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Abstract 

 Imitating speech necessitates the transformation from sensory targets to vocal tract motor 

output, yet little is known about the representational basis of this process in the human brain. Here, 

we address this question by using real time MR imaging (rtMRI) of the vocal tract and functional 

MRI (fMRI) of the brain in a speech imitation paradigm. Participants trained on imitating a native 

vowel and a similar non-native vowel that required lip rounding. Later, participants imitated these 

vowels and an untrained vowel pair during separate fMRI and rtMRI runs. Univariate fMRI analyses 

revealed that regions including left inferior frontal gyrus were more active during sensorimotor 

transformation (ST) and production of non-native vowels, compared with native vowels; further, ST 

for non-native vowels activated somatomotor cortex bilaterally, compared to ST of native vowels. 

Using test Representational Similarity Analysis (RSA) models constructed from participants’ vocal 

tract images and from stimulus formant distances, we found that RSA searchlight analyses of fMRI 

data showed either type of model could be represented in somatomotor, temporal, cerebellar, and 

hippocampal neural activation patterns during ST. We thus provide the first evidence of 

widespread and robust cortical and subcortical neural representation of vocal tract and/or formant 

parameters, during pre-articulatory ST.  
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Introduction 

 Speech imitation is a complex and multi-stage process that requires the interaction of both 

sensory and motor systems, such that acoustic inputs can be processed, transformed to target 

motor outputs, and articulated as speech (see Guenther, 2006; Bohland, Bullock & Guenther, 

2010; Guenther & Vladusich, 2012). Early accounts proposed that the perceptual components of 

this multi-stage process hinge upon central speech representations that occur at the sub-phonemic 

level; these representations would code for the motor effectors necessary for speech articulation, 

during initial perception of the speech signal (Liberman et al., 1967). The predictions of this motor 

theory of speech perception have received mixed support (e.g., Pulvermüller et al., 2006; Möttönen 

& Watkins, 2009; D’Ausilio et al., 2009; cf. Scott et al., 2009). Nevertheless, more recent models of 

speech have further sought to link perception and production, by charting the contributions of 

sensory and motor representations to both perceptual and articulatory processes (e.g., Du et al., 

2014; Correia et al., 2015; Evans & Davis, 2015). Current understanding points toward a multi-

stage unfolding of speech representations, with sensorimotor transformation (ST) identified as a 

critical pre-articulatory component (Cogan et al., 2014; Leonard et al., 2016).  

 ST reflects the process of converting from an input speech acoustic signal (heard or 

imagined) to the phonemic and motor representations needed to execute the articulatory gestures 

that enable production of the perceived speech input (Mesgarani et al., 2014; Parker-Jones et al., 

2014; Wilson & Iacoboni, 2006). Current data suggest that neural representations during ST reflect 

a unified coding of both the phonemic identity of an utterance and the specific motor outputs 

required to repeat it (Cogan et al., 2014). However, much controversy has surrounded claims about 

the neural substrates that support ST processes. While some have argued for a central role of 

posterior Sylvian regions (Sylvian-parietal-temporal, Spt) in transforming from sensory 

representations to motor output (Hickok, Okada & Serences, 2009; Hickok, 2012; Hickok & 

Poeppel, 2007; Hickok & Buchsbaum, 2003), others have failed to support these claims (Parker-

Jones et al., 2014) or have suggested the involvement of more widespread sensory and motor 

regions (Simmonds et al., 2014b; Cogan et al., 2014). 
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 Given the multimodal nature of speech, a key challenge for research is to map insights from 

neural data onto speech articulatory behaviour (Bouchard et al., 2016), and onto parameters of 

speech acoustics (Mesgarani et al., 2014; Cheung et al., 2016). Developing a mechanistic 

understanding of speech thus requires that we link the acoustics of speech input and the 

subsequent actions of the speech motor effectors (i.e., lips, tongue, larynx) to the central brain 

representations that govern ST and speech production. With this approach, we can more 

comprehensively explain speech as an audiomotor behaviour, with respect to the functional brain 

representations that support that behaviour (see Carey & McGettigan, 2016). Yet to date, few 

studies have sought to explore acoustic and articulatory facets of speech representation for 

sensorimotor transformation, or articulatory aspects of speech representation during production 

itself (though see Bouchard et al., 2016). 

 While the acoustics of speech have been measured and quantified for decades, a 

fundamental difficulty has been probing the articulatory basis of speech production directly. Real-

time MR imaging (rtMRI) of the vocal tract during speech and related tissue analysis techniques 

now afford a non-invasive way to measure articulatory markers of speech production directly from 

the vocal tract (Scott et al. 2014; Lingala et al, 2016; Toutios & Narayanan, 2016). Such data and 

methods are amenable not only to making direct measurements of articulatory performance (e.g., 

tracking in-frame articulator position), but also to offline integration with other MR image-based 

methods, such as functional MRI. More specifically, in seeking to unite neural and articulatory data, 

as well as acoustic properties of speech, multivariate techniques such as Representational 

Similarity Analysis (RSA) (Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013) provide a highly 

insightful means by which to integrate these cross-modal data sources and assay neural 

representations for speech. Critically, RSA enables the comparison of distinctly different sources of 

data (e.g., fMRI, vocal tract images, speech acoustics) in representational terms, based on the 

expression of the data within an amodal dissimilarity space (Kriegeskorte et al., 2008). The 

representational basis of articulatory and/or speech acoustic information at the neural level can 

then be probed by comparing and quantifying the degree of relatedness between these 

dissimilarity patterns. RSA can thus support data-driven approaches to modelling neural 
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representations of vocal tract behaviour and/or speech acoustics that may emerge during ST and 

speech imitation. Moreover, the potential to use searchlight analyses, where representations are 

tested iteratively at adjacent locations within a brain volume (Kriegeskorte et al., 2006), offers a 

powerful method for probing the neural substrates that support these speech representations (e.g., 

Evans & Davis, 2015).  

 In the current study, we explored the representational bases of speech ST and production, 

by combining neural (fMRI), articulatory (real-time MRI of the vocal tract) and acoustic (speech 

spectra and formants) data, to offer a multidimensional account of speech. Monolingual adult 

participants trained on imitating an unrounded native vowel and a similar non-native vowel that 

required lip rounding. Later, participants provided fMRI data as they listened to and then 

subsequently imitated these trained vowels, as well as a further untrained pair. Importantly, an 

event-related rapid-sparse fMRI task design enabled us to probe both sensorimotor transformation 

(ST) and imitation, by sampling the BOLD response during both task phases, per trial. In separate 

runs interleaved with fMRI blocks, real-time MRI allowed us to capture lip dynamics for rounded 

versus unrounded vowels directly from participants’ vocal tracts (see Methods). We first tested 

whether non-native lip dynamics were acquired after training, and whether trained dynamics 

extended to the untrained non-native vowel. We then tested condition-wise representational 

patterns in our fMRI data against models built from vocal tract MR images during speech. This 

allowed us to probe neural data from speech imitation and ST with data-driven test models that 

reflected the position of the articulators as participants spoke each vowel. We further constructed 

two test models that described the relatedness between the vowel stimuli, based on the spectral 

properties of the stimulus acoustics, and based on the stimulus distances in formant space, 

respectively. We predicted that, over the four vowel conditions, models of articulator position 

derived from vocal tract images would correlate with condition-wise searchlight fMRI data 

representational patterns: i) within a brain mask reflecting regions where there was univariate 

activation for ST over all vowels (i.e., all ST > rest); and ii) within a brain mask reflecting regions 

where there was univariate activation for imitation over all vowels (i.e., all imitation > rest). We 

further expected that models of speech stimulus spectra and formant distances would correlate 
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with neural patterns for ST across conditions, within searchlights of regions active during ST for all 

sounds (i.e., all ST > rest).  

 
 
 

Materials and Methods 
 
Participants 
 
 Participants were 24 healthy right-handed monolingual female volunteers (mean age ± SD: 

25.9 ± 5.9; range: 19-38), free from any history of language or hearing difficulties. All were native 

British English speakers; none had proficiency in any non-native language beyond UK GCSE or 

equivalent. Given that a female talker provided our stimuli (see below), we tested female 

participants only, in order to avoid potential gender confounds in imitation accuracy. All provided 

written informed consent in line with local ethics and MRI protocols. The study was approved by 

the Ethics Committee at the Department of Psychology, Royal Holloway, University of London. 

 

Stimuli 

 Stimuli were steady-state front vowels (mean duration [ms] ± SD: 782 ± 72), produced by a 

female British English phonetician. Vowels belonged to 4 categories: two native to English (/i/, /a/, 

both unrounded) and two non-native (/y/, /ɶ/, both rounded). Here, the native/non-native distinction 

maps onto the articulatory feature of lip rounding, as rounding of front vowels is non-native to 

English (see Wells, 1970). Ten tokens were included per category (40 stimuli in total; see Fig. 1).   

