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Superfluidity is a manifestation of the operation of the laws of quantum mechanics on a
macroscopic scale. The conditions under which superfluidity becomes manifest have
been extensively explored experimentally in both quantum liquids (liquid “He being the
canonical example) and ultra-cold atomic gases ( 1, 2), including as a function of
dimensionality ( 3,4). Of particular interest is the hitherto unresolved question whether
a solid can be superfluid ( 5, 6). Here we report the identification of a new state of
guantum matter with intertwined superfluid and density wave order in a system of two-
dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator
we have measured the superfluid response of the second atomic layer of “He adsorbed
on the surface of graphite, over a wide temperature range down to 2 mK. Superfluidity
is observed over a narrow range of film densities, emerging suddenly and subsequently
collapsing towards a quantum critical point. The unusual temperature dependence of
the superfluid density in the limit of zero temperature and the absence of a clear
superfluid onset temperature are explained, self-consistently, by an ansatz for the

excitation spectrum, reflecting density wave order, and a quasi-condensate

wavefunction breaking both gauge and translational symmetry.



Superfluid “He is described by a condensate wavefunction w(r) =€, with long-range
coherence of the global phase ¢(r), determining the quantum hydrodynamic and non-

classical rotation properties ( 1,2). In two dimensions (2D) the superfluid state has power law
correlations of the local phase ( 4, 7, 8). While in bulk the destruction of superfluidity at finite
transition temperature arises from the creation of thermal excitations (phonons and rotons), in
two dimensions topological excitations (vortices) play a crucial role. In this case the quasi-
condensate is suddenly destroyed at the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition by the unbinding of vortex-antivortex pairs, accompanied by a universal jump in
superfluid density ( 3, 7). On the other hand superfluidity may be destroyed ata T =0
guantum phase transition by increasing correlations or disorder. Here the classic example is
the superfluid - Mott insulator transition ( 9), which has been observed in cold bosonic atoms

in optical lattices ( 10, 11), by tuning the periodic potential.

The novelty of the putative supersolid is that it manifests both superfluid and density
wave order ( 12). Unambiguous detection has proved elusive in bulk solid “He ( 6, 13) ,
where a variety of scenarios have been proposed to establish superfluidity coexisting with

solid order. These involve mobile zero-point vacancies, frozen-in dislocations and disorder

(14, 15), and the defects determine the strength of the superfluid response. Supersolids have
been predicted on model 2D quantum lattices, again arising from mobile vacancies and
favoured by triangular lattice symmetry ( 16). Several schemes to realize supersolids in
ultracold atoms have also been proposed ( 17, 18). By contrast, in this work we report
evidence for a uniform quantum state, in which solidity and superfluidity are quantum-

entangled.

Our experiment exploits helium on graphite as a model system to study the interplay

of superfluidity with film structure upon increasing the film coverage, (number of atoms per



nm?) ( 19). Since the surface of graphite is atomically flat, the film grows with the addition of
“He atoms through the progressive formation of distinct atomic layers. The completed first
layer forms a triangular close packed structure, incommensurate with the graphite surface
potential, Fig. 1B. Here we report on the superfluid response of the second layer, which
comprises a two-dimensional system of strongly correlated bosons, of tuneable density,
subject to the periodic lattice potential arising from the first layer solid. On growing the
second layer it first forms a gas-liquid coexistence, with 2D liquid puddles at the self-bound
density of around 4.5 nm2, then a uniform two-dimensional liquid ( 20, 21, 22). Close to
layer completion, these theoretical simulations agree that the second layer forms a two-
dimensional solid, incommensurate with the first layer. At somewhat lower coverages
measurements of a series of heat capacity peaks ( 23, 24) provide possible signatures of the
melting of density wave order. However, in this regime, the results of simulations on the
stability of a solid phase depend on details of the treatment of the helium-graphite potential

and the quantum zero-point motion of first layer atoms ( 21, 22, 25), see also ( 26).

We use a torsion pendulum, Fig. 1A, as a probe of the superfluid density, a quantity
not directly accessed hitherto in cold-atom systems ( 27). This technique was first used in
superfluid *He by Andronikashvilli ( 28), and has been extensively refined to study superfluid
quantum liquids in bulk and two dimensions. In the two-fluid model of superfluidity, the

superfluid density at finite temperature is given by p.(T) = p,(0) — p,(T), where p,(0) = p,
the total fluid density, in the case of bulk superfluid *He. The superfluid component
decouples from the motion of the oscillator, giving rise to an increase in resonance frequency,
Fig. 1C. As first shown by Landau for superfluid “He bulk liquid, the normal density p_(T)
may be calculated from the bosonic elementary excitation spectrum ( 29). Measurement of

this quantity, by this technique, therefore constitutes a thermodynamic determination of the



excitation spectrum. The analysis is independent of assumptions about the quantum

condensate, yet provides essential insights into the nature of that condensate.

The frequency shift due to superfluidity, as a function of coverage, is determined after
composite background subtraction, illustrated in Fig. 1E ( 26). Our experiments extend to
ultralow temperatures, which is essential to establish the zero temperature limit of the
superfluid density. A frequency shift isotherm, at the lowest temperature, Fig. 1F, shows that
superfluidity occurs over a narrow range of coverage in the second layer. The temperature
dependence of the frequency shift, Fig. 2A, is unusual in several respects. There is no clear
superfluid onset temperature, or a jump in superfluid density at a finite temperature, as

expected in a 2D superfluid with broken U(1) gauge symmetry; rather a gradual increase in

superfluid density. With increasing coverage both the T =0 frequency shift, reflecting Ps (0)
and the characteristic temperature which governs the gradual appearance of superfluid
response on cooling, decrease. Our results are consistent with earlier measurements ( 19),

taken at a limited number of coverages to a minimum temperature of 20 mK.

We calibrate the magnitude of the superfluid density using the BKT transition of a
thicker “He film consisting of a fluid layer atop two solid layers ( 26). This allows us to

convert the frequency shift data measured in the second layer to superfluid fraction p,(T)/ p .

This calibration shows that the maximum superfluid response at 18.09 nm corresponds to

p.(0)/ p[10.8, and demonstrates that it is a property of essentially the entire layer.

The temperature dependence of the superfluid fraction at different coverages exhibits
a remarkable scaling behavior, Fig. 2B. We introduce the parameter A(n), as a coverage
dependent characteristic temperature. We find that the data divide into four coverage regimes
[Fig 2A, inset]. Of particular interest are regions | (18.09 to 18.41 nm2) and Il (18.50 to

19.24 nm2) where the data can be collapsed using a single parameter scaling according to the



form: M:
P

@ f (T /A(n)) . The scaling procedure ( 26) requires no assumption about
0

the functional form. A(n) is the only adjustable parameter, which determines the T =0

superfluid density, p,(0,n)=p A_I(_n)

0

, and is the characteristic temperature controlling

superfluid onset. The normalization factor T, is chosen so that f (0) =1. Fig. 2B shows that

different functions apply to regimes I and II.

It is striking that scaling extends over the full temperature range in both these
regimes. They show distinct behaviour in the magnitude and coverage dependence of A, Fig.
2C, which provides evidence of the interplay between superfluidity and film structure, with a
distinct transition in film structure around 18.45 nm. In regime Il the temperature
dependence of the superfluid density is well described by f(T/A)=1+T/A)™", upto T/A ~
4. A fit of the collapsed data to this form is used to determine the absolute values of A, shown

in Fig. 2C, and the parameter To.

For regime I, we find A(n) oc &, with coverage as the tuning parameter 5 =n, —n

providing compelling evidence for quantum criticality, [Fig. 2C]. The collapse of the energy
scale A(n) and p, (0) at coverage n, =19.96 nm, by extrapolation, identifies this as the
quantum critical point (QCP). The approach to the QCP is interrupted by a coverage range
(labelled B in Fig. 2A, inset) where single parameter scaling breaks down; in this region the
characteristic temperature governing superfluid onset continues to collapse towards the QCP.
The scaling of regime Il is consistent with a superfluid-insulator transition in the Bose-

Hubbard universality class ( 9).

