, init, refresh, next), a pair of PRGs
PRG : {0, 1}l → {0, 1}2ku+1 and PRG′ : {0, 1}u → {0, 1}k×m, and a
re-randomizable encryption scheme E = (KGen,Enc,Rand,Dec, invalid) with mes-
sage space {0, 1}n, randomness space {0, 1}u, and ciphertext space {0, 1}m, and
produces a (k ×m+ n+ 1, k ×m, p)-PRNG with input.

Before proving the construction to be robust and backdoored, we formalize
the stronger re-randomization property mentioned above. Note that this prop-
erty is not comparable to the re-randomization definition for PKE given in Sec-
tion 2: that was a statistical notion concerning encryptions of the same message,
while, in contrast, the following is a computational notion regarding possibly
different messages.

Definition 22. An encryption scheme E = (KGen,Enc,Dec) with message space
{0, 1}n is said to be (t, δ)-strongly re-randomizable, if there exists a polynomial
time algorithm Rand such that

– For all (pk, sk)← KGen, M ∈ {0, 1}n, and c← Enc(pk,M), it holds that

Pr[Decsk(Rand(C)) = M] = 1

.
– For all adversaries A with running time t and for all messages M ∈ {0, 1}n,

it holds that AdvrandE (A) < δ, where

AdvrandE (A) =
∣∣∣Pr

[
(pk, sk)← KGen; b← {0, 1};C∗ ← A (pk);

C0 ← Rand(pk, C∗);C1 ← Enc(pk,M); b′ ← A (Cb) : b = b′
]
− 1/2

∣∣∣.
22

In the above, it is required that the output C∗ of A is a valid ciphertext
under pk.

It is relatively straightforward to see that ElGamal encryption satisfies the
above re-randomization property. Specifically, for a public key y = gx and a
ciphertext C = (C1, C2) = (gr,M · yr), a re-randomization C0 of C is obtained
by picking random r′ and computing C0 = (C1 ·gr′ , C2 ·yr′). However, under the
DDH assumption, the tuples (g, gr

′
, y, yr

′
) and (g, gr

′
, y, z) are indistinguishable,

where z is a random group element. Hence, re-randomization of C is indistin-
guishable from multiplying the components of C with random group elements,
which again makes C0 indistinguishable from two random group elements. Like-
wise, the encryption of any message M , C1 = (gr,M · yr), is indistinguishable
from two random group elements under the DDH assumption, which makes C0

and C1 indistinguishable.
The proof of the following theorem appears in Appendix C.1.

Theorem 4. Let PRG and PRG′ be εprg-secure and ε′prg-secure PRGs respec-
tively, and let PRNG be a (t, εpre)-PRE and (t, qr, γ

∗, εrec)-REC secure PRNG
with input. Suppose further that E is a (t, qind, εind)-IND$-CPA secure and
(t, εrand)-strongly re-randomizable encryption scheme. Then PRNG shown in Fig-
ure 11 is a (t′, qr, qn, qc, γ

∗, ε, (out, δ))-robust BPRNG, where t′ ≈ t,

ε = 2qn(8εind + 2εprg + 2ε′prg + 4kεrand + 3εpre + εrec)

and

δ(rp, i, j) =

{
(1/4− 2εprg − a(εpre + εrec)) if j ≤ i ∧ iref − jref + 1 ≤ k
0 otherwise

where rp = (a1, b1, . . . , aρ, bρ), a =
∑ρ
ν=1 aν , iref ← maxσ [

∑σ
ν=1 aν < i], and

jref ← maxσ [
∑σ
ν=1 aν < j].

4.4 Extensions and Modifications of our Main Construction

The above construction can be modified and extended to provide slightly differ-
ent properties. For example, an alternative to storing a snapshot of a refreshed
state by rotating the ciphertexts (C1, . . . , Ck) as done in line 9 of next, would
be to choose a random ciphertext to replace. More specifically, the output value
r of PRNG computed in line 7 could be stretched to produce a log k bit value
t, and ciphertext Ct would then be replaced with C0. Note, however, that B
would no longer be able to tell which ciphertext corresponds to which snapshot
of the state. This can be addressed if the used encryption scheme is additionally
assumed to be additively homomorphic, e.g. like ElGamal encryption, which,
using an appropriate group, also satisfies all of the other requirements of the
construction. In this case, the construction would be able to maintain an en-
crypted counter of the number of refresh periods, and, for each snapshot, store
an encrypted value corresponding to the number of refresh periods PRNG has

23

setup

1 : pp� setup

2 : (pk, sk) � KGen

3 : pp← (pp, pk)

4 : bk ← sk

5 : return (pp, bk)

init(pp)

1 : parse pp as (pp, pk)

2 : s� init(pp)

3 : C1 � Enc(pk, s)

4 : for i = 2 to k

5 : Ci � Enc(pk, 0n)

6 : φ← 0

7 : return (s, C1 . . . Ck, φ)

refresh(pp, S, I)

1 : parse pp as (pp, pk)

2 : parse S as (s, C1 . . . Ck, φ)

3 : s← refresh(pp, s, I)

4 : φ← 1

5 : return (s, C1 . . . Ck, φ)

next(pp, S)

1 : parse pp as (pp, pk)

2 : parse S as (s, C1 . . . Ck, φ)

3 : for i = 1 to k

4 : if invalid(pk, Ci)

5 : Ci ← Enc(pk, 0n; 0u)

6 : if φ = 1

7 : (s, r)← next(pp, s)

8 : C0 ← Enc(pk, s; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : (s, r)← next(pp, s)

11 : (b, r1, . . . , r2k)← PRG(r)

12 : if b = 0

13 : r ← PRG′(r1)

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

20 : φ← 0

21 : S ← (s, C1 . . . Ck, φ)

22 : return (S, r)

B(pp, bk, ri, i, j, rp)

1 : parse pp as (pp, pk)

2 : parse rp as

3 : (a1, b1, . . . , aρ, bρ)

4 : parse ri as (C1 . . . Ck)

5 : iref ← max
σ

[∑σ
ν=1 aν < i

]
6 : jref ← max

σ

[∑σ
ν=1 aν < j

]
7 : if j > i OR iref − jref ≥ k
8 : return ⊥
9 : s← Dec(bk, C(iref−jref+1))

10 : (s0, r)← next(s)

11 : jit ← j −
∑jref
ν=1 aν

12 : for z = 1 to jit

13 : (sz, rz)← next(pp, sz−1)

14 : (b, r′1, . . . , r
′
2k)← PRG(rjit)

15 : return PRG′(r′1)

Fig. 11: Construction of a robust BPRNG using as components a re-randomisable
PKE scheme E = (KGen, Enc, Dec, Rand, invalid), a PRNG with input PRNG =
(setup, init, refresh, next), and PRGs PRG and PRG′.

undergone before the snapshot was taken. If the ciphertexts containing these
values are concatenated with (C1, . . . , Ck) to produce the output value r, then
B obtains sufficient information to derive what state to use to recover a given
output value. This yields a construction with slightly different advantage func-
tion δ(rp, i, j) compared to the above construction; instead of a sharp drop to
0 when i and j are separated by k refresh periods, the advantage gradually de-
clines as the distance (in terms of the number of refresh periods) between i and
j increases.

The above construction can furthermore be modified to produce shorter out-
put values. Specifically, instead of setting r = (C1, . . . , Ck) in line 16 of next, a
random ciphertext Ct could be chosen as r, by stretching the output of PRG in
line 11 with an additional log k bits to produce t. This will reduce the output

24

length from km bits to m bits. However, a similar problem to the above occurs:
B will not be able to tell which snapshot Ct represents. Using a similar solution
to the above will increase the output length to 2m bits. This modification will
essentially reduce the backdooring advantage by a factor of 1/k compared to the
above construction.

Lastly, we note that the above construction assumes B receives as input
the refresh pattern rp. Again, by maintaining encrypted counters for both the
number of refresh periods and the number of produced output values for each
snapshot, we can obtain an algorithm B which does not require rp as input,
but at the cost of increasing the output size.

All of the above modifications can be shown to be secure using almost iden-
tical arguments to the existing security analysis for the above construction.

5 On the Inherent Resistance of PRNGs with Input to
Backdoors

In the previous section we have shown a construction, and variations thereof, for
a PRNG with input that is backdoored in a powerful sense: from a given output
Big Brother can recover prior state and output values past an arbitrary number of
refreshes. One can see however that in our constructions, Big Brother’s ability to
go past refreshes is limited by the size of the state and output of the constructed
generator. We now show that this limitation is inherent in any PRNG with input
that is robust.

In particular consider the sequence representing the evolution of a PRNG’s
state, and select a subsequence of states where any two states are separated
by consecutive refreshes that in combination have high entropy. Then we will
show that the number of such states that Big Brother can predict simultaneously
with non-negligible probability is limited by the size of the state. Thus if we limit
the state size of a robust PRNG, then Big Brother’s ability in exploiting any
potential backdoors that it may contain must decrease as more entropy becomes
available to the PRNG.

5.1 An Impossibility Result

We now turn to formalising the preceding claim. In order to simplify the analysis
to follow, we focus on a restricted class of distribution samplers. We say that a
distribution sampler is well-behaved if it satisfies the following properties:

– It is efficiently sampleable.
– For any i the entropy estimate γi of the random variable Ii is fixed, but may

vary across different values of i.
– For all i > 0 such that Pr(σi−1) > 0 it holds that:

H∞ (Ii | I1, . . . , Ii−1, Ii+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γi

where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qr} and σ0 = ε.

25

For any well-behaved distribution sampler D and any PRNG with input
PRNG, let us now consider the experiment of running setup and init to obtain
a public paramer pp and an initial state S0, and then applying a sequence of
queries q1, . . . , qi, . . . where each qi represents a query to refresh or next. To any
query qi we associate a tuple (Ri, Si, σi, Ii, γi) that represents the outcome of
that query. If qi is a refresh query these variables are set by the outputs of D
and refresh, while Ri is set to ε. If qi is a next query these variables are set to
the outputs of next while γi is set to zero, Ii is set to the empty string, and
σi ← σi−1. (Note that we deviate slightly here in the notation we use for the
output and state of a PRNG with input: we use Ri and Si to denote random
variables and we use ri and si respectively to denote values assumed by these
random variables.)