 For each category, initial raw recordings comprised 20 exemplars; we converted the F1 and 

F2 formant measurements to mels (O’Shaughnessy, 1987), and selected the 10 tokens per 

category as follows: First, we calculated the median of F1 and F2 values across 10 potential 

tokens (formants were measured over the full vowel duration using Praat software; Boersma & 

Weeink, 2016). Second, we calculated the 2D Euclidean distance between the category median 

(F1 and F2) and each token (F1 and F2). Third, we calculated the standard deviation (SD) of the 

2D Euclidean distances for that category. Finally, we matched each of the categories as closely as 

possible for the SD of token distances to their respective category median (replacing tokens with 
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other exemplars in some instances). Stimuli were selected in this systematic fashion to ensure that 

variability of tokens within each category was controlled as carefully as possible across each of the 

four vowels. Stimuli were scaled to equal total RMS amplitude in Adobe Audition CS 5.5 (Adobe 

Systems Inc., San Jose, CA). 

  For use in the scanner, stimuli were parametrically equalised (in Adobe Audition; filter CF: 

3.5 kHz; 10 dB gain; Q factor = 2), filtered with earbud-specific parameters for use with 

Sensimetrics earbuds (S14; Sensimetrics Corp., Malden, MA), and amplified by +6dB with Adobe 

Audition. Parametric equalisation and amplification were applied to ensure that all vowels were 

clearly distinguishable against continuous rtMRI acquisition noise. 

 In addition to the natural vowel tokens, we created spectrally-rotated versions of each of the 

40 stimuli. These served as an acoustic baseline in the fMRI task (10 trials per run) that preserved 

the spectro-temporal complexity of speech; responses to this condition are not reported here. 

 

Behavioural Training Procedure 

 Participants completed a language background questionnaire including proficiency 

estimates for any languages they had learned. All testing took place in a sound attenuated booth. 

All experiments were presented in Matlab (2014a, the Mathwork, Natick, MA) using the 

Psychophysics toolbox (Kleiner, Brainard & Pelli, 2007). Audio stimuli were presented through 

Sennheiser HD 201 headphones (Sennheiser electronic GmbH & Co. KG, Wedemark, Germany). 

 Participants were randomly assigned to one of two counterbalanced training conditions: the 

first group received training on the vowel pair /i/-/y/ and the other group trained on the /a/-/ɶ/ pair. 

Participants watched a two-minute training video, featuring the same phonetician as heard in the 

stimuli. The video included: repetitions of the rounded and unrounded vowels; instructions on non-

native lip rounding; multiple camera angles, with close-up front and profile views of the rounded 

and unrounded dynamics (with and without phonation). Two versions of the video were produced, 

one for each training pair (i.e., /i/-/y/ or /a/-/ɶ/), that differed only in the frames where vowels/lip 

rounding were demonstrated. The training video helped to assure that participants were presented 
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with clear and accessible audio-visual instructions as to how the lip protrusion should be 

performed. Moreover, use of the videos ensured that the instructions were always consistent 

across subjects and between the two training conditions (with the exception of the frames where 

specific vowels were demonstrated). 

 Participants then completed the training (16 blocks of 10 trials; 8 blocks per vowel). In a 

given block, the task was to imitate all 10 tokens from a single category as accurately as possible. 

Each trial began with a visual prompt (‘Listen’) at the upper left of the screen, and delivery of one 

token from the category for that block. At stimulus offset, the upper left visual prompt was replaced 

(‘Pause...’) for 1.7s, followed by a 2s repeat window (‘Repeat’), during which participants imitated 

the vowel. The next trial began after 2s had elapsed. Block order for vowel category was 

pseudorandomised, with the constraint that the same vowel category repeated no more than once 

on adjacent blocks. Imitations were recorded with a condenser microphone (Røde NT1-A; Sydney, 

Australia), digitized in Matlab, and saved as separate .wav files per trial. At the beginning and at 

the end of the session, participants made ‘same or different’ 2-alternative forced choice (2AFC) 

perceptual judgements on pairs of exemplars from within and across the four stimulus categories. 

Mean d’ scores showed high accuracy (i.e., d’ > 2) in discrimination for all pairs, before and after 

training.  

 

MRI procedure 

 Data were acquired on a 3T Siemens Tim Trio with a 12-element headcoil (fMRI & rtMRI) 

and 3–element neck array (rtMRI) (Siemens, Erlangen, Germany). All stimuli were delivered 

through MR-compatible earbuds; speech was recorded per run with a fibre-optic microphone 

(FOMRI-III; OptoAcoustics Ltd., Moshav Mazor, Israel). All stimuli were presented via the 

Psychophysics toolbox running in Matlab, with back projection for presentation of visual stimuli. 

 After completing the imitation training on one pair of vowels (see above), we presented 

participants with both pairs of vowels during fMRI and rtMRI, giving a 2 (training) x 2 (native/non-

native) design. This enabled us to probe training outcomes for both non-native vowels using rtMRI, 

and to test the representational basis of trained and untrained vowel conditions in fMRI data using 
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univariate analyses and RSA. A pair of rtMRI runs (65s each) was presented before each of the 

three fMRI runs (~12 min each; total scanning time ~60 mins; Fig. 1). 

 fMRI acquisition entailed a rapid-sparse, event-related protocol, where auditory stimuli and 

speech production events were timed to occur during short silent periods between acquisition of 

whole-brain volumes. Each listen-imitation trial occurred over two acquisition + silent gap periods; 

participants listened to a particular vowel, and imitated it when cued after the next acquisition. This 

enabled us to capture BOLD activation reflecting sensorimotor transformation and the subsequent 

vowel imitation. Listen only and rest trials occurred in a single acquisition + silent gap period (see 

Fig. 1). In the following, we distinguish listening that entailed sensorimotor transformation from 

passive listening, as ‘listen pre-imitate’ and ‘listen only’, respectively. Five event types were thus 

presented during fMRI: listen pre-imitate (vowels); imitation (vowels); listen only (vowels); listen 

only (spectrally-rotated vowels); rest.  

 fMRI trials for listen pre-imitate and imitation were cued as follows. At the onset of the first 

acquisition, a blue fixation cross cued that the trial would require vowel imitation. Vowel stimuli 

were presented in the silent period after this first acquisition (i.e., onset of sensorimotor 

transformation); stimulus onsets were jittered variably (50-500 ms) from the start of the silent gap. 

At the offset of the next acquisition, the blue fixation cross changed to green, cueing the participant 

to imitate the vowel.  

 Listen only (speech and audio baseline) trials and rest trials were cued at acquisition onset 

with a yellow fixation cross that remained for the trial duration (one acquisition + silent gap period); 

stimuli were delivered with onsets jittered variably as above. Participants were instructed to remain 

alert during listen trials and not to produce any speech. Five mini-blocks of 28 trials (16 listen then 

imitate, 8 listen only, 2 each of rest & auditory baseline) were presented per fMRI run (140 trials 

total: 80 listen & production; 40 listen only; 10 each of rest & auditory baseline). Trial order was 

randomised separately for each mini-block. 

 fMRI data were 3D echo-planar images (EPI) collected with rapid-sparse acquisition; voxel 

size 3 mm isotropic; flip angle 78 °; slice gap 25%; echo time (TE) 30 ms; vol. acquisition time 1.7 

s; inter-scan silent period 1.5 s. A 3D T1-weighted MP-RAGE scan was acquired for EPI image 
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alignment and spatial normalisation; voxel size 1 mm isotropic; flip angle 11°; TE 3.03 ms; TR 

1830 ms; image matrix - 256 x 256. 

 rtMRI blocks comprised pairs of 65s runs. Within each run, participants imitated all four 

vowel categories, with each vowel category delivered in a miniblock of five consecutive trials. The 

order of vowel miniblocks was pseudorandomised separately per run. Five different tokens per 

category were presented in a run, so that over a pair of runs, participants imitated all 10 tokens 

from each given category. Each trial began with delivery of a vowel stimulus and a visual prompt 

(‘Listen’), followed by a prompt to imitate (‘Repeat’). 

 Real-time data were fast gradient echo images; flip angle: 5°; TE/TR: 1.25/125 ms; 

GRAPPA factor 2; partial-Fourier: 75%; FOV: 220 x 274 mm2; 2.5x2.5x10.0 mm3 spatial and 125 

ms temporal resolution (8 frames per second). Pilot experiments showed that we could obtain 

adequate numbers of frames during steady state phonation when sampling at 8 frames per 

second, to enable us to index articulator positioning for the vowels. Further, our images achieved 

good whole-vocal tract spatial resolution, and were hence suited to use in processed form within 

RSA models (see below). 

 

Data processing and analyses 

 fMRI. fMRI data were preprocessed and analyzed in SPM8 (Wellcome Trust Centre for 

Neuroimaging, UK). Functional images for each run were realigned, and the mean functional 

image co-registered with the anatomical scan. For each run, we set a motion criterion such that all 

acquisitions had maximum translations that were less than a single dimension of one voxel (i.e., for 

any single acquisition, the total translation over the three axes was < 3.0 mm, relative to the mean 

functional image). Only one participant exceeded this criterion, and was excluded from further 

analyses. In practice, we found that translations about the z-axis were most common, and of 1-2 

mm magnitude. After image realignment and co-registration, location of the anterior commissure 

(AC) was determined manually from the anatomical scan. Structural and functional images were 

then re-oriented so the origin of each image matched the AC, prior to spatial normalisation. 

