
Noname manuscript No.
(will be inserted by the editor)

Automated Generation of Colluding Apps For
Experimental Research

Jorge Blasco · Thomas M. Chen

Received: date / Accepted: Mach 2017

Abstract Colluding apps bypass the security measures enforced by sand-
boxed operating systems such as Android. App collusion can be a real threat
in cloud environments as well. Research in detecting and protecting against app
collusion requires a variety of colluding apps for experimentation. Presently
the number of (real or manually crafted) apps available to researchers is very
limited. In this paper we propose a system called Application Collusion Engine
(ACE) to automatically generate combinations of colluding and non-colluding
Android apps to help researchers fairly evaluate different collusion detection
and protection methods. Our initial implementation includes a variety of com-
ponents that enable the system to create more than 5,000 different colluding
and non-colluding app sets. ACE can be extended with more functional compo-
nents to create even more colluding apps. To show the usefulness of our system,
we have applied different risk evaluation and collusion detection methods to
the created set of colluding apps.

Keywords Collusion · Android · Malware · Sandbox · Benchmark

J. Blasco
Information Security Group
Royal Holloway, University of London
Tel.: +44(0)1784 773116
E-mail: Jorge.BlascoAlis@rhul.ac.uk Present address: of F. Author

T.M. Chen
Department of Electrical and Electronic Engineering
City, University of London
Tel.: +44(0)2070 408926
E-mail: Tom.Chen.1@city.ac.uk

2 Jorge Blasco, Thomas M. Chen

1 Introduction

Modern mobile operating systems, such as Android, use sandboxing to pre-
vent malicious apps from causing harmful effects by restricting each process
from accessing resources outside its domain. In a sandboxed environment, ac-
cess to sensitive system resources is mediated by the operating system and
restricted by default. Apps requiring access must request the necessary per-
missions from the user at installation or execution time. Additionally, resources
from other apps are outside of the boundaries of the sandbox and must be ac-
cessed through inter-application communication methods, if available in the
operating system.

Colluding apps use covert and overt channels to jointly perform malicious
operations [7]. The origin of app collusion can be traced back to the confused
deputy attack [23]. Confused deputies expose protected resources through pub-
lic interfaces. In Android, confused deputy attacks can happen in the form of
permission re-delegation attacks [19,15,33]. A careless developer may uninten-
tionally expose permission-protected resources by allowing the component that
access those resources to communicate with other apps through IAC (inter-app
communication). An attacker can take advantage of this component to access
the protected resource without requesting the corresponding permission.

Colluding apps behave similarly to malicious apps taking advantage of
confused deputies, but their actions are executed on purpose. Colluding apps
can carry out information theft attacks but also can be used to misuse a
device service or increase the impact of an attack inside a system.The main
goal of collusion attacks is to avoid the restrictions imposed by sandboxed
environments, like Android, to make an attack more difficult to detect. Users,
security researchers and malware analysis services normally focus on the the
access to resources given to an app to establish its risk level. If that access
is split across several apps that collude, an app may not require to request
access to a protected resource. It will only have to ask for it to a colluding app
that already has access to it. It must be noted that, while Android requires
the user to grant the permissions to be used by an app, it does not impose
any control on how apps exchange information. Although app collusion is not
a widespread problem today, there have been already some cases of malicious
apps engaging in colluding behaviors. In [6] authors detected some samples
from the VirusShare project [1] that were receiving data through broadcast
receivers and sending it through SMS messages. More recently, researchers
discovered a malicious version of the MoPlus SDK that was synchronizing
the execution of the malicious payload through app collusion [9,2]. All apps
running on a device embedding the MoPlus SDK would talk to each other to
determine which of these apps had the most privileges. The app with the most
privileges would be the only one executing a local HTTP server to receive
commands from a command and control server. This SDK was embedded in
more than 5,000 versions of 20 apps. This synchronization strategy was used
by the developers of the malicious SDK to avoid apps embedding the SDK
but with not enough privileges to activate the malicious payload. In this way,

Automated Generation of Colluding Apps For Experimental Research 3

only the payload within the app with the required permissions would execute,
maximising the result of the attack.

Malware researchers have access to public datasets, predominantly for An-
droid, that can be used to test their detection methods [4,35]. This allows
fair evaluation and comparison between proposed methods, which in the end
fosters better quality research. Unfortunately, representative datasets do not
presently exist for colluding apps because the very few examples of collusion
happening in the wild, have been discovered very recently.

This paper aims to meet the need a practical set of colluding apps for re-
search. Our system called Collusion Application Engine (ACE) is capable of
automatically generating multiple colluding app sets with a variety depending
on the configuration of app component templates and code snippets. ACE can
be extended with new app components and code blocks to create a greater
variety of new colluding app sets, if needed. In this way, it is easy to create
substantial app sets (colluding and non colluding) for experimentation avoid-
ing the need for a great deal of manual programming effort. The source code
of ACE, as well as an initial set of 240 apps are available upon request from
the authors1.

The remainder of this paper is structured as follows. Section 2 describes
previous efforts of other researchers in exploring colluding apps. Section 3
describes the methodology underlying ACE and how it can generate thousands
of different app sets. Section 4 shows the validation process followed to test the
apps created by ACE. Finally, section 5 presents our conclusions and future
directions for research.

2 Related Work

Android malware detection has been an attractive and active research area
during the last few years. As a result, techniques for detecting Android malware
are readily available [17,30]. These can be categorised into two main groups:
static and dynamic. In static analysis, certain features of the app binary are
extracted and analysed using different approaches such as machine learning
techniques. Examples of these are [5], using hardware components, requested
permissions, critical and suspicious API calls, and network addresses or many
others [11,14]. Conversely, dynamic analysis detects malware at run-time. It
deploys suitable monitors on Android systems to log traces and features that
are used to look for malicious behaviours. Examples of these are [21], which
keeps track of the network traffic or [24], which collects information about the
usage of network usage, memory and CPU.

