arXiv:1608.08386v1 [cs.CR] 30 Aug 2016

Cryptographic Enforcement of Information
Flow Policies without Public Information via
Tree Partitions!

Jason Cramptd®*, Naomi Farlef, Gregory GutiffZ, Mark Jone®, and Bertram Poetteriky

aRoyal Holloway, University of London
b Ruhr University Bochum

Abstract. We may enforce an information flow policy by encrypting a poéd resource and ensuring that only users autho-
rized by the policy are able to decrypt the resource. In mdsemmes in the literature that use symmetric cryptograpii-p
itives, each user is assigned a single secret and derivegptiea keys using this secret and publicly available infation.
Recent work has challenged this approach by developingrsehiebased on a chain partition of the information flow policy
that do not require public information for key derivatiohettrade-off being that a user may need to be assigned maretiea
secret. In general, many different chain partitions existlie same policy and, until now, it was not known how to cota@n
appropriate one.

In this paper, we introduce the notion of a tree partitionwbfch chain partitions are a special case. We show how a tree
partition may be used to define a cryptographic enforcena@rae and prove that such schemes can be instantiated ia such
way as to preserve the strongest security properties knomeryptographic enforcement schemes. We establish a nuofibe
results linking the amount of secret material that needstdibtributed to users with a weighted acyclic graph derivech
the tree partition. These results enable us to developesitiailgorithms for deriving tree and chain partitions thatimize the
amount of secret material that needs to be distributed.
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1. Introduction

Access control is a fundamental security service in modemputing systems and seeks to restrict
the interactions between users of the system and the resoprovided by the system. Traditionally,
access control is policy-based, in the sense that a polidgfiaed by the resource owner(s) specifying
those interactions that are authorized. An attempt by atoseteract with a protected resource, typi-

This paper generalizes and extends our earlier re5ul&516n particular, we define a new form of enforcement schirae
subsumes chain-based|[15] and tree-based enforcementes fiE5]. We generalize results specific to these earli@msek in
order to support our more general framework.
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cally called araccess requesis evaluated by a trusted software componentptiliey decision poinfor
authorization decision functignto determine whether the request should be permitteditfifaaized) or
denied (otherwise). The use of a policy decision point isrelgtappropriate when we can assume the
policy will be enforced by the same organization that defihddowever, use of third-party storage, pri-
vacy policies controlling access to personal data, andadigghts management all give rise to scenarios
where this assumption does not hold.

Cryptographic access contrprovides an alternative way of regulating access to datectdbpnd has
attracted considerable attention in recent years. In #tigg, data objects are encrypted and appropriate
decryption keys are issued to authorized users. Resedrtleriyptographic access control began with
the seminal work of Akl and Taylor [1], and has seen a resurgarf interest in recent years. For in-
stance, there has been a considerable amount of reseavditiitute-based encryptionl|[8,24], which
is regularly used to support access control (see [28], famgte). Attribute-based encryption is based
on asymmetric cryptographic primitives, which means thgt aser is able to control read access to
data (by encrypting), while only authorized users may detciijowever, access control policies can also
be enforced using symmetric cryptographic primitivesdiofa cheaper alternative to their asymmetric
counterparts). Typically, in this scenario, a specific ustte data owner — encrypts all data objects be-
fore transmitting them to a storage provider that is onlgtied to store data correctly. Users are able to
retrieve data objects from the storage provider (in eneyorm) and only authorized users should be
able to decrypt them.

In the symmetric setting, the focus of research has been fancérg information flow policiesl 7],
not least because many access control requirements maticudagaed as information flow policies. An
information flow policy is defined by a partially ordered sésecurity labels and a function mapping
each user and data object to a security label. A user is deélaioto read any data object associated with
a security label that is less than or equal to that of the user.

Generally, it is undesirable to explicitly provide a usethnall the keys she requires to decrypt pro-
tected objects. Instead, a user is given a small number odts€fcom which she is able to derive all keys
requirecﬂ Hence, a common feature of cryptographic enforcement seséon information flow policies
is the derivation of decryption keys (since possessioneftittryption key for label implies authoriza-
tion for the decryption key for any labél less tharY). Informally, each security label is associated with
a secret (which is issued to every user assigned to thatitselalnel) from which decryption keys for all
subordinate security labels may be derived. The scheme Is@pablish additional information in order
to support key derivation.

Therefore, the challenge is to compute efficiently the ¢e@ed decryption keys associated with each
security label, subject to constraints on the size of releparameters. Thus a cryptographic enforcement
scheme may be characterized by(i) the number of secretsusaehis given, (ii) the total number of
secrets issued to users, (iii) the amount of auxiliary (jodlmformation required for key derivation, and
(iv) the computational effort required for key derivation.

Many schemes in the literature are space-efficient (on tlee sisle) by providing each user with
a single secret (see, for example, [2]), the trade-off béiray the amount of public information and
derivation time may be substantial. Moreover, the publforimation must either be transmitted to each

We could, of course, simply view a set of secrets as a singiesand consider the amount of storage required by that
secret. However, it is more convenient for the analysig latéhe paper to consider a set of secrets and the numberroéets
in that set.



user or made available on some publicly accessible semtrpossibilities giving rise to concerns either
about costs of transmission and local storage, or avatlabihd authenticity of the information.

Crampton, Daud and Martin [14] introduced the concept dhan-basedryptographic enforcement
scheme, which requires no public information but may rexjugers to store more than one secret. Subse-
quent work has established that secure instantiationsaifdiased schemes exist|[20,21]. Chain-based
schemes are based on a decomposition of the poset of selalgtg into disjoint chains (that are, in
some appropriate sense, compatible with the poset). lafibynthe secrets associated with the labels in
each chain may be derived in a top-down manner and each ussued with a number of secrets, at
most one from each chain. Thus the number of secrets reduradiser is no greater than the number of
chains in the decomposition, which is significantly betgemerally, than the naive solution of supplying
each user with every secret for which she is authorized.

The motivation for the work in this paper can be summarizetivim observations. First, there are, in
general, many different ways to instantiate a chain-basbdrse for a given information flow policy,
each instantiation being defined by a particular chain fpamtdf the partially ordered set used to specify
the policy. The number of secrets and the amount of compuatagquired to derive decryption keys
in a given instantiation crucially depends on the chainifiant chosen. However, existing work in the
literature assumes that the chain partition is given as gfatthe input to the algorithm that outputs
the secrets and decryption keys. One of the questions wessl@in Sectiohl5), therefore, is how to
compute the “best” chain partition (with respect to somdadlé metric) with which to instantiate a
chain-based scheme. Our second observation is that easftystadbel has at most one parent in the chain
decomposition. The question we address (in Setlion 3) ishehé is possible to generalize chain-based
schemes to tree-based schemes, given that each elemengénadsb has at most one parent.

Ouir first set of contributions is associated with the noveloept of atree partitionof an information
flow policy, from which we define the notion offarest-basedcryptographic enforcement scheme for
information flow policies. We prove results establishingvitbe total number of secrets to be issued to
users varies with the structure of the forest and demoedtnat an instantiation of our scheme retains the
security property of strong key indistinguishability imtluced by Freire, Paterson and Poettering [21].
We design and analyze an efficient algorithm for computingradt that minimizes the total number
of issued secrets. This work generalizes our previous workeae-based enforcement schemes [16]. In
addition, the more general framework enables us to simfiifytechniques and formal exposition.

