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Abstract

In this thesis work, the magnetic excitations of two different materials, NaxCoO2

and linarite (PbCuSO4(OH)2) have been explored using inelastic neutron scattering.

The study of these materials improves our understanding of quantum theory and

paves the way for new technologies.

In NaxCoO2, for certain values of x, long-ranged Na-vacancy superstructures can

occur. It has been shown that these superstructures have anharmonic lattice vibra-

tion modes which drastically reduces thermal transport in NaxCoO2. It is believed

that the superstructures have an effect on the magnetism as well; however, this has

not been proven so far. In this thesis work, the spin-wave spectrum is measured for

two different superstructures. An anomalous magnetic waterfall effect is observed

in the spin-wave dispersion for one sample which is interpreted as magnon-phonon

coupling.

Linarite (PbCuSO4(OH)2) is a naturally occurring mineral. At low temperatures,

it creates a quasi low-dimensional system which is of theoretical interest. Such a sys-

tem has very strong magnetic interactions along one particular direction, but rather

weak interactions along other directions. Based on some physical-properties meas-

urements, it has been suggested that linarite could sustain an exotic new quantum

phase. In this novel phase it is suggested the spins do not have any transverse long

range order but instead they have quasi-long-range spin-multipolar order. In this

thesis work, the measured magnetic excitations indicate that linarite could be in
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the correct parameter region for displaying the novel quantum phase. Diffraction

experiments were carried out to try and find direct experimental evidence of the

suggested spin-multipolar phase. Additionally, the rich magnetic phase diagram of

linarite was explored by various magnetisation and diffraction experiments.
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Chapter 1

Introduction

In this thesis work, experimental results from two different compounds are presen-

ted. These are Na0.8CoO2 and linarite (PbCuSO4(OH)2). Inelastic neutron scat-

tering (INS) is used to study the magnetic excitations in these two very different

materials. A detailed review of the scientific background of these materials will fol-

low in later chapters . In the first two sections of this chapter, the general interest

in these materials will be described. In the last section of this chapter, some of the

common theory for both compounds will be introduced. This will include some fun-

damental solid state concepts, such as crystal structures and reciprocal space, as well

as some more advanced concepts, such as the derivation of the magnon dispersion

for a ferromagnet.

1.1 Brief Introduction for NaxCoO2

NaxCoO2 has attracted interest over the years for three main reasons. These are

for its relatively high thermopower [1], its battery electrode capabilities [2], and its

superconductivity under hydration [3].

NaxCoO2 became the first Co based superconductor via its hydrated version
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NaxCoO2.y(H2O) with x=0.35, y=1.3 [3]. There are similarities between this com-

pound and the well studied Cu based superconductors, the cuprates. Both the

cuprates and NaxCoO2 share a layered crystal structure and are considered elec-

tronically two dimensional. The non-hydrated version may be considered magnetic-

ally three dimensional [4,5]; however, the hydration massively increases the separa-

tion between the layers, making it more two dimensional [3]. The most important

difference between cuprates and NaxCoO2.y(H2O) is that they are on square and

hexagonal lattices respectively. Elemental superconductors are well understood us-

ing Bardeen-Cooper-Schrieffer theory of superconductivity [6, 7] and they exhibit

s-wave pairing. However, “unconventional superconductors” can exhibit p-, d-, or

f-wave pairing. The cuprate high-temperature superconductors exhibit d-wave pair-

ing [8]. The paring symmetry in NaxCoO2 is controversial and it has been attributed

to s-waves [9], f-waves [10] and anisotropic chiral d+id waves [11].

NaxCoO2 is also one of the good candidates for Na-based batteries [2]. There

are many possible advantages for using a Na based battery over the widely used

Li based battery. The primary reason is economic. Na is much more abundant, it

costs roughly six times less to obtain compared to Li [12]. Also Na-based batteries

are less toxic [12] and can be transported more safely. A Li based battery has to be

transported with a certain amount of charge, which can cause it to short circuit and

catch fire [13]. Because Na is three times heavier, it was thought that a Na-based

battery could not achieve the same energy density as a Li-based batteries. However,

this has since been disproved. Some Na-based batteries have shown to have large

capacities and the ability to sustain many cycles. This would make it suitable for

supporting grid networks [14].

NaxCoO2 has also been proposed as a good thermoelectric material [1]. Ther-

moelectricity is the capability to convert a temperature gradient across a material

into a voltage difference (or vice versa). Thermopower can be explained with the
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help of figure 1.1. In the hot region of the material, the electrons are faster com-

pared to the cold region. This allows them to diffuse into the cold region, creating

a current. In order to have a high thermopower, good electrical conductivity but

bad thermal conductivity is required. Thermoelectric materials are of high techno-

logical importance. They can be used to convert “wasted heat” into electricity. This

can be the waste heat from a cars exhaust, power plants, or even someone’s body.

Alternatively, thermoelectrics can be used to cool computer components, since the

dissipation of heat can be the limiting factor for processing speed.

Figure 1.1: The Thermoelectric effect. Electrons on the hotter

side diffuse into the colder side creating a voltage differnce. Image from

Ref. [15].

There have been two major discoveries regarding the large thermpower of NaxCoO2.

The first is that the thermopower can be suppressed with a magnetic field [16].

To understand this, people have considered the degeneracy of the Co4+ and Co3+

spin states. However, there is no consensus on the spin states or their distribution

throughout the material. There have been models which consider electrons as loc-

alised [4, 5, 17], or a mixture of localised and itinerant [18, 19]. More experiments

might be necessary to fully explain this magnetic field dependence of the thermo-
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power. The second major discovery was the effect of the Na superstructures on the

thermal transport. NaxCoO2 produces long ranged superstructures from Na vacan-

cies [17, 20]. It was shown that the Na sites near the vacancies are in anharmonic

potentials. At these sites the Na “rattles” which disturbs the flow of phonons. It was

shown that for a particular superstructure, the existence of such rattling modes can

reduce the thermal transport by a factor of six [21]. Additional to this, it is believed

superstructure must affect the electronic and magnetic order in the Co layers [17].

INS experiments have measured the spin waves of two NaxCoO2 samples with

very similar concentrations, x=0.75, 0.82 [4, 5]. It was found that between the two

samples, the out-of-plane coupling differs by a factor of two. It is known that in

this concentration range there are three possible superstructures. It is possible that

this factor of two difference can be attributed to the differences in superstructures.

The initial aim of this thesis work was to perform inelastic neutron experiments on

NaxCoO2 samples with known superstructures and highlight any possible difference.

After all, in the initial inelastic neutron experiments the superstructures of the

samples were not known.

