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Abstract

In 2000, Ahlswede, Cai and Li introduced network coding, a technique used to
improve the efficiency of information flow through networks by allowing inter-
mediate nodes to compute with and modify data. In practice random linear
network coding is used, where the nodes transmit random linear combinations
of their incoming packets. This thesis is concerned with several mathematical
problems motivated by network coding.

We first consider partial decoding in random linear network coding. By
noting the equivalence to an enumeration problem in linear algebra, we com-
pute the exact probability of a receiver decoding a fraction of the source
message. We investigate the consequences when using both systematic and
non-systematic network coding.

We then consider mathematical models for network coding. Silva, Kschis-
chang and Kötter studied certain classes of finite field matrix channels in
order to model random linear network coding where exactly t random errors
are introduced. We introduce a generalisation of these channels that allow
the modelling of channels where a variable number of random errors are in-
troduced. For special cases of our channel we improve on previous analysis of
the channel capacity.

For the general case we show that a capacity-achieving input distribution
can always be taken to have a very restricted form (the distribution should
be uniform given the rank of the input matrix). Nobrega, Silva and Uchoa-
Filho proved a similar result for a class of matrix channels that model network
coding with link erasures. Our result leads to an expression for the capacity
of these channels as a maximisation over probability distributions on the set
of possible ranks of input matrices (rather than the set of all input matrices):
a set of linear rather than exponential size. Thus we give an efficient method
to find optimal input distributions and compute the exact capacity for any
channel parameters.
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Chapter 1

Introduction

1.1 Overview

The essential foundation of communication networks is mathematics. This

thesis is concerned with several linear algebra problems that are motivated by

network coding. The application of this work is explored in Chapter 2 where

we define network coding and review the literature.

The linear algebra problems we consider involve systems of equations and

matrix channels over finite fields. In this chapter we define these problems and

give an overview of our results. Section 1.2 defines notation we adopt through-

out this work. Section 1.3 outlines our results on systems of equations. We

then move on to matrix channels: Section 1.4 defines the Multiplicative Ma-

trix Channel (MMC); Section 1.5 defines the Additive Matrix Channel (AMC)

and Section 1.6 defines the Generalised Additive Multiplicative MAtrix channel

(Gamma channel). Finally in Section 1.7 we give an overview of the structure

of the thesis.
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1.2 Notation

Let q be a prime power and Fq be the finite field of q elements. We write Fn×mq

to denote the set of all n×m matrices over Fq, and Fn×m,rq to denote the set

of matrices in Fn×mq of rank r. We denote the set of all invertible matrices in

Fn×nq (the general linear group) by GL(n, q).

The following definition gives notation which is due to Nobrega, Silva and

Uchoa-Filho [33].

Definition 1.2.1. Let R be a probability distribution on the set {0, 1, . . . ,

min{m,n}} of possible ranks of matrices M ∈ Fn×mq . We define a distribution

on the set Fn×mq of matrices by choosing r according to R, and then once r is

fixed choosing a matrix M ∈ Fn×m,rq uniformly at random. We say that this

distribution is Uniform Given Rank (UGR) with rank distribution R. We say

a distribution on Fn×mq is Uniform Given Rank (UGR) if it is UGR with rank

distribution R for some distribution R.

We write R(r) for the probability of rank r under the distribution R. So

a distribution on Fn×mq is UGR with rank distribution R if and only if each

M ∈ Fn×mq of rank r is chosen with probability R(r)/|Fn×m,rq |.

1.3 Linear systems of equations

In this section we summarise the mathematical result of Chapter 4, which is

concerned with partially solving systems of random linear equations.

Consider a random linear system of r linearly independent equations in k

unknowns over a finite field. Suppose the system is expressed in the matrix

form

Mv = u, (1.3.1)
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where M is a random full rank r × k matrix, v = (v1, . . . , vk), and u is a

constant vector of length r. Given that (1.3.1) is consistent, it is possible to

determine the i-th unknown vi if and only if the i-th unit vector is contained

in the rowspace of M .

In Chapter 4, invoking the principle of inclusion and exclusion, we derive

an exact expression for the probability that the rowspace of a random r × k

matrix M contains at least some fixed number x unit vectors, for x ≤ r ≤ k.

This is equal to the probability of determining the values of at least x of the

k unknowns of the system in (1.3.1).

Drawing parallels between partially solving systems of random linear equa-

tions and partial decoding in random linear network coding, we analyse the

implications of our result to this application (see Chapter 2 for further details

of the application).

1.4 The multiplicative matrix channel

In this section we define the Multiplicative Matrix Channel and summarise the

results of our analysis in Chapter 5.

Definition 1.4.1. The Multiplicative Matrix Channel (MMC) has input set

X and output set Y , where X = Y = Fn×mq . The channel law is

Y = AX

where A ∈ GL(n, q) is chosen uniformly at random.

We assume the values q, n,m are fixed by the application. We refer to

these values as the channel parameters of the MMC channel.

The MMC channel is considered by Silva, Kschischang and Kötter [39, §III],

the authors use it to model random linear network coding with no errors (see
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Chapter 2 for further details). In [39] the authors give bounds on the capacity

of the MMC channel that converge for large field size or large channel input.

We improve on this analysis, giving bounds on the capacity that differ by a

small additive constant for any value of the channel parameters, thus giving

insight on the behaviour of the capacity for all channel parameters.

1.5 The additive matrix channel

In this section we define the Additive Matrix Channel and summarise the

results of our analysis in Chapter 6.

Definition 1.5.1. Let R be a probability distribution on the set {0, 1, . . . ,

min{m,n}} of possible ranks of matrices M ∈ Fn×mq . The Additive Matrix

Channel with rank error distribution R (AMC(R)) has input set X and output

set Y , where X = Y = Fn×mq . The channel law is

Y = X + B

where B ∈ Fn×mq is UGR with rank distribution R.

We assume that q, n,m and R are fixed by the application. We refer to

these values as the channel parameters of the AMC(R) channel.

In Chapter 6 we consider two particular rank distributions R that give

special cases of the AMC channel. Firstly we consider the case when the

rank of the error matrix B is fixed and equal to t, the AMC channel with

fixed error rank. This is exactly the channel considered by Silva, Kschischang

and Kötter [39, §IV], which the authors use to model coherent random linear

network coding (see Chapter 2 for further details). Next we consider the case

when R is chosen to ensure that the error matrix B has a uniform distribution

over all n×m matrices of rank ≤ t, the AMC channel with uniform error. We

12



show that the capacity of the AMC channel with uniform error gives a lower

bound for the capacity of the general AMC channel.

For both of these special cases of the AMC channel we present bounds on

the capacity that differ by a small additive constant for any values of q, n,m, t.

This improves on the work of [39], that gives bounds on the capacity of the

AMC channel with fixed error rank that only converge to a close value for

large field size or large channel input. The lower bound for the AMC channel

with uniform error capacity gives an immediate lower bound for the capacity

of the general AMC channel when the rank of B is bounded by t. Our results

show that the minimum capacity of the general AMC channel is very close to

the capacity of the channel with fixed error rank, thus our generalisation of the

channel from [39, §IV] covers a wider class of channels without any significant

loss in capacity.

1.6 The Gamma channel

In this section we define the Gamma channel and summarise the results of

our analysis in Chapter 8.

Definition 1.6.1. Let R be a probability distribution on the set {0, 1, . . . ,

min{m,n}} of possible ranks of matrices M ∈ Fn×mq . The Generalised Additive

Multiplicative MAtrix Channel with rank error distribution R (the Gamma

channel Γ(R)) has input set X and output set Y , where X = Y = Fn×mq . The

channel law is

Y = A(X + B)

where A ∈ GL(n, q) is chosen uniformly, where B ∈ Fn×mq is UGR with rank

distribution R, and where A and B are chosen independently.
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We assume that q, n,m and R are fixed by the application. We refer to

these values as the channel parameters of the Gamma channel Γ(R)).

Both the MMC and AMC channels can be seen as special cases of the

Gamma channel. Indeed the MMC channel is the Gamma channel Γ(R),

when R is the rank distribution that fixes the rank of B to be zero; and

the AMC channel is the Gamma channel when the matrix A is the identity

matrix, or equivalently when A is known to the receiver and therefore can be

removed by multiplying by A−1.

Silva, Kschischang and Kötter [39, §V] considered the special case of the

Gamma channel when the error matrix B has fixed rank t. The authors used

this channel to model the general case of random linear network coding (see

Chapter 2) and presented bounds on the capacity that converge for large field

size or large channel input. However, the exact capacity of the Gamma channel

is hard to determine due to the many degrees of freedom involved: the naive

formula maximises over a probability distribution on the set of possible input

matrices, and this set is exponentially large.

In Chapter 8 we show that a capacity-achieving input distribution can

always be taken to be UGR. In 2013 Nobrega, Silva and Uchoa-Filho [33]

proved a similar result for a class of matrix channels that model network

coding with link erasures (see Chapter 2 for further details) and our result

generalises theirs to a new class of channels. We use our result to express

the Gamma channel capacity as a maximisation over probability distributions

on the set of possible ranks of input matrices: a set of linear rather than

exponential size. This gives an efficient way to compute the exact channel

capacity and find an optimal input distribution for any channel parameters.
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1.7 Structure of the thesis

The remainder of the thesis is structured as follows. Chapter 2 motivates this

work, reviewing the literature on network coding and describing the applica-

tion of the matrix channels to network coding. Chapter 3 presents preliminary

mathematical results needed in the work that follows. Chapter 4 considers the

problem of partial decoding in random linear network coding. Chapter 5 anal-

yses the MMC channel and Chapter 6 analyses the AMC channel. Chapter 7

derives expressions for several matrix functions which are needed in the anal-

ysis of the Gamma channel in Chapter 8. Finally Chapter 9 discusses the

results of the thesis and considers future research.
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Chapter 2

Motivation

2.1 Overview

In this chapter we introduce network coding and show how the mathematical

topics of this thesis relate to this application. We begin in Section 2.2 by

defining network coding and reviewing some key results from the literature.

In Section 2.3 we discuss partial decoding in network coding, motivating the

topics of Chapter 4. In Section 2.4 we show how the matrix channels defined

in Chapter 1 can be used to model random linear network coding in a vari-

ety of situations. In turn we describe the relevance of the MMC, AMC and

Gamma channels to this application. We end Section 2.4 with a discussion of

appropriate error rank distributions R for the AMC and Gamma channels.

2.2 Network coding

In communication networks data has been traditionally viewed as a physical

entity that must be routed through the network from a source to a receiver

(routing). In this setting intermediate network nodes can only perform very

limited operations of storing and replicating data. One may think of data as a

fluid that flows through the network. Then intermediate nodes can be seen as

16



‘gates’ that either open, allowing the fluid to pass through, or remain closed.

Whilst this may seem intuitively reasonable there is one big assumption: in

order to obtain the original message, the receiving node (or sink) must receive

(possibly subject to errors) an exact replica of the data sent.

In 2000 Ahlswede, Cai, Li and Yeung [1] presented an alternative approach:

network coding. Exploiting the fact that data is not a physical entity (and

doesn’t behave like a fluid), network coding allows coding at intermediate

nodes, that is one can compute with and modify data as it travels through a

network. Packets of data are injected into the network at the source (source

packets). Intermediate nodes compute a function of their received packets

and forward the resulting packet. The aim is no longer for the actual source

packets to be received, instead it suffices to receive ‘evidence’ of the original

packets. The evidence takes the form of the coded packets, from which the

receiver must be able to recover the data.

The fundamental result of [1] is that network coding can increase the net-

work throughput, that is the rate of information flow, when compared with

routing.

The simplest network illustrating this benefit is the butterfly network,

Fig. 2.1. The butterfly network has two sources s1, s2 and two sinks r1, r2.

The sources s1 and s2 have packets x and y, respectively, and both sinks r1, r2

request both x and y. Each edge in the network can transmit one packet at

a time. Using routing alone, Fig. 2.1(a) shows that it is impossible to satisfy

the request of both sinks simultaneously: there is a bottleneck at the node

v1, which must choose between forwarding packet x or y. Therefore routing

requires two uses of the edge v1 → v2 and hence there is a delay. Network

coding allows the node v1 to compute the component-wise addition of x and

17
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Figure 2.1: The Butterfly Network

y, which then forwards the coded packet x + y. The result is that r1 receives

x, x+ y, r2 receives x+ y, y and both sinks can recover x and y (for example,

r1 computes y as y = (x+ y)− x). The requests of both r1 and r2 have been

satisfied with just one use of each edge in the network, hence network coding

has increased the network throughput.

The benefit of allowing network coding can be seen clearly from the but-

terfly network example. However, real world networks can be extremely large

with complex topology. In an arbitrary network, how do the intermediate

nodes know what coding operations to perform? Do efficient schemes exist

that allow for nodes with restrictions on power and storage? These questions

become extremely complex for even moderate sized networks. However, it has

been shown that for a large class of networking problems a significant simpli-

fication can be made without loss of throughput: coding is restricted to linear

operations.

Linear network coding is the special case of network coding where packets
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Figure 2.2: The single source variation of the butterfly network.

are thought of as vectors over some finite field and the coding at intermedi-

ate nodes is restricted to computing linear combinations of packets. As linear

computation requires a small number of operations, linear network coding al-

lows for low power intermediate nodes. In 2003 Li, Yeung and Cai [28] showed

that linear network coding is sufficient to maximise network throughput in

multicast problems, that is when there is one source with a data set that is

to be transmitted in full to each member of a set of receivers. Building on

this, later in 2003 Kötter and Médard [27] presented an algebraic framework

for linear network coding.

Network problems with multiple sources and a set of receivers each wanting

the full data set are called multisource multicast problems. Given a network

with multiple sources, there is an equivalent network with a single source ob-

tained by adding a superior node with one edge for each source packet directed

to that packet’s original source. For example the single source variation of the

butterfly network is shown in Fig. 2.2 (this was the motivating example for
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network coding given in [1]). Therefore, when considering multisource mul-

ticast problems one may simplify to multicast problems with a single source

without any loss of generality.

In the single source set up, also in 2003, Chou, Wu and Jain [11] took

a practical look at network coding, presenting a robust coding system. The

authors suggested transmitting packets with coding headers, used to record

the particular linear combination of the source packets in each received packet.

This system allows the receiver to have no knowledge of the network or coding

coefficients, and decoding becomes straightforward. This practical approach

has been adopted in much subsequent work e.g. [23], [32], [43].

In 2006 Ho et al. [23] investigate random linear network coding, allowing

the coefficients of linear combinations to be chosen at random. This method

means that intermediate nodes require no knowledge of the network and no

storage ability as they simply compute and forward random linear combina-

tions of their incoming packets. This allows network coding to be viewed as an

end-to-end system, overcoming the complexity of uncertain network topology.

The remarkable result of [23] is that for general multicast problems, random

linear network coding achieves maximum network throughput with probabil-

ity exponentially approaching 1 with the field size. Thus given that the field

size is large, random linear network coding can be used without any loss in

throughput.

To illustrate this result for the butterfly network (Fig 2.1), we note that

the computation of any linear combination of x and y at node v1 would be

sufficient, as long as the coefficients of both x and y are non-zero. Indeed, this

is the case with high probability if the field size is large.

Random linear network coding is efficient and simple to implement, but
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how does one deal with the possibility of errors? Due to packet mixing, if even

a single error is injected into the network, this has the potential to corrupt all

received packets. This phenomenon of error propagation in network coding

means that classic error correction techniques will not work. However, all is

not lost as the errors on the received packets are not independent of each other:

they are all simply linear combinations of the injected error packets. Therefore

the errors are contained in a subspace of small dimension (the dimension of the

error subspace is equal to the number of linearly independent errors introduced

into the network).

The following example is used to illustrate how errors affect the received

packets when using random linear network coding. Consider the single source,

single sink network in Fig. 2.3. Each edge in the network transmits one packet

at a time. The source s transmits source packets x, y and z to the receiver

at the sink r, using random linear network coding. Assuming no errors, the

network throughput is shown in Fig. 2.3. The αi are the random coding

coefficients. The receiver r obtains the following linear combinations of the

source packets 
(α3 + α4α1)x+ α4α2y
α1x+ α2y
α5α1x+ α5α2y + α6z

.

Suppose now that during the transmission two erroneous packets e and f

were injected into the network. Suppose e was injected at the node v1 and f

was injected at the node v6. Random linear network coding proceeds as before

and the network throughput is shown in Fig. 2.4. The βi are the new random

coding coefficients introduced.

Now the receiver r obtains packets that are linear combinations of the
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source packets x, y, z and the error packets e, f . The received packets are
(α3 + α4α1β1)x+ α4α2y + (α3 + α4α1)β2e
α1β1x+ α2y + α1β2e
α5α1β1x+ α5α2y + α6z + α5α1β2e+ β3f

,

(for clarity the errors are shown in different colours). We see that all three re-

ceived packets contain errors. However the errors lie within the two-dimensional

subspace spanned by the error vectors e and f .

In random linear network coding, although a small number of errors are

able to corrupt all packets, since the errors on packets are contained within a

small subspace it is possible to construct efficient methods for error correction.

In 2008 Kötter and Kschischang [26] studied random linear network coding,

assuming adversarial errors (so the worst case was studied). They showed

that it is optimal to encode information as a choice of subspace, transmitting

packets that are vectors forming a generating set for that space. Indeed the

subspace a set of vectors span is invariant under taking linear combinations.

Then, since the errors are contained in a small subspace, the received subspace

will be a small ‘distance’ from the input subspace. To decode one simply finds

the ‘closest’ subspace from the set of possible inputs. The authors deduced

coding bounds analogous to the sphere-packing, sphere-covering and Singleton

bounds for classic codes and presented a Reed-Solomon-like code construction.

The optimality of subspace coding puts into question the practical approach

of [11] using coding headers. Although coding with headers can be viewed as

subspace coding, the possible subspaces have a restricted form, resulting in a

smaller, suboptimal coding space.

Following the work of [26], Montanari and Urbanke [32] and then Silva,

Kschischang and Kötter [39] took a different approach, assuming random er-

rors (as opposed to adversarial) and considered a probabilistic error model.
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This is the approach we focus on for much of this work and we will discuss

the probabilistic error model in detail in Section 2.4.

The subspace coding approach of [26] quickly became an active topic of

research in network coding; for example an early survey of subspace coding

is given in 2009 by Khaleghi, Silva and Kschischang [25]. This research area

has since expanded and remains very active. For further surveys on network

coding we refer the reader to the 2011 survey by Sanna and Izquierdo [35] and

the 2013 survey by Bassoli et al. [3].

2.3 Partial decoding in random linear network

coding

This section reviews the literature on partial decoding in random linear net-

work coding, motivating the problems considered in Chapter 4. We conclude

the section with an overview of the results of Chapter 4.

In random linear network coding, the packets received at the sink node

(coded packets) are random linear combinations of source packets over a finite

field. If k source packets are considered, decoding at a receiving node usually

starts after k linearly independent coded packets have been collected. The

probability of recovering all of the k source packets when at least k coded pack-

ets have been received has been derived by Trullols-Cruces, Barcelo-Ordinas

and Fiore [40]. However, the requirement of decoders for the reception of

a large number of coded packets could introduce undesirable delays at the

receiving nodes.

In an effort to alleviate this problem, rank-deficient decoding was proposed

by Yan, Xie, and Suter [42] for the recovery of a subset of source packets when

fewer than k coded packets have been obtained. Whereas the literature on
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network coding defines decoding success as the recovery of 100% of the source

packets with a certain probability, the authors of [42] presented numerical

simulation results that measured the fraction of decoding success, that is, the

recovery of a percentage of the source packets with a certain probability.

The fundamental problem that motivates the work of Chapter 4 is the char-

acterisation of the probability of recovering some of the k source packets when

n coded packets have been retrieved, where n can be smaller than, equal to

or greater than k. This idea was considered independently by Gadouleau and

Goupil [15] for random network communications over a matroid framework.

The authors show that when transmitting only coded packets (so packets are

randomised at the source), partial decoding is highly unlikely.

The problem has also been explored in the literature in the context of

secure network coding, for example by Bhattad and Narayanan [6], and by

Lima, Médard and Barros [29]. Strict information-theoretic security (in an

appropriate model) is defined in [8] to be achieved if and only if the mutual

information between the packets available to an eavesdropper and the source

packets is zero. When network coding is used, the authors of [6] define a no-

tion of weak security that can be achieved if the eavesdropper cannot obtain k

linearly independent coded packets and, therefore, cannot recover any mean-

ingful information about the k source packets. The authors obtained bounds

on the probability of random linear network coding being weakly secure and

showed that the adoption of large finite fields greatly improves security. A

different setting but a similar problem was investigated in [29]. Intermediate

relay nodes between transmitting nodes and receiving nodes were treated as

potentially malicious, and criteria for characterising the algebraic security of

random linear network coding were defined. The authors demonstrated that
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the probability of an intermediate node recovering a strictly positive number of

source packets tends to zero as the field size and the number of source packets

go to infinity.

In Chapter 4, we revisit this problem and make two key contributions:

• As explained in Section 1.3, we consider a random linear system of r lin-

early independent equations over a finite field and derive the probability

of determining the values of at least x of the k unknowns for x ≤ r ≤ k.

• We draw parallels between systems of random linear equations and ran-

dom linear network coding, and we obtain exact analytical expressions

for the probability that a receiving node shall recover at least x of the k

source packets if n random linear combinations of the k source packets

are collected.

In addition to these contributions, the chapter investigates the impact of cod-

ing with headers when the headers of the first k packets transmitted are re-

stricted to being the first k unit vectors and subsequent headers are random.

This is known as systematic network coding and in practice means you are

first transmitting source packets, followed by coded packets. We compare this

to coding with headers, when all transmitted packets have random headers.

This is non-systematic network coding, where in practice you are transmitting

only coded packets. The asymptotic behavior of network coding over large

finite fields is also studied.
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2.4 Matrix channels for random linear net-

work coding

In aim of this section is to show how the finite field matrix channels defined

in Chapter 1 model various cases of random linear network coding.

In random linear network coding, the source injects packets into the net-

work that can be thought of as vectors of length m with entries in a finite field

Fq (where q is a fixed power of a prime). The packets flow through a network

of unknown topology to a receiving node. Each intermediate node forwards

packets that are random linear combinations of the packets it has received.

A receiving sink node then attempts to reconstruct the message from these

packets. In this context, k source packets can be represented as an k × m

matrix over Fq, X, where the rows of X are the source packets. Similarly, if n

packets are received by the sink, these can be represented as an n×m matrix

over Fq, Y , where the rows of Y are the received packets. Thus a channel

with input X and output Y is a model for network coding. The aim is to

determine a channel law relating Y to X that accurately describes the effects

of random linear network coding.

For simplicity (and in contrast to Section 2.3) we will assume the number

of received packets is equal to the number of source packets (i.e. k = n). This

is a widely considered practical case since a receiver simply waits until it has

received k = n packets and then begins decoding. However, the requirement of

decoders for the reception of a large number of coded packets could introduce

undesirable delays at the receiving nodes: see Section 2.3 and Chapter 4 for

an alternative approach.

In Subsection 2.4.1 we show that the MMC is a model for error free network

coding. Subsection 2.4.2 shows the AMC is a model for network coding when
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the coding coefficients are known to the receiver. Subsection 2.4.3 shows that

the Gamma channel is a model for the general case of random linear network

coding. Finally in Subsection 2.4.4 we discuss appropriate error rank distri-

butions R for the AMC and Gamma channels, that lead to accurate models

of error patterns in network coding.

2.4.1 The error free model

As in the work of Silva, Kschischang and Kötter [39], we use the Multiplicative

Matrix Channel, defined in Definition 1.4.1, to model random linear network

coding in the special case with no noise during transmission. In this error free

case, since no erroneous packets are injected into the network, the sink node

receives packets that are linear combinations of the original packets. Recall

the MMC channel law is

Y = AX

where A ∈ GL(n, q) is chosen uniformly at random. This gives the rows of

the output Y (the received packets) to be random linear combinations of the

rows of the input X (the source packets). The matrix A describes the linear

transformations the packets undergo during transmission.

