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Abstract We study optimal conformity measures for various criteria of efficiency
of set-valued classification in an idealised setting. This leads to an important class
of criteria of efficiency that we call probabilistic and argue for; it turns out that
the most standard criteria of efficiency used in literature on conformal prediction
are not probabilistic unless the problem of classification is binary. We consider
both unconditional and label-conditional conformal prediction.
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1 Introduction

Conformal prediction is a method of generating prediction sets that are guaranteed
to have a prespecified coverage probability; in this sense conformal predictors have
guaranteed validity. Different conformal predictors, however, widely differ in their
efficiency, by which we mean the narrowness, in some sense, of their prediction
sets. Empirical investigation of the efficiency of various conformal predictors is
becoming a popular area of research: see, e.g., [1,14] (and the COPA Proceedings,

A preliminary version of this paper was published as Working Paper 11 of the On-line Compres-
sion Modelling project (New Series), http://alrw.net, in April 2014. Its conference version
[18] was published in the Proceedings of the Fifth Symposium on Conformal and Probabilistic
Prediction and Their Applications (COPA 2016, Madrid, April 2016) under the title “Criteria
of efficiency for conformal prediction”. This journal version also incorporates (in Section 8)
some material of our paper [20] in COPA 2014. This work was partially supported by EPSRC
(grant EP/K033344/1), the Air Force Office of Scientific Research (grant “Semantic Comple-
tions”), and the EU Horizon 2020 Research and Innovation programme (grant 671555).

V. Vovk
Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London, Egham, Surrey, UK
Tel.: +44-1784-443426
Fax: +44-1784-439786
E-mail: v.vovk@rhul.ac.uk

Manuscript Click here to download Manuscript vovk_etal_2.tex 

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/amai/download.aspx?id=53366&guid=f5c8c3e7-46ea-4e54-a5b5-2804d034b0c0&scheme=1
http://www.editorialmanager.com/amai/download.aspx?id=53366&guid=f5c8c3e7-46ea-4e54-a5b5-2804d034b0c0&scheme=1
http://www.editorialmanager.com/amai/viewRCResults.aspx?pdf=1&docID=1581&rev=1&fileID=53366&msid={622B6493-1E20-4D0A-AF1A-3900569B20BC}


2 V. Vovk, I. Nouretdinov, V. Fedorova, I. Petej, and A. Gammerman

2012–2016). This paper points out that the standard criteria of efficiency used in
literature have a serious disadvantage, and we define a class of criteria of efficiency,
called “probabilistic”, that do not share this disadvantage (see the discussion at
the end of Section 5). In two recent papers [3,5] two probabilistic criteria have been
introduced, and in this paper we introduce two more and argue that probabilistic
criteria should be used in place of more standard ones. We concentrate on the case
of classification only (the label space is finite).

Surprisingly few criteria of efficiency have been used in literature, and even
fewer have been studied theoretically. We can speak of the efficiency of individual
predictions or of the overall efficiency of predictions on a test sequence; the latter
is usually (in particular, in this paper) defined by averaging the efficiency over the
individual test examples, and so in this introductory section we only discuss the
former. This section assumes that the reader knows the basic definitions of the
theory of conformal prediction, but they will be given in Section 2 (and Section 8
for the label-conditional version), which can be consulted now.

The two criteria for efficiency of a prediction that have been used most often
in literature (in, e.g., the references given above) are:

– The confidence and credibility of the prediction (see, e.g., [19], p. 96; introduced
in [16]). This criterion does not depend on the choice of a significance level ε.

– Whether the prediction is a singleton (the ideal case), multiple (an inefficient
prediction), or empty (a superefficient prediction) at a given significance level ε.
This criterion was introduced in [13], Section 7.2, and used extensively in [19].

The other two criteria that had been used before the publication of the conference
version [18] of this paper are the sum of the p-values for all potential labels (this
does not depend on the significance level) and the size of the prediction set at a
given significance level: see the papers [3] and [5].

In this paper we introduce six other criteria of efficiency: see Section 2. We
then discuss (in Sections 3–5) the conformity measures that optimise each of the
ten criteria when the data-generating distribution is known; this sheds light on the
kind of behaviour implicitly encouraged by the criteria even in the realistic case
where the data-generating distribution is unknown. As we point out in Section 5,
probabilistic criteria of efficiency are conceptually similar to “proper scoring rules”
in probability forecasting [2,4], and this is our main motivation for their detailed
study in this paper. In Section 6 we prove the results of Section 5. After that
we briefly illustrate the empirical behaviour of two of the criteria for standard
conformal predictors and a benchmark data set (Section 7). Sections 2–7 discuss
the most standard unconditional conformal predictors. Section 8 defines label-
conditional conformal predictors and discusses the analogues of the results of the
previous sections for label-conditional predictors. Finally, Section 9 gives some
directions of further research.

A version (with a different treatment of empty observations) of one of the new
non-probabilistic criteria of efficiency that we discuss in this paper (the one that
we call the E criterion) has been introduced independently in [15].

We only consider the case of randomised (“smoothed”) conformal predictors:
the case of deterministic (non-smoothed) predictors may lead to combinatorial
problems without an explicit solution (this is the case, e.g., for the N criterion
defined below). The situation here is analogous to the Neyman–Pearson lemma:
cf. [8], Section 3.2.
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Criteria of efficiency for set-valued classification 3

2 Criteria of Efficiency for Conformal Predictors and Transducers

Let X be a measurable space (the object space) and Y be a finite set equipped
with the discrete σ-algebra (the label space); the example space is defined to be
Z := X×Y. We will always assume that the label space Y is non-empty, and will
usually assume that its size is at least 2. A conformity measure is a measurable
function A that assigns to every finite sequence (z1, . . . , zn) ∈ Z∗ of examples a
same-length sequence (α1, . . . , αn) of real numbers and that is equivariant with
respect to permutations: for any n and any permutation π of {1, . . . , n},

(α1, . . . , αn) = A(z1, . . . , zn) =⇒
(
απ(1), . . . , απ(n)

)
= A

(
zπ(1), . . . , zπ(n)

)
.

The conformal predictor determined by A is defined by

Γ ε(z1, . . . , zl, x) = Γ ε(z1, . . . , zl, x, τ) := {y | py > ε} , (1)

where (z1, . . . , zl) ∈ Z∗ is a training sequence, x is a test object, ε ∈ (0, 1) is a
given significance level, for each y ∈ Y the corresponding p-value py is defined by

py = py(z1, . . . , zl, xl+1) :=
1

l + 1

∣∣{i = 1, . . . , l + 1 | αyi < αyl+1

}∣∣
+

τ

l + 1

∣∣{i = 1, . . . , l + 1 | αyi = αyl+1

}∣∣ , (2)

τ is a random number distributed uniformly on the interval [0, 1] (even condition-
ally on all the examples), and the corresponding sequence of conformity scores is
defined by

(αy1 , . . . , α
y
l , α

y
l+1) := A(z1, . . . , zl, (x, y)). (3)

Notice that the system of prediction sets (1) output by a conformal predictor is
decreasing in ε, or nested.

The conformal transducer determined by A outputs the system of p-values
(py | y ∈ Y) defined by (2) for each training sequence (z1, . . . , zl) of examples
and each test object x. (This is just a different representation of the conformal
predictor.)

Notice that the p-values (2) (and, therefore, the corresponding conformal pre-
dictors and transducers) only depend on the conformity order corresponding to
the given conformity measure: namely, on the way that the elements of a sequence
(z1, . . . , zn) are ordered by the values (α1, . . . , αn) (with zi � zj defined to be
αi ≤ αj). Therefore, to define conformal predictors and transducers we may de-
fine their conformity orders rather than conformity measures.

The standard property of validity for conformal transducers is that the p-
values py are distributed uniformly on [0, 1] when the examples z1, . . . , zl, (x, y)
are generated independently from the same probability distribution Q on Z and
τ is generated independently from the uniform probability distribution on [0, 1]
(see, e.g., [19], Proposition 2.8). This implies that the probability of error, y /∈
Γ ε(z1, . . . , zl, x), for conformal predictors is ε at any significance level ε.

Suppose we are given a test sequence (zl+1, . . . , zl+k) and would like to use
it to measure the efficiency of the predictions derived from the training sequence
(z1, . . . , zl). (Informally, by the efficiency of conformal predictors we mean that the
prediction sets they output tend to be small, and by the efficiency of conformal
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4 V. Vovk, I. Nouretdinov, V. Fedorova, I. Petej, and A. Gammerman

transducers we mean that the p-values they output tend to be small.) For each test
example zi = (xi, yi), i = l+ 1, . . . , l+ k, we have a nested family (Γ εi | ε ∈ (0, 1))
of subsets of Y, where

Γ εi := Γ ε(z1, . . . , zl, xi),

and a system of p-values (pyi | y ∈ Y), where

pyi := py(z1, . . . , zl, xi).

In this paper we will discuss ten criteria of efficiency for such a family or a system,
but some of them will depend, additionally, on the observed label yi of the test
example. We start from the prior criteria, which do not depend on the observed
test labels.