These results show that the leading-order temperature dependence of the superfluid

density is: p,(T,n)/ p=p,(O,n)/ p—T /T,, where p,(0,n)/ p=A(n)/T,. This linear



decrease in superfluid density with increasing temperature, observed inthe T — 0 limit, is

much faster than the T°dependence expected for 2D phonon-like excitations.

The famous Landau formula, deriving the normal density p,(T), is a momentum
weighted thermal average over the bosonic elementary excitation spectrum ( 29). We propose
the elementary excitation spectrum shown in Fig. 3A, to account for the observed leading
order linear in T behavior of p, (T) . The high density of states of softening roton-like modes
at finite momentum, around the six density wave ordering wavevectors of a triangular lattice

G, , gives the dominant contribution to the normal density as

2
JoXox =—ZGiGjJ. d’p > 0 1 . For an assumed incommensurate second
S (27h) aEp exp(Ep Ik, T)-1

layer triangular structure the density is p = \/§m4G2 /87 and the normal fraction is

P _ [@J ke T {1+ In (ké—TD when E, <k,T , which agrees with the observed leading
P m,C 0

order temperature dependence, within the logarithmic correction ( 26), and implies an upper
bound on E, /kg of order 1 mK. In regime Il, fits to the collapsed data determine T, = 21
mK. Hence the characteristic speed ¢ 50 ms™.

This form of excitation spectrum is a natural consequence of incipient density wave
ordering. For a superfluid, the form of the dispersion relation is qualitatively related to the
structure factor S(k) through Feynman’s expression E (k) =7°k? / 2mS(k) ( 30). The S(k)
inferred from our ansatz for the dispersion has sharp maxima at G, , reflecting density wave

order. Our measurements of the superfluid density demonstrate both superfluid and density

wave order, with no a priori assumption about the structure of the second layer.



Furthermore, and consistent with the ansatz for the excitation spectrum, we propose

an ansatz for a coherent ground state, with a quasi-condensate at both zero momentum and at
the discrete set of finite momenta G,, |¥) = exp[aobgo +> aghd j|0) (26). This state
G

simultaneously breaks both gauge symmetry (superfluidity) and translational symmetry

(density wave order). Given the density operator, p, = Zb,j_ebk , density wave order
k

necessarily implies a condensate at G, in the presence of a superfluid condensate. The

existence of essentially gapless modes at G, as in the proposed excitation spectrum, implies

a larger manifold of degenerate states, Fig. 3C. This is an unconventional non-Abelian
superfluid. According to homotopy theory, vortices are no longer stable, explaining the
observed absence of a BKT transition. This coherent state is distinct from a fragmented

condensate, where separate sets of atoms condense into different single particle states ( 31).

Studies of the nuclear magnetism in the fermionic *He cousin of this system, at the
same second layer coverages, clearly demonstrate a Mott insulator local moment phase, with
strong exchange interactions arising from particle permutations, leading to a proposed
quantum spin liquid ground state ( 32). The present experiment explores the consequences of
the highly quantum nature of the system in the bosonic case. Our results provide direct
evidence, through the measurement of superfluid mass decoupling, for a new superfluid state
of matter, which is tunable and exhibits scaling collapse. Intertwined density wave and
superfluid order profoundly alters the symmetry of the quasi-condensate and its response.
Anderson’s contention is that “every pure Bose solid’s ground state is a supersolid” ( 15).
The condition of extreme quantum motion realized in this two-dimensional helium system,
makes it observable at accessible temperatures. Our scenario demonstrates how density wave

order and superfluidity can coexist, contributing towards the resolution of the supersolid



enigma. Direct measure of the structure factor (in regimes A, 1, 11, B), and of phase

coherence would be of great interest.

Methods
The torsional oscillator contains an exfoliated graphite substrate ( 26) onto which a

helium film is adsorbed. It has a resonance frequency of 1423 Hz; motion is driven and
detected capacitatively. The resonance frequency and quality factor are determined from the
quadrature and in-phase response to a constant drive, maintaining the drive frequency within
5 uHz of resonance. The substrate consists of 48 sheets of exfoliated graphite, diffusion
bonded to silver foils, which are in turn diffusion bonded to the torsional oscillator for
effective thermalization at ultralow temperatures. In order to perform measurements over a
wide temperature range, from 4K to below 2mK, the torsional oscillator is mounted on a
copper plate, cooled by a nuclear demagnetization stage through a weak thermal link.
Thermometry, also mounted on the copper plate, is provided by a carbon glass thermometer
(above 1.3K), germanium thermometer (50mK to 6K, calibrated by the manufacturer) and a
3He melting curve thermometer (ImK to 250 mK, self-calibrated using the superfluid A
transition as a fixed point). This arrangement allows the temperature to be conveniently

swept, at the expense of minimum temperature, which is 1.2 mK.

The frequency shift and dissipation of the empty oscillator are first measured. Helium
is adsorbed onto the substrate by dosing from a calibrated standard volume which forms part
of a room temperature gas handling system. To convert from STPcm? to film density we
perform a vapour pressure isotherm at 4.2K. For our sample point-B corresponds to 15.23
cm?®, following a dead volume correction. We define our coverage scale by setting this
fiducial point at 11.4 nm™. The mass loading of the oscillator measured at 1.5 K is —9.33
mHz/STPcm?. The empty cell background-subtracted frequency and dissipation as a function

of temperature have a smooth and systematic evolution with film coverage. The superfluid



mass decoupling appears then disappears over a narrow range of second layer film densities,
accompanied by a monotonic evolution of the frequency shift, most pronounced at higher
temperatures, which is attributed to the viscoelastic response of the substrate-adsorbate
composite. This behavior allows us to generate a composite background for the frequency
shift data in order extract the superfluid response. Estimates of the systematic errors in
composite background subtraction, the bound on the superfluid critical velocity, and issues
around substrate morphology are discussed in accompanying supplementary information. The
data that support the plots within this paper and other findings of this study are available from
from the corresponding author upon reasonable request, and also from

https://dx.doi.org/10.6084/m9.figshare.4290752.
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Figure Captions

Fig. 1. Frequency shifts of torsional oscillator.

(A) Double torsional oscillator, cut-away to show graphite substrate, on which helium film is
physisorbed. (B) Two layer “He film. The first layer of “He (pink spheres) on graphite forms a two
dimensional close packed triangular lattice. Second layer (blue) is shown as a solid on a triangular
lattice. (C) Frequency shift of torsional oscillator at a series of helium film coverages, following
subtraction of empty cell background. The frequency shift due to full mass loading of the normal film,
determined at 1.5K, has been subtracted from the frequency shift data ( 26). The frequency shift due
to superfluidity appears after 17.1 nm2, reaching a maximum at 18.09 nm~and disappears at 19.96
nm-2 (these three bounds are highlighted). Data from 17.25 to 18.01 nm™ are not shown for clarity,
see (26). The monotonic evolution of the frequency shift as a function of coverage in the temperature
range 0.1 to 1K arises from the coverage dependence of the viscoelastic response of the substrate/film
composite system. (D) Dissipation of torsional oscillator at the same helium film coverages,
following subtraction of empty cell background. The dissipation shows a systematic evolution,
correlated with film structure ( 26). At the lowest temperatures the dissipation is smaller than that of
the empty cell. (E) Illustration of composite background subtraction for data set at 19.02 nm2. The
superfluid response (red line) is inferred by first subtracting the viscoelastic response of a non-
superfluid reference sample 17.1 nm?, result shown as black line. A correction to take into account
coverage dependence of viscoelastic response is made by a fit (blue line) to this data (black line) over
the temperature interval shown, highlighted in grey. Subtracting this background correction results in
the superfluid response (red line). See ( 26) for further details. (F) Isotherm of frequency shift, after
composite background subtraction, at 2.5 mK. The error bars reflect uncertainties in the subtraction of
frequency shift due to mass loading or the background subtraction, whichever is greater. The vertical
dashed lines (blue) indicate, for reference purposes, triangular superlattices ( 26), with densities
relative to first layer of 4/7, 7/12. Coverage at which promotion to the third layer occurs is shown by

vertical dashed red line.

12



Figure 2. Scaling of superfluid density.