When considering the model this channel describes, it is important to con-

sider whether the distribution on the transfer matrix A is realistic. The dis-

tribution of A will depend on the underlying network topology and the choice

of coding coefficients. The network topology will affect the transfer matrix

distribution since the coding coefficients at a given node will be restricted by

which packets that node has access to. For example a sparse network may

be more likely to produce a sparse transfer matrix. However, large, deep and
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interconnected networks are likely to produce matrices A that are more uni-

form, therefore we assume the effect of the specific network topology is small

enough that it can be ignored. Then, since the coding coefficients are chosen

randomly, the transfer matrix A should be a uniform random matrix. The

biggest assumption made is that A is invertible. We must consider whether

it is reasonable to assume a randomly chosen n × n matrix over Fq is non-

singular. This assumption becomes more and more realistic as the field size q

grows, since you are less likely to get linear dependences. In network coding

the field size is usually large to allow feasibility (that is the ability to deliver

the input to all destinations when there are no errors). Therefore the MMC

is a realistic model.

Both Nobrega, Silva, and Uchoa-Filho [33] and Siavoshani, Mohajer, Fragouli,

and Diggavi [37] consider (different) generalisations of the MMC channel that

do not necessarily have a square full rank transfer matrix. Such channels allow

modelling of network coding when no erroneous packets are injected into the

network, but there may be link erasures. In [33], the authors consider the

following channel:

Definition 2.4.1. The Generalised Multiplicative Matrix Channel (GMMC)

has input set X = Fk×mq and output set Y = Fn×mq . The channel law is

Y = AX

where A ∈ Fn×kq is chosen according to a uniform given rank (UGR) distribu-

tion with some rank distribution RA.

Note that the MMC is a special case of the GMMC, when k = n and RA

choses the matrix A to have full rank with probability 1.
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In the GMMC the rank distribution on A is determined by the network

topology, the random choices of coding coefficients and the link erasure prob-

ability. The authors prove that there exists a UGR optimal input distribution

for the GMMC channel. Moreover, they show given any optimal input distri-

bution, a UGR distribution with the same rank distribution will also be opti-

mal. This implies that to find an optimal input distribution for the GMMC

one must find an optimal distribution on the rank of the input X and then

choose matrices uniformly once their rank is determined.

In this work we will focus on the MMC channel as its simplicity allows an

elegant analysis of the channel capacity, which can be achieved via an intuitive

coding scheme. We conclude Chapter 5 with a discussion comparing our results

to those of [33]. However, we choose to consider a different generalisation of

the MMC channel, the Gamma channel, which models a different class of cases

in network coding; see Subsection 2.4.3.

2.4.2 The coherent model

Consider the case when the receiver knows the particular combinations source

packets undergo during transmission; this is coherent network coding. For

the error free MMC model discussed in Section 2.4.1 this is equivalent to the

receiver knowing the transfer matrix A. Since A is invertible the receiver can

compute its inverse and multiply the received output by A−1 to obtain

A−1Y = X.

Since A−1 is known, up to relabeling this is equivalent to considering the

channel with the simple law

Y = X. (2.4.1)
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However, unlike the error free MMC model, we now consider the intro-

duction of errors. Following the approach of Montanari and Urbanke [32] and

Silva, Kschischang and Kötter [39] we consider a probabilistic error model. We

assume a small number of random erroneous packets may be injected at any

point in the network. These packets are combined with legitimate packets and

coding proceeds as before. The result is that each received packet will be a

linear combination of the source packets and error packets. Supposing t′ errors

are introduced to the network, in the matrix model, for input X ∈ Fn×mq the

receiver obtains the output as

Y = AX + DE (2.4.2)

where A ∈ GL(n, q) is chosen uniformly and describes the linear combinations

the source packets undergo, E is a t′×m matrix whose rows are the erroneous

packets and D is an n× t′ full rank random matrix that describes the linear

transformations the error packets undergo during transmission. In general,

the number of errors t′ will not be fixed but will be determined by some distri-

bution. The matrix DE is then a n×m matrix whose rank gives the number

of linearly independent errors. Since we are assuming errors are introduced

randomly it is reasonable to assume the errors are distributed uniformly. As

errors can be introduced at any point in the network they will encounter ran-

dom linear transformations that are unknown to the receiver and different to

those of the source packets. Due to the randomness of the errors and packet

mixing, it is reasonable to assume that DE has a UGR distribution.

Let B = A−1DE, then since A−1 has full rank and is distributed uni-

formly, B is an n ×m matrix with the same distribution as DE. It is then
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equivalent to write (2.4.2) as

Y = A(X + B) (2.4.3)

where B is an n × m matrix chosen from a UGR distribution with rank

distribution R, where R gives the number of linearly independent errors. The

matrix B is the error matrix: the rows of B represent linear combinations of

the erroneous packets.

In coherent network coding, as in the error free case described above, we

can assume the matrix A is known to the receiver, who can invert A and

multiply the output by A−1 to obtain

A−1Y = X + B.

Multiplying by A−1, inverting the known linear combinations, is essentially

taking linear combinations of the received packets. This changes the linear

combinations of errors on the received packets, but the distribution of these

errors is the same. Then, up to relabeling, it is equivalent to consider the

channel described by the law

Y = X + B, (2.4.4)

where B ∈ Fn×mq is UGR with some given rank distribution R. Recall, this is

precisely the channel law for the Additive Matrix Channel (AMC), defined in

Definition 1.5.1. Therefore the AMC can be used to model coherent random

linear network coding, when random errors are introduced into the network.

In the model this gives the received packets (rows of Y ) to be source packets

(rows of X) subject to additive errors that are linear combinations of error

packets (rows of B).
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Silva, Kschischang and Kötter [39] used the special case of the AMC chan-

nel with fixed error rank to model coherent network coding. That is they

fixed the rank of B to equal exactly t. This channel allowed them to model

the introduction of exactly t linearly independent errors, however there is no

flexibility to allow the modelling of a different number of errors since the rank

of B is the dimension of the error space. Indeed, they present a coding scheme

that relies on an ‘error-trapping’ method to decode, which fails if less than t

errors are ‘trapped’. This scheme can be adapted to different error patterns

but it is then possible for errors to go undetected, see [39, §VI. D] for further

details.

A more natural restriction may be that rk(B) ≤ t; allowing the modelling

of situations when at most t errors are introduced, or when the errors are not

necessarily linearly independent, or both. Different applications will lead to

different distributions. Our generalised AMC channel allows for this, enabling

the modelling of channels with different error patterns. The task is then to

find appropriate distributions on the rank of B that lead to realistic models

of error patterns. Such distributions are explored in Subsection 2.4.4.

2.4.3 The general model

The final channel we consider, the Gamma channel Γ(R) (Definition 1.6.1),

is used to model the general case of random linear network coding. In the

general case we assume that coding is non-coherent, so the coding coefficients

are unknown to the receiver and that random errors may be introduced into

the network. Recall the channel law is

Y = A(X + B), (2.4.5)
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where A ∈ GL(n, q) is chosen uniformly at random, B ∈ Fn×mq is UGR with

some given rank distribution R and A and B are chosen independently.

The rows of the output Y (received packets) are now random linear combi-

nations of the rows of the input X (source packets) with the addition of rows

of B. So A describes the linear transformations the packets undergo during

transmission and the rows of B represent random linear combinations of the

erroneous packets.

Note that the MMC is exactly the Gamma channel with zero errors, that

is the MMC is the special case of Γ(R) when R is the distribution choosing

rank 0 with probability 1. Similarly, the AMC(R) is exactly the Γ(R) when

the transfer matrix A is equal to the n× n identity matrix.

The validity of the Gamma channel as a model for network coding depends

on the distributions of A and B. As explained for the MMC, since we assume

A is invertible, the Gamma channel becomes more and more realistic as the

field size q grows. Then, as for the AMC, the error rank distribution R must

be chosen to give a realistic model of error patterns. Silva, Kschischang and

Kötter [39] used the special case of Γ(R) with fixed error rank (i.e.R being the

distribution choosing rank t with probability 1) to model the general case of

random linear network coding. As discussed for the AMC channel this model

is restrictive in the error patterns as it assumes that there are always exactly

t linearly independent random errors introduced.

In the following subsection we discuss sensible distributions on the error

rank to model naturally occurring error patterns.
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2.4.4 Error rank distributions

As seen above, Silva, Kschischang and Kötter [39] used special cases of the

AMC and Gamma channels with constant error rank to model random lin-

ear network coding when exactly t random linearly independent errors are

introduced into the network.

Our models cover several other very natural situations. Both the AMC

and Gamma channels allow for any distribution R on error ranks, which can

be chosen to model a given error pattern. Some possible distributions are

discussed below.

Firstly, suppose we assume the random errors are all linearly independent.

Unlike the model in [39], there may not be exactly t errors and therefore we

can model a distribution on the number of errors. Suppose in a given network

every link has a small positive probability of producing an erroneous packet.

In a large network it will be unlikely to have errors close to the sink, therefore

one can assume sufficient packet mixing to ensure the error matrix is random

and its distribution is only dependent on ranks. The error rank, or number of

errors, could then be modeled by a binomial distribution. Or perhaps, if the

probability of having more than t errors is extremely small, one could ignore

this and use a truncated binomial distribution that defines the probability of

more than t errors to be zero.

A different but related model may allow for the possibility that random

errors may not be linearly independent. That is, with a certain probability, we

may get lucky and errors may be introduced that are linear combinations of

previous errors. If errors are introduced independently of each other this will

mean that, given t′ total errors, the probability that the error space will have

dimension r ≤ t′ will be equal to the probability that t′ vectors span a subspace
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of dimension r. To model this situation, the total number of errors could be

modeled as above with some binomial (perhaps truncated) distribution. Then,

one could define R(r) to be the probability that t′ vectors span a subspace of

dimension r, averaged over the total number of errors t′.

Another possible model is an adversarial model, where it is assumed that

exactly some fixed number of nodes are corrupt and produce random outputs.

This could be extended to allow corrupt nodes to produce more than one out-

put packet, meaning they could introduce multiple errors. This could become

very dependent on the specific network topology and the location of corrupt

nodes.

In practice, given a particular network, one may run tests on the network

to see the actual error patterns produced and define an empirical distribution

on ranks. It may also be sensible to consider some combination of the models

described.

We have shown that there are several naturally occurring situations that

could be represented under our model and therefore our generalisation of the

matrix channels considered by [39] allow the modelling of a wider class of cases

in random linear network coding.
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Chapter 3

Preliminaries

3.1 Overview

This chapter presents preliminary results needed for the work that follows.

We begin in Section 3.2 by considering finite-dimensional vector spaces. In

Section 3.3 we discuss the theory of Möbius inversion. Finally, in Section 3.4

we review basic concepts from information theory.

3.2 Finite-dimensional vector spaces

In this section we consider vector spaces over finite fields. We begin by defining

notation that will be adopted throughout this work.

Let q be a prime power and Fq be the finite field of q elements. For a

positive integer m, we write Fmq to denote the vector space composed of all

m-tuples over Fq. For a vector space V , we denote the dimension of V by

dim(V ). Let M be an n ×m matrix over Fq. We write rk(M) to denote the

rank of M , suppose rk(M) = d. In Chapter 1 we defined Fn×mq to be the set of

all n×m matrices over Fq, and Fn×m,dq to be the set of matrices in Fn×mq of rank

d. The rowspace of M , denoted Row(M), is the d-dimensional subspace of Fmq

given by the span of the rows of M . Counting problems involving matrices
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and their rowspaces will be a recurring theme in this work. In this section we

present the standard definitions and results on counting vector spaces that are

needed for what follows.

The remainder of this section is organised as follows. In Subsection 3.2.1

we define and calculate a combinatorial constant which will be used in Subsec-

tion 3.2.2, where we discuss Gaussian binomial coefficients. In Subsection 3.2.3

we define quotient spaces and consider several subspace counting problems.

3.2.1 A combinatorial constant

In this subsection we define and calculate a combinatorial constant Q0 which

will be used in Subsection 3.2.2 to give a bound on the Gaussian binominal

coefficient.

Consider the function f(x) =
∏∞

k=1

(
1− xk

)
. This function has lots of

combinatorial applications, indeed it appears in Euler’s pentagonal number

theorem and its reciprocal is the generating function of integer partitions, see

e.g. [2, Ch. 14]. For x = 1
2
, this function results in the combinatorial constant

Q0 = f

(
1

2

)
=
∞∏
k=1

(
1− 2−k

)
, (3.2.1)

which is shown in [5] to give the probability that a random large square binary

matrix is invertible. The authors of [5] compute the value of Q0 by noting

its equivalence to a rapidly converging series. The following lemma gives an

alternative method for computing this value.

Lemma 3.2.1. Let Q0 be as defined in (3.2.1). For n ≥ 1, the value of Q0 is

bounded as follows(
n∏
k=1

(
1− 2−k

))
exp

(
−2−n+1

)
< Q0 <

(
n∏
k=1

(
1− 2−k

))
exp

(
−2−n

)
,

(3.2.2)

38



in particular

Q0 = 0.288788 (3.2.3)

to six significant figures.

Proof. Note that for any integer n ≥ 1,

Q0 =
∞∏
k=1

(
1− 2−k

)
=

(
n∏
k=1

(
1− 2−k

))
exp

(
ln

(
∞∏

j=n+1

(
1− 2−j

)))
.

(3.2.4)

By the exponential expansion (e.g. [21, p. 104]) for any x such that 0 < x < 1,

1− x < exp(−x) < 1− x+
x2

2!

< 1− x+
x

2

= 1− x

2
,

(where m! = m × (m − 1) × · · · × 1 denotes the factorial of the integer m).

Thus, given x with 0 < x < 1,

ln(1− x) < −x < ln
(

1− x

2

)
. (3.2.5)

Therefore, for n ≥ 1

ln

(
∞∏

j=n+1

(
1− 2−j

))
=

∞∑
j=n+1

ln
(
1− 2−j

)
< −

∞∑
j=n+1

2−j (3.2.6)

= −2−n (3.2.7)
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where (3.2.6) follows from (3.2.5). Similarly

ln

(
∞∏

j=n+1

(
1− 2−j

))
=

∞∑
j=n+1

ln
(
1− 2−j

)
=

∞∑
j=n+1

ln

(
1− 2−j+1

2

)

> −
∞∑

j=n+1

2−j+1 (3.2.8)

= −
∞∑
i=n

2−i

= −2−n+1 (3.2.9)

where (3.2.8) follows from (3.2.5). Substituting (3.2.7) and (3.2.9) into (3.2.4)

gives (3.2.2). For n ≥ 30 the upper and lower bounds are equal to at least six

significant figures, giving (3.2.3).

3.2.2 Gaussian binomial coefficients

In this subsection we define Gaussian binomial coefficients, the q-analog of

binomial coefficients and an essential tool in subspace counting arguments.

We begin by recalling the definition of binomial coefficients.

Definition 3.2.1. Let m and d be non-negative integers. The binomial coef-

ficient, denoted
(
m
d

)
, is defined to be the number of d-element subsets of an

m-element set. It is given by (e.g. [9, §3.2])(
m

d

)
=


m!

d!(m− d)!
, for d ≤ m

0, for d > m.
(3.2.10)

Binomial coefficients are extremely important in combinatorics due to the

wide range of counting problems they apply to. However their use in counting

problems is restricted to those involving sets. For problems involving vector

spaces over finite fields it is necessary to consider the q-analog of the binomial

coefficient, the Gaussian binomial coefficient, defined below.
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Definition 3.2.2. Let q be a prime power and let m and d be non-negative

integers. The Gaussian binomial coefficient, denoted
[
m
d

]
q
, is defined to be

the number of d-dimensional subspaces of an m-dimensional space over Fq. It

is given by (e.g. [9, §9.2])

[
m

d

]
q

=


d−1∏
i=0

(qm − qi)
(qd − qi)

, for d ≤ m

0, for d > m.

(3.2.11)

Remark. The reason Gaussian binomial coefficients are considered the q-analog

of binomial coefficients is that for fixed integers m and d (e.g. [9, §9.2]),

lim
q→1

[
m

d

]
q

=

(
m

d

)
.

Gaussian binomial coefficients apply to many counting problems involving

vector spaces over finite fields, as such they will appear repeatedly throughout

this work. Therefore, to simplify notation, when the underlying field size q

is clear from the context, we omit the subscript q and write
[
m
d

]
=
[
m
d

]
q

to

denote the Gaussian binomial coefficient.

The remainder of this subsection establishes bounds on Gaussian binomial

coefficients and discusses asymptotic behaviour. We begin by stating a known

bound on the Gaussian binomial coefficient, which appears within the proof

of [26, Lemma 4].

Lemma 3.2.2. Let q be a prime power. For integers m, d with d ≤ m the

following bound on the Gaussian binomial coefficient holds,

q(m−d)d <

[
m

d

]
< q(m−d)d

∞∏
i=1

1

1− q−i
. (3.2.12)

Remark. The upper bound in Lemma 3.2.2 also appears in [16, Corollary 1].

Lemma 3.2.2 shows that the value of
[
m
d

]
is ‘close to’ q(m−d)d for large q,

indeed the product
∏∞

i=1
1

1−q−i approaches 1 quickly as q grows. The following
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lemma gives a constant factor bound on the Gaussian binomial coefficient,

showing the behaviour for all values of q. (Note that a similar result is shown

in [26, Lemma 4].)

Lemma 3.2.3. Let q be a prime power. For integers m, d with d ≤ m the

following bound on the Gaussian binomial coefficient holds.

q(m−d)d <

[
m

d

]
< 3.5q(m−d)d. (3.2.13)

Proof.

∞∏
i=1

1

1− q−i
≤
∞∏
i=1

1

1− 2−i

=
1

Q0

< 3.5, (3.2.14)

where (3.2.14) follows from Lemma 3.2.1. Substituting (3.2.14) into (3.2.12)

gives the result.

Lemma 3.2.3 shows that
[
m
d

]
is within a (small) constant factor of q(m−d)d

for all values of q. Lemmas 3.2.2 and 3.2.3 show that for large q, the Gaussian

binomial coefficient can be approximated as[
m

d

]
≈ q(m−d)d.

Indeed, we obtain the following lemma.

Lemma 3.2.4. Let m and d be integers with 0 ≤ d ≤ m. Then

lim
q→∞

[
m

d

]
= q(m−d)d.

Proof. Taking the limit as q →∞ in (3.2.12) gives the result.
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3.2.3 Quotient spaces

In this subsection we discuss quotient spaces and consider several subspace

counting problems. An overview of quotient spaces is given in [20, §21 - 22].

We begin by recalling the definition of a quotient space.

Definition 3.2.3. Let V be a vector space and let U be a subspace of V .

Define an equivalence relation ∼ on V such that for v1, v2 ∈ V , v1 ∼ v2 if

v1 − v2 ∈ U . The equivalence class of v1 is

[v1] = {v1 + u : u ∈ U}.

The quotient space V/U is defined to be the set of all equivalence classes over

V by ∼. Scalar multiplication and addition are defined as follows.

α[v1] = [αv1],

where α is any element of the base field, and

[v1] + [v2] = [v1 + v2].

Its not hard to show that this definition is well defined and that all ele-

ments of U map to zero in the quotient space. The following lemma gives the

dimension of V/U .

Lemma 3.2.5. Let V be a vector space of dimension dV , and let U be a dU -

dimensional subspace of V . The quotient space V/U has dimension dV − dU .

Proof. See [20, §22].

Definition 3.2.4. Let V be a vector space and let U be a subspace of V . The

quotient map is defined to be the map that takes vectors in V to their image

in the quotient space V/U ,

π : V → V/U
π(v) = [v]

.
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For a subspace W of V we shall denote the image of W under the quotient

map as [W ].

The following lemma states a standard result from the theory of finite

dimensional vector spaces.

Lemma 3.2.6. Let V be a vector space and let U be a fixed subspace of V .

For any subspace W of V

dim([W ]) = dim(W )− dim(W ∩ U),

where [W ] denotes the image of W in the quotient space V/U .

Proof. Note that

[W ] = [W + U ] = (W + U)/U, (3.2.15)

since in the quotient U maps to zero. We have

dim(W + U) = dim(W ) + dim(U)− dim(W ∩ U), (3.2.16)

and also by Lemma 3.2.5

dim((W + U)/U) = dim(W + U)− dim(U). (3.2.17)

Substituting (3.2.15) and (3.2.16) into (3.2.17) gives the result.

The following lemma gives the number of subspaces U of V , when, given

some subspace V1 of V , the intersection of U and V1 is fixed and the image of

U in the quotient space V/V1 is fixed.

Lemma 3.2.7. Let V be a dV -dimensional vector space, and let V1, V2 be

subspaces of V , of dimensions dV1 and dV2 respectively, such that V2 ⊆ V1.

The number of dU -dimensional subspaces U ⊆ V such that U ∩ V1 = V2 and
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the image of U in the quotient space V/V1 is the fixed dU − dV2 dimensional

space U ′, is given by

q(dU−dV2 )(dV1−dV2 ).

Proof. Fix a basis for V2, say {b1,1, . . . , b1,dV2
}. Let π : V → V/V1 be the map

which takes vectors in V to their image in V/V1. For dU ′ = dU − dV2 , let

{y1, . . . ydU′} be a basis for U ′, and let {b2,1, . . . , b2,dU′
} be some vectors in V

such that π(b2,i) = yi, for i = 1, . . . , dU ′ .

The set {b1,1, . . . , b1,dV2
, b2,1, . . . , b2,dU′

} is a linearly independent set that

forms the basis of a space U of the required form. Moreover, every space U of

the required form has a basis that can be constructed in this way. The general

construction takes the basis for V2 and extends this to a basis for a space U

by adding any set of dU ′ vectors in V whose image under π is {y1, . . . , ydU′}.

Given the set {b2,1, . . . , b2,dU′
}, all other sets of dU ′ vectors in V whose image

under π is {y1, . . . ydU′} can be written in the form {v1 + b2,1, . . . , vdU′ + b2,dU′
}

for some v1, . . . , vdU′ ∈ V1. Therefore, any space U of the required form has a

basis that can be written as B = {b1,1, . . . , b1,dV2
, v1 + b2,1, . . . , vdU′ + b2,dU′

} for

some v1, . . . , vdU′ ∈ V1.

Given some set v′1, . . . , v
′
dU′
∈ V1, letB′ = {b1,1, . . . , b1,dV2

, v′1+b2,1, . . . , v
′
dU′

+

b2,dU′
}. Now Span(B) = Span(B′) if and only if vi− v′i ∈ V2 for i = 1, . . . , dU ′ .

That is, the sets B and B′ give rise to the same space if and only if [vi] = [v′i]

for i = 1, . . . , dU ′ , where [v] denotes the image of a vector v in the quotient

space V1/V2.

Therefore there is a bijection between spaces U of the required form and

ordered sets {[v1], . . . , [vdU′ ]} of elements in the quotient space V1/V2.

For i = 1, . . . dU ′ , there are qdV1−dV2 choices for [vi] ∈ V1/V2, thus there are

qdU′ (dV1−dV2 ) = q(dU−dV2 )(dV1−dV2 ). (3.2.18)
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choices for the ordered set {[v1], . . . , [vdU′ ]}. The result follows.

Given a vector space V and a subspace V1 ⊆ V , Lemma 3.2.7 can be used

to count subspaces U of V when either U ∩ V1 is fixed, or the image of U in

V/V1 is fixed, or when only the dimensions of these spaces are fixed. These

results are given in the following three corollaries.

Corollary 3.2.8. Let V be a dV -dimensional vector space, and let V1, V2 be

subspaces of V , of dimensions dV1 and dV2 respectively, such that V2 ⊆ V1. The

number of dU -dimensional subspaces U ⊆ V such that U ∩ V1 = V2, is given

by

q(dU−dV2 )(dV1−dV2 )

[
dV − dV1
dU − dV2

]
.

Proof. Consider the quotient space V/V1, this is a space of dimension dV −dV1 .

Let U ′ be a (dU − dV2)-dimensional subspace of V/V1. There are[
dV − dV1
dU − dV2

]
(3.2.19)

possible choices for U ′, fix one such space.

By Lemma 3.2.7 there are q(dU−dV2 )(dV1−dV2 ) possibilities for the space U

whose image in the quotient V/V1 is the fixed space U ′. Multiplying by the

number of possibilities for U ′, yields the result.

Corollary 3.2.9. Let V be a dV -dimensional vector space, and let V1 be a

dV1-dimensional subspace of V . The number of dU -dimensional subspaces U ⊆

V such that the image of U in the quotient space V/V1 is some fixed dU ′

dimensional space U ′, is given by

qdU′ (dV1−(dU−dU′ ))
[

dV1
dU − dU ′

]
. (3.2.20)
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Proof. Let V2 be a (dU − dU ′)-dimensional subspace of V1, there are[
dV1

dU − dU ′

]
possible choices for V2, fix one.