Now let the function f : N → N where f(0) = 0 identify a subsequence
(Rf(j), Sf(j), σf(j), If(j), γf(j)). We say that a subsequence is legitimate if for all

Sf(j) there exists f(j − 1) ≤ c ≤ d ≤ f(j) such that
∑d
c γi ≥ γ∗, and all queries

between c and d are refresh queries. For ease of notation we let ε denote an upper
bound on Advrob

PRNG(A ,D ′)+ 1
2r over all D ′ and all A in some class of adversaries

with restricted sources.
With this notation established, we can state the main theorem of this section

as follows:

Theorem 5. For any PRNG with input PRNG having associated parameters
(n, l, p), any well-behaved distribution sampler D , any sequence of queries, any
legitimate subsequence identified by the function f , any index j, and any k ∈ N,
it holds that:

H̃∞
(
S̄′f(j)|Rf(j)+k, pp

)
≥ j + 1

2
log

(
1

ε

)
−min(n, l).

The proof of the theorem can be found in Appendix D.
This theorem deserves some interpretation. On the left-hand-side, Rf(j)+k

refers to a particular output received by B and pp to the public parameters.
The theorem says that, conditioned on these, the vector of states S̄′f(j) still has
large average min-entropy, provided j is sufficiently large. This is because, on
the right-hand-side, min(n, l) is fixed for a given generator, ε is small (so log

(
1
ε

)
is large), and the first term scales linearly with j, thus attaining arbitrarily large
values as j increases. This means that it is impossible for B to compute or
guess the state vector with a good success probability. In short, no adversary,
irrespective of its computational resources or backdoor information, can recover
all the state information represented by the vector S̄′f(j). In addition the result
extends easily to the stronger setting where the adversary is given any sequence of
outputs following Rf(j), since these will depend only on Sf(j) and independently
sampled future I values. In that case, we simply replace the Rf(j)+k term by
any sequence of ouputs following Rf(j) and min(n, l) by n.

26

5.2 Discussion and Open Problems

Theorem 5 concerns state recovery attacks against robust PRNGs with input.
It seems plausible to us that the result can be strengthened to say something
about the impossibility of recovering old outputs, instead of old states. Likewise,
the theorem only concerns the impossibility of recovering old states from current
outputs, but nothing about the hardness of recovering future states or outputs
(after refreshing) from current outputs. Informally, the strength of the robust-
ness security notion seems to make such a result plausible, since it essentially
requires that a PRNG with input cannot ignore its entropy inputs when refresh-
ing. However, we have not yet proved a formal result in this direction. These
are problems that we intend to study in our immediate future work. They relate
closely to the kind of impossibility result that would be useful in demonstrating
the absence of the kind of effective backdooring that B might prefer to perform.

This result can also be seen as saying that a PRNG with input is, to some
extent, intrinsically immunised against backdooring attacks, since B cannot re-
cover all old states once sufficient entropy has been accumulated in the generator.
Here the immunisation is a direct consequence of the nature of the primitive.
By contrast, for PRGs, the results of [14] concerning immunisation of PRGs re-
quire intrusive changes to the PRG, essentially post-processing the generator’s
output with either a keyed primitive (a PRF) or a hash with relatively strong
security (a random oracle or a Universal Computational Extractor). Moreover,
our strengthening of the result of [14], via constructions of forward-secure PRGs
that are backdoored in the strong first sense, shows that PRGs cannot resist
backdooring in general. So some form of external immunisation is inevitable if
PRGs are to resist backdooring.

On the other hand, exploring immunisation for PRNGs with input would
still be useful, since, as our constructions in Section 4 show, it is possible to
achieve meaningful levels of backdooring for PRNGs with input. Naively, the
immunisation techniques of [14] should work equally well for PRNGs with input
as they do for PRGs, since a PRNG with input certainly contains within it an
implicit PRG, and if that simpler component is immunised, then so should be
the more complex PRNG primitive. Furthermore, it may be that PRNGs with
input, being informally harder to backdoor, could be immunised by applying
less intrusive or less idealised cryptographic techniques.

Acknowledgments

Degabriele and Paterson were supported by EPSRC grant EP/M013472/1 (UK
Quantum Technology Hub for Quantum Communications Technologies). Schuldt
was supported by JSPS KAKENHI Grant Number 15K16006. Woodage was
supported by the EPSRC and the UK government as part of the Centre for
Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/K035584/1)

27

References

1. Paolo Abeni, Luciano Bello, and Maximiliano Bertacchini. Exploiting DSA-1571:
How to break PFS in SSL with EDH, July 2008.

2. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient
signature schemes. Cryptology ePrint Archive, Report 2015/517, 2015. http:

//eprint.iacr.org/2015/517.
3. Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis Goubin, Tancrède

Lepoint, and Matthieu Rivain. Trap me if you can – million dollar curve. IACR
Cryptology ePrint Archive, 2015:1249, 2015.

4. Boaz Barak and Shai Halevi. A model and architecture for pseudo-random gen-
eration with applications to /dev/random. In Vijayalakshmi Atluri, Catherine
Meadows, and Ari Juels, editors, ACM CCS 05, pages 203–212, Alexandria, Vir-
ginia, USA, November 7–11, 2005. ACM Press.

5. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and effi-
ciently searchable encryption. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 535–552, Santa Barbara, CA, USA, August 19–23, 2007.
Springer, Heidelberg, Germany.

6. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

7. Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia
Heninger, Tanja Lange, and Nicko van Someren. Factoring RSA keys from certified
smart cards: Coppersmith in the wild. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 341–360, Bengalore,
India, December 1–5, 2013. Springer, Heidelberg, Germany.

8. Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing,
Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. How to manipu-
late curve standards: a white paper for the black hat. Cryptology ePrint Archive,
Report 2014/571, 2014. http://eprint.iacr.org/2014/571.

9. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Sadeghi
et al. [30], pages 967–980.

10. Daniel R. L. Brown. A weak-randomizer attack on RSA-OAEP with e = 3. Cryptol-
ogy ePrint Archive, Report 2005/189, 2005. http://eprint.iacr.org/2005/189.

11. Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green,
Tanja Lange, Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav
Shacham, and Matthew Fredrikson. On the practical exploitability of dual EC in
TLS implementations. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,
pages 319–335. USENIX Association, 2014.

12. Mario Cornejo and Sylvain Ruhault. Characterization of real-life PRNGs under
partial state corruption. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 14, pages 1004–1015, Scottsdale, AZ, USA, November 3–7, 2014. ACM
Press.

13. Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cau-
tious approach to security against mass surveillance. In Gregor Leander, editor,
FSE 2015, volume 9054 of LNCS, pages 579–598, Istanbul, Turkey, March 8–11,
2015. Springer, Heidelberg, Germany.

28

http://eprint.iacr.org/2015/517
http://eprint.iacr.org/2015/517
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2005/189

14. Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ris-
tenpart. A formal treatment of backdoored pseudorandom generators. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 101–126, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany.

15. Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the
(im)possibility of cryptography with imperfect randomness. In 45th FOCS, pages
196–205, Rome, Italy, October 17–19, 2004. IEEE Computer Society Press.

16. Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and
Daniel Wichs. Security analysis of pseudo-random number generators with input:
/dev/random is not robust. In Sadeghi et al. [30], pages 647–658.

17. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 523–
540, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

18. Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs. How
to eat your entropy and have it too - optimal recovery strategies for compromised
RNGs. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 37–54, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany.

19. Ian Goldberg and David Wagner. Randomness and the Netscape browser. Dr
Dobb’s Journal-Software Tools for the Professional Programmer, 21.1:66–71, 1996.

20. Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy
encryption: Constructions from general assumptions and efficient selective open-
ing chosen ciphertext security. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 70–88, Seoul, South Korea, De-
cember 4–8, 2011. Springer, Heidelberg, Germany.

21. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining
your ps and qs: Detection of widespread weak keys in network devices. In Tadayoshi
Kohno, editor, Proceedings of the 21th USENIX Security Symposium, Bellevue,
WA, USA, August 8-10, 2012, pages 205–220. USENIX Association, 2012.

22. Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of RSA-OAEP under
chosen-plaintext attack. Cryptology ePrint Archive, Report 2011/559, 2011. http:
//eprint.iacr.org/2011/559.

23. Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten
Kleinjung, and Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 626–642, Santa
Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

24. Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, vol-
ume 9057 of LNCS, pages 657–686, Sofia, Bulgaria, April 26–30, 2015. Springer,
Heidelberg, Germany.

25. Bodo Möller. A public-key encryption scheme with pseudo-random ciphertexts.
In Pierangela Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Refik Molva,
editors, ESORICS 2004, volume 3193 of LNCS, pages 335–351, Sophia Antipolis,
French Riviera, France, September 13–15, 2004. Springer, Heidelberg, Germany.

26. Markus Mueller. Debian OpenSSL predictable PRNG bruteforce SSH exploit, May
2008.

27. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–
196, Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

29

http://eprint.iacr.org/2011/559
http://eprint.iacr.org/2011/559

28. Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual
machine reset vulnerabilities and hedging deployed cryptography. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2010, San Diego,
California, USA, 28th February - 3rd March 2010. The Internet Society, 2010.

29. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. Cryptology ePrint Archive, Report
2015/695, 2015. http://eprint.iacr.org/2015/695.

30. Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors. ACM CCS 13,
Berlin, Germany, November 4–8, 2013. ACM Press.

31. Dan Shumow and Nils Ferguson. On the possibility of a back door in the NIST
SP800-90 Dual EC PRNG. Presentation at rump session of CRYPTO 2007, 2007.

32. Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In
David Chaum, editor, CRYPTO’83, pages 51–67, Santa Barbara, CA, USA, 1983.
Plenum Press, New York, USA.

33. Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random number gen-
erators, with applications to protocol design. In 24th Annual Symposium on Foun-
dations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages
23–30. IEEE Computer Society, 1983.

34. Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage.
When private keys are public: results from the 2008 Debian OpenSSL vulnerabil-
ity. In Anja Feldmann and Laurent Mathy, editors, Proceedings of the 9th ACM
SIGCOMM Internet Measurement Conference, IMC 2009, Chicago, Illinois, USA,
November 4-6, 2009, pages 15–27. ACM, 2009.

35. Adam Young and Moti Yung. Kleptography: Using cryptography against cryptog-
raphy. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
62–74, Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany.

36. Adam Young and Moti Yung. Relationships between Diffie-Hellman and “index
oracles”. In Carlo Blundo and Stelvio Cimato, editors, SCN 04, volume 3352 of
LNCS, pages 16–32, Amalfi, Italy, September 8–10, 2005. Springer, Heidelberg,
Germany.

A Preliminaries from Section 2

A.1 Entropy from Section 2.2

We recall some definitions and results on min-entropy that we will need.

Definition 23. Let X be a distribution over a set S. The min-entropy of X is
defined to be

H∞ (X) := − log(max
x

Pr[X = x]).

Definition 24. Let X, Z be distributions over a set S. The worst-case min-
entropy of X conditioned on Z is defined to be:

H∞ (X|Z) := − log(max
x,z

Pr[X = x |Z = z]).

The chain rule for worst-case min-entropy is given by:

H∞ (X,Z)−H∞ (Z) ≥ H∞ (X|Z) ≥ H∞ (X,Z)− log(|supp(Z)|).

30

http://eprint.iacr.org/2015/695

Definition 25. Let X and Z be distributions over a set S. The average-case
guessing probability of X conditioned on Z is defined to be

GP(X|Z) := Ez←Z

[
max
x

Pr[X = x |Z = z]
]
.

The average-case min-entropy of X conditioned Z is defined to be:

H̃∞ (X|Z) := − log(GP(X|Z)).

Lemma 2. [17] Let X, Y and Z be distributions over a set S. Then

H̃∞ (X|Y,Z) ≥ H̃∞ (X, Y |Z)− log (|supp(Y)|) ≥ H̃∞ (X|Z)− log (|supp(Y)|),

and

H̃∞ (X|Y) ≥ H∞ (X, Y)− log (|supp(Y)|) ≥ H∞ (X)− log (|supp(Y)|).

Definition 26. Let X be a distribution over a set S. The collision-entropy of X
is defined to be

H2(X) := − log (
∑
x∈S

Pr[X = x]
2
).

Definition 27. Let X, Z be distributions where X takes values in the set S. The
conditional collision probability of X given Z is defined to be:

CP(X|Z) := Ez←Z

[∑
x∈S

Pr[X = x |Z = z]
2

]
.

The conditional collision entropy of X conditioned on Z is defined to be:

H̃2(X|Z) := − log(CP(X|Z)).

Definition 28. Let X and Z be distributions over a set S. Then the statistical
distance of X and Z, denoted ∆(X,Z) is defined to be:

∆(X,Z) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Z = s] |.

Definition 29. A function Ext : {0, 1}u × {0, 1}v → {0, 1}w is said to be a
(k, ε)-extractor if for all distributions X over {0, 1}u such that H∞ (X) ≥ k, it
holds that

∆((Ext(X; A),A), (Uw,A)) ≤ ε

where A is uniform over {0, 1}v.

31

A.2 Cryptographic Primitives from Section 2.3

Public Key Encryption Schemes

Definition 30. A public-key encryption (PKE) scheme is a triple of PPT al-
gorithms E = (KGen,Enc,Dec) where:

– KGen takes as input some random coins and returns a public/secret key pair
(pk, sk) ∈ {0, 1}∗ × {0, 1}∗.

– Enc : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ takes as input a public key pk,
a message M , and coins R, to return a ciphertext C = Enc(pk,M ;R). For
ease of notation we will often ommit the coins R.

– Dec : {0, 1}∗×{0, 1}∗ → {0, 1}∗ takes as input a ciphertext C and secret key
sk, and returns Dec(sk, C) = M ′ ∈ {0, 1}∗ ∪ {⊥}.

A PKE scheme E = (KGen,Enc,Dec) is required to be (perfectly) correct, that is,
for all (pk, sk) � KGen and all messages M , it hold that:

Pr[Dec(sk, (Enc(pk,M)) = M] = 1.

We further require that encryption be length-regular, meaning that for all
(pk, sk) � KGen and all message pairs (M0,M1) such that |M0| = |M1|, it
hold that:

Pr[|Enc(pk,M0)| = |Enc(pk,M1)|] = 1.

Trapdoor Permutations, and Lossy Trapdoor Permutations

Definition 31. An (n, t, δ)-family of trapdoor one-way permutations is a tuple
of PPT algorithms TDP = (G,S,F,F−1) defined as follows:

– G : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ takes random coins as input, and outputs
a public/secret-key pair (PK,SK). Each PK implicitly defines a permutation
over the domain DPK.

– S takes PK and random coins as input, and outputs an element x ∈ DPK;
where x � S(PK) is identically distributed to x � DPK. We require that for
any PK output by G, it holds that 2n−1 ≤ |DPK| ≤ 2n.

– F : {0, 1}∗ × DPK → DPK takes as input PK and x ∈ DPK, and outputs
y ∈ DPK. We write this as y ← FPK(x).

– F−1 takes as input SK and y ∈ DPK and outputs z ∈ DPK such that FPK(z) =
y. We write this as z ← F−1

PK(y).
– For all adversaries A running in time t, it holds that

AdvinvTDP(A) := Pr
[
TDP-INVA

TDP⇒ true
]
≤ δ

where the game TDP-INVA
TDP is defined in Figure 12.

We next introduce lossy trapdoor permutations, following [27].

32

Game TDP-INVA
TDP

(PK,SK) � G()

x� S(PK)

y ← FPK(x)

z ← A (PK, y)

return (z = x)

Game LTDP-DISTA
LTDP

b� {0, 1}
(PK, SK) � Gb()

b′ ← A (PK)

return (b = b′)

Fig. 12: The games TDP-INVA
TDP and LTDP-DISTA

LTDP.

Definition 32. A family of (n, k, t, ε)-lossy trapdoor one-way permutations is a
tuple of PPT algorithms LTDP = (G0,G1,S,F,F

−1) with functionality as follows:

– G0 takes random coins as input and outputs (PK,⊥). Each PK implicitly
defines a function FPK over domain DPK whose image has size at most
2−k|DPK|.

– G1 takes random coins as input and outputs (PK,SK). Each PK implicitly
defines a permutation FPK over DPK, with inverse F−1

SK .
– S takes PK and random coins as input, and outputs an element x ∈ DPK;

where x � S(PK) is identically distributed to x � DPK. We require that for
any PK output by G0 or G1, it holds that 2n−1 ≤ |DPK| ≤ 2n.

– For all adversaries A running in time t it holds that

Advdist
LTDP(A) := 2|Pr

[
LTDP-DISTA

LTDP⇒ true
]
− 1

2
| ≤ ε

where game LTDP-DISTA
LTDP is defined in Figure 12.

As shown in [27], the indistinguishability of real and lossy keys immediately
implies that (G1,S,F,F

−1) is an (n, t, ε + 2−k)-family of trapdoor one-way per-
mutations.

Kiltz et al. show in [22] that RSA is a lossy trapdoor one-way permutation
under the Φ-hiding assumption.

A.3 Proof of Theorem 1

Proof. The result follows from a straightforward adaptation of the proof in [16]
to handle our changes to the formalism; for completeness, we provide a sketch
proof here.

Let (A , D) be an attacker/sampler pair in Game ROBD,A
PRNG,γ∗ against PRNG.

We shall construct a hybrid argument based upon the attacker’s Ror queries,
where we assume A makes qn such queries. We say that a Ror query is uncom-
promised if c ≥ γ∗ at the point of the query. We further divide uncompromised
Ror queries into those which are preserving and those which are recovering . We

33

say that a Ror query is preserving if c ≥ γ∗ throughout the period between the
previous Ror query and the current one. We say a Ror query is recovering if
c = 0 at some point between the previous Ror query and the current one. For a
recovering Ror query, we call the most recent query for which c ← 0 the most
recent entropy drain (mRED) query.

We define a series of hybrid games as follows. Let Game 0 be the real-or-
random ROB game as defined in Figure 3. We now define a series of modified
games, where for the first i Ror queries in Game i, if that query is uncompro-
mised, then the challenger returns r � {0, 1}l and sets the state of the PRNG
to s � init(pp), regardless of the challenge bit. We also define an intermediate
Game (i+ 1

2), defined such that if the (i+ 1)st Ror query is preserving then the
challenger acts as in Game i+ 1, whereas if the (i+ 1)st Ror query is recovering
the challenger acts as in Game i.

We claim that for i ∈ {0, . . . , qn− 1}, Game i is indistinguishable form Game
i+ 1/2, and that Game i+ 1/2 is indistinguishable from Game i+ 1.

Claim. If the PRNG PRNG has (t, εpre)-PRE security, then for any attacker/dis-
tinguisher pair (A ,D) running in time t′ ≈ t, it holds that

|Pr[Game i⇒ true]− Pr[Game i+ 1/2⇒ true] | ≤ εpre.

Claim. If the PRNG PRNG has (t, qr, γ
∗, εrec)-REC security, then for any at-

tacker/distinguisher pair (A ,D) running in time t′ ≈ t, it holds that

|Pr[Game i+ 1/2⇒ true]− Pr[Game i+ 1⇒ true] | ≤ εrec.