(A) Temperature dependence of superfluid frequency shift for coverages 18.09 to 19.57 nm™ (second
layer density 6.32 to 7.69 nm), following composite background subtraction. The inset re-plots the
isotherm of fig. 1F, to show coverage ranges of scaling collapse: regions I (blue points) and Il (red
points) show single parameter scaling (see main text and ( 26)); regions A and B (green points) show
two parameter scaling. Also shown are phase boundaries identified in ( 24) (blue dashed lines), from
coverage dependence of heat capacity maxima (with coverages scaled by 0.943 ( 26)) and third layer
promotion (red dashed line), which are in good agreement with the boundaries of the different scaling
regimes. (B) Scaled superfluid density showing collapse over two coverages regimes achieved by
single parameter scaling. I: 18.09 to 18.41 nm (five studied coverages). I1: 18.50 to 19.24 nm™ (nine
studied coverages). (C) Coverage dependence of characteristic energy scale, A, inferred from the
single parameter scaling procedure in regions I and Il. Vertical dashed line shows promotion to third
layer. The density dependence of A determines, by extrapolation, a quantum critical point at a total
coverage 19.9 + 0.05 nm?, at which simulations ( 21, 22) predict the second layer to form a localized
close-packed solid. Over this coverage range the first layer density increases from 11.8 to 11.9 nm™2.

Dashed lines are guide to eye. Two parameter scaling behavior in region B is discussed in ( 26).

Fig. 3. Ansatz for elementary excitation spectrum and condensate wavefunction

(A). Ansatz for the dispersion relation of elementary excitations in the anomalous superfluid *He

monolayer. We take the form E, = \fEOZ +c*(k—G;,)? , (blue line) where c is a characteristic speed,

and E, is an effective roton-like gap. (B) There are six softening-roton-like modes at the density wave

ordering wavevectors G e {£G(1,0),=G(1/ 2, NEYi 2),+G(-1/2, J3/ 2)}, where G = 47r/(a\/§)

corresponds to a triangular lattice of side length a. (C) Simplified illustration of condensate
0 ip o 0 iy . L
|W) = COSE|O> +€"“sin §|G> e'” with SU(2) symmetry, with condensation into states of

momentum 0, G. The amplitude of the density modulation varies assin @ . For more details and

13



generalization see ( 26). This symmetry implies that vortices are not stable, and explains the absence

of a BKT transition.

14



20

Af (mH2z)

10

Af (mH2z)

|
'

|
'

torsion rod

coin silver
cylinder

Mg electrodes
torsion rod

isolation mass on
its torsion rod

sample cell containing
exfoliated graphite

17.11 nm™?
18.09 nm™
18.17 nm*?
18.25 nm™
18.32 nm™
18.41 nm™
18.50 nm™
18.58 nm™
18.66 nm™
18.75 nm™?
18.83 nm™
18.92 nm™
19.02 nm™
19.13 nm*
19.24 nm™
19.36 nm™?
19.46 nm™
19.57 nm*
19.96 nm™

108

107? 10t
Temperature (K)

2.0

1.5 -

1.0

0.5

0.0

\ E
> A
/|
N

Af, o« (MHZ)

-0.5
0.001

0.01 0.1 1
Temperature (K)

10® x AQ™

103 1072 107 10°
Temperature (K)

[ T 7 — T 1]
[ | ]
[ I i
B '.O | F | ]
T ° I |
- .‘Oé | I i
L @ | 4
T 1°Qee I
: L% I
1 L ° |5
g || |
L e® | i.‘ os I ]
I e | l|_'
[ I ]
| | I -
1 | N | L1

I I I
17 18 19 20

n (nm)



Q
|||||||||||||||| O —— —— ]
@
® (2l
o1
@
IIIIIIIIIII o-—-—————--=-=-4
= @ -
%
@ —
‘.
|||||| ‘l‘|||||||||||||||
@ ¢ —_

20

19

n (nm’)

0.10 0.15 0.20 0.25 0.30
Temperature (K)

0.05

0.00

1 1
19.0 19.5
n (nm'2

1
18.5

1
18.0

I
|
|
|
|
|
|
|
|
|
| -
|
20.0

)

T/ A(n)






Supplementary information

Intertwined superfluid and density wave order in two dimensional *He.

Jan Nyéki!, Anastasia Phillis', Andrew Ho!, Derek Lee?, Piers Coleman!?3,
Jeevak Parpia®, Brian Cowan!, John Saunders'*

!Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, U.K.
2Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, U.K.
3Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscawatay, NJ 08854, USA.
4Department of Physics, Cornell University, Ithaca, NY 14853, USA.

*e-mail: j.saunders@rhul.ac.uk

Contents
1 Methods 2
1.1 Torsional oscillator and thermometry . . . . . . . . .. ... L oL oL 2
1.2 Coverage scale . . . . . . .. 3
1.3 Composite background . . . . . . . . L. 4
2 On the structure of the second layer 5
2.1  From liquid gas coexistence region to uniform fluid . . . . . ... .. ... ... ... 7
2.2 Transition from uniform fluid to phase with broken translational symmetry . . . . . .. 8
2.3 Anomalous superfluid coverage regime . . . . . . . ... ... 8
3 Calibration of superfluid density 11
4 Scaling the data 13
5 Superfluid density from excitation spectrum ansatz. 15
6 Trial wavefunction for intertwined superfluid and density wave order 17
7 Non Abelian Manifold 19
8 Quantum transition 21



1 Methods

In this section we provide details of the torsional oscillator, sample thermalization to low mK tem-
peratures, and thermometry. We outline the measurement techniques and describe how the coverage
scale is defined. We discuss the determination of the torsional oscillator composite background, which
allows us to extract the signal arising from superfluid mass decoupling.

1.1 Torsional oscillator and thermometry

The double torsional oscillator is shown in Fig. S1; it is machined (apart from the cell lid) from a
single piece of coin silver. The hollow upper part is filled with 48 sheets of exfoliated graphite [33],
130 pm thick, each diffusion bonded onto silver foils 25 pum thick for thermalisation. Each silver foil
is diffusion bonded to the base of the upper part of the cell ensuring good thermalisation down to
the lowest temperatures of 1mK. The cell lid is glued in place using Stycast 2850 FT epoxy. The
lower part of the double oscillator is a solid coin silver cylinder of diameter 20 mm. The two torsion
rods are coin silver of outer diameter 2.5 mm and 2.0 mm respectively. They are hollow to permit the
admission of helium to form the surface film on the graphite substrate, via a filling capillary from room
temperarure. Two magnesium electrodes are glued to this cylinder; in operation they are biased at 50V.
The double oscillator is mounted on a massive copper isolation mass of estimated resonance frequency
80 Hz to reduce levels of vibrational noise at the oscillation frequencies. The double oscillator had
resonant frequencies at low temperatures of 1423 Hz (anti-symmetric mode) and 277 Hz (symmetric
mode). All measurements reported were taken with the antisymmetric mode, since the symmetric
mode had insufficient frequency stability. The mass sensitivity is —9.33 mHz/cm®STP of *He, Fig. S2.
The frequency resolution A f/f in the antisymmetric mode was 2 x 10~7.

sample cell containing
exfoliated graphite

torsion rod

coin silver
cylinder

Mg electrodes
torsion rod

isolation mass on
its torsion rod

melting curve
thermometer

bottom cell plate

Fig. S1. Torsional oscillator used in our experiments. Cross-sectional view (right) shows assembly details of
exfoliated graphite and silver foils.

This work necessitated measurements over a wide temperature range, from 1 mK to 3 K. Therefore
the oscillator assembly and associated thermometry are mounted on a copper cell plate that is in
turn mounted via brass support rods with insulating (vespel) washers to the top of a copper nuclear
adiabatic demagnetisation stage. The cell plate is cooled through a weak thermal link, consisting
of copper braid. Importantly this allows us to sweep temperature (the cell plate can be heated to
710 mK with power 350 uW while maintaining circulation of the dilution refrigerator), at the expense
of minimum temperature (1.2 mK). Thermometry to cover the entire temperature range with high
precision is provided by a carbon glass thermometer (above 1.3 K), germanium thermometer (50 mK to
6 K) (calibration provided by manufacturer) and a *He melting curve thermometer (1 mK to 250 mK),
using the superfluid A transition as a fixed point.