By Lemma 3.2.7 there are q(dU−(dU−dU′ ))(dV1−(dU−dU′ )) = qdU′ (dV1−(dU−dU′ ))

possibilities for the space U whose intersection with V1 is the fixed space V2.

Multiplying by the number of possibilities for V2, yields the result.

Corollary 3.2.10. Let V be a dV -dimensional vector space, and let V1 be

a dV1-dimensional subspace of V . The number of dU -dimensional subspaces

U ⊆ V such that dim(U ∩V1) = dUV1 is equal to the number of dU -dimensional

subspaces U such that dim([U ]) = dU − dUV1, where [U ] denotes the image of

U in the quotient space V/V1. The value is given by

q(dU−dUV1
)(dV1−dUV1

)

[
dV − dV1
dU − dUV1

][
dV1
dUV1

]
.

Proof. Note that dim(U ∩ V1) = dUV1 if and only if dim([U ]) = dU − dUV1

hence the equivalence in the statement of the lemma holds. Let V2 be a

(dUV1)-dimensional subspace of V1, there are[
dV1
dUV1

]
possible choices for V2, fix one. Next let U ′ be a (dU − dUV1)-dimensional

subspace of V/V1. There are [
dV − dV1
dU − dUV1

]
(3.2.21)

possible choices for U ′, fix one.

By Lemma 3.2.7 there are q(dU−dUV1
)(dV1−dUV1

) possibilities for the space U

whose intersection with V1 is the fixed space V2, and image in the quotient

V/V1 is the fixed space U ′. Multiplying by the number of possibilities for V2

and U ′, yields the result.
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3.3 Möbius theory

In this section we discuss Möbius inversion, an important tool in combinatorics

allowing the calculation of many complex counting problems. The fundamen-

tal paper by Rota [34], shows the importance of Möbius theory in combina-

torics, exploring the connections in depth. Bender and Goldman [4] comple-

ment [34], giving an exposition of many applications of Möbius inversion in

combinatorics. We recall several of these results below.

We begin by defining partially ordered sets (posets) and the Möbius func-

tion of a poset.

Definition 3.3.1. A partially ordered set or poset (S,≤) consists of a set S

and a binary relation (ordering) ≤ on S that is

• reflexive: a ≤ a for all a ∈ S,

• transitive: if a ≤ b and b ≤ c then a ≤ c,

• anti-symmetric: if a ≤ b and b ≤ a then a = b.

The poset (S,≤) is locally finite if for all a, b ∈ S the closed interval

[a, b] = {s ∈ S : a ≤ s ≤ b}

is finite. For simplicity, we denote the poset (S,≤) by S and the ordering ≤

is understood by the context.

Definition 3.3.2. The Möbius function of a locally finite poset S is an integer

valued function of two variables on S defined by µ(x, z) = 0 if x � z and when

x ≤ z, ∑
y:x≤y≤z

µ(x, y) =

{
1 if x = z
0 otherwise.
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Next we state the Möbius inversion formula, given in [4, Theorem 1].

Lemma 3.3.1. Möbius inversion. Let S be a locally finite poset. Let f(x)

be a real valued function defined for all x ∈ S. Suppose there exists s ∈ S such

that f(x) = 0 for all x < s. Define

g(x) =
∑
y≤x

f(y).

Then

f(x) =
∑
y≤x

µ(y, x)g(y),

where µ is the Möbius function of S.

Remark. If S is a finite poset, as opposed to locally finite, given any real

valued function f(x) on S, one can define f(x) = 0 for all x < min{s : s ∈ S}

(since no such x exist). Therefore, for finite posets it is possible to remove

the constraint that there exists s ∈ S such that f(x) = 0 for all x < s in the

statement of Lemma 3.3.1.

Let S be a finite set and let P (S) denote the power set of S, that is the set

of all subsets of S, ordered by inclusion. It is shown in [4, §3] that the Möbius

function of P (S) is given by

µ(I, J) = (−1)|J\I| (3.3.1)

for I, J ∈ P (S) with I ⊆ J . Applying the Möbius inversion formula to

P (S) gives the following result, which is the basic principle of inclusion and

exclusion.

Lemma 3.3.2. Principle of inclusion and exclusion. Let f(J) and

f ′(J) be real valued functions defined for all J ∈ P (S). If

g(I) =
∑
J⊆I

f(J)
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then

f(I) =
∑
J⊆I

(−1)|J\I|g(J). (3.3.2)

Similarly, if

g′(I) =
∑
J⊇I

f ′(J)

then

f ′(I) =
∑
J⊇I

(−1)|I\J |g′(J). (3.3.3)

Proof. Firstly, (3.3.2) follows by applying the Möbius inversion formula and

substituting in (3.3.1). Then (3.3.3) follows by setting f ′′(I) = f ′(S \ I),

g′′(I) = g′(S \ I) and applying (3.3.2) to the functions f ′′ and g′′.

Let Po(Fmq ) denote the poset of all subspaces of Fmq ordered by containment.

It is shown in [4, §5] that the Möbius function of Po(Fmq ) is given by

µ(V, U) = (−1)dim(U)−dim(V )q(
dim(U)−dim(V )

2 ). (3.3.4)

for U, V ∈ Po(Fmq ) with V ⊆ U . Applying the Möbius inversion formula to

Po(Fmq ) gives the following result.

Lemma 3.3.3. Let f(U) be a real valued function defined for all subspaces U

of Fmq . If

g(U) =
∑
V⊆U

f(V )

then

f(U) =
∑
V⊆U

(−1)dim(U)−dim(V )q(
dim(U)−dim(V )

2 )g(V ).

Proof. Applying the Möbius inversion formula and substituting in (3.3.4) gives

the result.
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We now move on to consider direct products. Let P and Q be two posets.

The direct product P × Q is the poset where (p1, q1) ≤ (p2, q2) if and only

if p1 ≤ p2 and q1 ≤ q2, where p1, p2 ∈ P and q1, q2 ∈ Q. In the following

lemma we give the Möbius function of the direct product of two posets ( [4,

Theorem 3]).

Lemma 3.3.4. If P has Möbius function µP and Q has Möbius function µQ,

the Möbius function of P ×Q is given by

µ((p1, q1), (p2, q2)) = µP (p1, p2)µQ(q1, q2). (3.3.5)

Applying the Möbius inversion formula to the direct product Po(Fmq ) ×

Po(Fmq ) gives the following result.

Lemma 3.3.5. Let f((U, V )) be a real valued function defined for all pairs

(U, V ) ∈ Po(Fmq )× Po(Fmq ). If

g((U, V )) =
∑

(U ′,V ′)≤(U,V )

f((U ′, V ′))

then

f((U, V )) =
∑

(U ′,V ′)≤(U,V )

(−1)u−u
′+v−v′q(

u−u′
2 )+(v−v′

2 )g((U ′, V ′)),

where dim(U) = u, dim(U ′) = u′, dim(V ) = v and dim(V ′) = v′.

Proof. By the Möbius inversion formula

f((U, V )) =
∑

(U ′,V ′)≤(U,V )

µ((U ′, V ′), (U, V ))g((U ′, V ′)). (3.3.6)

Substituting (3.3.4) into (3.3.5) gives

µ((U ′, V ′), (U, V )) = (−1)u−u
′+v−v′q(

u−u′
2 )+(v−v′

2 ). (3.3.7)

Substituting (3.3.7) into (3.3.6) gives the result.
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3.4 Information theory

Information theory is fundamental in this work as we consider channels to

model network coding. The classic book by Thomas and Cover [13] gives

a detailed exposition of information theory. In this section we extract the

necessary concepts from [13], in particular we focus on entropy and mutual

information [13, Ch. 2] in Subsection 3.4.1 and on channels [13, Ch. 8] in

Subsection 3.4.2.

For the definitions and results we use it is standard to take logarithms

to the base 2, giving the expressions in terms of binary bits. However, since

we will look at channels whose inputs and outputs are matrices over a finite

field of order q, it is more natural to take logarithms to the base q, giving

expressions in q-ary bits. Throughout this section we will omit the base in

order to state results in their generality, however for the remainder of this

work one may assume logarithms are taken to the base q and ‘bits’ are q-ary

bits, unless specifically stated otherwise.

3.4.1 Entropy and mutual information

In this subsection we recall several definitions and results about the entropy

and mutual information of discrete random variables. For the proofs of these

results see [13, Ch. 2].

We begin by defining notation for probabilities. For random variables X

and Y let

• Pr(X = X) be the probability that X takes the value X, that is X = X,

• Pr(X = X,Y = Y ) be the joint probability that X = X and Y = Y ,

• Pr(Y = Y |X = X) be the probability that Y = Y given that X = X.
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Next we define entropy, which is a measure of the uncertainty of a discrete

random variable.

Definition 3.4.1. Let X be a discrete random variable with alphabet X . The

entropy of X is defined to be

H(X) = −
∑
X∈X

Pr(X = X) log Pr(X = X).

The following two lemmas state some properties about entropy.

Lemma 3.4.1. Let X be a discrete random variable. Then

H(X) ≥ 0.

Lemma 3.4.2. Let X be a discrete random variable with alphabet X of car-

dinality |X |. Then

H(X) ≤ log|X |,

with equality if and only if X has a uniform distribution over X .

Lemma 3.4.2 shows that the entropy of X is maximal when X has a

uniform distribution. Intuitively this makes sense since the uncertainty is

greatest when the distribution is uniform.

The following definition defines the joint entropy of discrete random vari-

ables X and Y , that is a measure of the uncertainty of X and Y .

Definition 3.4.2. Let X and Y be discrete random variables with alphabets

X and Y respectively. The joint entropy of X and Y is defined to be

H(X,Y ) = −
∑
X∈X

∑
Y ∈Y

Pr(X = X,Y = Y ) log Pr(X = X,Y = Y ).

Next we define the conditional entropy H(Y |X), a measure of the uncer-

tainty of Y given knowledge of X.
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Definition 3.4.3. Let X and Y be discrete random variables with alphabets

X and Y respectively. The conditional entropy of Y by X is defined to be

H(Y |X) =
∑
X∈X

Pr(X = X)H(Y |X = X)

= −
∑
X∈X

Pr(X = X)
∑
Y ∈Y

Pr(Y = Y |X = X) log Pr(Y = Y |X = X).

These natural definitions of joint and conditional entropy lead to the chain

rule for entropy, stated below.

Lemma 3.4.3. Chain rule for entropy. Let X and Y be discrete random

variables. Then

H(X,Y ) = H(X) +H(Y |X).

The following lemma shows that conditioning reduces entropy. This is

true intuitively, since knowledge of one random variable can only decrease the

uncertainty of another.

Lemma 3.4.4. Let X and Y be discrete random variables. Then

H(Y |X) ≤ H(Y ).

Now we have covered the basic properties of entropy, we move on to define

the mutual information of two discrete random variables.

Definition 3.4.4. Let X and Y be discrete random variables with alphabets

X and Y respectively. The mutual information of X and Y is defined to be

I(X;Y ) =
∑
X∈X

∑
Y ∈Y

Pr(X = X,Y = Y ) log
Pr(X = X,Y = Y )

Pr(X = X) Pr(Y = Y )
.

Mutual information is closely related to entropy, as demonstrated in the

following lemma.
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Lemma 3.4.5. Let X and Y be discrete random variables. Then the following

equalities hold:

I(X;Y ) = I(Y ;X) (3.4.1)

= H(X)−H(X |Y ) (3.4.2)

= H(Y )−H(Y |X) (3.4.3)

= H(X) +H(Y )−H(X,Y ). (3.4.4)

Moreover, the mutual information of X with itself, is just the entropy of X,

that is

I(X;X) = H(X). (3.4.5)

Expressing the mutual information I(X;Y ) as in (3.4.2) shows that I(X;Y )

measures the loss in uncertainty of X from the knowledge of Y , or equivalently

the amount of information Y gives about X. Furthermore, the symmetry of

(3.4.3) shows that X gives as much information about Y as Y gives about X.

We conclude this subsection by stating some properties of the mutual infor-

mation when considered as a function over possible probability distributions.

Definition 3.4.5. A function f(x) is convex on an interval (a, b) if for every

x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

A function g(x) is concave on an interval (a, b) if for every x1, x2 ∈ (a, b) and

0 ≤ λ ≤ 1

g(λx1 + (1− λ)x2) ≥ λg(x1) + (1− λ)g(x2).

Let PX denote the probability distribution of a random variable X, so

that PX(X) = Pr(X = X). Similarly, let PY ,X and PY |X denote the joint
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distribution of X and Y and the conditional distribution of Y given X,

respectively.

Lemma 3.4.6. Let X and Y be random variables distributed according to

some distribution PY ,X = PXPY |X . The mutual information I(X;Y ) is a

concave function of PX for a fixed distribution PY |X and a convex function of

PY |X for a fixed distribution PX .

3.4.2 Channels

This subsection recalls some definitions and results on channels and channel

capacity. For further information and for proofs of these results see [13, Ch.

8].

We begin with the definition of a discrete memoryless channel.

Definition 3.4.6. A discrete channel, denoted (X ,Y ,PY |X), is a system con-

sisting of an input alphabet X , an output alphabet Y and a conditional prob-

ability distribution PY |X , giving the probability of the channel output being

Y ∈ Y for a given input X ∈ X . The channel is memoryless if the probability

distribution of the output PY depends only on the input at that time and is

conditionally independent of all previous channel inputs and outputs.

Next we define the channel capacity of a discrete memoryless channel in

terms of the mutual information of the channel input and output.

Definition 3.4.7. The channel capacity of a discrete memoryless channel

(X ,Y ,PY |X) is defined to be

C = max
PX

I(X;Y ),

where PX denotes the probability distribution of the channel input.
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This is a natural definition since the mutual information measures the

amount of information Y gives about X and hence the channel capacity gives

the maximum amount of information we can send through the channel.

Given a coding scheme for encoding and decoding information sent over a

channel, the rate of that scheme is (imprecisely) the amount of information

conveyed per channel use. It is then equivalent to define the channel capacity

to be the supremum of all achievable rates (Shannon’s second theorem).

The capacity is a key parameter of a channel, in particular, as Shannon’s

second theorem shows, the capacity gives the maximum rate at which we can

transmit information over the channel.
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Chapter 4

Probability of Partially Solving
Random Linear Systems in
Network Coding

4.1 Overview

This chapter considers the problem of partial decoding in random linear net-

work coding, as introduced in Section 2.3. In the literature there exist an-

alytical expressions for the probability of a receiver decoding a transmitted

source message that has been encoded using random linear network coding.

In this chapter, we look into the probability that the receiver will decode at

least a fraction of the source message. We present an exact solution to this

problem for both non-systematic and systematic network coding, by rephras-

ing the problem as the enumeration problem from linear algebra presented

in Section 1.3. Based on our exact solution, we investigate the potential of

these two implementations of network coding for information-theoretic secure

communication and progressive recovery of data.

This work was done in collaboration with Ioannis Chatzigeorgiou and re-

sulted in the preprint [12], which forms the basis for this chapter. My main

contribution to the paper was the development of the formula in Section 4.2.
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The rest of the chapter has been organised as follows. Section 4.2 intro-

duces the notation and derives the probability that the rows of a random

matrix over a finite field define a subspace containing a particular number of

unit vectors. After the analogy between unit vectors and source packets is

explained, Section 4.3 focuses on both non-systematic and systematic network

coding, and obtains the probability of recovering a fraction of a network-coded

message. Results and trends are discussed in Section 4.4, while conclusions

are summarised in Section 4.5.

4.2 The elementary unit vectors in a rowspace

In this section we find the probability that the rowspace of a random matrix

contains some fixed number of unit vectors. We begin by defining notation

that will be adopted throughout this chapter. We then present the problem

solution and conclude the section by noting the equivalence to the probability

of partially solving a random linear system, which is related to the probability

of a receiver decoding a fraction of a source message that has been encoded

using random linear network coding.

Let M be a random n× k matrix over Fq. We define the random variable

R to give the rank of the matrix M . For i = 1, . . . , k, we write ei to denote the

i-th unit vector of length k, that is the vector with 1 in the i-th position and

zeros elsewhere. Let X be the set of indices that correspond to the unit vectors

that are contained in the rowspace of M , so that X = {i : ei ∈ Row(M)}.

We write |X| to denote the random variable giving the cardinality of the set

X.

Given the matrix M has rank r, let P (|X| = x |R = r) denote the proba-

bility of Row(M ) containing exactly x ≤ r unit vectors, and P (|X|≥x |R=r)
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denote the probability of Row(M ) containing at least x ≤ r unit vectors. Ex-

pressions for the probabilities P (|X| = x |R = r) and P (|X| ≥ x |R = r) are

derived in the remainder of this section.

Theorem 4.2.1. Given a random n× k matrix M of rank r, the probability

that the rowspace of M contains exactly x ≤ r unit vectors is given by

P (|X| = x |R = r) =

(
k

x

)
[
k

r

] k−x∑
j=0

(−1)j
(
k − x
j

)[
k − x− j
r − x− j

]
. (4.2.1)

Proof. Let X be the set of indices that correspond to the unit vectors that

are contained in the rowspace of M . For S ⊆ {1, . . . k}, let g(S) be the

probability that {ei : i ∈ S} ⊆ Row(M ), that is the probability that S ⊆ X.

This is just the probability that Row(M ) contains a fixed |S|-dimensional

subspace, namely the space V = Span{ei : i ∈ S}. By considering the quotient

space Fkq/V , we see there is a direct correspondence between r-dimensional

subspaces of Fkq containing V , and (r−|S|)-dimensional subspaces of a (k−|S|)-

dimensional space. Hence, there are[
k − |S|
r − |S|

]
(4.2.2)

r-dimensional subspaces of Fkq containing V . Therefore, the probability that

Row(M) contains the space V is equal to (4.2.2) divided by the number of

r-dimensional subspaces of Fkq , that is

g(S) =

[
k − |S|
r − |S|

]
[
k

r

] . (4.2.3)

Now let f(S) be the probability that S = X, that is the probability that
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{ei : i ∈ S} ⊆ Row(M) and {ei : i /∈ S} * Row(M ). It follows that

g(S) =
∑

S⊆J⊆{1,...,k}

f(J).

Then, by the Principle of Inclusion and Exclusion (Lemma 3.3.2), we can write

f(S) =
∑

S⊆J⊆{1,...,k}

(−1)|J\S|g(J). (4.2.4)

Substituting (4.2.3) into (4.2.4) gives

f(S) =
∑

S⊆J⊆{1,...,k}

(−1)|J\S|

[
k−|J |
r−|J |

][
k
r

]
=

1[
k
r

] ∑
J ′⊆{1,...,k}\S

(−1)|J
′|
[
k − |S| − |J ′|
r − |S| − |J ′|

]
(4.2.5)

=
1[
k
r

] k−|S|∑
j=0

(−1)j
(
k − |S|
j

)[
k − |S| − j
r − |S| − j

]
(4.2.6)

where (4.2.5) follows by setting J ′ = J \ S, and (4.2.6) follows since there are(
k−|S|
j

)
sets J ′ of size j.

Then since f(S) is the probability that X = S,

P (|X| = x |R = r) =
∑

S:|S|=x

f(S)

=

(
k

x

)
f(S ′), (4.2.7)

where S ′ is any subset of {1, . . . , k} of size x, and (4.2.7) holds since there

are
(
k
x

)
sets S ⊆ {1, . . . , k} of size x. Substituting (4.2.6) in (4.2.7) gives the

result.

Remark. Theorem 4.2.1 appears as a special case of [15, Proposition 6], where

the authors consider the probability of partially decoding in non-systematic

random linear network coding given a matroid framework. Our work was

developed independently and relies on an alternative proof strategy.
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Corollary 4.2.2. Given a random n× k matrix M of rank r, the probability

that the rowspace of M contains at least x ≤ r unit vectors is given by

P (|X| ≥ x |R = r) =
1[
k

r

] r∑
i=x

(
k

i

) k−i∑
j=0

(−1)j
(
k − i
j

)[
k − i− j
r − i− j

]
. (4.2.8)

Proof. By definition

P (|X| ≥ x |R = r) =
r∑
i=x

P (|X| = i |R = r). (4.2.9)

Substituting (4.2.1) into (4.2.9) gives the result.

Note that, although M is defined to be an n× k matrix, the probabilities

P (|X| = x |R = r) and P (|X| ≥ x |R = r) are independent of n since they

depend only on the row space of M . Thus the expressions given in (4.2.1)

and (4.2.8) hold for any value of n ≥ r.

Remark. Our results also address the equivalent problem of finding the prob-

ability of partially solving random underdetermined linear systems over finite

fields. Suppose a random linear system of r equations in k ≥ r unknowns,

v1, . . . , vk, is expressed in the matrix form

Mv = u, (4.2.10)

where M is a random full rank r × k matrix, v = (v1, . . . , vk), and u is a

constant vector of length r. Given that (4.2.10) is consistent, it is possible to

determine the i-th unknown vi if and only if ei is contained in the rowspace of

M . Hence, P (|X| = x |R = r) gives the probability of determining exactly x

of the unknowns and P (|X| ≥ x |R = r) gives the probability of determining

at least x of the unknowns.
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4.3 Partial and full recovery of network-coded

messages

Whereas Section 4.2 provided a generic formulation of the considered problem,

this section puts the derived expressions into the context of network coding

in order to characterise the probability of recovering a fraction of a network-

coded message. For convenience and clarity, the notation that was introduced

in Section 4.2 is also used in this section.

Let us consider a receiving network node, which collects n packets and at-

tempts to reconstruct a message that consists of k source packets. In the case

of non-systematic communication, transmitted packets are generated from the

k source packets using random linear network coding over Fq [23]. A coding

vector of length k, which contains the weighting coefficients used in the gen-

eration of a coded packet, is transmitted along with each coded packet1. Note

that a coding vector that is equal to unit vector ei, as defined in Section 4.2,

represents the i-th source packet. At the receiving node, the coding vectors of

the n successfully retrieved coded packets form the rows of a matrix M ∈ Fn×kq .

The k source packets can be recovered from the n coded packets if and only if

k of the n coding vectors are linearly independent, implying that rk(M) = k

for n ≥ k. The probability that the n× k random matrix M has rank k and,

thus, the receiving node can reconstruct the entire message is given by the

1In practice, a coding vector can be represented by the seed value of a predetermined
pseudo-random function [10] or shortened using simple compression methods [22] before it
is appended to the header of the associated coded packet.
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well-known expression2 [41]

Pns(R = k |N = n) =
k−1∏
i=0

(
1− q−n+i

)
. (4.3.1)

The probability in (4.3.1) is conditioned on N , the random variable giving

the number of received packets. If the distribution of the successfully deliv-

ered packets over a packet erasure channel is known, the marginal probability

Pns(R = k) can be obtained from Pns(R = k |N = n) by averaging over all

possible values of n.

In the case of systematic network coding, a sequence of nT transmitted

packets consists of the k source packets followed by nT − k coded packets,

which have been generated as in the non-systematic case. If the receiving node

collects n ≥ k packets, let h of them be source packets and the remaining n−h

be coded packets. Elementary row and column operations can split the n× k

matrix M into four sub-matrices, with the top left being the h × h identity

matrix, the bottom right being an (n − h) × (k − h) random matrix and the

remaining entries being zero. The probability that rk(M) = k is [30, 36]

Ps(R = k |N = n) =
1(
nT

n

) k∑
h=hmin

(
k

h

)(
nT − k
n− h

) k−h−1∏
i=0

(
1− q−n+h+i

)
(4.3.2)

where hmin = max (0, n− nT + k) [24]. Again, N is the random variable for

the number of received packets. Note that for k − h − 1 < 0, the product in

the right-hand side of (4.3.2) becomes an empty product and is equal to 1.

2Expression (4.3.1) assumes that any of the qk coding vectors can be transmitted but
practical implementations of network coding consider only the qk − 1 non-zero vectors. For
coding vectors in Fkq\0, the probability of recovering the whole message has been derived
in [40, 44] but (4.3.1) converges to it even for small values of k and q. For example, for
n = k = 10 and q = 2, the probability given by (4.3.1) is within 2.8 × 10−3 of the exact
probability and is significantly closer for larger values of k or q. For this reason and owing
to its simplicity, (4.3.1) is often used regardless of whether coding vectors take values in Fkq
or Fkq\0.