2.1 Basic criteria

We will discuss two kinds of criteria: those applicable to the prediction sets Γ εi
and so depending on the significance level ε and those applicable to systems of
p-values (pyi | y ∈ Y) and so independent of ε. The simplest criteria of efficiency
are:

– The S criterion (with “S” standing for “sum”) measures efficiency by the
average sum

1

k

l+k∑
i=l+1

∑
y

pyi (4)

of the p-values; small values are preferable for this criterion. It is ε-free.
– The N criterion uses the average size

1

k

l+k∑
i=l+1

|Γ εi |

of the prediction sets (“N” stands for “number”: the size of a prediction set
is the number of labels in it). Small values are preferable. Under this criterion
the efficiency is a function of the significance level ε.

Both these criteria are prior. The S criterion was introduced in [3] and the N
criterion was introduced independently in [5] and [3], although the analogue of
the N criterion for regression (where the size of a prediction set is defined to be
its Lebesgue measure) had been used earlier in [11] (whose arXiv version was
published in 2012).

2.2 Other prior criteria

A disadvantage of the basic criteria is that they look too stringent. Even for a very
efficient conformal transducer, we cannot expect all p-values py to be small: the
p-value corresponding to the true label will not be small with high probability;
and even for a very efficient conformal predictor we cannot expect the size of
its prediction set to be zero: with high probability it will contain the true label.
The other prior criteria are less stringent. The ones that do not depend on the
significance level are:
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Criteria of efficiency for set-valued classification 5

– The U criterion (with “U” standing for “unconfidence”) uses the average un-
confidence

1

k

l+k∑
i=l+1

min
y

max
y′ 6=y

py
′

i (5)

over the test sequence, where the unconfidence for a test object xi is the sec-

ond largest p-value miny maxy′ 6=y p
y′

i ; small values of (5) are preferable. The
U criterion in this form was introduced in [3], but it is equivalent to using
the average confidence (one minus unconfidence), which is very common. If
two conformal transducers have the same average unconfidence, the criterion
compares the average credibilities

1

k

l+k∑
i=l+1

max
y

pyi , (6)

where the credibility for a test object xi is the largest p-value maxy p
y
i ; smaller

values of (6) are preferable. (Intuitively, a small credibility is a warning that the
test object is unusual, and since such a warning presents useful information and
the probability of a warning is guaranteed to be small, we want to be warned
as often as possible.)

– The F criterion uses the average fuzziness

1

k

l+k∑
i=l+1

(∑
y

pyi −max
y

pyi

)
, (7)

where the fuzziness for a test object xi is defined as the sum of all p-values
apart from a largest one, i.e., as

∑
y p

y
i − maxy p

y
i ; smaller values of (7) are

preferable. If two conformal transducers lead to the same average fuzziness, the
criterion compares the average credibilities (6), with smaller values preferable.

Their counterparts depending on the significance level are:

– The M criterion uses the percentage of objects xi in the test sequence for which
the prediction set Γ εi at significance level ε is multiple, i.e., contains more than
one label. Smaller values are preferable. As a formula, the criterion prefers
smaller

1

k

l+k∑
i=l+1

1{|Γ εi |>1}, (8)

where 1E denotes the indicator function of the event E (taking value 1 if E
happens and 0 if not). When the percentage (8) of multiple predictions is the
same for two conformal predictors (which is a common situation: the percentage
can well be zero when the data is clean and ε is not too demanding), the M
criterion compares the percentages

1

k

l+k∑
i=l+1

1{Γ εi =∅} (9)

of empty predictions (larger values are preferable). This is a widely used crite-
rion; in particular, it was used in [19] and papers preceding it.
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6 V. Vovk, I. Nouretdinov, V. Fedorova, I. Petej, and A. Gammerman

– The E criterion (where “E” stands for “excess”) uses the average (over the
test sequence, as usual) amount the size of the prediction set exceeds 1. In
other words, the criterion gives the average number of excess labels in the
prediction sets as compared with the ideal situation of one-element prediction
sets. Smaller values are preferable for this criterion. As a formula, the criterion
prefers smaller

1

k

l+k∑
i=l+1

(|Γ εi | − 1)+ ,

where t+ := max(t, 0). When these averages coincide for two conformal pre-
dictors, we compare the percentages (9) of empty predictions; larger values are
preferable.

A criterion that is very similar to the M and E criteria is used by Lei in [9]
(Section 2.2); that paper considers the binary case, in which the difference between
the M and E criteria disappears. The difference of the criterion used in [9] is that it
prohibits empty predictions (an intermediate approach would be to prefer smaller
values for the number (9) of empty predictions). Lei’s criterion is extended to the
multi-class case in [15], which proposes a modification of the E criterion with a
different treatment of empty predictions.

2.3 Observed criteria

The prior criteria discussed in the previous subsection treat the largest p-value,
or prediction sets of size 1, in a special way. The corresponding criteria of this
subsection attempt to achieve the same goal by using the observed label.

These are the observed counterparts of the non-basic prior ε-free criteria:

– The OU (“observed unconfidence”) criterion uses the average observed uncon-
fidence

1

k

l+k∑
i=l+1

max
y 6=yi

pyi

over the test sequence, where the observed unconfidence for a test example
(xi, yi) is the largest p-value pyi for the false labels y 6= yi. Smaller values are
preferable for this test.

– The OF (“observed fuzziness”) criterion uses the average sum of the p-values
for the false labels, i.e.,

1

k

l+k∑
i=l+1

∑
y 6=yi

pyi ; (10)

smaller values are preferable.

The counterparts of the last group depending on the significance level ε are:

– The OM criterion uses the percentage of observed multiple predictions

1

k

l+k∑
i=l+1

1{Γ εi \{yi}6=∅}

in the test sequence, where an observed multiple prediction is defined to be a
prediction set including a false label. Smaller values are preferable.
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Criteria of efficiency for set-valued classification 7

Table 1 The ten criteria studied in this paper: the two basic ones in the upper section; the
four other prior ones in the middle section; and the four observed ones in the lower section

ε-free ε-dependent

S (sum of p-values) N (number of labels)
U (unconfidence) M (multiple)

F (fuzziness) E (excess)
OU (observed unconfidence) OM (observed multiple)

OF (observed fuzziness) OE (observed excess)

– The OE criterion (OE standing for “observed excess”) uses the average number

1

k

l+k∑
i=l+1

|Γ εi \ {yi}|

of false labels included in the prediction sets at significance level ε; smaller
values are preferable.

The ten criteria used in this paper are given in Table 1. Half of the criteria
depend on the significance level ε, and the other half are the respective ε-free
versions.

In the case of binary classification problems, |Y| = 2, the number of different
criteria of efficiency in Table 1 reduces to six: the criteria not separated by a
vertical or horizontal line (namely, U and F, OU and OF, M and E, and OM and
OE) coincide.

3 Idealised Setting

Starting from this section we consider the limiting case of infinitely long training
and test sequences (and we will return to the realistic finitary case only in Sec-
tion 7, where we describe our empirical studies). To formalise the intuition of an
infinitely long training sequence, we assume that the prediction algorithm is di-
rectly given the data-generating probability distribution Q on Z instead of being
given a training sequence. Instead of conformity measures we will use idealised
conformity measures: functions A(Q, z) of Q ∈ P(Z) (where P(Z) is the set of all
probability measures on Z) and z ∈ Z. We will fix the data-generating distribution
Q for the rest of the paper, and so write the corresponding conformity scores as
A(z). The idealised conformal predictor corresponding to A outputs the following
prediction set Γ ε(x) for each object x ∈ X and each significance level ε ∈ (0, 1).
For each potential label y ∈ Y for x define the corresponding p-value as

py = p(x, y) = pA(x, y) = pA(x, y, τ) := Q{z ∈ Z | A(z) < A(x, y)}
+ τQ{z ∈ Z | A(z) = A(x, y)} (11)

(it would have been more correct to write A((x, y)) and Q({. . .}), but we often
omit pairs of parentheses when there is no danger of ambiguity), where τ is a
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8 V. Vovk, I. Nouretdinov, V. Fedorova, I. Petej, and A. Gammerman

random number distributed uniformly on [0, 1]. (The same random number τ is
used in (11) for all (x, y).) The prediction set is

Γ ε(x) = Γ εA(x) = Γ εA(x, τ) := {y ∈ Y | p(x, y) > ε} . (12)

The idealised conformal transducer corresponding to A outputs for each object
x ∈ X the system of p-values (py | y ∈ Y) defined by (11); in the idealised case
we will usually use the alternative notation p(x, y) for py.

We could have used the idealised conformity order when defining the p-values
(11): z � z′ is defined to mean A(z) ≤ A(z′). Let us say that two idealised
conformity measures are equivalent if they lead to the same idealised conformity
order; in other words, A and B are equivalent if, for all z, z′ ∈ Z, A(z) ≤ A(z′)⇔
B(z) ≤ B(z′).

The standard properties of validity for conformal transducers and predictors
mentioned in the previous section simplify in this idealised case as follows:

– If (x, y) is generated from Q and τ ∈ [0, 1] is generated from the uniform
distribution independently of (x, y), p(x, y) is distributed uniformly on [0, 1].

– Therefore, at each significance level ε the idealised conformal predictor makes
an error with probability ε.