1.2 Brief Introduction for linarite

Linarite is a naturally occurring, relatively rare mineral [22]. Linarite has at-

tracted interest because it has been proposed that it might be able to sustain novel

quantum phases. This originates from the special magnetic conditions of linarite:

its low dimensionality, and low spin. Linarite is composed of chains of CuO2 plates

which propagate along the b axis [23]. At low temperatures spin moments of S=1/2

localise at the Cu sites creating a spin chain. These Cu sites are magnetically

strongly interacting along the chain but the interactions between the chains are

rather weak. This makes it a quasi-one-dimensional system [24–26].
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The low spin (S=1/2) of linarite is important. It is known that for simple

quantum mechanical systems that as S→ ∞, the system behaves more classically

[27]. The importance of dimensionality can be seen for an electron gas with electron-

electron interactions. For a three dimensional system, it has been shown by Landau

that such a system behaves very similarly to a free electron gas. The excitations

of the system are quasiparticles which behave very similarly to electrons, with a

different effective mass and a reduced lifetime. In one dimension, the interacting

electron cloud behaves very differently to the free electron cloud [28]. The reason

for this can be illustrated in figure 1.2. Here it can be seen that for a higher

dimensional system, the electron can still move about even though it feels some force

from its neighbouring electrons. However, in the one dimensional case, an electron

cannot pass beyond its neighbouring electrons. This causes the excitations of the

system to become collective excitations. This one dimensional interacting electron

system is referred to as the Luttinger-Tomaga liquid [29, 30]. In this system, the

principal excitations of the system are the spinon and chargon quasi-particles, which

carry the spin and charge of the electron respectively. This is known as spin-charge

separation [28].

Figure 1.2: Effects of dimensionality on electron movement.

(a) For a multi-dimensional system the electron can move about. (b)

However, for a one-dimensional system, the electrons cannot move freely

as they cannot pass through their neighbours. This forces the system to

have collective excitations [28]. Image from Ref. [28].
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In linarite one can also observe geometrical frustration. The concept of geomet-

rical frustration in magnetism can be visualised in figure 1.3 on page 17. Here three

spins are to be placed on the corners of a triangle. The three spins are expected to

satisfy an anti-ferromagnetic bond, which causes them to be anti-parallel. The first

two spins can be placed easily; however, the third spin cannot be anti-parallel to

both the spins. The energy of an up spin and a down spin are the same. This degen-

eracy is the basis of the frustrated magnetism. This degeneracy can be removed with

quantum or thermal fluctuations [31]. At finite temperature not all of the degen-

erate ground states have the same excitations. Some of these ground states might

have higher entropy. This higher entropy case can lift the degeneracy, stabilising

the ground state. This interesting phenomena is known as order-from-disorder [32].

One of the most famous frustrated systems are the “spin-ice” compounds [33]. These

systems reside on a pyrochlore lattice and have been observed in compounds of the

type A2Ti2O7 where A=Dy, Ho. At the vertices of the pyrochlore lattice reside Ising

moments which either point towards or away from the centre of each corner-sharing

tetrahedron. The ground state is macroscopically degenerate, with two spins point-

ing in and two spins pointing out of the tetrahedron. If one of these moments is

flipped, it creates two entities which locally act like a north or south monopole.

There is no energy cost to separate these entities, therefore they act as deconfined

magnetic monopoles [31,34]. This discovery of such monopole-like particles created

large interest in the field of frustrated magnets.

In linarite the frustration comes from competing nearest- and next-nearest-

neighbour interactions along the spin chain. The nearest-neighbour interaction is

ferromagnetic, whilst the next-nearest-neighbour interaction is antiferromagnetic.

For linarite this results in a cycloidal magnetic structure at low temperatures [25,26].

These cycloidal magnetic structures are of much interest for multiferroics. Multi-

ferroic materials exhibit coupling between magnetic field, electric field, or stress.
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Figure 1.3: Geometric frustration on a triangular lattice. The

spins on each site try to align antiferromagnetically with respect to each

other. The first two spins can satisfy this easily; however, the third spin

cannot satisfy this for both bonds. Image sourced from Ref. [35].

Cycloidal magnetic structures are of interest because they directly create an electric

polarisation within the material. This type of materials is known as ferroelectric

materials [36,37].

Currently, linarite is attracting interest due to its possibility of supporting a novel

quantum phase. This phase arises from condensation of multiple magnons and it

has no long-range dipolar order but instead has quasi-long range spin-multipolar

order [38–42]. These phases are also referred to as spin-nematics and are related

to the classical nematics such as seen with liquid crystals [43]. Another Cu based

spin chain compound, LiCuVO4, has already shown some strong evidence of such a

novel phase [44, 45]. However, the saturation field for this compound is ∼50T [44].

This does not allow the measurement of this phase with neutron scattering methods.

Magnetic susceptibility and specific heat measurements suggest that linarite could

be in the right parameter region to support a spin-multipolar phase [24–26]. Unlike

LiCuVO4, linarite has a saturation field of ∼10T [26]. This allows one to perform

neutron scattering experiments on linarite up to and above saturation. The thesis
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work aimed at finding if linarite is in the right parameter region to sustain the

spin-multipolar phase and, if possible, measure it directly.

1.3 Theory

In this section important theoretical concepts used in this thesis work are in-

troduced. Some of these are fundamental solid-state physics concepts which are

covered in detail in various introductory textbooks [6, 7]. Also covered in this sec-

tion is the Heisenberg Hamiltonian and linear spin-wave theory. These concepts

create a theoretical basis for modelling spin-wave dispersions.

1.3.1 Crystal Structures

A crystal is a solid structure where atoms are ordered in a periodic lattice struc-

ture and they can contain∼1023 atoms. Because of this periodicity, the whole crystal

can be represented by a very small unit cell composed of few atoms. A typical unit

cell can be seen in figure 1.4 on page 19. Such a unit cell is called a primitive lattice

because it has only one atom per unit cell. Here a, b, and c are lattice vectors,

defining the size of the unit cell, and the atoms are given in black circles. The

three angles α, β, and γ are the angles between the lattice vectors. Real crystal-

line materials might have different domains where the unit cell is the same, but the

orientations are different. The term “single crystal” refers to samples in which the

unit cell and the orientation is the same throughout the whole crystal [6, 7].

A position in real space with respect to an arbitrary origin is stated as:

R = (n1a+ n2b+ n3c) + r, (1.1)

where n1, n2, and n3 are all integers. The term within the brackets indicates the

origin of the closest unit cell. The position with respect to the origin of this unit
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Figure 1.4: An example of a unit cell of a crystal. Here, a, b, and

c are lattice vectors and the black points represent atomic positions.

cell is given by the vector r:

r = xa+ yb+ zc. (1.2)

For scattering experiments, it is useful to define a reciprocal lattice defined by:

a∗ =
2πb× c
a.(b× c) , b

∗ =
2πc× a
a.(b× c) , c

∗ =
2πa× b
a.(a× b) (1.3)

A vector along reciprocal space can be represented in units of the reciprocal

lattice in the following form:

τ = ha∗ + kb∗ + lc∗ (1.4)

The reciprocal lattice is useful for defining lattice planes within the crystal. These

planes can be denoted by integer values of (hkl) which are called Miller indices. The

vector τ(hkl) would be normal to the plane and the distance between the planes would

be given by [6]:
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d(hkl) =
2π

|τ(hkl)|
(1.5)

Points in the reciprocal lattice are often described relative to the Brillouin zone.

The Brillouin zone is centred at a reciprocal lattice point and contains all of the

points closest to that lattice point [7, 46]. An example of a Brillouin zone for two-

dimensional cubic and hexagonal lattices can be seen in figure 1.5 [7]. The centre of

Brillouin zones is referred to as the Γ point [47].

(a) (b)

Figure 1.5: Brillouin zone examples in two dimensions. Here,

the zones for (a) cubic or (b) hexagonal lattices can be seen.

1.3.2 Diffraction

One way to obtain information about the crystal structure is to shine x-rays

through it. This will result in a diffraction pattern composed of intense spots in

a symmetric pattern. By measuring the position and intensity of these spots, it is

possible to obtain information about crystal structure, such as lattice spacing and

the occupation of sites within the unit cell [7, 48].