The resonance frequency and quality factor of the torsional oscillator are measured as a function



of temperature. Most data is taken sweeping the temperature at a suitable rate to maintain thermal
equilibrium, checked by points taken at stabilised temperature (using the appropriate thermometer
and digital temperature control implemented using LabVIEW data acquisition software). The drive
and detection electrodes are mounted on the copper isolator block, with a typical capacitance to the
biased electrode of 11 pF. The oscillator is driven on (or close to) resonance, applying a typical drive
voltage of 9.9 mV from an Agilent DS345 function generator using an HP5335A counter to provide a
high stability reference clock (aging rate < 5 x 10719 per day). The current induced in the detection
electrode is measured by a Brookdeal 5002 current preamplifier, with subsequent lockin-detection. We
measure the real and imaginary parts of the response, to determine the resonant frequency and quality
factor of the oscillator.
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Fig. S2. Mass loading calibration at 1.5K for coverages between 17.11nm 2 and 19.57 nm 2 (filled circles).
The upper panel shows residuals of a linear fit. These residuals also reflect the long term frequency stability
of the oscillator.

We can determine the phase angle between drive and detect signals (with precision < 0.1°) by
calibrating the response of the oscillator through a frequency sweep at a chosen reference temperature.
This measurement provides a reference value for the quality factor @, @Qg, and the amplitude at
resonance Ag. In subsequent measurements we drive the oscillator at fixed frequency fp and drive
voltage and measure the quadrature X and in-phase response Y. The resonance frequency is the drive
frequency at which we obtain a null response of the in-phase signal. In practice we operate within

5 uHz of resonance, beyond which the drive frequency is re-tuned. Then: @Q = % (%ﬁ) and

f=fp (1 + %%) Typically the amplitude of oscillation at edge of cell is 6 nm. We note that this
is more than an order of magnitude greater than the lattice parameter in the completed second layer.

1.2 Coverage scale

Helium is adsorbed onto the exfoliated graphite surface from a room temperature gas handling system.
Doses of helium gas are added from a calibrated standard volume, at a precisely measured pressure. To
convert from STPcm?® of gas to film density we perform a “He vapour pressure isotherm at 4.2 K [34].
For our sample, point-B of a dead volume corrected vapour pressure isotherm corresponds to 15.23



cm?®. We define our coverage scale by setting the coverage at this point, corresponding to second layer
promotion, to 11.40nm~2. The change in oscillator frequency due to mass loading, measured at 1.5K,
is shown in Fig. S2. This mass-loading shift is applied to all the frequency data discussed in this paper.

1.3 Composite background

In torsional oscillator experiments it is necessary to perform a background subtraction in order to
infer the frequency shift and dissipation arising from potential superfluidity. However the temperature
dependence of the frequency shift and dissipation observed with a non-superfluid sample differs from
that of the empty oscillator. This is illustrated in Fig. S3, which shows two reference samples (at
coverages 17.11 nm~2 and 19.96 nm~2), spanning the coverage range over which a superfluid response is
detected. These clearly differ from the empty cell background, and this is attributed to the viscoelastic
response of exfoliated graphite coated by a non-superfluid film. Also shown is a sample at coverage
18.09nm~2, which had the largest superfluid response.
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Fig. S3. Temperature dependence of the resonance frequency and dissipation of empty cell compared to
that of cell loaded with different samples. Frequency data for different coverages are shifted by measured mass

sensitivity (Fig. S2).

We construct a composite background, as is the norm in torsional oscillator studies of helium films
[52]. In our case the composite background is generated as follows. We take the 17.11 nm ~2 reference
sample as an initial background. We then correct it, at each coverage, by a function to eliminate
the high temperature frequency shift, which features a maximum around 0.5 K, which monotonically
evolves with coverage. This correction A f°*(T") is determined from fits to each frequency shift data
set using the form A f°(T) = A fo + kx?/ cosh® z where z = Ay, /(T + Tj,). These fits are performed
over a temperature range well-separated from that in which superfluid response is observed. In the
example shown in Fig. 1E, coverage 19.02 nm~2, the temperature range of the fit is 0.1K to 0.95K.
The dependence of the fit parameters on coverage is shown in Fig. S4. The parameters governing the
temperature dependence, Ay, and T}, are essentially coverage independent. The parameter k governs
the magnitude of the local maximum in frequency shift around 0.5K. The parameter A fy is a small



temperature independent offset. Close to third layer promotion, at 20 nm~2 it is larger than the
frequency shift due to superfluidity, and is the chief source of the errors shown in Fig. 1F.

The dissipation does not have a simple temperature dependence, so it is not possible to generate
a composite background in this case. Therefore, throughout the paper, dissipation data are presented
with only the empty cell background subtracted. However, the systematics of the evolution of the
dissipation with helium coverage, provides insight into the second layer phase diagram, as discussed in
the following.
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Fig. S4. Coverage dependence of parameters used in composite background

2 On the structure of the second layer

We briefly describe the status of theoretical predictions of the evolution of the structure of the second
layer of helium as a function of coverage. We elaborate on the systematics of the coverage dependence
of the torsional oscillator response observed in our experiments, particularly dissipation. These pro-
vide evidence for a sequence of phase changes in the second layer as the coverage is increased, which
correlate with the onset of superfluid response. No definitive identification of structure is possible from
these measurements alone. Nevertheless the evidence for intertwined superfluid and density wave order
derives from the nature of the superfluid response itself.

There is theoretical consensus [35, 36, 37, 38] that the second layer of helium on graphite self-
condenses at a density between 4 and 5 nm 2, with a critical temperature of order 0.8K. At coverages
below this value, the second layer consists of self-bound two-dimensional liquid droplets. At coverages
immediately above this value a uniform two dimensional fluid is expected.

Close to the coverage at which promotion to a third layer occurs the second layer is predicted to be
an incommensurate (i.e not in registry with the first layer) 2D solid on a triangular lattice [37, 38]. At
slightly lower coverages there is debate over whether the second layer initially forms a commensurate
solid, registered with the first layer triangular lattice, out of the uniform fluid phase as its density is
increased. This phase (the C-phase) can be thought of as structure in which both the first and second
layer form a triangular superlattice with respect to a fictitious triangular grid. The ratio of the density
of the second layer to the first layer of such possible superlattices is then a rational number eg 7/13,
9/16,4/7,7/12,12/19, 13/19. The superlattices considered to be relevant to the second layer prior to



third layer promotion are the 4/7 and 7/12 phases. It is at densities around these putative C-phases
that the anomalous superfluid response we report is observed.

For “He films, early Path Integral Monte Carlo (PIMC) simulations [37] found the 4/7 phase.
However more recent calculations [38, 41] find that the 7/12 structure is more stable than the 4/7
structure. These latter authors also conclude that both structures are unstable with respect to a liquid
phase, but differ concerning the reasons. [38] argues that zero-point motion of first layer *He atoms
is responsible while [41], which concerns graphene as a substrate, argues that quantum exchange of
second layer atoms is the main effect. [38] uses a laterally averaged helium-graphite potential for
simulations of the second layer. On the other hand [42] use an anisotropic helium-graphite potential
reflecting the surface corrugation. This stabilizes a high density first layer commensurate structure
and these authors find that a 4/7 structure in the second layer is at least metastable on top of this first
layer commensurate structure. The potential importance of using the full helium-graphite potential is
also highlighted by neutron scattering data [43, 44] which find evidence for commensurate structures
in the first layer which develop around promotion to the third layer in both *He and He films.

There is also important experimental evidence for structural changes in the second layer from
measurements of the heat capacity. Heat capacity maxima are observed arising from the second layer
at coverages in the vicinity of where the putative 4/7 phase would occur for both 3He and “He films at
1.0K and 1.5K respectively [39, 53]. These maxima, when scaled appropriately, are of similar shape,
Fig. S5. This result has been recently extended using a higher quality exfoliated graphite substrate
[54], providing evidence for the melting of a new quantum phase.
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Fig. S5. Scaled heat capacity peaks for second layer *He and *He, original data from [40, 53].