In contrast to malware detection, detecting colluding apps involves not
only obtaining features that show if an app carries out a security threat, but
also revealing whether communication between several apps occurs during the
attack. As most of the existing malware detection techniques focus only on

1 The dataset is available on http://personal.rhul.ac.uk/udai/003/colluding_apps.

zip

4 Jorge Blasco, Thomas M. Chen

detecting whether single apps can carry the full extent of the threat and not
on their communication channels, they are naturally constrained to detect
collusion. Taint analysis based approaches like Amandroid [32] and FlowDroid
[6] could be used for collusion detection. These are focused on analyzing single
apps to detect information leaks through inter-component communications,
ICC, (i.e. a location leaking from a service to an activity within the same app).
This limits its usefulness against colluding apps. First, they are only able to
analyse single apps. This means that, although they are able to detect leaks
to other apps through inter-app communications2, (i.e. and activity/service
from one app sending information to an activity/service from another app),
they are not able to tell the other app that is taking part in the collusion.
In addition to this, colluding apps may use other communication channels for
collusion (i.e. covert channels) rather than standard IAC channels.

To overcome this limitation, there are approaches like APKCombiner [25]
that join two applications into a single APK. This enables information flow
tools to analyze app pairs.

The first known example of app collusion is a proof-of-concept app named
Soundcomber [29]. The first app, which requires only access to the device
microphone (RECORD_AUDIO permission), listens for calls to telephone banking
services and extracts the digits pressed by the user. The second app, which
requires only Internet access (INTERNET permission), transmits the stolen infor-
mation to a remote server. Sensitive information extracted by the first app
is transmitted to the second app using standard Android inter-application
communications (IAC) and covert channels (file locks, settings modifications,
etc.).

The other colluding apps available in the literature can be categorized into
two groups: those developed to test detection and protection methods and
those developed to explore the different covert channels available in Android.

A combination of Soundcomber, three proof-of-concept colluding app sets,
and another three vulnerable apps from other works [15,18,26] were used to
test an an operating system extension called XManDroid [10]. The collud-
ing apps were capable of stealing user contacts, SMS messages, and location,
respectively. In a similar way, [7] describes 10 colluding apps developed to
evaluate their static analysis detection methods. In this case, colluding app
sets are not restricted to information theft. One of the developed sets is also
able to send premium-rate SMS messages to numbers that are received from
another app. Finally, the authors of [8] evaluated their proposal against 13 col-
luding apps that steal sensitive information and communicate through intents
and DroidBench [20]. DroidBench is the only public dataset that includes col-
luding apps. However, it only includes three colluding apps from 120, as it is
intended for evaluating the effectiveness of taint-analysis tools (where collusion
is a subset).

Overall, 36 different apps have been accounted as developed with the spe-
cific purpose of testing collusion detection methods. The development of mo-

2 In Android, IAC and ICC are implemented through very similar APIs.

Automated Generation of Colluding Apps For Experimental Research 5

bile apps is a time consuming task that requires to gain knowledge of the app
development environment and many hours of testing. An automated method
to develop colluding apps could reduce the efforts researchers have to spend
on these time consuming tasks, so they can focus on improving the actual de-
tection methods. As an example of this, we use our automatic app generation
method to generate 240 colluding app pairs that are tested with two different
collusion detection methods.

Besides Soundcomber, several previous papers have investigated the usage
of covert channels for app collusion. Covert channels in Android, as in other
systems, are restricted by the amount of shared resources, side channels that
can be found in the device, and human imagination [13,34]. [27] describes a
collusion scenario where a ContactManager and PasswordManager app use
overt and covert channels to extract information through another app that
acts like a generic weather app. In [28], the authors enumerate and evaluate
the bandwidth of different overt and covert channels in real devices. Covert
channels tested include: intent type enumeration, settings modification, thread
and socket enumeration and free disk space among others, which were used
also in [22]. An imaginative covert channel that uses the device actuators and
sensors is described in [3]. The vibration motor is used to transmit information
while the accelerometer sensor is used to capture it from another app. More
recently, [16] showed how repackaging can be used to inject colluding payloads
into benign apps. Repackaged apps communicate through a covert channel
based on process enumeration. ACE could be used to generate, with minimal
effort, additional testing apps based on the specific features of these specifically
developed colluding apps (covert channels and payloads). The rest of this
sections describes in more detail each of the components of ACE.

3 Application Collusion Engine

ACE aims to fill the need for colluding app datasets for research experimenta-
tion. It can free up significant time for researchers so they can focus instead on
efforts to develop collusion detection and protection methods. If a new covert
channel or attack is found, ACE can be easily extended. In this section, we
describe the system design and how it can generate colluding app sets.

3.1 General Overview

Generating individual malicious apps is a relatively simple task. A malicious
payload can be injected into a template or repackaged app, modifying the
required permissions as needed. Generating colluding app sets is more complex
because the creation of one app needs to take into account how the rest of the
apps in the colluding set were generated.

ACE is composed by two main components: the Colluding Set Engine and
the Application Engine (Figure 1). In a nutshell, the Colluding Set Engine

6 Jorge Blasco, Thomas M. Chen

tells the Application Engine how it should create apps in order to collude.
The Colluding Set Engine reads collusion description files from the Collusion
Template database and, using the App template database generates a set of
application description files. The Application Engine reads the app description
files passed by the Collusion Set Engine; it fetches the necessary payloads from
the Code Snippet and Component Templates databases and builds the app files,
producing a signed apk file for each app of the colluding set.

Colluding	 Set	
Engine

Application
Engine

App	2App	1

Colluding app set

App	1	
Description	

File

App	2	
Description	

File

Collusion templates

Component templates Code snippets

App templates

Fig. 1 General Overview of the Application Collusion Engine (ACE).