64



Both (4.3.1) and (4.3.2) provide the probability that the receiving node will

recover the entire message from the n delivered packets in the non-systematic

and systematic implementations of network coding, respectively. The following

propositions consider both network coding schemes and derive the probability

that the receiving node will reconstruct a fraction of the source message.

Proposition 4.3.1. If a receiving node collects n random linear combinations

of k source packets, the probability that at least x ≤ k source packets will be

recovered is

Pns(|X| ≥ x |N = n) =
1

qnk

min(n,k)∑
r=x

(
r∑
i=x

(
k

i

) k−i∑
j=0

(−1)j
(
k − i
j

)[
k − i− j
r − i− j

]) r−1∏
`=0

(qn − q`).

(4.3.3)

Proof. In accordance with Section 4.2, let X be the set of indices that corre-

spond to the unit vectors in Row(M ), or equivalently the recoverable source

packets, and let |X| be the cardinality of that set. Provided that the matrix

M has rank r, the probability that X contains the indices of at least x of

the k source packets, denoted by P (|X| ≥ x |R = r), is given by (4.2.8). Let

P (R = r) denote the probability that the n× k matrix M has rank r. This is

equivalent to the probability that the receiving node has collected r linearly

independent random linear combinations of the k source packets, given that n

random linear combinations have been received in total. The average proba-

bility that at least x of the k source packets will be recovered can be obtained

as follows:

Pns(|X| ≥ x |N = n) =

min(n,k)∑
r=x

P (R = r) P (|X| ≥ x |R = r). (4.3.4)

The probability P (R = r) is equal to [41, p. 338]

P (R = r) =
1

qnk

[
k

r

] r∑
`=0

(−1)r−`
[
r

`

]
qn`+(r−`

2 ) (4.3.5)
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but can be further reduced to [14, Equation 13]

P (R = r) =
1

qnk

[
n

r

] r−1∏
`=0

(
qk − q`

)
. (4.3.6)

Substituting (4.2.8) and (4.3.6) into (4.3.4) and taking into account that[
n
r

][
k
r

] r−1∏
`=0

(qk − q`) =
r−1∏
`=0

(qn − q`) (4.3.7)

which follows from the definition of the Gaussian binomial coefficient in (3.2.11),

we obtain (4.3.3).

Remark. The factor 1/qnk in (4.3.6) implies that the realisations of all n× k

random matrices over Fq are uniformly distributed. If random matrices having

the same rank follow a rank distribution P (R = r) other than that in (4.3.6),

the general expression (4.3.4) can be used instead.

Proposition 4.3.2. If k source packets and nT−k random linear combinations

of those k source packets are transmitted over single-hop links, the probability

that a receiving node will recover at least x ≤ k source packets from n ≤ nT

received packets is

Ps(|X| ≥ x |N = n) =
1(
nT

n

)min(n,k)∑
r=x

r∑
h=hmin

((
k

h

)(
nT − k
n− h

)
q−(n−h)(k−h)

r−h−1∏
`=0

(qn−h − q`)

·
r−h∑

i=xmin

(
k − h
i

) k−h−i∑
j=0

(−1)j
(
k − h− i

j

)[
k − h− i− j
r − h− i− j

])
(4.3.8)

where hmin = max (0, n− nT + k) and xmin = max(0, x− h).

Proof. Let us assume that some or none of the k transmitted source packets

have been received and let X ′ ⊆ X be the set of indices of the remaining

source packets that can be recovered from the received coded packets. If n′

coded packets have been received and k′ source packets remain to be recovered,
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the respective coding vectors will form an n′ × k′ random matrix M ′. The

probability that r′ ≤ min(k′, n′) coding vectors are linearly independent and

at least x′ ≤ r′ source packets can be recovered is given by

P (|X ′| ≥ x′, R′ = r′ |N ′ = n′) = P (R′ = r′) P (|X ′| ≥ x′ |R′ = r′) (4.3.9)

where the two terms of the product can be obtained from (4.3.6) and (4.2.8),

respectively. Here the random variables N ′ and R′ denote the number of coded

packets received and the rank of the matrix M ′ respectively. If n of the nT

transmitted packets are received, the probability that h of them are source

packets and the remaining n− h are coded packets is

P (N ′ = n− h |N = n) =

(
k

h

)(
nT − k
n− h

)
(
nT

n

) . (4.3.10)

The coding vectors of the n received packets compose a matrix of rank r, based

on which x or more source packets can be recovered when h of the n received

packets are source packets. Parameters x′, r′, k′ and n′, which are concerned

with the received coded packets only, can be written as x−h, r−h, k−h and

n − h, respectively. Therefore, the probability of recovering at least x source

packets for all valid values of r and h is

Ps(|X| ≥ x |N = n) =

min(n,k)∑
r=x

r∑
h=hmin

P (N ′ = n− h |N = n)

· P
(
|X ′| ≥ max(0, x−h), R′ = r − h |N ′ = n−h

)
(4.3.11)

which can be expanded into (4.3.8). Note that max(0, x − h) ensures that

the first input to the second term of the product in (4.3.11) is a non-negative

integer when h > x.

Remark. Proposition 4.3.2 assumes that the receiving node attempts to recover

a part of or the entire source message after the k source packets have been
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transmitted, i.e., nT > k. If the objective of the receiving node is to identify

recoverable source packets as soon as the transmission is initiated, i.e., nT ≤ k,

at least x source packets will certainly be recovered if n ≥ x source packets

are received. Thus, for nT > k we can use (4.3.8) but for nT ≤ k we can write

Ps(|X| ≥ x |N = n) =

{
1, if nT ≤ k and x ≤ n
0, if nT ≤ k and x > n.

(4.3.12)

As is well-established [31], random linear network coding over large finite

fields can deliver optimal rate, that is, the k source packets can be recovered

as soon as n = k packets are received.

Recall from Section 3.2.2, for finite fields of large size q, the Gaussian

binomial coefficient can be approximated as[
m

d

]
≈ q(m−d)d. (4.3.13)

Using this approximation in (4.2.1) gives

P (|X| = x |R = r) ≈
(
k

x

)
q−(k−r)x

k−x∑
j=0

(−1)j
(
k − x
j

)
q−(k−r)j. (4.3.14)

The summation in (4.3.14) is the binomial expansion of
[
1− q−(k−r)]k−x.

Therefore, (4.3.14) can be reduced to

P (|X| = x |R = r) ≈
(
k

x

)[
q−(k−r)]x [1− q−(k−r)]k−x (4.3.15)

which corresponds to the probability mass function of a binomial distribution

with q−(k−r) being the probability of obtaining a single source packet. Observe

that for q → ∞, the reception of fewer than k linearly independent coded

packets does not help in the recovery of any of the source packets, i.e., P (|X| =

0 |R = r) = 1 if r < k. Substituting (4.3.15) into (4.2.8), then into both

(4.3.3) and (4.3.8) and taking limits as q → ∞, leads to expressions (4.3.16)
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and (4.3.17) below, respectively. These give the asymptotic behaviour of non-

systematic and systematic network coding.

Firstly for non-systematic network coding we obtain the limit of (4.3.3) as

q →∞ to be

lim
q→∞

Pns(|X| ≥ x |N = n) =

{
1, if k ≤ n
0, otherwise.

(4.3.16)

In other words, if non-systematic network coding is used, the entire source mes-

sage can indeed be decoded if k or more coded packets are received. However,

if fewer than k coded packets are collected, not even a single source packet of

the original message can be recovered, provided that q → ∞. This result is

in accordance with [29, Theorem 1] but without the requirement for k → ∞.

It also confirms the conclusions of [6] about the potential of non-systematic

network coding for weak information-theoretic security when large finite fields

are used. On the other hand, if systematic network coding is employed, the

limit of (4.3.8) and (4.3.12) as q →∞ is

lim
q→∞

Ps(|X| ≥ x |N = n) =


1, if k ≤ n ≤ nT or n ≤ nT ≤ k

1(
nT

n

) n∑
h=hx

(
k

h

)(
nT − k
n− h

)
, if n < k < nT

0, otherwise

(4.3.17)

where hx = max (x, n− nT + k) and x ≤ min(n, k). In this case, as the

top and middle branches of (4.3.17) dictate, x or more source packets can

be recovered when fewer than k packets are received if and only if they are

among the k transmitted source packets. As in the previous case, the complete

set of k source packets will be recovered if k or more transmitted packets are

collected. The asymptotic behavior of non-systematic and systematic network

coding will be further discussed in the following section.
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4.4 Results and discussion

Section 4.3 derived closed-form expressions for the probability that a receiving

node will recover some or all of the source packets that compose a message

and, consequently, will be able to reconstruct part of or the entire source mes-

sage. To demonstrate the accuracy of the derived expressions, Monte Carlo

simulations for random linear combinations of k = 20 source packets using

arithmetic operations in F2 were carried out. The probability that a receiv-

ing node using Gaussian elimination will recover at least x source packets,

given that n packets are received, was measured for x ∈ {2, 4, . . . , 20} and

x ≤ n ≤ 25. Fig. 4.1(a) and Fig. 4.1(b) compare probability measurements

obtained through simulations to probability calculations obtained from (4.3.3)

and (4.3.8) for non-systematic and systematic network coding, respectively. In

the case of systematic network coding, the length of the transmitted sequence

of source and coded packets also needs to be considered and is taken to be

nT = 30. The plots clearly show that the simulations and the exact expres-

sions (4.3.3) and (4.3.8) are in agreement. They also confirm the intuitive

expectation that the number of received packets has a more pronounced ef-

fect on the probability of partly recovering the source message (x < 20) when

systematic network coding is employed as opposed to non-systematic network

coding.

Fig. 4.2 and Fig. 4.3 consider the simple case of network-coded transmission

over a broadcast erasure channel. If the transmission of nT packets is modeled

as a sequence of nT Bernoulli trials whereby ε signifies the probability that a

transmitted packet will be erased, the probability that a receiving node shall
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recover at least x of the k source packets can be expressed as

P (|X| ≥ x) =

nT∑
n=x

(
nT

n

)
(1− ε)n εnT−n P (|X| ≥ x |N = n). (4.4.1)

The conditional probability P (|X| ≥ x |N = n) is equal to (4.3.3) for non-

systematic network coding or (4.3.8) and (4.3.12), depending on the value of

nT, for systematic network coding.

Fig. 4.2 focuses on non-systematic network coding and uses a colour map

to depict P (|X| ≥ x) in terms of parameters nT and x, which have been

normalised by the considered value of k. Results have been obtained for k ∈

{20, 30}, q ∈ {2, 8} and ε ∈ {0.05, 0.2}. For q = 2, we observe in Figs. 4.2(a)–

4.2(d) that fractions of the transmitted message can be recovered with different

probabilities when fewer than k coded packets have been transmitted (nT/k <

1). However, non-systematic network coding starts to exhibit the asymptotic

behavior reported in Section 4.3 for values of q as low as 8. As shown in

Fig. 4.2(e) and Fig. 4.2(f), only a very small number of source packets can

be recovered with low probability for a small number of transmitted coded

packets. The long single-coloured vertical stripes for nT/k ≥ 1 imply that

a receiving node will recover the entire message (x/k = 1) with a certain

probability but will be unable to recover large fractions of the message with

a higher probability. Bear in mind that if P (|X| ≥ x1) = P (|X| ≥ x2) for

x1 < x2, the probability of recovering exactly x ∈ {x1, x1 + 1, . . . , x2 − 1}

source packets is zero. A comparison between the plots on the left-hand and

right-hand sides of Fig. 4.2 confirms that an increase in the erasure probability

significantly affects the gradient of P (|X| ≥ x), as is evident by the sharp

transition from low to high values of P (|X| ≥ x) for an increasing value of

nT/k on the left-hand side plots and the smoother transition on the right-hand

side plots. The effect that the number of source packets, which constitute the
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message to be delivered, has on P (|X| ≥ x) can be noticed in Fig. 4.2(b) and

Fig. 4.2(d). For small values of nT/k, dividing the message into k = 20 source

packets permits the receiving node to recover a higher fraction of the message

(x/k) with a non-zero probability than dividing the same message into k = 30

source packets. On the other hand, if nT/k takes values in the high regime

of (0, 1.4], segmentation into k = 30 packets offers a small improvement in

the probability of recovering a fraction of the message over segmentation into

k = 20 packets.

The same settings as in Fig. 4.2 are used in Fig. 4.3 but systematic network

coding is considered. Besides the reduced decoding complexity reported in [31],

we observe that the systematic implementation of network coding enables the

receiving node to reveal an increasingly larger portion of the message as the

number of transmitted packets grows. For ε = 0.2, the plots on the right-hand

side of Fig. 4.3 show that a small finite field (e.g., q = 2) and even a small

number of source packets can be used to progressively recover the message.

The adoption of high-order finite fields (e.g., q ≥ 8) impairs the progressive

recovery of the message for nT/k ≥ 1 but enables the recovery of the entire

message for a smaller number of transmitted packets.

Both Fig. 4.2 and Fig. 4.3 illustrate that the choice of the network coding

scheme and the corresponding design parameters are strongly dependent on the

system requirements. If secrecy is of importance and legitimate nodes expe-

rience better average channel conditions than eavesdroppers, non-systematic

network coding over large finite fields can be used to segment each secret

message into a large number of source packets. The number of transmitted

coded packets can then be tuned to the average channel conditions to achieve

a balance between the probability that legitimate nodes can reconstruct the
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entire message and the probability that eavesdroppers cannot decode even a

small portion of the message. On the other hand, if the objective of the com-

munication system is to maximise the number of nodes that will recover at

least a large part of a transmitted message, systematic network coding over

small finite fields can be used to segment data into a relatively small number

of packets. If the receiving nodes do not suffer from limited computational

capabilities or energy constraints, the size of the finite field used in system-

atic network coding can be increased in order to improve the probability of

recovering the entire transmitted message.

4.5 Conclusions

Previous work had shown that the probability of decoding a fraction of a

network-coded source message can be made infinitesimal by coding over large

finite fields. However, exact probability expressions for fields of any size and

network parameters of any value were not available in the literature. This

chapter derived the probability of recovering a fraction of the source mes-

sage, conditioned on the reception of a specific number of linearly independent

coded packets. The obtained conditional probability laid the foundation for

the derivation of the probability of decoding a fraction of the source message

upon reception of an arbitrary number of packets, when non-systematic or sys-

tematic random linear coding is used. Results confirmed that non-systematic

network coding offers weak information-theoretic security because it does not

allow for the decoding of sizeable portions of the source message with high

probability, unless the number of collected coded packets is sufficiently large,

even when operations are over finite fields of small size. By contrast, system-

atic network coding allows for the progressive recovery of the source message
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as the number of received packets increases, especially when the size of the

finite field is small.

The derived exact expressions can prove useful in network design and

system-level optimisation. For example, the objective of a system could be

the minimisation of the probability of malicious nodes recovering one or more

source packets, without resorting to unnecessarily large field sizes that would

impose a prohibitive computational cost on legitimate receiving nodes. On the

other hand, the objective of a broadcast system could be the provision of a

guaranteed service quality, which could be translated as the recovery of either

an entire set of data with a certain probability or a fraction of the data with

a higher probability.
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(b) Systematic network coding (nT = 30)

Figure 4.1: Comparison of results obtained through simulations and from theoretical ex-
pressions (4.3.3), (4.3.8) for (a) non-systematic network coding and (b) systematic network
coding, respectively. Source messages consist of k = 20 packets and arithmetic operations
are in F2. The probability of recovering at least x source packets has been plotted for
x = 2, 4, 6, . . . , 20.
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(f) k = 30, q = 8, ε = 0.20

Figure 4.2: Colour-coded depiction of the probability of recovering at least x source pack-
ets when nT coded packets have been transmitted over a packet erasure channel. Non-
systematic network coding has been assumed and various values for the number of source
packets k, the field size q and the erasure probability ε have been used.
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Figure 4.3: Colour-coded depiction of the probability of recovering at least x source packets
when nT packets have been transmitted over a packet erasure channel. Systematic network
coding has been assumed and various values for the number of source packets k, the field
size q and the erasure probability ε have been used.
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Chapter 5

The Multiplicative Matrix
Channel

5.1 Overview

In this chapter we consider the Multiplicative Matrix Channel (MMC), de-

fined in Section 1.4, a channel used to model the special case of error-free

network coding (see Section 2.4.1). Silva, Kschischang and Kötter [39] anal-

yse the MMC channel capacity, giving upper and lower bounds on the capacity

that converge for large field size or large channel input. We improve on the

bounds from [39], giving upper and lower bounds that are within a (small)

additive constant for any channel parameters and not just in certain asymp-

totic cases. Thus we determine the behaviour of the channel capacity for all

channel parameters.

The chapter is organised as follows. In Section 5.2 we review previously

known results on the MMC channel capacity. Section 5.3 gives preliminary

results bounding sums of Gaussian binomial coefficients and Section 5.4 uses

these results to give a bound on the MMC channel capacity. Finally Section 5.5

concludes the chapter with a discussion about optimal coding schemes.
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5.2 Known results on capacity

Recall the definition (Definition 1.4.1) of the MMC channel:

Definition. The Multiplicative Matrix Channel (MMC) has input set X and

output set Y , where X = Y = Fn×mq . The channel law is

Y = AX (5.2.1)

where A ∈ GL(n, q) is chosen uniformly at random.

Since the MMC channel is defined for matrices over a base field of size q,

the mutual information of the channel input and output I(X;Y ) is naturally

given in q-ary units. The capacity of a channel is defined as the maximum

mutual information over possible input distributions (see Definition 3.4.7),

therefore we define the MMC channel capacity in terms of q-ary units.

Definition 5.2.1. Define CMMC = maxPX
I(X;Y ) to be the capacity of the

MMC channel in q-ary units per channel use.

Recall the channel capacity gives the maximum rate at which we can trans-

mit information over the channel, hence CMMC gives the maximum number of

q-ary units we can transmit in one use of the MMC channel.

Consider the MMC channel law (5.2.1). Since A is invertible, X and Y

share the same rowspace, thus the rowspace of the input is preserved under the

channel law. Intuitively this suggests that information should be encoded as

a choice of subspace and a maximal set of codewords would contain a unique

matrix X of each possible rowspace. In [39] this is shown to be the case and

the capacity of the channel is computed in q-ary units per channel use to be

CMMC = logq

n∑
k=0

[
m

k

]
. (5.2.2)
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The authors go on to show that for n
m
≤ 1

2
the following bound on the capacity

holds,

(m− n)n < CMMC < (m− n)n+ logq 4(n+ 1). (5.2.3)

This bound is sufficient for the authors to compute the capacity in certain

asymptotic cases as follows. Fix n and m, with n
m
≤ 1

2
, then

lim
q→∞

CMMC = (m− n)n. (5.2.4)

Now fix q and let n = λm for some constant λ ≤ 1
2
. Since the capacity

naturally scales with nm, the authors in [39] define the normalised capacity

to be CMMC = 1
nm
CMMC. They show

lim
m→∞
n=λm

CMMC = 1− λ. (5.2.5)

The limits (5.2.4) and (5.2.5) follow from (5.2.3) since the last term on the right

vanishes in both limiting cases. However in any case of practical interest it will

be necessary for the parameter values to be finite. In this case the bounds in

(5.2.3) differ by a factor of O(log(n)), giving little information about the true

size of the capacity. Even when we let m and n grow, without normalisation

the bounds in (5.2.3) become far apart and we obtain little information.

In the remainder of this chapter, we present an improved upper bound

on the MMC channel capacity, which replaces the last term on the right in

(5.2.3) with a (small) constant. This decreases the gap between the bounds

fromO(log(n)) to a constant, determining that the true capacity of the channel

is (very) ‘close’ to (m−n)n for all parameter values q, n and m, given n
m
≤ 1

2
.

There is no need for normalisation and the distance between the upper and

lower bound becomes negligible as any of the parameters grow. Even for small

parameter values the distance between the bounds is small, hence our result

gives insight on the behaviour of the channel capacity for all parameter values.

80



5.3 Bounds on sums of Gaussian binomial co-

efficients

In this section we present results that lead to a constant bound on the sum

of Gaussian binomial coefficients. These results will be used in the following

section to bound the capacity of the MMC channel.

Lemma 5.3.1. Let n and m be integers with n
m
≤ 1

2
. Then

n∑
k=0

[
m

k

]
< q(m−n)n

∞∏
j=1

1

1− q−j
∞∑
i=0

1

qi2
. (5.3.1)

Proof. It is shown in Lemma 3.2.2 that[
m

k

]
< q(m−k)k

∞∏
j=1

1

1− q−j
.

Therefore

n∑
k=0

[
m

k

]
<
∞∏
j=1

1

1− q−j
n∑
k=0

q(m−k)k

=
∞∏
j=1

1

1− q−j
n∑
i=0

q(m−(n−i))(n−i)

= q(m−n)n

∞∏
j=1

1

1− q−j
n∑
i=0

1

qmi−2ni+i2
. (5.3.2)

Since n
m
≤ 1

2
,

n∑
i=0

1

qmi−2ni+i2
≤

n∑
i=0

1

qi2

≤
∞∑
i=0

1

qi2
. (5.3.3)

Substituting (5.3.3) into (5.3.2) gives the result.

Remark. The independent work of Gadouleau and Yan [19] considers related

bounds on sums of Gaussian binomial coefficients, in the context of study-

ing packing and covering properties of subspace codes. In fact the bound in
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Lemma 5.3.1 appears in the proof of [19, Proposition 1] and is a special case,

with tighter constants, of [19, Proposition 1 and Proposition 11].

Lemma 5.3.2. Let n and m be integers with n
m
≤ 1

2
. Then

q(m−n)n <
n∑
k=0

[
m

k

]
< 7q(m−n)n. (5.3.4)

Proof. It is shown in Lemma 3.2.2 that

q(m−n)n <

[
m

n

]
,

the lower bound follows since
[
m
n

]
<
∑n

k=0

[
m
k

]
.

By Lemma 5.3.1,

n∑
k=0

[
m

k

]
< q(m−n)n

∞∏
j=1

1

1− q−j
∞∑
i=0

1

qi2
. (5.3.5)

Since q ≥ 2,

∞∑
i=0

1

qi2
≤

∞∑
i=0

1

2i2

<
∞∑
i=0

1

2i
= 2. (5.3.6)

Furthermore, it is shown in the proof of Lemma 3.2.3 that

∞∏
j=1

1

1− q−j
≤ 1

Q0

< 3.5, (5.3.7)

where Q0 is as defined in Subsection 3.2.1. Substituting (5.3.6) and (5.3.7)

into (5.3.5) gives the upper bound.

Remark. Note that
∑n

k=0

[
m
k

]
is equal to the number of subspaces of Fmq of

dimension ≤ n. Thus Lemma 5.3.2 tells us that the number of subspaces of

Fmq with dimension bounded by n lies within a small factor of q(m−n)n.
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The constant factor in the upper bound in Lemma 5.3.2 can be reduced

by using numerical computation, giving a tighter bound. As the upper and

lower bound already differ by a (small) constant this improvement does not

improve our overall knowledge of the behaviour of the sums of Gaussian bino-

mial coefficients. However it does suggest that the true value of the sum lies

closer to the lower bound q(m−n)n, we show this to be the case particularly as

q grows. The computation is described below.

In the proof of Lemma 5.3.2 the following bound is used

∞∑
i=0

1

2i2
<

∞∑
i=0

1

2i
= 2,

however using numerical computation it is possible to show that

∞∑
i=0

1

2i2
≈ 1.56447 < 1.5645. (5.3.8)

Replacing (5.3.6) by (5.3.8) in the proof of Lemma 5.3.2 gives

n∑
k=0

[
m

k

]
<

1.5645

Q0

q(m−n)n < 5.4175q(m−n)n. (5.3.9)

The constant can be marginally reduced further by evaluating Q0 and
∑∞

i=0
1

2i2

to a higher number of significant figures.

The bound in (5.3.9) is a marginal improvement over Lemma 5.3.2, however

for q > 2, numerical computation can lead to a more noticeable improvement

in the bound. For a given value q∗, by computationally evaluating the constant

∞∑
j=0

1

1− q−j∗

∞∑
i=0

1

qi2∗

we can improve the bound for all q ≥ q∗. For example with q∗ = 3 it is possible

to show
∞∑
j=0

1

1− 3−j

∞∑
i=0

1

3i2
< 1.7854 · 1.3458 < 2.4028,
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hence for q ≥ 3

q(m−n)n <
n∑
k=0

[
m

k

]
< 2.4028q(m−n)n (5.3.10)

Similarly, it is possible to show for q ≥ 64

q(m−n)n <

n∑
k=0

[
m

k

]
< 1.032q(m−n)n. (5.3.11)

This computation shows the upper bound approaches the lower bound very

quickly as q grows. Hence, even for relatively small values of q, it is indeed

the case that
∑n

k=0

[
m
k

]
≈ q(m−n)n.