We note that any comparison of the results of different experiments requires the alignment of the
slightly different coverage scales used by different groups. This also applies to comparison with the
results of simulations. Such adjustments are particularly important in the present work, where the
anomalous superfluid response is observed over a narrow coverage range preceding promotion to a third
layer. In this case it is natural to choose promotion to the third layer as the fiducial point, and we
adopt that procedure here. In our case this coverage corresponds to 20.0 nm =2, [48, 49]. The details
of scaling of the various coverage scales are given in a footnote [50].

In the present torsional oscillator experiment we find clear systematics in the evolution with cov-
erage of the temperature dependence of oscillator dissipation Q~1(7T'), Fig. S9-S12. The dissipation
exhibits distinctive maxima. The correlation between the evolution of the temperature of these dissi-
pation maxima and features in the heat capacity, measured by Greywall [53], are shown in Fig. S6.

The evolution of the temperature of dissipation maxima with coverage, over a wider coverage range,
is shown in Fig. S7. The systematics of the dissipation data, and the correlation with the superfluid
response is discussed in the following.
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2.1 From liquid gas coexistence region to uniform fluid

In the first layer the temperature of the dissipation maximum, Fig. S7, shows a decrease as the first layer
density is increased. With the formation of the second layer, a plateau is observed, which we interpret
as a signature of the predicted two phase liquid-gas coexistence region, arising from two-dimensional
condensation. Thus over the anticipated liquid-gas coexistence region (measured coverages 12.50,
14.55, 15.43, 16.34 nm~2) we observe a maximum in dissipation initially at 300 mK, shifting down in
temperature only very slightly to 270 mK at 16.34 nm~2. Over this coverage range the predicted second-
layer condensation temperature is 0.75 K to 0.8 K, so at 300 mK the second layer should comprise liquid
puddles. We account for the absence of a coverage dependence to the dissipation in this regime as
follows. The dissipation maximum at 0.3 K is attributed to the viscoelastic response of the exfoliated
graphite/helium adsorbate composite system. The submonolayer film data show this to be a strong
function of first layer density. In the puddling regime, the first layer density is approximately constant
since the spreading pressure of the second layer is zero, and the coverage dependence of the first layer
density due to compression by the second layer is negligible. This picture is consistent with neutron
scattering measurements of the first layer density [45].

From 16.57nm~2 there is a clear onset of coverage dependence to the dissipation data (Fig. ST7),
that we identify with the end of liquid-gas coexistence and the establishment of a uniform fluid phase.



The result identifies the density of self-bound liquid in the second layer to be 4.7 4+ 0.1 nm~2, in good
agreement with theoretical predictions [37, 38].

Over the coverage range 16.57 to 17.64 nm 2 we observe a smooth downshift in both the tempera-
ture and magnitude of the dissipation maximum, Fig. S8, that we attribute to compression of the first
layer due to the increase of the density of the uniform liquid second layer. Within this uniform fluid
regime, the coverage 17.41 nm~2 is the first to show clear evidence of the onset of a frequency shift at
low temperature, below 100 mK, which we interpret as mass decoupling due to superfluidity.

This absence of strong superfluid signal at the lowest densities of uniform liquid is consistent with
prior observations in the third layer of *He on graphite [46] and the first superfluid layer of “He on
graphite pre-plated with two and above atomic layers of hydrogen [47]. These systems display a strong
intrinsic coverage-dependent suppression of superfluid density in a fluid layer, which has so far not
received a clear explanation. Possible candidates are: the influence of periodic potential due to the
solid first helium layer on the superfluid transition of the second layer fluid; influence of proximity to
spinodal point of the 2D liquid-gas phase transition.

2.2 Transition from uniform fluid to phase with broken translational sym-
metry

The temperature of the dissipation maximum shows a clear down-step between 17.78 and 17.93 nm ~2

from 180 mK to 130mK, Fig. S7. With subsequent increase in coverage from 17.93 to 18.09 nm ~2, the
dissipation maximum displays only a small shift in temperature, < 10 mK, but grows in magnitude,
Fig. S9. Over this coverage range the mass-decoupling frequency shift increases more rapidly, with the
the maximum frequency shift occurring at 18.09 nm~2: see frequency shift isotherm Fig. 1F and 2A
inset (main body of paper). This leads us to identify the coverage range 17.78 + 0.05 to 18.09 £ 0.05
nm~2 as a narrow two-phase coexistence region, the two phases being fluid and a new phase with
broken translational symmetry. The scaling analysis supports a picture of two-phase coexistence over
a somewhat wider coverage range, which we denote as region A (see Fig 2A inset and further discussion
in section 4).

Thus the raw torsional oscillator data, taken by themselves, refute the most recent theoretical
prediction [38] that the second layer fluid remains liquid up to third layer promotion (where incom-
mensurate solid forms).

2.3 Anomalous superfluid coverage regime

As stated in the previous section the maximum superfluid frequency shift occurs at 18.09nm ~2. The
height of the dissipation maximum is also greatest at this coverage, which is close to the low temper-
ature coverage-driven transition from uniform liquid to a liquid-solid coexistence predicted by PIMC
simulations [37]. This supports the identification of the anomalous superfluid regime, as arising from
a film structure with broken translational symmetry. Note, we apply a scaling of the coverages in
the theory paper by a factor 0.943; this factor is determined by matching the coverage we experi-
mentally determine for third layer promotion, from our measurements of the heat capacity [49] to the
theoretically quoted value.

The data from 18.09nm ™2 to 19.96 nm 2 are shown in the main body of the paper, and we provide
some further commentary here, with information on the dissipation data.

Fig. S10 shows the frequency shift data, after composite background subtraction, and the dissipation
data (empty cell background subtracted)for coverages 18.09 nm =2 to 19.24nm~2. As discussed in more
detail in section 4, these correspond to regimes I and II of the scaling analysis, where single parameter
collapse is achieved.

On increasing the coverage from 18.09nm™<, we first observe a gradual down shift in the tem-
perature of the dissipation maximum, and reduction in its magnitude, Fig. S10. A new maximum in
dissipation at around 0.5 K gradually appears (we first observe a clear maximum at 18.41+0.1 nm~2),
Fig. S11. This is close to the transition from region I to region II scaling discussed in section 4, and
may therefore reflect a change in the structure of the second layer.
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the evolution of the high temperature dissipation maximum.

Above 18.41nm~2 the high temperature dissipation maximum exhibits only a small growth in
magnitude, while remaining at a fixed temperature of 0.5 K. The low temperature dissipation feature
becomes weaker until it is only apparent as a shoulder in Q~*(T') [51].

In Fig. S12 we show the frequency shift and dissipation data for coverages from 19.36 to 19.96 nm ~2.
This is an interval of second layer coverages, prior to third layer promotion, over which single parameter
scaling breaks down, labelled regime B. This is indicative of an intervening phase, which interrupts
the approach of regime II to the quantum critical point discussed in the main body of the paper. See
section 4 for further discussion.

In order to check for critical velocity effects, measurements were made, at the end of the run,
at a selection of coverages with a rim velocity of order 500 pms~!, an order of magnitude greater
than that in the main experiment. A comparison of results at two superfluid coverages (18.17 and
18.83 nm~2) with those at two non-superfluid coverages (19.96 and 20.94 nm ~?2) showed no significant
detectable influence of substrate velocity. This procedure makes allowance for the possible dependence
of oscillator backround on rim velocity.

3 Calibration of superfluid density

In this section we describe the calibration of the superfluid frequency shift data in the anomalous regime
by measurements on a known system: the BKT transition in the fluid third layer, atop two solid layers.

A feature of all studies of superfluid films, as well as superfluidity in porous media, is significant en-
trainment of the superfluid film arising from substrate connectivity or pore geometry respectively [52].
This effect is parameterised by a y-factor, where 1 — x gives the fraction of superfluid that decouples
from the surface. It is well established [46] that exfoliated graphite substrate has small 1 —x due to the
relatively poor connectivity of the substrate over long length scales, comparable to torsional oscillator
dimensions. A determination of the y-factor is necessary to convert measurements of the frequency
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Fig. S12. Frequency shift (composite background subtracted corrected for mass sensitivity) and dissipation
(empty cell subtracted) for coverage range between 19.36 nm ™2 and 19.96 nm ™2, close to third layer promotion,
region B.

shift to superfluid density. Here we calibrate the superfluid density measurements in the second layer
by a measurement of the BKT transition of a thicker *He film, Fig S13. This film had a total coverage
of 26.67 nm~2 corresponding to two solid layers with a fluid overlayer (third layer) of density 5.5 nm ~2,
and is close to fourth layer promotion. From the observed frequency shift of the above superfluid film,
and the measured mass loading sensitivity of this oscillator we infer x = 0.942, comparable to values
we measured previously with exfoliated graphite substrates prepared using the same heat treatment
protocols [47]. Our measured 1 — x is significantly larger than the value determined by [46].