3.2 Colluding Set Engine

The Colluding Set Engine tells the Application Engine how to generate apps
in such a way that they end up colluding.

3.2.1 Collusion templates

A collusion template describes the different apps that take part in a collud-
ing app set. This is, the threat they carry out and how they communicate.
Colluding apps can carry out any attack similar to the ones posed by single
apps [30]: denial of service, service misuse, and information and money theft.
Although the nature of each of these attacks is different, they are all based on
executing a set of actions in a specific order.

Automated Generation of Colluding Apps For Experimental Research 7

Our colluding templates follow this philosophy. For each of the aforemen-
tioned threats, we have established a set of actions that are required to execute
it. For example, an information theft attack will require (i) reading sensitive
information and (ii) sending it outside to a remote server. In the same way, a
ransomware attack will require (i) encrypting the personal files (ii) processing
or facilitating the payment and (iii) decrypting back the files.

In our case, each defined action is implemented with a specific code snippet.
In this way, creating a colluding app set to execute a threat requires to split,
across different apps, the different code snippets (actions) required to execute
it. The communication channel used to execute the attack is not relevant to
the attack goal. As long as the selected code snippets allow apps to exchange
information somehow, the generated set will be able to collude. This fact
enables us to create many different colluding app sets for even the same threat
by interchanging different communication code snippets. Additionally, this
allows us to create colluding app sets of an arbitrary number of apps. If the
number of apps in the set exceeds the number of actions, some of the apps
will just forward messages from one app to another.

3.2.2 App Templates

An app template includes all the initial files, organized in an Android project
structure, that are required by the Android Development Kit to build and
sign an app. This includes, among other things, an initial manifest file, build
and signing scripts, a private key to sign the resulting apk, and all the other
resources that may be required during the process. App templates can be
customised to target specific Android versions or include other specific features
such as loading images, etc.

3.3 Application Engine

The Application Engine creates fully working apps by filling app component
templates with code snippets. The Application Engine works as follows. First,
it reads and processes the app description file. This retrieves the required
component templates and code snippets and adds all the reference resource
files to the app source. Then, the component templates are filled; the app
manifest is generated; and the project is built and signed, producing an APK
file that can be installed in a device.

3.3.1 Component Templates

Apps in Android are composed of four different components:

– Activities represent screens of the user interface. Activities allow the user
to interact with the app, giving back some feedback. Activities run only
on the foreground. Apps are generally composed of a set of activities.

8 Jorge Blasco, Thomas M. Chen

– Services execute operations in the background. They are generally used
by other components of the app to perform long-running tasks that must
be executed in the background: listening to incoming connections, play
music, download a file, and so on. Services can be configured so they can
be accessed remotely by other processes.

– Broadcast Receivers respond to broadcast messages that can be sent through
Intent objects, by the same or other apps in the device.

– Content Providers manage access of other apps to the app’s own shared
data. Apps with content providers enable other apps to read and write
data inside their sandbox.

The Application Engine generates these components based on templates
stored in the component templates database. Each app component can be de-
fined by different templates, providing more variety across the generated apps.
A component template describes the main structure of the component and in-
jection points. Injection points allow to fill the template with the necessary
information such as package name, imports, strings or code. For example, the
activity shown in (Listing 1) has injection points for its name ($name), package
($package), layout file ($layout_file) and code snippets ($code). The value of
these injection points is defined by the application description files generated
by the Collusion Set Engine. In some cases, these will be assigned a string like
$name in our example. In others the injection points will be replaced by a code
snippet, like in the case of $code. A more detailed description of the structure
of Application Description Files is given in Section 3.3.3.

1 package $package;
2

3 import android.support.v7.app.ActionBarActivity;
4 import android.os.Bundle;
5 import android.view.Menu;
6 import android.view.MenuItem;
7

8 public class $name extends ActionBarActivity {
9

10 @Override
11 protected void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.$layout file) ;
14 $code
15 }
16

17 ...
18 }

Listing 1 Activity template example. $package, $name, $layout file and $code are injection
points.

3.3.2 Code Snippets

Code snippets are small portions of code that execute a specific function. These
are used to populate the app components at code injection points (marked with

Automated Generation of Colluding Apps For Experimental Research 9

$code). There are three kinds of code snippets, depending on the kind of func-
tion they enable to execute: resource, communication, and general snippets. A
code snippet can also have injection points. These are used to specify param-
eters such as variable names, string names or other information relevant to
the specific code. The app description files specify how the code snippets are
injected into the component. The Colluding Set Engine is in charge of struc-
turing them in a way such that the resulting apps are able to communicate
and collude.

Resource Snippets access the permission-protected resources of a device. They
can be used to access sensitive information (contacts, accounts, etc.) or to
execute a particular function (sending a SMS message, starting a task, etc.).
The injection points of a resource snippet define parameters such as the input
and output variable names, required variables such as the app context, etc.
Resource snippets generally require the app to request additional permissions.
These are defined along the snippet. Listing 2 shows a code snippet used to
get account data. Lines 1-3 specify the additional imports required. Line 4
specifies that any app including this code snippet must add the GET_ACCOUNTS

permission. The code snippet includes two injection points. $context holds the
name of the app context variable. This is required to access the accounts
service. $data stores all the account information read from the device, so other
code snippets can use it.

1 import android.accounts.Account;
2 import android.accounts.AccountManager;
3 import android.content.Context;
4 //permission:android.permission.GET ACCOUNTS
5 AccountManager am = (AccountManager)

$context.getSystemService(Context.ACCOUNT SERVICE);
6 Account[] accounts acs = accounts am.getAccounts();
7 StringBuffer accounts sb = new StringBuffer();
8 for(Account a : accounts acs) {
9 accounts sb.append(a.toString()+”;”);

10 }
11 String $data = accounts sb.toString();

Listing 2 Code snippet used to access the accounts being stored in the device

Communication Snippets are in charge of executing communication tasks.
There are two types of communication snippets: those used to communicate
outside the device and those used for inter-app communication. Listing 3 shows
a code snippet that posts a string to a URL. The snipppet creates a new threat
to open an HTTP client and execute the post query. Lines 1-3 specify the re-
quired imports. Line 4 specifies that any app including this snippet should
request the INTERNET permission. Lines 5-17 include the code required to post
the message to the URL specified by the injection point $url. The injection
point $data specifies the variable name or string value that should be sent to
the remote server.

