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Abstract 18 

Multivariate pattern analysis of functional MRI (fMRI) data is widely used, yet the spatial 19 

scales and origin of neurovascular signals underlying such analyses remain unclear. We 20 

compared decoding performance for stimulus orientation and eye-of-origin from fMRI 21 

measurements in human visual cortex with predictions based on the columnar 22 

organisation of each feature, and estimated the spatial scales of patterns driving decoding.  23 

 24 

Both orientation and eye-of-origin could be decoded significantly above chance in early 25 

visual areas (V1-V3). Contrary to predictions based on a columnar origin of response 26 

biases, decoding performance for eye-of-origin in V2 and V3 was not significantly lower 27 

than that in V1, nor did decoding performance for orientation and eye of origin differ 28 

significantly. Instead, response biases for both features showed large-scale organization, 29 

evident as a radial bias for orientation, and a nasotemporal bias for eye preference.  30 

 31 

To determine whether these patterns could drive classification, we quantified the effect on 32 

classification performance of binning voxels according to visual field position. Consistent 33 

with large-scale biases driving classification, binning by polar angle yielded significantly 34 

better decoding performance for orientation than random binning in V1-V3. Similarly, 35 

binning by hemifield significantly improved decoding performance for eye-of-origin. 36 

Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree 37 

of spatial correlation with the corresponding patterns in V1, suggesting that response 38 

biases in these areas originate in V1.  39 

 40 

Together, these findings indicate that multivariate classification results need not reflect the 41 

underlying columnar organization of neuronal response selectivities in early visual areas. 42 

 43 

 44 

 45 

 46 

 47 
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New & Noteworthy 48 

• Large-scale response biases can account for decoding of orientation and eye-of-49 

origin in human V1-V3 50 

• For eye-of-origin this pattern is a nasotemporal bias; for orientation it is a radial bias 51 

• Differences in decoding performance across areas and stimulus features are not 52 

well predicted by differences in columnar-scale organisation of each feature 53 

• Large-scale biases in extrastriate areas are spatially correlated with those in V1, 54 

suggesting biases originate in primary visual cortex 55 

 56 

 57 

Keywords 58 

Multivariate pattern classification analysis 59 

Functional magnetic resonance imaging 60 

Ocular dominance columns 61 

Orientation columns 62 

Human visual cortex 63 

Primary visual cortex 64 

Extrastriate visual cortex 65 

 66 



4 

Introduction 67 

Multivariate pattern analysis and classification techniques (MVPA) have become widely 68 

used for analysis of fMRI data, owing largely to their high sensitivity compared to 69 

conventional mass univariate methods in combination with their ability to detect changes in 70 

voxel activity patterns even in the absence of overall changes in mean activity across 71 

voxels (Haxby et al., 2001). Despite the widespread use of such techniques, the origin of 72 

the signals which MVPA relies on remains unclear, both with regard to the spatial scale of 73 

the underlying signals, and whether these signals reflect neuronal or vascular responses. 74 

Although it was originally proposed that the response biases driving classification are due 75 

to biased sampling of columnar structures at smaller scales than voxels (Haynes and 76 

Rees, 2005; Kamitani and Tong, 2005), this assumption has been challenged by more 77 

recent studies showing the existence of large-scale patterns of response bias for 78 

orientation (Freeman et al., 2011, 2013) and motion direction (Beckett et al., 2012), which 79 

can account for decoding these features. Similarly, it has been hypothesized (Shmuel et 80 

al., 2010) that decoding of eye-of-origin could rely on a large-scale preference for the 81 

contralateral eye found in non-human primates (Horton and Hocking, 1996; Tychsen and 82 

Burkhalter, 1997), but this conjecture has not been explicitly tested. It is not known 83 

whether a similar nasotemporal bias exists also in human V1, although a possibly related 84 

large-scale preference for left over right eye stimulation was reported by Schwarzkopf et 85 

al.  (2010). Despite the evidence for the existence of large-scale biases, their importance 86 

for classification remains a matter of considerable debate. Alink et al. (2012) showed that 87 

stimulus orientation can be decoded in the absence of global biases, suggesting radial 88 

biases might be induced by the choice of stimulus; in a similar vein but using a purely 89 

modelling-based approach, Carlson (2014) suggested that response biases might be 90 

driven by activity elicited by stimulus edges. Swisher et al. (2010), using a multiscale 91 

analysis, found that information about stimulus orientation was primarily found at scales of 92 

several millimeters, with only relatively small contributions from larger (>1cm) scales. 93 

Similarly, Shmuel et al. (2010) reported that at high field strengths (7T), information about 94 

the stimulated eye exists at multiple spatial scales. Meanwhile, other studies have shown 95 

that MVPA is robust to spatial smoothing, which has been interpreted as evidence against 96 

a columnar-scale bias driving classification (Op de Beeck, 2010) (although see Kamitani 97 

and Sawahata (2010) for an alternative interpretation of this result). A problem with the 98 

idea that MVPA relies on columnar biases is that computational analyses show that due to 99 

the way MRI data is acquired, response biases at sub-voxel (columnar) scales should not 100 
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be detectable at the  resolution commonly used by most MVPA studies (about 3mm 101 

isotropic) (Chaimow et al., 2011). In addition, the assumption that the response biases 102 

reflect neuronal response properties has been called into question by results suggesting 103 

such biases may be vascular in origin (Gardner, 2010; Shmuel et al., 2010).  104 

 105 

The uncertainty about the origin of signals underlying MVPA renders interpretation of 106 

results from such studies potentially problematic, especially when the techniques are used 107 

to identify cortical regions selective for particular stimulus features, as this approach 108 

depends on the assumption that the signals driving classification reflect neuronal 109 

responses in the areas under measurement. Verifying this assumption is thus of critical 110 

importance for establishing the validity of using MVPA for studying cortical function and 111 

organization. Although the problem of inferring neuronal response properties from BOLD 112 

fMRI signals is not unique to MVPA approaches, quantitative interpretation of MVPA results 113 

is made particularly difficult by the complex dependence of decoding performance on the 114 

spatial distribution of BOLD responses (Chaimow et al., 2011). 115 

 116 

One potential strategy for addressing this issue is to compare results obtained by MVPA 117 

with predictions based on the known physiology of the two most well-defined columnar-118 

scale structures in early visual cortex, ocular dominance and orientation columns, both of 119 

which have been reported in human V1 (Cheng et al., 2001; Adams et al., 2007; Yacoub et 120 

al., 2007, 2008). Because these two columnar structures differ in spatial organization  and, 121 

in the case of ocular dominance columns, are restricted to V1, they make specific and 122 

potentially testable predictions about how decoding performance for orientation and eye-123 

of-origin should differ within and between visual areas. First, if columnar signals underlie 124 

decoding, then decoding performance for eye-of-origin in extrastriate areas (which lack 125 

ocular dominance columns and monocular neurons [Hubel and Livingstone, 1987; Tootell 126 

and Hamilton, 1989; T'so et al. 1990; Adams et al. 2007; Nasr et al., 2016]) should be 127 

significantly lower than in V1. Second, if decoding depends solely on columnar-scale 128 

information, the differences in spatial organization   between orientation and ocular 129 

dominance columns predict differences in  decoding performance (Shmuel at al., 2010; 130 

Chaimow et al., 2011). Ocular dominance columns are anisotropic, forming elongated 131 

slabs or stripes up to several centimeters long, whereas orientation columns are relatively 132 

isotropic and iso-orientation domains rarely extend over more than 1 mm in any direction 133 

(Blasdel 1992; Obermayer and Blasdel 1993; Adams et al. 2007; Yacoub et al., 2007, 134 
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2008; Shmuel et al., 2010). Because draining veins are elongated, they are more likely to 135 

drain disproportionately from a single ocular domain than a single orientation domain 136 

(Shmuel at al., 2010). In the absence of any coarser scale information, this would predict 137 

that vascular signals should be more strongly dominated by eye preference than 138 

orientation preference.   (Smith et al., 2011).  Provided that the BOLD responses to 139 

orientation and eye stimulation were equal (since BOLD response magnitude strongly 140 

influences decoding [Smith et al;, 2011], this should in principle translate into higher 141 

decoding performance for eye-of-origin than for orientation. While direct measurements of 142 

columnar responses at high field strength (7T) have found similar magnitudes of response 143 

differences to orthogonal orientations and different eyes (Yacoub et al., 2007, 2008), 144 

differences in stimuli and experimental setup preclude a direct comparison across previous 145 

studies that have only considered ocular dominance or orientation in isolation.  In this 146 

study we have investigated the spatial scale of signals driving decoding of both orientation 147 

and eye-of-origin. By using the same stimuli and data for both features, we were able to  148 

compare classification performance of these two features to determine whether the results 149 

of decoding matched predictions based on the different columnar-scale organisation of 150 

these features. We explored the alternative hypothesis that MVPA relies on large-scale 151 

spatial patterns by identifying any large-scale patterns in response biases for orientation 152 

and eye preference and testing if such patterns could account for classification of the two 153 

features. Specifically, we tested whether orientation decoding could be accounted for by a 154 

radial bias, as suggested by a previous study (Freeman et al., 2011), and whether 155 

decoding of eye-of-origin could be driven by a nasotemporal bias in V1 similar to that 156 

found in non-human primates (Horton and Hocking, 1996; Tychsen and Burkhalter, 1997). 157 

Briefly, our results show that both stimulus features exhibit large-scale patterns of 158 

response bias, neither of which are well explained by irregular sampling of the underlying 159 

columnar structures. For orientation, this large-scale pattern corresponds to the bias for 160 

radial orientations demonstrated by several previous studies (Sasaki et al., 2006; Clifford 161 

et al., 2009; Freeman et al., 2011), while for eye-of-origin the pattern is evident as a 162 

nasotemporal bias reflecting preference for the contralateral eye. Arguing against a 163 

columnar origin as the basis of classification for these features, we found that both of 164 

these large-scale patterns could account for decoding; moreover, decoding performance 165 

for the two features only incompletely matched predictions based on differences in 166 

columnar-scale structures for orientation and eye preference in V1 and extrastriate visual 167 

areas. Furthermore, the large-scale patterns of response biases in extrastriate areas V2 168 
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and V3 were spatially correlated with those in V1, suggesting that the biases in extrastriate 169 

cortex originate in V1. These results imply that MVPA can be driven by large-scale patterns 170 

that may not  directly reflect neuronal response selectivities measured by single-unit 171 

recordings at columnar scales, which has important implications for using MVPA to map 172 

functional organization of the human brain with fMRI. 173 

 174 

Materials and methods 175 

Five subjects (two males) aged between 19 and 24 took part in the study. All except one 176 