Our second set of contributions is based on specializinggeneric scheme to chain-based schefnes.
We prove that the total number of secrets issued is detechtipehe number of bottom elements of the
chains in the chain partition (Lemrh 3). This, in turn, akows to prove (Theoref 3) there exists a chain
partition that simultaneously minimizes the number of secthat need to be issued and the number
of chains in the partition (and thus the number of keys eaeh igsrequired to store). The last result
is of practical importance, since the number of chains plewia tight upper bound on the number of
secrets required by any user. Moreover, the result is somtewtiexpected, as it is not usually possible to
simultaneously minimize two different parameters. Ourma@ntribution (Theoreml4 and Section]5.1)
is to develop an efficient algorithm that enables us to findarcpartition such that the total number
of distributed secrets and the number of chains are mininfaéth respect to all chain partitions). Our

20ne disadvantage with forest-based schemes is that onetcamgeneral, simultaneously minimize the number of gscre
issued on a per-user basis and the total number of secre&liss users. Thus, chain-based schemes are still releaant,
though, in general, a forest-based scheme for the samey paliagequire fewer secrets in total to be issued.



algorithm is based on finding a minimum cost flow in a networkogé construction is based on the
technical results in Sectioh$[3-5.

Overall, then, the contributions of this paper generalizé anify existing work on tree- and chain-
based schemes using the novel concept of a tree partitioa famest-based enforcement scheme. Central
to our work are the results in Sectioh 4, which enable us totliro different characterizations of the ad-
ditional secrets required, thereby allowing us to desa@isting schemes using trees and chains within a
single framework and to generalize tree-based enforcesohieimes to forest-based schemes. An impor-
tant consequence of our results is that there now existafdfichethods for instantiating cryptographic
enforcement schemes that require no public informationtMesby provide rigorous foundations for
the development of efficient chain-based enforcement sekem

The remainder of the paper is organized as follows. In Se@jave provide the relevant background
on cryptographic enforcement schemes, and formally ifiethte problem. We also discuss related work,
including preliminary versions of the ideas presented is flaper|[15,16]. Then, in Sectidh 3, we for-
mally define a tree partition and a forest-based cryptodcaphforcement scheme for an information
flow policy. We establish some important results connedtitggstructure of a given forest and the total
number of secrets required by the associated cryptograpiicccement scheme. We also establish that
there exist secure instantiations of our scheme and brieitygs cryptographic primitives that would be
suitable for such an instantiation. In Sectidn 4, we useliberetical results of Sectidn 3 to develop an
efficient algorithm for computing the best tree partitiamtérms of the total amount of secret material
required. In Sectioql5, we prove that there exists a chasedb@nforcement scheme in which no user
requires more thaw keys, wherew is the width of the information flow policy; and that the totaimber
of issued secrets in a chain-based enforcement schemeersniletd entirely by the number of bottom
elements of the chain partition. These results, howevemar constructivgper se Accordingly, we also
develop an efficient algorithm to derive the best chain panti We conclude the paper in Sect[dn 6 with
a summary of our contributions and some ideas for future work

2. Information Flow Policies

We first recall some basic definitions from discrete mathemaind establish some notation. We then
define what is meant by an information flow policy [7] and dssitow such policies may be enforced
using cryptographic mechanisms.

A partially ordered set(or posej is a pairP = (X, <), where< is a reflexive, anti-symmetric,
transitive binary relation on a finite sat.

— We writez < y to indicatexr < y andz # y, and we may writer > y whenevery < x.

— We sayz coversy, or x is aparentof ¢, denotedy < z, if y < x and there does not existe X
such thaty < z < x. An elementz € X is maximalif it has no parents.

— The Hasse diagranmof P is the directed acyclic grapH (P) = (X, Emin), Where the (directed)
edgery € Fniy, if and only ify < 2. We will also make use of the directed acyclic graph(P) =
(X, Fmax), Wherery € En .« ifand only ify < z. Representing the covering relation as an acyclic
digraph the Hasse diagram provides a minimal amount of imégion required to reconstruct the
full order relatiorfl

3The Hasse diagrarfl (P) = (X, <) = (X, Emin) is a unique representation of the poget= (X, <). Conversely, as the
Hasse diagrani/ (P) of a posefP uniquely represent®, we may considef (P) as a “shorthand” fo® and even loosely say
that H (P) is a poset.



— Thein-degree(out-degreerespectively) of node of a directed graptD = (V, E) is the number
of nodesv such thatu € F (uv € FE, respectively). A directed graph is anout-forestif every
node ofD has in-degree less than or equalto
We sayP is aforestif H(P) is an out-forest. We sap is atreeif it is a forest and has a unique
maximal element. That is, there is a single node in its Hassgam of in-degreé.

Note that every forest is a disjoint union of trees. Hassgrdias of a poset, forest and tree are
shown in Figuré1l. The edges in these Hasse diagrams (antti@tson the paper) are assumed to
be directed from top to bottom.

— A setY C X is achainif for all distinct pairs of elements,y € Y, x < y ory < z. A chain
corresponds to a directed pathfft (P).

— A chain partitionof posetP is a disjoint union of chains such that every elemeriPdielongs to
one of the chains. Figuteld depicts a chain partition of theepin Figuré 1la.

— Letz,y € X withy < . Then{z, ..., 2} C X, wherer = zy> 2z, >--- >z = yis aderivation
chain(from z to y) in P of length!. A derivation chain from: to y corresponds to a directed path
fromztoyin H(P).

— We write z 11 y to indicate thatz, y are incomparable, i.e: £ y andz % y. AsetY C X is an
antichainif for all distinct z, y € Y, « 1 y. Thewidth of a poset is the cardinality of an antichain
of maximum size.

— We write |(z) to denote{y € X : y < z} andf(x) to denote{y € X : y > x}. Note that
I(z) Cl(y)ifand only ifx < y.

— A linear extensiorof P is a chain(X, <) such that ifz < y thenz < y. Every (finite) partial
order has at least one linear extension, which may be compnténear time, by representing the
partial order as a directed acyclic graph and using a tojdbgort [12, §22.3].

SN n

(a) Poset (b) Forest
(c) Tree (d) Chain partition

Fig. 1. Hasse diagrams of a poset, a forest, a tree, and a édition

In many cases we will use subscripts to denote a function latioa relative to a posef . Thus,
for example, we write] = (X, <7), we writex > y if x >7 y and there is na € X such that
x >1 z >7 y, and we write|.-(x) to denote the sety € X : y <7 z}.



Definition 1. Aninformation flow policyis a tuple(X, <, U, O, \), where:

— (X, X) is a (finite) partially ordered set o$ecurity labels
— U is a set ofusersand O is a set ofobjects
— A:UUO — X is asecurity functionthat associates users and objects with security labels.

A useru € U is authorizedo read an objecb € O if and only if \(u) > A(o).

Given an information flow policy X, <, U, O, \), we may define an equivalence relatisnon U,
where, for anyu, v € U, u ~ v if and only if \(u) = A(v). We writeU,, to denote{u € U : A(u) = x}.
Similarly, O, € O denotes the set of objects having security label X. In other words, uset € U,
is authorized to read € O, whenevery > z. Henceforth, we will represent an information flow policy
(X,<,U,0,)\) as aposeP = (X, <) with the tacit understanding that, O and\ are given.

2.1. Cryptographic enforcement

The intuition behind the cryptographic enforcement of inmfation flow policies is to encrypt data
objects (using a symmetric encryption algorithm) and itigte appropriate secrets to authorized users
(from which encryption keys are derived). Hence, there aehigh-level algorithms that every cryp-
tographic enforcement scheme (CES) provides: the §est)p, is run by the data owner and generates
secrets, keys and any public information that is requirediésiving decryption keys; the secorigkrive,
is used to derive decryption keys from secrets and publmrinétion. That is, in principleSetUp and
Derive have the following functionality.

— SetUp takes as input an information flow poli¢y, <).
SetUp outputs{(z,o(z), k(z)) : = € X} andPub, whereo(z) andx(z) respectively determine
the secret and encryption key associated withnd the public informatioRub is used as part of
the input to theDerive algorithm.

— Derive takes as input the information flow polidyub, z,y € X ando(z).
Derive outputsk(y) if y < x (and some distinguished failure symhblotherwise); in particular,
x(x) can be derived from (z).