5.4 Capacity of the MMC channel

In this section we use the bounds given on q-binomial coefficients in Section 5.3

in order to bound the capacity of the MMC channel. The following theorem

gives good bounds on the channel capacity.

Theorem 5.4.1. Let CMMC be the capacity of the MMC channel, in q-ary units

per channel use. If n
m
≤ 1

2
then the channel capacity satisfies the following

bound:

(m− n)n < CMMC < (m− n)n+ 3. (5.4.1)

Proof. The channel capacity is given in (5.2.2). Taking logarithms to the base

q of each term in (5.3.4) gives

(m− n)n < CMMC < (m− n)n+ logq 7

≤ (m− n)n+ log2 7

< (m− n)n+ 3.

Theorem 5.4.1 gives bounds on the MMC channel capacity that differ by

a small additive constant which is independent of parameter values. This is a
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significant improvement of the previously known bound (5.2.3), given in [39].

Our bounds determine that CMMC ≈ (m − n)n for all parameter values and

not just in certain asymptotic cases.

Remark. The upper bound in Theorem 5.4.1 can be lowered slightly by using

the tighter bounds on the sum of Gaussian coefficients, obtained via numer-

ical computation in Section 5.3. Substituting (5.3.9) into the proof of Theo-

rem 5.4.1 gives the improved bound on capacity,

(m− n)n < CMMC < (m− n)n+ log2(5.4175)

< (m− n)n+ 2.438, (5.4.2)

for all possible parameter values q, n and m with n
m
≤ 1

2
. Furthermore for

q ≥ 3

(m− n)n < CMMC < (m− n)n+ log3(2.4028)

< (m− n)n+ 0.798, (5.4.3)

and for q ≥ 64

(m− n)n < CMMC < (m− n)n+ log64(1.032)

< (m− n)n+ 0.0076. (5.4.4)

This shows the upper bound approaches the lower bound very quickly as

q grows. Recall the MMC channel is most appropriate for modelling network

coding when the field size is large (since we assume A is non-singular), in

this case the channel capacity is indeed very close to (m − n)n. However,

Theorem 5.4.1 is enough to show that CMMC ≈ (m − n)n for all parameter

values q, n and m with n
m
≤ 1

2
.
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5.5 Discussion

The results of Section 5.4 give an intuitive interpretation of the channel ca-

pacity, by noting

CMMC ≈ (m− n)n = mn− n2,

so in the transmission of mn q-ary bits (the input matrix X) you lose approx-

imately n2 q-ary bits which is precisely the amount needed to communicate

the transfer matrix A. Indeed Silva, Kschischang and Kötter [39] present the

following coding scheme, which achieves the rate (m − n)n. Let the first n

columns of an input matrix X be the n × n identity matrix so X = (In|X ′)

for some data matrix X ′ of size n× (m− n). Then

Y = A(In|X ′) = (A|AX ′).

The receiver gains knowledge of A and can easily compute A−1 in order to

obtain X ′ = A−1(AX ′) and recover the message. (Note that in the network

coding application this is equivalent to using coding headers, e.g. [11].) Our

result shows that this coding scheme achieves very close to capacity for all

parameter values q, n and m with n
m
≤ 1

2
and not just for certain asymptotic

cases.

Recall that [39] shows that when communicating over the MMC channel,

information should be encoded as a choice of subspace. Each matrix of the

form X = (In|X ′) has a unique rowspace, so this coding scheme conforms

with the idea of encoding subspaces. However it does not give a maximal

set of codewords as only a restricted set of subspaces are represented. Since

this coding scheme is close to optimal, this observation shows that ‘nearly all’

subspaces of Fmq with dimension ≤ n can be represented as the rowspace of a

matrix of this form.
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Note that in this scheme, the input matrix X always has full rank. Thus

an (almost) optimal distribution on the input rank is for X to have constant

rank rX = n. Nobrega, Silva and Uchoa-Filho [33, Th. 4] show within their

proof that given an optimal input distribution, the UGR distribution with the

same distribution on ranks is also optimal. This implies that a ‘good’ coding

scheme would be to pick input matrices X uniformly from the set of all full

rank n × m matrices, allowing a larger set of codewords than the previous

scheme. Indeed it is shown in [33] that constant rank coding schemes are

optimal asymptotically. However is it not immediately obvious or intuitive

how one would decode with a uniform or UGR input coding scheme. For the

simple MMC channel a UGR distribution may give the best rates, but may

be unnecessarily complicated to implement. Therefore for practical purposes

it is sensible to adopt the simple scheme from [39] described above, which will

achieve close to optimal rates for any parameter values.
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Chapter 6

The Additive Matrix Channel

6.1 Overview

In this chapter we consider the Additive Matrix Channel (AMC), defined

in Section 1.5, a channel used to model coherent network coding (see Sec-

tion 2.4.2). As discussed in Section 1.5, the AMC channel we present is a

generalisation of the channel considered by Silva, Kschischang and Kötter [39,

§IV], who assume a fixed constant error rank. In [39] the authors analyse the

capacity of the AMC channel with fixed error rank, giving upper and lower

bounds on the capacity that converge for large field size or large channel input.

We improve on the bounds from [39], giving upper and lower bounds that are

within a (small) additive constant for any channel parameters and not just

in certain asymptotic cases, thus determining the capacity’s behaviour for all

channel parameters. We then present similar results for the AMC channel with

uniform error, which leads to a lower bound for the capacity of the general

AMC channel. Our results show that the minimum capacity of the general

AMC channel is very close to the capacity of the channel with fixed error rank,

thus our generalisation covers a wider class of cases without any significant

loss in capacity.

The chapter is organised as follows. In Section 6.2 we express the AMC
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channel capacity in terms of the channel parameters. Section 6.3 considers

the AMC channel with fixed error rank. We review the known results on

the channel capacity and present our improved bound. Section 6.4 considers

the AMC channel with uniform error matrix. The uniform error distribution

is an important special case of the AMC channel as its capacity provides a

lower bound for the AMC channel capacity (Lemma 6.4.1). We compute the

channel capacity in this case and provide a constant bound similar to that

for the capacity of the channel with fixed error rank. In Section 6.5 we use

the results of Section 6.4 to give a lower bound on the capacity of the general

AMC channel. Finally, in Section 6.6 we explain the consequences the results

from Chapters 5 and 6 have on the analysis of the Gamma channel capacity

(see Chapter 8).

6.2 The AMC channel capacity

Recall the definition (Definition 1.5.1) of the AMC channel:

Definition. Let R be a probability distribution on the set {0, 1, . . . ,

min{m,n}} of possible ranks of matrices M ∈ Fn×mq . The Additive Matrix

Channel with rank error distribution R (AMC(R)) has input set X and out-

put set Y , where X = Y = Fn×mq . The channel law is

Y = X + B

where B ∈ Fn×mq is UGR with rank distribution R.

As for the MMC channel (see Section 5.2), since the AMC channel is defined

for matrices over a base field of size q, we define the AMC channel capacity in

terms of q-ary units.
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Definition 6.2.1. Define CAMC(R) = maxPX
I(X;Y ) to be the capacity of

the AMC(R) channel, in q-ary units per channel use.

Recall the channel capacity gives the maximum rate at which we can trans-

mit information over the channel, hence CAMC(R) gives the maximum number

of q-ary units we can transmit in one use of the AMC(R) channel. The fol-

lowing lemma gives CAMC(R) in terms of the channel parameters.

Lemma 6.2.1. Let CAMC(R) be the AMC(R) channel capacity in q-ary units

per channel use. Then

CAMC(R) = nm−H(B) (6.2.1)

= nm−
min{n,m}∑

r=0

R(r) logq
|Fn×m,rq |
R(r)

. (6.2.2)

Proof. Expanding the mutual information,

CAMC(R) = max
PX

{I(X : Y )}

= max
PX

{H(Y )−H(Y |X)}

= max
PX

{H(Y )} −H(B) (6.2.3)

= nm−H(B), (6.2.4)

where (6.2.3) holds since X and B are independent, so H(Y |X) = H(B) and

H(B) does not depend on PX , and (6.2.4) holds by taking a uniform output

distribution to maximise H(Y ) = nm. Hence (6.2.1) holds. Now, since B has

a UGR distribution with rank distribution R, we have

Pr(B = B) =
R(rk(B))

|Fn×m,rk(B)
q |

.
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Therefore

H(B) = −
∑

B∈Fn×m
q

Pr(B = B) logq Pr(B = B)

= −
∑

B∈Fn×m
q

R(rk(B))

|Fn×m,rk(B)
q |

logq
R(rk(B))

|Fn×m,rk(B)
q |

= −
min{n,m}∑

r=0

R(r) logq
R(r)

|Fn×m,rq |

=

min{n,m}∑
r=0

R(r) logq
|Fn×m,rq |
R(r)

(6.2.5)

Substituting (6.2.5) into (6.2.4) gives (6.2.2).

Remark. The same result is proved by Silva, Kschischang and Kötter [39] for

the AMC channel with fixed error rank, which is considered in Section 6.3.

6.3 The AMC channel with fixed error rank

In this section we focus on the special case of the Additive Matrix Channel,

where the rank of the error matrix B is fixed. This is exactly the AMC channel

considered by Silva, Kschischang and Kötter [39, §IV]. We give bounds on the

channel capacity that differ by a small additive constant which is independent

of all channel parameters q, n,m and t, thus we determine the behaviour of

the channel capacity for all parameter choices. Below we give the definition

of the channel.

Definition 6.3.1. The Additive Matrix Channel with fixed error rank (AMC(Rt))

is the Additive Matrix Channel with rank distribution R = Rt which takes

rk(B) = t with probability 1.

Remark. This model is more restrictive than the general AMC channel as
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it assumes the error matrix B has rank exactly t. As discussed in Subsec-

tion 2.4.2, for the network coding application this implies there are always

exactly t linearly independent random errors introduced into the network.

The remainder of this section is organised as follows. In Subsection 6.3.1

we review the known results about the AMC(Rt) channel capacity. In Sub-

section 6.3.2 we present some preliminary results which are used in Sub-

section 6.3.3 to give bounds on the channel capacity. We conclude Subsec-

tion 6.3.3 with a discussion of the results.

6.3.1 Known results on capacity

In [39] the capacity of the AMC(Rt) channel is computed in q-ary units per

channel use to be

CAMC(Rt) = (m− t)(n− t) + logq

t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

. (6.3.1)

This is sufficient for the authors to compute the capacity in certain asymptotic

cases as follows. Fix n and m, then

lim
q→∞

CAMC(Rt) = (m− t)(n− t).

Now fix q and let n = λm, t = τn for some constants λ ≤ 1, τ < 1. Since the

capacity naturally scales with nm, the authors in [39] define the normalised

capacity to be CAMC(Rt) = 1
nm
CAMC(Rt), then

lim
m→∞
n=λm
t=τn

CAMC(Rt) = (1− λτ)(1− τ).

These limits follow from (6.3.1) since the last term on the right vanishes in

both limiting cases. However (6.3.1) gives little intuitive information about

the size of the capacity for general parameters. This motivates the remainder

of this section, which presents improved bounds on the capacity that are ‘close’

for any channel parameters.
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6.3.2 Preliminary results

In this section we present several preliminary results which will be used in

subsequent sections to bound the AMC channel capacity in various cases.

The following two lemmas bound the term
∏t−1

i=0
(1−qi−t)

(1−qi−n)(1−qi−m)
to lie within

a small constant interval. This is used to give a constant bound on the last

term on the right hand side of (6.3.1).

Lemma 6.3.1. Let q,m, n, t be integers with q ≥ 2 and t < n,m. Then

t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

< 1. (6.3.2)

Proof. For i ∈ {0, . . . , t− 1},

(1− qi−n)(1− qi−m) ≥ (1− qi−min{n,m})2

= 1− 2qi−min{n,m} + q2(i−min{n,m})

> 1− 2qi−min{n,m}

≥ 1− qi−(min{n,m}−1) (6.3.3)

≥ 1− qi−t, (6.3.4)

where (6.3.3) holds since q ≥ 2 and (6.3.4) holds since t < n,m. Thus for

i ∈ {0, . . . , t− 1}
(1− qi−t)

(1− qi−n)(1− qi−m)
< 1,

and therefore
t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

<

t−1∏
i=0

1 = 1.

Lemma 6.3.2. Let q,m, n, t be integers with q ≥ 2, then

t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

> Q0, (6.3.5)

where Q0 ≈ 0.28879 is as defined in Section 3.2.1.
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Proof. Observe that

t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

>

t−1∏
i=0

(
1− qi−t

)
≥

t−1∏
i=0

(
1− 2i−t

)
(6.3.6)

=
t∏

k=1

(
1− 2−k

)
≥
∞∏
k=1

(
1− 2−k

)
= Q0,

where (6.3.6) follows since q ≥ 2.

The following lemma gives a constant bound on the last term on the right

hand side of (6.3.1).

Lemma 6.3.3. Let q,m, n, t be integers with q ≥ 2 and t < n,m. Then

−2 < logq

t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

< 0. (6.3.7)

Proof. The upper bound follows from Lemma 6.3.1, by noting that logq(1) = 0.

Then, by Lemma 6.3.2,

logq

(
t−1∏
i=0

(1− qi−t)
(1− qi−n)(1− qi−m)

)
> logq(Q0)

≥ log2(Q0)

> −2,

hence the lower bound holds.

Remark. Note that the constant lower bound on the left hand side of (6.3.7)

can be increased slightly from −2 to −1.792 by evaluating log2(Q0) with higher

accuracy. Further more, as in Section 5.3, by using numerical evaluation for
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higher values of q, the constant bound in (6.3.5) can be increased and quickly

approaches the upper bound as q grows. As we are aiming for a bound that

is independent of all parameters we omit these details.

6.3.3 Bounds on capacity

The following theorem gives a constant bound on the AMC(Rt) channel ca-

pacity.

Theorem 6.3.4. Let CAMC(Rt) be the AMC(Rt) channel capacity in q-ary

units per channel use. Then

(m− t)(n− t)− 2 < CAMC(Rt) < (m− t)(n− t). (6.3.8)

Proof. Substituting the bounds from (6.3.7) into the expression for the channel

capacity given in (6.3.1) gives the result.

Remark. The constant 2 on the left hand side of (6.3.8) can be decreased

slightly to tighten the bound as described in the remark at the end of Sec-

tion 6.3.2. This does not improve our overall understanding of the channel

behaviour, so we omit the details.

Theorem 6.3.4 shows that the capacity of the AMC(Rt) channel is ‘close

to’ (m − t)(n − t) for all parameter values q, n,m, t. This is a significant

improvement of the results of [39] which focused on certain asymptotic cases.

This result gives an intuitive interpretation of the channel capacity, by noting

CAMC(Rt) ≈ (m− t)(n− t) = mn− (m+ n− t)t,

so in the transmission of mn q-ary bits (the input matrix X) you lose approx-

imately (m+n− t)t q-ary bits. This is shown to be approximately the amount

needed to specify an n ×m matrix of rank t in [39, §IV]. Thus, the capacity

95



can be interpreted as the number of q-ary bits transmitted minus the number

of bits needed to communicate B. An efficient coding scheme that achieves

the rate (m− t)(n− t) for the asymptotic cases discussed in Subsection 6.3.1

is presented in [39, §IV. B].

In the following section we move on to consider the AMC channel in the

special case when the error matrix B is chosen uniformly, given rk(B) ≤ t.

We will consider the channel capacity in this case and how it relates to the

general AMC channel capacity.

6.4 The AMC channel with uniform error ma-

trix

In this section we consider the special case of the additive matrix channel when

the error matrix B is chosen uniformly from the set of all n×m matrices with

rank ≤ t. We show that the capacity of this channel gives a lower bound for

the AMC(R) capacity, with general R. We then give bounds on the channel

capacity, thus leading to a lower bound on the general AMC channel capacity.

The remainder of this section is organised as follows. In Subsection 6.4.1

we formally define the AMC channel with uniform error matrix and show that

its capacity is a lower bound for the capacity of the general AMC channel.

In Subsection 6.4.2 we calculate the exact channel capacity. Subsection 6.4.3

presents some preliminary results which are used in Subsection 6.4.4 to give

bounds on the channel capacity.
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6.4.1 Uniform error is a lower bound for capacity

Let RU denote the probability distribution on the set {0, 1, . . . ,min{m,n}} of

possible ranks of matrices M ∈ Fn×mq such that

RU(r) =

{
|Fn×m,r

q |∑t
k=0|F

n×m,k
q |

if 0 ≤ r ≤ t

0 otherwise.
(6.4.1)

Observe that a UGR distribution with rank distribution RU on Fn×mq , is just

the uniform distribution on the set of n×m matrices with rank ≤ t.

Definition 6.4.1. The Additive Matrix Channel with uniform error matrix

(AMC(RU)) is the Additive Matrix Channel with rank distribution R = RU ,

where RU is given in (6.4.1).

The following lemma shows the AMC(RU) channel capacity is a lower

bound for the additive matrix channel capacity, given that the AMC error

rank is bounded by t.

Lemma 6.4.1. Given an integer t, between 0 and min{n,m}, let R be any

rank distribution such that R(r) = 0 for r > t. Let CAMC(R) and CAMC(RU )

denote the capacities (in q-ary units per channel use) of the AMC(R) and

AMC(RU) channels, respectively. The capacity of the additive matrix channel

is bounded below by the capacity of the additive matrix channel with uniform

error matrix, that is

CAMC(R) ≥ CAMC(RU ). (6.4.2)

Proof. By Lemma 6.2.1, CAMC(R) = nm−H(B), which is minimal when H(B)

is maximal. By Lemma 3.4.2, the entropy of B is maximal when B is chosen

uniformly, hence when R = RU .

In the following section we compute the exact capacity of the additive

matrix channel with uniform error matrix.
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6.4.2 Channel capacity

The following lemma gives the capacity of the AMC(RU) channel.

Lemma 6.4.2. Let CAMC(RU ) be the AMC(RU) channel capacity in q-ary units

per channel use. Then

CAMC(RU ) = (m−t)(n−t)−logq

(
t∑

j=0

(
1

q(m+n−2t+j)j

j−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−j)

))
.

(6.4.3)

Proof. By Lemma 6.2.1,

CAMC(RU ) = nm−
min{n,m}∑

r=0

RU(r) logq
|Fn×m,rq |
RU(r)

= nm− logq

t∑
k=0

|Fn×m,kq |, (6.4.4)

where the second equality follows by substituting in the value of RU(r) from

(6.4.1). It is well known (e.g. [39, §IV]) that

|Fn×m,kq | = q(m+n−k)k

k−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−k)
,

thus
t∑

k=0

|Fn×m,kq | =
t∑

k=0

q(m+n−k)k

k−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−k)
. (6.4.5)

Now let f(k) be any function of k. Then

t∑
k=0

q(m+n−k)kf(k) =
t∑

j=0

q(m+n−(t−j))(t−j)f(t− j)

= q(m+n−t)t
t∑

j=0

qjt−(m+n−(t−j))jf(t− j)

= q(m+n−t)t
t∑

j=0

1

q(m+n−2t+j)j
f(t− j). (6.4.6)
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Substituting (6.4.6) into (6.4.5), with f(k) =
∏k−1

i=0
(1−qi−m)(1−qi−n)

(1−qi−k)
, gives

logq

t∑
k=0

|Fn×m,kq |

= logq

(
q(m+n−t)t

t∑
j=0

1

q(m+n−2t+j)j

t−j−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−(t−j))

)

= (m+ n− t)t+ logq

(
t∑

j=0

1

q(m+n−2t+j)j

t−j−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−(t−j))

)
.

(6.4.7)

Substituting (6.4.7) into (6.4.4) gives the result.

6.4.3 Preliminary results

This section presents preliminary results that will be used to bound the ca-

pacity of the AMC channel with uniform error matrix.

Lemma 6.4.3. Let q,m, n, t be integers with q ≥ 2 and t < n,m. The follow-

ing holds:

1 <
t∑

j=0

1

q(m+n−2t+j)j

t−j−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−(t−j))
< 7. (6.4.8)

Proof. By Lemma 6.3.1 and Lemma 6.3.2, for k < n,m

Q0 <

k−1∏
i=0

(1− qi−k)
(1− qi−n)(1− qi−m)

< 1,

hence for j = 0, . . . , t, letting k = t− j, we see

1 <

t−j−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−(t−j))
<

1

Q0

< 3.5.

Therefore

t∑
j=0

1

q(m+n−2t+j)j
<

t∑
j=0

1

q(m+n−2t+j)j

t−j−1∏
i=0

(1− qi−m)(1− qi−n)

(1− qi−(t−j))
(6.4.9)

< 3.5
t∑

j=0

1

q(m+n−2t+j)j
. (6.4.10)
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The lower bound follows immediately from the left hand side of (6.4.9), by

observing that all terms in the sum are positive and the term for j = 0 is equal

to 1. Now, since t < n,m,

t∑
j=0

1

q(m+n−2t+j)j
<

t∑
j=0

1

qj2

≤
∞∑
j=0

1

qj2

< 2. (6.4.11)

Where (6.4.11) follows from the argument of (5.3.6) in the proof of Lemma 5.3.2.

Substituting (6.4.11) into (6.4.10) gives the upper bound.

6.4.4 Bounds on capacity

The following theorem gives bounds on the AMC(RU) channel capacity that

differ by a small additive constant.

Theorem 6.4.4. Let CAMC(RU ) be the capacity (in q-ary units per channel

use) of the AMC(RU) channel. Then CAMC(RU ) satisfies

(m− t)(n− t)− 3 < CAMC(RU ) < (m− t)(n− t). (6.4.12)

Proof. Substituting the bound from Lemma 6.4.3 into the expression for the

capacity given in Lemma 6.4.2, gives

(m− t)(n− t)− logq(7) < CAMC(RU ) < (m− t)(n− t)− logq(1).

The upper bound follows immediately since logq(1) = 0. The lower bound

follows since

logq(7) ≥ log2(7) > 3.
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Remark. As in the case of the fixed error rank AMC channel, the constant 3 on

the left hand side of (6.4.12) can be decreased slightly by tightening the bound

used from (6.4.8). This change is minimal so again the details are omitted.

Theorem 6.4.4 shows that CAMC(RU ) ≈ (m − t)(n − t) for all parameter

values q,m, n, t with q ≥ 2 and t < n,m. Comparing this to Theorem 6.3.4

shows that the capacity of the AMC channel is very similar for both rank error

distributions RU and Rt.

By Lemma 6.4.1 the capacity of the AMC(RU) channel can be viewed as a

lower bound for the capacity of the general AMC(R) channel when the error

rank is bounded by t. Therefore Theorem 6.4.4 has an immediate consequence

for the general AMC(R) channel, as is described in the following section.

6.5 Bounds on the AMC capacity

The following theorem gives a lower bound on the AMC channel capacity in

the case when the error rank is bounded by t. Note that in any practical

implementation, in order to recover the source message one would require the

number of errors to be bounded, or at the very least the probability of having

more than some fixed number of errors to tend to zero. Therefore this case

can be viewed as the general case. The lower bound we present is ‘close to’

(m− t)(n− t). For special cases of the AMC channel we have shown that the

capacity is also bounded above by (m − t)(n − t). Note that for the general

channel, the tightest possible upper bound on capacity is CAMC(R) ≤ nm.

Indeed CAMC(R) = nm when R = R0 is the rank distribution that takes

rk(B) = 0 with probability 1. Therefore we cannot hope for a similar upper

bound in the general case.
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Theorem 6.5.1. Given an integer t such that 0 ≤ t < min{n,m}, let R

be a rank distribution such that R(r) = 0 for all r > t. Let CAMC(R) be

the capacity (in q-ary units per channel use) of the AMC(R) channel. Then

CAMC(R) satisfies

CAMC(R) > (m− t)(n− t)− 3.

Proof. Substituting the lower bound on the left hand side of (6.4.12) into

(6.4.2) gives the result.

Comparing Theorem 6.5.1 to Theorem 6.3.4 shows that the lower bound

on the capacity of the general additive matrix channel is extremely close to

that with a fixed error rank (indeed it drops by just 1 q-ary unit per channel

use). Therefore our generalisation of the model studied by Silva, Kschischang

and Kötter [39] gives a more realistic model for coherent network coding whilst

(almost) maintaining the full channel capacity.