The proof of the first claim utilises the fact that an attacker A1 in Game
PREA

PRNG can simulate Game ROBD,A
PRNG,γ∗ for A using the code of the sampler

D , and substitute his challenge query in the place of any preserving Ror query.
Likewise, for the latter, an attacker/sampler pair (A2, D) in Game RECD,A ,qr

PRNG,γ∗

can simulate Game ROBD,A
PRNG,γ∗ for A using the Sam oracle and the unused

inputs received at the conclusion of the game. A2 can then substitute his chal-
lenge value in the place of any recovering Ror query by setting the initial state
in Game RECD,A ,qr

PRNG,γ∗ equal to the state immediately following the corresponding

mRED query in the simulated Game ROBD,A
PRNG,γ∗ .

Combining the above, we get

|Pr[Game 0⇒ true]− Pr[Game qn⇒ true] | ≤ qn(εpre + εrec).

Notice that in Game qn, the challenger responds to each uncompromised
Ror query by returning r � {0, 1}l and setting s � init(pp). Therefore the
game is independent of the challenge bit b, implying Pr[Game qn⇒ true] = 1

2 .

34

We conclude that

Advrob
PRNG(A ,D) = |Pr[Game 0⇒ true]− 1

2
|

= |Pr[Game 0⇒ true]− Pr[Game qn⇒ true] |
≤ qn(εpre + εrec)

as required.

B Proofs for Section 3

B.1 Proof of Theorem 2

Proof. The correctness of E immediately implies that Advfirst
PRG

(B, q, i) = 1. More
difficult is to prove the security of PRG = (setup, init, next) against a standard

PRG adversary A in the forward-security game PRG-FWDA ,q
PRG. This follows

from the following sequence of inequalities, with the corresponding security
games GA

0 , . . . ,GA
6 being shown in Figure 13 and Figure 14, (and where the

code in the procedure challenge in each game encapsulates how the security
game computes values that are provided to the adversary):

Advfwd
PRG(A , q) = 2|Pr

[
PRG-FWDA ,q

PRG⇒ true
]
− 1

2
|

= |Pr
[
GA

0 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (1)

= |Pr
[
GA

1 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (2)

= |Pr
[
GA

2 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (3)

= Advind$−cpa
E (A1) + |Pr

[
GA

3 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (4)

≤ δ + |Pr
[
GA

3 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (5)

≤ δ + Pr[bad1] + |Pr
[
GA

4 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (6)

= δ + Advinv
TDP(A2) + |Pr

[
GA

4 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (7)

≤ δ + ε+ 2−k + |Pr
[
GA

4 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (8)

≤ δ + ε+ 2−k + Pr[bad2 in G4]

+ |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (9)

≤ 2δ + 3ε+ 2−(k−1) + Pr[bad2 in G∗2]

+ |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (10)

≤ 2δ + 3ε+ 2−(k−1) + q · 2−(k−1)

+ |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| (11)

= 2δ + 3ε+ (q + 1)2−(k−1). (12)

35

We begin by observing that Game GA
0 is identical to the Game PRG-FWDA ,q

PRG

with challenge bit b = 1, and that GA
6 is identical to the Game PRG-FWDA ,q

PRG

with challenge bit b = 0, justifying (1).
Game GA

1 is identical to GA
0 except we change the way in which the random

oracle RO responds to queries on inputs Mj for j = 1, . . . , q. Since these inputs
are formally as yet undefined in both games (they are first defined in GA

3), this
is a purely syntactic change and the two games run identically. It follows that
Pr
[
GA

0 ⇒1
]

= Pr
[
GA

1 ⇒1
]
, justifying (2).

Game GA
2 is identical to GA

1 except we change the way in which the final
state sq is computed. In the former, sq ← FqPK(s0), where s0 � S(PK), whereas
in the latter, sq ← FPK(s0), where s0 � S(PK). Since applying a permutation to
a randomly sampled element from its domain is equivalent to randomly sampling
an element from its range, this implies that sq is identically distributed in the
two games, and so Pr

[
GA

1 ⇒1
]

= Pr
[
GA

2 ⇒1
]
, justifying (3).

At this point, we also define GA
2∗ , which lies perpendicular to GA

2 , although we
shall not utilise it until later in the proof when it is used to bound the probability
of a flag being set. GA

2∗ is identical to GA
2 , except now the challenger picks a lossy,

rather than injective, key PK′ � G0. Since both games are perfectly simulatable
by an adversary A3 in the LTDP distinguishing game, it follows that

|Pr
[
GA

2 ⇒1
]
− Pr

[
GA

2∗⇒1
]
| ≤ AdvdistLTDP(A3) ≤ ε. (13)

We now return to the previous line of argument. We define game GA
3 , which is

identical to GA
2 , except we replace the randomly sampled PRG outputs r1, . . . , rq

� ({0, 1}q)l, with pseudorandom encryptions of pre-images of s0. Now we define
rj ← Enc(pk,Mj ;Rj), where Mj ← F−q+jPK (s0) and Rj � Coins(E) for j =
1, . . . k. We also set a flag bad1, but this does not affect the outcome of the
game. These games are perfectly simulatable by an IND$-CPA adversary A1

against E (who, in particular, generates (PK,SK) � G0, and so can efficiently
compute the required preimages), implying that

|Pr
[
GA

3 ⇒1
]
− Pr

[
GA

2 ⇒1
]
| ≤ Advind$−cpa

E (A1) ≤ δ,

and justifying (4), (5).
Game GA

4 , is identical to GA
3 , except we change the way we sample the

randomness for the encryptions. Rather than choosing Rj � Coins(E) for j =
1, . . . k as in GA

3 , we now use aj ← RO(Mj), j = 1, . . . , k where Mj is the message
to be encrypted. These games run identically unless the flag bad1 is set, in which
case we have found distinct 1 ≤ k, l ≤ q such that Mk = Ml, leading to outputs
rk = rl in GA

4 , justifying (6). The occurrence of bad1 implies the existence of
an adversary A2 in game TDP-INVA2

TDP who can use this to invert the trapdoor

one-way permutation with probability 1. Therefore Pr[bad1] ≤ Advinv
TDP(A2) ≤

ε+ 2−k, implying (6), (7) and (8).
Now GA

5 is the same as GA
4 except we change the way in which the ran-

dom oracle RO responds to queries. Whereas in GA
4 , RO responded to each of

36

A ′s fresh queries with a random string (effectively ‘forgetting’ queries during
the computation stage), now RO ‘remembers’ these values, and will respond to
queries on target input Mj to return the corresponding value aj which was used
in the encryptions. Notice that these two games run identically unless the flag
bad2 is set, and the probability that this event occurs is identical in both games,
so the Fundamental Lemma of Game Playing justifies (9). We now bound the
probability Pr[bad2 is set in G4]. Collecting what we have so far, a straightfor-
ward reduction implies that

Pr[bad2 is set in G4] ≤ Pr[bad2 is set in G∗2] + δ + 2ε+ 2−k,

justifying (10). Now for each j = 1, . . . , q, the maximum probability that A
guesses F−q+jPK (s0) given PK′ and FPK′(s0) is

GP(F−q+jPK (s0)|PK′,FPK′(s0)) = 2− H̃∞(F−q+j
PK (s0)|PK′,FPK′ (s0))

≤ 2−(H̃∞(−F−q+j
PK (s0)|PK′)−log (|supp(FPK′ (s0)|))

≤ 2−(H̃∞(−F−q+j
PK (s0)|PK′)−(n−k))

≤ 2−((n−1)−(n−k))

≤ 2−(k−1).

The first equality follows from Definition 25. The second inequality fol-
lows from an application of Lemma 2. The third inequality follows from the
fact that, by the definition of an (n, k, t, ε)-family of lossy trapdoor permuta-
tions, FPK′(s0) can take at most 2−k|DPK′ | possible values where |DPK′ | ≤ 2n.
The fourth inequality follows since by definition PK (generated independently
from PK′) gives a permutation and s0 � S(PK) is equivalent to s0 � DPK

where |DPK| ≥ 2n−1, thus implying that H̃∞

(
F−q+jPK (s0)|PK′

)
≥ n − 1 for each

j = 1, . . . , q. Finally, from an application of the union bound, we conclude that
Pr[bad2 is set in G∗1] ≤ q · 2−(k−1), implying (11).

Finally, we define GA
6 , in which we reverse the change of variable and replace

sj = F−q+jPK (s0) with sj = FjPK(s0) for j = 1, . . . , q. By the same argument as
before, this does not affect the distribution of the two games, so Pr

[
GA

5 ⇒1
]

=

Pr
[
GA

6 ⇒1
]
, justifying (12). We conclude with the advantage term, and the

proof is complete.

37

Game G0,G1

setup

(pk, sk) � KGen

(PK, SK) � G1

pp← (pk,PK)

bk ← (sk, SK)

return (pp, bk)

init(pp)

(pk,PK)← pp

s0 � S(PK)

return (s0)

challenge(pp, s0)

(pk,PK)← pp

r1, . . . , rq � ({0, 1}q)l

sq ← FqPK(s0)

b′ ← A RO(pp, r1,

. . . , rq, sq)

return (b′ = 1)

Game G2, G∗2

setup

(pk, sk) � KGen

(PK, SK) � G1

pp← (pk,PK)

bk ← (sk, SK)

(PK′,⊥) � G0

pp← (pk,PK′)

bk ← (sk,⊥)

return (pp, bk)

init(pp)

(pk,PK)← pp

s0 � S(PK)

return (s0)

challenge(pp, s0)

(pk,PK)← pp

r1, . . . , rq � ({0, 1}q)l

sq ← FPK(s0)

b′ ← A RO(pp, r1,

. . . , rq, sq)

return (b′ = 1)

Game G3

setup

(pk, sk) � KGen

(PK, SK) � G1

pp← (pk,PK)

bk ← (sk, SK)

return (pp, bk)

init(pp)

(pk,PK)← pp

s0 � S(PK)

return (s0)

challenge(pp, s0)

(pk,PK)← pp

for j = 1, . . . , q

Mj ← F−q+jPK (s0)

if Mk = Ml ∧ k 6= l

bad1 ← true

Rj � Coins(E)

rj ← Enc(pk,Mj ;Rj)

sq ← FPK(s0)

b′ ← A RO(pp, r1,

. . . , rq, sq)

return (b′ = 1)

On Query RO(M) in G1,G2,G2∗ ,G3,

if M = Mj for j = 1, . . . , q

then bad2 ← true

return aj � Coins(E)

On Query RO(M) in G0

if M = Mj for j = 1, . . . , q

then bad2 ← true

return aj

else return aj � Coins(E)

Fig. 13: Games G0,G1,G2,G2∗ ,G3 for proof of Theorem 2.