Prior CES schemes follow the above syntactical frameworkenuo less closely. In particular, dif-
ferent representations of the information flow policy haeer used as input to tigetUp and Derive
algorithms, and some preprocessing may be required in ¢odgroduce those representations. Some
schemes, for example, simply use the Hasse diagram of tret [#jsas the input tbetUp and (part
of) the input toDerive, while others use a directed, acyclic graph whose edge sesuperset oF i,
and a subset oF,., (and thus contains the same paths as the Hasse diagrani) [4,8s work, we
transform the information flow policy into a partition of &g

Part of the specification dderive ensures theorrectnesof a scheme. That is, an authorized user be-
longing toU, must be able to derive(y) if x > y. In contrast, thesecurityof a CES requires that users
cannot derive keys for which they are not authorized, evérelf collude by pooling secret information.
In particular, a user iV, wherez % y cannot derives(y). Research in the last 10 years, pioneered
by Atallah, Blanton, Frikken and Fazio [2] and Ateniese, @i, Ferrara and Masucci [5], has for-
malized security notions for CESs. Informally, the adverdaarns the secrets and keys associated with
some set of elementd C X (modeling a group of colluding users) and selects a “targati X such
thatz € a for anya € A (to avoid trivial cases). The adversary may be asked tométer:(x) or to de-
termine, given a candidate keywhether- is x(z) or a random element of the key space. These informal



scenarios lead to formal concepts of and definitionskéyr recoveryand key indistinguishabilit){Z]B
We consider the security properties of CESs in more det&kictior 3.P.

2.2. Related Work

Essentially, designing a cryptographic enforcement seheomes down to defining(i) whaecrets
each user will receive, (ii) how users will generate &eysthey require to decrypt data objects, and
(i) how secrets and keys are related. Broadly speakingrettare two standard ways of designing a
cryptographic enforcement scheme for information flow gei. These methods assume each user is
given a single key from which all other relevant secrets aeyrkay be derived, and are distinguished
by the information used to derive secrets and keys. The fieshod, which we will call “node-based”,
relies only on secret information known to the user, whike $kcond, which we will call “edge-based”,
assumes that some additional information must be made kimahusers]

Informally, a node-based scheme uses one-way functiomsy fa x the secret associated with
is some (one-way) function of (x), the secret(z) associated with:, and(y), the key associated
with y, is some (one-way) function ef(y). Some of the earliest work on cryptographic enforcement of
information flow policies used these kinds of techniqueq.[Bibwever, in this setting, it is unclear how
to distribute secrets such thaty) can be derived from (z;) for each of the parents,, . . . , x,, that node
y might have, without simultaneously exposing the schemeltagion attacks.

In an edge-based scheme, public information is associaittdeach pair(z,y) wherez > y from
which o(y) can be extracted with knowledge @fx). Thus, informally, we might definBub(z,y) to
beency(o(y)), whereency is some symmetric encryption algorithm with kiycontained ino(z). An
edge-based scheme can be used for arbitrary posets buesequblic information.[2].

Research into schemes that allocate a single secret to sachnvestigated what trade-offs were
possible between the number of items of public data and thebeuof key derivation operations (in the
worst case) |8,13]. Some of this work focused on posets wjthrticular structure (such as chains [3]).
Such research was able to define specific data structuredgordrans, and perform exact complexity
analyses [3/4,13]. Other work considered arbitrary posetsused results from graph and poset theory
to develop analyses that were generic but arguably lesslusedpecific cases [5]. In all this work, the
amount of public information required for key derivatiorcessarily increases.

A representation of the policy is required as input tolileeive algorithm. Hence, the data owner must
publish the policy (or distribute it with the appropriatecsats to every user). The size of the policy is
proportional to the number of edges (each representingce e public information) used for secret
derivation; that iSO (n?), wheren is the cardinality ofX (the set of security labels). However, compact
representations, using anx n binary matrix, exist. In the case of edge-based schemesatheowner
must also publish (or otherwise distribut&)b, which is also proportional in size to the number of edges.
However, the size dPub will be several orders of magnitude bigger than the poligresentation (due
to the relative sizes of each datum of information). An aléive is to stord®ub on a public server. In

*Note that a scheme in whidDerive may be used to compute(y) from (z) whenever < z (rather than fromw (z)) does
not possess the key indistinguishability property: theeaslary may select and A such thate > a for somea € A, usez, a,
Pub andr (that is, assume = x(z)) as inputs to thderive algorithm, and test the output for equality witfia). Concerns
about key indistinguishability in CESs led to the separatietween secrets and keys [2].

5There are some other types of schemes but each of them swifeafnumber of disadvantages (seé [17], for example) so
research has tended to focus on node- and edge-based schemes



this case, the server must be on-line and accessible to anyha wishes to run thBerive algorithm.
Thus, it may be advantageous to devise schemes that requingbfic information.

Cramptoret al. [14] introduced the idea of cryptographic enforcement sa& based on chain parti-
tions of the information flow policy, that require no publidérmation. The trade-off with such schemes
is that some users may require more than one secret in orblerdble to derive all the required encryp-
tion keys. Subsequent work established that secure ireians of such schemes are possible|[20,21].

To summarize, informally, the core trade-off made whenghéap a CES is the amount of public
information that is required to assist in the derivationadrets against the number of additional secrets
that are associated with nodes. Broadly speaking, on théxame one assumes each node is associated
with a single secret and defines a “secret-derivation digrép = (X, E), whereFEyi, C E C Fhpax.

(In other words, ifx > z in (X, <) there is a derivation path i&, sinceE O E.;,; and ifx % z
there is no derivation path i@, sinceE C E..x.) On the other hand, one selects a secret-derivation
digraphG = (X, F) such thatF C E.,, G is an out-forest, and each node is associated with at least
one secret. Then, if > z, there is some nodgsuch that every user i, is given the secret associated
with nodey and there is a directed path fropto z in G. Figure[2 provides a crude comparison of the
generic schemes in the literatuigis the set of edges used to derive secréts;the length of the longest
directed path irG = (X, E); w is the width ofX; n is the cardinality ofX.

Generic scheme Edge set Public Derivation Secrets per
information  time node
Single-step secret derivation E = Ejax O(|E|) O(1) k=1
Multi-step secret derivation Enin, € E C Enax  O(|E|) O(d) k=1
Chain-based secret derivationt’ C Epi, None O(d) ke [1,w]
All secrets distributed E=10 None 0 ke [1,n]

Fig. 2. A high-level comparison of generic cryptographifoecement schemes

The significant open problem with prior work on chain-basgteses is the assumption that the chain
partition is part of the input to th8etUp algorithm: there may be many such partitions and it is not
immediately obvious how one should select a specific pamtith order to optimize characteristics of the
corresponding enforcement scheme (an example being toniaimthe number of secrets issued). Hence,
it seems very natural to ask how difficult it is to compute addbchain partition, given that (i) schemes
based on chain partitions do not require public informateomd (ii) the number of secrets that need to
be distributed to users is determined by the choice of chaititipn. Our recent work [15] shows that it
is possible to compute a minimal chain partition in polynahtime using a minimum cost network flow
algorithm.

Cramptoret al.[16] made use of the fact that derivation paths are uniquefindd in trees (as well as
in chains) to develop the idea of a tree-based cryptogramtfiarcement scheme. Their work established
that it was possible to compute (in polynomial time) an oplitnee for the information flow policy.

2.3. Problem overview
While chain-based enforcement schemes require no pulitimiation, some users may be required

to store more than one secret, unlike the majority of schamése literature. The number of secrets
required by an instantiation of such a scheme depends oin#ie partition chosen. Moreover, a natural



extension of the chain-based approach, explored in themuwork, is to use a forest related to the poset
defining the information flow policy. In this paper, therefpwe explore three questions:

— What is the optimal choice of chain partition and can we camguch a partition efficiently?