A comparison with a range of samples in the second layer, with similar layer density, is shown in
Fig S13. It is apparent that at coverage 18.66 nm 2 the T' = 0 superfluid fraction is close to 0.5. Thus
the observed superfluid response is essentially a property of the entire second layer. It does not arise
from the spontaneous appearance of vacancies by the Andreev-Lifshitz mechanism [55]. Neither can it
arise from the hole or interstitial doping of a Mott-insulator commensurate phase.

We now briefly mention the relationship of our experiment with previous and contemporary tor-
sional oscillator experiments on this system. Our results are consistent with the previous work of
Crowell and Reppy [46], who first identified an anomalous temperature dependence of the frequency
shift over a narrow range of coverages, from 17.1 to 18.5nm~2 on our scale. Their frequency shift
isotherm at a temperature of 20 mK, their lowest temperature, showed the appearance and subse-
quent apparent diappearance of superfluidity in the second layer. The results of Crowell and Reppy
inspired our present measurements to ultralow temperatures. Crowell and Reppy proposed a second
layer phase diagram, based on the heat capacity measurements of [53]. This led them to the conclusion
that second layer superfluidity is destroyed by solidification. Several alternative scenarios were also
discussed. However it is important to note that their phase diagram is inconsistent both with subse-
quent experiment [53, 54] and with theoretical predictions [37], as discussed elsewhere. The coverage
at which the maximum frequency shift in the second layer occurs, measured in [46], agrees with our
result within 0.1 nm™2, after applying the coverage re-scaling described in [50] .

A subsequent torsional oscillator experiment, at coverage 18.7 nm~2 [56], is consistent with the
data of [46]. There is no evidence of critical velocity effects up to 4000 pms~! in [46]. Response as a
function of rim velocity was also studied up to 1050 pms~! at 18.7 nm~2 in [56], but it is difficult to
make definitive conclusions on critical velocity from this data.
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4 Scaling the data

We describe in more detail the procedure used to scale the superfluid density data. Two coverage
regimes (I and II) with different single parameter scaling emerge. Scaling in the higher coverage range,
regime II demonstrates quantum criticality, as discussed in the paper. Two additional regimes, A and
B, displaying two parameter scaling are also discussed.

We seek scaling of the data according to the form w = A}:) f(T/A(n)) where n is the second

layer density. Here Ty is chosen so that f(0) = 1, and so 2:(T=0) _ %:). The superfluid density
is then described over a range of coverages by a universal function, with its temperature dependence
governed by a single energy scale A(n), which depends on layer density. Explicitly the scaling procedure
is: plot log ps against log T'; choose one reference coverage n;, let the energy scale parameter for this
coverage be A(n;); apply equal shift (loga) to both logps and logT to seek collapse over entire
measured temperature range with data at n;; then aA(n;) = A(n;). This procedure involves no
assumption about the form of the function f(T/A(n).

The frequency shift data are first converted to ps/p, using the superfluid transition in the third
layer as a normalisation, as previously discussed. The second layer density is determined from the total
coverage, by subtracting the first layer density; the small compression of the first layer with increasing
coverage is accounted for using direct neutron scattering measurements of the first layer density [45].

We find two coverage intervals, referred to as I and II, in which the data collapse with this single
parameter scaling.

Regime I. We chose 18.09 nm~2 as our reference coverage. The data at coverages 18.17, 18.25,
18.32, 18.41 nm~2 collapse onto this reference coverage. By construction Ty is independent of coverage
and A scales between coverages according to the factors « determined by the procedure above. The
absolute values of A and Tj are obtained from fits to the collapsed data. We find that the collapsed
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data is well described by f(T/A) = 1/(1+ (T'/A)¥); the best fit for T < A is obtained with w = 1.
At the reference coverage we find A(n = 18.09nm~2) = 43.0 + 0.5 mK and Ty = 53.8 mK.

Regime II Coverages 18.50, 18.58, 18.66, 18.75, 18.83, 18.92, 19.02, 19.13, 19.24 nm 2 collapsed
onto the chosen reference coverage 18.66 nm~=2. We find f(T/A) = 1/(1 + T/A) fits the data well up
to T/A ~ 4. The absolute values of A and Ty are obtained from fits to the collapsed data. We obtain
A(n =18.66nm~2) = 10.9 £ 0.2 mK and Ty = 21.5mK.
Together with the factors a determined by these scalings, this generates the absolute values shown
in Fig. 2 (c). We emphasize that the relative scaling of the A(n) shown there is independent of the fit
ps(Tin) _ ps(Om) _ T

to the temperature dependence. To leading order = P -

10° T T

a (pg/p)
2
T

a (pg/p)

102
103

0.05 0.10 0.15 0.20 0.25
oT (K)

Fig. S14. The two regimes of data collapse. Regime I: upper curve. Regime II: lower curve.

The data collapse onto the two reference coverages, specified above, is shown in Fig. S14. Fig. 2 of
the main body of the paper shows most clearly the difference of the two functional forms in regime I
and II, which deviate for 7' > A. The two regimes show a different coverage dependence of A as well
as different values of Ty, Fig 2C. These two distinct coverage ranges of collapse support our proposal
that the anomalous superfluidity arises from the simultaneous breaking of translational symmetry,
suggesting distinct spatial structure in regimes I and II. The border of these two regimes is correlated
with the appearance of a new weak dissipation maximum at 0.5 K, Fig S11.

In the main body of the paper we argue that regime II corresponds to superfluidity with incom-
mensurate density wave order. The structure factor in regime I is expected to be different, but still
incorporating some form of density wave order, perhaps liquid-crystal like.

Regimes A and B The data in coverage ranges A and B do not collapse with single parameter
scaling. Regime A: Coverages 17.25, 17.41, 1.52, 17.64, 17.78, 17.93, 18.01, 18.09nm ~2. Regime B:
Coverages 19.36, 19.46, 19.57, 19.69, 19.80, 19.96 nm 2.

However collapse was achieved with two separate scaling factors for the superfluid density and
temperature axis, shown in Fig. S15, according to a, 22 = Af (%)

The behaviour in regimes A and B differs. In the regime A the scaling factor for the temperature
axis shows no strong coverage dependence, while that for the superfluid density axis shows a marked
increase. This is suggestive of a two phase coexistence over this narrow coverage range between non-
superfluid and superfluid components, the fraction of the latter increasing with increasing coverage.
In regime B, the scaling shows only a relatively small decrease up to layer promotion of the T = 0
superfluid density. However the characteristic energy (or equivalently characteristic temperature below
which superfluidity gradually appears) decreases approximately linearly with coverage towards zero at
layer promotion. More detailed studies at low mK temperatures, coupled with improved knowledge
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Fig. S15. Scaling parameters as a function of coverage.Vertical dotted lines show coverage boundaries which
mark transition between different scaling regimes. Regime I and II display different single parameter scaling.
Regimes A and B show two parameter scaling of different forms.

of the background and of film structure, are desirable, but challenging. Nevertheless, this result
suggests the tantalising possibility that, superfluid response survives up to layer completion, but with
a vanishing temperature onset.