38

Game G4,G5

setup

(pk, sk) � KGen

(PK, SK) � G1

pp← (pk,PK)

bk ← (sk, SK)

return (pp, bk)

init(pp)

(pk,PK)← pp

s0 � S(PK)

return (s0)

challenge(pp, s0)

(pk,PK)← pp

for j = 1, . . . , q

Mj ← F−q+jPK (s0)

if Mk = Ml ∧ k 6= l

bad1 ← true

aj ← RO(Mj)

rj ← Enc(pk,Mj ; aj)

sq ← FPK(s0)

b′ ← A RO(pp, r1, . . . , rq, sq)

return (b′ = 1)

Game G6

setup

(pk, sk) � KGen

(PK, SK) � G1

pp← (pk,PK)

bk ← (sk, SK)

return (pp, bk)

init(pp)

(pk,PK)← pp

s0 � S(PK)

return (s0)

challenge(pp, s0)

(pk,PK)← pp

for j = 1, . . . , q

Mj ← FjPK(s0)

if Mk = Ml ∧ k 6= l

bad1 ← true

aj ← RO(Mj)

rj ← Enc(pk,Mj ; aj)

sq ← FqPK(s0)

b′ ← A RO(pp, r1, . . . , rq, sq)

return (b′ = 1)

On Query RO(M) in G4

if M = Mj for j = 1, . . . , q

then bad2 ← true

return aj � Coins(E)

On Query RO(M) in G5,G6

if M = Mj for j = 1, . . . , q

then bad2 ← true

return aj

else return aj � Coins(E)

Fig. 14: Games G4,G5,G6 for proof of Theorem 2.

39

B.2 Proof of Theorem 3

Proof. The correctness and re-randomisation properties of E together imply that
Advfirst

PRG
(B, q, i) = 1. It remains to prove the FWD-security of PRG = (setup, init,

next) against a non-backdoored attacker A in Game PRG-FWDA ,q
PRG. This fol-

lows from the following sequence of inequalities, with the corresponding security
games GA

0 , . . . ,GA
8 being shown in Figures 15, 16, and 17:

Advfwd
PRG(A , q) = 2|Pr

[
PRG-FWDA ,q

PRG⇒ true
]
− 1

2
|

= |Pr
[
GA

0 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (14)

≤ 2 · Advind$−cpa
E (A1) + |Pr

[
GA

1 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (15)

≤ 2δ + |Pr
[
GA

1 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (16)

≤ 2δ + Advfwd
PRG′(A2) + |Pr

[
GA

2 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (17)

≤ 2δ + εfwd + |Pr
[
GA

2 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (18)

≤ 2δ + εfwd +∆(C0,Rand(C0; t′1, . . . , t
′
q))

+ |Pr
[
GA

3 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (19)

≤ 2δ + εfwd + qν + |Pr
[
GA

3 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (20)

≤ 2δ + εfwd + qν + Advind$−cpa
E (A3)

+ |Pr
[
GA

4 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (21)

≤ 2δ + εfwd + qν + δ + |Pr
[
GA

4 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (22)

≤ 3δ + εfwd + qν + Advind$−cpa
E (A4)

+ |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (23)

≤ 3δ + εfwd + qν + δ + |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (24)

≤ 4δ + εfwd + qν + q(q + 1)ν/2

+ |Pr
[
GA

6 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (25)

≤ 4δ + εfwd + q(q + 3)ν/2 + Advfwd
PRG′(A5)

+ |Pr
[
GA

7 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (26)

≤ 4δ + εfwd + q(q + 3)ν/2 + εfwd

+ |Pr
[
GA

7 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| (27)

≤ 4δ + 2εfwd + q(q + 3)ν/2 + 2 · Advind$−cpa
E (A6) (28)

≤ 4δ + 2εfwd + q(q + 3)ν/2 + 2δ (29)

= 6δ + 2εfwd + q(q + 3)ν/2. (30)

We begin by observing that game G0 is identical to PRG-FWDA ,q
PRG with

challenge bit b = 1, whilst G8 is identical to game PRG-FWDA ,q
PRG with challenge

bit b = 0, justifying (14).

40

Game G1 is identical to G0 except that rather than encrypt the initial state
s0 � init′(pp′) of the internal PRG PRG′ in the BPRG state S, we encrypt an
independently generated state M � init′(pp′). An adversary A1 in the IND-CPA
game against E can perfectly simulate both of these games (in particular, A1

generates the initial PRG state s0 � init′(pp′) himself, and so can compute the
required PRG output), justifying (15), (16).

Game G2 is identical to G1 except that we now use truly random strings, as
opposed to PRG outputs, to re-randomize C0. An adversary A2 in the forward-
security game against PRG′ with challenge bit b′ can perfectly simulate both
games. A2 is given pp′ and t∗1, . . . , t

∗
q , sq, where the t∗j are PRG outputs if b′ = 0

and random strings if b′ = 1. A2 generates M � init′(pp′), (pk, sk) � KGen,
and uses t∗1, . . . , t

∗
q , sq to compute the forward-security challenge for A , which

corresponds to G1 if b′ = 0, and G2 if b′ = 1, implying (17), (18).
Game G3 is identical to G2 but, rather than setting Cq ← Rand(C0; t′1, . . . , t

′
q),

we now set Cq ← C0 where C0 � Enc(pk,M). By the re-randomization property
of the encryption scheme, it must be the case that

∆(C0,Rand(C0; t′1)) ≤ ν.

Since applying a function cannot increase statistical distance, this implies that

∆(Rand(C0; t′1, · · · , t′j),Rand(C0; t′1, · · · , t′j+1)) ≤ ν

for j=1, . . . , q. Finally the triangle inequality implies that

∆(C0,Rand(C0, t
′
1, . . . , t

′
q)) ≤ qν,

justifying (19), (20).
Game G4 is identical to G3 except that we replace C0 � Enc(pk,M) with

C0 � {0, 1}l. Since both games are perfectly simulatable by an adversary A3 in
the IND$-CPA game against E this implies (21), (22).

Game G5 is identical to G4 except that we replace the random strings r1, . . . , rq
and C0 with pseudorandom encryptions of M . Since both games are again per-
fectly simulatable by an adversary A4 in the IND$-CPA game against E this
implies (23), (24).

Game G6 is identical to G5 except that we replace the ciphertexts Cj =
Enc(pk,M ; t′j) with Cj = Rand(C0; t′1, . . . , t

′
j) for j = 1, . . . , q. The same statis-

tical distance argument as above implies (25).
Game G7 is identical to G6 except that we replace the random strings t′j with

PRG outputs tj . Again there exists an adversary A5 in the forward-security
game against PRG′ that can simulate both games, implying (26), (27).

Game G8 is identical to G7, except that we replace C0 � Enc(pk,M) with
C0 � Enc(pk, s0). As before, an adversary A6 in the IND-CPA game against E
can perfectly simulate both games, implying (28), (29), and we conclude with
the advantage term of (30).

41

Game G0, G1

setup

(pk, sk) � KGen

(pp′,⊥) � setup′

pp← (pk, pp′)

bk ← sk

return (pp, bk)

init(pp)

s0 � init′(pp′)

M � init′(pp′)

C0 � Enc(pk, s0)

C0 � Enc(pk,M)

S0 ← (s0, C0)

return (S0)

challenge(pp, S0)

(s0, C0)← S0

t1, . . . , tq ← outq(next′(pp′, s0))

s0, . . . , sq ← stateq(next′(pp′, s0))

Cq ← Rand(C0; t1, . . . , tq)

Sq ← (sq, Cq)

r1, . . . , rq � ({0, 1}l)q

b′ ← A (pp, r1, . . . , rq, Sq)

return (b′ = 1)

Game G2, G3

setup

(pk, sk) � KGen

(pp′,⊥) � setup′

pp← (pk, pp′)

bk ← sk

return (pp, bk)

init(pp)

s0 � init′(pp′)

M � init′(pp′)

C0 � Enc(pk,M)

S0 ← (s0, C0)

return (S0)

challenge(pp, s0)

(s0, C0)← S0

t′1, . . . , t
′
q � ({0, 1}l

′
)q

s0, . . . , sq ← stateq(next′(pp′, s0))

Cq ← Rand(C0; t′1, . . . , t
′
q)

Cq ← C0

Sq ← (sq, Cq)

r1, . . . , rq � ({0, 1}l)q

b′ ← A (pp, r1, . . . , rq, Sq)

return (b′ = 1)

Fig. 15: Games G0, G1, G2 and G3 for proof of Theorem 3.

42

Game G4

setup

(pk, sk) � KGen

(pp′,⊥) � setup′

pp← (pk, pp′)

bk ← sk

return (pp, bk)

init(pp)

s0 � init′(pp′)

M � init′(pp′)

C0 � {0, 1}l

S0 ← (s0, C0)

return (S0)

challenge(pp, S0)

(s0, C0)← S0

t′1, . . . , t
′
q � ({0, 1}l

′
)q

s0, . . . , sq ← stateq(next′(pp′, s0))

Cq ← C0

Sq ← (sq, Cq)

r1, . . . , rq � ({0, 1}l)q

b′ ← A (pp, r1, . . . , rq, Sq)

return (b′ = 1)

Game G5, G6

setup

(pk, sk) � KGen

(pp′,⊥) � setup′

pp← (pk, pp′)

bk ← sk

return (pp, bk)

init(pp)

s0 � init′(pp′)

M � init′(pp′)

C0 � Enc(pk,M)

S0 ← (s0, C0,M)

S0 ← (s0, C0)

return (S0)

challenge(pp, S)

(s0, C0,M)← S0

(s0, C0)← S0

t′1, . . . , t
′
q � ({0, 1}l

′
)q

s0, . . . , sq ← stateq(next′(pp′, s0))

for j = 1, . . . , q

Cj ← Enc(pk,M ; t′j)

Cj ← Rand(C0; t′1, . . . , t
′
j)

rj ← Cj−1

Sq ← (sq, Cq)

b′ ← A (pp, r1, . . . , rq, Sq)

return (b′ = 1)

Fig. 16: Games G4, G5 and G6 for proof of Theorem 3.