The test sequence being infinitely long is formalised by replacing the use of a
test sequence in the criteria of efficiency by averaging with respect to the data-
generating probability distribution Q. In the case of the top two and bottom two
criteria in Table 1 (the ones set in italics) this is done as follows. An idealised
conformity measure A is:

– S-optimal if, for any idealised conformity measure B,

Ex,τ
∑
y∈Y

pA(x, y) ≤ Ex,τ
∑
y∈Y

pB(x, y), (13)

where the notation Ex,τ refers to the expected value when x and τ are inde-
pendent, x ∼ QX, and τ ∼ U ; QX is the marginal distribution of Q on X, and
U is the uniform distribution on [0, 1];

– N-optimal if, for any idealised conformity measure B and any significance
level ε,

Ex,τ |Γ εA(x)| ≤ Ex,τ |Γ εB(x)| ;

– OF-optimal if, for any idealised conformity measure B,

E(x,y),τ

∑
y′ 6=y

pA(x, y′) ≤ E(x,y),τ

∑
y′ 6=y

pB(x, y′),

where the lower index (x, y) in E(x,y),τ refers to averaging over (x, y) ∼ Q (with
(x, y) and τ independent);

– OE-optimal if, for any idealised conformity measure B and any significance
level ε,

E(x,y),τ |Γ εA(x) \ {y}| ≤ E(x,y),τ |Γ εB(x) \ {y}| .

We will define the idealised versions of the other six criteria listed in Table 1 in
Section 5.
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Criteria of efficiency for set-valued classification 9

4 Probabilistic Criteria of Efficiency

Our goal in this section is to characterise the optimal idealised conformity measures
for the four criteria of efficiency that are set in italics in Table 1. We will assume
in the rest of the paper that the set X is finite (from the practical point of view,
this is not a restriction); since we consider the case of classification, |Y| <∞, this
implies that the whole example space Z is finite. Without loss of generality, we also
assume that the data-generating probability distribution Q satisfies QX(x) > 0
for all x ∈ X (we often omit curly braces in expressions such as QX({x})): we can
always omit the xs for which QX(x) = 0.

The conditional probability (CP) idealised conformity measure is

A(x, y) = Q(y | x) = QY|X(y | x) :=
Q(x, y)

QX(x)
. (14)

(In this paper, we will invariably use the shorter notation Q(y | x) instead of
the more precise QY|X(y | x); we will never need QX|Y, which could be defined
analogously.) This idealised conformity measure was introduced by an anonymous
referee of the conference version of [3], but its non-idealised analogue in the case of
regression had been used in [11] (following [10] and literature on minimum volume
prediction). We say that an idealised conformity measure A is a refinement of an
idealised conformity measure B if

B(z1) < B(z2) =⇒ A(z1) < A(z2) (15)

for all z1, z2 ∈ Z. Let R(CP) be the set of all refinements of the CP idealised
conformity measure. If C is a criterion of efficiency (one of the ten criteria in
Table 1), we let O(C) stand for the set of all C-optimal idealised conformity
measures.

Theorem 1 O(S) = O(OF) = O(N) = O(OE) = R(CP).

We say that an efficiency criterion is probabilistic if the CP idealised confor-
mity measure is always optimal for it. We will also use two modifications of this
definition: an efficiency criterion is strongly probabilistic if any refinement of the
CP idealised conformity measure is optimal for it, and it is weakly probabilistic
if some refinement of the CP idealised conformity measure is optimal for it. We
will say that it is BW probabilistic (or binary-weakly probabilistic) if some refine-
ment of the CP idealised conformity measure is optimal for it whenever |Y| = 2.
Theorem 1 shows that four of our ten criteria are strongly probabilistic, namely
S, N, OF, and OE (they are set in italics in Table 1). In the next section we will
see that in general the other six criteria are not probabilistic (they are only BW
probabilistic). The intuition behind probabilistic criteria will be briefly discussed
also in the next section.

Proof (of Theorem 1) We start from proving R(CP) = O(N). Let A be any ide-
alised conformity measure. Fix for a moment a significance level ε. For each exam-
ple (x, y) ∈ Z, let P (x, y) be the probability that the idealised conformal predictor
based on A makes an error on the example (x, y) at the significance level ε, i.e.,
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10 V. Vovk, I. Nouretdinov, V. Fedorova, I. Petej, and A. Gammerman

the probability (over τ) of y /∈ Γ εA(x). It is clear from (11) and (12) that P takes
at most three possible values (0, 1, and an intermediate value) and that∑

x,y

Q(x, y)P (x, y) = ε (16)

(which just reflects the fact that the probability of error is ε). Vice versa, any P
satisfying these properties will also satisfy

∀(x, y) : P (x, y) = Pτ (y /∈ Γ εA(x, τ))

for some A, Pτ standing for the probability when τ ∼ U . Let us see when we will
have A ∈ O(N) (A is an N-optimal idealised conformity measure). Define Q′ to
be the probability measure on Z such that Q′X = QX and Q′(y | x) = 1/ |Y| does
not depend on y. The N criterion at significance level ε for A can be evaluated as

Ex,τ |Γ εA(x)| = |Y|

1−
∑

(x,y)∈Z

Q′(x, y)P (x, y)

 ; (17)

this expression should be minimised, i.e.,
∑

(x,y)Q
′(x, y)P (x, y) should be max-

imised, under the restriction (16). Let us apply the Neyman–Pearson fundamental
lemma ([8], Sect. 3.2, Theorem 1) using Q as the null and Q′ as the alternative
hypotheses. We can see that Ex,τ |Γ εA(x)| takes its minimal value if and only if
there exist thresholds k1 = k1(ε), k2 = k2(ε), and k3 = k3(ε) such that:

– Q{(x, y) | Q(y | x) < k1} < ε ≤ Q{(x, y) | Q(y | x) ≤ k1},
– k2 < k3,
– A(x, y) < k2 if Q(y | x) < k1,
– k2 < A(x, y) < k3 if Q(y | x) = k1,
– A(x, y) > k3 if Q(y | x) > k1.

This will be true for all ε if and only if Q(y | x) is a function of A(x, y) (meaning
that there exists a function F such that, for all (x, y), Q(y | x) = F (A(x, y))).
This completes the proof of R(CP) = O(N).

Next we show that O(N) = O(S). The chain of equalities

∑
y∈Y

p(x, y) =
∑
y∈Y

∫ 1

0

1{p(x,y)>ε} dε

=

∫ 1

0

∑
y∈Y

1{p(x,y)>ε} dε =

∫ 1

0

|Γ ε(x)| dε (18)

(which will be used as the model in several other proofs in the rest of this paper)
implies, by Fubini’s theorem,

Ex,τ
∑
y∈Y

p(x, y) =

∫ 1

0

Ex,τ |Γ ε(x)| dε. (19)

We can see that A ∈ O(S) whenever A ∈ O(N): indeed, any N-optimal idealised
conformity measure minimises the expectation Ex,τ |Γ ε(x)| on the right-hand side
of (19) for all ε simultaneously, and so minimises the whole right-hand-side, and
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Criteria of efficiency for set-valued classification 11

so minimises the left-hand-side. On the other hand, A /∈ O(S) whenever A /∈
O(N): indeed, if an idealised conformity measure fails to minimise the expectation
Ex,τ |Γ ε(x)| on the right-hand side of (19) for some ε, it fails to do so for all ε
in a non-empty open interval (because of the right-continuity of Ex,τ |Γ ε(x)| in ε,
which is proved in Lemma 1(b) below), and therefore, it does not minimise the
right-hand side of (19) (any N-optimal idealised conformity measure, such as the
CP idealised conformity measure, will give a smaller value), and therefore, it does
not minimise the left-hand side of (19).

The equality O(S) = O(OF) follows from

Ex,τ
∑
y

p(x, y) = E(x,y),τ

∑
y′ 6=y

p(x, y′) +
1

2
,

where we have used the fact that p(x, y) is distributed uniformly on [0, 1] when
((x, y), τ) ∼ Q× U (see [19]).

Finally, we notice that O(N) = O(OE). Indeed, for any significance level ε,

Ex,τ |Γ ε(x)| = E(x,y),τ |Γ ε(x) \ {y}|+ (1− ε),

again using the fact that p(x, y) is distributed uniformly on [0, 1] and so P(x,y),τ (y ∈
Γ ε(x)) = 1− ε, where P(x,y),τ refers to the probability when (x, y) ∼ Q and τ ∼ U
are independent. ut

The following lemma was used in the proof of Theorem 1.

Lemma 1 (a) The function Γ ε(x) = Γ ε(x, τ) of ε is right-continuous for fixed x
and τ . (b) The function Ex,τ |Γ ε(x)| is right-continuous in ε.