— How do we implement a cryptographic enforcement schemedl@sa partition of the information
flow policy into trees rather than chains?

— What is the optimal choice of tree partition and can we comgutch a partition efficiently?

In the next section, we consider the second of these questioam results of which enable us to answer
the other two questions.

3. Enforcement Schemes from Tree Partitions

In this section, we generalize the approach taken by Cramgttal. [14] for chain-based enforcement
schemes, and Crampten al. [1€] for tree-based enforcement schemes. In particulaintveduce the
concept of a tree partition of a poseX, <) and show how such a partition may be used to construct a
cryptographic enforcement scheme for an information flolicpalefined by( X, <).

Definition 2. Let? = (X, <) be a poset, with Hasse diagraf(P) = (X, E). Atree partitionof P is
aposet] = (X, <7) such thatd (7) = (X, E7) is an out-forest andu C E.

If P=(X,<)isaposet] = (X,<7)Iis atree partition of° andy «£ =z, theny £+ x. However,
we may havey < x buty <7 x. Thus, the problem with a tree patrtition, in the context gfptographic
enforcement schemes (CESS), is that some authorized thbélsere “reachable” by a derivation chain
in P will no longer be reachable iff . Accordingly, we define the notion of forest-based enforeem
scheme for a tree partition & = (X, <).

Definition 3. Given an information flow policy? = (X, <) and a tree partition7 = (X,<7), a
forest-based enforcement scheima pair (7, 1), wherey) : X — 2% and:

1. if u < z then there exists € ¢(z) such thatu <7 z;
2. ifu L zthenforallz € ¥(x), u L7 2.

Informally, conditions 1 and 2 correspond to the correctreasd security requirements of CESs, re-
spectively. Note that € ¢(x). To see this, suppose, in order to obtain a contradictiatathZ ¢ (z).
Then, by the first property, there exists ¢(z) such thatr < z. This impliesz < z and thus: € .

By the second property for aif € ¢)(z) we then have £ z*. This holds in particular fot* = z and
we obtainz €7 z, a contradiction.

Definition 4. LetP be a poset and a tree partition ofP. Then, giverx, z € X, the maximum element
(if it exists) in}p(x) N T4(2), is theanchorbetween: and = and denoted byt(xz).

We note the following facts, which we state without proof:

— a(zz) exists iffz > z;

— a(zz) is a unique maximal element (that is, a maximum elementpsingz) is a chain;

— if z > z andx >7 z then there exists a derivation chainfnfrom z to z anda(zz) = x (Sincex
is the maximum element ifi, (x)); and

—if x > z andx %7 z then there exists a derivation chainfinfrom o(zz) to z andzx > «a(zz).



GivenP and a tree partitiofl, definep : X — 2% as follows:

o7 () = {afw2) 1w > 2}

Proposition 1. For any posetP and any tree partitior” of P, (T, ¢1) is a forest-based enforcement
scheme.

Proof. If u < x, thenz = a(zu) belongs taps(z) andu <7 z. And if u £ = then for every: € ¢7(z)
we havez 27 u. O

In other words, given the secrets corresponding to the elesme¢s(x), a user inU, can derive the
secret for all elements < x using a derivation chain starting @atxz).

Lemma 1. Let P = (X, <) be a poset,;7 be a tree partition ofP, and (7,+) be a forest-based
enforcement scheme. Thep(z) C ¢(x) forall z € X.

Proof. Suppose, in order to obtain a contradiction, tha ¢ (z) andy ¢ ¥ (x). By definition,y < z;
therefore, there must exigt € « () such that/ >+ y, and thuse > y'. Moreover,y > z so we have
x>y >7y>7 zthatis,y € [p(x) N1(2). Thusy is not the maximal element ifi, () N 14(2),
the desired contradiction. O

The following simple lemma characterizes the elements;oéind will be used to prove Propositibh 2
and Theorerhl2.

Lemma 2. Let7T = (X, <7) be a tree partition of pose®? = (X, <). Then for every: in X and every
zin X, z € ¢7(x) if and only if exactly one of the following conditions hol@sz = z; (ii) z < z, z has
aparent in7 andxz # par(z); (iii) z < x andz has no parent irv .

Proof. Supposer > z andxz # pary(z). Sincex # pary(z) >7 z, z is the maximal element in
Ip(x) N T4(z). Similarly, if z has no parent of = z, thenz is the maximal element iy () N 17(2).
In either case; = a(zz) andz € ¢7(z).

Conversely, ifz € ¢7(x), thenz > z, by definition, andx(zz) = z. Thus,x # pary(z) if z has a
parent (otherwiseyars(z) € |p(z) N T1(2) andz # a(zz)). O

Proposition 2. Let? = (X, <) be an information flow policy and 16t = (X, <) be a tree partition.
Theng7 can be computed in tim@(n?), wheren = | X|.

Proof. By Lemmd2, for alle € X, besidesr itself, we add all those elementse X, z < z, to ¢ (z)
that are either maximal iff” or, if not, satisfyx % par,(z). In both cases, we must determine whether
x > z for somez € X.

After O(n?) time preprocessing, we may assume that we have data stsicliowing us to check
whetherz > z in O(1) time, and test whether is a maximal element ifi” (and computepar,(z)
otherwise) inO(1) time. Hence, we can compute- in O(n?) time. O



3.1. Generic instantiation

The above results enable us to specify the algorithms of ptagyaphic enforcement scheme. The
construction can be considered a generalization of the eimg whains (rather than trees) defined by
Freireet al. [21]. When definingSetUp and Derive we assume that the information flow poli@ =
(X, <) is presented in the form of a tree partitin= (X, <), and that for the latter a specific forest-
based enforcement schertig, 1) has been selected (such(&s, ¢7)). Further, for thex = | X| labels
of X we assume a numbering convention that follows a (revenmsedtiextensior of <; more precisely,
we assume thak’ = {z1,...,x,} wherez,, < z,,_1 < -+ < zo < z (in particular,z,, is a minimal
element inX andzx; is a maximal element). The cryptographic building block of construction is a
pseudorandom function (PRF) where the key space and that@gpce are the same #etGiven such
a functionF: K x {0,1}* — K and an (injective) label naming functidn X — {0,1}" we define:

Algorithm SetUp, on input an information flow policy in the format describdibae:

1. Fori = 1ton do (i.e., count from a maximal down to a minimal label):

— if z; is maximal in(X, <) pick fresh random key(z;) < K;
— otherwise, identify the (unique) pareptof z; in 7 and assigrs(x;) + F(s(y),f(x;))
(wheres(y) is the PRF key and(z;) is the PRF input);
2. For eachv € X outputo(z) = {(v,s(v)) : v € ¥(x)} andk(x) = F(s(z),4(x)); no public
information is needed, i.ePub = 0.

The general principle of this CES is to derive secrets in admpn fashion: top nodes (according<g-)
are assigned random keys, and the keys of all other nodestmerdnistically derived from their parent
using the PRF. Observe that, as we arranged be a linear extension &f (and thus<y), step (1) of
SetUp is actually well-defined. We next define the correspondiagve algorithm:

Algorithm Derive, on input the information flow policy, labels y € X, and secretr(z):

1. Returnl if x % y;

2. ldentify the (unique} € ¢ (z) such thaty <7 z and recoves(z) from o(x);

3. Letz = 25 > 21 > - - - > 2, = y be the complete derivation chainfnbetweern: andy;
4. Fori = 1tom do:s(z) < F(s(zi—1),(z));

5. Outputk(y) = F(s(y),(y)).

In this instantiation, the same pseudorandom func#ois used as a secret- and key-generation func-
tion; secret values, and values derived from secret vakmye as PRF keys, and fixed strings that
uniquely identify the corresponding node are its inputs.