10 Jorge Blasco, Thomas M. Chen

1 import org.apache.∗;
2 import java. util .ArrayList;
3 import java. util . List ;
4 //permission:android.permission.INTERNET
5 final String toSendOutside = $data;
6 new Thread(new Runnable() {
7 public void run() {
8 HttpClient httpclient = new DefaultHttpClient();
9 HttpPost httppost = new HttpPost($url);

10 try {
11 List<NameValuePair> nameValuePairs = new

ArrayList<NameValuePair>(1);
12 nameValuePairs.add(new BasicNameValuePair($postkey, toSendOutside));
13 httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs));
14 HttpResponse response = httpclient.execute(httppost);
15 } catch (Exception e) {
16 ...
17 }}}). start () ;

Listing 3 Code snippet used to post a string value to the internet.

Code snippets also enable inter-component and inter-app communication.
If the snippet sends information to another component of the app (i.e. an intent
that launches a service within the same app) it will allow inter-component
communication. In this case, the app will also have to include the definition
of the component that will receive the communication and a code snippet to
process that information. If the snippet sends information to a component that
belongs to another app (i.e. a broadcast intent) it will allow inter-component
communication. Of course, an app can include both ICC and IAC snippets
(depending on the application description file used to generated them).

Communication snippets are generally used in pairs: a code snippet that
sends information through a specific channel is used in one component and the
code snippet that receives the information through that same channel is used
in another component. If the snippets are placed within the same app they
will enable inter-component communication. If the snippets are included in
two different apps, they will enable inter-app communication. As an example,
Listing 4 shows the code required to send information to other apps through
a broadcast intent. This code snippet includes 4 injection points: $intentaction
specifies the action that will be assigned to the intent; $key is a string value
used as a key for the data that is being sent through the intent; $data specifies
the variable name or literal value of the information to be sent through the
intent; finally, $context requires the value of the variable that holds a reference
to the app context (activity or service), which is required to send a broadcast
intent.

1 import android.util .Log;
2 import android.content.Intent;
3 Intent i = new Intent();
4 i .setAction($intentaction) ;
5 i .putExtra($key,$data);

Automated Generation of Colluding Apps For Experimental Research 11

6 $context.sendBroadcast(i);

Listing 4 Code snippet used to sent a string value to other application through an intent.

Listing 5 shows the code snippet required to receive information sent by
the previous intent-based code snippet. This code snippet declares, implements
and registers a broadcast receiver. This could also be implemented by using a
BroadcastReceiver app component template. $intentaction specifies the intent
action that will be used to match the broadcast intent. $key stores the key
where the transmitted data is being stored. $data will store the value extracted
from the intent. Finally, $code is another code snippet that specifies the action
to be executed with the data. To create a communication channel, the values
of $intentaction and $key should match in both snippets.

1 import android.content.BroadcastReceiver;
2 import android.content.Context;
3 import android.content.Intent;
4 import android.content. IntentFilter ;
5 IntentFilter ifilter = new IntentFilter($intentaction) ;
6 this . registerReceiver (new BroadcastReceiver() {
7 @Override
8 public void onReceive(Context context, Intent intent) {
9 String $data = intent.getStringExtra($key);

10 $code
11 }
12 }, ifilter) ;

Listing 5 Code snippet used to receive a broadcast intent.

In some cases, there might be synchronization issues. For example, if an
app sends an intent and no app is registered to receive it, the information sent
will be lost. In other cases, like when using external storage this problem does
not happen. However, controlling this is not part of ACE, as execution order
(or even installation) is controlled by the developer. When creating a pair of
colluding apps, the Colluding Set Engine generates the app description files
avoiding this, in such a way that the both apps can communicate.

General Snippets provide the general functionality to complete a fully working
app. These include: string concatenation, encryption, variable initialization,
logging, etc. These can be used to combine, for example, execution of an app
that extracts information from the device and another that encrypts it before
sending it through an inter-app communication channel.

Listing 6 shows a code snippet used for logging. This code snippet could
also be used as a sending communication snippet in Android versions below
4.3.

1 import android.util .Log;
2 Log.v($logtag,$tolog) ;

Listing 6 Logging code snippet.

12 Jorge Blasco, Thomas M. Chen

3.3.3 App Description Files

App Description Files specify which app components will be used within an
app, and how their injection points will be filled. In some cases, injection
points will be replaced with simple strings, while in others, they will be re-
placed with code snippets ($code injection points). Listing 7 shows the app
description file of a very simple app composed by only one activity. The
main element of an app description file is the project element. A project
holds the rest of the app components and defines the package name of the
app. The activity defined in this description file takes its template code from
resources/activities/SimpleActivity.java and includes only one code block (in-
side the onCreate method. This example code snippet has three injection points.
The first one initializes a string variable, text. The second registers a broadcast
receiver that stores the value received through an intent into text. The last
one logs the value of text with a specific tag (VALUE). The activity attribute
main specifies if the activity is the main activity of the app.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <project template=”resources/simple app” package=”com.acid.app”

label=”Receiver”>
3 <activity path=”resources/activities” label=”Receiver”

name=”SimpleActivity.java” layout=”activity simple.xml”
package=”com.acid.app” main=”true”>

4 <code id=”code”>
5 <codesnippet path=”basic” id=”string init”>
6 <param id=”var”>text</param>
7 </codesnippet>
8 <codesnippet path=”interapp communications/intent”

id=”recv dynamic receiver”>
9 <param id=”intentaction”>”action.SEND”</param>

10 <param id=”data”>text</param>
11 <param id=”key”>”datakey”</param>
12 <code id=”code”>
13 <codesnippet path=”basic” id=”basic log”>
14 <param id=”logtag”>”VALUE”</param>
15 <param id=”tolog”>text</param>
16 </codesnippet></code></codesnippet></code>
17 </activity>
18 </project>

Listing 7 Example app description file.