Proof Let us first check (a). We have (i) p(x, y, τ) > ε for all y ∈ Γ ε(x, τ), and (ii)
p(x, y, τ) ≤ ε for all y /∈ Γ ε(x, τ). If we increase ε, (ii) will be still satisfied, and if
the increase is sufficiently small, (i) will be also satisfied and, therefore, Γ ε(x, τ)
will not change. As for (b), the right-continuity of Γ ε(x, τ) in ε implies the right-
continuity of |Γ ε(x, τ)| in ε, which implies the right-continuity of Ex,τ |Γ ε(x, τ)| in
ε by the Lebesgue dominated convergence theorem. ut

Remark 1 The statement O(S) = R(CP) of Theorem 1 can be generalised to the
criterion Sφ preferring small values of

1

k

l+k∑
i=l+1

∑
y

φ(pyi ) or Ex,τ
∑
y

φ(p(x, y))

(instead of (4) or (13), respectively), where φ : [0, 1] → R is a fixed continuously
differentiable strictly increasing function, not necessarily the identity function.
Namely, we still have O(Sφ) = R(CP). Indeed, we can assume, without loss of
generality, that φ(0) = 0 and φ(1) = 1 and replace (18) by

∑
y∈Y

φ(p(x, y)) =
∑
y∈Y

∫ 1

0

1{φ(p(x,y))>ε} dε =

∫ 1

0

∑
y∈Y

1{p(x,y)>φ−1(ε)} dε

=

∫ 1

0

∣∣∣Γφ−1(ε)(x)
∣∣∣ dε =

∫ 1

0

∣∣∣Γ ε′(x)
∣∣∣φ′(ε′) dε′,

where φ′ is the (continuous) derivative of φ, and then use the same argument as
before.
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12 V. Vovk, I. Nouretdinov, V. Fedorova, I. Petej, and A. Gammerman

5 Criteria of Efficiency that are not Probabilistic

Now we define the idealised analogues of the six criteria that are not set in italics
in Table 1. An idealised conformity measure A is:

– U-optimal if, for any idealised conformity measure B, we have either

Ex,τ min
y

max
y′ 6=y

pA(x, y′) < Ex,τ min
y

max
y′ 6=y

pB(x, y′) (20)

or both

Ex,τ min
y

max
y′ 6=y

pA(x, y′) = Ex,τ min
y

max
y′ 6=y

pB(x, y′) (21)

and

Ex,τ max
y

pA(x, y) ≤ Ex,τ max
y

pB(x, y); (22)

– M-optimal if, for any idealised conformity measure B and any significance
level ε, we have either

Px,τ (|Γ εA(x)| > 1) < Px,τ (|Γ εB(x)| > 1) (23)

or both

Px,τ (|Γ εA(x)| > 1) = Px,τ (|Γ εB(x)| > 1) (24)

and

Px,τ (|Γ εA(x)| = 0) ≥ Px,τ (|Γ εB(x)| = 0); (25)

– F-optimal if, for any idealised conformity measure B, we have either

Ex,τ
(∑
y

pA(x, y)−max
y

pA(x, y)
)
< Ex,τ

(∑
y

pB(x, y)−max
y

pB(x, y)
)

(26)

or both

Ex,τ
(∑
y

pA(x, y)−max
y

pA(x, y)
)

= Ex,τ
(∑
y

pB(x, y)−max
y

pB(x, y)
)

(27)

and (22);
– E-optimal if, for any idealised conformity measure B and any significance

level ε, we have either

Ex,τ
(
(|Γ εA(x)| − 1)+

)
< Ex,τ

(
(|Γ εB(x)| − 1)+

)
(28)

or both

Ex,τ
(
(|Γ εA(x)| − 1)+

)
= Ex,τ

(
(|Γ εB(x)| − 1)+

)
(29)

and (25);
– OU-optimal if, for any idealised conformity measure B,

E(x,y),τ max
y′ 6=y

pA(x, y′) ≤ E(x,y),τ max
y′ 6=y

pB(x, y′); (30)

– OM-optimal if, for any idealised conformity measure B and any significance
level ε,

P(x,y),τ (Γ εA(x) \ {y} 6= ∅) ≤ P(x,y),τ (Γ εB(x) \ {y} 6= ∅). (31)
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Criteria of efficiency for set-valued classification 13

In the following three definitions we follow [19], Chapter 3. The predictability of
x ∈ X is

f(x) := max
y∈Y

Q(y | x). (32)

A choice function ŷ : X→ Y is defined by the condition

∀x ∈ X : f(x) = Q(ŷ(x) | x). (33)

Define the signed predictability idealised conformity measure corresponding to ŷ
by

A(x, y) :=

{
f(x) if y = ŷ(x)

−f(x) if not;

a signed predictability (SP) idealised conformity measure is the signed predictabil-
ity idealised conformity measure corresponding to some choice function.

For the following two theorems we will need to modify the notion of refinement.
Let R′(SP) be the set of all idealised conformity measures A such that there exists
an SP idealised conformity measure B that satisfies both (15) and

B(x, y1) = B(x, y2) =⇒ A(x, y1) = A(x, y2)

for all x ∈ X and y1, y2 ∈ Y.

Theorem 2 O(U) = O(M) = R′(SP).

Theorems 2–4 will be proved in Section 6 below.
Define the MCP (modified conditional probability) idealised conformity measure

corresponding to a choice function ŷ by

A(x, y) :=

{
Q(y | x) if y = ŷ(x)

Q(y | x)− 1 if not;

an MCP idealised conformity measure is an idealised conformity measure corre-
sponding to some choice function; R(MCP) is defined analogously to R(CP) but
using MCP idealised conformity measures rather than the CP idealised conformity
measure.

Theorem 3 O(F) = O(E) = R(MCP).

Of course, Theorems 2 and 3 are equivalent when |Y| = 2.
The modified signed predictability (MSP) idealised conformity measure is de-

fined by

A(x, y) :=


f(x) if f(x) > 1/2 and y = ŷ(x)

0 if f(x) ≤ 1/2

−f(x) if f(x) > 1/2 and y 6= ŷ(x),

where f is the predictability function (32); notice that this definition is unaffected
by the choice of the choice function. LetR′′(MSP) be the set of all refinements A of
the MSP idealised conformity measure such that, for all x ∈ X and all y1, y2 ∈ Y:

f(x) ≥ 0.5 & Q(y1 | x) < 0.5 & Q(y2 | x) < 0.5 =⇒ A(x, y1) = A(x, y2)

f(x) < 0.5 =⇒ A(x, y1) = A(x, y2).
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Table 2 Idealised conformity measures that are optimal for the ten criteria of efficiency given
in Table 1; the arrangement of the criteria is the same as in Table 1

ε-free ε-dependent

S: CP (Theorem 1) N: CP (Theorem 1)
U: SP (Theorem 2) M: SP (Theorem 2)

F: MCP (Theorem 3) E: MCP (Theorem 3)
OU: MSP (Theorem 4) OM: MSP (Theorem 4)
OF: CP (Theorem 1) OE: CP (Theorem 1)

Theorem 4 O(OU) = O(OM) = R′′(MSP).

Table 2 summarises the results given above. For each of the criteria listed
in Table 1 it gives an optimal idealised conformity measure and cites the result
asserting the optimality of that idealised conformity measure.

Theorems 2–4 show that the six criteria that are not set in italics in Table 1
are not probabilistic (however, we will see in Corollary 1 below that they are BW
probabilistic). These are simple explicit examples (inevitably involving label spaces
Y with |Y| > 2) showing that they are not even weakly probabilistic:

– Let X = {1}, Y = {1, 2, 3}, and

QX(1) = 1 Q(1 | 1) = 0.2 Q(2 | 1) = 0.3 Q(3 | 1) = 0.5. (34)

(Remember that, in this paper, Q(y | x) always means QY|X(y | x).) In this
case, all refinements of the CP idealised conformity measure are equivalent.
The U criterion is not probabilistic since the expression

Ex,τ min
y

max
y′ 6=y

p(x, y′) (35)

(cf. (20)) is 0.35 for the CP idealised conformity measure and is smaller, 0.25,
for the SP idealised conformity measure. The M criterion is not probabilistic
since at significance level ε = 0.2 the CP idealised conformity measure gives
the predictor Γ ε(1) = {2, 3} (a.s.), and so

Px,τ (|Γ εCP(x)| > 1) = 1 > 0.6 = Px,τ (|Γ εSP(x)| > 1)

(cf. (23)).
– Let X = {1, 2}, Y = {1, 2, 3}, and, for a small δ > 0,

QX(1) = 0.5 Q(1 | 1) = 1/3− δ Q(2 | 1) = 1/3 Q(3 | 1) = 1/3 + δ

QX(2) = 0.5 Q(1 | 2) = 1/3− 5δ Q(2 | 2) = 1/3 + 2δ Q(3 | 2) = 1/3 + 3δ.

The CP idealised conformity measure again has only equivalent refinements.
The F criterion is not probabilistic since the expression

Ex,τ
(∑
y

p(x, y)−max
y

p(x, y)
)

(36)

(cf. (26)) is 3/4 +O(δ) for the CP idealised conformity measure and is smaller
(provided δ is sufficiently small), 2/3 + O(δ), for the MCP idealised confor-
mity measure (which is unique). The E criterion is not probabilistic since at
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Criteria of efficiency for set-valued classification 15

significance level ε = 2/3 the CP idealised conformity measure has a larger ex-
pected excess (for small δ) than the MCP idealised conformity measure (whose
expected excess is zero):

Ex,τ
(
(|Γ εCP(x)| − 1)+

)
= 0.5 +O(δ) > 0 = Ex,τ

(
(|Γ εMCP(x)| − 1)+

)
(cf. (28)).

– Let us again set X = {1} and Y = {1, 2, 3}, and define Q by (34). The OU
criterion is not probabilistic since the expression

E(x,y),τ max
y′ 6=y

p(x, y′) (37)

(cf. (30)) is 0.55 for the CP idealised conformity measure and is smaller, 0.5, for
the MSP idealised conformity measure. The OM criterion is not probabilistic
since at significance level ε = 0.2 the CP idealised conformity measure gives
the predictor Γ ε(1) = {2, 3} (a.s.), and so

P(x,y),τ (Γ 0.2
CP (x) \ {y} 6= ∅) = 1 > 0.8 = P(x,y),τ (Γ 0.2

MSP(x) \ {y} 6= ∅)

(cf. (31)).