(S2) were naïve to the purpose of the experiments. Subjects gave informed consent to 177 

participate in accordance with safety guidelines for MRI experiments (Kanal et al., 2002) 178 

and the experiments were approved by the local research ethics committee.  179 

 180 

Stimuli and experimental conditions 181 

For the main experiment, stimuli consisted of 1 cpd grayscale sinusoidal gratings 182 

presented in an annulus (inner and outer radii 1.5 and 6 degrees respectively) around 183 

fixation against a uniform gray background. The dimensions of the stimuli were chosen to 184 

ensure that no part of the grating intersected the blind spot of any of the subjects. Stimuli 185 

were presented dichoptically by frame-sequential presentation at 85Hz using the Nordic 186 

Neurolab fMRI-compatible goggle system with a display resolution of 800 x 600 pixels. 187 

Stimulus presentation and response recording was performed with custom software (MGL) 188 

written in Matlab (Mathworks, Natick, MA) and C. Gratings were shown to only one eye at 189 

a time, the other eye viewing a uniform gray background with the same mean luminance 190 

as the grating. Gratings were shown at 100% contrast at one of four different orientations 191 

(0, 45, 90, and 135 degrees from horizontal) to each eye, resulting in a total of eight trial 192 

types (corresponding to stimulus conditions). Each trial consisted of continuous 193 

presentation of a grating stimulus at one orientation shown either to the left or right eye for 194 

6 s, randomly changing spatial phase every 0.1 s (Fig 1A). Consecutive trials were 195 

separated by intervals varying randomly in duration between 12 to 24s in steps of 1.5s, 196 

during which a uniform gray background was shown to both eyes. Trial and intertrial 197 

durations were even multiples of the scan repetition time (TR=1.5 s) such that stimulus 198 

presentation was always synchronized with scanner data acquisition. Each stimulus 199 

condition was repeated four times per run and there were a total of five runs per subject, 200 

yielding 20 repeats of each stimulus condition per subject. Trial order was permuted semi-201 

randomly within each run, such that each trial was equally likely to be preceded by every 202 
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other trial type. Each run commenced and ended with a 12 s blank screen during which 203 

only the uniform gray background was shown to both eyes. 204 

 205 

[Figure 1 about here] 206 

 207 

Simultaneous with and independent of the grating stimuli, subjects performed a continuous 208 

foveal luminance change detection task, the timing of which was asynchronous with and 209 

independent of grating stimulus presentations. Throughout each run, a 0.2 degrees wide 210 

fixation cross was shown to both eyes in light green at the center of the display. Subjects 211 

were required to fixate the cross and respond to brief (0.2 s) decrements or increments in 212 

luminance of the central fixation cross by pressing one of two response buttons as quickly 213 

and accurately as possible. The magnitude of the luminance changes was varied in steps 214 

of 5% by a 1-up, 2-down staircase to maintain task difficulty approximately constant 215 

throughout the session. Luminance changes occurred at random intervals between 1 – 3 s 216 

long.  217 

 218 

In a separate scanning session for each subject, standard phase-encoded retinotopic 219 

mapping procedures were used to identify and delineate cortical visual areas (Larsson and 220 

Heeger, 2006). For these experiments stimuli were displayed binocularly using a SANYO 221 

PLC XP40L LCD projector at 60 Hz and a resolution of 1024 x 768 pixels by 222 

backprojection onto a screen inside the bore of the scanner which subjects viewed through 223 

a front-silvered mirror. Retinotopic mapping stimuli consisted of dynamic black-and-white 224 

(100% contrast) radial checkerboard patterns displayed within wedge- or ring-shaped 225 

apertures that traversed the visual field with a period of 24 s (Larsson and Heeger, 2006). 226 

Wedge apertures extended between 0 and 13 degrees eccentricity and subtended 22.5 227 

degrees polar angle; ring apertures were 0.75 deg wide in the radial dimension. The 228 

apertures moved stepwise by one aperture width every 1.5 s (synchronized with scanner 229 

data acquisition), such that apertures did not overlap but tiled the stimulated region of the 230 

visual field. For each aperture type, stimuli were run in both directions (clockwise/counter-231 

clockwise and expanding/contracting) in separate runs. Between 1-4 runs of each direction 232 

were performed for each subject; each run consisted of 6 complete cycles of the stimulus. 233 

At the beginning and end of each run, a 24 s long blank screen was shown. Subjects 234 

performed the same luminance change detection task during retinotopic mapping scans as 235 

during the main experiment. 236 
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 237 

MRI acquisition 238 

Visually evoked cortical blood oxygenation-level dependent (BOLD) fMRI responses were 239 

measured by T2*-weighted gradient-recalled echo (GRE) echoplanar imaging on a 3T 240 

whole-body MR scanner (Magnetom Trio; Siemens, Erlangen, Germany) equipped with a 241 

custom 8-channel posterior-head array coil (Stark Contrast, Erlangen, Germany). 242 

Functional MRI data were acquired from 19 oblique slices roughly parallel to the calcarine 243 

sulcus and covering the occipital and temporal cortex (interleaved slice acquisition, no gap 244 

between slices, voxel size 3 x 3 x 3 mm, TR=1500ms, TE=34ms, flip angle=85 deg). On 245 

each session, a whole-brain anatomical MR volume was acquired and used for spatial co-246 

registration of data across sessions (voxel size 1 x 1 x 1 mm, MPRAGE sequence, 247 

TR=1830ms, TI=1100ms, TE=5.6ms, flip angle=11 deg). In a separate session, a high-248 

resolution, high-contrast T1-weighted anatomical MR volume of each subject was acquired  249 

(voxel size 1 x 1 x 1 mm, MDEFT sequence (Deichmann, 2006), TR=7.9ms, TI=910ms, 250 

TE=2.5ms, flip angle=16 deg) and used for cortical surface reconstruction (Larsson, 2001).  251 

 252 

fMRI data analysis 253 

fMRI data from each run and session were motion corrected using the mcflirt software 254 

package (Jenkinson et al., 2002) and subsequently co-registered to each subject's high-255 

resolution MR image using custom software (Nestares and Heeger, 2000), to allow 256 

visualization of data on cortical surfaces and co-registration of data across scanning 257 

sessions. For all analyses below, time series data were converted to percent signal 258 

change by dividing by the mean across time points and centering the data to zero mean, 259 

followed by high-pass filtering with a cut-off of 0.03 Hz. 260 

 261 

Following preprocessing, fMRI data were analyzed as follows. First, visual areas V1-hV4 262 

were delineated using conventional retinotopic mapping procedures described in detail 263 

previously (Larsson and Heeger, 2006). Separately for the wedge and ring stimulus runs, 264 

data from one of the two stimulus directions (counter-clockwise wedges and contracting 265 

rings, respectively) were time-reversed and averaged voxel-by-voxel with data from the 266 

other direction to cancel out hemodynamic response delays. Stimuli for the time-reversed 267 

runs were temporally shifted by 5 s to roughly align the evoked BOLD response time 268 

series for the forward and time-reversed runs. Each averaged data set was fit with a 269 

sinusoid of the retinotopic stimulus frequency to yield for each voxel a response 270 
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magnitude, phase, and coherence (correlation with best-fitting sinusoid at the stimulus 271 

frequency). Regions of interest (ROIs) corresponding to retinotopic visual areas V1-hV4 272 

were identified on flattened cortical surface representations (flat maps) by visualizing the 273 

response phase for wedge and ring stimuli respectively (corresponding to polar angle and 274 

eccentricity). Visual area boundaries were manually identified on these flat maps by 275 

reversals in response phase to the wedge stimuli, using the cortical parcellation scheme 276 

described by Larsson and Heeger (2006).  277 

 278 

Data from the main experiment were analyzed in two steps. First, an estimate of the  279 

stimulus-evoked BOLD response averaged across trials was computed for each visual 280 

area ROI (combined across hemispheres) by linear deconvolution (Burock and Dale, 281 

2000) (Fig 1C).  Second, this estimate was used to model the response to each of the 160 282 

(4 orientations x 2 eyes x 20 repeats) individual trials, separately for each voxel. A 283 

separate regressor was constructed for each trial, consisting of a copy of the average 284 

stimulus-evoked response normalized to unit sum aligned with the onset of the trial, and 285 

zeros at all other time points. Regressors were centered on zero mean. Because of the 286 

long intertrial intervals regressors for individual trials were essentially uncorrelated 287 

(r<0.15). A general linear model, containing the set of regressors for all trials, was fit to the 288 

individual time series of each voxel, preprocessed as above. This yielded for each voxel a 289 

vector of beta values corresponding to the estimated BOLD response magnitude to each 290 

trial, and a coefficient of determination (R2) representing the proportion of variance 291 

explained by the model. The vectors of response magnitudes for all voxels within each 292 

ROI were concatenated into a data matrix that was used as input for the multivariate 293 

classification analysis. 294 

 295 

A complementary voxelwise analysis was performed to visualize patterns of orientation or 296 

eye preference in BOLD responses. For this analysis the average response to each of the 297 

eight trial types (4 orientations x 2 eyes) was computed using linear deconvolution (Burock 298 

and Dale, 2000). Linear contrasts were computed from these average responses 299 

comparing right versus left eye stimulation, 0 deg versus 90 deg orientation, and 45 deg 300 

versus 135 deg orientation. For each contrast, t-statistics were computed and visualized in 301 

visual field coordinates (estimated for each voxel from the retinotopic mapping scans), or 302 

on flattened cortical surface representations to identify large-scale patterns in orientation or 303 

eye preference. 304 
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 305 

Radial bias index 306 

To assess the presence of a radial bias in orientation preference, we computed for each 307 

area a radial bias index RI as the Pearson correlation between the t-statistic for the linear 308 

contrast between orthogonal orientation pairs (0 vs 90 deg or 45 vs 135 deg) and a 309 

sinusoid varying with polar angle and having minima and maxima at the two orientations in 310 

the pair. This is equivalent to the correlation between the spatial distribution of voxelwise 311 

orientation preference (expressed as a t-statistic) across the visual field and a radial bias 312 

map with maxima and minima along the two orthogonal orientations. E.g., for the contrast 313 

between 0 and 90 deg orientations, the radial bias index was computed by correlating the 314 

t-values for every voxel with a sinusoidal function of the polar angle θ of each voxel with 315 

maxima at 0 and 180 deg, and minima at 90 and 270 deg (note the 90 degree [π/2] offset 316 

reflects the difference in origin between visual field coordinates and standard polar 317 

coordinates): 318 

 319 

 RI=Corr (t i ,sin (θ i+π /2))  (1) 320 

 321 

For eye preference, we computed an  index of nasotemporal bias by computing  the mean 322 

t-statistic for the linear contrast between right and left eye stimulation, averaged across 323 

voxels within each hemifield, and comparing this metric across hemifields. 324 

 325 

Multivariate pattern classification analysis 326 

A linear support vector machine (SVM) algorithm was used to decode stimulus orientation 327 

or eye-of-origin respectively from the matrix of response magnitudes for each ROI. 328 