Functional images were spatially normalised with parameters derived from the unified 
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segmentation of the anatomical image, with resampling to 2 mm isotropic voxel dimensions. 

Smoothing was applied with an 8 mm FWHM Gaussian kernel. 

 At first-level analysis, each condition was modelled with a separate regressor of event 

onsets in a GLM, convolved with a canonical haemodynamic response function (HRF); rest was 

modelled implicitly. Event onsets for listen only trials and listen pre-imitate trials were modelled 

using the onset time of the audio stimulus. Event onsets for speech imitation were modelled using 

the onset of the cue to imitate (i.e., crosshair colour change at acquisition offset). The six motion 

parameters (translations and rotations about the x, y and z axes), the run mean image, and onsets 

of any events that reflected in-scanner task errors were included as per-run regressors of no 

interest. We assured non-collinearity of regressors in the analyses via our task design: imitation 

trials could be followed by listen only or rest trials, or a further imitation trial, so participants could 

never accurately predict the next trial type. Additionally, we jittered the pre-imitation stimulus 

onsets variably across trials (50-500 ms post acquisition offset; see above).  

 We excluded one fMRI dataset due to motion artefact, and analyzed fMRI data from 23 

participants. Error trials (e.g., no speech on an imitation trial) were flagged by comparing in-

scanner audio recordings to saved stimulus logs (group mean task accuracy: > 96% per block), 

with the scan events reflecting those trials flagged and included as regressors of no interest per 

run (see above).  

 First-level t-contrasts of interest modelling effects of each of the four vowels (vs. rest) were 

specified for listen pre-imitation and imitation; the t-maps for listen pre-imitation and imitation were 

entered into 2 x 2 univariate analyses (factors: native/non-native; trained/untrained) and RSA 

analyses (see below). First-level t-contrasts (vs. rest) were also specified for each main effect of 

listen pre-imitate, imitation and listen only. To constrain analyses to regions critical to speech 

perception and production, we a priori elected to confine RSA searchlights to regions-of-interest 

(ROI) comprising areas that were active in listen pre-imitation (vs. rest), and imitation (vs. rest; see 

RSA analyses).  

 rtMRI. Real-time image dynamics were analyzed using a custom Matlab toolbox (see Kim 

et al., 2014). Output lip and larynx co-ordinates for each trial were saved for offline averaging and 
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analyses. Within each block pair, we averaged the x co-ordinates at the steady-state frames per 

vowel. Lip x co-ordinate difference scores (unrounded – rounded) were calculated for each vowel 

pair, for analysis at group level. These measures expressed the relative difference in the x co-

ordinate when comparing each native vowel with its non-native counterpart. Difference measures 

were initially calculated within block pair and then later averaged, so as to minimise the possibility 

that head movement between blocks biased the x co-ordinate. Use of a difference score in 

particular also helped to account for slight movements due to head motion, which tend to be 

consistent across the vowels in a single block pair. During rtMRI, we sampled the frames 

corresponding with the steady-state portion of the articulation. We appreciate that ‘dynamics’ might 

imply that the dependent variable incorporates a temporal dimension reflecting movement during 

the measured frames; here, we intend it with respect to a process that is overall dynamic (given 

that the lips had to move from a stable resting location to the appropriate position during 

articulation), but based on a dependent measure that samples the position of the articulators in 

time, once a stable arrangement has been reached. We should note that the measure does include 

a temporal dimension – several frames were averaged over within each trial to produce the 

estimate of lip position – albeit the position of the articulators was largely stable during those 

frames. 

 Per trial, we averaged the consecutive real-time frames in the middle of the trial where 

articulator position was stable (minimum 2 frames per trial; typically 4-6 frames), using the adaptive 

averaging procedure of Scott et al. (2013). A pixel intensity-based rigid body translation was then 

applied (using in-house Matlab routines), aligning images from trials of the same category that 

were collected across separate runs of a block pair. These averaged and aligned images were 

used in the construction of vocal tract derived test models for RSA analyses (see below). 

 

Representational Similarity Analysis (RSA)  

 RSA provides an analysis framework with which to evaluate the neural representation of 

specific conditions. This can be achieved by comparing patterns of relationships for neural 

activation across conditions with pre-defined test models that reflect a predicted pattern of 
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condition-wise relationships (Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013). The extent to 

which the pattern of neural activation relates to the test model pattern may then be evaluated 

statistically, to quantify the representational basis of the expected model at the neural level.  

 Relationships amongst conditions in RSA are expressed as the correlation distance (i.e., 1 

– Pearson Product moment correlation) between all possible condition pairs for a given data type 

(e.g. fMRI activation maps). This yields a Representational Dissimilarity Matrix (RDM), where each 

RDM cell reflects the extent of dissimilarity between a pair of conditions (0→+2, where 0 reflects 

null dissimilarity, i.e. perfect correlation). A RDM derived from neural data can be compared to a 

given test RDM with a Spearman correlation; this provides a test of the extent to which the neural 

pattern of relationships correlates with the expected model pattern. 

 Here, we performed RSA searchlight analyses of neural activation within ROIs 

(Kriegeskorte et al., 2006). We compared the condition-wise patterns amongst fMRI t-maps for 

vowel ST (i.e., listen pre-imitate trials) and for vowel imitation, to the test RDM patterns that we 

derived from images of the vocal tract during speech. In this way, we could test the prediction that 

the neural representation of vowel sensorimotor transformation and production would reflect the 

pattern of dissimilarity amongst conditions that emerged based on the physical positions of 

participants’ vocal tracts during imitation of vowel categories.  

 Additionally, we defined two further test RDMs built from 1) the spectral properties of the 

vowel stimulus acoustics and 2) the distances between the stimuli in vowel formant space. This 

enabled us to probe whether representations at the neural level during speech ST would reflect 

dissimilarity patterns that related to the raw acoustic input that the sensorimotor transformation was 

initially based on, or to a more abstracted perceptual representation of the vowels. 

 Vocal tract RDM construction. Using the within-trial adaptively averaged rtMRI images 

from each subject, we created subject-wise RDMs using the RSA toolbox (www.mrc-

cbu.cam.ac.uk/methods-and-resources/toolboxes/). Per subject, these RDMs comprised 

correlation distances (1 - correlation coefficient) between the vocal tract images from the trials for 

each vowel condition (i.e., the imitations produced during rtMRI runs).  
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 To create the vocal tract RDMs, the averaged rtMRI images were first vectorised in Matlab; 

bespoke masking was then applied to each subject’s data, reducing the field-of-view for each trial-

wise average rtMRI image (to exclude non vocal tract tissue). For a given subject and real-time 

block pair, we cross-correlated every masked trial-wise image with all other images; this yielded 

one 40 x 40 matrix per block pair (three of these matrices in total per subject; Fig. 1c, second left). 

Within each 40 x 40 matrix per subject, we converted every correlation distance to a correlation 

coefficient (i.e., by subtracting each correlation distance from 1). Next, we Fisher z-transformed 

each of the correlation coefficients, which gave three 40 x 40 matrices comprising z-transformed 

values. We then averaged together the z-transformed values that reflected the trial by trial 

comparison of the items within a given vowel category, and also between each pair of vowel 

categories (matrix 0 diagonals were excluded from averaging to avoid bias). This yielded three 

summary 4 x 4 matrices per subject (Fig. 1c, middle); we then averaged these three matrices 

within-subject (i.e., collapsing blocks), and transformed back to correlation distance (i.e., reversing 

the z-transform procedure above, and subtracting the correlation coefficients from 1) to give an 

overall vocal tract RDM for each participant. Finally, we averaged the z-transformed subject-wise 4 

x 4 matrices across the full cohort, and transformed back to correlation distance: this produced a 

single grand average 4 x 4 RDM that described the overall pattern of dissimilarity between the four 

vowels that subjects produced, based on the full cohorts’ real-time vocal tract data (see Fig. 1c).  

 We used the group average vocal tract model as input to searchlight analyses of each 

subject’s fMRI t-maps across conditions (vs. rest). Additionally, we used each subject’s own 4 x 4 

vocal tract image-derived RDM as a bespoke model, to conduct searchlights of the fMRI t-maps 

across conditions. 

 Stimulus acoustic RDM construction. We processed each audio stimulus presented to 

participants, by extracting 120 ms of audio centred on the midpoint of each stimulus sound file. For 

each of the sound files, we derived the power spectral density (PSD) matrix of the excised 

segment (using a Goertzel DFT spectrogram algorithm in Matlab; range 0.1-5000 Hz; 260 NFFT; 

0.1 Hz increment) (see Carey & McGettigan, 2016). Each PSD matrix was used as input to the 

RSA toolbox and cross-correlated over all possible pairs (yielding a 40 x 40 matrix); we averaged 
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RDM matrix values within and across category tokens with a similar procedure as for rtMRI images 

(above) to create a summary 4 x 4 RDM. Rank correlations comparing the stimulus derived RDM 

to the vocal tract image derived RDM showed that the models were not correlated (Spearman rho 

and Kendall-Tau both < 0.1, p > 0.9). 