3.4 Building App Sets

ACE can be used to create sets of colluding and non-colluding apps. The
process of creating a colluding app set consists of the following:

– Read the collusion template that specifies the actions to be executed in
each colluding app.

Automated Generation of Colluding Apps For Experimental Research 13

– Generate n apps where n is more than 1 and smaller than the number of
actions in the template; assign at least one action to each app.

– Determine if there is going to be forwarding apps; if so, create them.
– Add pairs of communication snippets to enable communications between

the apps in the set.
– Generate the app description files for each app in the set.
– Call the Application Engine to create the set.

Figure 2 shows an example of this process for a colluding app set that
extracts the contact list from the user device. The set is composed of three
apps. The first app reads the contacts and sends them to the second app via
an intent. The second app forwards the information to the third app using
external storage. The third app of the set sends the information to a remote
server.

Apps
1. App	temp.	1
2. App	temp.	2
3. App	temp.	1

Actions
1.	Read	contacts
2.	Send	outside
…

App	Template	
Generation

App	
Template	1

App template
database

Collusion template

App	2
Desc.	
File

Resource snippets

Read	
contacts

Send	
outside

Send	
SMS

Take	
Picture

App	
Template	2

App	
Template	3

App	
Template	4

Communication snippets

Shared	
Pref.

External	
Storage

Audio	
Settings Intents

App	3
Desc.	
File

App	1	
Desc.	
File

Action	
Injection

Communication	
InjectionApp	2

App	3

App	1

Read	
contacts

Send	
outside

App	2

App	3

App	1

Send	
outside

Intents

Intents

Ex.	Sto.

Ex.	Sto.

Read	
contacts

Code snippets

App
Build

Fig. 2 Detailed example of all the processes executed by ACE.

3.5 Generating Non-Colluding Apps

ACE also allows the easy generation of non-colluding apps. This can be achieved
by simply creating an app description file (Figure 2) that includes the necessary
components and code snippets for the required functionality. App description
files are automatically generated by the Collusion Set Engine for colluding
app sets, but can be manually created and used directly with the Application
Engine. This fact can be used to generate apps that might be detected as
colluding but are not colluding. These generated apps could be used to test,
against false positives, new collusion detection methods. To do this, we have
followed these approaches:

– Create app sets that exchange information, but do not access sensitive
resources.

14 Jorge Blasco, Thomas M. Chen

Table 1 Resource code snippets used for the generation of colluding app sets executing
information theft attacks.

Snippet Description
Accounts Returns device accounts information
Bookmarks Returns the browser bookmarks
Call log Returns the call log
Contacts Returns the list of contacts
History Returns the navigation history
IMEI Returns the device IMEI
Microphone Records audio for 5 seconds
WiFi List of WiFi SSID networks
Tasks List of processes being executed

– Create app sets that access sensitive resources but exchange information
that is not related to those sensitive resources.

– Create apps that access sensitive resources and send information to non-
colluding apps via standard Android communication channels (e.g. the
generated app reads your location and allows sharing it via facebook).

4 Experiments

The amount of colluding app sets that can be generated with ACE depends
greatly on the number of available code snippets and templates. We have
validated our tool by generating a set of colluding apps and measuring its risk
with different methodologies available in the literature. This section describes
this process.

4.1 Colluding App Set Generation

We generated 240 pairs of colluding apps focusing on apps that execute infor-
mation theft attacks because most of the detection tools are focused on that
threat. Table 1 lists the different resource snippet used for app generation.
Each of the 240 generated app sets includes one app that reads sensitive infor-
mation from the device. The code that reads the sensitive information in that
app is created by randomly injecting a combination of the 9 snippets shown
in Table 1. All the information read by the snippets is concatenated into an
string and then sent to the other app for extraction. In our experiments we
have focused on two different communication channels:

– Intents: an app launches a broadcast intent with a randomly generated
action. The receiving app registers a broadcast receiver with the same
action. Other intent based communication channels (e.g. explicit intents
launching activities and services) could be easily added by incorporating
the corresponding code snippets.

Automated Generation of Colluding Apps For Experimental Research 15

– Shared Preferences: are an Android feature that allows apps to store key-
value pairs of data. Although it is not intended for inter-app communica-
tion, apps can use key-value pairs to exchange information if proper flags
are defined (WORLD_READABLE or WORLD_WRITABLE) when accessing and storing
data. In our sets, one of the apps saves the data into a world readable
shared preference file. The receiving app accesses the same file to read the
information.

Each communication channel has been used in half of the app sets. Thus,
overall there are 120 app sets (240 apps) that execute information theft attacks
using intents and other 120 app sets (240 apps) that execute information theft
using shared preferences as communication channel.

4.2 Validation of Collusion Behavior

All the generated app sets have been tested on a real smartphone to verify
that the collusion attack is realised when both apps are present in a device.
This process was automated with a script, using monkeyrunner3, that installs,
executes and verifies that the collusion attack happened on a real smartphone
(Moto E with Android 4.3). Specifically, the script executed the following tasks
for each pair of generated colluding apps:

– Install both apps.
– Run the first installed app for five seconds (in the foreground).
– Press the home button.
– Run the second app for five seconds (in the foreground).
– Press the home button.
– Uninstall both apps.

To validate that the sensitive information was exchanged between colluding
apps, we manually created contacts, and personal information on the device
prior the tests. In addition, information sent to a external web server (con-
trolled by us) was logged on the server and the device. To ensure that the
collusion really happened we verified the device logs and the HTTP POST
requests received by the server.