43

Game G7, G8

setup

(pk, sk) � KGen

(pp′,⊥) � setup′

pp← (pk, pp′)

bk ← sk

return (pp, bk)

init(pp)

s0 � init′(pp′)

M � init′(pp′)

C0 � Enc(pk,M)

C0 � Enc(pk, s0)

S ← (s0, C0)

return (S0)

challenge(pp, s0)

(s0, C0)← S0

t1, . . . , tq ← outq(next′(pp′, s0))

s0, . . . , sq ← stateq(next′(pp′, s0))

for j = 1, . . . , q

Cj ← Rand(C0; t1, . . . , tj)

rj ← Cj−1

Sq ← (sq, Cq)

b′ ← A (pp, r1, . . . , rq, Sq)

return (b′ = 1)

Fig. 17: Games G7 and G8 for proof of Theorem 3.

C Proofs for Section 4

C.1 Proof of Theorem 4

Proof. We firstly prove that PRNG = (setup, init, refresh, next) is ROB-secure
against a non-backdoored attacker A . To this end, we show that PRNG has
both preserving and recovering security.

Lemma 3. The PRNG PRNG has (t, 2(5εind + 2εpre + εprg + ε′prg + 2kεrand))-
PRE-security.

Proof. Let A be an adversary against PRNG in PREA
PRNG

. We argue by a series
of game hops. The result follows from the following sequence of inequalities, with

44

the corresponding security games GA
1 , . . . ,GA

9 being shown in Figure 18, 19, and
20 (note that since we only modify init and next in the game hops, only the
relevant code for these algorithms is shown in the figures).

1

2
+

1

2
Advpre

PRNG
(A) = Pr

[
GA

0 ⇒1
]

(31)

≤ Pr
[
GA

1 ⇒1
]

+ 2εind (32)

≤ Pr
[
GA

2 ⇒1
]

+ 2εind + εpre (33)

≤ Pr
[
GA

3 ⇒1
]

+ 4εind + εpre (34)

≤ Pr
[
GA

4 ⇒1
]

+ 4εind + 2εpre (35)

≤ Pr
[
GA

5 ⇒1
]

+ 4εind + 2εpre + εprg (36)

≤ Pr
[
GA

6 ⇒1
]

+ 4εind + 2εpre + εprg + ε′prg (37)

≤ Pr
[
GA

7 ⇒1
]

+ 4εind + 2εpre + εprg + ε′prg + kεrand (38)

≤ Pr
[
GA

8 ⇒1
]

+ 4εind + 2εpre + εprg + ε′prg + 2kεrerand
(39)

≤ Pr
[
GA

9 ⇒1
]

+ 5εind + 2εpre + εprg + ε′prg + 2kεrerand
(40)

=
1

2
+ 5εind + 2εpre + εprg + ε′prg + 2kεrerand. (41)

We begin by observing that G0 is identical to PREA
PRNG, justifying (31).

We then define G1, which is identical to G0, except we modify init to replace
C1 � Enc(pk, s) where s� init(pp) with C1 � Enc(pk, 0n). The following claim
justifies (32).

Claim. |Pr
[
GA

1 ⇒1
]
− Pr

[
GA

0 ⇒1
]
| ≤ 2εind

Proof. An adversary A1 in the IND-CPA game against E can perfectly simulate
both games, by choosing s � init(pp), submitting s and 0n to his LR-oracle to
receive ciphertext C1, and setting S = (s, C1,Enc(pk, 0n), . . . ,Enc(pk, 0n), φ) for
φ = 0. Hence, the lemma follows.

Next we define G2, which is identical to G1 except we replace (s′, r) ←
next(pp, s) on line 7 of next with r � {0, 1}l, s′ � init(pp). The following claim
justifies (33).

Claim. |Pr
[
GA

2 ⇒1
]
− Pr

[
GA

1 ⇒1
]
| ≤ εpre

Proof. An adversary A2 in PREA
PRNG against the underlying PRNG PRNG with

challenge bit b̃ can perfectly simulate both games. A2 generates parameters,
setting pp = (pp, pk) where pp is his challenge parameter. A2 then sets S =
(s, C1, . . . , Ck, φ) where Ci = Enc(pk, 0n) for i = 1, . . . , k, φ = 0, and s represents
the initial (and unknown) s0 � init(pp) in A2’s PRE challenge. A outputs a
sequence of inputs, which A2 returns to its challenger, receiving back (s′, r)

45

which A2 inserts at line 7, and uses to simulate the remainder of the challenge.
At the end of the game, A2 outputs whatever bit A does. If b̃ = 0 and A2

receives (s′, r) ← next(pp, s) then this is a perfect run of G1, and if b̃ = 1 and
A2 receives r � {0, 1}l, s� init(pp) then this is a perfect run of G2. Hence, the
claim follows.

Next we define G3, which is identical to G2 except we replace C0 ← Enc(pk, s; r)
with C0 ← Enc(pk, 0n; r) on line 9 of next. By a similar argument to before, a
reduction to the IND-CPA security of E justifies the following claim, and thereby
(34).

Claim. |Pr
[
GA

3 ⇒1
]
− Pr

[
GA

2 ⇒1
]
| ≤ 2εind

Now we define G4, which is identical to G3 except we replace (s′, r) ←
next(pp, s) on line 11 of next, with r � {0, 1}l, s′ � init(pp). The following
claim justifies (35).

Claim. |Pr
[
GA

4 ⇒1
]
− Pr

[
GA

3 ⇒1
]
| ≤ εpre

Proof. This is again simulatable by an adversary A3 in PREA
PRNG against the

underlying PRNG PRNG with challenge bit b̃. A3 again generates parameters
and initial state as described in the previous reduction to PRE security. A3

ignores the inputs that A outputs, chooses r � {0, 1}l, sets C0 ← Enc(pk, 0n; r),
followed by Ck ← Ck−1; . . . ;C1 ← C0 (taking us up to line 9). For A3’s PRE
challenge, we view s � init(pp) (unknown to A3)) in line 7 as s0 � init(pp) in
the PRE challenge against the underlying PRNG PRNG. A3 returns the empty
string to his challenger, and receives back (s′, r), which A3 inserts at line 10,
before continuing to simulate the rest of the challenge. If b̃ = 0 and A3 receives
(s′, r)← next(pp, s) then this is a perfect run of G4, and if b̃ = 1 and A3 receives
r � {0, 1}l, s� init(pp) then this is a perfect run of G4. Hence, the claim follows.

G5 is identical to G4, except we replace the PRG output (b, r1, . . . , r2k) ←
PRG(r) in line 11 of next with truly random strings (b, r1, . . . , r2k) � {0, 1}2ku+1.
Viewing r � {0, 1}l on line 10 as the seed for the PRG PRG, a straightforward
reduction to PRG security justifies the following claim, and thereby (36).

Claim. |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

4 ⇒1
]
| ≤ εprg

G6 is identical to G5 except we replace the PRG output r ← PRG′(r1) on line
13 of next with r � {0, 1}k×m. An identical argument to that above justifies the
following claim and thereby (37).

Claim. |Pr
[
GA

6 ⇒1
]
− Pr

[
GA

5 ⇒1
]
| ≤ ε′prg

G7 is identical to G6 except we replace Ci ← Rand(Ci, rk+i) in line 19 of
next (where by construction each Ci is a re-randomised encryption of 0n, and
so a valid ciphertext), with C1 ← Enc(pk, s; rk+1), (where s � init(pp) in line
12), and Ci ← Enc(pk, 0n; rk+1) for i = 2, . . . , k. Since E is (t, δ)-strongly re-
randomisable, the following claim follows, which also justifies (38).

46

Claim. |Pr
[
GA

7 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| ≤ kεrand

We note that the structure of S is now identical to that of a fresh state output
by init(pp).
G8 is identical to G7, except we replace Rand(Ci, ri) on line 16 of next, (where

again each Ci is a randomised encryption of 0n, and so a valid ciphertext) with
Ci ← Enc(pk, 0n; ri). As before, the re-randomisation property of E justifies the
following claim, and thereby (39).

Claim. |Pr
[
GA

8 ⇒1
]
− Pr

[
GA

7 ⇒1
]
| ≤ kεrand

Finally, G9 is identical to G8, except we replace Ci ← Enc(pk, 0n; ri) on line
16 of next with Ci � {0, 1}m. A straightforward reduction to the IND$-CPA
security of E justifies the following claim and (40).

Claim. |Pr
[
GA

9 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| ≤ kεind

Notice that in G9, A receives r � {0, 1}k×m and S � init(pp), regardless of
the challenge bit b, implying Pr

[
GA

10⇒1
]

= 1
2 . This justifies (41), and concludes

the proof of robustness. ut

Lemma 4. The PRNG PRNG has (t, qr, γ
∗, 2(3εind + εrec + εpre + εprg + ε′prg +

2kεrand))-REC security.

Proof. Let (A , D) be an adversary/sampler pair in Game RECA ,D

PRNG
against

PRNG. We argue by a series of game hops. The result follows from the following
sequence of inequalities, with the corresponding security games GA

1 , . . . ,GA
8 be-

ing shown in Figure 21, 22, and 23 (note that since we only modify next in the
game hops, only the relevant code for this algorithm is shown in the figures).