One way of thinking about the diffraction event is by considering x-rays scatter-

ing from lattice planes which is visualised in figure 1.6 on page 22. Here the blue
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and red lines represent two parallel beams of light which have the same phase before

they reach the crystal. Both beams hit the crystal plane at an angle θ; however, the

red beam scatters from the second layer instead of the first layer. The two beams

exit the sample with the same angle but, because they have travelled different paths,

there could be a phase difference between the two. If there is no phase difference,

there is constructive interference, i.e. a peak in intensity. The condition for con-

structive interference can be deduced from the geometry of the situation and can be

simply stated in the following equation [6]:

nλ = 2dsin(θ) (1.6)

Here, n is an integer, λ is the wavelength of the light, d is the distance between

two crystal planes, and θ is the angle between the incident light wave and the

crystal plane, also referred to as the scattering angle. This equation is referred to

as Bragg’s Law [49]. The peaks in intensity observed at these positions are referred

to as a Bragg peaks [6, 7].

Using Bragg’s law one can successfully reproduce the positions of the observed

diffraction patterns. However, Laue [50] has shown that the diffraction conditions

can also be stated in terms of the reciprocal lattice. The initial and final wavevectors

of the scattered beam are given as ki and kf . The scattering vector is defined as:

Q = kf − ki. (1.7)

Diffraction is an elastic scattering event and, therefore, |kf | = |ki|. The Laue

condition of diffraction states that diffraction will occur if the scattering vector is

at a reciprocal lattice point. Therefore, diffraction occurs for integer values of hkl

in the following equation [6, 7]:

Q = τhkl. (1.8)
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For non-primitive crystals, where there are more than one atom in the unit cell,

some integer hkl values may correspond to extinctions, where there is no intensity.

The reason for this will be explained in section 2.1.2.

Figure 1.6: Scattering from lattice planes. Two parallel beams

of light scatter from the first and second layers of a crystal. The two

beams have travelled different paths and there could be a phase difference

between them. The highest intensity is when there is no phase difference

between the two beams and the condition for this is given in Bragg’s Law

in equation 1.6 [6, 7, 49].

1.3.3 Magnetic Structures

An electron localised at an atomic site can produce a net magnetic moment at

this site. This magnetic moment has two contributions. The first is due to the

internal magnetic moment of the electron of size ∼-1µB, where µB is the Bohr

magneton. The second contribution is due to its charge and its orbital motion. The

filled electron shells do not contribute to the magnetic moment, therefore one only

considers the electrons in the unfilled electron shells [6].
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In a crystal, electrons localised at atomic sites can align their magnetic moments

in such a way to create long-ranged magnetic structures. Some examples of mag-

netic structures can be seen in figure 1.7(a,b). Here only one-dimensional cases are

shown, but these examples can be extended into three dimensions. In figure 1.7(a) a

ferromagnetic (FM) structure can be seen, where all the moments prefer to be par-

allel along a given direction. In figure 1.7(b) an antiferromagnetic (AFM) structure

can be seen. It is important to note that for the AFM the magnetic unit cell is not

the same size as the nuclear unit cell, but instead it is twice as large. In figure 1.7(c)

a phase with no long-range order, a paramagnet, can be seen. For this structure the

orientations of the moments are completely random [6].

Figure 1.7: Examples of magnetic structures. Here one dimen-

sional analogues of (a) FM, (b) AFM, and (a) paramagnetic structures

can be seen.

The formation of magnetic structures in crystals is dependent on the quantum

nature of electrons. Typically, the magnetic dipole of the electron is too weak to

create any alignment [6]. Instead, the process called the “exchange interaction” as
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suggested by Heisenberg [51] and Dirac [52] is responsible for creation of magnetic

structures. Electrons are fermions and, therefore, two electrons with the same spin

cannot be at the same position. This introduces a spin component of the energetics

of the electrons. The additional energy the electrons gain due to their spin is stated

by the Heisenberg Hamiltonian as:

H = −
∑
ij

JijSi.Sj. (1.9)

Here ~Si is the total angular momentum of the electrons at site i and Jij is

referred to as the exchange integral or the exchange energy [6]. If only nearest-

neighbour interactions are considered, a positive Jij will mean that spins Si and

Sj will align parallel in order to minimise energy; thus forming a FM structure .

However, if Jij is negative, they will align anti-parallel forming an AFM magnetic

structure. There are different types of exchange processes. If there is overlap of

electron wavefunctions between two magnetically ordered sites, this is called direct

exchange. However there is also the case of indirect exchange where two magnetically

ordered sites interact via the conduction electrons instead [6]. Two magnetic sites

can also interact each other via a non-magnetic atom between them. This process

is called superexchange and the value of Jij is dependent on the relative positions

of the three sites and their orbital’s orientations [53–57].

1.3.4 Linear Spin-Wave Theory

Aside from the static magnetic structure, there are also magnetic excitations

which can be measured directly via neutron scattering methods. In a classical sys-

tem, the spins are treated as vectors with a given magnitude |S| which can point

along any direction. At finite temperature these spins rotate about an axis. By

considering the phase difference in such a rotation for neighbouring spins, it is pos-
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sible to construct a magnetic excitation with a certain wavelength. This excitation

is called a spin wave and and is illustrated in figure 1.8 [6].

Figure 1.8: Illustration of a spin wave. All spins precess about

the same axis. The relative phase difference between neighbouring spins

creates an excitation with a given wavelength.

In a quantum mechanical treatment of the spins, the spin excitations are repres-

ented by magnons. Magnons are quasi-particles which represent a total spin change

of ∆S=1 [6,7]. The energy-momentum relation of the magnons (i.e. its dispersion)

can be solved for the Heisenberg Hamiltonian. This is done via linear spin-wave

theory (LSWT). In this section the derivation of the magnon dispersion for a FM

will be shown. The derivation stated here follows the work of Squires [58]

In the Heisenberg model, spins with value S are localised at the nuclear position.

At this site the angular momentum of any spin component is ~M where M =

S, S − 1, ...,−S + 1,−S. At zero field, all the spins will have M=S for the same

component. The Heisenberg Hamiltonian can be written as:

H = −
∑
ll′

J(l− l′)Sl.Sl′ (1.10)

Here H is the Hamiltonian, J(l − l′) is the exchange energy between spins at

positions l and l′, and Sl is the spin operator for the site at position l. Note that from
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symmetry arguments J(l − l′) = J(l′ − l) must hold. The aim is to transform the

operators in the Hamiltonian in equation 1.10 into raising and lowering operators.