3.2. Security analysis

We assess the security of our enforcement scheme usingittegppers of provable security. We start
by formalizing the properties of the cryptographic builgliblock, the pseudorandom functiof Our
definition is not the most general possible: rather, it ibtad to the requirements of our construction;
specifically, we require that the keyspace and the rangeed?RF are the same set.



Definition 5. A pseudorandom functiofPRF) with keyspace and rand€ is any efficient function
F: K x{0,1}" — K. We also writeFk (x) to denoteF (K, x). We define thadvantageof an adver-
sary D in distinguishingZ from a random function as

Adv” (D) = |Pr[K 5 K; D7 = 1] — Pr[p +— ({0,1}" = K); D% = 1]| .

We say that PREF is (e, 7)-indistinguishabldrom a random function i€ upper-bounds the advantage
of all distinguishersD that run in time at most.

In the definition above({0,1}* — K) denotes the universe of all functions mappiftg1}” to K,
and writing “DF = 1” for a function F means that algorithr® has oracle access 6 and terminates
outputting valuel. In Definition[3, F' either implements access to a keyed PRF instafnggor it imple-
ments a completely random function. That is, the smalleraveahoose, the closer a particular PRF
is to a random function. We discuss some practical candfdatgions in Sectiof 3]3.

We next make precise the level of security that we target fioremforcement scheme. Many different
cryptographic models for CES with security guarantees nbua strengths have been proposed (see [11]
for a comparative overview). The notion we target and repeedbelow, strong key indistinguishabil-
ity [21], was not only proven to imply all other notions (i.& define the highest level of securiﬁlhut
is also, we believe, the most natural and versatile one.daged on the security experimdibtptg'(ftm’b
defined in Fig[ B, where we use the following notation:

d={(v,o(v)):ve X},

E={(v,k(v)) :ve X},
Corrupt x , = {(v,0(v)) : v € X, 2 L v},
Keysx , = {(v,k(v)) :v € X\ {z}}.

In the experiment we assume that the adversary receivesfirenation flow policy(X, <) in the same
format as th&etUp algorithm does.

Definition 6. Let(X, <) be an arbitrary poset. A CES f@X, <) is (e, 7)-strongly key indistinguishable
with respect to static adversarifd] if, for all x € X, the advantage of all adversarie$ that interact

in experimentExptEiftm’b(A) and run in time at most is bounded by, where we define

AdVSEL (A) = [Pr [Expt{ (4) = 1] = Pr [Expth®(4) = 1]

Observe that in this definition the adversary obtains, ingypile, all secrets embedded in the system
(that is, allo(x) and(x) values), excluding only those that would allow distinguighthe challenge
key by trivial means (e.g., by invoking thgerive algorithm).

8[11] show that not all of these implications are strict; imtfmular strong key indistinguishability is polynomialgquivalent
to the notion of (plain) key indistinguishability ofi[2], #i tightness loss = | X|. Note also our model considers a static setup
where the challenge label is fixed a priori. A variant of Defori[@ would consider dynamic adversaries: such an adwersar
is able to choose the challenge laketiuring the experiment, rather than having it fixed as one of the éxgert's parame-
ters. However, it has been shown that static and dynamicitiefis of strong key indistinguishability are polynomiatquiv-
alent [21]; corresponding results for (plain) key indigtiishability have also been obtained [5]. To simplify th@@sition,
therefore, we restrict our attention to the static case.



Ex t‘;';;b(,zt).

=

(Pub, &, r) < SetUp(X)

2. Derive Corrupt x , and Keys y , from & andr
3. Ko g K

4. K + k(x), extracted fronk

5.V <g A(X,z,Pub, Corrupt x ., Keys x ., Kp)
6. Returnt’

Fig. 3. Security experiment for strong key indistinguistigb

The final step of our analysis is to prove that our forest-thasgorcement scheme from the preced-
ing section is strongly key indistinguishable in the senkBefinition[6. More precisely, we have the
following result.

Theorem 1. For any pose{ X, <), x € X, and adversaryA that runs in time at most, there exists a
constan®) < ¢ < | X| and distinguisher®?, ..., D%, D1, ... D! against the underlying PRF such that

AV (A) < AT (D)) + -+ AdvT (DY) + AdvZ (D)) + - - + Adv” (D))

and the respective running times are at mgst= 7 + O(|X|). That is, if the PRF ig¢’, 7 + O(|X|))-
indistinguishable then our CES construction(dsT)-strongly key indistinguishable with= 2| X |¢’.

Proof. The argument proceeds using a sequencgXof = n hybrid games that interpolate between
experimentExptiy's” andExpt'>". In each hybrid step, if specific conditions are met, we replkane
PRF instance by a random function; from the point of view @f dalversary, the distance between each
two consecutive hybrids is not greater thiadv” (D) for a specific PRF distinguishé?.

Fix a poset X, <) together with a (reverse) linear extension< z,,—1 < --- < x3 < x1 of X, alabel
x € X, and a CES adversar{ that runs in time at most. We use sequence, < - -- < x; to define our
hybrid experiments: Far € {0, 1}, we setG} = ExptE?t > and define games?, ..., G? (in that order)
such that ifl < k < n andz; > z then the difference between gam@$ ande 1 Is precisely that
all PRF invocations with key(xy) are replaced by assignments with values drawn uniformlgredom
from K (correspondingly, also the keys considered in lihés (2)@h@re changed). For the remaining
indicesk, i.e., in caser; # z, gamesG? andG?_, are identical. LetS? denotePr[G¢(A) = 1] for
allb, k.

Observe that we replace PRF invocations by random assiganfmnprecisely those labels € X
that do not have a corresponding entryGarrupt x .. Observe also that, as we consider the labels in
a suitable order, for all switchings from a PRF to a randontfiom we have that the corresponding
PRF keys(x) was replaced with a uniform random value before. Thus, tfierdnce between any two
consecutive games is bounded by a PRF advantage: by a staedaictionist argument, in the cases

r < 1, we have
|57 = Si_a| = [Pr[GR(A) = 1] = Pr[G}_; (A) = 1]| = Adv/ (D) , (1)

for a specific distinguisheP with running time approximately + | X| - Ty,,y € 7+ O(| X ), whereT,¢
is the time required for one PRF evaluation; in addition, méverz £ z; we haveG? = G%_, and



hence|S? — SY_.| = 0. Now, by repeated application of the triangle inequality &f), we have
k Pkl

(Sg e

< zn: ‘S,I;_l - S};( < ZC:AdvF(Di) :
k=1 k=1

wherec = |{z’ € X : x < 2'}| and distinguisher®? are constructed as specified. We now consider
gamesGY and G. In both cases:(x) is picked uniformly at random, thus line| (3) arid (4) in the
experiment implement the same operation. Hefif}ds identical toG), and|S) — S}| = 0. Thus, we
obtain

AdvAEL(A) = S5 — 501 < 155 — Sl + 1S, — Snl + 1S5 — S0
<AV (DY) + ...+ AdvS (D)) + 0+ Adv” (DY) + ... + Adv (DY)
as required. O

Note that by results of [11] it would have sufficed to provea{p) key indistinguishability of our
scheme, as the latter would imply the notion of strong keystintjuishability that we target. Observe
however that going this way introduces a tightness loss-ef| X |. Besides saving this factor, we believe
our direct approach is also more intuitive.

3.3. On practical instantiations of the PRF component

We now briefly consider how one might instantiate our CES atpice. Although pseudorandom func-
tions are a standard building block in the domain of provableurity, corresponding constructions do not
explicitly appear in most international cryptographicrstards documents (e.g., by ANSI, IEEE, NIST,
IETF, etc.). However, certain standardized MACs and blapkers can be used as a PRF replacement,
as we discuss next.

The primary aim of message authentication codes (MACs)égjiity protection and data authentica-
tion. A standard result says that any PRF may also be used &€aMhe converse is in general not true:
a good MAC is not automatically a good PRF. Fortunately, h@reessentially all standardized MAC
constructions are in fact good PRFs, including the populddg [26], CMAC [18], GMAC [19], and
PMAC [10] schemes.