Note, the asymptotic coding scheme (mention in Subsection 6.3.3) for the

AMC(Rt) channel of rate (m − t)(n − t) presented in [39, §IV. B], can still

be applied to the general AMC channel, although decoding errors may occur,

see [39, §VI. D] for further details.

Recall in Subsection 6.3.3 we discuss an intuitive interpretation of the

AMC(Rt) channel capacity as the number of q-ary bits transmitted (= nm)

minus the number of bits needed to communicate an n ×m matrix of rank t

(≈ (m+n−t)t). Applying this interpretation to Theorem 6.5.1 shows that for

the general AMC(R) channel, the maximum loss in capacity from the number

of q-ary bits transmitted is still approximately the number of bits needed to

communicate an n×m matrix of rank t. Intuitively this is the best we could

hope for in general, since we allow the possibility of the error matrix B having

rank t.
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6.6 Consequences for more general models

Consider the Gamma channel Γ(R) defined in Chapter 1. The results obtained

in Chapters 5 and 6, bounding the capacity of the MMC and AMC channels,

have an immediate consequence for the known bounds on the Gamma channel.

Consider the special case of the Gamma channel with fixed error rankRt which

takes rk(B)) = t with probability 1, we shall denote this channel Γ(Rt). This

is equivalent to the AMMC channel considered by Silva, Kschischang and

Kötter [39, §V].

In [39] the following bound on the capacity of the Γ(Rt) channel is shown.

Let CΓ(Rt) denote the Γ(Rt) channel capacity, in q-ary units per channel use.

Then for n
m
≤ 1

2
, given any ε ≥ 0

(m−n)(n−t−εt)−logq 4−2tnm

q1+εt
≤ CΓ(Rt) ≤ (m−n)(n−t)+logq 4(1 + n)(1 + t).

(6.6.1)

This is sufficient for the authors to compute the capacity in certain asymptotic

cases as follows. Fix n and m. Then

lim
q→∞

CΓ(Rt) = (m− n)(n− t).

Now define the normalised capacity to be CΓ(Rt) = 1
nm
CΓ(Rt). Fix q and let

n = λm, t = τn for some constants λ ≤ 1, τ < 1,

lim
m→∞
n=λm
t=τn

CΓ(Rt) = (1− λ)(1− τ).

These limits follow from (6.6.1) by choosing an appropriate ε ≥ 0 in each case.

However for general parameters, the bounds in (6.6.1) can be far apart and

therefore give little information on the true behaviour of the capacity of the
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channel. Using the results from Chapters 5 and 6 together with the proof

strategy from [39] it is possible to replace the upper bound in (6.6.1) by

CΓ(Rt) < (m− n)(n− t) + 6. (6.6.2)

However a similar improvement is not immediately possible for the lower

bound. As this results in bounds on the capacity that still differ by a factor of

O(n), there is not a significant overall improvement to the known bounds. For

this reason we omit the full details. In the following chapters we explore a dif-

ferent method for analysing the capacity of the Gamma channel, determining

the exact channel capacity for all parameter values.
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Chapter 7

Matrix Functions

7.1 Overview

Consider the following three matrix functions.

• Let U be a subspace of Fmq of dimension u. Define f0(u) to be the number

of n×m matrices whose rowspace is U .

• Let U and V be subspaces of Fmq of dimensions u and v respectively.

Let h = dim(U ∩ V ). Let M ∈ Fn×mq be a fixed matrix such that

Row(M) = U . Let r be a non-negative integer. Define f1(u, v, h; r) to

be the number of matrices B ∈ Fn×m,rq , such that the rowspace of M+B

is V .

• Let r, rX and rB be non-negative integers. Let X ∈ Fn×mq be a fixed

matrix such that rk(X) = rX . Define f2(r, rX , rB) to be the number of

matrices B ∈ Fn×m,rBq such that the rank of X +B is equal to r.

The aim of this chapter is to show that the functions f0, f1, f2 are well

defined (i.e. they depend only on their inputs and the parameters n,m, q)

and to express them in terms of these parameters, showing that they can be

efficiently computed. By an efficient computation, we mean a polynomial (in

max{n,m}) number of arithmetic operations.
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The fact that f0 and f2 could be efficiently computed was already known

from [14] and [18], respectively. However, the expressions given differ from

those we develop here. We will further discuss these related works in Sec-

tion 7.4.

The functions f0, f1, f2 will be used in Chapter 8 to calculate the exact

capacity of the Gamma channel.

We approach the problem of determine the expressions for f0, f1, f2 by first

exploring several combinatorial results that will be needed. In Section 7.2, for

fixed subspaces U, V ⊆ Fmq , we count the number of subspaces W ⊆ Fmq such

that the dimension of W , W ∩ U , W ∩ V and W ∩ U ∩ V are all fixed. In

Section 7.3, for fixed subspaces U, V,W ⊆ Fmq with W +V = U +V , we count

the number of pairs (V ′,W ′) such that V ′ ⊆ V , W ′ ⊆ W , U + V ′ = W ′ + V ′

and the dimensions of V ′,W ′ and V ′ ∩W ′ are fixed. Finally in Section 7.4 we

calculate the values of the functions f0, f1, f2.

7.2 Counting subspaces

Let U and V be fixed subspaces of Fmq . The aim of this section is to count the

number of subspaces W ⊆ Fmq such that the dimension of W , W ∩ U , W ∩ V

and W ∩U ∩V are all fixed; this is a key result which will be used in the proof

of a later result.

In order to count such spaces W we begin, in Subsection 7.2.1, by focusing

on the special case when W ⊆ U⊕V and W intersects both U and V trivially.

Then in Subsection 7.2.2 we relax the condition on the intersection of W with

U and V . In Subsection 7.2.3 we consider the case when W ⊆ U+V and finally

in Subsection 7.2.4 we consider the general case of the counting problem.
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7.2.1 The special case with a direct sum and trivial in-
tersection

Lemma 7.2.1. Let U, V be subspaces of Fmq of dimensions dU and dV respec-

tively. The number of dW -dimensional spaces W such that W ⊆ U ⊕ V with

W ∩ U = W ∩ V = {0} is

f(dU , dV , dW ) =

[
dU
dW

] dW−1∏
i=0

(qdV − qi)

when 0 ≤ dW ≤ min{dU , dV }, and f(dU , dV , dW ) = 0 otherwise.

Proof. Consider the natural map ϕV : U ⊕ V → V , note ker(ϕV ) = U . We

have

dim(ϕV (W )) = dim(W )− dim(U ∩W )

= dW .

Then since dim(ϕV (U ⊕ V )) = dV we have that dW ≤ dV and a similar

argument shows dW ≤ dU . Thus 0 ≤ dW ≤ min{dU , dV }, as required.

Now assume that 0 ≤ dW ≤ min{dU , dV }. There are
[
dU
dW

]
dW -dimensional

subspaces X of U . We fix one such space X and count the number of spaces

W of the form above with the additional condition that the image of W under

the natural map ϕU : U ⊕ V → U is X.

Let {x1, . . . , xdW } be a basis for X. Let w1, . . . , wdW ∈ U ⊕V be such that

ϕU(wi) = xi. Then the vectors w1, . . . , wdW form a basis for some space W of

the required form.

Define v1, . . . , vdW ∈ V by vi = wi − ϕU(wi) = wi − xi. We have ϕV (W ) =

Span{v1, . . . , vdW }, so the vectors v1, . . . , vdW form a basis of a dW -dimensional

subspace of V . Moreover, different choices for the vectors v1, . . . , vdW will lead

to different subspaces W . The number of possible choices for the vectors
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v1, . . . , vdW is
∏dW−1

i=0 (qdV − qi), since they must span a space of dimension

dW . Therefore, there are
∏dW−1

i=0 (qdV − qi) spaces W of the required form with

ϕU(W ) = X, multiplying this by the number of choices for X gives the total

number of spaces W to be as claimed.

7.2.2 The special case with a direct sum

Lemma 7.2.2. Let U, V be subspaces of Fmq of dimensions dU and dV respec-

tively. The number of dW -dimensional spaces W such that W ⊆ U ⊕ V with

dim(W ∩ U) = dUW and dim(W ∩ V ) = dVW is

g(dU , dV , dW , dUW , dVW )

=

[
dU
dUW

][
dV
dVW

]
f(dU − dUW , dV − dVW , dW − dUW − dVW )

when

dUW ≤ min{dU , dW}, dVW ≤ min{dV , dW} (7.2.1)

and

dW − dUW − dVW ≤ min{du− dUW , dV − dVW}, (7.2.2)

and g(dU , dV , dW , dUW , dVW ) = 0 otherwise.

Proof. The inequalities in (7.2.1) hold since the dimension of the intersection

of two spaces is bounded above by the dimension of those spaces.

For a given space W of the required form, consider the space U ⊕ V quo-

tiented out by (U ∩ W ) ⊕ (V ∩ W ). For a subspace X of U ⊕ V , let X ′

denote the image of this space in the quotient. Then W ′ is a subspace of

U ′⊕V ′ that intersects both U ′ and V ′ trivially. We have dim(U ′) = dU−dUW ,

dim(V ′) = dV −dVW and dim(W ′) = dW −dUW −dVW . Therefore the inequal-

ity in (7.2.2) follows from Lemma 7.2.1.
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To count the number of possible spaces W when (7.2.1) and (7.2.2) hold,

first note that there are
[
dU
dUW

]
choices for U ∩W and

[
dV
dV W

]
choices for V ∩W .

Once these spaces are fixed, there are f(dU−dUW , dV −dVW , dW−dUW−dVW )

possible choices for W ′.

Finally, since W ′ is a quotient of W by (U ∩W )⊕ (V ∩W ) ⊆ W , it follows

that W is uniquely determined by W ′, U ∩W and V ∩W , hence the lemma

holds.

7.2.3 The special case with a sum

Lemma 7.2.3. Let U, V be subspaces of Fmq of dimensions dU and dV respec-

tively such that dim(U ∩ V ) = dUV . The number of dW -dimensional spaces

W such that W ⊆ U + V with dim(W ∩ U) = dUW , dim(W ∩ V ) = dVW and

dim(U ∩ V ∩W ) = dUVW is

h(dU , dV , dW , dUV , dUW , dVW , dUVW )

= g(dU − dUV , dV − dUV , dW − dUVW , dUW − dUVW , dVW − dUVW )

·
[
dUV
dUVW

]
q(dW−dUV W )(dUV −dUV W ).

Proof. Let X = U ∩ V . Consider the quotient Fmq /X, and let S ′ denote

the image of a space S in the quotient. Then (U + V )/X = U ′ ⊕ V ′ where

dim(U ′) = dU − dUV , dim(V ′) = dV − dUV and given any space W of the

required form, (W +X)/X = W ′ where dim(W ′) = dW − dUVW . Now

dim(U ′ ∩W ′) = dim(((U +X)/X) ∩ ((W +X)/W ))

= dim(((U ∩W ) +X)/X) = dUW − dUVW

and similarly dim(V ′ ∩W ′) = dVW − dUVW .

Hence the number of possibilities for the image W ′ of W in the quotient

by X is g(dU − dUV , dV − dUV , dW − dUVW , dUW − dUVW , dVW − dUVW ).
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There are
[
dUV

dUV W

]
possibilities for the space U ∩ V ∩W = X ∩W .

Once the spaces W ′ and X ∩ W are fixed, by Lemma 3.2.7, there are

q(dW−dUV W )(dUV −dUV W ) possibilities for W . Multiplying this by the number of

choices for W ′ and X ∩W gives the statement of the lemma.

7.2.4 The general case

Lemma 7.2.4. Let U, V be subspaces of Fmq of dimensions dU and dV re-

spectively such that dim(U ∩ V ) = dUV . The number of dW -dimensional

subspaces W ⊆ Fmq with dim(W ∩ U) = dUW , dim(W ∩ V ) = dVW and

dim(U ∩ V ∩W ) = dUVW is

l(m, dU , dV , dW , dUV , dUW , dVW , dUVW )

=

min{dUW +dV W−dUV W ,dW }∑
k=max{dUW ,dV W }

h(dU , dV , k, dUV , dUW , dVW , dUVW )

·
[
m− (dU + dV − dUV )

dW − k

]
q(dW−k)(dU+dV −dUV −k).

Proof. For a space W of the required form, let W ′ = (U + V ) ∩ W . Let

k = dim(W ′), then k ≥ dUW since dim(W ′ ∩ U) = dim(W ∩ U) = dUW .

Similarly k ≥ dVW , hence k ≥ max{dUW , dVW}.

Clearly k ≤ dim(W ) = dW . Let ϕ : U + V → (U + V )/V ⊕ (V + U)/U

be the natural map. Note that ker(ϕ) = U ∩ V . Now ϕ(W ′) ⊆ ((U ∩W ) +

V )/V ⊕((V ∩W )+U)/U , and so dim(ϕ(W ′)) ≤ (dUW−dUVW )+(dVW−dUVW ).

Moreover dim(W ′∩ker(ϕ)) = dim(W ′∩U∩V ) = dUVW . Hence k = dim(W ′) ≤

dim(ϕ(W ′)) + dim(W ′ ∩ ker(ϕ)) ≤ dUW + dVW − dUVW .

For k such that max{dUW , dVW} ≤ k ≤ min{dUW + dVW − dUVW , dW} we

will count spaces W with dim(W ′) = dim((U + V ) ∩W ) = k.

Since W ′ ⊆ U + V and dim(U ∩W ′) = dUW , dim(V ∩W ′) = dVW and

dim(U ∩ V ∩W ′) = dUVW , by Lemma 7.2.3 the number of choices for W ′ is
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h(dU , dV , k, dUV , dUW , dVW , dUVW ).

Consider the quotient space Fmq /(U + V ), this has dimension m − (dU +

dV −dUV ). The image of W in the quotient has dimension dW −k, hence there

are
[
m−(dU+dV −dUV )

dW−k

]
choices for the image.

By Lemma 3.2.7, once this image andW ′ are fixed, there are q(dW−k)(dU+dV −dUV −k)

choices for W . Summing over k, the lemma follows.

7.3 Counting pairs of subspaces

Let U, V,W ⊆ Fmq such that W+V = U+V . The aim of this section is to count

the number of pairs (V ′,W ′) such that V ′ ⊆ V , W ′ ⊆ W , U + V ′ = W ′ + V ′

and the dimensions of V ′,W ′ and V ′ ∩W ′ are fixed. This will be used in the

proof of a later result.

We will show that this count depends only on the dimensions of V, U,W

their pairwise intersections and U ∩ V ∩W , thus we define a function

c′(dU , dV , dW , dUV , dUW , dVW , dUVW ; dV ′ , dW ′ , dV ′W ′)

which, given any spaces U, V,W of dimension dU , dV , dW respectively with

U + V = W + V and dim(U ∩ V ) = dUV , dim(U ∩W ) = dUW , dim(V ∩ U) =

dVW , dim(U ∩ V ∩W ) = dUVW , outputs the number of pairs (V ′,W ′) where

dim(V ′) = dV ′ , dim(W ′) = dW ′ and dim(V ′ ∩W ′) = dV ′W ′ . The remainder

of this section works to determine the value of the function c′. In Subsec-

tion 7.3.1 we discuss some basic properties the dimensions of subspaces and

their intersections must satisfy and define a function c(d1, d2) which calculates

the number of pairs (V ′,W ′) when all the various dimensions of intersection

with U, V and W are fixed and given in d1 and d2. Subsection 7.3.2 calculates

the value of c(d1, d2) in the special case when V ′ = {0}, then Subsection 7.3.3
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calculates c(d1, d2) for the special case when V ′ and W ′ intersect trivially. Sub-

section 7.3.4 calculates c(d1, d2) in the general case and finally Subsection 7.3.5

uses the function c(d1, d2) to calculate the value of c′.

7.3.1 Basic dimension properties

Throughout this subsection and the remainder of this section there will be

many dimensions to consider. Therefore, for simplicity it will be understood

that the notation dV denotes the dimension of a space V , dUV denotes dim(U∩

V ) and dUVW denotes dim(U ∩ V ∩W ).

Let U, V,W ⊆ Fmq such that W +V = U +V . The aim of this subsection is

to define a function that calculates the number of pairs (V ′,W ′) when all the

various dimensions of intersection with U, V and W are fixed. We begin by

discussing some basic properties the dimensions of these subspaces and their

intersections must satisfy.

Let

d1 = (dU , dV , dW , dUV , dUW , dVW , dUVW ) and

d2 = (dV ′ , dW ′ , dUV ′ , dUW ′ , dVW ′ , dWV ′ , dV ′W ′ , dUVW ′ , dUWV ′ , dUV ′W ′)
(7.3.1)

be vectors whose entries are positive integers corresponding to the dimensions

of the spaces U, V,W, V ′,W ′ as shown. Note that in this section we think of

the subspaces U , V and W as fixed, and the subspaces V ′ and W ′ as varying,

so that d1 is fixed, and the vector d2 varies according to the choices of V ′ and

W ′.

Given any vector d1 of this form, since its entries correspond to dimen-

sions of subspaces and the dimension of a subspace is bounded above by the

dimension of a space, these entries must satisfy the following basic dimension

properties (1) (BDP1):
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• dU , dV , dW ≤ m

• dUV ≤ dU , dV , dUW ≤ dU , dW , dVW ≤ dV , dW

• dUVW ≤ dUV , dUW , dVW

• dU + dV − dUV ≤ m, dU + dW − dUW ≤ m, dV + dW − dVW ≤ m

• dUV + dVW − dUVW ≤ m, dUW + dVW − dUVW ≤ m,

dUV + dUW − dUVW ≤ m

• dU + dV + dW − dUV − dUW − dVW + dUVW ≤ m

Given a vector d1 satisfying BDP1, let V, U,W be any fixed spaces whose

dimensions correspond to those in d1 and such that W + V = U + V . Then

for any vector d2, since the entries in d2 are dimensions related to those in

d1 and the dimension of a subspace is bounded above by the dimension of a

space, these entries must satisfy the following basic dimension properties (2)

(BDP2):

• dV ′ ≤ dV , dW ′ ≤ dW

• dUV ′ ≤ dUV , dV ′ , dUW ′ ≤ dUW , dW ′

• dVW ′ ≤ dVW , dW ′ dWV ′ ≤ dVW , dV ′

• dV ′W ′ ≤ dVW ′ , dWV ′

• dUVW ′ ≤ dUVW , dUW ′ , dVW ′ , dUWV ′ ≤ dUVW , dUV ′ , dWV ′

• dUV ′W ′ ≤ dUVW ′ , dUWV ′ , dV ′W ′

• dU + dV ′ − dUV ′ ≤ dU + dV − dUV , dU + dW ′ − dUW ′ ≤ dU + dW − dUW

• dV ′ +dW ′−dV ′W ′ ≤ dV +dW ′−dVW ′ , dW +dV ′−dWV ′ ≤ dV +dW −dVW
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• dUV ′ + dV ′W ′ − dUV ′W ′ ≤ dUV + dVW ′ − dUVW ′ , dUV ′ + dV ′W − dUV ′W

≤ dUV + dVW − dUVW

• dUW ′ + dV ′W ′ − dUV ′W ′ ≤ dUW ′ + dVW ′ − dUVW ′ , dUW + dV ′W − dUV ′W

≤ dUW + dVW − dUVW

• dUV ′ + dUW ′ − dUV ′W ′ ≤ dUV + dUW ′ − dUVW ′ , dUV ′ + dUW − dUV ′W

≤ dUV + dUW − dUVW

• dU + dV ′ + dW ′ − dUV ′ − dUW ′ − dV ′W ′ + dUV ′W ′

≤ dU + dV + dW ′ − dUV − dUW ′ − dVW ′ + dUVW ′ , dU + dV ′ + dW − dUV ′ −

dUW − dV ′W + dUV ′W

≤ dU + dV + dW − dUV − dUW − dVW + dUVW

Given a pair of vectors (d1, d2) that satisfy BDP1 and BDP2, we say the

pair (d1, d2) satisfies the basic dimension properties (BDP).

Given a pair of vectors (d1, d2) satisfying BDP, let V, U,W be any fixed

spaces whose dimensions correspond to those in d1 and such that W + V =

U + V . Define c(d1, d2) to be the number of pairs (V ′,W ′) whose dimensions

correspond to the entries in d2, such that V ′ ⊆ V , W ′ ⊆ W and W ′ + V ′ =

U + V ′. For a pair (d1, d2) that doesn’t satisfy BDP, define c(d1, d2) = 0.

The following three subsections show that the function c is well defined,

and depends on the values of d1 and d2. We begin by establishing the formula

in the special case when dV ′ = 0 in Subsection 7.3.2, then for the special case

dV ′W ′ = 0 in Subsection 7.3.3 and finally, in Subsection 7.3.4, we present the

general formula.
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7.3.2 The special case with a trivial space

Lemma 7.3.1. Let d1 and d2 be vectors of the form given in (7.3.1), such that

dV ′ = 0. Then

c(d1, d2) = 1

if d1 satisfies BDP1 with dU = dUW , dUV = dUVW and d2 = (0, dU , 0, dU , dV U ,

0, 0, dV U , 0, 0); and c(d1, d2) = 0 otherwise.

Proof. If d1 does not satisfy BDP1 then c(d1, d2) = 0 by definition.

Let d1 be a vector satisfying BDP1 and let V, U,W be fixed spaces whose

dimensions correspond to the values in d1, such that V +W = V + U .

Since c(d1, d2) gives the number of pairs (V ′,W ′) with V ′ ⊆ V , W ′ ⊆ W

and W ′ + V ′ = U + V ′, if dV ′ = 0 then V ′ = {0} and c(d1, d2) is simply the

number of spaces W ′ ⊆ W such that W ′ = U . Hence there is precisely one

choice for W ′, namely W ′ = U . This is possible if and only if U ⊆ W , which is

the case if and only if dU = dUW . Note that U ⊆ W also forces dUV = dUVW .

Once we set V ′ = {0} and W ′ = U all the entries in d2 are fixed as in the

statement of the lemma (note that d2 satisfies BDP2, hence (d1, d2) satisfy

BDP). The result follows.

7.3.3 The special case with trivial intersection

Lemma 7.3.2. Let d1 and d2 be vectors of the form given in (7.3.1), such that

dV ′W ′ = 0. Then

c(d1, d2) = qdW ′dV ′ l(dV , dUV , dWV , dV ′ , dUWV , dUV ′ , dWV ′ , dUWV ′)

(where l is as defined in Lemma 7.2.4) if (d1, d2) satisfies BDP with

dU − dUV ′ = dUW − dUWV ′ = dW ′ = dUW ′ and

dUV − dUV ′ = dUVW − dUWV ′ = dVW ′ = dUVW ′ ; (7.3.2)

115



and c(d1, d2) = 0 otherwise.

Proof. If (d1, d2) do not satisfy BDP then c(d1, d2) = 0 by definition.

Let (d1, d2) be a pair of vectors satisfying BDP with dV ′W ′ = 0, and let

V, U,W be fixed spaces whose dimensions correspond to the values in d1, such

that V +W = V + U . Since dV ′W ′ = 0, we wish to count pairs (V ′,W ′) with

trivial intersection.

First we pick V ′ to be a dV ′-dimensional subspace of V with dim(U ∩V ′) =

dUV ′ , dim(W ∩ V ′) = dWV ′ and dim(U ∩W ∩ V ′) = dUWV ′ .

Note that, since V ′ ⊆ V we have U ∩ V ′ = (U ∩ V ) ∩ V ′, W ∩ V ′ =

(W∩V )∩V ′ and U∩W∩V ′ = (U∩V )∩(W∩V )∩V ′. Therefore, it is equivalent

to count dV ′-dimensional subspaces of V with dim((U ∩ V ) ∩ V ′) = dUV ′ ,

dim((W ∩V )∩V ′) = dWV ′ and dim((U ∩V )∩ (W ∩V )∩V ′) = dUWV ′ , where

U ∩ V and W ∩ V are subspaces of V and dim((U ∩ V ) ∩ (W ∩ V )) = dUVW .

This value is given in Lemma 7.2.4 to be

l(dV , dUV , dWV , dV ′ , dUWV , dUV ′ , dWV ′ , dUWV ′).

Fix one such subspace V ′. We must now count dW ′-dimensional spaces W ′ ⊆

W such that U + V ′ = W ′ + V ′.