The starting point is to separate the operator Sl into three operators Sxl , Syl ,and Szl

which correspond to spin angular momentum along the x, y, and z directions. The

eigenstate of Szl , is presented as |M〉, with eigenvalue M . This eigenvalue is the z

component of angular momentum in units of ~. The Sxl , Syl operators are written

in terms of operators S+
l , S−l which are defined by the following equations:

S+
l = Sxl + iSyl (1.11)

S−l = Sxl − iS
y
l (1.12)

The S+
l and S−l operators act similar to raising and lowering operators. When

acting upon the wavefunction |M〉, they give the following result:

S+|M〉 = [(S −M)(S +M + 1)]1/2|M + 1〉 (1.13)

S−|M〉 = [(S +M)(S −M + 1)]1/2|M − 1〉 (1.14)

Here the subscript l has been dropped for convenience. Taking n = S −M , this

can be re-written as the following:

S+|n〉 = (2Sn)1/2

[
1− n− 1

2S

]1/2

|n− 1〉 (1.15)

S−|n〉 = (2S(n+ 1))1/2
[
1− n

2S

]1/2

|n+ 1〉 (1.16)

Note that if the second terms inside the square brackets in equations 1.15-1.16

were neglected, one would have raising and lowering operators. This is the approach

followed by the linear approximation. It sets the components in the square brackets

to one. This allows one to define S+ and S− in terms of raising and lowering

26



operators with S+ = (2S)1/2a and S− = (2S)1/2a+. The term Sz can also be

expressed in terms of these operators via Sz = S − a+a. The next step is to Fourier

transform the ladder operators which will result in:

bq = N−1/2
∑
l

exp(−iq.l)al, (1.17)

b+
q = N−1/2

∑
l

exp(iq.l)a+
l , (1.18)

where N is the number of atoms in the crystal. These operators have the commut-

ation relation [bq, b
+
q′ ] = δqq′ . Substituting Sl.Sl′ = 1/2(S+

l S
−
l′ +S−l S

+
l′ ) +Szl S

z
l′ into

the Hamiltonian in equation 1.10, one obtains:

H = −
∑
ll′

J(l− l′)(S+
l S
−
l′ + Szl S

z
l′) (1.19)

Here the fact that l 6= l′ S operators commute has been used. Using ρ = l− l′,

the Fourier transform of the exchange energy can be stated as:

J (q) =
∑
ρ

J(ρ)exp(iρ.q) (1.20)

With this definition, the Hamiltonian can be written in units of bq and b+
q oper-

ators. The resulting Hamiltonian will have the form:

H = H0 +
∑
q

~ωqb+
q bq, (1.21)

H0 = −S2NJ (0), (1.22)

~ωq = 2S[J (0)− J (q)] (1.23)

Here the ~ωq term gives the dispersion relation of the magnons. One can consider

the scenario with only the nearest-neighbour exchange energy, JFM . For simplicity,
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one can consider a cubic primitive lattice where there is only one magnetic atom

per unit cell. There will be a total of six nearest-neighbours to consider. The term

J (q) can be written as:

J (q) = JFM [exp(ia.q) + exp(−ia.q) + exp(ib.q)− exp(−ib.q) + exp(ic.q)− exp(−ic.q)]

(1.24)

After some transformation this reduces to:

J (q) = JFM [cos(2πh) + cos(2πk) + cos(2πl)] (1.25)

Therefore, the magnon dispersion is given by:

~ω = 2SJFM [3− cos(2πh)− cos(2πk)− cos(2πl)] (1.26)

The minimum of the dispersion is ~ω(000) = 0 and the maximum is ~ω(1/2,1/2,1/2) =

6SJFM . It is important to note that this result is unique to the FM state. For the

AFM state the magnon dispersion will have a different result.
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Chapter 2

Experimental Methods

In this chapter, the experimental methods used in the thesis will be introduced.

The majority of the data presented in this thesis is obtained via neutron scatter-

ing experiments. Therefore, the first two sections will go into neutron scattering

theory and instrumentation respectively. In the neutron instrumentation section,

the operation of the instrument will be discussed as well as the configuration of the

particular instruments used. Some small amount of data was obtained via magneto-

metry measurements. For this reason the final section will focus on the operation

and set-up of the magnetometer used for this thesis.

2.1 Neutron Scattering Theory

In this section the relevant neutron scattering theory will be established. The

work in this section will closely follow the work of Squires [58].

2.1.1 Scattering from a Single Nucleus

A good place to start with neutron scattering theory is to consider neutron

scattering from a single nucleus, as shown in figure 2.1. The neutrons originate from
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the source and propagate towards the nucleus. The source is placed sufficiently far

away from the nucleus that the neutron waves arriving at the nucleus can be treated

as plane waves. This incoming plane wave has wavevector ki, momentum ~ki, and

energy Ei = ~2k2
i /(2mn), where mn is the neutron mass. After scattering from the

nucleus, the neutron wave has wavevector kf , and propagates radially outwards. At

a large distance away, the detector counts the number of neutrons. At the detector

the neutron wave can also be treated as plane waves.

Figure 2.1: Scattering from a nucleus. A plane wave of neutrons

with wavevector ki and energy Ei interacts with the nucleus. After the

interaction with the nucleus, the neutron scatters isotropically. At a large

distance away the detector measures the scattered neutrons which can

also be treated as plane waves. The scattered neutrons have wavevector

kf and energy Ef .

The detector will count the number of particles that scatter into a specific solid

angle dΩ, which is defined by the size of the detector. This quantity, normalised to

the flux of oncoming neutrons Φ, is defined as the differential cross-section. For the

system depicted in figure 2.1, the differential cross-section will have the form:
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(
dσ

dΩ

)
λi→λf

=
1

Φ

1

dΩ

∑
kf in dΩ

Wki,λi→kf ,λf , (2.1)

where λi and λf are initial and final quantum states of the nucleus, and Wki,λi→kf ,λf

is the transition rate from ki, λi into kf , λf per second. In order to determine the

transition rate, Fermi’s Golden rule [27, 59] is used. This results in a differential

cross-section of the form:

(
dσ

dΩ

)
λi→λf

=
kf
ki

( m

2π~2

)2

|〈kfλf |V |kiλi〉|2. (2.2)

Here, V is the potential that the neutron feels from the nucleus. Another important

quantity is the partial differential cross-section which is given by:

(
d2σ

dΩdEf

)
λi→λf

=
kf
ki

( m

2π~2

)2

|〈kfλf |V |kiλi〉|2δ(Eλi − Eλf + Ei − Ef ). (2.3)

Eλi and Eλf are the energies of states λi and λf respectively and Ei and Ef are

initial and final energies of the scattered particle. In order to get to this equation

the conservation of energy has been applied. If the particle has lost energy due to

scattering, the state λf must have a higher energy state than λi. It is known that

the neutron interacts with the nucleus via the strong and weak forces which are

very short ranged. For simplicity, the potential V can be treated as a Dirac delta

function:

V (r) =
2π~2

m
bδ(r). (2.4)

This potential is referred to as the Fermi pseudo-potential. Here, b is defined as

the scattering length of the object and it can be negative or positive. Its value is

dependent on the element, its particular isotope, and its nuclear spin. For an elastic

scattering event, which is defined as Ei = Ef , the differential cross-section achieves

the desirable result of
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dσ

dΩ
= b2. (2.5)

This result is desirable because isotropic scattering is achieved. Basic diffraction

theory states that if the stationary object is much smaller than the wavelength of

the scattered object, the scattering must be isotropic. The nuclear potential has a

range of ∼10−14m which is very small compared to the typical neutron wavelength

of ∼10−10m used in neutron scattering experiments.

In order to get isotropic scattering from a nucleus Fermi’s Golden rule has been

used. This is equivalent to the Born approximation as they are both based on first

order perturbation theory [58]. A derivation of the differential cross-section with

a more quantum mechanical approach can be found in Ref. [27]. It is important

to note that the use of Fermi’s Golden rule (or Born approximation) is not always

valid for neutron scattering. However, it is used regardless because it results in the

desired isotropic scattering from a nucleus [58].