In our application, the data input of the PRF and hence of t&CNk the namel(z) of a node
x € X. For the sake of generality we did not impose any constraintshe format of these names
(in particular, strings of arbitrary length are allowed)e Wote that all of the MAC schemes mentioned
above are designed to process arbitrary-length stringanyformat. By consequence, all of them are
suitable to securely instantiate our enforcement schemeielier, we point out that if we imposed a
constant-length restriction of{z), then a much simpler PRF than the MACs mentioned above can be
used: by the PRF/PRP switching lemma [9], any block ciphds.dapseudorandom permutation, PRP)
also constitutes a PRF, where the input length is equal toutput length and coincides with the cipher’s
block size. In particular, if one is satisfied with using 148Keys and may require 128-bit labels for
elements inX then the AES block cipher can be used without modificatiom@pseudorandom function
of our CES construction. Further, if the target is a secuewel of 256 bit and one uses 127-bit labels,
then the following function would be a suitable PRF:

F: {0,1}%% % {0,1}"*" = {0,1}*° | where(K, s) — AESx(0 || s) || AESk(1 | s).



4. Selecting a Good Tree Partition

Each poset admits many possible tree partitions and eaetpéamrition gives rise to many possible
enforcement schemes. In this section, we investigate wandtrcement scheme to select for a given tree
partition and which tree partition to select for a given go€eir analysis is based on the assumption that
we wish to minimize the total number of secrets that need tdisteibuted to users. Thus, given a tree
partition7 = (X, <7) and a forest-based enforcement schéfgy), we define

S(Tw) =Y (@) - |Us|.

zeX

Note thaty)(x)| denotes the number of secrets issued to eaelU,, for the enforcement schen(@, ).
Thus,S(T, ) is the total number of secrets that need to be distributedeosuvhen we apply scheme
(T,v). By Lemmall, for a given tree partition = (X, <), any forest-based enforcement scheme
(T.%) and anyz € X, we havedr(z) C ¥(z); thus |dr(z)| < |¢(x)| andS(T, é7) < S(T, ).
Hence, for a given tree partitiofr, we will assume the use of the forest-based enforcementezhe
(T, 97)-

Let P = (X, <) be an information flow policy and If = (X, <) be a tree partition of. Then
we say that]” is aminimal tree partitionof P if, for any tree partition7” of P, we haveS(T, ¢7) <
S(T, ¢7+). (In other words;T is a tree partition that minimizes the total number of disttéd secrets.)

For any tree partitio = (X, <7) and for allz € X, x must have at most one parent(iX, <7).
Informally, then, to construct a tree partitignfrom P = (X, <), for all x € X we must discard all but
(at most) one parent afin P. Hence, if we can associate the choice of pageiot =z with an appropriate
cost of the edgez in H* = (X, Fiax), then computing a minimal tree partition can be translatéa &
problem of selecting a suitable weighted forest.

We now describe how to compute such a cost function. Givenfamnation flow policyP = (X, <),
for each pairyz such thaty > z, we defineyp(yz) ={z € X : 2 > z,2 2 y}.

Proposition 3. Forall z > y > z, yp(z2) D vp(y2).

Proof. Lett € yp(yz). Thent > z andt % y. Now if ¢ > x, we would have > y, by transitivity. Thus
t # x and hence € yp(zz). Moreover,y € vp(xz), sincey > z andy # z, andy ¢ vyp(yz), So the
inclusion is strict. O

Define a weight functiowp : X x X — N, where

— sz'yp(yz) ’UZ" if Yy > Z,
wply2) = {O otherwise

Note that for any tree partitiorf, z has at most one parent ifi, so we may writeys(z) for
~vp(pars(z)z) without ambiguity. Given a tree partitioi of X, we define the weight function
Q7 : X — N, where

> U] if 2 is maximal in7T,

Q _ x>z
7(2) > |U:| otherwise

€7 (2)



Informally, Q7(z) represents the number of users that will require the sessec@ted with, on the
one hand ifz is maximal in7 and on the other if edgpar,(z)z is used in7. We can now prove the
main result of this section, which establishes a relatigmbbtweenS (7, 1) and)r, and thus enables
us to define an (efficient) algorithm for computing a minintaktpartition.

Theorem 2. LetP = (X, <) be a poset with Hasse diagrafii(P) = (X, Enin) and let7 be a tree
partition 7 of P. Then

S(T,¢7)=>_ Qr(z @

zeX

Moreover, we can compute a minimal tree partit@rof P in time O(| Ewin| + | X]%).

Proof. We first prove [(R). LetX” denote the set of maximal elements7inand X’ denote the set of
non-maximal elements. By definition,

S(T.o7) =Y _ o7 (2)||Us|

zeX

and, by Lemmal2, we have
o7 ()| = [{z € X' \{z}: zev7()}|+ [{z € X" o>z} +1.
Hence

S(T.or)=> ({zeX tzeyr)}+|{z € X x> 2} +1)|U,]

reX
=Y {reX izeryr@HIUl = Y U+ D) [{ze X x> 2} U]+ D |Usl
zeX zeX’ zeX reX
= Z Hz ceX :z¢ ’YT(Z)H |U.| + Z Hz ceX": x> z}‘ |U.| + Z |U, |
reX zeX zeX"
=2 > !U\+ZZ\U!
zeX’' zeyr(2 zeX x>z
= ZQT(«Z)
zeX

We next establish the choice ®fthat minimizesS (7, ¢7). Observe that it is not a maximal element
of X, a minimal tree partitiorVA' will not have z as a maximal element either. Indeed, suppose a
maximal element in a tree partitioh and lety be a parent of in X. ThenQ7(z) > Q7 (z), whereT”
is obtained fron7” by adding edge = to the Hasse diagram Gf, since{z € X : = € v (2)} C {z €
X : = > z}; the inclusion is strict sincg is in the first set but not the second. Thusés a maximal inT
if and only if z is maximal inX. It remains to decide on parentsTnfor non-maximal elements iX .

Let 7 be a tree partition and is not maximal in7". Note thatQr(z) = wp(pary(z)z). By Propo-
sition[3, we haveyp(yz) C yp(zz) for z > y > z. It follows thatwp(yz) < wp(xz), the inequality



being strict if we assume that at least one user is assigneactonode inX. Thus it suffices to consider
only parents ot in X when constructing a minimum tree partition. Moreover, tdcb@, for each non-
maximalz € X, we select a parent of z in X such thatup(yz) < wp(y'2) for all other parentg’ of
z.
Finally, we analyze the running time to compute a minimure partition. We can computep(yz)
for each non-maximat and each parent of z in P in time O(|X|?) using an algorithm similar to that
used for computing7. Now a minimal tree partitiory” of P can be obtained by setting= par+(z),
wherewp(yz) < wp(zz) for all z € X such thate > z. This will require timeO(|Epin|). Thus, the
total time required i$)(| Emin| + | X|2)[1 O

We have shown that we can compute a minimal tree partitioniefily. Recall that¢s(z)| mea-
sures the number of secrets a uselinwill require to derive all authorized secrets (and keys). We
now consider whether it is possible to compute a minimal pasition that simultaneously bounds
maxzex {|¢7(x)|}. LetT be a minimal tree partition 0P = (X, <). We will say that7 is anoptimal
tree partitionof P if 7 has the minimum number of minimal elements among all minineg partitions.
An optimal tree partition witt{ leaves has the property that no user will require more theetrets.