Corollary 1 All ten criteria of efficiency in Table 1 are BW probabilistic.

Proof Criteria S, N, OF, and OE are BW probabilistic by Theorem 1. Criteria
OU and OM are identical to OF and OE, respectively, in the binary case, and so
are also BW probabilistic. Criteria F and E are identical to U and M, respectively,
in the binary case, and so our task reduces to proving that U and M are BW
probabilistic. By Theorem 2, it suffices to check R(CP) ∩ R′(SP) 6= ∅, which is
obvious: SP is in both R(CP) and R′(SP) when |Y| = 2. ut

Criteria of efficiency that are not probabilistic are somewhat analogous to
“improper scoring rules” in probability forecasting (see, e.g., [2] and [4]). The
optimal idealised conformity measures for the criteria of efficiency given in this
paper that are not probabilistic have clear disadvantages, such as:

– They depend on the arbitrary choice of a choice function. In many cases there is
a unique choice function, but the possibility of non-uniqueness is still awkward.

– They encourage “strategic behaviour” (such as ignoring the differences, which
may be very substantial, between potential labels other than ŷ(x) for a test
object x when using the M criterion in the case |Y| > 2).

However, we do not use the terminology “proper/improper” in the case of cri-
teria of efficiency for conformal prediction since it is conceivable that some non-
probabilistic criteria of efficiency may still turn out to be useful.

6 Proofs of Theorems 2–4

The proofs in this section will be slightly less formal than the proof of Theorem 1;
in particular, all references to the Neyman–Pearson lemma will be implicit.
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6.1 Proof of Theorem 2

We start from checking that O(M) = R′(SP) (essentially reproducing the argu-
ment given in the second parts of the proofs of Propositions 3.3 and 3.4 in [19]).
We will analyze the requirements imposed by being M-optimal on the prediction
set Γ ε starting from small values of ε ∈ (0, 1). (In this paper we only consider ε in
the interval (0, 1), even if this restriction is not mentioned explicitly.)

Let f1 > f2 > · · · > fn > 0 be the list of the predictabilities (see (32)) of
all objects x ∈ X, with all duplicates removed and the remaining predictabilities
sorted in the decreasing order. It is clear that an M-optimal idealised conformity
measure will assign the lowest conformity to the group of examples (x, y) with
f(x) = f1 and y 6= ŷ(x) for some choice function ŷ (see (33)). The conformity of
such examples can be different unless they contain the same object (in which case
it must be the same); the conformity of any example in any other group must be
higher than the conformity of the examples in this first group. If these conditions
are satisfied for some idealised conformity measure A, A will satisfy (23) or (24)
for any idealised conformity measure B and any

ε ∈ (0, Q {(x, y) | f(x) = f1 & y 6= ŷ(x)}] .

The second least conforming group of examples consists of (x, y) with f(x) = f2
and y 6= ŷ(x) for some choice function ŷ. The conformity of examples in the
second group can again be different unless they contain the same object. These
and previous conditions ensure that A will satisfy (23) or (24) for any

ε ∈ (0, Q {(x, y) | f(x) ≥ f2 & y 6= ŷ(x)}] .

Continuing in such a way, we will obtain a choice function ŷ and the conformity
ordering for the examples whose label is not chosen by that choice function ŷ. All
these examples are divided into n groups, and each elements of the ith group is
coming before each element of the jth group when i < j; in the end we will get
2n groups satisfying this property. The first n groups take care of

ε ∈ (0, Q {(x, y) | y 6= ŷ(x)}] .

The next, (n + 1)th, group of examples are (x, ŷ(x)) ∈ Z with f(x) = fn; they
can be ordered in any way between themselves. If the conditions listed so far are
satisfied for an idealised conformity measure A, A will satisfy (23)–(25) for any
idealised conformity measure B and any

ε ∈ (0, Q {(x, y) | y 6= ŷ(x) or (y = ŷ(x) & f(x) = fn)}] .

The following, (n+2)th, group consists of (x, ŷ(x)) ∈ Z with f(x) = fn−1. Contin-
uing in the same way until all examples are exhausted, we will obtain a refinement
of the SP idealised conformity measure that belongs to R′(SP).

This proof of O(M) = R′(SP) demonstrates the following property of M-
optimal idealised conformity measures.

Corollary 2 If A ∈ O(M),

Px,τ (|Γ εA(x)| > 1) Px,τ (|Γ εA(x)| = 0) = 0

at each significance level ε.
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Criteria of efficiency for set-valued classification 17

Let us now check that O(U) = O(M). Analogously to (18) and (19), we have,
for a given idealised conformity measure A (omitted from our notation),

Ex,τ min
y

max
y′ 6=y

p(x, y′, τ) = Ex,τ

∫ 1

0

1{miny maxy′ 6=y p(x,y
′,τ)>ε} dε

= Ex,τ

∫ 1

0

1{|Γ ε(x)|>1} dε =

∫ 1

0

Px,τ (|Γ ε(x)| > 1) dε. (38)

Similarly, we have

Ex,τ max
y

p(x, y, τ) = Ex,τ

∫ 1

0

1{maxy p(x,y,τ)>ε} dε

= Ex,τ

∫ 1

0

1{|Γ ε(x)|>0} dε =

∫ 1

0

Px,τ (|Γ ε(x)| > 0) dε

= 1−
∫ 1

0

Px,τ (|Γ ε(x)| = 0) dε. (39)

Our argument will also use the following continuity property for idealised con-
formal predictors. (For now, we only need parts (a) and (b).)

Corollary 3 The functions

(a) Px,τ (|Γ ε(x)| > 1)
(b) Px,τ (|Γ ε(x)| = 0)
(c) Ex,τ

(
(|Γ ε(x)| − 1)+

)
(d) P(x,y),τ (Γ ε(x) \ {y} 6= ∅)

are right-continuous in ε.

Proof All these statements can be deduced from part (a) of Lemma 1 in the same
way as in the proof of part (b) of that lemma. The right-continuity of the function
Γ ε(x, τ) implies the right-continuity of 1{|Γ ε(x)|>1} (remember that |Γ ε(x)| takes
only integer values). Therefore, the right-continuity of Px,τ (|Γ ε(x)| > 1) follows
by the Lebesgue dominated convergence theorem. This proves (a), and proofs of
(b)–(d) are analogous. ut

First suppose that A is M-optimal. Let B be any idealised conformity measure.
From (38), it is clear that (20) holds with < replaced by ≤. If, furthermore, we
have (21): by Corollary 3 we also have (24) for all ε; therefore, we also have (25)
for all ε; in combination with (39), we obtain (22). Therefore, A is U-optimal.

Now suppose that A is U-optimal. Let B be the SP idealised conformity mea-
sure, which we know to be not only M-optimal but also U-optimal (as shown in
the previous paragraph). By the definition ((20)–(22)) of U-optimality, we have
(21) and (22) with = in place of ≤. This implies that (24) holds for all ε (had
the equality been violated for some ε ∈ (0, 1), it would have been violated for a
range of ε by Corollary 3, which would have contradicted (21)). In the same way,
it implies that (25) holds (even with = in place of ≥) for all ε. Therefore, A is
M-optimal.
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6.2 Proof of Theorem 3

Our argument for O(E) = R(MCP) will be similar to the argument for O(M) =
R′(SP) given in the previous subsection; we will again analyze the requirements
imposed by being E-optimal starting from small values of ε ∈ (0, 1). Let g1 <
g2 < · · · < gn be the list of the conditional probabilities Q(y | x) of all examples
(x, y) ∈ Z, with all duplicates removed and the remaining conditional probabilities
sorted in the increasing order. All examples will be split into 2n groups, with the
examples in the ith and (n + i)th groups satisfying Q(y | x) = gi, i = 1, . . . , n.
Initially the ith group, i = 1, . . . , n, contains all examples satisfying Q(y | x) = gi,
and the other groups are empty. (Later some of the examples will be moved into
the groups numbered n + 1, n + 2, . . ., and as a result some of the first n groups
may become empty.) It will be true that each element of the ith group will be
coming before each element of the jth group when 1 ≤ i < j ≤ 2n.

Any F-optimal idealised conformity measure will assign the lowest conformity
to the first group of examples, perhaps except for examples (x, y) for which Q(y |
x) = maxy′ Q(y′ | x). If for some x ∈ X, the first group contains (x, y) with
Q(y | x) = maxy′ Q(y′ | x), we choose one such (x, y) for each such x and move it
to the (n+1)th group. The rest of the examples in the group can be ordered in their
conformity in any way (with ties allowed). The examples in the (n + 1)th group
can also be ordered arbitrarily. Process the 2nd, 3rd,. . . , nth groups in the same
way. It is clear that in the end we will obtain a refinement of an MCP idealised
conformity measure.

Next we prove O(E) = O(F). Defining a p-choice function ỹ : X → Y (for a
given idealised conformity measure) by the requirement

p(x, ỹ(x)) = max
y

p(x, y),

we have the following analogue of (18):

∑
y∈Y

p(x, y)−max
y∈Y

p(x, y) =
∑

y∈Y\{ỹ(x)}

p(x, y) =
∑

y∈Y\{ỹ(x)}

∫ 1

0

1{p(x,y)>ε} dε

=

∫ 1

0

∑
y∈Y\{ỹ(x)}

1{p(x,y)>ε} dε =

∫ 1

0

(|Γ ε(x)| − 1)+ dε.