 Vowel 2D Euclidean distance RDM construction. In addition to the stimulus acoustic 

model based on the power spectral density of the vowel stimuli, we constructed a model based on 

the 2D Euclidean distances between the first and second formants (F1 & F2) of the stimuli, in Mel 

space. As outlined in Stimuli (see above), the first and second formants defined the stimulus 

categories within vowel acoustic space; moreover, F1 and F2 serve as the acoustic correlates of 

tongue height and frontness, respectively. Thus, we wished to test whether a representational 

model that reflected the acoustic distances amongst the stimulus categories – and that was more 

broadly indicative of acoustic correlates of articulator position – was represented at a neural level. 

To construct the model, we calculated the 2D Euclidean distance (in Mels) between the F1 and F2 

of each possible pair of stimuli. This afforded a 40 x 40 matrix of 2D Euclidean distance values; we 

rank transformed each distance value to lie between 0 and 1 (greater dissimilarity reflected values 

closer to 1). We reduced this 40 x 40 RDM, averaging within and across category cells in the same 

manner as above to yield a 4 x 4 test RDM. The F1-F2 2D distance model was significantly 

correlated with the vocal tract average model (Spearman rho: 0.94, p < 0.005; Kendall-Tau: 0.87, p 

< 0.02), but was not correlated with the stimulus PSD model (Spearman rho and Kendall-Tau both 

< -0.2, p > 0.5). These correlations indicate that although the F1-F2 2D distance model was 

derived from the stimuli, its representational pattern was distinct from the stimulus PSD model, 

which included broader spectral content. The high correlation between the F1-F2 2D distance 

model and the vocal tract model indicates good correspondence in the representation of category-

level information based on acoustical cues that derive from articulator position, and from articulator 

position during imitation of these sounds. 

 RSA searchlight analyses. We conducted searchlights on fMRI t-maps. We elected a 

priori to perform searchlights in regions critical to speech imitation and speech ST. ROIs were 

defined based on: 1) regions active for listen pre-imitate, across all vowels (All listen pre-imitate > 
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rest); 2) regions active during imitation, across all vowels (All imitation > rest). To limit estimation 

bias for each ROI contrast, we calculated Jackknifed partial estimates of voxel-wise activation, and 

subtracted the voxel-wise mean partial estimate from voxel-wise activation for the full cohort. 

These Jackknifed ROIs were thresholded liberally at whole-brain level, providing coverage of 

bilateral sensorimotor cortex and anterior cerebellum (imitation; p < 0.005, uncorrected), and 

bilateral sensorimotor cortex, superior temporal gyri and sulci, cerebellum, hippocampus and 

subcortical nuclei (listen pre-imitation; p < 0.001, uncorrected) (see Fig. 1d). Total voxel counts in 

the ROI volumes were: listen pre-imitation – 12699; imitation – 3112.  

 Analyses were performed in the ROIs separately, within spherical searchlights (radii: 4.5 

mm; ~ 30 resampled voxels). The 4.5 mm searchlight radius is in line with Kriegeskorte et al. 

(2006), who showed that searchlight radii of ~ 4 mm yielded the most optimal performance for 

unsmoothed data, and for smoothed data with good contrast-to-noise ratio (i.e., 0.3-0.4). In each 

searchlight, Spearman correlations were used to compare the test 4 x 4 RDM model to the fMRI t-

map 4 x 4 RDM (i.e., built by cross-correlating the t-values over all voxels in that sphere on a 

condition-wise basis, expressed as correlation distances) (Fig. 1d). During the searchlight 

procedure, each voxel in the ROIs iteratively served as the centre of the sphere. At ROI edges, the 

searchlight volume was smaller/asymmetric and restricted to voxels that fell within the ROI bounds 

(i.e., the sphere was centred on a voxel at the ROI mask edge, where the sphere itself was 

‘masked’ by the ROI boundary, so that the ‘spherical’ volume was constrained to the voxels within 

the ROI). In any one sphere, the Spearman correlation between the fMRI t-map and test model 

RDMs was recorded and reported at the central voxel in that sphere. Second-level group statistics 

were performed on the resulting voxel-wise Spearman correlation maps using one-sided Wilcoxon 

signed rank tests (i.e., testing for positive Spearman correlations only, since negative correlations 

were not of interest).  

 We predicted that neural representations reflecting the vocal tract model patterns would 

emerge at a neural level for both speech imitation and sensorimotor transformation; however, we 

predicted that neural representations reflecting the stimulus (i.e., PSD and F1-F2 2D distance) 

models would be less likely to emerge during imitation (cf. Cheung et al., 2016). Thus, separate 
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searchlight analyses were performed for ST fMRI data, using the vocal tract, stimulus PSD and F1-

F2 2D distance models; the imitation fMRI searchlight analysis was conducted with the vocal tract 

model only. 

 
 

Results 
 

 We explored the functional brain basis of speech sensorimotor transformation (ST) and 

imitation using a speech production paradigm including real-time MRI of the vocal tract and fMRI of 

the brain. Specifically, we aimed to combine both sources of data, to test the representational basis 

of vocal tract behaviour during ST and imitation.  

  

Articulatory training - real-time MRI lip dynamics 

 To probe whether training led to lip protrusion for non-native vowels, we measured lip 

dynamics using real-time MRI while subjects produced trained/untrained and native/non-native 

vowels. We tracked the x pixel co-ordinate position of the lips on every trial. For each subject, we 

calculated the difference in mean lip x pixel co-ordinate between the native and non-native vowels 

(i.e., /i/ minus /y/, /a/ minus /ɶ/). Difference scores greater than 0 demonstrated that the non-native 

articulatory dynamics had been acquired; i.e., that the lips were protruded for non-native vowels 

relative to the corresponding native vowels. 

 As expected, both groups achieved significant extents of lip protrusion for the trained non-

native vowels (Fig. 2) [planned one-sample t-tests of difference (unrounded – rounded) vs. 0: 

group 1 & 2 both t > 4.0, p < 0.005]. Moreover, we found that training on imitating one non-native 

vowel extended to the non-native vowel that subjects had not practised before scanning. Thus, on 

average, subjects also protruded their lips successfully for the untrained non-native vowel [planned 

one-sample tests of untrained diff. (unrounded – rounded) vs. 0: group 1 & 2 both t > 3.6, p < 

0.005]. 

 Owing to differences in training conditions and open versus close vowel dynamics (i.e., jaw 

position) between the two vowel pairs, we found that lip protrusion varied due to vowel and training 
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group. There was a marginal interaction of these factors [F(1,22) = 3.83, p = 0.063, ηp

2 = 0.148], 

and significant main effects of each factor [vowels/training group: F(1,22) = 6.5/7.4, p = 

0.018/0.012, ηp
2 = 0.228/0.253]. Due to a training advantage and the greater extent of lip 

protrusion anatomically possible for the close /y/ vowel, group 1 protruded their lips marginally 

more for /y/ (trained) than /ɶ/ (untrained) [t(11) = 2.38, q = 0.08]. However, group 2 showed no 

such difference between vowels (q > 0.3) (Fig. 2). Group 1 also protruded marginally more for /y/ 

than did group 2 [t(13.3) = 2.73, q = 0.08]; this was expected, since group 2 did not train on /y/ (Fig. 

2) (all tests false discovery rate [FDR] corrected). The lesser protrusion overall for the open /ɶ/ 

likely reflects the lip dynamics that were feasible for this vowel (limited by requisite lowering of the 

jaw); nevertheless, training on /ɶ/ was still followed by lip protrusion for the untrained /y/. 

 

Univariate fMRI analyses 

 We targeted the listen pre-imitation and imitation portions of the speech production trials 

with separate flexible factorial 2 x 2 ANOVAs in SPM (factors: trained/untrained, native/non-native); 

this let us explore activation across conditions for pre-articulatory sensorimotor transformation (ST) 

and subsequent imitation, respectively.  

 Modelling the main effect of native versus non-native vowel status, there was significant 

activation (p < 0.0015, k = 50, achieving cluster-level FDR q < 0.05) in inferior frontal and parietal 

speech regions for ST, together with activation in inferior frontal regions during vowel imitation (Fig. 

3a). Activation was distributed for ST (blue clusters, Fig. 3a), and greater for non-native than for 

native vowels in all of these regions; activated regions included left inferior frontal gyrus (IFG; BA 

44), left somatosensory cortex, and right ventrolateral motor cortex. For vowel imitation, activation 

(green clusters, Fig. 3a) was significantly greater for non-native than native vowels in left anterior 

insula, left IFG (BA 44 & 45), and left lateral pre-motor cortex. Significantly greater activation for 

native than non-native vowel imitation occurred at right medial pre-frontal cortex (Fig. 3a, bottom). 

Although not hypothesised a priori, this effect may reflect differential recruitment of non-speech 
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attentional or default networks, as a function of imitation complexity (i.e., greater recruitment in the 

less complex native condition; Geranmayeh et al., 2014). 