For each non-maximal € P = (X, <), letY(z) be the set o) € X such thaty > z andwp(yz)
is minimum. Construct a directed acyclic graphwith vertex setX; for every non-maximay € X,
the in-neighborhood of is Y (y), and each maximaj € X has no in-neighbors. Add t&/ a new
vertexr which is an in-neighbor of every € X. Now apply the polynomial-time algorithm MLEAF
[25], that allows us to find an out-tree rootedratvith minimum number of leaves, i.e., vertices with
no out-neighbors. As a result, we obtain, among all treeitfpars with minimum number of secrets,
one with minimum number of minimal elements. L€t denote the set of non-maximal element$Pin
Then MINLEAF's runtime isO(s + | X|%/2s1/2), wheres = 3y, |Y(2)|. Observe that < |Epax|
and | Emax| < |X|2. This implies thatO (s + | X[3/251/2) = O(|X[*? | Emax|"/?). Thus, we have the
following result.

Corollary 1. Given an information flow policy> = (X, <), we can find an optimal tree partition
T = (X,<7) of Pintime O(| X |/ | Eynax| /).

We conclude this section with an example illustrating owsules. Let[n] = {1,2,...,n} and let
[i,7] ={i,i+1,...,5— 1,5} fori < j. Then define the poset

I(n) = {li,j] : 1 <i <j <n},

where[i,j] < [¢/,j'] if and only if i < ¢ andj’ > j. The Hasse diagram fdf(5) is illustrated in
Figure[1a. The poséi(n) has attracted considerable interest because of its apptida “time-bound”
access control (see [4]13], for example). In particula,nthmberd, . .., n represent time points or time
intervals, and elements ih(n) represent contiguous intervals of time (either conseeup@ints or a
sequence of consecutive intervals). A us@ssigned the intervéd, j] is authorized to access any object
assigned an interval’, j'] C [, j].

The cardinality ofyp(y2), y,2 € Z(5), y > z, is shown in Figuré 4a. A tree of minimum weight
is shown in Figuré_4b and the corresponding valueQgfz) are shown in Figure_4c. It is possible to

’Since| Emin| < |X|* we can simplify the total time t®(] X |*). However, we decided to keéfmin | to stress that only
parents of elements need to be considered to compute a nmmtree partition.



show that the minimum number of secrets required in totauming|U,| = 1 for eachz € Z(n), is
Im(m+1)(4m — 1) if n =2m — 1, andgm(m + 1)(4m + 5) if n = 2m.

1/\1
AN
/<><>\
/<><><>\

./ \/ \./ \./ \.
@) |v(y2)|

Fig. 4. A minimal tree partition ofZ(5), C)

5. Selecting a Good Chain Partition

In this section, we consider chain-based schemes. ReatH tthain partition of a posétis a disjoint
union of chains such that every elemenfobelongs to one of the chains. An elemerdf a chainC' is
calledtop (bottom respectively) if the in-degree (out-degree, respegtjved = in H(C) is zero.

We first show that the number of secrets to be issued in a tizsiad enforcement scheme is deter-
mined by the bottom elements of the chains in the correspgratiain partition. This in turn implies that
there exists a chain partition with a minimum number of siscssued for which the number of chains
is exactly the width of the poset.

Lemma 3. For any posetP = (X, <) and any chain partitiorC = (X, <¢) of (X, <) with chains
{C1,...,Cy}, let chainC; have bottom elemenf, 1 < i < ¢. Then

Z > | ©)

=1 ;BGTP )

Proof. Let C; comprise elementsy, zo,...,2. such thatzy > 29 > --- > z. (i.e.,b; = z.) and
observe thatt(b;) is the disjoint union of set;, 1 < i < ¢, whereX; = {z: =z > 2z} and
Xj={zr: v % zj_1,0 > 2zj},2 < j < c ObservethalX; = {x : = € v (2)},2 < j <ec This
decomposition of(b;) into setsX;, 1 < i < ¢, will be used in the following derivation.



By (2) and the definition of2¢(z),

¢) =Y Qclz)

zeX
¢ L0
=20 Wl+3. > > Il
i=1 z€X1 i=1 j=2 zEX,
l
= D Ul O
i=1 z€tp(b;)

By Dilworth’s Theorem, a posetX, <) of width w of has a chain partition witw chains. Such a
chain partition can be obtained in ting®(|X |>?) [23]. Thus, in particular, we can computein time
O(]X|*%). The next theorem can be viewed as a strengthening of Difigoftheorem. In Subsection
5.7, we will show how to compute a minimal chain partition aflth w in polynomial time.

Theorem 3. Let P = (X, <) be an information flow policy of width). Then there exists a minimal
chain partition of widthw.

Proof. Let C = (X, <¢) be a minimal chain partition ok into ¢ > w chains and leB be the set of
bottom elements in the chains @f A theorem of Gallai and Milgram asserts that if a chain partiC
of a posetP containst chains, where > w, then there exists a chain partitiéh= (X, <) intot — 1
chains such that the set of bottom element§’iis a subset o3 [22‘.]@ Hence, by iterated applications
of the Gallai-Milgram theorem, there exists a chain pamit* = (X, <¢-) of width w such that the set
of bottom element®* in C* is a subset o3. Moreover, by Lemmal3,

oo )= Y > (ULI<Y ) D Uk =8(Cde)

beB* €t (b) beB zetp (b)

As C is a minimal chain partition, we conclude tl@&tis also a minimal chain partition.

Corollary 2. LetP = (X, <) be an information flow policy. There exists a chain partitiba- (X, <¢)
such thatS(C, ¢¢) is minimized andnax {|pc(z)| : z € X} < w

Proof. The result follows immediately from Theordm 3 and the faet tih¢ ()| is bounded above by
the number of chains ié for all z € X. O

The above corollary shows that no user requires more thaecrets in a chain-based enforcement
scheme.

Returning to our example d&f(n), note that the width of (n) is n as the minimal elements form the
largest antichain. Thus, any chain partition witlthains requires the same number of secrets. It is not
hard to show that this numberész(n + 1)(n + 2), which is minimum possible. Thus the minimal tree
partition of Z(n) (discussed in Sectidi 4) requires approximately half thabwer of secrets required by
the minimal chain partition.

8The result is phrased in the language of digraphs, but evesgtpmay be represented by an equivalent transitive acyclic
digraph.



5.1. Computing a minimal chain partition

A chain partition imposes stronger constraints than a tagtition. Specifically, each element in a chain
partition has at most one parent and one child, whereas pantidon only requires that each element
has at most one parent. Thus, the straightforward algofithmomputing a minimal tree partition cannot
be used to compute a minimal chain partition.

SupposeP = (X, <) is a poset of widthw. In general, a chain partition @ has/ > w chains.
Theoren{ B asserts that there exists a minimal chain partitinprisingw chains. We now show how
such a chain partition may be constructed. In particularshgev how to transform the problem of finding
a minimal chain partitio = (X, <¢) into a problem of finding a minimum cost flow in a network.

Informally, anetworkis a directed graph in which each edge is associated wadtpacity A network
flowassociates each edge in a given network with a flow, which maisixceed the capacity of the edge.
Networks are widely used to model systems in which some guardsses through channels (edges in
the network) that meet at junctions (vertices); examplekide traffic in a road system, fluids in pipes,
or electrical current in circuits. Our definitions for netks and network flows follow the presentation
of Bang-Jensen and Gutin [6].

Definition 7. A networkis a tupleN = (D, 1, u, ¢, 3), where:

— D = (V, A) is a directed graph with vertex sét and edge se#;

—1:V xV — Nsuch that(vv') = 0if vv’ ¢ Aandl(vv’) > 0 otherwise;

—u:V xV — Nsuch thatw(vv') = 0if vv' € Aandu(vv’) > I(vv') > 0 otherwise;
—c:VxV =R,

—f3:V = Rsuchthaty® . 5(v) = 0.

Intuitively, [ andu represent lower and upper bounds, respectively, on how fimeltan pass through
each edge, and represents the cost associated with each unit of flow in edgh.€lhe functions
represents how much flow should enter or leave the networlgiaea vertex. If3(z) = 0, then the flow
going intox should be equal to the flow going out of If 3(z) > 0, then there should bg(z) more
flow coming out ofz than going intaz. If 5(z) < 0, there should b&3(x)| more flow going intar than
coming out ofz.