1

2
+

1

2
Advrec

PRNG
(A) = Pr[G0⇒1] (42)

≤ Pr[G1⇒1] + εrec (43)

≤ Pr[G2⇒1] + 2εind + εrec (44)

≤ Pr[G3⇒1] + 2εind + εrec + εpre (45)

≤ Pr[G4⇒1] + 2εind + εrec + εpre + εprg (46)

≤ Pr[G5⇒1] + 2εind + εrec + εpre + εprg + ε′prg (47)

≤ Pr[G6⇒1] + 2εind + εrec + εpre + εprg + ε′prg + kεrand
(48)

≤ Pr[G7⇒1] + 2εind + εrec + εpre + εprg + ε′prg + 2kεrand
(49)

≤ Pr[G8⇒1] + 3εind + εrec + εpre + εprg + ε′prg + 2kεrand
(50)

=
1

2
+ 3εind + εrec + εpre + εprg + ε′prg + 2kεrand (51)

47

G0, G1

init(pp)

1 : parse pp as (pp, pk)

2 : s� init(pp)

3 : C1 � Enc(pk, s)

C1 � Enc(pk, 0n)

4 : for i = 2 to k

5 : Ci � Enc(pk, 0n)

6 : φ← 0

7 : return (s, C1 . . . Ck, φ)

G1, G2

next(pp, S)

. . .

6 : if φ = 1

7 : (s, r)← next(pp, s)

s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, s; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : (s, r)← next(pp, s)

11 : (b, r1, . . . , r2k)← PRG(r)

12 : if b = 0

13 : r ← PRG′(r1)

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

. . .

Fig. 18: Changes to the init and next algorithms in games G1, G2, and G3 in the
proof of Lemma 3

We begin by observing that G0 is identical to RECD,A ,qr
PRNG,γ∗

, justifying (42).

Next we define G1, which is identical to G0 except we replace (s′, r)← next(pp, s)
on line 7 of next with r � {0, 1}l, s′ � init(pp). The following claim justifies (43).

Claim. |Pr
[
GA

0 ⇒1
]
− Pr

[
GA

1 ⇒1
]
| ≤ εrec

Proof. We observe that an adversary A1 in game RECD,A ,qr
PRNG,γ∗ against the un-

derlying PRNG PRNG with challenge bit b̃ can perfectly simulate both games.
A1 generates parameters, setting pp = (pp, pk) where pp is his challenge pa-
rameter, and passes these to A . A1 simulates A ’s Sam oracle by querying
his own, and passing the inputs to A . Eventually, A outputs an initial state
S = (s, C1, . . . , Ck, φ) and index d. A1 passes s, d to his own challenger, receiving
back unused inputs I[k + d + 1 : qr] and (s′, r), which A1 inserts at line 7, and
uses to simulate the remainder of the challenge. At the end of the game, A1

outputs whatever bit A does. If b̃ = 0 and A1 receives (s′, r)← next(pp, s) then

48

G3, G4

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : (s, r)← next(pp, s)

s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k)← PRG(r)

12 : if b = 0

13 : r ← PRG′(r1)

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

. . .

G5, G6

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k) � {0, 1}2ku+1

12 : if b = 0

13 : r ← PRG′(r1)

r � {0, 1}k×m

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

. . .

Fig. 19: Changes to the next algorithm in games G3, G4, G4, and G6 in the proof
of Lemma 3

this is a perfect run of G0, and if b̃ = 1 and A1 receives r � {0, 1}l, s′ � init(pp)
then this is a perfect run of G1. Hence, the claim follows.

Next we define G2, which is identical to G1 except we replace C0 ← Enc(pk, s; r)
with C0 ← Enc(pk, 0n; r) on line 8 of next. By a similar argument to before, a
reduction to the IND-CPA security of E justifies the following claim, and thereby
(44).

Claim. |Pr
[
GA

1 ⇒1
]
− Pr

[
GA

2 ⇒1
]
| ≤ 2εind

Now we define G3, which is identical to G2 except we replace (s′, r) ←
next(pp, s) on line 10 of next, with r � {0, 1}l, s′ � init(pp). The following
claim justifies (45).

Claim. |Pr
[
GA

2 ⇒1
]
− Pr

[
GA

3 ⇒1
]
| ≤ εpre

Proof. This is again simulatable by an adversary A2 in PREA
PRNG against the

underlying PRNG PRNG. A2 generates parameters, setting pp = (pp, pk) where

49

G7, G8

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k) � {0, 1}2ku+1

12 : if b = 0

13 : r � {0, 1}k×m

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

Ci ← Enc(pk, 0n; ri)

17 : r ← (C1 . . . Ck)

18 : for i = 2 to k

19 : Ci ← Enc(pk, 0n; rk+i)

20 : C1 ← Enc(pk, s; rk+1)

. . .

G9

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k) � {0, 1}2ku+1

12 : if b = 0

13 : r � {0, 1}k×m

14 : else

15 : for i = 1 to k

16 : Ci � {0, 1}m

17 : r ← (C1 . . . Ck)

18 : for i = 2 to k

19 : Ci ← Enc(pk, 0n; rk+i)

20 : C1 ← Enc(pk, s; rk+1)

. . .

Fig. 20: Changes to the next algorithm in games G7, G8, and G9 in the proof of
Lemma 3

pp is his challenge parameter, passes these to A , and simulates the oracle Sam
using the code of the sampler D . Eventually, A outputs state (s, C1, . . . , Ck, φ)
and some value d. A2 discards s and d, and keeps the remaining values to simulate
the rest of the challenge. Again, for A2’s PRE challenge, we view s � init(pp)
(unknown to A2) in line 7 as s0 � init(pp) in the PRE challenge against the
underlying PRNG PRNG. As described in the proof of Lemma 4, A2 returns the
empty string to its challenger, and receives back (s′, r), which A2 inserts at line
10. A2 then simulates the remainder of the challenge, again using the code of
the sampler D to produce the unused inputs which are given to A at the end.

G4 is identical to G3 except we replace the PRG output (b, r1, . . . , r2k) ←
PRG(r) in line 11 of next with truly random strings (b, r1, . . . , r2k) � {0, 1}2ku+1.
Viewing r � {0, 1}l on line 10 of next as the seed for the PRG PRG, a straight-
forward reduction to PRG security justifies the following claim, and thereby
(46).

50

Claim. |Pr
[
GA

3 ⇒1
]
− Pr

[
GA

4 ⇒1
]
| ≤ εprg

G5 is identical to G4 except we replace the PRG output r ← PRG′(r1) on line
11 of next with r � {0, 1}k×m. An identical argument to that above justifies the
following claim, and thereby (47).

Claim. |Pr
[
GA

4 ⇒1
]
− Pr

[
GA

5 ⇒1
]
| ≤ ε′prg

G6 is identical to G5 except we replace Ci ← Rand(Ci, rk+i) in line 19, with
C1 ← Enc(pk, s; rk+i), (where s� init(pp) in line 10), and Ci ← Enc(pk, 0n; rk+1)
for i = 2, . . . , k. Note that by construction each Ci is a re-randomisation of a
valid ciphertext, and so is itself a valid ciphertext. This is due to lines 3, 4, 5 of
the original algorithm, in which the adversarially chosen ciphertexts are checked
for validity, and replaced if invalid. Thus the fact that E is (t, εrand)-strongly
re-randomisable justifies the following claim, and thereby (48).

Claim. |Pr
[
GA

5 ⇒1
]
− Pr

[
GA

6 ⇒1
]
| ≤ kεrand

We note that the structure of S is now identical to that of a fresh state output
by init(pp).
G7 is identical to G6, except we replace Rand(Ci, ri) on line 16 of next, (where,

by the same justification as above, each Ci is a valid ciphertext), with Ci ←
Enc(pk, 0n; ri). As before, the fact that E is (t, εrand)-strongly re-randomisable
justifies the following claim, and thereby (49).

Claim. |Pr
[
GA

6 ⇒1
]
− Pr

[
GA

7 ⇒1
]
| ≤ kεrand

Finally, G8 is identical to G7, except we replace Ci ← Enc(pk, 0n; ri) on line
16 with Ci � {0, 1}m. A straightforward reduction to the IND$-CPA security
of E justifies the following claim and thereby (50).

Claim. |Pr
[
GA

7 ⇒1
]
− Pr

[
GA

8 ⇒1
]
| ≤ εind

Notice that in G8, A receives r � {0, 1}k×m and S � init(pp), regardless of
the challenge bit b, implying Pr[G8⇒1] = 1

2 . This justifies (51), and concludes
the proof. ut

The robustness of PRNG follows from combining the above two lemmas with
Theorem 1. It remains to prove the success probability of the B algorithm in
recovering previous output values.

Lemma 5. For all refresh patterns rp = (a1, b1, . . . , aρ, bρ), where ai, bi, ρ are
polynomial in the security parameter, for all distribution samplers D , for all
1 ≤ i, j ≤

∑ρ
ν=1 aν , where i 6= j, it holds that Advbprng

type (PRNG, rp,D , i, j) ≥
δ(rp, i, j) where

δ(rp, i, j) =

{
(1/4− 2εprg − a(εpre + εrec)) if j ≤ i ∧ iref − jref + 1 ≤ k
0 otherwise

rp = (a1, b1, . . . , aρ, bρ), a =
∑ρ
ν=1 aν ,

iref ← max
σ

[
∑σ
ν=1 aν < i] and jref ← max

σ
[
∑σ
ν=1 aν < j] .

51

G0, G1

next(pp, S)

. . .

6 : if φ = 1

7 : (s, r)← next(pp, s)

s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, s; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : (s, r)← next(pp, s)

11 : (b, r1, . . . , r2k)← PRG(r)

12 : if b = 0

13 : r ← PRG′(r1)

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

. . .

G2, G3

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : (s, r)← next(pp, s)

s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k)← PRG(r)

12 : if b = 0

13 : r ← PRG′(r1)

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

. . .

Fig. 21: Changes to the next algorithm in games G0, G1, G3, and G3 in the proof
of Lemma 4

52

G4, G5

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k) � {0, 1}2ku+1

12 : if b = 0

13 : r ← PRG′(r1)

r � {0, 1}k×m

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

17 : r ← (C1 . . . Ck)

18 : for i = 1 to k

19 : Ci ← Rand(Ci, rk+i)

. . .