 In exploring the main effect of training, activation during ST for trained vowels was greater 

than for untrained vowels at right anterior cerebellum (Fig. 3b). This suggests that regions involved 

in motor performance were engaged during the pre-imitation preparatory ST period, in the absence 

of any overt articulation. While this activation was significant at a voxel height threshold of p < 

0.0001 (k = 30), it did not survive with cluster-level FDR correction (at p < 0.0015, k = 50; q > 0.05). 

No regions showed significant effects of training on activation during vowel imitation. 

 Finally, neither 2 x 2 analysis yielded evidence of clusters that showed significant two-way 

interactions.  

 

Representational Similarity Analysis (RSA) 

 To probe representation of vowel sensorimotor transformation (ST) and imitation in speech 

sensorimotor regions, we built test models of vowel production derived from images of the vocal 

tract. Further, we constructed stimulus test models derived from the spectral properties of stimuli, 

and the inter-stimulus distances in formant space. In a series of analyses, we compared RDM 

patterns derived from vocal tract images of vowel articulation to patterns of fMRI activation in 

searchlights within functionally defined speech imitation and speech ST ROIs. We combined both 

training groups in RSA second-level analyses, since we aimed to probe ST and production effects 

common to all subjects.  

 

RSA 1: Sensorimotor transformation (ST) 

 All models were tested within the speech ST ROI (see Methods: RSA Searchlight 

Analyses). As predicted, we found that the group average vocal tract RDM was significantly 

correlated with fMRI activation patterns during ST (within-ROI peak-level FDR-corrected q < 0.05; 

Fig. 4a). Table 1 presents peak co-ordinates in MNI-space for the searchlight correlations. Regions 

that yielded significant correlations included: bilateral somatomotor cortex, hippocampus and 

parahippocampal gyrus, cerebellum (lobule V/VI, Cru I), left superior temporal lobe, and bilateral 
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putamen (Fig. 4a). Correlations with the vocal tract model in pre-central gyrus and post-central 

gyrus were revealed as a series of clusters across each hemisphere, with foci at ventrolateral pre-

central gyrus extending across the central sulcus onto post-central gyrus; further clusters were 

observed in more dorsal pre-central gyrus locations bilaterally, and at sub-central gyrus bilaterally. 

Correlations across left superior temporal lobe occurred as two major clusters, one extending from 

lateral Heschl’s gyrus to anterior STG and STS, and the other located at posterior STS. 

Correlations in subcortical structures included a cluster that covered much of left putamen, with a 

further neighbouring cluster at left globus pallidus. A smaller homologue of the left putamen cluster 

also manifested at right putamen. Correlations across medial, anteromedial and ventral temporal 

lobe (MTL, aMTL, VTL) were extensive, covering much of the anterior hippocampus bilaterally, in 

addition to parahippocampal gyrus, right collateral sulcus, and left aMTL (proximal to the ventral 

boundary with circular sulcus). Correlations were also extensive within the cerebellum, covering 

much of lobules V/VI bilaterally, in addition to Crus I in the right cerebellum. A large cluster also 

emerged within the pons, lateralised to the right of the midline. 

 Exploring these findings in more detail, we ran searchlights at the single-subject level, using 

each subject’s average 4 x 4 vocal tract RDM as the test model in a searchlight of their own ST 

fMRI data (see Supplementary Fig. 2). Group statistics were then calculated across the resulting 

subject-wise Spearman correlation maps. The analysis showed extensive evidence of significant 

voxels that overlapped closely with the results noted above for the cohort-average 4 x 4 vocal tract 

RDM (see Supplementary Fig. 1). We tested the difference in significance of the Spearman 

correlation maps derived from the average and the subject-specific vocal tract models (using voxel-

wise Wilcoxon signed-rank tests); we found no evidence of robust differences in voxel-wise 

correlations (FDR-corrected q > 0.05), and observed only small clusters at left antero-medial 

temporal lobe and right collateral sulcus that showed stronger correlations for the subject-specific 

than the group average models (p < 0.001, uncorrected; data not shown).  

 Thus, we found that test representational patterns built from vocal tract images of 

articulation across all four vowel categories were significantly correlated with fMRI activation 

patterns during sensorimotor transformation that preceded the imitation of the vowels. Further, 
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similar results were observed both when using group averaged and subject-specific vocal tract 

RDMs in searchlight analyses of ST data. 

 Probing the representational bases of the ST data further, we used the stimulus PSD and 

F1-F2 2D Euclidean distance models as inputs to searchlights of pre-imitation listening fMRI data 

within the ST ROI. We found no evidence of significant correlations in the ST ROI between the 

stimulus PSD model and fMRI activation patterns (no searchlights survived at FDR-corrected q < 

0.05, nor p < 0.005, uncorrected). However, the F1-F2 2D distance model did yield robust 

correlations (FDR-corrected q < 0.05) with ST fMRI activation patterns (see Fig. 5), across many of 

the same regions that showed significant correlations for the vocal tract model searchlights of ST 

data. We tested the difference between the correlation maps for the average vocal tract, stimulus 

PSD, and F1-F2 2D distance models in the ST ROI (with voxel-wise Wilcoxon signed rank tests). 

We found that the average vocal tract model yielded significantly more robust correlations with the 

ST fMRI activation patterns than did the stimulus PSD model, at all voxels that had shown 

significant correlations with the vocal tract model in the first searchlight analysis (FDR-corrected q 

< 0.05). Similarly, we found that the F1-F2 2D distance model revealed significantly more robust 

correlations with ST activation patterns than did the stimulus PSD model, across all voxels that had 

shown significant correlations with the F1-F2 2D distance model in the initial analysis (FDR-

corrected q < 0.05). We found no evidence of any significant differences in robustness of 

correlations between the vocal tract average model and the F1-F2 2D distance model (all FDR q > 

0.05). 

 In sum, we found that test representational patterns built from vocal tract images of vowel 

articulation and from the distances between the stimuli in vowel formant space, were significantly 

correlated with fMRI data obtained during sensorimotor transformation that preceded the imitation 

of these vowels. Further, the vocal tract and F1-F2 2D distance RDM test models yielded more 

robust correlations with the ST fMRI data than did the speech stimulus PSD model.  
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RSA 2: Speech imitation 

We next explored the representational basis of speech imitation. We predicted that the vocal tract 

RDM model would reveal representational patterns in the imitation fMRI data, for searchlights 

within the speech imitation ROI.  

 We found very limited evidence of correlations between the test vocal tract and searchlight 

RDM patterns at the group level. Several small peaks manifested within our speech imitation ROI 

at right lateral pre-central gyrus and post-central gyrus; a small peak also emerged at the boundary 

between left ventral pre-central gyrus and left lateral Heschl’s gyrus (Fig. 4b). These observed 

peaks were significant at an uncorrected threshold of p < 0.005, but did not survive with FDR-

correction (q > 0.05). 

 Hence, we found that the vocal tract RDM test model revealed a quite limited set of regions 

where searchlight correlations with fMRI activation patterns for imitation survived at uncorrected 

thresholds; those searchlight correlations did not survive correction for multiple comparisons.  

 

RSA 3: Speech perception 

 While the primary focus of our present RSA analyses was on ST and speech imitation, we 

also considered whether representation of the acoustically-based and vocal tract image-based 

RDMs would emerge during passive listening (i.e., during the listen only trials that occurred 

pseudorandomly amongst the ST/imitation trials). We defined an ROI for RSA searchlight 

analyses, based on regions that were active in the univariate contrast of all listen only > rest (using 

the same Jackknifing procedure as for the ST and imitation ROIs; the Jackknifed mask was 

thresholded liberally at p < 0.05 uncorrected, providing coverage of superior temporal gyrus and 

sulcus [total mask voxel count = 941]). In separate searchlight analyses, we used the group 

average vocal tract RDM, the stimulus PSD RDM, and the stimulus F1-F2 2D Euclidean distance 

RDM as test models which we compared to the patterns amongst the condition-wise listen-only t-

maps from our fMRI analyses. We found that only the stimulus PSD RDM revealed any evidence of 

searchlight correlations significant at p < 0.005 (uncorrected). These manifested as a small cluster 

at left anterior STG; however, the correlations were non-robust to FDR-correction across the ROI 
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voxels. We include the results from the stimulus PSD searchlight analyses for the interested reader 

as Supplementary Figure 3, at an uncorrected threshold; however, we note that these results did 

not survive correction for multiple comparisons and should be interpreted cautiously. 

 

 

Discussion 

 Here, we demonstrate that the neural representations of speech sensorimotor 

transformation (ST) can be revealed by images of the speaking vocal tract, and by the acoustic 

correlates of vowel articulation. Our results shed light on the extensive functional brain networks 

involved in preparing to articulate imitations of vowels that varied in familiarity; these results unveil 

the topography of regions involved in ST for vowel categories differing in their articulatory and 

acoustical properties, over and above results obtained using more traditional univariate BOLD 

analyses.  