This implies, similarly to (19),

Ex,τ

∑
y∈Y

p(x, y)−max
y∈Y

p(x, y)

 =

∫ 1

0

Ex,τ
(

(|Γ ε(x)| − 1)+
)

dε. (40)

Suppose that A is E-optimal, and let B be any idealised conformity measure.
From (40), it is clear that (26) holds with < replaced by ≤. If, furthermore, we
have (27): by Corollary 3(c) we also have (29) for all ε; therefore, we also have (25)
for all ε; in combination with (39), we obtain (22). Therefore, A is F-optimal.

Now suppose that A is F-optimal. Let B be any MCP idealised conformity
measure, which we know to be both E-optimal and F-optimal. By the definition
of F-optimality, we have (27) and (22) with = in place of ≤. As in the previous
subsection, this implies that (29) holds for all ε, and also implies that (25) holds
(even with = in place of ≥) for all ε. Therefore, A is E-optimal.
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6.3 Proof of Theorem 4

The proof is similar to the proofs in the previous two subsections. First we check
that O(OM) = R′′(MSP), analyzing the requirement of OM-optimality starting
from small values of ε ∈ (0, 1). Let f1 > f2 > · · · > fn > 0.5 be the list of
the predictabilities of all objects x ∈ X whose predictability exceeds 0.5, with
all duplicates removed and the remaining predictabilities sorted in the decreasing
order. All examples are split into 2n + 1 groups (perhaps some of them empty)
in such a way that each element of the ith group is coming before each element
of the jth group when 1 ≤ i < j ≤ 2n + 1. The ith group, i = 1, . . . , n, contains
all examples (x, y) with predictability fi and Q(y | x) < 1/2, the (n+ 1)th group
contains all examples with predictability 0.5 or less, and the (n+ 1 + i)th group,
i = 1, . . . , n, contains all examples (x, y) with Q(y | x) = fi (there is, however, at
most one such example); it is possible that n = 0.

Any OM-optimal idealised conformity measure will assign the lowest confor-
mity to the first group of examples (assuming n ≥ 1), and those examples can
be ordered arbitrarily in their conformity, except that any examples sharing their
objects should have the same conformity. This group takes care of the values

ε ∈ (0, Q {(x, y) | f(x) = f1 & Q(y | x) 6= f1}] .

Proceed in the same way through groups 2, . . . , n. The (n + 1)th group is most
complicated (when non-empty). It contains the following kinds of examples:

– Examples whose predictability is less than 0.5. All such examples should have
the same conformity if they share the same object.

– Examples (x, y) whose predictability is exactly 0.5 and which satisfy Q(y |
x) < 0.5. All such examples should have the same conformity if they share the
same object.

– Examples (x, y) whose predictability is exactly 0.5 and which satisfy Q(y |
x) = 0.5.

Otherwise, the examples in the (n+ 1)th group can be ordered arbitrarily in their
conformity. Groups n+2, . . . , 2n+1 are singletons or empty and do not cause any
problems. Therefore, an idealised conformity measure is OM-optimal if and only
if it is in R′′(MSP).

Next we check that O(OU) = O(OM). Similarly to (38), we have, for a given
idealised conformity measure,

E(x,y),τ max
y′ 6=y

p(x, y′, τ) = E(x,y),τ

∫ 1

0

1{maxy′ 6=y p(x,y
′,τ)>ε} dε

= E(x,y),τ

∫ 1

0

1{Γ ε(x)\{y}6=∅} dε =

∫ 1

0

Px,τ (Γ ε(x) \ {y} 6= ∅) dε. (41)

By (41), OM-optimality immediately implies OU-optimality.

Now suppose that A is OU-optimal. Let B be the MSP idealised conformity
measure, which is both OM-optimal and OU-optimal. If (31) is violated for some
ε, it is violated for a range of ε (by Corollary 3(d)), which, by (41), contradicts
the OU-optimality of A. Therefore, A is OM-optimal.
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Fig. 1 Examples of hand-written digits in the USPS data set.

7 Empirical Study

In this section we demonstrate differences between two of our ε-free criteria, OF
(probabilistic) and U (standard but not probabilistic) on the USPS data set of
hand-written digits ([7]; examples of such digits are given in Figure 1, which is a
subset of Figure 2 in [7]). We use the original split of the data set into the training
and test sets. Our programs are written in R, and the results presented in the
figures below are for the seed 0 of the R random number generator; however, we
observe similar results in experiments with other seeds.

The problem is to classify hand-written digits, the labels are elements of
{0, . . . , 9}, and the objects are elements of R256, where the 256 numbers repre-
sent the brightness of pixels in 16 × 16 pictures. We normalise each object by
applying the same affine transformation (depending on the object) to each of its
pixels making the mean brightness of the pixels in the picture equal to 0 and mak-
ing its standard deviation equal to 1. The sizes of the training and test sets are
7291 and 2007, respectively.

We evaluate six conformal predictors using the two criteria of efficiency. Fix
a metric on the object space R256; in our experiments we use tangent distance
(as implemented by Daniel Keysers) and Euclidean distance. Given a sequence
of examples (z1, . . . , zn), zi = (xi, yi), we consider the following three ways of
computing conformity scores: for i = 1, . . . , n,

– αi :=
∑K
j=1 d

6=
j /
∑K
j=1 d

=
j , where d 6=j are the distances, sorted in the increasing

order, from xi to the objects in (z1, . . . , zn) with labels different from yi (so

that d 6=1 is the smallest distance from xi to an object xj with yj 6= yi), and
d=j are the distances, sorted in the increasing order, from xi to the objects in
(z1, . . . , zi−1, zi+1, . . . , zn) labelled as yi (so that d=1 is the smallest distance
from xi to an object xj with j 6= i and yj = yi). We refer to this conformity
measure as the KNN-ratio conformity measure; it has one parameter, K, whose
range is {1, . . . , 50} in our experiments (so that we always have K � n).

– αi := Ni/K, where Ni is the number of objects labelled as yi among the K
nearest neighbours of xi (when dK = dK+1 in the ordered list d1, . . . , dn−1 of
the distances from xi to the other objects, we choose the nearest neighbours
randomly among zj with yj = yi and with xj at a distance of dK from xi).
This conformity measure is a KNN counterpart of the CP idealised conformity
measure (cf. (14)), and we will refer to it as the KNN-CP conformity measure;
its parameter K is in the range {2, . . . , 50} in our experiments.

– finally, we define fi := maxy(Ny
i /K), where Ny

i is the number of objects
labelled as y among the K nearest neighbours of xi, ŷi ∈ arg maxy(Ny

i /K)
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Fig. 2 Top plot: average unconfidence for the USPS data set (for different values of param-
eters). Bottom plot: average observed fuzziness for the USPS data set. In black-and-white
the lines of the same type (dotted, solid, or dashed) corresponding to Euclidean and tangent
distances can always be distinguished by their position: the former is above the latter.

(chosen randomly from arg maxy(Ny
i /K) if |arg maxy(Ny

i /K)| > 1), and

αi :=

{
fi if yi = ŷi

−fi otherwise;

this is the KNN-SP conformity measure.

The three kinds of conformity measures combined with the two metrics (tangent
and Euclidean) give six conformal predictors. We use both metrics in order to test
the performance of our criteria for different kinds of underlying algorithms: both
more efficient (represented by tangent metric) and less efficient (represented by
Euclidean metric).
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Figure 2 gives the average unconfidence (5) (top panel) and the average ob-
served fuzziness (10) (bottom panel) over the test sequence (so that k = 2007)
for a range of the values of the parameter K. Each of the six lines corresponds
to one of the conformal predictors, as shown in the legends; in black-and-white
the lines of the same type (dotted, solid, or dashed) corresponding to Euclidean
and tangent distances can always be distinguished by their position: the former is
above the latter.

The best results are for the KNN-ratio conformity measure combined with
tangent distance for small values of the parameter K. For the two other types
of conformity measures their relative evaluation changes depending on the kind
of a criterion used to measure efficiency: as expected, the KNN-CP conformal
predictors are better under the OF criterion, whereas the KNN-SP conformal
predictors are better under the U criterion (cf. Theorems 1 and 2), if we ignore
small values of K (when the probability estimates Ny

i /K are very unreliable).
Our conclusion is that whereas some conformal predictors (such as the KNN-

ratio ones in our experiments) can perform well under different criteria of efficiency,
the performance of other conformal predictors depends very much on the criterion
of efficiency used to evaluate it.

8 Efficiency of Label-conditional Conformal Predictors and
Transducers

Conformal predictors, as defined in Section 2, only guarantee the overall coverage
probability, averaged over all labels. Sometimes we want to have a guarantee for
the coverage probability for each label y ∈ Y separately, and in this case one should
use label-conditional conformal predictors, which are studied in this section.