Coherent vs Incoherent Scattering

One can consider scattering from a system composed of many different nuclei,

where not all nuclei have the same scattering length. If the number of atoms is

large enough, the measured cross-section is approximately the average of all the

individual cross-sections. This is certainly valid for most crystal samples used in

neutron scattering where the number of nuclei is of the order of ∼1023. The partial

differential cross-section is given by:

d2σ

dΩdEf
=
kf
ki

1

2π~
∑
jj′

bjbj′

∫
〈j′, j〉e−iωtdt, (2.6)

where ω is the angular frequency, t is time, and the overline in the term bjbj′ rep-

resents an average of (bjbj′). Here 〈j, j′〉 is defined as:
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〈j′, j〉 = 〈e−iQ.Rj(0)eiQ.Rj′ (t)〉. (2.7)

Q is the scattering vector and Rj is the position of atom j in real space. One can

re-write equation 2.6 in two different parts:

d2σ

dΩdEf
=
kf
ki

1

2π~
(b)2

∑
jj′

∫
〈j′, j〉e−iωtdt (2.8)

+
kf
ki

1

2π~
{b2 − (b)2}

∑
j

∫
〈j, j〉e−iωtdt.

Here, b and b2 are the averages of bi and b2
i respectively. The first term in equation

2.8 is known as the coherent cross-section and the second term is known as the inco-

herent cross-section. Physically, the coherent cross-section looks into the correlation

between two atoms at different times as if they both had the same scattering length

b. The incoherent cross-section looks into the correlation between the same atom at

different times [58].

For this thesis work, the desired information is in the coherent signal, and the

incoherent scattering signal is treated as a background. This is because the coherent

part of the signal contains information about the structure and the collective ex-

citations. For single crystal scattering, the most discernible difference between the

two signals is that incoherent scattering is approximately isotropic whilst coherent

scattering changes rapidly with changes in the scattering vector.

2.1.2 Scattering from a Crystal

The neutron scattering from a crystal can be separated into two main com-

ponents. These are nuclear scattering and magnetic scattering which respectively

represent interactions with the nuclei or with the electrons of the crystal. A scatter-

ing event can also be elastic (Ei = Ef ) or inelastic (Ei 6= Ef ). From nuclear elastic
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scattering, one can obtain information regarding to the crystal structure such as

atom positions and lattice parameters. From magnetic elastic scattering, one can

obtain information about the magnetic structure, such as the orientations of the mo-

ments and average moment size. With inelastic scattering events, one can observe

nuclear or magnetic excitations within the crystal.

Nuclear Scattering

When neutrons scatter from a nucleus within a crystal, it can displace it from its

equilibrium position, Ri by a small amount ui. The nucleus will feel a force pulling

it towards the equilibrium position, similar to a classical spring-mass system. These

displacements in the crystal are treated via a quantum harmonic oscillator model

first developed by Bloch [58,60]. For elastic scattering from a primitive crystal, the

coherent part of the differential cross-section has a relatively simple form given by:

(
dσ

dΩ

)
coh. el.

= N(b̄)2 (2π)3

vo
e−2W

∑
τ

δ(Q− τ(hkl)). (2.9)

Here, N is the number of unit cells in the crystal, vo is the volume of the unit cell, W

is the Debye-Waller factor. The sum is performed for integer values of (hkl). The

exponential with the Debye-Waller factor originates from considerations of atom

vibrations. For isotropic displacements the Debye-Waller factor is proportional to

the mean of the atom displacement squared, W ∝ 〈u2〉. The most important result

from equation 2.9 is that it will only be non-zero for integer values of (hkl). This

is in fact the Laue condition for diffraction as discussed in section 1.3.2. Therefore,

with elastic neutron scattering, the real space lattice parameters of the crystal can

be determined.

For non-primitive crystals, there is not necessarily intensity for all integer values

of (hkl). This is dependent on the nuclear structure factor FN(Q). For a non-

primitive crystal the differential cross-section becomes:
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(
dσ

dΩ

)
coh. el.

= N
(2π)3

vo

∑
τ

δ(Q− τ )|FN(Q)|2, (2.10)

where FN(Q) is defined as:

FN(Q) =
∑
r

bre
Q.re−Wr . (2.11)

Note that the small r refers to the position of the atom within the unit cell and

the summation is performed only within the unit cell. Wr and br represent the

Debye-Waller factor and scattering length of the atoms at position r respectively.

The structure factor is important because it contains information about atomic

positions and also the elements at these positions (due to scattering length). By

measuring many neutron Bragg peak intensities, and comparing their intensities, it

is possible to solve the chemical composition and structure of a crystal [61,62].

Magnetic scattering

Aside from scattering from the nucleus of an atom, the neutron can also scatter

from the electrons of the atom. The neutron has a magnetic moment which interacts

with the magnetic field generated by the electrons. Only the unfilled electron shells

contribute to the magnetic field, therefore only the unfilled electrons interact with

the neutrons. The partial differential cross-section for magnetic scattering is slightly

different to the nuclear one. It is necessary to consider the spin state of the neutron

σ in the differential cross-section:

(
d2σ

dΩdEf

)
σiλi→σfλf

=
kf
ki

( m

2π~2

)2

|〈kfσfλf |Vm|kiσiλi〉|2δ(Eλi−Eλf +~ω). (2.12)

Here, Vm is the magnetic potential, σi and σf are the initial and final spin states of

the neutron, and ~ω is defined as ~ω = Ei − Ef . The electrons contribute to the

35



magnetic potential in two ways. The first is simply due to an electron’s internal

magnetic moment, and the second is due to its orbital motion, which creates a

magnetic field. The partial differential cross-section for magnetic scattering can be

stated as:

(
d2σ

dΩdEf

)
σiλi→σfλf

= (γr0)2kf
ki
|〈σfλf |σ.M⊥|σiλi〉|2δ(Eλi − Eλf + ~ω). (2.13)

γ is a constant with γ=1.913, r0 is the classical electron radius with r0 ∼10−15m. σ

is the Pauli spin operator and it is related to the spin of the neutron via σ = 2S/~.

M⊥ is defined as:

M⊥ =
∑
i

eiQ.ri
[
Q̂× (si × Q̂+

i

~Q
(pi × Q̂))

]
. (2.14)

Here, the two terms in the square brackets represent magnetic fields due to spin and

orbital motion respectively. The operatorM⊥ is related to the magnetisation of the

system. The termM corresponds to the Fourier transform of M (R), the operator

for magnetisation at point R in real space. The operator M⊥ is simply the com-

ponent ofM perpendicular to the scattering vector Q. This is an important result

for neutron scattering. The neutron can only probe magnetisation perpendicular to

the scattering vector [58,63].

Elastic magnetic scattering can be useful for determining the magnetic structure

of a crystal. For an arbitrary magnetic structure the coherent part of the differential

cross-section has the form:

(
dσ

dΩ

)
coh.el.

= (γr0)2N
1

4
F (Q)2e−2W

∑
α,β

(
δα,β − Q̂αQ̂β

)∑
l

eiQ.l〈Sα0 〉〈S
β
l 〉. (2.15)

α and β can be x, y, or z, and F (Q) is the magnetic form factor. The vector

l is the position of the spin and 〈...〉 denotes a thermal average of the operator.
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The magnetic form factor is a Fourier transform of the unpaired electron density.