 Using a speech production paradigm, we trained monolingual adults to imitate native and 

non-native vowel targets. Central to our study was probing training outcomes directly from the 

motor effectors used for speech, via real-time vocal tract MR imaging. We found that participants 

were successful in acquiring the lip protrusion dynamics for trained non-native vowels, and also 

that they extended these dynamics to an untrained non-native vowel during scanning. While vocal 

tract dynamics have previously been measured for vowel articulation (e.g., tongue movements: 

Niebergall et al., 2013), we show here that labial tissue metrics allow measurement of articulatory 

performance for non-native speech. Speech imitation studies have demonstrated that practice 

leads to reduced acoustic distance between target and imitation formants (Kartushina et al., 2015), 

but no study yet has shown the acquisition of specific non-native articulatory dynamics with rtMRI. 

We thus present the first MRI data collected directly from the vocal tract to show successful 

articulatory learning for non-native speech.  

 Having determined behaviorally that non-native vowels were produced with the requisite 

articulatory dynamics, functional MRI allowed us to explore neural correlates of both speech 

sensorimotor transformation (ST) and imitation. Univariate results showed effects of non-
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nativeness and training during ST, and of non-nativeness during overt imitation. In line with existing 

literature (Moser et al., 2009; Golestani & Zatorre, 2004; Simmonds et al., 2011; Perani et al., 

2003), we found increased activation in left anterior insula and left IFG during non-native vowel 

imitation; this likely reflects the taxing of phonological and articulatory processes by these vowels 

(see Riecker et al., 2008). Activation was also increased in left post-central and right pre-central 

gyri during ST for non-native vowels. This result extends previous findings of greater activation in 

pre-motor regions during non-native speech production (Simmonds et al., 2011) to include 

sensorimotor cortex during ST; this early sensorimotor cortex engagement during ST may have 

served to buttress the vowel articulations that followed. Activation was also increased in right 

anterior cerebellum for trained vowels during ST. Cerebellar activation has previously been found 

during covert speech: McGettigan and colleagues (2011) showed increased right-lateralised 

cerebellar activation during covert pseudoword rehearsal when contrasting four- versus two-

syllable items. Further, decreases in right-lateralised cerebellar activation have also been found 

across repeated instances of covert repetition of novel pseudowords (Rauschecker, Pringle & 

Watkins, 2008). Modulation of cerebellar activation has additionally been reported during the initial 

learning of non-speech motor sequences (e.g. Doyon et al., 2002). Here, the increased right 

cerebellar activation we found during ST may have reflected an anticipatory or preparatory 

recruitment of speech motor network sub-regions for the more familiar trained vowels.      

 Recent multivariate analyses of speech processing have indicated an array of regions 

involved in perception, ST and production of speech. Data now suggest that representations span 

a network of somatomotor, superior temporal and inferior frontal areas across perceptual, 

preparatory and articulatory stages of speech (Evans et al., 2014; Du et al., 2014; Cogan et al., 

2014). Such stages reflect phoneme selection, transformation to motor targets, articulation, and 

relay of motor efference copies to sensory regions (e.g., Simmonds et al., 2014b; Niziolek et al., 

2013; Guenther, 2006). Hierarchies of abstraction appear within these networks during perception, 

such that the spectra of complex acoustic signals are represented in belt and parabelt auditory 

regions (Davis & Johnsrude, 2003; Joanisse & DeSouza, 2014), whilst abstract categorical or 

phonemic dimensions of speech are also represented in somatomotor areas (Evans & Davis, 
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2015; see also Pülvermüller et al., 2006). Some studies have further identified cortical 

representation of phonetic features such as place and manner of articulation, during production 

(Bouchard et al., 2013; Cheung et al., 2016) and perception (Arsenault & Buchsbaum, 2015; 

Correia et al., 2015; though see also Mesgarani et al., 2014; Cheung et al., 2016) of speech. Yet, 

to date, very little work that has explored representation of speech has specifically sought to relate 

the distinct sources of information from vocal tract dynamics and speech acoustics to their 

underlying neural representations, for both ST and imitation. 

 Multivariate RSA combining fMRI, rtMRI and formant distance data from our study enabled 

the identification of neural representations during ST. Thus, we show that the relational patterns 

amongst speech categories that reflect the distinct positioning of the articulators, and/or the 

corresponding distances amongst vowels in acoustic space, appear to be preserved at a neural 

level during ST. An important caveat regarding the present analyses is that our test models built 

from images of the speaking vocal tract, and from the distances between vowels in formant space, 

were highly correlated. Thus, while we observed no evidence of significant differences in the 

searchlight results derived from the two models, it is not possible to conclude that the models 

derived from these different data sources (i.e., MR vs. acoustics) reflected distinct representations 

that co-occurred during speech ST. Indeed, given that F1 and F2 vary as a function of tongue 

height and frontness, respectively, the models here share a good degree of commonality in terms 

of the broader behavioural source of the category separation reflected in each. 

 Nevertheless, our finding that representational patterns for different vocal tract 

configurations and/or vowel category acoustic distances are represented within ST networks builds 

on multivariate accounts of hierarchical representations in speech regions. Furthering previous 

multivariate accounts of ST (Cogan et al., 2014), our results using vocal tract/F1-F2 2D distance 

models revealed an extensive representational topography of speech targets during ST that 

included somatomotor, temporal, hippocampal, cerebellar, and subcortical regions (putamen and 

globus pallidus). Importantly, we found that correlations between ST activations and our stimulus 

PSD searchlight model were much less robust than those observed for the vocal tract models, or 

for the F1-F2 2D distance model (as noted above, the latter reflecting the acoustic correlates of 
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articulator position – F1 relates inversely to tongue height, whereas F2 relates directly to tongue 

frontness). This affords the first RSA evidence that activation patterns during ST more keenly 

reflect the representation of target articulator positions – and/or the acoustical features tied to 

these – that are essential to speech (see Cogan et al., 2014). Moreover, we showed that ST 

activation patterns were better fit by these properties, and diverged from test patterns based on 

representational distances derived from the raw spectral properties of vowel categories. Taken 

together, our results suggest a common representation of the categorical dimensionality of vowels 

during ST, which corresponds well with patterns indicative of the position of the articulators when 

vowels are spoken, and/or patterns reflecting the distances amongst the key acoustical 

determinants of vowel category identity (i.e., formants). In addition, we extend the results of Evans 

and Davis (2015), who reported representation of syllable identity in left lateral somatomotor cortex 

during passive perception that overlapped with regions active during speech production (as 

observed through their univariate analyses). Our findings suggest that active ST also involves 

robust representation of distinctions between speech categories based on differences in vocal tract 

position and/or related acoustical category distances, within similar lateral somatomotor regions. 

 A further advantage of the present searchlight approach was the potential to probe 

representations across the full extent of voxels that were active during ST (as determined by 

univariate subtraction). Many existing multivariate accounts of the representational basis of ST 

(and indeed, imitation) have largely been confined to analyses of activity on the lateral cortical 

surface; this has reflected the coverage achievable with electrocorticography methods (Cogan et 

al., 2014; see also Bouchard et al., 2013), or a methodological choice to use surface-only analyses 

in fMRI (Markiewicz & Bohland, 2016; Correia et al., 2015). Our approach enabled us to run 

searchlights within the full extent of regions involved in ST, and implicated bilateral cerebellum, 

striatum, and hippocampi within the representational network of speech ST. Indeed, the clusters 

we observed across cerebellum (particularly in the right cerebellar hemisphere) and bilateral 

putamen are compatible with the involvement of these regions in speech articulatory performance 

(Riecker et al., 2008; Segawa et al., 2013; Simmonds et al., 2014a). Moreover, our findings now 

point toward the recruitment of these cerebellar and subcortical networks in representing 
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categorical distinctions based on articulator position and/or acoustic distances, at the earlier pre-

articulatory stage of ST.  

 Of particular interest was our finding that medial temporal lobe (MTL) regions including the 

hippocampus also represented the vocal tract/F1-F2 2D distance model patterns during ST. While 

hippocampal activation has been found to be modulated by familiarity and success of recall for 

novel lexical items (Davis et al., 2009), we believe ours to be the first multivariate results to show 

correlations between MTL activation during ST and models specifying differences in categorical 

relationships based on articulator position or acoustic distance. Previous fMRI studies have shown 

that the online maintenance of sensory information during a working memory task activates 

anterior hippocampus (e.g., Ranganath & D’Esposito, 2001). Moreover, multivariate fMRI 

investigations have further shown that sub-regions within MTL vary in the extent to which they 

code selectively for category-specific stimuli, with parahippocampal gyrus responding selectively to 

visual category identity (Diana, Yonelinas & Ranganath, 2008). A recent multivariate analysis of 

auditory fMRI data further found that hippocampus activation showed selectivity for novel tone 

cloud categories that repeated across trials, versus tone clouds that did not, during an active 

repetition-monitoring task (Kumar et al., 2014). Taken together, these studies suggest that at least 

some medial temporal structures appear to preserve information concerning categorical relations, 

appear to do so across several modalities, and are involved where there is some active need to 

maintain information online. We suggest it is therefore possible that the patterns of dissimilarity 

between articulator positions and/or acoustic category distances that reflect distinct vowel 

categories, are further represented within MTL during pre-articulatory ST. 