Classification was carried out using the publicly available LIBSVM software package 329 

.(Chang & Lin 2011). The same data was used to decode both orientation and eye-of-330 

origin to allow a direct comparison of classification performance across stimulus 331 

categories. To equate the number of data samples per category for decoding orientation 332 

and eye-of-origin, data for oblique stimulus orientations (45 and 135 deg) and cardinal 333 

stimulus orientations (0 and 90 deg) were analyzed separately.  334 

 335 

Only voxels exceeding a R2 threshold of 0.35 were included in the classification 336 

(corresponding to on average 45 voxels per ROI in areas V1-V3). The relatively 337 
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conservative threshold ensured that only voxels showing a clear stimulus-evoked 338 

response were included in the classification and also resulted in the number of voxels 339 

always being smaller than the number of samples (trials). The specific threshold was 340 

chosen by trial and error to maximize classification performance across areas and stimuli. 341 

Lower or higher thresholds resulted in lower overall performance, but did not qualitatively 342 

change results. Similarly, the choice of parameters for the SVM procedure (specifically the 343 

soft margin parameter C) were chosen to maximize performance (using the built-in cross-344 

validation function of LIBSVM), and we repeated the analyses with a range of parameters 345 

to ensure that other than overall lower decoding performance the results did not differ 346 

qualitatively with different parameters. To avoid biasing the analysis for a particular 347 

stimulus, parameter evaluation was done separately for cardinal and oblique orientations 348 

and for orientation and eye-of-origin respectively, and the parameters chosen that yielded 349 

the most similar performance across conditions. 350 

 351 

Responses of voxels included in the classification analysis (i.e., voxels exceeding 352 

threshold) were normalized to unit vector length, so that mean responses across voxels 353 

did not differ between trials. This procedure ensured that any overall difference in 354 

response magnitude across all voxels (e.g. due to larger responses to one eye or 355 

orientation) could not drive decoding. The normalized voxel responses were subjected to a 356 

leave-one-out classification procedure, training the algorithm on data from four runs and 357 

testing decoding performance on the fifth, and repeating this with a different permutation of 358 

training and test data, so that data from every run was used for testing once. Decoding 359 

performance was assessed by the proportion of correctly classified trials. A bootstrap 360 

procedure (resampling with replacement) was used to compute confidence intervals for 361 

mean decoding performance, using 10,000 bootstrap iterations. Decoding performance 362 

was considered significantly better than chance if the lowest end of the 95% confidence 363 

interval of the bootstrapped means was above chance level performance. Significant 364 

differences in performance between decoding orientation and eye-of-origin, and between 365 

visual areas for each decoding type, were assessed by a non-parametric resampling test 366 

for each data permutation and subject. For this test, data for each subject and permutation 367 

were randomly assigned to one of two sets and the mean absolute difference in 368 

performance between the sets was computed. This procedure was repeated 10,000 times. 369 

The actual observed difference in performance was compared to the obtained resampled 370 

distribution and significance estimated as the proportion of resampled differences as large 371 
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as or larger than the observed value (two-tailed test). 372 

 373 

To determine the spatial scale and structure of data driving decoding, we measured the 374 

effect of binning voxels according to several spatially organised parameters (e.g. polar 375 

angle and eccentricity) on decoding performance, compared to random (non-spatial) 376 

binning following the method of Freeman et al. (2011). Binning parameters for each voxel 377 

included in the classification were sorted and categorised into a variable number of bins 378 

containing equal numbers of voxels, and the response magnitudes of voxels within each 379 

bin averaged across trials prior to normalization. For each number of bins, we compared 380 

decoding performance using the binning parameter (e.g., eccentricity) with perfomance 381 

obtained by randomly assigning voxels to the same number of bins (ignoring any spatial 382 

structure in the data). Classification performance was measured for 11 numbers of bins in 383 

logarithmic steps from 1 to 1024. The largest number of bins exceeded the number of 384 

voxels, effectively meaning that every voxel was treated as a separate bin, and hence was 385 

equivalent to decoding without binning.  386 

 387 

The effect of binning on decoding performance was quantified as the number of bins 388 

where decoding performance fell to one half of decoding performance without binning. 389 

First, decoding performance was rescaled to units of proportional reduction in error (PRE, 390 

also known as Klecka's tau τ), relative to chance level performance: 391 

 392 
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 394 

where ncorr is the number of correctly classified trials, ni is the number of trials in the ith 395 

group, N is the total number of trials, T is the number of groups (2) and pi is the probability 396 

of a trial being allocated to that group by chance (pi = 1 / T). PRE values range from 0 397 

(chance level) to 1 (corresponding to 100% correct performance). Decoding performance, 398 

expressed in units of PRE as a function of the number of bins, was then fit with a logistic 399 

function: 400 

 401 
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 403 

where τmax is decoding performance without binning, n is the number of bins at threshold 404 

performance (τmax/2), and s the slope of the function.  405 

 406 

Resampling statistics were used to determine significant differences in classification 407 

performance (number of bins at threshold, n) between different types of binning. On each 408 

resampling iteration, the vector of classification performance as a function of bin size for 409 

each binning type, subject and permutation of test and training data was randomly 410 

assigned to one of two sets, and the slope s and threshold n estimated for each of the two 411 

sets by fitting equation (2) above. This procedure was repeated 10,000 times to yield a 412 

bootstrapped distribution of thresholds under the null hypothesis that the two types of 413 

binning did not differ in classification performance. Only thresholds from statistically 414 

significant fits (F-test, P<0.05) were included. The actual mean difference in thresholds 415 

between the two binning procedures was then compared to the bootstrapped distribution 416 

and significance estimated as the proportion of resampled threshold differences larger 417 

than or equal to the observed threshold differences (one-tailed test). 418 

 419 

In a complementary analysis, we measured the impact of regressing out the effect of 420 

spatial parameters from the voxel data on decoding performance, analogous to the test of 421 

necessity used by Freeman et al. (2011). For this analysis each row (corresponding to a 422 

single trial) in the voxel data matrix used for classification was replaced with the residuals 423 

from fitting a linear regression model to the original data, using the spatial parameter as 424 

regressor, before running the classification analysis. By comparing the difference in 425 

decoding performance with and without regressing out the parameter of interest, we 426 

obtained a measure of the importance (or necessity) of that parameter for decoding. This 427 

procedure was repeated for a range of voxel R2 thresholds from 0.3 to 0.7, and decoding 428 

performance (expressed as PRE values) was plotted as a function of voxel threshold. 429 

Analogous to the test for effect of binning, a logistic function was fit to each of the resulting 430 

plots for decoding with and without regressing out the parameter, and significant 431 

differences in decoding threshold estimated using a resampling test. This test was 432 

analoguous to that used to assess the effect of binning: on each of 10,000 resampling 433 

iterations, classification performance data for each subject, condition, and with or without 434 
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spatial bias regressed out was randomly assigned to two sets and a logistic function fit to 435 

each resampled set. The actual mean difference in thresholds between the original data 436 

and the data which had had angular position or hemifield regressed out procedures was 437 

then compared to the resampled distribution and significance estimated as the proportion 438 

of resampled threshold differences larger than or equal to the observed threshold 439 

differences (one-tailed test). 440 

 441 

Effect of spatial filtering on classification performance 442 

As a complement to the binning analyses, we also investigated the effect of lowpass and 443 

highpass spatial filtering of voxel responses on classification performance. To allow 444 

comparison with previous studies we used similar procedures to those  of Freeman et al 445 

(2011) and Swisher et al. (2010). Voxel responses were lowpass filtered by iterative 446 

weighted averaging with neighbouring voxels on the cortical surface, with weights 447 

determined by intervertex distances using a Gaussian kernel (Chung et al., 2005; Larsson 448 

2001). We empirically determined the number of iterations to obtain a specific filter width 449 

for a given average intervertex distance (Hagler at al. 2006; Larsson 2001) and used these 450 

estimates to lowpass filter the voxel responses with the following filter widths (FWHM): 2.2, 451 

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25 mm. Highpass filtered data were obtained by 452 

subtracting the lowpass filtered data from the original unfiltered data. For each resulting 453 

data set, we carried out the classification analysis and quantified decoding performance as 454 

described above. Because the results were qualitatively similar for cardinal and oblique 455 

orientations, decoding data for both sets of orientations were combined.  456 

 457 

Mapping perceptual eye dominance 458 

In a separate session for each subject, we measured the spatial distribution of eye 459 

dominance across the visual field using a variation of a method based on binocular rivalry 460 