Consider the quotient space Fmq /V ′. For a subspace A ⊆ Fmq , let [A] denote

the image of A in the quotient Fmq /V ′, then d[A] = dA − dAV ′ .

Let

[d1] = (d[U ], d[V ], d[W ], d[UV ], d[UW ], d[VW ], d[UVW ])

and let

[d2] = (d[V ′], d[W ′], d[UV ′], d[UW ′], d[VW ′], d[WV ′], d[V ′W ′], d[UVW ′], d[UWV ′], d[UV ′W ′])
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It follows that

[d1] = (dU − dUV ′ , dV − dV ′ , dW − dWV ′ ,

dUV − dUV ′ , dUW − dUWV ′ , dVW − dWV ′ , dUVW − dUWV ′)

and

[d2] = (0, dW ′ , 0, dUW ′ , dVW ′ , 0, 0, dUVW ′ , 0, 0).

Thus in the quotient by V ′, the dimensions in d1 and d2 drop by either

dV ′ , dUV ′ , dWV ′ or dUWV ′ . Therefore, we are able to quotient in this way with

any choice of V ′ with these fixed values. Note that, since (d1, d2) satisfies BDP,

it follows that ([d1], [d2]) also satisfies BDP.

Now, by Lemma 7.3.1, c([d1], [d2]) = 1 if d[U ] = d[UW ] = d[W ′] = d[UW ′] and

d[UV ] = d[UVW ] = d[VW ′] = d[UVW ′]; and c([d1], [d2]) = 0 otherwise. Hence there

is precisely one possible choice for the space [W ′] ⊆ Fmq /V ′ and it is necessary

that d[U ] = d[UW ] = d[W ′] = d[UW ′] and d[UV ] = d[UVW ] = d[VW ′] = d[UVW ′], that

is

dU − dUV ′ = dUW − dUWV ′ = dW ′ = dUW ′ and

dUV − dUV ′ = dUVW − dUWV ′ = dVW ′ = dUVW ′ . (7.3.3)

By Lemma 3.2.7 there are precisely q(dW ′−0)(dV ′−0) = qdW ′dV ′ spaces W ′ in

Fmq , with W ′ ∩ V ′ trivial, whose image in Fmq /V ′ is [W ′]. Thus for the fixed

choice of V ′, there are qdW ′dV ′ possible choices for W ′ if (7.3.3) holds, and zero

possible choices otherwise. Since this only depends on the fixed dimensions

of V ′, multiplying the number of possible choices for W ′ by the number of

possible choices for V ′ gives the result.
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7.3.4 The general case

Lemma 7.3.3. The function c(d1, d2) is well defined and is given by

c(d1, d2) = q(dV ′W ′−dUV ′W ′ )(dUV W−dUV ′W ′ )

·
[
dVW − dUVW
dV ′W ′ − dUV ′W ′

][
dUVW
dUV ′W ′

]
c([d1], [d2]), (7.3.4)

where

[d1] = (dU − dUV ′W ′ , dV − dV ′W ′ , dW − dV ′W ′ , dUV − dUV ′W ′ ,

dUW − dUV ′W ′ , dVW − dV ′W ′ , dUVW − dUV ′W ′)

and

[d2] = (dV ′ − dV ′W ′ , dW ′ − dV ′W ′ , dUV ′ − dUV ′W ′ , dUW ′ − dUV ′W ′ ,

dVW ′ − dV ′W ′ , dWV ′ − dV ′W ′ , 0, dUVW ′ − dUV ′W ′ , dUWV ′ − dUV ′W ′ , 0)

and the value c([d1], [d2]) is given in Lemma 7.3.2.

Proof. If (d1, d2) do not satisfy BDP then c(d1, d2) = 0 by definition.

Let (d1, d2) be a pair of vectors satisfying BDP, and let V, U,W be fixed

spaces whose dimensions correspond to the values in d1, such that V + W =

V + U .

We begin by calculating the number of pairs (V ′,W ′) when V ′∩W ′ is some

fixed dV ′W ′-dimensional space. We will show that this count does not depend

on the specific choice of V ′∩W ′, but only on the dimensions dV ′W ′ and dUV ′W ′ ,

thus in order to calculate c(d1, d2) we can multiply this count by the number

of possibilities for the space V ′ ∩W ′, with fixed values of dV ′W ′ and dUV ′W ′ .

Let S1 be a fixed dV ′W ′ dimensional subspace of V ∩W , with dim(U∩S1) =

dUV ′W ′ . We will count spaces W ′, V ′ such that V ′ ∩ W ′ = S1. Consider
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the quotient space Fmq /S1, this is a space of dimension m − dV ′W ′ . For a

subspace A ⊆ Fmq , let [A] denote the image of A in the quotient Fmq /S1, then

d[A] = dA− dAS1 . Since S1 = V ′∩W ′, the various dimensions in d1 and d2 will

drop in the quotient by either dV ′W ′ or dUV ′W ′ , giving

(d[U ], d[V ], d[W ], d[UV ], d[UW ], d[VW ], d[UVW ]) = [d1]

and

(d[V ′], d[W ′], d[UV ′], d[UW ′], d[VW ′], d[WV ′], d[V ′W ′], d[UVW ′], d[UWV ′], d[UV ′W ′]) = [d2]

where [d1] and [d2] are as in the statement of the lemma.

The value of c([d1], [d2]) is given in Lemma 7.3.2; this gives the number of

pairs ([V ′], [W ′]) in the quotient space Fmq /S1. There is a direct correspondence

between pairs (V ′,W ′) containing S1 and their image in the quotient space

Fmq /S1. Therefore the number of pairs (V ′,W ′) with V ′ ∩W ′ = S1 is equal to

c([d1], [d2]).

Note that, c([d1], [d2]) does not depend on the specific space S1, but only

on dim(S1) = dV ′W ′ and dim(S1 ∩ U) = dUV ′W ′ . Therefore if we multiply

c([d1], [d2]) by the number of possibilities for S1 ⊆ V ∩W with dim(S1) = dV ′W ′

and dim(S1 ∩ U) = dUV ′W ′ we will obtain the number of pairs (V ′,W ′) of the

required form with dim(V ′ ∩W ′) = dV ′W ′ and dim(U ∩ V ′ ∩W ′) = dUV ′W ′ ,

that is, we will obtain the value c(d1, d2).

In order to count the number of possible choices for S1 we begin by fixing

a dUV ′W ′-dimensional subspace S2 ⊆ U ∩V ∩W and will count spaces S1 with

S1 ∩ U = S2. There are [
dUVW
dUV ′W ′

]
(7.3.5)

possible choices for S2. Fix one. Now, by Corollary 3.2.8 there are

q(dV ′W ′−dUV ′W ′ )(dUV W−dUV ′W ′ )

[
dVW − dUVW
dV ′W ′ − dUV ′W ′

]
(7.3.6)
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spaces S1 with S1 ∩ U = S2. Since this doesn’t depend on the specific space

S2, only its dimension, multiplying together (7.3.5) and (7.3.6) gives the total

number of possible choices for the space S1. Multiplying the number of choices

for S1 by c([d1], [d2]) gives the result.

7.3.5 The final counting argument

Recall that the aim of this section was to count the number of pairs (V ′,W ′)

such that V ′ ⊆ V , W ′ ⊆ W , U + V ′ = W ′ + V ′ and the values dV ′ , dW ′ , dV ′W ′

are fixed. The following lemma gives this result.

Lemma 7.3.4. Let V, U,W ⊆ Fmq be some fixed spaces, such that V + W =

V+U . The number of pairs (V ′,W ′) such that V ′ ⊆ V , W ′ ⊆ W and V ′+W ′ =

V ′ + U with dimV ′ = dV ′, dimW ′ = dW ′ and dimV ′ ∩W ′ = dV ′W ′ depends

only on the dimensions dU , dV , dW , dUV , dUW , dVW , dUVW , dV ′ , dW ′ , dV ′W ′ and

is given by

c′(dU , dV , dW , dUV , dUW , dVW , dUVW ; dV ′ , dW ′ , dV ′W ′) =
m∑

i,j,k,p,q,s,t=0

c(d1, d2)

(7.3.7)

where d1 = (dU , dV , dW , dUV , dUW , dVW , dUVW ) and d2 = (dV ′ , dW ′ , i, j, k, p,

dV ′W ′ , q, s, t) and the value c(d1, d2) is given in Lemma 7.3.3.

Proof. Since the entries of d1 correspond to the fixed spaces U, V andW , BDP1

is satisfied. Then given some fixed i, j, k, p, q, s, t, the value c(d1, d2) gives the

number of pairs (V ′,W ′) of the required form with dUV ′ = i, dUW ′ = j, dVW ′ =

k, dWV ′ = p, dUVW ′ = q, dUWV ′ = s and dUV ′W ′ = t. Note that some choices of

i, j, k, p, q, s, t will result in no such spaces (V ′,W ′), in this case BDP2 will not

be satisfied, and the value c(d1, d2) is zero by definition. Therefore, summing

over all possible values of i, j, k, p, q, s, t gives the result.
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7.4 Calculating the matrix functions

We have now established the necessary preliminary results in order to calcu-

late the values of the matrix functions f0, f1, f2 discussed at the start of this

chapter. This section calculates these functions. Subsection 7.4.1 calculates

f0, Subsection 7.4.2 calculates f1 and finally Subsection 7.4.3 calculates f2.

7.4.1 Calculating f0

The following lemma gives the number of matrices with a fixed rowspace.

Lemma 7.4.1. Let U be a subspace of Fmq of dimension u. The number f0(u)

of matrices M ∈ Fn×mq such that Row(M) = U can be efficiently computed; it

depends only on q, n, m and u. For 0 ≤ u ≤ min{n,m},

f0(u) =
u∑
v=0

(−1)u−vqnv+(u−v
2 )
[
u

v

]
. (7.4.1)

Proof. Let

f(V ) = |{M : M ∈ Fn×mq ,Row(M) = V }|,

and let

g(V ) = |{M : M ∈ Fn×mq ,Row(M) ⊆ V }|.

Then

g(V ) =
∑
U⊆V

f(U).

Therefore by Lemma 3.3.3

f(U) =
∑
V⊆U

(−1)dim(U)−dim(V )q(
dim(U)−dim(V )

2 )g(V ). (7.4.2)

Now, g(V ) is the number of n×m matrices whose rowspace is contained in

V . For any n×m matrix M , Row(M) ⊆ V if and only if each row of M is an
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element of V . Therefore there are qdim(V ) choices for each row, hence qn dim(V )

possible matrices. Thus

g(V ) = qndim(V ). (7.4.3)

Substituting (7.4.3) into (7.4.2) gives

f(U) =
∑
V⊆U

(−1)dim(U)−dim(V )q(
dim(U)−dim(V )

2 )qn dim(V )

=
∑
V⊆U

(−1)dim(U)−dim(V )qn dim(V )+(dim(U)−dim(V )
2 )

=

dim(U)∑
v=0

(−1)dim(U)−vqnv+(dim(U)−v
2 )

[
dim(U)

v

]
, (7.4.4)

where (7.4.4) follows since there are
[

dim(U)
v

]
subspaces V ⊆ U of dimension v

for v = 0, . . . , dim(U).

Note that f(U) depends only on the dimension of the space U ; therefore

f0 is well defined and (7.4.4) establishes (7.4.1).

Remark. An expression for f0 was already known to Gabidulin [14, Theorem

4], who showed that for 0 ≤ u ≤ min{n,m}

f0(u) =
u−1∏
i=0

qn − qi. (7.4.5)

This result is equivalent to Lemma 7.4.1, since (7.4.5) is equal to (7.4.1) by [14,

Equation 13].

7.4.2 Calculating f1

For a space U ⊆ Fmq , the following theorem gives the number of matrices B,

of rank r, such that Row(M + B) is some fixed space V ⊆ Fmq , where M is

any fixed matrix with Row(M) = U .

Theorem 7.4.2. Let U and V be subspaces of Fmq of dimensions u and v

respectively. Let h = dim((U + V )/V ). Let M ∈ Fn×mq be a fixed matrix such
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that Row(M) = U . Let r be a non-negative integer. The number f1(u, v, h; r)

of matrices B ∈ Fn×m,rq such that Row(M+B) = V can be efficiently computed;

it depends only on q, n, m, r, u, v and h. For u − h ≤ v ≤ min{n,m} and

h ≤ r ≤ v + h,

f1(u, v, h; r) =

min{u,r}∑
dUW =0

min{v−h,r−h,dUW }∑
dUWV =0

l(u, v, r, v − h, dUW , r − h, dUVW )

·
r∑

dW ′=0

v∑
dV ′=0

min{dW ′ ,dV ′}∑
dV ′W ′=0

c′((u, v, r, v − h, dUW , r − h, dUVW ; dV ′ , dW ′ , dV ′W ′))

· (−1)r−dW ′+v−dV ′q(
r−dW ′

2 )+(v−dV ′
2 )qndW ′V ′ , (7.4.6)

where the values of the functions l and c′ are given in Lemmas 7.2.4 and 7.3.4,

respectively. When v < u − h, v > min{n,m}, r < h or r > v + h, we find

that f1(u, v, h; r) = 0.

Proof. We begin by establishing the regions for which f1 is zero.

Since M,B ∈ Fn×mq , if V = Row(M + B) we must have dim(V ) ≤

min{n,m}; thus f1(v, u, h; r) = 0 for v > min{n,m}. Since h = dim((U +

V )/V ), by Lemma 3.2.6 it follows that dim(U ∩V ) = u−h. Clearly dim(V ) ≥

dim(U ∩ V ), hence f1(u, v, h; r) = 0 for v < u− h.

Consider the quotient space Fmq /V . For a subspace S ⊆ Fmq , let [S] denote

the image of S in Fmq /V . Then [U ] = (U + V )/V , so dim([Row(M)]) =

dim([U ]) = h.

Let B be an n ×m matrix of rank r. For i = 1, . . . , n let mi denote the

i-th row of M and let bi denote the i-th row of B. If Row(M + B) ⊆ V it

follows that for each i, mi + bi = vi for some vi ∈ V . Therefore

bi + V = −mi + vi + V

= −mi + V (7.4.7)
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for i = 1, . . . , n. Hence

[Row(B)] = Span{−m1 + V, . . . ,−mn + V }

= [Row(M)]

= [U ]. (7.4.8)

Therefore [Row(B)] is uniquely defined by M and V , and dim([Row(B)]) =

dim([U ]) = h.

Note that rk(B) ≥ dim([Row(B)]) = h, hence f1(u, v, h; r) = 0 for r < h.

Also, r − h = dim(Row(B) ∩ V ) ≤ dim(V ), so f1(u, v, h; r) = 0 for r > v + h.

We have established that f1 is zero whenever v < u − h, v > min{n,m},

r < h or r > v + h.

We now go on the calculate f1 for u−h ≤ v ≤ min{n,m} and h ≤ r ≤ v+h.

Let S = [U ], so that for any matrix B of the required form, we must have

[Row(B)] = S.

If h ≤ r ≤ dim(V ) + h, given any r-dimensional subspace W , of Fmq with

[W ] = S, there exists a matrix B with Row(B) ⊆ W such that Row(M+B) ⊆

V . To see this, since [W ] = S, there exists vectors v1, . . . , vn ∈ V such that

−mi + vi ∈ W for i = 1, . . . , n. Take the i-th row of the matrix B to be

−mi + vi, then the matrix B has the required form. Note that, for any space

W ⊆ Fmq , since [W ] = (W+V )/V and S = (U+V )/V , it follows that [W ] = S

if and only if W + V = U + V .

For a fixed spaceW we count the number of matricesB, such that Row(B) ⊆

W and Row(M + B) ⊆ V . We will then use Möbius inversion to count the

number of matrices B, such that Row(B) = W and Row(M+B) = V . Finally,

we will sum over possible choices of W to get the total number of matrices B

of the required form.
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Let W be a fixed subspace of Fmq of dimension r with W + V = U + V .

Then we have shown that there exists a matrix B with Row(B) ⊆ W such that

Row(M +B) ⊆ V . Given one such matrix B and fixed vectors v1, . . . , vn ∈ V ,

consider the matrix

B′ = B +

 v1
...
vn

 . (7.4.9)

Then since vi ∈ V , Row(M + B′) ⊆ V . Note that adding anything to B

not in V will result in a matrix B′′ such that Row(M + B′′) * V , so we are

only interested in adding rows in V . Now, if vi ∈ W ∩ V for each i, then

Row(B′) ⊆ W . However if for any i, vi /∈ W then Row(B′) * W . Thus B′

is an n ×m matrix with Row(B′) ⊆ W and Row(M + B′) ⊆ V if and only

if B′ is of the form given in (7.4.9) with v1, . . . , vn ∈ W ∩ V . Therefore the

number of matrices B of the required form is equal to the number of choices for

v1, . . . , vn ∈ W ∩V . There are qdim(W∩V ) choices for each vi, hence qn dim(W∩V )

choices for the ordered set {v1, . . . , vn}. By Lemma 3.2.6, dim(W ∩V ) = r−h,

thus we have shown that the number of matrices B, with Row(B) ⊆ W and

Row(M +B) ⊆ V , is

qn dim(W∩V ) = qn(r−h).

Recall, Po(Fmq ) is the poset of all subspaces of Fmq , ordered by containment.

Consider the direct product Po(Fmq ) × Po(Fmq ). For (W ′, V ′) ∈ Po(Fmq ) ×

Po(Fmq ), let

f((W ′, V ′)) = |{B ∈ Fn×mq : Row(B) = W ′,Row(M +B) = V ′}|,

and let

g((W ′, V ′)) = |{B ∈ Fn×mq : Row(B) ⊆ W ′,Row(M +B) ⊆ V ′}|.
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The above argument shows that

g((W ′, V ′)) =

{
qn dim(W ′∩V ′) if W ′ + V ′ = U + V ′,

0 otherwise.
(7.4.10)

By the definition of f and g,

g((W,V )) =
∑

(W ′,V ′)≤(W,V )

f((W ′, V ′)).

Therefore, by Lemma 3.3.5,

f((W,V ))

=
∑

(W ′,V ′)≤(W,V )

(−1)r−dim(W ′)+v−dim(V ′)q(
r−dim(W ′)

2 )+(v−dim(V ′)
2 )g((W ′, V ′))

=
∑

(W ′,V ′)≤(W,V )
W ′+V ′=U+V ′

(−1)r−dim(W ′)+v−dim(V ′)q(
r−dim(W ′)

2 )+(v−dim(V ′)
2 )qndim(W ′∩V ′),

(7.4.11)

where (7.4.11) follows from (7.4.10).

Suppose that for our fixed space W , dim(U ∩ W ) = dUW and dim(U ∩

V ∩W ) = dUVW . Then by Lemma 7.3.4, the number of pairs (W ′, V ′), with

(W ′, V ′) ≤ (W,V ) and W ′ + V ′ = U + V ′, with dim(W ′) = dW ′ , dimV ′ = dV ′

and dim(W ′ ∩ V ′) = dW ′V ′ is

c′(d) = c′((u, v, r, v − h, dUW , r − h, dUVW ; dV ′ , dW ′ , dV ′W ′)), (7.4.12)

where c′ is as defined in Lemma 7.3.4.

Substituting (7.4.12) into (7.4.11) gives

f((W,V )) =
r∑

dW ′=0

v∑
dV ′=0

min{dW ′ ,dV ′}∑
dV ′W ′=0

c′(d)

· (−1)r−dW ′+v−dV ′q(
r−dW ′

2 )+(v−dV ′
2 )qndW ′V ′ . (7.4.13)

Thus we have calculated the number of matrices of the required form with

a specific rowspace W .
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Now, by Lemma 7.2.4 the number of spaces W with dim(W ) = r, dim(W ∩

V ) = r−h, dim(U∩W ) = dUW and dim(U∩V ∩W ) = dUVW is l(m,u, v, r, v−

h, dUW , r − h, dUVW ), where l is as defined in Lemma 7.2.4.

Hence

f1(u, v, h; r) =
∑
W

f((W,V ))

=

min{u,r}∑
dUW =0

min{v−h,r−h,dUW }∑
dUWV =0

l(m,u, v, r, v − h, dUW , r − h, dUVW )

·
r∑

dW ′=0

v∑
dV ′=0

min{dW ′ ,dV ′}∑
dV ′W ′=0

c′(d)(−1)r−dW ′+v−dV ′q(
r−dW ′

2 )+(v−dV ′
2 )qndW ′V ′

as claimed.

7.4.3 Calculating f2

For a fixed matrix X of rank rX , the function f2(rX , rB, r) gives the number of

matrices B of rank rB such that rk(X +B) = r. This is equal to the number

of matrices B′ of rank rB such that rk(X − B′) = r (setting B′ = −B). The

rank distance is a metric defined for two matrices M1,M2 ∈ Fn×mq to be

dR(M1,M2) = rk(M1 −M2).

Therefore, the value f2(rX , rB, r) gives the number of matrices of rank rB,

that have rank distance r from some fixed matrix of rank rX . Or equivalently,

considering the space of all n×m matrices over Fq, f2(rX , rB, r) is the volume

of intersection of two spheres with rank radii rX and rW with centres at rank

distance r. With this phrasing it becomes clear that the value of f2 is an

important property of rank metric codes, a class of codes based on the rank

metric, which are of much interest due to their applications to data storage,

public-key cryptosystems, space-time coding and random linear network cod-

ing (see e.g. [17], [38]). The analysis of the volume of intersection of spheres
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in the rank metric space can lead to the development of covering properties

for rank metric codes, as explored by Gadouleau and Yan [18]. In [18, Lemma

1], the authors give an expression for the function f2, showing that indeed it

is efficiently computable. However, the expression given was developed using

the theory of association schemes and the formula does not explain what it is

counting. Our work was developed independently and the following theorem

gives an expression for f2 that is constructed using the counting arguments

considered in this chapter, thus our new formula and proof give extra insight.

Theorem 7.4.3. Let r, rB and rX be non-negative integers. Let X be a

fixed matrix such that rk(X) = rX . The number f2(r, rX , rB) of matrices

B ∈ Fn×m,rBq such that rk(X + B) = r can be efficiently computed; it depends

only on q, n, m, r, rB and rX . Indeed,

f2(r, rX , rB) =

min{r,rX}∑
h=0

q(r−h)(rX−h)

[
m− rX
r − h

][
rX
h

]
f1(rX , r, h; rB).

Proof. Using the definition of f1 given in Theorem 7.4.2, we see that

f2(r, rX , rB)

=
∑

V⊆Fmq :dim(V )=r

f1(rX , r, dim(V ∩ Row(X)); rB) (7.4.14)

=

min{r,rX}∑
h=0

|{V ⊆ Fmq : dim(V ) = r, dim(V ∩ Row(X)) = h}|f1(rX , r, h; rB)

(7.4.15)

where (7.4.14) follows since the number of matrices B with rk(X + B) = r is

equal to the number of matrices B with Row(X + B) = V , summed over all

spaces V ⊆ Fmq with dim(V ) = r.

By Corollary 3.2.10, the number of r-dimensional subspaces V ⊆ Fmq , with

dim(V ∩ Row(X)) = h is

q(r−h)(rX−h)

[
m− rX
r − h

][
rX
h

]
. (7.4.16)
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Substituting (7.4.16) into (7.4.15) gives the result.
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Chapter 8

The Gamma Channel

8.1 Overview

In this chapter we consider the Gamma channel, defined in Section 1.6, a

channel used to model random linear network coding (see Section 2.4.3).

Chapters 5 and 6 determine the behaviour of the MMC and AMC channel

capacities respectively, leading to natural classes of optimal input distribu-

tions. However, as discussed in Section 6.6, the techniques from these chap-

ters are not enough to fully determine the behaviour of the Gamma channel

capacity. This chapter takes an alternative approach to studying the Gamma

channel capacity and optimal input distributions.

We show that a capacity-achieving input distribution can always be taken

to have a very restricted form (the distribution should be uniform given the

rank of the input matrix). A corollary of this result is that the Gamma channel

capacity may be expressed as a maximisation over probability distributions on

the set of possible ranks of input matrices (rather than all possible input ma-

trices): a set of linear rather than exponential size. This gives an efficient way

to compute the exact channel capacity and find an optimal input distribution

for any channel parameters.