5 Superfluid density from excitation spectrum ansatz.

We can account for the leading order temperature dependence of the superfluid density via an ansatz
for the elementary excitation spectrum, consistent with incipient density wave ordering.
The superfluid density ps relates the supercurrent j, to the superfluid velocity v,

js = PsVs. (1>

At a finite temperature, thermally excited quasiparticles deplete the superfluid so that

ps(T) = ps(o) - pn(T) (2)

where p;(0) is the ground-state superfluid density and p,,(T) is the thermal depletion of the superfluid
density. This quantity is determined by the momentum stress tensor of the quasiparticle fluid, given
by the Landau formula [57]

e [y (] o
Proia == | arnyd PP 9E, \ exp(Ey/kpT) — 1

where p; is the momentum in the ¢ direction, d is the dimensionality, T' the temperature and Ey, is the
energy of a quasiparticle with momentum p and we have assumed an isotropic superfluid response.
For a conventional superfluid with a linear phonon spectrum, Ep, = v|p|, this gives a low-temperature
dependence of p, oc 79!, One can derive this result heuristically by noting that for linear disper-
sion, momentum and energy have the same dimension, and that the dimensionality of the integral is
[E9F1] ~ T4+, Note that at low temperatures, the momentum of the excitations vanishes linearly
with temperature, because the dispersion is centered at zero. In two dimensions, this gives rise to a
T3 reduction to the superfluid density with increasing temperature preceding the BKT transition, as
has previously been observed in experiments on superfluid *He films on hydrogen preplated graphite
[47].
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The linear-T drop in the superfluid response at low temperatures found in second layer *He implies a
much more rapid depletion of the superfluid density which is most naturally attributed to the excitation
of high-momentum quasiparticles, centered around a set of ordering wavevectors hG with dispersion

Ep ~ clp — hG| (4)

where c is the sound speed. We interpret this as a consequence of an incipient density wave ordering
at the wavectors G. Finite temperatures now excite cones of high-momentum excitations centered
around p ~ AG. Since the characteristic momentum of the excitations is finite at low temperatures,
the depletion of the superfluid density is qualitatively larger. In keeping with this logic, we see that
the momentum product p;p; ~ [G];[G]; in (3) can be factored out of the stress momentum integral at
low temperatures so that

5i; —ZGG-/ @p__0 ! (5)
Pnlii | (2nh)e 9B, \exp(Ep/kpT) — 1)

This factorization reduces the dimension of the stress momentum integral by two, [p,] ~ 79! so the
high momentum of the quasiparticles leads to a linear reduction of the superfluid condensate in d = 2.

We now carry out a more detailed calculation of the quasiparticle depletion of a modulated super-
fluid. Supposing a 2D triangular lattice in real space, then on symmetry grounds, the soft-modes will
be located at the six density wave ordering wavevectors.

G e {£G(1,0), £G(1/2,v3/2),+G(-1/2,V/3/2)} (6)

as shown in Fig. S16. Here the magnitude G = 27/(a cos 30°) = 47 /(a\/3") corresponds to a triangular
lattice of side length a.

G, G,

G, G,

G; Gs

Fig. S16. Star of vectors Gi,2,...6 showing location of gapless rotons. The vectors G are incommensurate,
but are aligned with the underlying triangular lattice substrate

To carry out the calculation of the superfluid stiffness, we approximate the dispersion relation

around each G by:
1/2

(7)

We have introduced a small roton-like gap Ey. This might be an intrinsic property of the system or
it may arise as a consequence of the finite domain size of the modulated superfluid. Such domains
can arise from a variety of effects, including the finite experimental cell and the platelet size of the
underlying graphite substrate.

The leading low-temperature contribution to p, from the excitations near G is given by

S UOR [ d _(E+ sy
kgT J (2mh)? [e(Eg+62p2)1/2/kBT _ 1]2

3G2kpT [ xe® dx
= 2 z _ 1)\2 (8)
e Bo/kpr(€® — 1)

Ep:hG = [Eg + CQ(p — BG)Q]

Pn (T)

G
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where we have taken the upper cutoff to infinity because we believe that we have reached temperatures
below the bandwidth of the excitation spectrum. This gives a T InT contribution to the fractional

normal density:
On 431 kT
— = T 14+In|—
p <m402>k3 <+D(Eo ’ ®)

where p = 2my/ V/3'a? is the total mass density, my is the mass of the helium atom and we have used
Ga = 4rn/ V3

Within the range of temperature in our experiments, the logarithmic term varies slowly, giving
rise to a dominant linear temperature dependence. From our results, we can extract p,/p = [ps(0) —
ps(T)]/p =~ T/Ty + O(T?) where Ty = 21.5 mK, in regime II. Comparing with (9), we find that
c~[1+In(kpT/Ey)]*/? x 31 m/s.

We can also comment on the ordering wavevector G as a function of coverage. The experiment sug-
gests that 0(ps/p)/0T |r=0 = —1/Tp is independent of coverage n. On the other hand, Eq. (9) suggests
(ps/p) /0T |1=0 x (Ga)?/c? at fixed temperature. Assuming that ¢ does not change significantly with
coverage, we come to the conclusion that G2 for the density wave is proportional to the second-layer
coverage ~ 1/a?. In other words, the system has a density wave order that is incommensurate with
the underlying substrate and first helium layer.

On finite size effects: note that superfluidity would be lost at finite temperatures if the excitations
at momentum hG were truly gapless (Fy — 0). Generally, for intrinsic and finite-size gap contributions
we would have

Eo = \/E2 + (ch/L)? (10)

where FEj, is the intrinsic gap and L is the large-distance cutoff. The present experiment cannot
distinguish between an intrinsic gap and finite size effects.

The inferred value of the effective speed which enters the dispersion relation is only weakly depen-
dent on finite size. The magnitude of the roton-like gap also determines the Landau critical velocity.
The observed lower bound on the critical velocity of around 1 mms~! implies a lower bound on the
effective roton gap of order 0.1 mK. If this gap were to arise solely from finite size, this would place
an upper bound on platelet size of 5 um. This is two orders of magnitude larger than the crystallite
size we determined by analysis of x-ray diffraction from a similar exfoliated graphite sample [58]. Tt is
important to note that torsional oscillator measurements of the superfluid density rely on the connec-
tivity of flow path over the dimensions of the entire sample. This connectivity is parameterised by the
x factor discussed in section 3.

6 Trial wavefunction for intertwined superfluid and density
wave order

The ground state of a superfluid with density wave order should exhibit simultaneous condensation of
the bosons at zero momentum with a complex order parameter

(bg=0) = a0, (11)

together with the development of a density wave order parameter at the characteristic modulation
wavevectors G,

</3q:G> = PG- (12)
The density operator can be expanded in terms of boson creation and annihilation operators: pg =
Yk bL_Gbk. Macroscopic occupation of the zero momentum state means that we may use the Bo-

golyubov substitution, replacing the operators by—o and b;r(zo by the numbers o and @y (@ is the
complex conjugate of o). Then the dominant (ground state) contribution to the density operator is

pc = OzObT_G + agbg. (13)
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Hence the presence of a finite (pg) implies the existence of a condensate component at finite momen-
tum, (bg) = ag.

A simple illustrative example of this is the case of a single characteristic modulation wavevector,
with condensation into two states, of momentum 0 and G. This referred to in the main body of the
paper, see Fig 3C. The intertwined ground state will be a linear combination of these two states and
it may be represented in terms of the Bloch sphere shown, with the general state given by

) = |:COSZ 0) 4 e sing |G>} e'x. (14)
This corresponds to a wave-function (x) = (x|¢) :
0 i . 0 ‘
P(x) = |cos 51/10 + e'?sin in(x) e'X (15)

where 1y = (x]0), ¥g(x) = (x|G), and we note that g (x) ~ e’G*1y. At the north pole (§ = 0),
we have |1)(x)[? = [io]?, corresponding to a uniform density. At the south pole (6 = 7) we have
[ (x)|? = [1ha(x)|?, again corresponding to a uniform density. However in the general case

0 0 1 ,
|9(x)|* = cos? 3 [0]? + sin? B vl + B sinf [ "% o (x)* g (x) + c.c] . (16)
Now, in addition to the uniform terms, there is an interference term so that
[Y(x)[2 ~ 14 ¢ sinf cos (G.x + @) . (17)

Thus in terms of the Bloch sphere, the north pole corresponds to the q = 0 state alone, with uniform
density. The south pole corresponds to the q = G state alone, with uniform density. These are
‘singular’ points. Elsewhere on the sphere there is quantum interference between the q = 0 and the
q = G states, resulting in a density wave of wave vector G. The magnitude of this wave is maximal
around the equator, going to zero at the poles.