(Handa et al., 2006; Yang et al., 2010) (Fig 1B). Circular patches containing 1 cpd gratings 461 

tilted 45 deg left or right of vertical were shown dichoptically at each of 25 visual field 462 

locations, with the two eyes shown orthogonal orientations. The 25 tested locations 463 

included the fovea and 8 locations spaced evenly at 45 deg intervals starting from vertical 464 

at each of three different eccentricities (1.5, 3 and 6 degrees from the fovea). To ensure 465 

fixational stability subjects were required to fixate a central cross 1 deg wide displayed 466 

binocularly. Patch size varied with eccentricity, being 1.125, 2.25, and 4.5 deg at the three 467 

different stimulus eccentricities respectively. The foveal patch was 1.125 deg wide. Stimuli 468 
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were delivered using the same display system (NNL goggles) used for the fMRI 469 

experiments to ensure identical stimulus conditions. For each location, subjects pressed 470 

one of two keys continuously to report the perceived grating orientation (corresponding to 471 

the stimulus shown to one of the eyes), and the relative duration of exclusive stimulus 472 

visibility for each eye was recorded and used as an index of eye dominance at this 473 

location. Gratings were presented at 100% contrast (randomly changing phase at 10Hz) 474 

for 6 s at each location, and each location was tested twice in each run, with each of the 475 

two different stimulus orientations being shown to both eyes to cancel out any potential 476 

differences in orientation bias between the eyes. Trials were run back to back in random 477 

order. Five runs were performed for each subject, resulting in a total of ten measurements 478 

of eye dominance for each location, and the average relative perceived stimulus duration 479 

for each eye computed. A visual field map of perceptual eye dominance was constructed 480 

for each subject by linearly interpolating eye dominance across all visual field locations 481 

within 6 deg eccentricity. 482 

 483 

Measuring correlations between maps 484 

We computed the inter-area correlations between fMRI-based maps of orientation 485 

preference and eye dominance, as well as the correlation between maps of fMRI-based 486 

and perceptual eye dominance. For computing inter-area correlations, we interpolated V1 487 

data to match the locations of corresponding voxels in V2 and V3 based on retinotopic 488 

location (polar angle and eccentricity). For computing correlations between fMRI-based 489 

eye dominance and perceptual eye dominance, the latter was interpolated to the visual 490 

field locations of voxels in each area. Because of spatial autocorrelations in these maps, 491 

conventional statistical estimates of correlation significance could not be used as these 492 

assume independence of measurements. Instead we used a resampling test known as the 493 

torus randomization procedure (Upton & Fingleton 1985; Fortin, & Payette 2002), which 494 

does not require assumptions about the underlying distribution or direct estimation of 495 

spatial autocorrelations. For each pair of maps, the procedure involves circularly shifting 496 

one of the maps by a given lag in each map dimension and computing the correlation 497 

between the shifted map and the other map. The significance of the correlation between 498 

the two maps is given by the proportion of computed correlations equal to or larger than 499 

the actual correlation between the (unshifted) maps. For the present study, the data were 500 

linearly interpolated onto a 50 x 50 grid. Each map was then shifted by one grid step at a 501 

time in each the two dimensions independently, yielding 2500 permutations. The 502 
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correlation between the maps was computed for each permutation and the distribution of 503 

correlations obtained used to estimate significance of the actual correlations. Because the 504 

procedure estimates significance as the proportion of correlations greater than or equal to 505 

the actual one, the resolution of the maps would not be expected to influence the results; 506 

however, to confirm this we also used a map resolution of 100 x 100, with similar results. 507 

 508 

Results 509 

Decoding performance for orientation and eye-of-origin 510 

In all four visual areas examined, decoding perfomance was significantly above chance 511 

level both for orientation and eye-of-origin (Fig 1D). However, classification performance 512 

was significantly higher in V1-V3 than in hV4; in the latter area, decoding performance, 513 

although significant, was only marginally above chance level. For this reason only areas 514 

V1-V3 were included in subsequent analyses. 515 

 516 

Classification performance did not differ significantly between decoding orientation and 517 

eye-of-origin in either area (resampling test, P>0.1). Moreover, performance did not differ 518 

between areas with the exception of V2, for which orientation decoding performance was 519 

significantly higher than in either V1 or V3 (P<0.05 and P<0.01 respectively, two-tailed 520 

resampling test), but only for oblique orientations.  521 

 522 

If classification performance had reflected biased sampling of columnar-scale structures, 523 

we would have expected decoding performance for eye-of-origin to be much higher in V1 524 

than extrastriate areas, as monocularly driven neurons have not been found beyond V1 in 525 

primate visual cortex (Hubel and Livingstone, 1987; Tootell and Hamilton, 1989) and 526 

anatomical (Adams et al. 2007), optical imaging (T'so et al. 1990) and fMRI (Nasr et al., 527 

2016) studies all indicate that ocular dominance columns are confined to V1. Also, it might 528 

have predicted higher classification performance for decoding eye-of-origin than 529 

orientation, due to the differences in spatial organization of ocular dominance and 530 

orientation columns which, all else being equal, would predict  larger voxel biases for eye 531 

preference than orientation, which in turn would be expected to translate into higher 532 

decoding performance. However, given the complex the relationship between spatial 533 

organization and decoding performance, which is influenced by many other factors, this 534 

prediction is not as clear-cut as it may appear.  Note, however, that because we used the 535 

same data for both types of classification, we avoided the potentially confounding effect of 536 
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response strength on classification performance (Smith et al., 2011)  that may have 537 

resulted from using different stimuli or experimental setups.  538 

 539 

Our results did not conform to these predictions, as no significant differences in decoding 540 

performance were found between the two stimulus features, nor was classification 541 

performance for eye-of-origin higher in V1 than in extrastriate visual areas V2 and V3 (Fig. 542 

2). Although the lack of significant differences in decoding performance for orientation and 543 

eye-of-origin failed to match predictions based on columnar organization in V1, this need 544 

not rule out a columnar origin of signals driving decoding in this area, given that decoding 545 

performance depends on many other parameters  (Chaimow et al., 2011). However, the 546 

finding of significant decoding of eye-of-origin in V2 and V3 cannot be readily explained by 547 

a columnar origin of decoding signals, as ocular dominance columns have not been found 548 

beyond V1. These findings suggest that, at least for decoding eye-of-origin in V2 and V3, 549 

signals underlying classification are unlikely to derive from columnar-scale structures  but 550 

may instead reflect larger-scale spatial variations in response bias. 551 

 552 

Spatial scale of patterns underlying decoding 553 

To determine the spatial scale of BOLD fMRI response patterns driving the classification,  554 

two complementary analyses were performed. First, large-scale retinotopic patterns in 555 

response biases were identified by visualizing voxel-wise stimulus preferences in visual 556 

field coordinates or on cortical flat maps (Figs 2 and 3). Second, we tested whether 557 

patterns of response biases were organized in a large-scale pattern by binning voxels 558 

according to their visual field location and assessing the effect on decoding performance 559 

(Freeman et al., 2011). If the pattern of response biases were correlated with visual field 560 

location, voxels with similar retinotopic location (eccentricity or polar angle) would have 561 

similar biases, and binning voxels by retinotopic location would not be expected to reduce 562 

decoding performance to the same degree as binning voxels randomly (which would tend 563 

to cancel out large-scale variations in response bias). Conversely, if response biases were 564 

due to local small-scale variations unrelated to retinotopic location, binning by retinotopy 565 

should confer no advantage for decoding compared to random binning, and both would be 566 

expected to reduce performance compared to decoding without binning. 567 

 568 

 Consistent with previous studies (Sasaki et al., 2006; Clifford et al., 2009; Freeman et al., 569 

2011), orientation preference showed a clear and consistent radial bias, such that voxels 570 
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responded preferentially to the stimulus closest to a radial orientation (Fig 2A, B). Radial 571 

bias patterns in V2 and V3 were very similar to those in V1, but generally more 572 

pronounced, and this pattern was also consistent across subjects. We computed for each 573 

area an index quantifying the degree of radial bias (see Methods for details), which was 574 

significantly greater than expected by chance in 4/5 subjects in V1 and in every subject in 575 

V2 and V3 (F-test, P<0.01, FDR corrected for multiple comparisons) and was similar for 576 

both cardinal and oblique orientations (Fig 2C). Evidence of a radial bias could also be 577 

seen in the distribution of orientation preferences on the cortical surface (Fig 2D). For 578 

example, voxels in the ventral left hemisphere and dorsal right hemisphere parts of V1-V3 579 

(corresponding to the visual field representations of the upper righthand and lower lefthand 580 

quadrants) show preference for 45 deg gratings over 135 degree gratings, whereas the 581 

remaining parts of V1-V3 show the opposite orientation preference, corresponding to the 582 

orientation closest to radial for each quadrant representation.  583 

 584 

[Figure 2 about here] 585 

 586 

Compared to orientation preference, the spatial pattern of eye preference was more 587 

variable between and within individuals (Fig 3B,C). Eye preference patterns were, 588 

however, strongly and significantly correlated between cardinal and oblique orientations 589 

(median r=0.56, range 0.24-0.91, P<0.001 in all areas), suggesting that eye preference is 590 

independent of orientation preference or stimulus orientation. This result also indicates that 591 

patterns of eye bias are stable within a session. In some subjects (e.g., S1, S3), a weak 592 

preference for the contralateral eye was evident in the visual field plots, consistent with 593 

nasotemporal asymmetries in eye preference found in macaque visual cortex (Horton and 594 

Hocking, 1996; Tychsen and Burkhalter, 1997) (Fig 3B,C). Notably, in agreement with our 595 

findings, Horton and Hocking (1996) also reported that this bias was modest and variable 596 

across individuals. A direct test of eye preference between voxels with left and right 597 

hemifield visual field location showed this hemifield bias to be significant in 4/5 subjects in 598 

V1 (resampling test of t-values for eye preference, P<0.05, FDR corrected for multiple 599 

comparisons), and in 3/5 subjects in V2 and V3, respectively. In some subjects (e.g. S4 600 

and S5), eye preference also varied with eccentricity, with strong preference for one eye in 601 

the centre and weaker eye preference in the periphery. The weaker eye preference in the 602 

periphery may reflect the weaker responses elicited by the stimulus in voxels whose 603 

receptive fields only partially overlapped with the stimulus, rather than indicating a genuine 604 
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difference in eye preference between centre and periphery; a similar reduction in response 605 

bias at peripheral locations was also evident in plots of orientation preference (Fig 2). 606 

Although the pattern of eye preference varied across subjects, within each subject the 607 

pattern tended to be similar across visual areas V1-V3 (Fig. 3B). Surprisingly, given that 608 

monocularly driven neurons have only been found in V1, the magnitude of eye preference 609 

(as measured by the range of t-scores for right versus left eye stimulation) was similar 610 

between V1 and V2/V3, although in one subject (S5) magnitudes were larger in V1 (Fig. 611 