Definition 8. Given a network\" = (D, [, u, ¢, 3), a functionf : V x V — N is afeasible flowfor '
if the following conditions are satisfied:

—u(vd') = f(vv') = l(vv') for everyvv’ € V x V;
- > pev(fw') = f(v'v)) = B(v) for everyv € V.
Thecostof f is defined to be

Z c(vv”) f ().

v’ €A

Our aim is to find a tre€ = (X, <¢) such that is a chain partition ofX’ with preciselyw chains that
minimizesS(C, ¢¢). To do this, we will construct a network” such that the minimum cost flow ¥
corresponds to the desired chain partition. We can then li@dntinimum cost flow of\V" in polynomial
time.

Every top vertex irC must have one child and no parentinevery bottom vertex i€’ must have one
parent and no child i, and every other vertex i@ must have one parent and one child. We cannot



represent this requirement directly in a network. Howewer can use theertex splitting procedur¢g]
to simulate it. Specifically, given pos@& = (X, <), define first a directed graph = (V, A). Let
Xin = {zin : € X} and Xyt = {xout : € X}, and define the vertex st = X, U Xout U {s,t},
where{s,t} N (Xi, U Xous) = 0. Define the edge set as follows: forv,v' € X, U Xout, vv' € A if
and only if eitherv = z;, andv’ = z, for somezr € X, orv = x4y andv’ = y;, for somezr,y € X
such thaty < x; for everyv € X;, we havesv € A; and for everyw € X,,; we haveuvt € A.

Then define a network/ = (D, [, u, ¢, 3), where

o) 1 if v=mx,v = zou, Wherex € X
VU ) = .
0 otherwise;

w(or') = 1 ifveA
10 otherwise;

(o)) erTp(v) |Uy| if v =t,v= x5, Wherer € X
C\VV ) =
otherwise;

w ifv=s

Bv)=< —w ifv=t
0 otherwise.

We call this network theetwork chain-representation 0K, <). Note that any feasible flov for this
network must have < f(xy) < 1forall xzy € A.

Lemma 4. Let NV be the network chain-representation of an information flaliqy P = (X, <). Then
the minimum number of secrets issued by a chain-based enfert scheme fdtX, <) with w chains
is f, wheref is the minimum cost of a feasible flowA.

Proof. Suppose we are given a chain partit®r- (X, <¢).Consider the following flow:

f(@inxou) =1 forall x € X;
f(@outyin) =1 if @ = pare(y);
f(szin) =1 if 2 is the top element in a chain &y
flaout) =1 if x is the bottom element in a chaindh
f=0 otherwise

Observe thaf is a feasible flow. Indeed, by construction all edgesatisfyu(xy) > f(zy) > l(zy). In
the graph formed by edgeg with f(zy) = 1, itis clear that every vertex has in-degree and out-degree
1, except fors andt. Also, s has in-degre® and out-degreev in this graph, and has in-degreev and
out-degred). As all edgescy have f(zy) = 1 or f(xy) = 0, we have that

Y (flav) = flox)) = B(x)

veV (D)



for all z, as required. Moreover, the cost pequals) |, 5 >
elements of chains i6, which by [3) equalsS(C, ¢¢).
Conversely, supposg is a feasible flow for\/. Then we defing) <¢ z if and only if z,y € X and
f(zouwtyin) = 1. By the construction of\" and definition off, it is not hard to see that is a chain
partition of X' with w chains. By construction o/, the cost off equalsy "y 5 > ,c+t, (1) [Uz|, WhereB
is the set of bottom elements of chain<inwhich by [3) equalsS(C, ¢¢). O

setp(v) |Uz|, WhereB is the set of bottom

Lemma 5. We can find a minimum cost flow f&f in O(| X |*w) time.

Proof. Recall that computingy can be done in tim@(|X|?%). To computezxe%(y) |U,| for each
y € X requires timeO(| Fmax| + |X]|) using depth-first search from in the digraph obtained from
H*(X) by changing orientation of every edge. Thus, to com@‘tzeap(y) |U,| for all y € X requires
time O(|X| (| Buax| + 1X1)).

The well-known buildup algorithm (segl[6, §4.10.5], for exae) finds a minimum cost flow for a
network withn vertices andn edges in time) (n?m M), whereM denotes the maximum of all absolute
values of balance demands on vertices. By constructiok’,ofve have thair = 2|X| + 2 = O(|X|),
m = O(n?) = O(]X|?), andM = w. Thus we get the desired running time. O

Remark 1. Strictly speaking, the buildup algorithm assumes that@ildr bounds on edges abeln its
current form, our network does not satisfy this conditiomwéver, we can satisfy this condition, given
N = (D,l,u,c,[3), by defining the networtk/” = (D,1’,4/, ¢, 3'), where

U'(zy) =0 B(x) = B(z) — (zy)
u'(zy) = u(zy) —lzy)  B'(y) = Bly) + U(zy)

Then the minimum cost flo for A will have cost exactly ., I(zy)c(zy) less than the minimum cost
flow for A/, and f’ can be transformed into a minimum cost feasible ffofor A by settingf (zy) =
f'(ay) + U(zy).

We are now able to prove our main result, for this section tviscessentially, a corollary of Theoréin 3
and Lemmag]4 arid 5.

Theorem 4. Let P = (X, <) be an information flow policy of widthv. Then we can find a minimal
chain partition comprisings chains in timeO(|X |*w). In such a chain partition no user requires more
thanw secrets.

Proof. Let S denote the minimum number of secrets issued by a chain-Ea¥eccement scheme for
X. By Theoreni B, there exists a chain partition that has exactthains, for which the corresponding
chain-based enforcement scheme only requitescrets. Then by Lemnia &,is equal to the minimum
cost of a feasible flow inV, the network chain-representation Bf By Lemmal5, such a flow can be
found inO(] X |*w) time, and this flow can be easily transformed into the cooeding chain partition
C = (X, <¢). Finally, by definition ofpc (x), [¢c(2)| < w for eachr € X and therefore no user requires
more thanw secrets. O




6. Concluding Remarks

In this paper, we introduced the concept of a tree partiti@meralizing prior work on chain partitions
and tree-based enforcement schemes. We have proved thaioissible to compute optimal chain and
tree partitions for an arbitrary information flow policy ielgnomial time. And we have proved that there
exist secure instantiations of enforcement schemes basedepartitions. In short, we have shown that
it is possible to construct forest-based cryptographiomeiment schemes for information flow policies
efficiently.

Perhaps the most important contribution of our work on agpaphic enforcement schemes based on
tree and chain partitions is to provide alternative traffedoetween the parameters of such enforcement
schemes. These additional trade-offs provide data ownignsavgreater range of potential enforcement
schemes, enabling them to select the most appropriate dorghrticular information flow policy and
deployment constraints (such as storage and connectajitsttlities of end-user devices). We might, for
example, wish to use an existing scheme that requires ea@tede store a single secret when storage
is limited. Alternatively, we might wish to use a chain-bésseheme when the distribution of public
information is difficult and we wish to impose a small uppeubd on the number of secrets that any
device needs to store. We might use a tree-based schemgiliutisn of public information is difficult
and we wish to minimize the amount of data we wish to transonihé user population.

Another difference between minimal tree-based and chased schemes is that computing the for-
mer is significantly faster than the latter as the former ceseetially be computed by a simple greedy
algorithm, while the latter requires a more sophisticated much slower minimum cost flow algorithm.
While still polynomial-time, minimum cost flow algorithmsay be too slow whehX| is large.

In future work, we hope to investigate the difficulty of findim tree partition in which the worst-
case derivation time is as similar as possible for all usshsigt still minimizing the number of secrets
issued).
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