8.1 Label-conditional conformal predictors and transducers

The label-conditional conformal predictor determined by a conformity measure A
is defined by (1) where the label-conditional p-values py are defined by

py :=
(∣∣{i = 1, . . . , l | yi = y & αyi < αyl+1

}∣∣
+ τ

∣∣{i = 1, . . . , l | yi = y & αyi = αyl+1

}∣∣+ τ
)

/ (|{i = 1, . . . , l | yi = y}|+ 1) (42)

(instead of (2)); as before, τ is a random number distributed uniformly on the
interval [0, 1] (conditionally on all the examples), and the conformity scores are
defined by (3).

The label-conditional conformal transducer determined by A outputs the sys-
tem of p-values (py | y ∈ Y) defined by (42) for each training sequence (z1, . . . , zl)
of examples and each test object x. The property of validity for label-conditional
conformal predictors and transducers is that the p-values py are distributed
uniformly on [0, 1] given y when the examples z1, . . . , zl, (x, y) are generated
independently from the same probability distribution Q on Z (see, e.g., [19],
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Proposition 4.10). This implies that the conditional probability of error, y /∈
Γ ε(z1, . . . , zl, x), given y is ε at any significance level ε.

The p-values (42), and the corresponding conformal predictors and transducers,
only depend on the conformity order within each class: now we define (xi, yi) �
(xj , yj) to mean yi = yj and αi ≤ αj (with (xi, yi) and (xj , yj) such that yi 6= yj
being incomparable).

The definitions of all ten criteria of efficiency introduced in Section 2 and listed
in Table 1 carry over to the case of label-conditional conformal transducers and
predictors.

8.2 Idealised setting

As before, we assume that the object space X is finite and QX(x) > 0 for all
x ∈ X. We also assume QY(y) > 0 for all y ∈ Y, where QY is the marginal
distribution of Q on the label space Y.

Let A be an idealised conformity measure. For each potential label y ∈ Y for
an object x define the corresponding label-conditional p-value as

py = p(x, y) :=
Q{(x′, y) ∈ Z | A(x′, y) < A(x, y)}

QY(y)

+ τ
Q{(x′, y) ∈ Z | A(x′, y) = A(x, y)}

QY(y)
, (43)

analogously to (11), with the same random number τ ∈ [0, 1] used for all (x, y).
The label-conditional idealised conformal predictor is defined by (12) for the new
definition of p(x, y) and the label-conditional idealised conformal transducer cor-
responding to the idealised conformity measure A outputs for each object x ∈ X
the system of p-values (py | y ∈ Y) defined by (43).

The idealised p-values (43), and the corresponding idealised conformal predic-
tors and transducers, also depend only on the conformity order within each class:
we can define (x, y) � (x′, y′) to mean y = y′ and A(x, y) ≤ A(x′, y′). Two ide-
alised conformity measures are equivalent within classes if they lead to the same
order �; in this section we will consider only this notion of equivalence (without
mentioning it explicitly).

The properties of validity now become conditional:

– If (x, y) is generated from Q and τ is generated independently from the uniform
probability distribution on [0, 1], p(x, y) is distributed uniformly on [0, 1] even
if we condition on y.

– Therefore, at each significance level ε the idealised conformal predictor makes
an error with conditional probability ε given y.

8.3 Probabilistic criteria of efficiency

Label-conditionally S-optimal, N-optimal, OF-optimal, and OE-optimal idealised
conformity measures are defined exactly as S-optimal, N-optimal, OF-optimal,
and OE-optimal idealised conformity measures at the end of Section 3 but with
the label-conditional definitions of the p-values and prediction sets.
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Let us say that an idealised conformity measure A is a label-conditional refine-
ment of an idealised conformity measure B if

B(x1, y) < B(x2, y) =⇒ A(x1, y) < A(x2, y)

for all x1, x2 ∈ X and all y ∈ Y. Notice that the notion of label-conditional refine-
ment is weaker than that of refinement (as defined by (15)): if A is a refinement of
B, then A is a label-conditional refinement of B (but not vice versa, in general).
Let Rlc(CP) be the set of all label-conditional refinements of the CP idealised
conformity measure. If C is a criterion of efficiency (one of the ten criteria in Ta-
ble 1), we let Olc(C) stand for the set of all label-conditionally C-optimal idealised
conformity measures. We have the following simple corollary of Theorem 1.

Theorem 5 Olc(S) = Olc(OF) = Olc(N) = Olc(OE) = Rlc(CP).

Proof The proof is a modification of the proof of Theorem 1. In the case of Olc(N),
for each label y ∈ Y we have a separate optimization problem. Now the constraint
becomes ∑

x

Q(x, y)P (x, y) = εQY(y)

(in place of (16)), and the objective becomes to maximise
∑
xQ
′(x, y)P (x, y) (since

maximising the sum over (x, y) in (17) can be achieved by maximizing the sum
over x for each y separately). Now an application of the Neyman–Pearson lemma,
as in the proof of Theorem 1, shows that Olc(N) = Rlc(CP).

The same argument as in the proof of Theorem 1 (the last three paragraphs)
shows that Olc(N) = Olc(S) = Olc(OF) = Olc(OE), and so we have the formula
in Theorem 5. ut

We say that an efficiency criterion is label-conditionally probabilistic if the CP
idealised conformity measure is label-conditionally optimal for it; we add the quali-
fier weakly if this is true for some (label-conditional) refinement of CP and strongly
if this is true for an arbitrary (label-conditional) refinement of CP. We can see
that the four criteria that are set in italics in Table 1 are still optimal in the
label-conditional setting.

8.4 Other criteria of efficiency

Using the label-conditional definitions of the p-values and prediction sets, we de-
fine label-conditionally U-optimal, M-optimal, F-optimal, E-optimal, OU-optimal,
and OM-optimal idealised conformity measures in exactly the same way as their
unconditional counterparts at the beginning of Section 5. The label-conditional U
and M criteria are standard, and the label conditional E criterion (with a different
treatment of empty observations) has been introduced and explored in [15].

We do not give label-conditional analogues of Theorems 2–4, since the label-
conditionally U-, M-, F-, E-, OU-, and OM-optimal idealised conformity measures
are unlikely to have explicit expressions (cf. our remark about deterministic con-
formal predictors on p. 2), unless |Y| = 2. The following theorem says that all of
these criteria are BW probabilistic (and the examples that we will give after its
proof will show that they are not probabilistic).
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Theorem 6 If |Y| = 2, each of the sets

Olc(U),Olc(M),Olc(F),Olc(E),Olc(OU),Olc(OM) (44)

contains a refinement of the CP idealised conformity measure.

Proof Assume, without loss of generality, that Y = {0, 1}. And let us assume, for
simplicity, that the values Q(1 | x) are all different for different x ∈ X (if this
condition is not satisfied, the theorem still holds, but finding a suitable refinement
becomes, in general, a difficult combinatorial problem). In this case it is easy to see
that each of the sets in (44) is the equivalence class of the CP idealised conformity
measure: we can construct the optimal idealised conformity measure gradually
starting from small values of ε, as in the proofs of Theorems 2–4. ut

The following examples show that none of the criteria considered in this sub-
section is probabilistic (or even weakly probabilistic):

– Let X = {1, 2}, Y = {1, 2, 3, 4}, and

QX(1) = 0.5 Q(1 | 1) = 0.2 Q(2 | 1) = 0.3 Q(3 | 1) = 0.2 Q(4 | 1) = 0.3

QX(2) = 0.5 Q(1 | 2) = 0.3 Q(2 | 2) = 0.2 Q(3 | 2) = 0.3 Q(4 | 2) = 0.2
(45)

(Q(y | x) meaning QY|X(y | x), as usual). All refinements of the CP idealised
conformity measure are equivalent (as for different labels y the two conditional
probabilities Q(y | x), x = 1, 2, are different), and so all of them will lead to
the same p-values. Let A be any idealised conformity measure that makes all
observations containing object 1 less conforming than all observations contain-
ing object 2. The U criterion is not probabilistic since the expression (35) is 0.7
for the CP idealised conformity measure and is smaller, 0.55, for the idealised
conformity measure A. The M criterion is not probabilistic since at signifi-
cance level ε = 0.4 the CP idealised conformity measure gives the predictor
Γ ε(1) = {2, 4} and Γ ε(2) = {1, 3} (a.s.), and so

Px,τ (|Γ εCP(x)| > 1) = 1 > 2/3 = Px,τ (|Γ εA(x)| > 1)

(cf. (23)).
– Let X = {1, 2, 3}, Y = {1, 2, 3}, and, for a small δ > 0,

QX(1) = 1/3 Q(1 | 1) = 1/3 + δ Q(2 | 1) = 1/3− 2δ Q(3 | 1) = 1/3 + δ

QX(2) = 1/3 Q(1 | 2) = 1/3− δ Q(2 | 2) = 1/3 + 2δ Q(3 | 2) = 1/3− δ
QX(3) = 1/3 Q(1 | 3) = 1/3 Q(2 | 2) = 1/3 Q(3 | 3) = 1/3.

All refinements of the CP idealised conformity measure are equivalent, and so
the choice of the refinement does not affect the p-values. Let A be an idealised
conformity measure satisfying

A(1, 2) < A(2, 1) = A(2, 3) < A(3, 1) = A(3, 2)

< A(1, 1) = A(1, 3) < A(2, 2) < A(3, 3)

(in other words, A is the CP idealised conformity measure modified in such a
way that that it assigns to (3, 3) the highest conformity score). The F criterion
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is not probabilistic since the expression (36) is 7/9 +O(δ) for the CP idealised
conformity measure and is smaller (for sufficiently small δ), 2/3 + O(δ), for
A. The E criterion is not probabilistic since at significance level ε = 2/3 the
idealised conformity measure A gives a predictor whose excess is always 0,
whereas the CP idealised conformity measure will have expected excess 1/3 +
O(δ).