 Counter to our prediction, we found only modest correlations of the group-defined vocal 

tract model with speech imitation activation patterns; these correlations were non-robust to 

correction for multiple comparisons. Challenges in probing speech somatomotor representations 

with fMRI concern the granularity at which representations are expected to emerge, together with 

considerations of the analysis of the BOLD signal. For instance, recent electrocorticography 

investigations have shown consistent evidence of a broadly somatotopic ordering of activity for 

speech phone articulation across the ventrolateral half of somatomotor cortex, with anterior 
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articulators (e.g., lips) mapped dorsal to more posterior articulators (e.g., tongue) (Bouchard et al., 

2013; see also Cheung et al., 2016). Further, a recent fMRI study that used phase-encoded 

analysis methods to map articulator positioning revealed maps similar to those of Bouchard et al. 

(2013), but found limited evidence of activation differences across conditions when block contrasts 

of each articulation condition versus rest were used (Carey et al., 2017). One possibility is that our 

present searchlight analysis did not reveal robust correlations within somatomotor regions due to 

voxels within the local searchlights reflecting similar extents of activation across the four 

conditions. For instance, a particular set of searchlight voxels in a given somatomotor region could 

show largely consistent amplitude of the BOLD response across vowel categories, when each 

condition is contrasted with rest (e.g., Grabski et al., 2012). In such an instance, the resulting RDM 

pattern emerging from the fMRI t-maps in that searchlight could reflect correspondingly low 

dissimilarity across all possible condition pairs – this would not have fit with the vocal tract or 2D 

formant distance model patterns, which showed dissimilarity that varied between vowel category 

pairs. With respect to ST, it is possible that the convergence of many distinct functional processes 

(e.g., speech perception, sensory memory, phoneme selection and competitor suppression, 

speech motor program mapping) may manifest via more condition-specific variation in BOLD signal 

amplitude at the level of local voxels (as found within a searchlight volume); this may lead to neural 

patterns that more readily correlate with the condition-wise categorical relationships found in 

independent RDMs, as generated from vocal tract images or formant distances. In future studies, 

an approach such as a phase-encoded experimental design could enable us to parcellate the 

BOLD response in somatomotor regions into maps of articulatory differences between vowel 

conditions (further to Carey et al., 2017); we note however that such a design was outside of the 

scope and aims of our present study.  

 One further issue is that the spatial resolution of our vocal tract images may have been a 

limiting factor in allowing us to capture more fine-grained facets of articulator somatomotor 

representations during imitation (see Brown et al., 2008; Meier et al., 2008; see Takai et al., 2010). 

Improvements in the spatial resolution of our rtMRI data will allow more refined test models to be 

built, which may offer a better fit to patterns of cortical representation during imitation. One recent 
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study that used images of the lips in combination with direct cortical recordings during speech 

found that cortical activity could be predicted in one subject from time-varying traces of lip aperture 

(Bouchard et al., 2016). This suggests promise for future advances in studying articulation in 

cortex, where high-resolution articulator imaging can be integrated with high-resolution functional 

imaging data. Sensitivity to fine-grained variations in articulator position might also be improved by 

modified MR acquisition paradigms allowing for within-trial recording of both vocal tract and brain 

volumes (see Paine et al., 2011). 

 In seeking to examine separately the neural correlates of speech ST and imitation, our 

approach is similar to a recent study of delayed syllable repetition in fMRI (Markiewicz & Bohland, 

2016). Using multivoxel pattern classification with cortical surface searchlight analyses run on (i) 

responses to the initial auditory presentation of the speech item and (ii) responses to a subsequent 

visual cue to repeat it, the authors identified regions showing significantly above chance coding of 

vowel identity (/Ι/, /ε/ and /Λ/), in a range of speech sensorimotor regions. In contrast to our study, 

they found much stronger evidence for prediction of vowel identity in output-related activations than 

during responses to the auditory input. There are a number of factors to consider here. Markiewicz 

and Bohland were studying more complex utterances, and their design mainly probed abstract 

categorical (i.e. phonemic) representations of vowels in their stimuli (cf. our vocal tract and 

acoustic stimulus models). Further, speech production was cued 8-9 seconds after auditory 

presentation and participants were explicitly instructed to repeat without acoustic imitation; this 

potentially tapped into more abstract representations of speech than in the current task, which 

focused on precise imitation. We suggest that future work should more systematically measure the 

effects of stimulus properties, task demands and event timings on the neural responses to speech, 

in order to obtain more comprehensive accounts of how these factors interact with the specificity 

and granularity of speech cortical (and subcortical) representations during ST and imitation.  

 Our approach using RSA holds translational potential for speech in clinical settings. 

Following traumatic brain injury or stroke, vocal tract imaging may enable insights into patients’ 

articulatory difficulties (see Vasquez Miloro et al., 2014); vocal tract images could additionally be 

compared to fMRI data collected in the same patients during ST or speech, using RSA. This may 
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improve understanding of clinical speech pathology, through quantifying adaptations over the 

course of speech rehabilitation, and identifying sites for neural interventions in conjunction with 

behavioural therapy (see Holland et al., 2011). 

 In sum, we provide the first evidence that images of the speaking vocal tract and acoustic 

measures of speech category distances can allow neural representations of speech sensorimotor 

transformation to be charted. These insights, allied to direct measures of vowel articulatory 

dynamics, afford a unique multidimensional account of the mechanisms supporting speech ST.
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Table 1: Peak voxel co-ordinates (MNI space) and locations from RSA searchlights  

Analysis Cluster x y z z-score Voxel count 
over clusters 
(p < 0.005)

Voxel count 
over clusters 

(FDR q < 0.05)

Listen pre-imitate - group 
average vocal tract RDM

LH Central Sulcus -42 -20 38 3.83Listen pre-imitate - group 
average vocal tract RDM

LH Pre-central Gyrus (i) -50 -12 44 3.29

LH Pre-central Gyrus (ii) -58 2 34 2.81

LH Lateral Heschl's Gyrus -60 -12 4 3.48

LH Lateral STG -66 -16 -2 3.78

LH STS -62 -22 -2 3.48

LH Putamen -26 -4 -2 3.48

LH Globus Pallidus -20 -6 -2 3.22

LH Anterior Hippocampus -22 -14 -20 4.16

LH Anterior Hippocampus/
Amygdala

-22 -8 -26 4.85

LH Entorhinal Cortex -20 -16 -26 4.85

LH Anteromedial Temporal Lobe -40 2 -22 3.78 2875 4874

LH Anterior Cerebellum (lobule 
V/VI)

-12 -58 -20 3.54

RH Pre-central Gyrus (dorsal) 50 -6 42 3.48

RH Pre-central Gyrus (ventral) 56 -2 22 3.48

RH Putamen 30 0 -4 2.45

RH Anterior Hippocampus 32 -12 -24 4.47

RH Anterior Hippocampus/
Amygdala

24 -6 -26 5.16

RH Collateral Sulcus 42 -12 -30 5.16

RH Pons 8 -32 -32 5.07

RH Anterior Cerebellum (lobule 
V/VI) (i)

30 -38 -32 4.05

RH Anterior Cerebellum (lobule 
V/VI) (ii)

18 -44 -28 3.89

RH Cerebellum (Crus I) 34 -56 -34 4.26

Imitate - group average vocal 
tract RDM

LH Lateral Heschls/Ventral M1 -60 -4 4 2.88

RH Lateral M1 60 0 34 3.02 7 0

RH Lateral S1 60 -6 30 3.02
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Figure 1 

Overview of experimental paradigm and analysis framework. Upper row. (1) Participants trained on 

imitating one native and one non-native vowel in blocks; all 10 tokens from a single category (e.g., 

/i/ or /y/) were imitated in randomised order in a given block (stimuli F1 & F2 are plotted in mel 

space – see lower inset). (2) Training was followed by scanning, during which participants imitated 

the trained pair and a further untrained pair. Scans comprised three fMRI blocks (140 trials, ~ 12 

mins), each preceded by a pair of real-time MRI blocks (40 trials, ~ 3 mins). Data analyses (a-d). 

(a) rtMRI data were analysed with the Matlab toolbox of Kim et al. (2014), yielding measures of lip 

position per vowel (red trace on panels). (b) fMRI data were first analysed with SPM, with contrasts 

specified for main effects (Imitation > rest; Listen pre-imitate > rest) (surface shown presents all 

imitation > rest second-level contrast, for illustrative purposes). Further contrasts were specified for 

each vowel > rest, for listen pre-imitation and imitation stages of the task. ROIs were defined with a 

Jackknifed ‘leave-one-out’ procedure using the listen pre-imitate or imitation main effects (All 

vowels > rest). (c) rtMRI images frames were first averaged within a single trial (using the method 

of Scott et al., 2013). Images were then masked with the RSA toolbox, restricting FOV to the vocal 

tract. Masked images were cross-correlated on a trial-wise basis, creating three 40 x 40 RDMs 

(one per rtMRI block pair). Converting RDMs from correlation distance to z-score (with Fisher 

transform), each RDM was reduced to 4 x 4 matrix, and 4 x 4 matrices were averaged to give a 

single 4 x 4 matrix per subject. Single subject 4 x 4 models were averaged to produce a full cohort 

4 x 4 average model. Single-subject and full cohort models were used in searchlight analyses. (d) 

Schematic of the RSA searchlight procedure. Jackknifed ROIs constrained the searchlight 

analyses to regions active for imitation (all imitation > rest) and ST (all listen pre-imitate > rest). In 

each searchlight, the RDM pattern from the t-maps for the vowel conditions was correlated with the 

vocal tract image derived model, the stimulus PSD acoustic derived model, or the stimulus F1-F2 

2D Euclidean distance derived model (see Materials and Methods).  
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Figure 2 

Left: example lip (red) position traces as measured from rtMRI images in a single subject. Right: 

Lip protrusion difference metrics per group (unrounded – rounded lip x co-ordinate). Positive values 

indicate relatively greater protrusion for the rounded than unrounded vowel; note that all means are 

significantly greater than 0 (all p < 0.005; see Results). See Results for description of statistical 

interaction. 