3B). 612 

 613 

The spatial distribution of eye preference shown in Fig. 3B rules out the possibility that 614 

poor binocular fusion of the fixation cross might have caused left and right eye stimuli to 615 

appear in different parts of the visual field. Had this been the case, it would have predicted 616 

the largest differences in eye preference along the left and right edges of the stimulus, with 617 

the left and right patterns being symmetrical but of opposite sign. Instead for the majority 618 

of subjects the strongest eye preferences were found in the central part of the visual field 619 

with little evidence of mirror-image symmetry along the outer left and right edges. We can 620 

also rule out the possibility that the patterns might simply have reflected non-uniform 621 

stimulation due to incomplete calibration of the goggle eye pieces, as this would have 622 

predicted a constant pattern in eye preference across subjects, rather than the subject-623 

specific pattern evident in Fig 3B. 624 

 625 

Hypothesizing that the pattern of eye preference measured by fMRI might correspond to 626 

spatial variations in eye dominance, in separate experiments we measured the retinotopic 627 

pattern of perceptual eye dominance in the same subjects within the central 6 deg of 628 

eccentricity corresponding to the stimulus size used in the fMRI experiments (Fig 3A). We 629 

conjectured that if the MRI-derived pattern in eye preference reflected neuronal ocular 630 

dominance, perceptual eye dominance should show a similar pattern across the visual 631 

field, based on previous fMRI studies showing that BOLD responses in V1 during binocular 632 

rivalry reflect the dominant percept in a spatially specific manner (Lee et al., 2005) and 633 

evidence suggesting stronger fMRI responses to dominant eye stimulation (Mendola and 634 

Conner, 2007). On the basis of these results, we predicted that the patterns of ocular 635 

dominance measured by fMRI should be associated with a corresponding spatial 636 

distribution of perceptual eye dominance. However, only for one subject (S1) was the 637 

pattern of perceptual eye dominance significantly correlated (P<0.01) with the pattern of 638 
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eye preference measured by fMRI in all three areas; in subject S3, perceptual eye 639 

dominance was also significantly correlated with fMRI eye preference but only in V3 (Fig 640 

3B). Since fMRI and perceptual eye preference were measured on separate days, we 641 

cannot exclude the possibility that the two might be related, but fluctuate over long time 642 

scales; however, within each scanning session fMRI eye biases were stable, as evidenced 643 

by the correlation between eye preference patterns for oblique and cardinal orientations. 644 

Also, a different measure of perceptual eye dominance than the one used here (e.g. 645 

contrast sensitivity) might be more closely correlated with the patterns of fMRI eye 646 

preference. 647 

 648 

[Figure 3 about here] 649 

 650 

To determine whether the large-scale retinotopic patterns in the visual field maps (radial or 651 

hemifield/contralateral bias) could account for decoding orientation or eye-of-origin, we 652 

compared the effect on decoding performance of binning voxels by visual field location 653 

relative to random binning. If the pattern of fMRI responses were organized in a large-654 

scale retinotopic fashion, we predicted that binning voxels by retinotopy should reduce 655 

decoding performance less than binning voxels randomly. Conversely, if response biases 656 

were due to random sampling of the underlying columnar structure, nearby voxels should 657 

show uncorrelated biases and binning by retinotopy should confer no benefit over random 658 

binning. 659 

 660 

First, we examined the effect of binning voxels by polar angle on decoding performance 661 

(Fig 4A-C). Consistent with previous reports of a large-scale radial bias in orientation 662 

preference in early visual cortex (Sasaki et al., 2006; Clifford et al., 2009; Freeman et al., 663 

2011), orientation decoding was significantly better when voxels were binned by polar 664 

angle than randomly both for cardinal and oblique orientations in V1 (resampling test, one-665 

tailed, P<0.001 and P<0.05 respectively). In V2 and V3 the difference was significant only 666 

for oblique stimuli (P<0.001 and P<0.01, respectively). For oblique, but not cardinal, stimuli 667 

the effect was even more pronounced in V2 and V3 than in V1; in V3, decoding 668 

performance remained as high as 60% of the maximum performance (i.e., decoding 669 

performance without binning) with only four bins. The effect of binning by polar angle was 670 

consistent with the radial bias evident in the visual field plots and flat maps of orientation 671 

preference (Fig 2), as voxels with similar polar angle also had similar orientation 672 
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preference. These results confirm and extend the findings of Freeman et al (2011) 673 

suggesting that decoding of orientation relies largely on large-scale radial biases, as 674 

opposed to being due to random sampling of underlying columnar orientation patterns. 675 

 676 

[Figure 4 about here] 677 

 678 

Binning by polar angle did not, in general, improve performance for decoding eye-of-origin, 679 

compared to random binning (Fig 4D). Only in V2, and only for cardinal orientation stimuli, 680 

was decoding performance significantly better when binning by polar angle than random 681 

binning (resampling test, one-tailed, P<0.05). This result indicates that ocular dominance, 682 

as evident in BOLD fMRI responses, does not have a large scale organization in the polar 683 

angle dimension similar to that observed for orientation preference (although as reported 684 

above, eye dominance showed a weak hemifield bias in a majority of subjects).  685 

 686 

A potential confound with binning by polar angle as a test of the importance of a large-687 

scale spatial bias on classification, is that because nearby voxels have similar visual field 688 

locations, averaging voxels with similar polar angle tends to average nearby voxels, 689 

effectively being equivalent to local smoothing of voxel responses. If voxel orientation 690 

preferences were locally spatially correlated but did not show a large-scale radial bias, 691 

binning by polar angle might thus still be expected to be better than random binning simply 692 

because of such local correlations. To rule out this possibility we tested the effect of 693 

binning by eccentricity rather than polar angle on orientation decoding performance (Fig 694 

4E-F). If the benefit of binning by polar angle had been due to averaging of nearby voxels 695 

rather than to a large-scale radial bias, then binning by eccentricity should also be better 696 

than random binning, as nearby voxels also have similar eccentricity. However, for 697 

decoding orientation, binning voxels by eccentricity had virtually no effect compared to 698 

random binning, showing only a slight improvement in V2 for cardinal orientations 699 

(resampling test, P<0.05). For decoding eye-of-origin, binning by eccentricity also did not 700 

improve decoding performance compared to random binning except for V3 for cardinal 701 

orientations only (P<0.01) and V1 for oblique orientations only (P<0.05). This may reflect 702 

the eccentricity variations in eye preference evident in some subjects (Fig 3, e.g. S5). 703 

Hence the effect of binning by polar angle on orientation decoding cannot be accounted for 704 

by locally correlated voxel responses, but reflects the radial bias in orientation preference. 705 

 706 
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 707 

 708 

To test whether the contralateral bias in eye preference found in a majority of subjects 709 

might account for decoding of eye-of-origin, we assessed the effect of binning by visual 710 

hemifield on decoding performance. Voxels were classified as being left or right hemifield 711 

based on their angular position (polar angle). Analogous to the analyses for polar angle 712 

and eccentricity, voxels were sorted into increasing numbers of equal-sized bins with all 713 

voxels within each bin (except one) being from a single hemifield (because the bins all 714 

contained the same number of voxels and the number of voxels in each hemifield was not 715 

an even multiple of the number of bins, one of the bins necessarily combined voxels 716 

across hemifields). For each bin, the responses of all voxels were replaced by the average 717 

response across voxels within the bin prior to running the classification analysis. The 718 

results indicated that a contralateral bias could indeed account for decoding eye-of-origin: 719 

in V1, binning by hemifield was associated with a strongly significant improvement in 720 

decoding performance (P<0.01 and P<0.001 for cardinal and oblique orientations 721 

respectively) (Fig 5D-F). In V2 and V3, the effect was smaller than in V1 but significant for 722 

at least one of the orientations in each area (P<0.05) (Fig 5D-F). The difference in results 723 

between binning by polar angle and binning by hemifield is consistent with a contralateral 724 

bias that is relatively uniform in the polar angle dimension within each hemifield. We also 725 

tested the effect of binning by hemifield on decoding orientation. Binning by hemifield was 726 

significantly (P<0.05 – P<0.001) better than random binning for decoding orientation (Fig 727 

5A-C) in all areas (except V3 for cardinal orientations). This result is not directly predicted 728 

by radial bias in orientation preference, as the average radial bias in left and right 729 

hemifields should in principle cancel out. However, it may be explained by an imbalance in 730 

radial bias across the hemifields (e.g due to differences in the number or response 731 

magnitude of voxels with specific orientation biases). Alternatively, it could indicate the 732 

existence of a larger-scale bias for orientation distinct from radial bias, as previously 733 

suggested by Freeman et al (2013). 734 

 735 

[Figure 5 about here] 736 

 737 

The effect of binning by polar angle or hemifield on classification performance for 738 

orientation and eye-of-origin respectively demonstrated the existence of large-scale 739 

patterns in response biases that can drive decoding for these features. However it does 740 
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not rule out the possibility that response biases at other spatial scales can also contribute 741 

to decoding. To test whether the large-scale patterns were necessary for classification, we 742 

measured the effect of regressing out response biases correlated with angular position or 743 

hemifield on classification performance (Fig 6). At the voxel R2 threshold used in the other 744 

tests (0.35), there was little effect of regressing out either feature, except in V2 for 745 

orientation decoding (Fig 6B). However, as R2 threshold increased, orientation decoding 746 

performance dropped to chance level significantly faster when angular position had been 747 

regressed out of the voxel data in all three areas (P<0.05, P<0.001, and P<0.01 for V1-V3 748 

respectively) (Fig 6 A-C). Similarly, for decoding eye-of-origin, there was a significant 749 

reduction in classification performance in V1 and V2 (but not V3) when the effect of 750 

hemifield had been regressed out. Therefore, although the binning tests above 751 

demonstrated that both large-scale patterns were sufficient for successful classification, 752 

these findings would suggest that only at high voxel thresholds were the patterns 753 

necessary for classification. This would indicate that information about both orientation and 754 

eye-of-origin is present at multiple spatial scales. However a more trivial possibility is that 755 

the regression procedure simply failed to remove the large-scale bias completely, allowing 756 

decoding to capitalize on residual effects. For example, we only regressed out a linear bias 757 

component from the voxel data; hence if the effect of the biases were not linearly 758 

proportional to the bias pattern, the non-linear component would have remained in the 759 

data. Although both interpretations are possible, given that Freeman et al. (2011) 760 

demonstrated the necessity of a radial bias (angular position) for decoding orientation, it 761 

seems more likely that our results reflect a failure to fully remove the large-scale bias 762 

component. 763 

 764 

[Figure 6 about here] 765 

 766 

If the original conjecture that patterns of eye preference measured by fMRI should reflect 767 

perceptual eye dominances had been correct, binning voxels according to perceptual eye 768 

dominance would also have been expected to improve decoding performance for eye-of-769 

origin. However, as reported above, there was no consistent correlation between 770 

perceptual eye dominance and eye preference measured by fMRI across subjects. 771 