– Let X = {1, 2}, Y = {1, 2, 3, 4}, and Q be defined by (45). Let A be any
idealised conformity measure that makes all observations containing object 1
less conforming than all observations containing object 2. The OU criterion is
not probabilistic since the expression (37) is 0.7 for the CP idealised conformity
measure and is smaller, 0.55, for the idealised conformity measure A. The OM
criterion is not probabilistic since at significance level ε = 0.4 the CP idealised
conformity measure produces an observed multiple prediction a.s., whereas the
idealised conformity measure A produces an observed multiple prediction with
probability 2/3.

9 Conclusion

This paper investigates properties of various criteria of efficiency of conformal
prediction in the case of classification. It would be interesting to transfer, to the
extent possible, this paper’s results to the cases of:

– Regression. The sum of p-values (as used in the S criterion) now becomes the
integral of the p-value as function of the label y of the test example, and the
size of a prediction set becomes its Lebesgue measure (considered, as already
mentioned, in [11] in the non-idealised case). Whereas the latter is typically
finite, ensuring the convergence of the former is less straightforward.

– Anomaly detection. A first step in this direction is made in [17], which considers
the average p-value as its criterion of efficiency.

– Infinite, including non-discrete, object spaces X.
– Non-idealised conformal predictors.
– Significance levels ε = εy that depend on the label y ∈ Y in the label-

conditional case.

The main part of this paper merely mentions what we called “combinatorial
problems” (see pages 2 and 24). It would be interesting to explore them systemat-
ically. As an example, let us consider the N criterion of efficiency for deterministic
idealised conformal predictors (with τ set to 1 rather than being random) in the
trivial case |Y| = 1 (which we did not allow in the main part of the paper; in this
case, there is no difference between unconditional and label-conditional idealised
conformal predictors; computational difficulties can be expected to become more
severe in less trivial cases). The problem of finding an N-optimal idealised confor-
mity measure then becomes the Subset-Sum Problem, known to be NP-hard:
see, e.g., [12], Chapter 4 (a special case of this problem, Partition, was already
one of Karp’s original 21 NP-complete problems [6]). There are, however, effi-
cient polynomial approximation schemes for this problem. It would be interesting,
in particular, to find such schemes for general deterministic idealised conformal
predictors and transducers and for smoothed idealised conformal predictors and
transducers for non-probabilistic criteria of efficiency in the label-conditional case.
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A(H) = E{|H(X)|}. (A)

According to this criterion, the ideal predictions are those for which |H(X)| = 0,
i.e., empty predictions. However, the authors (SLW) do not take the expres-
sion (A) seriously. In the next paragraph they declare their desire to avoid
empty predictions (“a potentially undesirable property of the optimal classi-
fiers”). Their real optimization problem is different from the one they announce
(minimizing the ambiguity). In Section 3 they struggle with eliminating empty
predictions. Therefore, their criterion is much closer to our E criterion than to
our N criterion. However, their criterion goes further: whereas the E criterion
does not care about empty predictions, the real SLW criterion involves elimi-
nating them. We did not give the SLW definitions in our paper (an interested
reader can easily check them) and tried to make our statements vague enough
so that they do not contradict [15]; in particular, this is what we say about the
SLW criterion:

A version (with a different treatment of empty observations) of one
of the new non-probabilistic criteria of efficiency that we discuss in
this paper (the one that we call the E criterion) has been introduced
independently in [15].
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1. The abstract could be more informative. For example mention the conclu-
sion of p. 22 line 14. ➸ That conclusion is local to Section 7, and the abstract
would be too prominent a place for it. We have made the abstract more infor-
mative by mentioning that we argue for probabilistic criteria. (We also made
“classification” more specific by prefixing it with “set-valued”.)

2. P. 2, first sentence. Could you briefly mention here the disadvantage of the
standard criteria? I think you only mention this again much later in the paper,
at the end of Section 5. ➸ The disadvantage is difficult to describe in the
introduction, so we have just added a forward reference to the end of Section 5.

3. P. 2, line 48. Could you explain the meaning of “deterministic predictor”?
➸ We have added “non-smoothed” in parentheses; is it clearer now?

4. P. 4. This is just a comment: the criteria based on p-values are difficult to
interpret. For example, think of a perfect scenario where there’s no ambiguity
in the predictions. In such case each point gets only one prediction label and
therefore it’s easy to find what the value of the criteria based on the predictors
should be. It is however difficult to see what the value should be when using the
p-values. ➸ This appears to be a valuable comment, but we do not understand
it, sorry. If you get a chance, could you please elaborate on your idea?

5. P. 4, line 47. “even for a very efficient conformal predictor we cannot ex-
pect the size of its prediction set to be zero.” Why would we consider having a
prediction set with size zero to be efficient? ➸ We will split this question (con-
sisting of three parts) into three questions. One possible meaning of efficiency is
just prediction regions being small, and then, formally, empty is efficient. (But
we should worry about efficiency only for valid predictors.)

What is the meaning of an empty prediction set? ➸ We discuss this in the
answer to the first question on page 296 of [19].

This is related to Equation (9): why’d we consider larger numbers of empty
predictions as something good? ➸ We do not regard empty predictions as being
good; we just say that they contribute to efficiency (potentially endangering
validity). On page 2, line 23, we refer to empty predictions as superefficient,
and superefficiency is not regarded, as far as we know, a good property in
statistics.

6. Consider transforming Section 6 into an appendix. ➸ We have thought
about this, but realized that transforming Section 6 into an appendix would
make the structure of the paper too complicated, since the proofs of Section 6
are used in Section 8. (Moving the proofs in Section 8 to the same appendix is
much less natural since those proofs are so simple, and then it is not clear what
to do with the examples in that section.)

7. P. 22, eq. (42): there’s an extra τ in the numerator of py. Is this a typo? if
not, could you explain why it appears here? ➸ The second τ corresponds to
i = l + 1 in (2).
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8. P. 26. line 30. The case of label-dependent significance levels was developed
in SLW. ➸ This case is very standard. Label-dependent significance levels were
used in, e.g., [19], the bottom of page 115 (and probably in earlier papers as
well).

9. P. 26, line 37. Why is the case |Y | = 1 interesting? in such case there’s
no need for predictions. ➸ This is not an interesting case per se, but already
this extremely simple case demonstrates the computational difficulties. We have
revised our description to make our meaning clearer.

10. Should the title be changed to “Criteria of efficiency for conformal set-valued
classification”? ➸ Have you seen changes.pdf? (We know that the journal
system is not working properly; it took a while for us to get hold of your pdf
report.) We say there:

We have changed the title of the conference paper to make it more
general: many of our results are applicable outside the theory of
conformal prediction.

Changes made in response to Referee #2’s comments

Thank you for your positive comments. These are the changes made in response
to your minor critical comments:

First, it is not clear which efficiency measures are new and which have been
introduced earlier. Although the authors provide references in the text, it would
be very helpful if they can add remarks in Table 1, to indicate which papers
(if any) first proposed each efficiency measure. ➸ This is not easy to do, since
the criteria used in various papers are often modifications of our criteria: see,
e.g., p. 2, line 46 and p. 6, lines 14–20; it is not clear how to treat the previous
version of this paper and our other papers that refer to this paper (such as [3]).
Finally, taking into account the importance of Table 1, we have decided not to
overload it with extra information.

Second, the authors mention in the introduction that the non-probabilistic effi-
ciency measures have some disadvantages. It is not clear what these advantages
are. Please elaborate, both theoretically and empirically. ➸ This is explained
at the end of Section 5, and we have added a forward reference to it at the top
of page 2 in Section 1.

Third, this paper mostly focuses on ideal conformity scores. In practice, how
would these be estimated? Are some scores easier to approximate than others?
➸ We do not propose to estimate the ideal conformity scores. Our idea is that
researchers will be implicitly encouraged to use the conditional probabilities
(or a monotonic function thereof) when the performance of their prediction
algorithms is measured using probabilistic criteria of efficiency.

Changes made in response to Referee #3’s comments
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We are grateful for your positive comments; these are our responses to your
suggestions:

Authors state the conformal predictors and transducer must take into account
conformity order rather than conformity measurements. Does it mean that
it depends on the p-values? Therefore, are they still e-free? ➸ We do not
think it can be said that conformal predictors and transducers must take into
account conformity order rather than conformity scores (measurements). In
fact conformity orders and conformity measure are equivalent for our purposes,
leading to the same p-values. The distinction between ǫ-free and ǫ-dependent
criteria is orthogonal to using conformity orders or conformity scores: both
conformity orders and conformity scores can be used in defining both kinds of
criteria.

Figure 2 shows the average values of some criteria for two distances: tangent
and Euclidean. Why those definitions of distance? ➸ This is now discussed on
page 21 after the itemized list.

Are there other examples of real applications of these criteria in the literature?
➸ There are plenty of real applications for non-probabilistic criteria. We would
like to see more application of probabilistic ones. References are given through-
out the paper.

Sincerely yours

The Authors

encl: New version of the paper
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