G6, G7

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k) � {0, 1}2ku+1

12 : if b = 0

13 : r � {0, 1}k×m

14 : else

15 : for i = 1 to k

16 : Ci ← Rand(Ci, ri)

Ci ← Enc(pk, 0n; ri)

17 : r ← (C1 . . . Ck)

18 : for i = 2 to k

19 : Ci ← Enc(pk, 0n; rk+i)

20 : C1 ← Enc(pk, s; rk+1)

. . .

Fig. 22: Changes to the next algorithm in games G4, G5, G6, and G7 in the proof
of Lemma 4

53

G8

next(pp, S)

. . .

6 : if φ = 1

7 : s� init(pp); r � {0, 1}l

8 : C0 ← Enc(pk, 0n; r)

9 : Ck ← Ck−1; . . . ;C1 ← C0

10 : s� init(pp); r � {0, 1}l

11 : (b, r1, . . . , r2k) � {0, 1}2ku+1

12 : if b = 0

13 : r � {0, 1}k×m

14 : else

15 : for i = 1 to k

16 : Ci � {0, 1}m

17 : r ← (C1 . . . Ck)

18 : for i = 2 to k

19 : Ci ← Enc(pk, 0n; rk+i)

20 : C1 ← Enc(pk, s; rk+1)

. . .

Fig. 23: Changes to the next algorithm in game G8 in the proof of Lemma 4

Proof. Firstly note that if B is run with input values j > i or iref − jref ≥ k,
the algorithm simply outputs ⊥, and will hence not recover the output value rj .

We let bi and bj denote the value of b computed in line 11 of the next algo-
rithm, for the i-th and j-th output value ri and rj , respectively. Note that for
B to successfully recover rj , we must have that bi = 1 (i.e. ri = (C1, . . . , Ck))
and bj = 0 (i.e. rj = PRG′(r1)). However, if this is the case, note that B will
output the correct value assuming the algorithm did not abort as a result of the
above tests.

Recall that PRG is assumed to be εprg-secure, and note that, by Theorem 1,
PRNG is (γ∗, qn · (εpre+ εrec))-robust, where qn is the number of Ror queries. It
is straightforward to see that a polynomial time adversary will have advantage
at most 2εprg + a · (εrec + εpre) in distinguishing the values bi and bj from truly
random values, where a is the total number of calls to next. Since bi = 1 and
bj = 0 happens with probability 1/4 if bi and bj were uniformly chosen, it follows
that Pr[bi = 1 ∧ bj = 0] ≥ 1/4− 2εprg − a(εpre + εrec).

Hence, the lemma follows. ut

54

D Proof of Theorem 5

The proof proceeds via a sequence of 4 claims.

Claim 1:

For all indices j ≥ 1, all initial state values s0 and all sequences ῑf(j−1) =
ι1, ι2, . . . , ιf(j−1) that may be output by D , it holds that:∑

z

CP(Sf(j)|Īf(j−1) = ῑf(j−1), S0 = s0, pp = z) Pr(pp = z) ≤ ε

Proof. For any well-behaved distribution sampler D and any such sequence of
run outcomes we can construct a source D ′(ε) = D(σj) and a corresponding
robustness adversary A . The adversary A first uses ι1, ι2, . . . , ιf(j−1), s0, and
the public parameter pp to compute sf(j−1). It then makes a set query to set
the initial state to sf(j−1), makes the sequence of queries qf(j−1)+1, . . . , qf(j)

and then repeatedly calls next until r bits are returned. It then repeats this
experiment with its own copy of D ′ together with pp and an initial state equal
to sf(j−1). It then checks whether the r bits returned by the oracle match the
ones that it computed. If they match it returns 0 otherwise it returns 1. It is
then easy to see that:

Advrob
PRNG(A ,D ′)

=
∑
z

CP(Rf(j), Rf(j)+1, ..|Īf(j−1) = ῑf(j−1), S0 = s0, pp = z) Pr(pp = z)− 1

2r

≥
∑
z

CP(Sf(j)|Īf(j−1) = ῑf(j−1), S0 = s0, pp = z) Pr(pp = z)− 1

2r

as required.

Claim 2:

For all indices j ≥ 1, all initial state values s0 and all sequences s̄f(j−1) =
sf(j−1) . . . , sf(1) it holds that:∑

z

CP(Sf(j)|S̄f(j−1) = s̄f(j−1), S0 = s0, pp = z) Pr(pp = z) ≤ ε

Proof. For any pp value z, any index j, and any initial state value s0, let χ[z, j, s0]
be the set of I value sequences ῑf(j−1) = ι1, ι2, . . . , ιf(j−1) that yield the sequence

55

of states s̄f(j−1) = sf(j−1) . . . , sf(1). We then have:∑
z

CP(Sf(j)|S̄f(j−1) = s̄f(j−1), S0 = s0, pp = z) Pr(pp = z) =∑
z

∑
ῑ∈χ[z,j,s0]

CP(Sf(j)|Īf(j−1) = ῑf(j−1), S0 = s0, pp = z)

×

(
Pr(Īf(j−1) = ῑf(j−1))∑

ῑ∈χ[z,j,s0] Pr(Īf(j−1) = ῑf(j−1))

)
Pr(pp = z) (52)

Now for all ῑ ∈ χ[z, j, s0] let

Qj,s0(ῑf(j−1), z) =
Pr(Īf(j−1) = ῑf(j−1))∑

ῑ∈χ[z,j,s0] Pr(Īf(j−1) = ῑf(j−1))

and Qj,s0(ῑf(j−1), z) = 0 otherwise. By Claim 1 we then have that:∑
z

CP(Sf(j)|Īf(j−1) = ῑf(j−1), S0 = s0, pp = z) Pr(pp = z) ≤ ε
∑
z

Pr(pp = z) .

Multiplying by Qj,s0(ῑf(j−1), z) on both sides, summing over ῑf(j−1), and switch-
ing the order of addition on both sides yields:∑

z

∑
ῑf(j−1)

CP(Sf(j)|Īf(j−1) = ῑf(j−1), S0 = s0, pp = z)Qj,s0(ῑf(j−1), z) Pr(pp = z)

≤ ε
∑
z

∑
ῑf(j−1)

Qj,s0(ῑf(j−1), z) Pr(pp = z) .

Now note that the LHS is equal to the LHS of Claim 2 (by equation (52)) and
the RHS reduces to ε since for all z the sum of Qj,s0(ῑf(j−1), z) over all ῑf(j−1)

is 1, thereby proving Claim 2.

Claim 3:

For all indices j ≥ 1 it holds that:

CP(S̄′f(j)|pp) ≤ εCP(S̄′f(j−1)|pp)

Proof. Let S̄′f(j−1) = S̄f(j−1), Sf(0) and s̄′f(j−1) represent any sequence sf(j−1) . . . ,

sf(1), sf(0). Then by Claim 2 for all indices j ≥ 1 and all sequences s̄′f(j−1) we
have:

∑
z

CP(Sf(j)|S̄′f(j−1) = s̄′f(j−1), pp = z) Pr(pp = z) ≤ ε
∑
z

Pr(pp = z)∑
z

∑
sf(j)

Pr(Sf(j) = sf(j)|S̄′f(j−1) = s̄′f(j−1), pp = z)2 Pr(pp = z) ≤ ε
∑
z

Pr(pp = z)

56

Now multiply both sides of the inequality by Pr(S̄′f(j−1) = s̄′f(j−1)|pp = z)2

and sum over s̄′f(j−1).

∑
z

∑
s̄′
f(j−1)

∑
sf(j)

Pr(Sf(j) = sf(j)|S̄′f(j−1) = s̄′f(j−1), pp = z)2

× Pr(S̄′f(j−1) = s̄′f(j−1)|pp = z)2 Pr(pp = z)

≤ ε
∑
z

∑
s̄′
f(j−1)

Pr(S̄′f(j−1) = s̄′f(j−1)|pp = z)2 Pr(pp = z)

Joining terms on the LHS yields:

∑
z

∑
s̄′
f(j)

Pr(S̄′f(j) = s̄′f(j)|pp = z)2 Pr(pp = z)

≤ ε
∑
z

∑
s̄′
f(j−1)

Pr(S̄′f(j−1) = s̄′f(j−1)|pp = z)2 Pr(pp = z)

which yields the desired result.

Claim 4:

CP(Sf(0)|pp) ≤ ε

Proof. Consider a robustness adversary A ′ that proceeds as follows. It runs the
algorithm init with fresh coins, to get an initial state and it then uses that state
together with the public parameter pp to run next recursively until it produces
r bits of output. It then makes sufficiently many calls to its next oracle until it
gets another r bits of output. If the r bits returned by the oracle match the ones
that it computed, it returns 0 otherwise it returns 1. Then its advantage is given
by:

Advrob
PRNG(A ′,D) = CP(Rf(0), Rf(0)+1, ..|pp)−

1

2r

≥ CP(Sf(0)|pp)−
1

2r

as required.

We can now come to the main result. Combining Claims 3 and 4 yields:

CP(S̄′f(j)|pp) ≤ εj+1 or equivalently H̃2

(
S̄′f(j)|pp

)
≥ (j + 1) log

(
1

ε

)
,

57

and using the fact that for any two jointly distributed random variables Y and
X it holds that H̃∞ (Y |X) ≥ 1

2 H̃2 (Y |X), we obtain:

H̃∞
(
S̄′f(j)|pp

)
≥ j + 1

2
log

(
1

ε

)
.

Now by applying the chain rule for min entropy on S̄′f(j) and any output value
Rf(j)+k where k ≥ 0 we get the desired result:

H̃∞
(
S̄′f(j)|Rf(j)+k, pp

)
≥ H̃∞

(
S̄′f(j)|pp

)
− Supp

(
Rf(j)+k

)
≥ j + 1

2
log

(
1

ε

)
−min(n, l) .

ut

58

	Backdoors in Pseudorandom Number Generators: Possibility and Impossibility Results