4.3 Measuring collusion risk

Current App collusion detection techniques can be split in two groups: oper-
ating system extensions and taint analysis tools. The first group focuses on
detecting and mitigating collusion during execution while the second group
focuses on analysing the static features of the app code and resources without
executing the apps. Unfortunately, we were unable to find any working version
of an operating system extension, like XManDroid, to execute our experiments.

3 https://developer.android.com/studio/test/monkeyrunner/index.html

16 Jorge Blasco, Thomas M. Chen

FlowDroid and Amandroid are two examples of taint analysis proposals [6,
32]. The focus of these tools is to detect sensitive information flows between
components within the same application (ICC), but they are also capable
of detecting, with certain limitations, when an app component leaks sensi-
tive information to other apps through inter-app communication (IAC). Their
limitation relies on the fact that the tools are only able to tell if sensitive
information is being sent to other apps via IAC, without specifying the actual
apps, as the analysis is only executed over one app. In order to identify if two
apps communicate, the analysis must be performed over the two apps sepa-
rately to check if the sources and sinks from both apps match. In our tests,
neither FlowDroid or Amandroid were able to identify apps receiving sensitive
information through intents or shared preferences. As both tools execute sin-
gle app analysis, they have no information about the kind of information that
can be received through those channels, and therefore not consider those as
possible transmitters of sensitive information. This means that these tools are
appropriate to identify apps leaking sensitive information, but not so good on
identifying apps making use of that information.

In 2015, Li et al. proposed APKCombiner, a method to avoid this issue
[25]. APKCombiner combines two apps in such a way that IAC channels be-
tween the apps are transformed into ICC channels (as the components that
communicate are now within the same app). In this way, tools like FlowDroid
or Amandroid will be able to directly trace the sensitive information flowing
through the two components (that are now together in the same app). It must
be noted that the app resulting from the execution of APKCombiner may not
correctly execute on a system. However, the resulting app is still valid for the
purpose of static analysis and transforming inter-app communication channels
into inter-component communication channels within the same combined app
[25].

We have used our dataset of 240 app sets to validate two different meth-
ods for collusion risk assessment. In both cases, APKCombiner joins all app
components (activities, services, etc.) into a single APK, solving naming con-
flicts and merging both app manifest files. The generated apk file inherits the
permissions from both of the apps being combined and inter-app communica-
tions between the two apps become inter-component communications. After
applying APK combiner to each of the colluding app sets, we use DroidRisk
[31] and Amandroid [32] (Figure 3).

APKCombiner

Colluding	
App
1

Colluding	
App
2

Combined	
App

DroidRisk

Amandroid

Risk
Measure

Sensitive ICC
flows

APKCombiner

Colluding	
App
1

Colluding	
App
2

Combined	
App

DroidRisk

Amandroid

Fig. 3 Process followed for risk analysis of colluding applications. Apps are combined with
APKCombiner before its analysis with DroidRisk and Amandroid.

Automated Generation of Colluding Apps For Experimental Research 17

4.3.1 DroidRisk

DroidRisk measures the risk posed by an app based on the permissions it
requests. Each newly requested permission (pi) increments the risk posed by
an app depending on its impact (I) and its likelihood (L). The overall risk
level of an app is calculated as the sum of the risk levels of the permissions it
requests (Equation 1).

Rapp =
∑
i

R(pi) = L(pi)× I(pi) (1)

The likelihood and impact of each permission were measured by analyzing
two datasets of 27,274 benign apps from Google Play and 1,260 Android mal-
ware from the Malware Genome Project. The likelihood of a permission was
defined as the probability of an app A being malware if that app is requesting
that permission (Equation 2).

P (A ∈ malware|pi) =
P (pi|A ∈ malware)× P (A ∈ malware)

P (pi)
(2)

The impact of requesting a permission was measured by the categories
assigned to them by Android: normal and dangerous (other categories can not
be requested by third party apps).

Colluding apps generally distribute the permissions they require to exe-
cute a threat. In our experiments we measured the risks created by single and
combined apps4. Combining the permissions used by apps that communicate
to measure the risk of collusion was also proposed in [7]. Figure 4 shows two
boxplots representing the risk associated with single and combined apks re-
spectively. As expected, the risk levels of combined apks is higher than the
obtained by single apps. The difference in the maxima of each category can
be attributed to all the combined apks requesting the INTERNET permission.

4.3.2 Amandroid

Amandroid is a static analysis tool for Android apps. It analyzes the usage of
sensitive APIs in a flow and context-sensitive way across Android app com-
ponents. In a nutshell, Amandroid analyzes the different information flows
inside an app, checking if any sensitive API can be accessed through inter-
component communication (ICC) calls. In addition, Amandroid conducts ba-
sic string analysis for inferring ICC call parameters such as the intent action.
These allow Amandroid to precisely identify the ICC channels that can be
used by other app components to access sensitive APIs.

In our experiments, we combine Amandroid with APKCombiner. Aman-
droid is focused on ICC communications. When analyzing a single colluding

4 Risk values were obtained measuring the permissions being used in the combined APK
files, and not the ones requested. This is due to a bug in the latest available version of
APKCombiner.

18 Jorge Blasco, Thomas M. Chen

Single apps Combined apps

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R
is

k
va

lu
e

as
 m

ea
su

re
d

by
 D

ro
id

R
is

k

Fig. 4 Risk values obtained by DroidRisk when analysing single and combined apps.

app, Amandroid will find all the ICC sensitive information flows between the
app, including the one that is sending information outside the app. However,
it will not match that available ICC channel with the other colluding app,
as it is only analysing a single app. After the APKs are combined with AP-
KCombiner, all IAC between components of the apps would become ICC (as
the components are now within the same app). Analysing the combined app,
Amandroid should be able to detect now the IAC as ICC within the combined
APK file. If the components identified by Amandroid in this case belong to
the original different apps (APKCombiner keeps the component packages and
names), we can conclude that there was an IAC between the apps.