For nuclear scattering, the nucleus can be treated as a Dirac delta function. The

Fourier transformation of this would give a constant as a function of |Q|. However,

the electrons are spread across a much larger space and the magnetic forces have a

longer range compared to nuclear forces. For these reasons, F (Q) is not constant

with |Q|, and instead it decreases rapidly with increasing |Q|. The magnetic form

factors for various ions have been obtained experimentally and they are tabulated

in Ref. [63]. Note that the magnetic form factor also applies to inelastic magnetic

signals.

The elastic magnetic scattering from an FM holds important insight into mag-

netic scattering. The coherent part of the elastic magnetic scattering differential

cross-section has a very simple form for a FM:

(
dσ

dΩ

)
coh.el.

= (γr0)2N
(2π)3

v0

〈Sz〉2
∑
τ

1

4
g2F (τ )2e−2W [1− (τ̂ .ẑ)2]δ(Q− τ ) (2.16)

Here it has been assumed that there is only one ferromagnetic domain and the

spins are oriented along the ẑ direction. It can be seen that there will only be

intensity when Q is at a reciprocal lattice point. The intensity will be proportional

to the square of average component of the spin along ẑ direction. Here it can

also be seen that when Q//ẑ, there will be no intensity, which was the general

result obtained for magnetic scattering from equation 2.13. Equation 2.16 can be

re-written in the form:

(
dσ

dΩ

)
coh.el.

= (γr0)2 (2π)3

v0

〈Sz〉2
∑
τ

e−2W δ(Q− τ )|τ̂ × {F(τ )× τ̂} |2 (2.17)

HereF(Q) is the Fourier transform of the average magnetisation 〈M (r)〉. There-

fore, by measuring the magnetic intensity of Bragg peaks for a FM, it is possible to
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obtain the average magnetisation 〈M(r)〉. This result can be extended to any FM

component of a magnetic structure. For example a paramagnet will scatter isotrop-

ically; however, with a field applied along the ẑ direction, a net FM component will

appear. By measuring the change in intensity at FM Bragg peak positions, one can

establish the change in the average magnetisation 〈M (r)〉 [58].

Inelastic Neutron Scattering

So far it has been shown that with elastic neutron scattering events, information

about the nuclear and magnetic structures of the crystal can be obtained. These are

the static properties of the crystal. One can also look at inelastic neutron scattering

processes where Ei 6= Ef . Inelastic scattering experiments provide a way to study

the excitations within the crystal. Typically, the excitations are treated as purely

structural or purely magnetic in origin, similar to the elastic case.

The excitations of the magnetic system are spin waves. In section 1.3.4, the spin-

wave dispersion, ~ωq, was derived for a FM system. When the neutron interacts

with the magnetic system inelastically, it can create or destroy one magnon. The

partial-differential cross-section for such a process is:(
d2σ

dΩdEf

)
σiλi→σfλf

= (γr0)2kf
ki

1

4π~
S(1 + Q̂z

2
)[

1

2
gF (Q)]2e−2W

×
∑
τ ,q

[〈nq + 1〉δ(~ωq − ~ω)δ(Q− q − τ ) (2.18)

+〈nq〉δ(~ωq + ~ω)δ(Q+ q − τ )].

Note only in this equation, g is not the g factor, instead it is the Landé splitting

factor. The value of this factor only depends on the spin and total angular quantum

numbers S and J respectively. In equation 2.18, the 〈nq+1〉 and 〈nq〉 terms represent

magnon creation and annihilation terms respectively. The term 〈nq〉 is the thermal
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average of magnon density at q. Its value is given by Bose-Einstein statistics:

〈nq〉 = 1/(e~ωq/(kBT ) − 1), (2.19)

where kB is the Boltzmann constant and T is the temperature.

The excitations of the nuclear lattice are collective lattice vibrations. These

excitations can be represented by the quasi particle phonon. For systems with

many atoms in a unit cell the calculation of the phonon dispersions can become

complicated. For this reason phonon dispersions are often calculated using software

algorithms such as CASTEP [64] which rely on first-principles density-functional

theory (DFT). DFT is based on using approximate functions (i.e. functionals) for

the electron density in order to find the minimum energy, therefore the ground state

of the system [65,66]. The one phonon partial differential cross-section can be stated

as:

(
d2σ

dΩdE

)
coh.

=
kf
ki

(2π)3

2v0

∑
s

∑
τ

1

ωs
|
∑
r

br√
Mr

e−Wre−iQ.r(q.es,r)|2

×[〈ns + 1〉δ(ω − ωs)δ(Q− q − τ ) (2.20)

+〈ns〉δ(ω + ωs)δ(Q+ q − τ )].

The phonon energy is given by ~ωs. The index s represents two different indices

q and j. The index j has value 1,2,3 and they refer to the different polarisations

of the displacement which is labelled by the unit vector ej. The term es,r refers

to the polarisation vector of mode s for the atom with equilibrium position r. Mr

is the mass of the atom with equilibrium position r. The 〈ns〉 and 〈ns + 1〉 terms

correspond to the one phonon destruction and creation terms respectively, similar

to that for the magnon cross-section equation 2.18.

The phonon or spin-wave excitations can have multiple branches in the Brillouin

zone. The lowest energy branch is referred as the acoustic branch whereas the higher
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energy branches are called the optic branches. The observed neutron intensity along

these branches often varies in Q-energy space. Part of this dependence can be

derived from the respective Hamiltonian of the system. The intensity also depends

on the type of inelastic scattering event that has occurred. In the scattering event the

neutron can gain energy or lose energy. A neutron energy loss (Ei > Ef ) event will

correspond to the neutron creating a phonon or magnon with momentum given by

the scattering vector Q and energy ~ω = Ei−Ef . A neutron energy gain (Ef > Ei)

corresponds to an annihilation of a phonon or magnon with momentum Q and

energy ~ω = Ef −Ei. These two processes are similar; however, they are dependent

on the energy population of the magnons and phonons. At low temperatures, the

higher energy excitations will not be populated. Therefore, a neutron energy gain

event will have a much lower intensity compared to the equivalent neutron energy

loss event [58]. To understand this one must look at the coherent scattering function

S(Q, ω) defined as:

(
d2σ

dΩdEf

)
coh

= A
kf
ki
S(Q, ω), (2.21)

where A is an arbitrary constant. The scattering function is a function of the

scattering wavevector Q and energy ~ω. The difference between neutron energy

gain and neutron energy loss is stated as:

S(Q, ω) = e~ω/(kBT )S(−Q,−ω). (2.22)

This equation is known as the principle of detailed balance. As the temperature

is increased, more higher energy states are populated and the difference between

neutron energy loss and energy gain events decreases.

Aside from the detailed balance, the intensity of phonons and magnons also

have their own temperature dependence. This dependence is generally different for

phonons and magnons. In order to determine if an unknown excitation is from a
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phonon or magnon, one could look at the temperature dependence of the excitation.

For magnons, one might expect the intensity to fall to zero at temperatures above

the ordering temperature, whereas for phonons, one might expect the intensity to

increase due to the population factor. Another method to differentiate between a

phonon and magnon branch is to look at its |Q| dependence. As discussed before the

average magnon intensity falls with |Q| as determined by the magnetic form factor.

On the contrary, the intensity of a single phonon cross-section, on average, increases

with a Q2 dependence [58]. Differentiating between magnon and phonon branches

can become quite difficult in some circumstances. Even though the temperature

and |Q| dependence provides some insight to the origin of an excitation, it is not

sufficient on its own. The most rigorous way to differentiate between magnons and

phonons is to perform a polarised neutron experiment, the details which will be

explained in the following section.