Nonetheless, we found that binning by perceptual eye dominance did in fact significantly 772 

improve decoding performance for eye-of-origin in all three visual areas (resampling test, 773 

P<0.001 and P<0.05 for V1 and V2/3 respectively).  774 
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 775 

We believe the most likely explanation for this somewhat surprising result is that because 776 

perceptual eye dominance was measured over a coarser spatial grid than fMRI responses, 777 

the resulting patterns were spatially smooth, meaning that binning voxels with similar 778 

perceptual eye bias was in effect equivalent to local averaging of nearby voxel responses 779 

(i.e. smoothing). Such smoothing would be expected to have less impact on decoding 780 

performance than completely random binning, if the patterns of voxel biases were also 781 

locally smooth (Shmuel et al., 2010).  782 

 783 

To directly test this hypothesis, we compared the effect of binning by perceptual eye bias 784 

with binning voxels by the same bias patterns that had been reshuffled randomly across 785 

the 25 sampled visual field locations before being interpolated onto the voxel grid. The 786 

resulting reshuffled bias map had the same spatial smoothness as the measured map, but 787 

random large-scale pattern. Consistent with the hypothesis that the benefit of binning by 788 

perceptual eye dominance was due to the spatial smoothness of the perceptual 789 

dominance pattern, there was no significant difference in any of V1-V3 between binning by 790 

the measured pattern relative to the reshuffled pattern (resampling test, P>0.1). The only 791 

exception to this was for cardinal orientations in V1, where binning by reshuffled 792 

perceptual dominance resulted in a significant reduction in performance relative to binning 793 

by the unshuffled dominance patterns (resampling test, P<0.05).  794 

 795 

To obtain a rough estimate of how the smoothness in perceptual eye dominance 796 

measurements translated to spatial scale in the cortex, we used estimates for cortical 797 

magnification and visual area sizes from Larsson and Heeger (2006). Perceptual eye 798 

dominance was sampled at a spacing of 45 degrees in the polar angle dimension, 799 

corresponding to a quarter of the width of V1. Assuming an average V1 width of 25 mm 800 

(Larsson and Heeger, 2006),  this corresponds to a cortical spacing ~7mm, or 2-3 voxels; 801 

in the radial dimension the corresponding spacing was larger, approximately 15 mm (5 802 

voxels) at 3 deg eccentricity (using the cortical magnification function for V1 in Larsson & 803 

Heeger (2006)). Because these distances are several voxels wide in both radial and polar 804 

dimensions, any local correlations in eye preferences are also likely to extend over a 805 

distance spanning multiple voxels and may reflect previously reported low frequency 806 

variations in eye preference observed at higher field strength (Shmuel et al., 2010). 807 

 808 
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Effect of spatial filtering on decoding performance 809 

In a complementary analysis we measured the effect of spatially filtering voxel responses 810 

on decoding performance using methods comparable to those used in previous studies 811 

(Swisher et al. 2010, Freeman et al. 2011). For orientation decoding in V1, our results 812 

agree well with those of these previous studies. Lowpass filtering reduced decoding 813 

performance at larger filter widths, with a slight improvement at an intermediate filter width 814 

(5mm) consistent with fine-scale noise limiting classification for small or zero filter widths 815 

(Fig 7A). Highpass filtering resulted in a reduction of classification performance that was 816 

inversely proportional to filter width, relative to unfiltered data, with the largest reductions in 817 

performance at the smallest filter widths. For both types of filtering, the effects of filter 818 

width on decoding was significant (Spearman's rank order correlation, P<0.01 FDR 819 

corrected for multiple comparisons). These results are consistent with decoding relying on 820 

spatial biases at multiple scales but with the most information contained in larger scales. 821 

Swisher et al. (2010) and Freeman et al. (2011) did not measure decoding performance 822 

beyond V1, but our results for these areas were very similar to those of V1, especially in 823 

V2 (Fig 7B). Effects in V3 were less pronounced than in V1 and V2, but followed the same 824 

pattern (Fig 7C). 825 

 826 

For eye-of-origin, the effects of spatial filtering were very similar to those observed for 827 

orientation, indicating that decoding relied on spatial biases primarily at intermediate and 828 

large spatial scales, with the smallest contribution from the smallest scales (Fig 7D-F). For 829 

lowpass filtered data, decoding performance decreased with increasing filter width for all 830 

but the smallest filter widths, suggesting the presence of small-scale noise in the data 831 

reducing decoding performance. Like for orientation, the effects in V2 were very similar to 832 

those in V1 (Fig 7E), but somewhat less pronounced in V3; specifically, for highpass 833 

filtered data there was no significant correlation between filter width and decoding 834 

performance in V3 (P>0.1) (Fig 7F). 835 

 836 

[Figure 7 about here] 837 

 838 

Origin of response biases in extrastriate cortex 839 

The similar effects of spatial filtering on decoding orientation and eye-of-origin suggests 840 

that the spatial biases of both features are similar in scale; notably, for both features the 841 

evidence suggests most information is contained at larger spatial scales. Moreover, the 842 
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similarity between the effects in V1 and extrastriate areas V2 and V3 also suggest the 843 

scale of spatial biases are similar across areas. These results are consistent with the 844 

finding that decoding performance both for orientation and eye-of-origin was as high in V2 845 

and V3 as in V1, and similar for both features. However, neither of these observations is 846 

well predicted by random sampling of columnar-scale patterns of orientation or eye 847 

preference underlying decoding. In particular, the lack of difference between V1 and V2/V3 848 

for decoding eye-of-origin is not consistent with a columnar origin, given that ocular 849 

dominance columns (or indeed monocularly driven neurons) have not been observed 850 

beyond V1 (Hubel and Livingstone, 1987; Tootell and Hamilton, 1989). We conjectured 851 

that the pattern of response biases in V2 and V3 might instead originate in V1 and be 852 

propagated to these areas through the topographic projections from V1 to extrastriate 853 

areas. Because of the topographic organization of V1-V3, large-scale patterns of eye 854 

preference in extrastriate areas would be expected to be spatially correlated with V1 eye 855 

preference patterns. Moreover, binning voxels by the pattern of V1 eye preference should 856 

improve decoding performance in V2 and V3 relative to random binning. The results of 857 

testing these two predictions are shown in Figure 8.  858 

 859 

[Figure 8 about here] 860 

 861 

Both for orientation and eye preference, the patterns of preferences in V2 and V3 were 862 

significantly correlated with the corresponding patterns in V1, both across (P<0.001; Fig 863 

8A-B) and within (torus randomization test, P<0.05; Fig 8C) subjects. Eye preferences in 864 

V2 and V3 had lower magnitude than in V1, as might be expected if the patterns of eye 865 

preferences in these areas were largely reflecting V1 afferent synaptic input, rather than 866 

neuronal (spiking) output activity. Consistent with these correlations, binning by V1 eye or 867 

orientation preference significantly improved decoding performance for eye-of-origin and 868 

orientation, respectively (P<0.01 – P<0.001; Fig 8D-F). For decoding eye-of-origin, the 869 

effect was only significant for cardinal orientations; for orientation it was significant for both 870 

cardinal and oblique stimuli. It should be emphasized that correlation with the V1 pattern of 871 

preference is a conservative measure that likely underestimates the influence of inherited 872 

input, as the divergence of projections from V1 to extrastriate areas means that the pattern 873 

of input from V1 to higher areas is unlikely to be a simple replication of the pattern of V1 874 

activity.  875 

 876 
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 877 

 878 

In summary, our results demonstrate that both orientation preference and ocular 879 

dominance show evidence of large- or intermediate-scale patterns in voxel biases that 880 

contribute to decoding these features from fMRI data. For decoding orientation, this pattern 881 

primarily reflects the radial bias in orientation preference reported in previous studies. For 882 

decoding eye-of-origin, we found that the pattern reflected a contralateral bias in eye 883 

preference previously observed only by single-unit recordings (Horton and Hocking, 1996; 884 

Tychsen and Burkhalter, 1997). For both types of classification, there was evidence 885 

consistent with decoding in extrastriate areas being driven at least in part by large-scale 886 

spatial response biases originating in V1.  887 

 888 

Discussion 889 

The results of this study replicate previous reports of large-scale biases driving multivariate 890 

classification analysis of orientation representation in early visual cortex, and extend these 891 

findings by identifying a similar bias for ocular dominance. Consistent with previous studies 892 

(Sasaki et al., 2006; Clifford et al., 2009; Freeman et al., 2011, 2013), we found a large-893 

scale radial bias for orientation that could largely account for decoding of orientation in V1-894 

V3. A novel finding of this study is that decoding of eye-of-origin can be explained by a 895 

large-scale (hemifield) bias for the contralateral eye. Whereas anatomical studies in non-896 

human primates have found evidence for nasotemporal differences in eye preference 897 

(Horton and Hocking, 1996; Tychsen and Burkhalter, 1997), it has not been previously 898 

demonstrated in human visual cortex, nor has it been shown that such a bias can account 899 

for classification of eye-of-origin, although the possibility that a nasotemporal bias might 900 

drive classification was suggested by Shmuel et al (2010). We also found evidence that 901 

the pattern of eye bias in the BOLD response was locally smooth (evidenced by the 902 

improved decoding performance when binning by reshuffled eye dominance patterns), 903 

confirming previous studies at higher field strength (Shmuel et al., 2010). These results 904 

indicate that decoding eye-of-origin can rely on response biases at multiple spatial scales. 905 