The Bloch sphere picture can only treat a single nonzero ordering wavevector. The simplest class
of many-body wavefunction exhibiting intertwined order, with a number of ordering wavevectors is a
coherent state

W) = exp <aobgzo +y° 04ng> 0) (18)

G

where |0) is the vacuum, and G is the sextet of ordering wavevectors defined in the previous section
(Eq. 6). This coherent state is the eigenstate of the seven boson operators bq—o and bg, such that

bg=0|¥) = a|¥),  ba|¥) = ag|¥). (19)

This coherent state is also an eigenstate of the real-space boson field operators,

1 iq-x _
P(x) = ﬁ zq:bqe ) (d=2) (20)

such that X
P(x)[P) = ¢(x)|¥) (21)

where

1 1G-x
Y(x) = iz (ao + ;ace @ > (22)

is the condensate wavefunction of the modulated superfluid.
The expectation value of the total number N of bosons in the condensate is

N = () = Jaol + 3 lacl? (23)
G
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As this coherent state (18) is not an eigenstate of the number operator N , it has root-mean-square
number fluctuations [((N — N)2)]'/2/(N) ~ 1/v/N  which becomes negligible in the thermodynamic
limit.
On the other hand, the Fourier component of the density modulation at wavevector Q in this
coherent state is given by
(Tlpg|¥) = > tr-q o, (24)
k=0,G

where ap = 0 unless p = 0 or G. In this model wavefunction, the correlation function of the field
operators exhibits modulated long-range order. After averaging over the centre of mass coordinate,

[ X X4 030N) = ol + 3 Jaa S, (25)

G+#£0

7 Non Abelian Manifold

We show that our proposed quasi-condensate wavefunction has non Abelian symmetry. Consequently
there are no topologically stable defects and the system does mot support a finite temperature vortex
unbinding BKT transition, as observed.

In a conventional two dimensional superfluid, the finite temperature superfluid stiffness jumps
to zero at the transition temperature. Such transitions are a universal property of x-y type order
parameters, and are associated with the unbinding of superfluid vortices at the “Berezinskii Kosterlitz
Thouless” (BKT) phase transition.

One of the key observations of our experiment, is the absence of a finite temperature BKT transition.
Such transitions are clearly visible in three layer *He films, but are absent in the second layer of “*He
on graphite investigated here. The absence of a finite temperature BKT transition is remarkable, and
indicates that the underlying modulated condensate is unable to support topologically stable vortices.
Mathematically, the topologically stable configurations of an order parameter are set by the homotopy
classes of the the order parameter manifold. Here we show that a modulated superfluid wavefunction
introduced in the last section transforms under a set of non-Abelian operators, generating a homotopy
class that does not support stable topological vortices.

To discuss the manifold of low-energy states of this system, we need to discuss its symmetries. In
a conventional superfluid, the energy of the system is invariant to a global U(1) phase shift to the
condensate wavefunction:

U(r) — e(r), (26)

ie. ap — ape'® and ag — age® in (22). The system spontaneously breaks this U(1) symmetry
by picking a specific global phase. It can be shown that we can write this phase shift as a unitary
operation Uy on the state |¥):

W) — Uy|T) = exp(ipN)[), N =blbo+ > bhba (27)
G

where N is the total boson number operator. At the microscopic level, we expect the Hamiltonian to
conserve the number of bosons such that H commutes with N, [ﬁ N ] = 0. In turn, this implies that
H commutes with Uy, [H, U] = 0, so that |¥) and Ug|¥) have the same energy.

Since we have a density wave that is incommensurate with the underlying subtrate, we also expect
that it does not cost energy to translate it in the plane of the helium film. For a translation of dr = In,
the density profile changes p(r) — p(r + In) or pg — pge’’@™ for the Fourier components. In terms
of the coherent state (18), we see from equation (24) that this global translation is achieved by phase
shifts in the amplitudes ag — age”?S ™. This is equivalent to another unitary operation on W:

W) — exp(ilTy)|¥),  Tu=)» (G-n)bsbe (28)
G
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s0 1Ty generates translations of length [ in direction n. Using the same reasoning as above for the
global phase shift, we expect that the translation generators also commute with the Hamiltonian:
[H,Ty] = 0.

Since N commutes with 7}, the two symmetry operations of global phase shift and global translation
commute with each other. However, we must also consider the “Umklapp operators” which excite a

quasiparticle between the seven zero modes

Soe = biba,  Sao=bbo,
Sear = bgbar (G’ #£G) (29)
where G and G’ = Gy, 6. These operators do not commute, introducing a non-Abelian group

symmetry. We shall use the short-hand notation S’ag = S’Gagg, (a,8 € {0,1...7} ) identifying
Go = (0,0) with the origin. From our interpretation of the linear-T' reduction in superfluid density
as the existence of almost gapless modes at momenta AG, we deduce that the Umklapp processes are
zero energy processes that commute with the Hamiltonian,

[H, Sap) = 0, (30)

forming a larger manifold of degenerate states. This is the key conjecture of this non-Abelian scenario.

The important point to note here, is that the the Umklapp and translation operators do not
mutually commute, forming a set of non-Abelian zero modes defined by the algebra

[Slm; gnp] = 5mn‘§lp - 5lp§nm~ (31)

The enlarged manifold of states M radically changes the topological properties of the modulated
superfluid.

The superfluid BKT transition involves vortex unbinding. Vortices are topologically stable point
defects, for which there is no continuous deformation of the order parameter that unwinds the vortex.
The theory of topological defects classifies them in terms of homotopy classes [59]: point defects are

a) b)
I 0
=

Fig. S17. Configuration (a) depicts a vortex configuration of O(2) planar spins on a closed loop S'; Config-
uration (b) is a vortex configuration of SO(3) (Heisenberg) spins on a closed loop. Rotating spins into the z
direction give configuration (c¢) which has no vortices.

c)

0
|

described by mappings of the order parameter manifold M onto a closed loop, determined by the first
homotopy class 7 (M). For conventional superfluids, with a single U(1) phase, the order parameter
manifold M is a ring S for which 71(M) = 7m;(S') = Z, corresponding to the set of integer winding
numbers of vortices. By contrast, for a Heisenberg ferromagnet with the non-Abelian group manifold
of M =S0(3)/SO(2) = SU(2)/SU(1),

m(50(3)/50(2)) = 0 (32)

expressing the fact that there are no topologically stable vortices. An analogous situation occurs in
the modulated superfluid, where the first homotopy class

m (SU(7)/SU(6)) =0, (33)

is empty, implying there no point defects; like a Heisenberg ferromagnet, any vortex configurations
which develop can unwind in the third dimension, eliminating the BKT transition.
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8 Quantum transition

We identify a quantum phase transition at which superfluidity vanishes. The behaviour is consistent
with the Bose-Hubbard universality class.

We envisage that, as the coverage increases, the density modulations increase in amplitude. This
modulated superfluid still has larger number fluctuations than a conventional solid. In a coherent state,
the number-phase uncertainty is minimized: ANA¢ ~ 1 with AN « v/N and A¢ ~ 1 / V/N'. Unlike
an insulating solid, there is an additional uncertainty in the density associated with the formation of a
condensate with a well-defined phase. As the coverage is increased, the compressibility of the system
reduces. It decreases the number fluctuations in each local region of the system. The number-phase
uncertainty principle dictates that there are increased phase fluctuations at long wavelengths. The
zero-momentum condensate will suffer from these quantum phase fluctuations. The superfluidity is
lost when phase fluctuations become of order unity. This loss of superfluidity by phase fluctuations
is believed to the mechanism for the superfluid-Mott insulator transition in the Bose-Hubbard model.
Our system has more zero modes than such a lattice model, so the analogy should be treated with
caution.

The Bose-Hubbard model predicts scaling [7]

T
ps (T,6) = §"4+==2 ((Sl,z> (34)

where the coherence length and characteristic energy, governing spatial and temporal fluctuations
approaching a QCP, follow £ ~ 7% and Q =~ £ % =~ 0%, where § is the tuning parameter. In our
scaling analysis with second layer density as the tuning parameter, 6 = n.—n we find A « § consistent
with the predicted critical exponents zv = 1 for the Bose-Hubbard model in the clean limit in d = 2
dimensions.
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