2.1.3 Polarisation Analysis

The initial and final spin states of the neutron hold important knowledge about

the scattering system. So far, the spin state of the neutron has been ignored for

simplicity. The spin of the neutron can be denoted in the vectorial operator S,

with components Sx, Sy, Sz. The eigenvalues of Sz are ±1/2~; therefore, a neutron

is either “up” or “down” with respect to an arbitrary direction. Instead of the

S operator, it is more convenient to use the Pauli spin operator σ = 2S/~. Its

components are the Pauli matrices [67]:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (2.23)

The operator σz has eigenvalues ±1 and does not change the eigenstate. The

operators σx and σy operators change the eigenstates from σz = +1 to σz = −1 and
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vice versa [68].

The polarisation of a the j-th neutron in a neutron beam is defined as pj = 〈σ〉.

The polarisation of a neutron beam for an arbitrary direction, Pα, is defined as:

Pα =
1

N

∑
j

pj =
n↑ − n↓
n↑ + n↓

(2.24)

Here N is the total number of neutrons, whereas n↑ and n↓ are the number of

neutrons which are in the spin up and spin down states respectively. Using this

definition, P=0 refers to the unpolarised case, whilst P=-1 or P=1 refer to perfect

polarisation [67]. Another commonly used value to define the polarisation is the

flipping ratio F = n↑/n↓ [63, 69].

The partial differential cross-section for a polarised scattering event starts of

similar to the unpolarised case shown in equation 2.3.

(
d2σ

dΩdEf

)
σi→σf

=
kf
ki
|〈kfσf |Ṽ (Q)|kiσi〉|2δ(Eλi − Eλf + Ei − Ef ), (2.25)

Here the neutrons spin is going from σi to σf . The potential Ṽ (Q) has the form:

Ṽ (Q) =
∑
n

eiQRnbn − γr0σM⊥(Q). (2.26)

The first and second terms of equation 2.26 represent scattering from the nucleus

and the unfilled electron shell respectively [68]. However, unlike the unpolarised

case, the nuclear scattering length bn is now dependent on the neutron polarisation

in the following way:

bn = An +BnσI, (2.27)

where An, Bn are constants and I is the spin of the nucleus. It is typically assumed

that the nuclear spin direction or the isotope distribution does not have any correl-

ation in the system. This assumption will be used in this thesis also. Therefore,
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scattering from the nuclear spin will only contribute to incoherent scattering [68].

The coherent part of the nuclear scattering can be given by the operator:

N(Q) =
∑
n

eiQRnbn, (2.28)

where bn = An. It is important to note that this operator does not depend on the

neutron spin. Therefore, coherent nuclear scattering events does not have any effect

on the neutron spin. However, the neutrons spin direction does factor into magnetic

scattering. Ignoring nuclear spin scattering, the magnetic scattering cross-section

will have a component of the form:

〈kfσf |σM⊥|kiσi〉 ≈
∑
α

〈σf |σα|σi〉〈kf |Mα
⊥|ki〉. (2.29)

Here, the neutron spin element is separated from the sample. In this form, some

important observations can be made. For fields parallel or antiparallel to the neutron

spin, the neutron spin is left unchanged. However, for fields orthogonal to the initial

neutron spin, a spin flip will occur, i.e. neutron spin will go from spin “up” to spin

“down” or vice versa [68].

The elastic-scattering partial-differential cross-section for polarised neutrons is

given by the Blume-Maleyev equations [68,70–72] :

d2σ

dΩdEf
= 〈N∗N〉T,ω + 〈M∗

⊥M⊥〉T,ω + 〈N∗[PiM⊥]〉T,ω + 〈N [PiM
∗
⊥]〉T,ω

+iPi〈M∗
⊥ ×M⊥〉T,ω + 〈νi〉T + 〈σnsi〉T . (2.30)

The terms N and M⊥ represents the coherent nuclear scattering and coherent

magnetic scattering at Q. The initial polarisation of the neutron beam is given by

Pi. The terms, νi and σnsi represent the nuclear isotope incoherent and nuclear spin

incoherent signals respectively. The subscript T and ω represent a thermal average
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and a time Fourier transform respectively [68]. The inelastic scattering version of

this equation can be found in Ref. [72].

XYZ Polarisation Analysis

XYZ polarisation analysis is one of the ways of using polarised neutrons to study

magnetic and nuclear excitations in crystals. A coordinate system is created such

that x̂//−Q, ŷ is perpendicular but in the scattering plane, and ẑ is perpendicular

to the scattering plane. The initial and final polarisations of the neutron are meas-

ured along these directions. For example, consider a neutron with initial spin along

ẑ but after a spin-flip the final spin is along −ẑ. This would be denoted by the

partial differential cross-section
(

d2σ
dΩdEf

)
zz

or for simplicity, by σzz. The different

elastic-scattering cross-sections and their contributions can be seen in table 2.1 [73].

Here, only scattering processes in which initial and final polarisation are parallel or

anti-parallel have been considered. Thermal averages and time Fourier transforms

such as shown in equation 2.30 is omitted in this table for sake of clarity. For the in-

elastic scattering case, the results in table 2.1 should be scaled by kf/ki(1/e
−ω/T )−1,

where ω is the change in neutron energy and T is temperature.
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σxx = NN∗ + νi + 1
3
σnsi

σxx = NN∗ + νi + 1
3
σnsi

σxx = M ∗
⊥M⊥ + ix̂.(M ∗

⊥ ×M⊥) + 2
3
σnsi

σxx = M ∗
⊥M⊥ − ix̂.(M ∗

⊥ ×M⊥) + 2
3
σnsi

σyy = NN∗ + (M⊥ŷ)(M ∗
⊥ŷ) + ŷ.(M⊥N

∗ +M ∗
⊥N) + νi + 1

3
σnsi

σyy = NN∗ − (M⊥ŷ)(M ∗
⊥ŷ) + ŷ.(M⊥N

∗ +M ∗
⊥N) + νi + 1

3
σnsi

σyy = (M⊥ẑ)(M ∗
⊥ẑ) + 2

3
σnsi

σyy = (M⊥ẑ)(M ∗
⊥ẑ) + 2

3
σnsi

σzz = NN∗ + (M⊥ẑ)(M ∗
⊥ẑ) + ẑ.(M⊥N

∗ +M ∗
⊥N) + νi + 1

3
σnsi

σzz = NN∗ − (M⊥ẑ)(M ∗
⊥ẑ) + ẑ.(M⊥N

∗ +M ∗
⊥N) + νi + 1

3
σnsi

σzz = (M⊥ŷ)(M ∗
⊥ŷ) + 2

3
σnsi

σzz = (M⊥ŷ)(M ∗
⊥ŷ) + 2

3
σnsi

Table 2.1: XYZ polarisation cross-sections. [73]

From table 2.1, important insights can be made. For example, σxx has no mag-

netic component M⊥, whilst σyy and σzz have no structural component N .

It is important to note that XYZ polarisation analysis cannot be used to study

FM samples. The different magnetic domains create different internal magnetic

fields which destroy the polarisation of the neutron beam [63].