Amandroid includes rules to detect information leakage, information injec-
tion and API misuse attacks. As our colluding apps are restricted to infor-
mation theft, we have restricted our analysis to information leakage. These
information leakage flows could be flagged as other confused deputy attacks.
However, in the context of our work and due to the nature of the generated
apps, we consider them as evidence of collusion (app pairs have been generated
to collude to steal sensitive information).

Results obtained after running Amandroid on the 240 combined apps are
shown in table 2. Amandroid detects only 199 apps accessing sensitive infor-
mation. After manually reviewing the 41 apps not flagged, we have seen that
Amandroid does not consider sensitive information elements such as the user
bookmarks, its navigation history, or recording from the microphone. Aman-
droid correctly detects the 120 that use intents to share information across
components. However, it does not detect the usage of Shared Preference files
as a communication method. This is an expected result, as Amandroid does
not track the usage of this kind of files for communications across components.
Overall, only 56 apps were detected as leaking information. The 120 apps that

Automated Generation of Colluding Apps For Experimental Research 19

Table 2 Results of executing Amandroid

Category Detected Real
Apps accessing sensitive data 199 240
Apps with ICC (Intents) 120 120
Apps with ICC (Sh. Prefs) 0 120
Apps that leak information 56 240

are using the shared preferences and the 64 apps accessing sensitive infor-
mation not considered by Amandroid as such are not detected. Our results
show that Amandroid could be improved in two ways: (i) by considering other
possible communication channels (was already known before our experimental
evaluation) and (ii) by adding the navigation history, the bookmarks and the
microphone as sources of sensitive information.

4.4 Discussion

ACE allows researchers to quickly generate colluding app sets. In this way,
they can focus on developing new detection methods, rather than spending
their time implementing proof-of-concept colluding apps that have already
been developed by other researchers.

However, as with other artificially crafted corpus, automatic generated apps
should be used with care to avoid certain risks. For instance, let’s imagine
such corpus is the only data used to train a machine learning algorithm. In
this scenario, there is a non-negligible risk of generating a model that, instead
of distinguishing colluding from non-colluding apps, is distinguishing ACE
generated from non-ACE generated apps. This could be avoided in three ways:
(i) by avoiding features too similar within the set of generated apps (size,
number of activities, etc.); (ii) by increasing the variability of code snippets and
templates used in ACE; and (iii) by including the few colluding applications
that have already been found in the wild [9,2,6].

5 Conclusions

In this paper we have presented ACE (Application Collusion Engine), a system
capable of easily generating colluding app datasets. The datasets generated by
ACE can be used by researchers to validate and compare different collusion
detection proposals.

We have tested ACE by generating 480 colluding apps (240 colluding app
pairs) that execute different information theft attacks. All the generated col-
luding app pairs were executed to verify the collusion attack was possible.
Although for experimentation we have generated colluding sets consisting of
two apps, ACE is capable of generating app sets of an arbitrary number of
apps. We have used two different approaches to measure the risk of the gen-
erated apps. First, we have compared the risk levels obtained by single and

20 Jorge Blasco, Thomas M. Chen

combined applications using Droidrisk. Results show that approaches that fo-
cus on single app analysis can underestimate the risk that an app poses to
a system. Approaches that analyze sensitive information flows, like Aman-
droid, are better at detecting collusion attacks. However, as in most collusion
detection research, these tools focus only on apps using the standard ICC
communications provided by Android (Intents). Adversaries may take advan-
tage of this fact by implementing their attacks through other well known, but
not yet detectable, channels such as shared preferences (up to Android 4.3),
external storage o covert channels.

Researchers working on new collusion detection methods (static and dy-
namic analysis and operating system extensions) can easily extend ACE to
quickly generate fully working apps for testing. This will enable, not only a
quick validation, but also fair comparison between different proposals. As an
example, [12] recently proposed an energy consumption based method to de-
tect the usage of several covert channels for app collusion. Authors provide
the source code required to implement such covert channels. Their validation
experiments were executed by transmitting simple messages after a random
wait for each of the channels. By adapting the source code of those channels to
ACE, validations could be executed on thousands of different colluding apps
that transmit real colluding messages instead.

ACE is available by request (with its source code) from the authors. Due
to the risk of misuse, it has not been uploaded to public repositories.

Acknowledgements This work was supported by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) through grant EP/L022699/1.

References

1. Virusshare (2013). http://www.virusshare.com, accessed January 2017
2. McAfee Labs Threats ReportJune 2016. Tech. rep., McAfee (Intel Security) (2016).

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-may-2016.

pdf
3. Al-Haiqi, A., Ismail, M., Nordin, R.: A new sensors-based covert channel on android.

The Scientific World Journal 2014 (2014)
4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effective and

explainable detection of android malware in your pocket. In: NDSS (2014)
5. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN:

effective and explainable detection of android malware in your pocket.
In: 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The
Internet Society (2014). URL http://www.internetsociety.org/doc/

drebin-effective-and-explainable-detection-android-malware-your-pocket
6. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau,

D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. ACM SIGPLAN Notices 49(6), 259–269 (2014)

7. Asavoae, I.M., Blasco, J., Chen, T.M., Kalutarage, H.K., Muttik, I., Nguyen, H.N.,
Roggenbach, M., Shaikh, S.A.: Towards automated android app collusion detection. In:
Innovations in Mobile Privacy and Security, vol. 1575, pp. 29–37 (2016)

8. Bhandari, S., Laxmi, V., Zemmari, A., Gaur, M.S.: Intersection automata based model
for android application collusion. In: 2016 IEEE 30th International Conference on
Advanced Information Networking and Applications (AINA), pp. 901–908. IEEE (2016)