The existence of biases at multiple scales is also supported by our finding that decoding 906 

was still possible, though performance was impaired, when the effect of hemifield had 907 

been regressed out of the data. Notably, however, none of these patterns are well 908 

explained by random sampling of an underlying columnar-scale pattern (which would be 909 

spatially uncorrelated, especially at large scales); instead they may rather reflect low 910 
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spatial frequency variations in eye preference in V1 demonstrated by quantitative 911 

measurements of ocular dominance column area in human and non-human primates 912 

(Horton and Hocking, 1996; Adams et al., 2007). This explanation cannot, however, 913 

account for the high decoding performance in V2 and V3 as these areas lack ocular 914 

dominance columns. The biases driving decoding in these areas must therefore reflect 915 

larger scale patterns of eye preference in neuronal responses in extrastriate areas, which 916 

have not been previously reported in neuronal recordings from these areas in non-human 917 

primates. Our finding of large-scale biases in eye preference also argues against the idea 918 

that these biases are induced by stimulus properties, as has been suggested for 919 

orientation stimuli (Alink et al., 2013; Carlson 2014). Whether these biases have any 920 

perceptual correlates remains unclear; although we found no consistent correlation 921 

between the patterns of eye preference measured by fMRI and behaviourally, because 922 

these were measured on separate days, we cannot rule out the possibility that the two are 923 

linked but co-vary over longer time scales. The large-scale nasotemporal bias in eye 924 

preference is however likely to be fixed, given that it has also been found in anatomical 925 

studies (Horton and Hocking, 1996; Tychsen and Burkhalter, 1997). We measured 926 

perceptual eye preference in terms of relative duration of the dominant percept under 927 

binocular rivalry conditions; it is possible that a different metric, such as spatial variations 928 

in contrast sensitivity of each eye, might be more closely related to the variations in fMRI 929 

eye preference. 930 

 931 

In contrast with Freeman et al. (2011), we found that regressing out the effects of angular 932 

position and hemifield reduced, but did not entirely abolish decoding performance, with 933 

classification remaining above chance level except at very high voxel thresholds. This 934 

could be interpreted as evidence that information about orientation and eye-of-origin exists 935 

at multiple spatial scales, as suggested above, but this idea is difficult to reconcile with the 936 

results of Freeman et al. (2011) who found that decoding was reduced to chance level 937 

when the effect of angular position was removed from the data prior to classification. The 938 

discrepancy in results might reflect differences in stimulus protocol – our study used an 939 

event-related design, with only four orientations, whereas Freeman et al. (2011) used a 940 

periodic stimulus design with 16 different orientations. It is possible that the transient 941 

responses in the event-related design we used contain orientation-tuned information at 942 

different (and smaller) spatial scales to that in the sustained response measured by a 943 

slowly varying periodic stimulus, as suggested by a recent study (Pratte et al. 2016). We 944 
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also used SVM (which is widely used in decoding studies) rather than linear discriminant 945 

analysis and only classified between two orientations for any given analysis, as opposed to 946 

the sixteen used by Freeman et al. (2011), which together may have helped make our 947 

analysis more robust to removal of the main source of orientation bias. An alternative (not 948 

mutually exclusive) interpretation is that we were unable to regress out completely the 949 

effects of angular position or hemifield. Because we used only two orientations for any 950 

individual classification (and, obviously there were only two eyes), we could not use the 951 

method by Freeman et al. (2011) to regress out a separate stimulus vector independently 952 

from every voxel, as this would have meant regressing out an effect that was perfectly 953 

correlated with the stimulus design and would thus trivially have removed any biases in the 954 

data. Instead we removed a constant pattern across voxels separately for each trial, which 955 

may have been less effective at removing variations across voxels. It is also possible 956 

(indeed likely) that the effect of large-scale biases is not linear, such that a complete 957 

removal of the effects would have required fitting a more complex model (i.e. including 958 

some non-linear transformation of angular position or hemifield).  959 

 960 

While our results do not speak directly to whether the biases driving decoding eye-of-origin 961 

reflect actual neuronal response selectivities or vascular biases (Gardner, 2010; Shmuel et 962 

al., 2010), a purely vascular origin seems unlikely given that low-frequency spatial 963 

variations in eye preference have been found using metabolic measurements that do not 964 

depend on vasculature (Adams et al., 2007). Also, the correlations in eye preference 965 

patterns between V1 and extrastriate areas argue against a vascular origin of decoding 966 

signals, as a purely vascular bias would not be expected to be correlated across areas.  967 

 968 

How well does decoding performance reflect neuronal response properties? 969 

Several aspects of our results have implications for the interpretation of multivariate 970 

classification analysis of BOLD fMRI data. First, because classification performance 971 

depends both on the spatial distribution of voxel biases and the relative strength of those 972 

biases (Chaimow et al., 2011; Smith et al., 2011; Tong et al., 2012), it is unclear to what 973 

extent decoding performance reflects the underlying neuronal response properties of a 974 

cortical region. Our results suggest that at least for early visual areas and one of the 975 

stimulus features, ocular dominance, decoding performance is not well predicted by what 976 

is known about the neuronal response properties of these areas. Whereas monocular 977 

neurons are common in input layers of V1, where they are organized into well-defined 978 
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ocular dominance columns both in macaque (LeVay et al., 1985) and human visual cortex 979 

(Adams et al., 2007) there is little evidence of either monocularly driven neurons or spatial 980 

variations in ocular dominance in extrastriate visual areas (Hubel and Livingstone, 1987; 981 

Tootell and Hamilton, 1989; T'so et al. 1990; Nasr et al., 2016). This distribution of 982 

response properties would predict that decoding performance for eye-of-origin should be 983 

high in V1, and low in extrastriate areas, yet we found that decoding performance for eye-984 

of-origin was not significantly lower in either V2 or V3 than in V1 (Fig 2). It is of course 985 

possible that this observation reflects a true interspecies difference, with human 986 

extrastriate cortex containing a greater proportion of neurons with strong eye preferences 987 

than its non-human primate counterpart. Alternatively, the discrepancy might reflect 988 

differences in methodology, as eye preference in non-human primates has largely been 989 

measured using spiking activity or metabolic rate rather than BOLD fMRI. Evidence 990 

suggests that BOLD signals may more strongly reflect synaptic input than output spiking 991 

activity (Logothetis, 2002). Hence, if the patterns of response biases in V2 and V3 were 992 

largely driven by spatially varying afferent input from V1 which was not reflected in the 993 

spiking output of these areas, this would explain the mismatch between our results 994 

suggesting strong ocular biases in extrastriate areas and physiological studies showing 995 

little or no evidence of eye preference in neuronal spiking responses in these areas. A 996 

third, not mutually exclusive interpretation, is that the biases might also be present in 997 

spiking output, but too weak and varying over such large spatial scales as to not be 998 

evident in the typically relatively localized recordings from comparatively small numbers of 999 

neurons in physiological studies. Without directly comparable measurements of eye 1000 

preference in human and non-human primate cortex, it is difficult to rule out either of these 1001 

possibilities. Nonetheless, the discrepancy between MVPA and single-unit physiology 1002 

suggests that decoding performance of eye-of-origin cannot be straightforwardly predicted 1003 

by known underlying variations in eye preferences of single neurons. We have previously 1004 

reported a similar mismatch between MVPA and predictions based on direct neuronal 1005 

recordings for decoding of luminance in human visual cortex (Hammett et al., 2013). For 1006 

orientation selectivity, however, decoding performance  at least qualitatively agreed with  1007 

predictions based on the known physiological properties of early visual areas. High 1008 

proportions of orientation-selective neurons have been found in all of V1-V3,  (De Valois et 1009 

al., 1982; Levitt et al., 1994; Gegenfurtner et al., 1996, 1997), predicting that decoding 1010 

performance should be similar in the three areas, consistent with our results (Fig 1D). We 1011 

emphasize that this qualitative correspondence between decoding and predictions based 1012 
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on neuronal response properties does not imply that the MVPA results should be 1013 

interpreted as quantitative measures of the underlying orientation tuning of individual 1014 

neurons in these areas; simply that unlike the case for ocular dominance, decoding results 1015 

for orientation are not directly at odds with the known physiology of visual cortex in non-1016 

human primates. 1017 

 1018 

Our results thus suggest that interpreting decoding performance as a straightforward 1019 

measure of neuronal response properties is non-trivial and can be potentially misleading. 1020 

For the stimuli used in this study, we have the benefit of extensive prior knowledge about 1021 

the response properties of early visual areas obtained by direct neuronal recordings in 1022 

non-human primates, which allow us to determine how well decoding performance 1023 

compares to the underlying neuronal response properties. For studies using more complex 1024 

stimuli investigating higher visual areas for which the corresponding non-human primate 1025 

homologues are either not known, and/or electrophysiological data is much more limited, 1026 

such a comparison may be difficult or even impossible. The interpretation of decoding 1027 

performance is further complicated by evidence suggesting that part of the biases driving 1028 

decoding could reflect vascular drainage patterns (Gardner, 2010; Shmuel et al., 2010) 1029 

which might be only indirectly related to the pattern of neuronal response biases. Needless 1030 

to say, many of these issues derive from the relatively coarse spatial resolution used here 1031 

and in most decoding studies; some of these concerns might be addressed by fMRI 1032 

measurements at very high (columnar-scale) spatial resolution. However, the formidable 1033 

technical challenges of such measurements (and the limited availability of high-field 1034 

scanners) mean that for the foreseeable future the majority of decoding studies will 1035 

continue to use conventional spatial resolutions, and hence be subject to the limitations 1036 

highlighted by the conclusions of this study. 1037 

 1038 

In summary, the results of this study add to a growing body of evidence suggesting that the 1039 

results of multivariate pattern classification analysis of fMRI data need to be interpreted 1040 

with caution, in particular when used to quantify functional properties of cortical areas, or 1041 

to map the distribution of response tuning across the cortex in a comparative fashion. 1042 

Indeed, these techniques may instead be best suited to address questions that do not rely 1043 

on a direct correspondence between decoding performance and neuronal response 1044 

selectivities, for example using MVPA as a biomarker or diagnostic tool (Brodersen et al., 1045 

2012). Furthermore, if the key response properties of the areas under investigation are 1046 
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sufficiently well known (e.g., orientation selectivity in V1), the high sensitivity of multivariate 1047 

classification methods (relative to univariate techniques) make these methods well suited 1048 

to characterising distributed neural representations (Brouwer and Heeger, 2009) and 1049 

investigating how such representations interact or are modulated by cognitive or 1050 

experimental manipulations (Kamitani and Tong, 2006; Brouwer and Heeger, 2011; 1051 

Hammett et al., 2013; Merriam et al., 2013). 1052 

 1053 
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Figure legends 1060 

 1061 

Figure 1. Experimental design and analysis. 1062 

A. Event-related fMRI design (single trial shown). Stimulus images consisted of 1 cpd 1063 

sinusoidal luminance gratings shown within an annular aperture against a uniform gray 1064 

background. On each trial, sinusoidal gratings of a single orientation were displayed 1065 

monoptically for 6s (the other eye shown a blank gray background). The spatial phase of 1066 

the gratings changed randomly every 100ms. Trials were separated by intervals (gray 1067 

background) varying randomly in length between 12s-24s. Subjects performed a 1068 

luminance change detection task on a central fixation cross shown dichoptically.  1069 