The chapter is organised as follows. Section 8.2 shows that the distribution
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on the rank of the output of the Gamma channel depends only on the distribu-

tion of the rank of the input and the channel parameters. Recall that a UGR

distribution is a distribution that picks matrices uniformly once their rank is

determined. Section 8.3 shows that (Theorem 8.3.5) a UGR input distribution

can achieve channel capacity. Section 8.4 uses the result of Theorem 8.3.5 to

determine the channel capacity as a maximisation over distributions on the

set of possible input ranks (Corollary 8.4.2).

8.2 Input and output rank distributions

Recall the definition (Definition 1.6.1) of the Gamma channel:

Definition. Let R be a probability distribution on the set {0, 1, . . . ,

min{m,n}} of possible ranks of matrices M ∈ Fn×mq . The Generalised Addi-

tive Multiplicative MAtrix Channel with rank error distribution R (the Gamma

channel Γ(R)) has input set X and output set Y , where X = Y = Fn×mq . The

channel law is

Y = A(X + B)

where A ∈ GL(n, q) is chosen uniformly, where B ∈ Fn×mq is UGR with rank

distribution R, and where A and B are chosen independently.

A distribution PX on the input set X of the Gamma channel induces a

distribution (the input rank distribution) RX on the set of possible ranks of

input matrices. LetRY be the corresponding output rank distribution, induced

from the distribution on the output set of the Gamma channel. A key result

(Lemma 8.2.2) is that RY depends on only the channel parameters and RX

(rather than on PX itself). This section aims to prove this result: it will play

a vital role in the proof of Theorem 8.3.5 below.
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Definition 8.2.1. Let r, rX , rB ∈ {0, . . . ,min{n,m}}. Define

ρ(r; rX , rB) =
f2(r, rX , rB)

|Fn×m,rBq |
,

where f2 is as defined in Theorem 7.4.3. For any fixed matrix X ∈ Fn×m,rXq ,

ρ(r; rX , rB) gives the proportion of matrices B ∈ Fn×m,rBq with rk(X+B) = r.

LetR be a probability distribution on the set {0, 1, . . . ,min{n,m}} of possible

ranks of n×m matrices. Define

ρ(r; rX) =

min{n,m}∑
rB=0

R(rB)ρ(r; rX , rB),

so that ρ(r; rX) gives the weighted average of this proportion over the possible

ranks of matrices B.

Lemma 8.2.1. Let X be an n ×m matrix, sampled from some distribution

PX on Fn×mq . Let B be an n × m matrix sampled from a UGR distribution

with rank distribution R, where X and B are chosen independently. Let

r, rX , rB ∈ {0, . . . ,min{n,m}}. Then

ρ(r; rX , rB) = Pr(rk(X + B) = r| rk(X) = rX and rk(B) = rB), (8.2.1)

and

ρ(r; rX) = Pr(rk(X + B) = r| rk(X) = rX). (8.2.2)

Proof. Let X be a fixed n×m matrix of rank rX . Then, since B has a UGR

distribution,

Pr(rk(X + B) = r| rk(B) = rB)

=
|{B ∈ Fn×m,rBq : rk(X +B) = r}|

|Fn×m,rBq |

=
f2(r, rX , rB)

|Fn×m,rBq |
= ρ(r; rX , rB). (8.2.3)
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Note that (8.2.3) only depends on rk(X), not X itself. Hence

Pr(rk(X + B) = r| rk(X) = rX , rk(B) = rB)

=
∑
X

Pr(X = X) Pr(rk(X + B) = r| rk(B) = rB)

=
∑
X

Pr(X = X)ρ(r; rX , rB)

= ρ(r; rX , rB),

where the sums are over matrices X ∈ Fn×m,rXq . Thus (8.2.1) holds. Also

Pr(rk(X + B) = r| rk(X) = rX)

=

min{n,m}∑
rB=0

R(rB)ρ(r; rX , rB) (by (8.2.1))

= ρ(r; rX).

Thus (8.2.2) holds, and so the lemma follows.

Lemma 8.2.2. For the Gamma channel Γ(R) with input rank distribution

RX , the output rank distribution is given by

RY (r) =

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)
f2(r, rX , rB)

|Fn×m,rBq |

for r = 1, . . . ,min{n,m}. In particular, RY depends only on the input rank

distribution (and the channel parameters), not on the input distribution itself.

Proof. We have that Pr(rk(X) = rX) = RX(rX) and Pr(rk(B) = rB) =

R(rB). Hence, by (8.2.1),

RY (r) = Pr(rk(Y ) = r)

=

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)ρ (rY ; rX , rB)

=

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)
f2(r, rX , rB)

|Fn×m,rBq |
.
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8.3 A UGR input distribution achieves capac-

ity

This section shows (Theorem 8.3.5) that there exists a UGR input distribution

to the Gamma channel that achieves capacity.

Lemma 8.3.1. Let M and M ′ be fixed n×m matrices of the same rank. Let

B be an n×m matrix picked from a UGR distribution, and let A be an n×n

matrix picked uniformly from GL(n, q), with B and A picked independently.

Let Y = A(M + B) and let Y ′ = A(M ′ + B). Then

H(Y ) = H(Y ′).

Proof. Let A be a fixed n× n invertible matrix. Since the matrices AM and

AM ′ have the same rank, there exist invertible matrices R and C such that

AM ′ = RAMC. Consider the linear transformation ϕ : Fn×mq → Fn×mq defined

by ϕ(Y ) = RY C. It is simple to check that ϕ is well defined and a bijection.

Note that

ϕ(A(M + B)) = RAMC +RABC

= A(M ′ + A−1RABC).

Since B is picked uniformly once its rank is determined, pre- and post-

multiplying B by fixed invertible matrices gives a uniform matrix of the same
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rank, therefore B and A−1RABC have the same distribution. Now

Pr (Y = Y |A = A)

= Pr (A(M + B) = Y )

= Pr (ϕ(A(M + B)) = ϕ(Y ))

= Pr
(
A(M ′ + A−1RABC) = ϕ(Y )

)
= Pr (A(M ′ + B) = ϕ(Y )) (8.3.1)

= Pr (Y ′ = ϕ(Y )|A = A) , (8.3.2)

where (8.3.1) holds since the distributions of B and A−1RABC are the same.

Since (8.3.2) is true for any fixed matrix A, it follows that

Pr(Y = Y ) =
∑

A∈GL(n,q)

Pr(A = A) Pr(Y = Y |A = A)

=
∑

A∈GL(n,q)

Pr(A = A) Pr(Y ′ = ϕ(Y )|A = A)

= Pr(Y ′ = ϕ(Y )). (8.3.3)

Thus Y and Y ′ have the same distribution, up to relabeling by ϕ. In partic-

ular, we find that H(Y ) = H(Y ′).

Definition 8.3.1. Let M be any n×m matrix of rank r. Let A be an n× n

invertible matrix chosen uniformly from GL(n, q). Let B be an n×m matrix

chosen from a UGR distribution with rank distribution R, where A and B

are picked independently. We define

hr = H (A(M + B)) .

Lemma 8.3.1 implies that the value hr does not depend on M , only on the

rank r and the channel parameters q, n,m and R. The exact value of hr will

be calculated later in Theorem 8.4.1.
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Lemma 8.3.2. Consider the Gamma channel Γ(R). Let the input matrix X

be sampled from a distribution PX with associated rank distribution RX , and

let Y be the corresponding output matrix. Then

H(Y |X) =

min{n,m}∑
r=0

RX(r)hr.

In particular, H(Y |X) depends only on the associated input rank distribution

RX and the channel parameters.

Proof. Choosing A and B as in the definition of the Gamma channel, we see

that

H(Y |X) =
∑
X∈X

P (X = X)H(A(X + B))

=
∑
X∈X

P (X = X)hrk(X)

=

min{n,m}∑
r=0

RX(r)hr,

which establishes the first assertion of the lemma. The second assertion follows

since hr depends only on r and the channel parameters.

Lemma 8.3.3. Let Y1 and Y2 be two random n×m matrices, sampled from

distributions with the same associated rank distribution RY . If the distribution

of Y2 is UGR then H(Y2) ≥ H(Y1).

Proof. For i = 1, 2, since rk(Yi) is fully determined by Yi it follows that

H(Yi, rk(Yi)) = H(Yi). Therefore by the chain rule for entropy (Lemma 3.4.3),

H(Yi) = H(Yi, rk(Yi))

= H(Yi| rk(Yi)) +H(rk(Yi)). (8.3.4)

Since Y2 is distributed uniformly once its rank is determined, H(Y2| rk(Y2) =

r) is maximal (Lemma 3.4.2), hence

H(Y2| rk(Y2) = r) ≥ H(Y1| rk(Y1) = r). (8.3.5)
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Thus, using (8.3.4)

H(Y2) = H(Y2| rk(Y2)) +H(rk(Y2))

=

min{n,m}∑
r=0

(RY (r)H(Y2| rk(Y2) = r)) +H(rk(Y2))

≥
min{n,m}∑

r=0

(RY (r)H(Y1| rk(Y1) = r)) +H(rk(Y2)) (8.3.6)

= H(Y1| rk(Y1)) +H(rk(Y2))

= H(Y1| rk(Y1)) +H(rk(Y1)) (8.3.7)

= H(Y1),

where (8.3.6) follows from (8.3.5), and (8.3.7) follows since the rank distribu-

tions of Y1 and Y2 are the same.

Lemma 8.3.4. Consider the Gamma channel Γ(R). If the input distribution

PX is UGR then the induced output distribution PY is also UGR.

Proof. Suppose the input distribution is UGR, with rank distribution RX .

We start by showing that the distribution of X + B is UGR. Let D be any

n×m matrix. Then

Pr(X + B = D)

=
∑

X∈Fn×m
q

Pr(X = X) Pr(X + B = D|X = X)

=
∑

X∈Fn×m
q

RX(rk(X))

|Fn×m,rk(X)
q |

Pr(X + B = D),
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since X is sampled from a UGR distribution. Hence

Pr(X + B = D)

=

min{n,m}∑
r=0

RX(r)

|Fn×m,rq |

∑
X∈Fn×m,r

q

Pr(B = D −X)

=

min{n,m}∑
r=0

RX(r)

|Fn×m,rq |

∑
X∈Fn×m,r

q

R(rk(D −X))

|Fn×m,rk(D−X)
q |

,

since X and B are independent, and since B has a UGR distribution with

rank distribution R. Now

∑
X∈Fn×m,r

q

R(rk(D −X))

|Fn×m,rk(D−X)
q |

=

min{n,m}∑
rB=0

|{X ∈ Fn×m,rq : rk(D −X) = rB}|
R(rB)

|Fn×m,rBq |

=

min{n,m}∑
rB=0

f2(rB, rk(D), r)
R(rB)

|Fn×m,rBq |

and so

Pr(X + B = D)

=

min{n,m}∑
r=0

RX(r)

|Fn×m,rq |

min{n,m}∑
rB=0

f2(rB, rk(D), r)
R(rB)

|Fn×m,rBq |
.

So Pr(X + B = D) does not depend on the specific matrix D, only its rank.

Therefore, given any two n×m matrices D1, D2 of the same rank,

Pr(X + B = D1) = Pr(X + B = D2).

Hence X + B has a UGR distribution.

Let A be a fixed n×n invertible matrix. Since X +B is picked uniformly

once its rank is determined, multiplying X + B by the invertible matrix A

will give a uniform matrix of the same rank, therefore A(X + B) has a UGR
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distribution. So, defining Y = A(X + B) to be the output of the Gamma

channel, we see that for any n×m matrix Y

Pr(Y = Y |A = A) = Pr(A(X + B) = Y )

=
Pr (rk(A(X + B)) = rk(Y ))

|Fn×m,rk(Y )
q |

=
Pr (rk(Y ) = rk(Y )|A = A)

|Fn×m,rk(Y )
q |

,

where the second equality follows since A(X + B) has a UGR distribution.

Thus

Pr(Y = Y ) =
∑

A∈GL(n,q)

Pr(A = A) Pr(Y = Y |A = A)

=
∑

A∈GL(n,q)

Pr(A = A)
Pr(rk(Y ) = rk(Y )|A = A)

|Fn×m,rk(Y )
q |

=
1

|Fn×m,rk(Y )
q |

Pr(rk(Y ) = rk(Y )). (8.3.8)

Since (8.3.8) holds for all Y ∈ Fn×mq it follows that Y has a UGR distribution.

Theorem 8.3.5. For the Gamma channel Γ(R), there exists a UGR input

distribution that achieves channel capacity. Moreover, given any input distri-

bution PX with associated rank distribution RX , if PX achieves capacity then

the UGR distribution with rank distribution RX achieves capacity.

Proof. Let X1 be a channel input, with output Y1 such that PX1 is a capacity

achieving input distribution. That is maxPX
{I(X,Y )} = I(X1,Y1). Then

define the input X2 with output Y2 to be distributed such that PX2 is the

UGR distribution with RX2 = RX1 . To prove the theorem it suffices to show

I(X2,Y2) ≥ I(X1,Y1).
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By Lemma 8.2.2, RY2 = RY1 and by Lemma 8.3.4, Y2 has a UGR distri-

bution. Therefore, by Lemma 8.3.3,

H(Y2) ≥ H(Y1). (8.3.9)

Also, since RX2 = RX1 , Lemma 8.3.2 implies that

H(Y2|X2) = H(Y1|X1). (8.3.10)

Using (8.3.9) and (8.3.10), it follows that

I(X2,Y2) = H(Y2)−H(Y2|X2)

≥ H(Y1)−H(Y2|X2)

= H(Y1)−H(Y1|X1)

= I(X1,Y1).

8.4 Optimal input distributions and channel

capacity

Recall that the channel capacity is defined to be the maximum mutual in-

formation between channel input and output over all possible input distribu-

tions (Definition 3.4.7). Theorem 8.3.5 reduces the problem of computing the

Gamma channel capacity to a maximisation over a set of variables of linear

rather than exponential size, since the UGR distribution is determined by the

distribution RX on a set of size min{n,m} + 1. In this section we give an

expression for this maximisation problem in terms of the channel parameters

and the efficiently computable functions f0, f1 and f2 defined in Chapter 7.

Since the mutual information is concave when considered as a function over

possible input distributions (Lemma 3.4.6), this is a concave maximisation
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problem and hence efficiently computable (see e.g. [7]). Therefore the expres-

sion obtained provides a means for efficiently computing the exact channel

capacity, and determining an optimal input rank distribution.

We begin by computing the value of hr, as defined in Definition 8.3.1. This

is needed in the proof of the expression given for the maximisation problem

in Corollary 8.4.2.

Theorem 8.4.1. The value hr, as defined in Definition 8.3.1, is given by

hr =

min{n,m}∑
v=0

min{r,v}∑
h=0

q(v−r+h)h

[
m− r

v − r + h

][
r

r − h

]

·

min{n,m,v+h}∑
rB=h

R(rB)
f1(r, v, h; rB)

|Fn×m,rBq |

 log

 f0(v)∑min{n,m,v+h}
rB=h R(rB)f1(r,v,h;rB)

|Fn×m,rB
q |

 .

where f0 is as defined in Lemma 7.4.1 and f1 is as defined in Theorem 7.4.2.

Proof. Let M be a fixed n×m matrix of rank r. Let Y = A(M + B), where

A is picked uniformly from GL(n, q) and B has a UGR distribution with rank

distribution R. Then

hr = H(A(M + B)| rk(M) = r) = H(Y ).

Since Row(Y ) is fully determined by Y , it follows that H(Y ,Row(Y )) =

H(Y ). Therefore, using the chain rule for entropy (Lemma 3.4.3), we have

H(Y ) = H(Y ,Row(Y ))

= H(Y |Row(Y )) +H(Row(Y )). (8.4.1)

Now, multiplying (M +B) by a uniformly picked invertible matrix will result

in a uniform matrix of the same rowspace as (M+B). That is, the distribution

of Y is uniform given the rowspace of Y . Thus by Lemma 3.4.2

H(Y |Row(Y ) = V ) = log
(
|{Y ′ : Y ′ ∈ Fn×mq ,Row(Y ′) = V }|

)
= log (f0(dim(V ))) , (8.4.2)
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where f0 is as defined in Lemma 7.4.1. Therefore

H(Y |Row(Y )) =
∑
V⊆Fmq

Pr(Row(Y ) = V )H(Y |Row(Y ) = V )

=
∑
V⊆Fmq

Pr(Row(Y ) = V ) log (f0(dim(V ))) . (8.4.3)

Hence

hr = H(Y )

= H(Y |Row(Y )) +H(Row(Y ))

=
∑
V⊆Fmq

Pr(Row(Y ) = V ) log (f0(dim(V )))

−
∑
V⊆Fmq

Pr(Row(Y ) = V ) log (Pr(Row(Y ) = V ))

=
∑
V⊆Fmq

Pr(Row(Y ) = V ) log

(
f0(dim(V ))

Pr(Row(Y ) = V )

)
. (8.4.4)

Now, we calculate the probability of Y having a particular rowspace V . For

V ⊆ Fmq , let dV ′ = dim((Row(M) + V )/V ). Using the function f1, defined in

Theorem 7.4.2, we obtain the following result.

Pr(Row(Y ) = V )

= Pr(Row(M + B) = V )

=

min{n,m}∑
rB=0

Pr(rk(B) = rB) Pr(Row(M + B) = V | rk(B) = rB)

=

min{n,m}∑
rB=0

R(rB)
|{B : rk(B) = rB,Row(M +B) = V }|

|Fn×m,rBq |
(8.4.5)

=

min{n,m}∑
rB=0

R(rB)
f1(r, dim(V ), dV ′ ; rB)

|Fn×m,rBq |

=

min{n,m,dim(V )+dV ′}∑
rB=dV ′

R(rB)
f1(r, dim(V ), dV ′ ; rB)

|Fn×m,rBq |
, (8.4.6)
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where (8.4.5) follows since B has a UGR distribution and (8.4.6) follows since

f1(r, dim(V ), dV ′ ; rB) = 0 for rB < dV ′ and rB > dim(V ) + dV ′ .

Substituting (8.4.6) into (8.4.4) we get

hr =
∑
V⊆Fmq

min{n,m,dim(V )+dV ′}∑
rB=dV ′

R(rB)
f1(r, dim(V ), dV ′ ; rB)

|Fn×m,rBq |


· log

 f0(dim(V ))∑min{n,m,dim(V )+dV ′}
rB=dV ′

R(rB)
f1(r,dim(V ),dV ′ ;rB)

|Fn×m,rB
q |

 (8.4.7)

In (8.4.7), for a given subspace V ⊆ Fmq , the corresponding term in the

sum depends only on dim(V ) and the value dV ′ = dim(Row(M) + V )/V ).

Therefore, we will count the number of spaces V with dim(V ) = v and

dim(Row(M) + V )/V ) = h for some v and h. We can then replace the sum

over all V by a sum over the values v and h.

Since f1(r, dim(V ), h; rB) = 0 if dim(V ) > n we can restrict our attention

to subspaces V of Fmq with dim(V ) ≤ n. Given some integers v, h with 0 ≤

v ≤ min{n,m} and 0 ≤ h ≤ min{r, v}, by Corollary 3.2.10 the number of

v-dimensional subspaces V ⊆ Fmq such that dim((Row(M) + V )/V ) = h is

q(v−(r−h))(r−(r−h))

[
m− r

v − (r − h)

][
r

r − h

]
= q(v−r+h)h

[
m− r

v − r + h

][
r

r − h

]
. (8.4.8)

Substituting (8.4.8) into (8.4.7) gives the result.

Now we give the result of this section: an efficiently computable expression

for the Gamma channel capacity as a maximisation over the set of possible

input rank distributions.
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Corollary 8.4.2. The capacity of the Gamma channel Γ(R) is given by

C = max
RX

−
min{n,m}∑

rY =0

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)
f2(rY , rX , rB)

|Fn×m,rBq |


· log

 1

|Fn×m,rYq |

min{n,m}∑
rX ,rB=0

RX(rX)R(rB)
f2(rY , rX , rB)

|Fn×m,rBq |


−

min{n,m}∑
r=0

RX(r)

min{n,m}∑
u=0

min{r,u}∑
h=0

(
q(v−r+h)h

[
m− r

v − r + h

][
r

r − h

]

·

min{n,m}∑
rB=0

R(rB)
f1(r, u, h; rB)

|Fn×m,rBq |

 log

 f0(u)∑min{n,m}
rB=0 R(rB)f1(r,u,h;rB)

|Fn×m,rB
q |

 ,

where f0, f1 and f2 are as defined in Lemma 7.4.1, Theorem 7.4.2 and Theo-

rem 7.4.3, respectively.

Proof. The capacity of the channel is defined to be C = maxPX
I(X;Y ). By

Theorem 8.3.5, to achieve capacity we can chose the input distribution PX to

be UGR. By Lemma 8.3.4, the output distribution will also be UGR. Therefore

the output distribution is given by

PY (Y ) = Pr(Y = Y ) =
1

|Fn×m,rk(Y )
q |

RY (rk(Y )) (8.4.9)

for any Y ∈ Fn×mq . Thus the entropy of Y is given by

H(Y ) = −
∑

Y ∈Fn×m
q

Pr(Y = Y ) log Pr(Y = Y )

= −
∑

Y ∈Fn×m
q

(
1

|Fn×m,rk(Y )
q |

RY (rk(Y ))

)
log

(
1

|Fn×m,rk(Y )
q |

RY (rk(Y ))

)

= −
min{n,m}∑
rY =0

RY (rY ) log

(
1

|Fn×m,rYq |
RY (rY )

)
. (8.4.10)
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Therefore, using (8.4.10) and Lemma 8.3.2,

I(X;Y ) = H(Y )−H(Y |X)

= −
min{n,m}∑
rY =0

RY (rY ) log

(
1

|Fn×m,rYq |
RY (rY )

)
−

min{n,m}∑
rX=0

RX(rX)hrX .

Substituting the expressions for RY and hr given in Lemma 8.2.2 and Theo-

rem 8.4.1 respectively, and taking the maximum over all possible input rank

distributions yields the result.
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Chapter 9

Conclusion

This thesis has considered several mathematical problems motivated by net-

work coding. We began by considering partial decoding in random linear

network coding and then analysed several finite field matrix channels that can

be used to model random linear network coding in various situations.

Whereas previous literature computes the probability of complete recovery

of network-coded messages, we computed the exact probability of recovering

some fraction of the message and investigated the implication to network cod-

ing protocols and secure communication. The derived expressions can prove

useful in network design and system-level optimisation, as discussed in Sec-

tion 4.5. We focused on the case of random linear network coding, assuming

the coding vectors form a uniform random matrix. This is a widely considered

case due to the simplicity of implementation and its efficiency. However, in

practice it may be useful to consider sparse linear network coding, where the

receiver obtains sparse linear combinations of source packets. This is of interest

in practical implementations because it can vastly reduce decoding complex-

ity. Therefore, an interesting area for future research would be to compute

and analyse the probability of decoding a fraction of the source message when

the coding vectors form a sparse random matrix.
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We considered several finite field matrix channels to model network cod-

ing. Building on the work of Silva, Kschischang and Kötter [39], we defined a

generalisation of the channels the authors consider, allowing the modelling of

network coding in a wider variety of cases, with different error patterns. We

gave bounds on the capacities of the MMC and AMC channels that differ by

small additive constants and are independent of all channel parameters. For

the general Gamma channels we showed that an optimal input distribution

can always be taken to have a very restricted form (the distribution should be

uniform given the rank of the input matrix). We expressed the capacity for

the Gamma channel as a maximisation over probability distributions on the

set of possible ranks of input matrices: a set of linear rather than exponen-

tial size. Thus we gave an efficient method for computing the exact channel

capacity and finding optimal input distributions for any channel parameters.

The expressions obtained are complex and without further analysis give little

intuition to the behaviour of the channel capacity. Therefore there are several

possible areas for future research. It would be useful to use our formula to

obtain some data for various channel parameters, to gain understanding of the

behaviour of the Gamma channel capacity and optimal input rank distribu-

tions. Furthermore, using this data or otherwise, one could compare our exact

expression of capacity to the previously known bounds for the special case of

the Gamma channel with fixed error rank, considered by [39] (see Section 6.6).

It is not clear whether the bounds in Section 6.6 can be improved further, if

possible it would be very useful to give a neat bound that gives more intuition

on the behaviour of the channel capacity for all parameter values.

To conclude this work has focused on questions motivated by random linear

network coding. We have contributed to the field by identifying a generalised
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class of matrix channels to model network coding, giving a thorough analysis of

the capacity of these channels and partial decoding in network coding. Several

questions remain open giving plenty of scope for future research.
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