Automated Generation of Colluding Apps For Experimental Research 21

9. Blasco, J., Muttik, I., Roggenbach, M., Chen, T.M.: Wild android collusions. In: Virus-
Bulletin 2016. Virus Bulletin (2016)

10. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: Xmandroid: A new an-
droid evolution to mitigate privilege escalation attacks. Technische Universität Darm-
stadt, Technical Report TR-2011-04 (2011)

11. Canfora, G., Lorenzo, A.D., Medvet, E., Mercaldo, F., Visaggio, C.A.: Effectiveness
of opcode ngrams for detection of multi family android malware. In: 10th Inter-
national Conference on Availability, Reliability and Security, ARES 2015, Toulouse,
France, August 24-27, 2015, pp. 333–340 (2015). DOI 10.1109/ARES.2015.57. URL
http://dx.doi.org/10.1109/ARES.2015.57

12. Caviglione, L., Gaggero, M., Lalande, J.F., Mazurczyk, W., Urbański, M.: Seeing the
unseen: Revealing mobile malware hidden communications via energy consumption and
artificial intelligence. IEEE Transactions on Information Forensics and Security 11(4),
799–810 (2016)

13. Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a systematic study of the covert
channel attacks in smartphones. In: International Conference on Security and Privacy
in Communication Networks, pp. 427–435. Springer (2014)

14. Dai, G., Ge, J., Cai, M., Xu, D., Li, W.: Svm-based malware detection for android
applications. In: Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, New York, NY, USA, June 22-26, 2015, pp. 33:1–33:2
(2015). DOI 10.1145/2766498.2774991. URL http://doi.acm.org/10.1145/2766498.

2774991

15. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege escalation attacks on
android. In: Information Security, pp. 346–360. Springer (2011)

16. Dimitriadis, A., Efraimidis, P.S., Katos, V.: Malevolent app pairs: an android permis-
sion overpassing scheme. In: Proceedings of the ACM International Conference on
Computing Frontiers, pp. 431–436. ACM (2016)

17. Elish, K.O., Shu, X., Yao, D.D., Ryder, B.G., Jiang, X.: Profiling user-trigger depen-
dence for android malware detection. Computers & Security 49, 255–273 (2015)

18. Enck, W., Ongtang, M., McDaniel, P.: Mitigating android software misuse before it
happens (2008)

19. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation:
Attacks and defenses. In: USENIX Security Symposium (2011)

20. Fritz, C., Arzt, S., Rasthofer, S., Bodden, E., Bartel, A., Klein, J., le Traon, Y., Octeau,
D., McDaniel, P.: Highly precise taint analysis for android applications. EC SPRIDE,
TU Darmstadt, Tech. Rep (2013)

21. Han, H., Chen, Z., Yan, Q., Peng, L., Zhang, L.: A real-time android malware de-
tection system based on network traffic analysis. In: Algorithms and Architectures
for Parallel Processing - 15th International Conference, ICA3PP 2015, Zhangjiajie,
China, November 18-20, 2015. Proceedings, Part III, pp. 504–516 (2015). DOI 10.1007/
978-3-319-27137-8\ 37. URL http://dx.doi.org/10.1007/978-3-319-27137-8_37

22. Hansen, M., Hill, R., Wimberly, S.: Detecting covert communication on android. In:
Local Computer Networks (LCN), 2012 IEEE 37th Conference on, pp. 300–303. IEEE
(2012)

23. Hardy, N.: The confused deputy:(or why capabilities might have been invented). ACM
SIGOPS Operating Systems Review 22(4), 36–38 (1988)

24. Kim, K., Choi, M.: Android malware detection using multivariate time-series technique.
In: 17th Asia-Pacific Network Operations and Management Symposium, APNOMS
2015, Busan, South Korea, August 19-21, 2015, pp. 198–202 (2015). DOI 10.1109/
APNOMS.2015.7275426. URL http://dx.doi.org/10.1109/APNOMS.2015.7275426

25. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y.: Apkcombiner: Combining
multiple android apps to support inter-app analysis. In: ICT Systems Security and
Privacy Protection, pp. 513–527. Springer (2015)

26. Lineberry, A., Richardson, D.L., Wyatt, T.: These arent the permissions youre looking
for. DefCon 18, 2010 (2010)

27. Marforio, C., Francillon, A., Capkun, S., Capkun, S., Capkun, S.: Application collu-
sion attack on the permission-based security model and its implications for modern
smartphone systems (2011)

22 Jorge Blasco, Thomas M. Chen

28. Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis of the communication
between colluding applications on modern smartphones. In: Proceedings of the 28th
Annual Computer Security Applications Conference, pp. 51–60. ACM (2012)

29. Schlegel, R., Zhang, K., Zhou, X.y., Intwala, M., Kapadia, A., Wang, X.: Soundcomber:
A stealthy and context-aware sound trojan for smartphones. In: NDSS, vol. 11, pp.
17–33 (2011)

30. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Ribagorda, A.: Evolution, detection
and analysis of malware for smart devices. IEEE Communications Surveys Tutorials
16(2), 961–987 (2014). DOI 10.1109/SURV.2013.101613.00077

31. Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative security risk assessment of
android permissions and applications. In: Data and Applications Security and Privacy
XXVII, pp. 226–241. Springer (2013)

32. Wei, F., Roy, S., Ou, X., et al.: Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of android apps. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp. 1329–1341.
ACM (2014)

33. Wu, L., Du, X., Zhang, H.: An effective access control scheme for preventing permission
leak in android. In: International Conference on Computing, Networking and Commu-
nications (ICNC), pp. 57–61. IEEE (2015)

34. Yue, M., Robinson, W.H., Watkins, L., Corbett, C.: Constructing timing-based covert
channels in mobile networks by adjusting cpu frequency. In: Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and Privacy, p. 2. ACM
(2014)

35. Zhou, Y., Jiang, X.: Android malware genome project (2012). http://www.

malgenomeproject.org