B. Measurement of perceptual eye dominance (two consecutive trials shown). Stimuli 1070 

consisted of 1 cpd sinusoidal luminance gratings oriented 45 left or right of vertical, 1071 

displayed within circular patches at each of 25 locations across the visual field. On each 6s 1072 

trial, a grating stimulus patch was shown for duration of the trial at one location, the two 1073 

eyes being shown orthogonal orientations (randomly chosen). Subjects continuously 1074 

pressed one of two keys to indicate the perceived orientation of the stimulus. Eye 1075 

preference at each location was computed as the fraction of time dominated by the right 1076 

eye stimulus. 1077 

C. Time course of stimulus-evoked BOLD response for individual subjects. Each time 1078 

series shows the stimulus-evoked response (averaged across stimulus conditions and 1079 

ROIs) estimated by linear deconvolution and averaged across visual areas V1-hV4. Error 1080 

bars, average standard error of the estimate (square root of average error variance across 1081 

ROIs) for each time point.  1082 

D. Classification performance for orientation and eye-of-origin in visual areas V1-hV4. 1083 

Height of bars indicates proportion of correctly classified trials for each stimulus type. In 1084 

areas V1-V3, classification performance is significantly above chance level (dotted line) 1085 

both for orientation and eye of origin for both stimulus orientations; in hV4, classification 1086 

performance is only significant for oblique stimuli. Error bars, standard error of the mean 1087 

across subjects. 1088 

 1089 

Figure 2. Spatial distribution of orientation preference measured by fMRI.  1090 

A. Spatial distribution of orientation preference plotted in visual field coordinates for each 1091 

voxel for areas V1-V3 across all subjects. Each plot symbol corresponds to a single voxel, 1092 

with color representing t-value indicating relative preference for horizontal (0 deg) versus 1093 
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vertical (90 deg) stimuli (inset color map). The size of each plot symbol indicates 1094 

goodness-of-fit (R2) of voxel time series. Dotted circles show location of inner and outer 1095 

boundaries of stimuli in visual field coordinates. For each area, preference for horizontal 1096 

orientations predominates along the horizontal meridian whereas preference for vertical 1097 

orientations is found mainly along the vertical meridian, consistent with bias for radial 1098 

orientations.  1099 

B. Same as (A) but for oblique orientation stimuli. Color represents t-value indicating 1100 

relative preference for rightward oblique (45 deg) versus leftward oblique (135 deg) 1101 

orientation. Orientation preference shows a radial bias with voxels preferring 45 deg 1102 

orientation having receptive fields (RFs) centered on the upper righthand and lower 1103 

lefthand quadrants, whereas voxels preferring the orthogonal orientation have RF centers 1104 

in the other two quadrants. 1105 

C. Radial bias index for areas V1-V3 for cardinal and oblique stimuli. Radial bias is defined 1106 

as the correlation between the spatial distribution of orientation preference (panels A and 1107 

B) and the radial bias map for each pair of orientations (polar sinusoid pattern shown in 1108 

inset circular color maps in panels A and B) (see Methods for details). In all three areas, 1109 

the average radial bias index was significantly greater than predicted by chance (t-test, 1110 

P<0.02, FDR corrected for multiple comparisons). Error bars, standard error of the mean 1111 

across subjects. 1112 

D. Cortical flat maps from the left and right hemisphere of a representative subject (S2) 1113 

showing the distribution of relative orientation preference for oblique orientation stimuli in 1114 

visual cortical areas V1-hV4. Color code as in (B). Voxels preferring rightward oblique 1115 

orientation (45 deg) predominate in the lower hemifield representations of V1-V3 in the 1116 

right hemisphere and upper hemifield representations in the left hemisphere, 1117 

corresponding to the spatial distribution of orientation preference shown in (B); voxels 1118 

preferring the orthogonal orientation predominate in the other two quadrants. 1119 

 1120 

Figure 3. Spatial distribution of eye preference measured behaviourally and by fMRI.  1121 

A. Spatial distribution of perceptual eye dominance within 6 deg eccentricity for each 1122 

subject. Color indicates relative preference for right or left eye stimulation (measured at 25 1123 

different visual field locations as the proportion of stimulus duration dominated by the 1124 

corresponding eye; see Methods for details). Dotted lines indicate inner and outer 1125 

boundaries of stimuli used in fMRI experiments.  1126 

B. Spatial distribution of eye preference measured by fMRI for areas V1-V3 for each 1127 
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subject. Color represents t-values indicating relative preference for right versus left eye 1128 

stimulation (inset t-map) for each voxel; size of plot symbols indicate goodness-of-fit (R2) 1129 

of linear model fit to each voxel time series. Dotted lines indicate inner and outer 1130 

boundaries of stimuli. Numbers and asterisks next to each plot indicate strength and 1131 

significance of correlation with perceptual eye dominance in (A) (see text for details). *, 1132 

P<0.05; **, P<0.01; ***, P<0.001. 1133 

C. Nasotemporal eye preference in V1-V3. Height of bars shows average eye preference 1134 

across subjects (t-value of contrast between right and left eye stimulation averaged across 1135 

orientations) for right hemifield (RH, black bars) and left hemifield (LH, white bars) voxels 1136 

(corresponding to left and right hemispheres, respectively). Numbers to the right of each 1137 

plot indicate proportion of subjects showing significant contralateral preference 1138 

(resampling test, P<0.05, FDR corrected for multiple comparisons). Error bars, standard 1139 

error of the mean across subjects. 1140 

 1141 

Figure 4. Effect of binning by visual polar angle and eccentricity on classification 1142 

performance for decoding orientation and eye-of-origin in areas V1-V3.  1143 

A. Classification performance (proportion reduction in error) for decoding cardinal stimulus 1144 

orientation (0 or 90 deg) in area V1 as a function of number of bins. Filled symbols: 1145 

Binning voxels by polar angle. Open symbols: Binning voxels randomly. Decoding 1146 

performance is significantly higher for binning by polar angle than random binning, 1147 

consistent with a radial bias in orientation preference. Error bars standard error of the 1148 

mean across subjects. 1149 

B-C. Threshold performance (log2 number of bins) for decoding orientation in V1-V3 for 1150 

cardinal and oblique orientation stimuli for binning by polar angle (filled bars) and random 1151 

binning (open bars). Decoding performance is significantly higher for binning by polar 1152 

angle than random binning in all three areas (in V2 and V3 for oblique orientations only), 1153 

as predicted by radial bias for orientation in these areas.  *, P<0.05; **, P<0.01; ***, 1154 

P<0.001. Error bars, 68% confidence intervals estimated by a bootstrapping procedure 1155 

(see Methods). 1156 

D. Same as A, but for decoding eye of origin. Binning by polar angle does not improve 1157 

decoding performance compared to random binning in V1, suggesting eye preference 1158 

(unlike orientation preference) is not organized in a large-scale radial pattern.  1159 

E. Effect of binning by eccentricity on orientation decoding. Binning by eccentricity does 1160 

not improve decoding performance relative to random binning, indicating that orientation 1161 
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preference does not show a large-scale eccentricity bias.  1162 

F. Same as D, but for decoding eye of origin. Binning by eccentricity does not improve 1163 

performance for decoding eye-of-origin relative to random binning, suggesting that the 1164 

distribution of eye preference is not systematically related to eccentricity. 1165 

 1166 

Figure 5. Effect of binning by visual hemifield on classification performance for decoding 1167 

orientation and eye-of-origin in V1-V3. Plot symbols, error bars, and conventions as in 1168 

Figure 5.  1169 

A-C. Binning by hemifield significantly improves classification performance for decoding 1170 

orientation in all areas, except V3 for cardinal orientations. 1171 

D-F. Binning by visual hemifield significantly improves decoding performance for eye-of-1172 

origin compared to random binning for both stimulus orientations in V1, and for at least 1173 

one orientation in V2 and V3, consistent with a large-scale left-right hemifield organization 1174 

in eye preference.  1175 

 1176 

Figure 6. Effect of regressing out large-scale spatial patterns on decoding performance.as 1177 

function of voxel inclusion threshold (R2). 1178 

A-C. Regressing out angular position significantly reduces decoding performance for 1179 

orientation in V1-V3. Classification performance (proportion reduction in error) for 1180 

decoding  stimulus orientation (averaged across cardinal and oblique orientations) in areas 1181 

V1-V3 as a function of voxel inclusion threshold (R2). Filled symbols: Decoding 1182 

performance computed on data with polar angle component removed. Open symbols: 1183 

Decoding performance on original data. P-values indicate significance of difference 1184 

between thresholds (computed using a resampling procedure, see Methods). Error bars, 1185 

standard error of the mean across subjects. 1186 

D-F. Regressing out visual hemifield significantly reduces decoding performance for eye-1187 

of-origin in V1 and V2, but not V3. Plot symbols, error bars and conventions as in A-C. 1188 

 1189 

Figure 7. Effect of spatial filtering of voxel responses on decoding performance. 1190 

A-C. Decoding performance for orientation in V1-V3 as a function of lowpass (filled 1191 

symbols) and highpass (open symbols) filter size. Error bars, standard error of the mean 1192 

across subjects. D-F. Same as panels A-C but for decoding eye-of-origin. 1193 

 1194 

Figure 8. Orientation and eye preference patterns in V2 and V3 are significantly correlated 1195 
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with patterns of V1 stimulus preference.  1196 

A-B. Eye and orientation preference in V2 as a function of eye preference in V1. Each plot 1197 

symbol corresponds to the stimulus preference (t-value of contrast between right and left 1198 

eye stimulation, data collapsed across stimulus orientations) of a single voxel in V2 plotted 1199 

against V1 stimulus preference at the corresponding visual field location. Different plot 1200 

symbols represent different subjects; size of each plot symbol indicates goodness-of-fit of 1201 

voxel time series (R2). The spatial patterns of both eye and orientation preferences in V2 1202 

are significantly correlated with V1 eye and orientation preference patterns respectively.  1203 

C. Average correlation (Pearson) between V1 and V2/V3 stimulus preference patterns. 1204 

Error bars, standard error of the mean across subjects. 1205 

D, E. Binning by V1 eye preference significantly improves decoding performance for eye-1206 

of-origin compared to random binning in V2 and V3. 1207 

F.  Binning by V1 orientation preference significantly improves decoding performance for 1208 

orientation compared to random binning in V2 and V3.  1209 

 1210 

 1211 

 1212 

 1213 
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