 

Figure 3 

Univariate 2 x 2 ANOVA results (factors: training, native/non-native) for sensorimotor 

transformation (ST - blue) and imitation (green) fMRI data. (a) Native/non-native 2 x 2 main effect 

results for ST (blue) and imitation (green), significant at cluster-corrected FDR level (q < 0.05). Bar 

plots display mean beta parameter estimates (adjusted response) for cluster peak voxels (peak co-

ordinates in parentheses). Conditions: NT – Native Trained; NU – Native Untrained; NnT – Non-

native Trained; NnU – Non-native Untrained. (b) Training main effect results for ST (blue), 

significant at p < 0.0001 (k = 30) (did not survive at cluster-level FDR for voxel-height threshold of 

p < 0.0015, k = 50; q > 0.05). 

 

Figure 4 

RSA searchlight results. (a) Vocal tract group average RDM model pattern correlates with fMRI 

activation patterns in bilateral somatomotor, left superior temporal, bilateral medial temporal and 

right cerebellar regions for sensorimotor transformation (ST). The stimulus acoustic-derived RDM 

pattern did not correlate robustly with fMRI t-map RDMs; tests of the correlation coefficients from 

both analyses showed significantly more robust correlations for the vocal tract model than the 

stimulus model (note that this overlapped with all voxels where significant vocal tract model and 

fMRI t-map correlations emerged; q < 0.05, FDR-corrected). (b) Vocal tract group average model 

correlates non-robustly with fMRI activation patterns for imitation in left ventral M1/lateral Heschl’s 

gyrus, and right lateral somatomotor cortex. Transparent underlays in (a) and (b) show the 

boundaries of the searchlight ROI volume – blue: ST ROI; green: imitation ROI. Scale bar minimum 
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in (a) shows the equivalent uncorrected threshold at which voxel height FDR correction (q < 0.05) 

is achieved; for consistency, the same scale bar range is used in (b), but note that (b) correlations 

are non-significant with FDR correction (q > 0.05). 

 

Figure 5 

RSA searchlight results using F1-F2 2D Euclidean distance RDM test model. The F1-F2 2D 

Euclidean distance model reveals correlations that overlap most of the regions that manifested 

significant searchlight correlations for the group average vocal tract model (see Figure 4). Voxel-

wise Wilcoxon signed rank tests of the correlation maps derived from the vocal tract average 

model and the correlation maps from the F1-F2 2D Euclidean distance model, did not reveal any 

significant differences in robustness of the correlations across the two analyses (all FDR q > 0.05). 

All other parameters as per Figure 4. 

 

Supplementary Figure 1 

RSA searchlight results using individual subject vocal tract RDM test models. Each subject’s own 4 

x 4 vocal tract image-derived RDM was used in a searchlight analysis of the subject’s own fMRI t-

maps (see Supplementary Fig. 2 for subject-wise vocal tract image-derived RDMs). We then 

calculated group statistics over the Spearman correlation maps that were calculated per subject. 

Results showed searchlight correlations that were co-extensive with the group average vocal tract 

RDM results (see Figure 4). Voxel-wise Wilcoxon signed rank tests comparing the results from the 

group average and individual subject vocal tract RDMs did not reveal any robust differences in 

correlation maps between the two analyses (all FDR q > 0.05). 

 

Supplementary Figure 2 

Individual subject vocal tract image-derived RDMs. Each panel presents the subject-specific 4 x 4 

average model used as input to searchlight analyses of that subject’s own fMRI t-maps. Each 4 x 4 

model was derived from images of a particular participant’s vocal tract as they spoke each of the 
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vowels across the rtMRI blocks in the experiment (see Methods for details of vocal tract RDM 

construction). 

 

Supplementary Figure 3 

RSA Searchlight results using the stimulus PSD model in searchlight analyses of passive listening 

trials. (a) Searchlight results show correlations between listen only fMRI t-maps and stimulus PSD 

RDM, that survive at p < 0.005, uncorrected (cluster highlighted with mauve circle). Note that 

searchlight results with stimulus PSD model did not survive correction for multiple comparisons 

(FDR q > 0.05). (b) Speech perception ROI used to constrain searchlight analyses of listen only 

fMRI data. 
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and one non-
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Average: subjects & blocks 
collapsed
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input

High similarity
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Vocal tract model: subjects, 
blocks & tokens collapsed
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Vocal tract images 
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and correlated with 
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Structural scan (s)
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Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3

M
os

t 
Su

cc
es

sf
ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3

M
os

t 
Su

cc
es

sf
ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3

M
os

t 
Su

cc
es

sf
ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3

M
os

t 
Su

cc
es

sf
ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH LH RH

High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56 y: -1z: 15

/i/
/y/

/a/
/ɶ/

CTM 1 CTM 2

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b) (a)

Speech Perception - Listen Only

Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH

LH RH

CTM 1 CTM 2
High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56

y: -1

z: 15

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b)

Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH LH RH

High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56 y: -1z: 15

/i/
/y/

/a/
/ɶ/

CTM 1 CTM 2

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b) Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH LH RH

High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56 y: -1z: 15

/i/
/y/

/a/
/ɶ/

CTM 1 CTM 2

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b)

Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH LH RH

High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56 y: -1z: 15

/i/
/y/

/a/
/ɶ/

CTM 1 CTM 2

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b)

Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH LH RH

High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56 y: -1z: 15

/i/
/y/

/a/
/ɶ/

CTM 1 CTM 2

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b)

Vocal tract: group 
average model

C
T

M
 1

C
T

M
 2

p = 10-2

p = 10-3

LH

LH RH

CTM 1 CTM 2
High dissimilarity

Low dissimilarity

RHLH

x: -60

LH RH

x: 60

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

LH RH

y: -5 y: -6

x: -56

y: -1

z: 15

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

/i/
/y/

/a/
/ɶ/

CTMs(b)

x: -64

x: -53

x: 50

z: 43 z: 0 z: -20

y: -6 y: -60

LH
LH

RH

LH RH

LH RH

p = 10-2

p = 10-3

G
ro

up
 a

vg
.

Vocal tract: group 
average model

High dissimilarity

Low dissimilarity

/i/
/y/

/a/
/ɶ/(a)

Speech Articulation - Imitate

(b)

Sensorimotor Transformation - Listen Pre-imitate

Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3

M
os

t 
Su

cc
es

sf
ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3
M

os
t 

Su
cc

es
sf

ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

(d)

Fig. 3c Fig. 3d

x: -62

LH RH

LH

LH

RH

RH

z: -4

y: 7

x: 15

z: -20

y: -64 p = 10-2

p = 10-3
M

os
t 

Su
cc

es
sf

ul

Le
as

t 
su

cc
es

sf
ul

Most Successful Least successful

Vocal tract: individual 
subject models

Vowel acoustics: 
stimulus average 

model

LH

LH RH

LH RH

p = 10-2

p = 10-3

St
im

ul
us

 a
vg

.

x: -61

z: 0

y: -6

/i/
/y/

/a/
/ɶ/Imitation Learning Performance

Most vs. least successful learners:
individual sub. vocal tract models

Speech Articulation - Imitation

Most successful Least successful

(c)
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Stimulus PSD Model
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tracked per trial for all 
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measured.

(b) Univariate fMRI (BOLD response)

Analysis of speech 
perception and 
production data; testing 
for effects of training & 
native/non-native vowel.

RSA searchlight analysis 
(multivariate)

LH LH RHRH

Perception ROIs
Searchlights in a priori regions 
of interest (ROIs): rtMRI and 
stimulus-derived test models 
used to search patterns within 
univariate fMRI results.

(c) Representational Similarity Analysis Auditory stimuli (spectrograms)
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Stimulus model: 
tokens collapsed
RSA searchlight 

input

Subjects 
imitate tokens 
of one native 
and one non-
native vowel 
(16 blocks).

1 trial (10 per block) 1 trial (10 per block)

2. Scanning

(20 trials)

Average: subjects & blocks 
collapsed

RSA searchlight 
input

High similarity
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Vocal tract model: subjects, 
blocks & tokens collapsed
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Vocal tract images 
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each other.
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Subjects imitate 
2 trained and 2 
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rtMRI blocks (x3 pairs)
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Structural scan (s)

Searchlight ROIs
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