2.2 Neutron Instrumentation

2.2.1 Neutron Sources

There are two different ways to obtain a flux of neutrons, through spallation

or reactor sources. Spallation sources use particle accelerators to accelerate pro-

tons to high speeds before crashing them into a target material which will then
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release neutrons in turn. The target material is often made from Tungsten or Lead.

Spallation sources are often not continuous sources. The protons are accelerated in

pulses milliseconds apart. This provides a pulsed profile to the neutron flux [63].

The exception is the SINQ spallation source [74], which provides a quasi continuous

beam of neutrons. Another reliable way of obtaining neutrons is via nuclear react-

ors. These reactors are optimised for neutron generation and, therefore, have some

differences to the typical power generating reactor. The most notable difference is

that the reactors for neutron sources have a much higher concentration of 235U in the

fuel rods, up to 93%. From fission an average of 2.5 neutrons and 180meV energy

is produced [63]:

235U + n→ X + Y + 2.5n + 180meV (2.31)

Here X and Y are the fission fragments such as 141Ba and 92Kr. When the

neutrons are produced they are very fast with energies of ∼1MeV. Their energies

are lowered by collisions with the moderator, such as water or heavy water, which

surrounds the fuel rods. The neutrons and the moderator come closer to a thermal

equilibrium and the neutrons gain an energy profile described as Maxwell-Boltzmann

distribution [75]. The highest flux is observed at the energy corresponding to the

moderator temperature. For a room temperature moderator, this will result in

highest flux for ∼25meV neutrons. These are referred to as thermal neutrons. How-

ever, it is possible to pass the neutrons through materials with different temperatures

to change the energy profile of the neutrons. One can pass neutrons through 4He at

20K to obtain cold neutrons, which have a highest flux at ∼5meV or through graph-

ite at 2700K to obtain hot neutrons, which have a highest flux at ∼200meV [63].

The neutron experiments carried out in this thesis were performed at the high-

flux reactor Institut Laue Langevin (ILL) in Grenoble, France. In the experiments

either thermal or cold neutrons were used.
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2.2.2 Three-Axis Spectrometers

Three-axis spectrometer (TAS) instruments, also called triple-axis spectrometers,

get their name for the three axes of rotation which are located at the monochromator,

sample, and analyser positions. A typical set up of a TAS instrument can be seen

in figure 2.2 on page 48. Here the path that the neutrons follow are given in black

arrows and in blue arrows, the relevant directions of Q, ki, and kf are shown. TAS

instruments require a constant stream of neutrons therefore they are predominantly

used at reactors neutron sources. The neutrons originating from the reactor will

contain a distribution of energies. This beam is directed to the monochromator

which will filter out only one energy. The sample is often surrounded by environment

control apparatus which can change the temperature, pressure, magnetic or electric

field strength at the sample position. In general, the neutron will scatter in every

direction from the sample position; however, the analyser will only be subjected to

neutrons leaving the sample in a particular direction. Out of the many different

energy neutrons scattered into this direction, the analyser will filter out a specific

energy which it will direct towards the detector.
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Figure 2.2: Three-axis spectrometer. The neutron beam direction

is given in black arrows. The relative directions of Q, ki, and kf are

shown in blue.

Monochromators and analysers are multi-crystal arrays, where many single crys-

tals are glued to a flat surface. To first approximation, these arrays act like one large

single crystal. The desired wavelength is picked by going to the necessary angular

orientation as defined by Bragg’s law (see equation 1.6). The crystals and orient-

ations used for the monochromator and analysers are Cu(111), Si(111) or pyrolitic

graphite(PG) (002). Some monochromators and analysers have vertical or hori-

zontal bending which allows focusing of neutrons at the sample position, because

the sample size is typically much smaller than the width of the beam [63].

In TAS instruments, there will always be a certain amount of higher order neut-

rons coming through with wavelengths 2ki, 3ki,...etc. For example, the Si (111)

plane is used to obtain ki = 2.36Å−1. However, at this same configuration the neut-

rons with k = 2ki and k = 3ki can also scatter from the (222) and (333) planes

respectively. There are a few different ways of removing such higher order neutrons.

One is to use a velocity selector between the source and the monochromator. Ve-

locity selectors are rotating cylinders with grooves as seen in figure 2.3. They are
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designed so that a neutron with a specific speed will pass through the grooves of

the velocity selector without ever touching it. On the contrary neutrons too slow or

too fast will touch the neutron absorbent walls and stop. The other way to remove

higher order neutrons is to use filters. Filters can be from single crystals or from

powders and the chemistry of the crystal is chosen to match the specific ki used. For

thermal TAS instruments a thick piece of graphite is used; however for cold TAS

instruments Beryllium powder at liquid nitrogen temperatures is used instead. The

cooling of the Beryllium powder improves its efficiency [63].

Figure 2.3: Neutron velocity selector. Image sourced from Ref. [76].

An example of an energy scan in reciprocal space can be seen in figure 2.4

on page 50. Here, as with most TAS experiments, the length of kf is fixed and

measurements are made at various scattering angles. The energy is calculated from

~ω = ~2(k2
i − k2

f )/2mn. Here, as usual, one is working in the “neutron energy loss”

mode.

A measurement with a TAS instrument at a given Q, ω is not a point like meas-

urement. Instead, the measurement is of a certain volume in Q, ω defined by the

instrumental resolution. The resolution of a TAS instrument can be best described

as an ellipsoid in Q, ω space and is dependent on the geometry of the instrument.

A TAS measurement at Q, ω corresponds to the actual signal from the signal at

Q, ω convolved with the crystal mosaic and the instrumental resolution [63]. For
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Figure 2.4: TAS energy scan at fixed Q. Image from Ref. [63].

inelastic neutron scattering experiments it is important to consider the tilting of

the resolution ellipsoid with respect to the slope of the excitation branch measured.

An example of an TAS measurement on an acoustic excitation can be seen in fig-

ure 2.5 on page 51. Here the resolution ellipsoid is given in red and the acoustic

branch is given in blue. Keeping the energy, ~ω, fixed, a q scan is performed where

q = Q − τ , so that the zero point is the centre of a Brillouin zone. On the lower

panel, the resulting intensity from such a q scan is shown. The convolution of the

resolution ellipsoid with the excitation branch results in a much broader signal on

the left hand side compared to the right hand side. In such a case, one should

perform most measurements of the excitation on the right hand side, as its position

can be obtained much more accurately.

There are two main theoretical methods for obtaining the resolution of a TAS in-

strument. These are the Cooper-Nathans method [77], and the Popovici method [78].

Various resolution calculation software has been established such as ResLibCal [79]

and Restrax [80]. These softwares require the physical geometry of the experimental

set up to determine the size and tilt of the resolution ellipsoid. This can be partic-

ularly helpful in the planning stages of an experiment.
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Figure 2.5: TAS resolution ellipsoid. Here it can be seen that

due to the tilting of the resolution ellipsoid(red), the position of the

excitation(blue) can be much better observed on the right hand side.

The expected intensity from such a constant energy q scan can be seen

in the lower panel in grey.

2.2.3 XYZ Polarisation Analysis

TAS instruments can be adapted to perform XYZ polarisation analysis. A typical

set up of such a polarised TAS experiment can be seen in figure 2.6 on page 52.

In contrast to a typical TAS experiment, three different components have been

introduced. These are the flippers, the Helmholtz coil and the Heusler alloy crystals

used in the monochromator and the analyser. The neutrons which originate from

the reactor are unpolarised. The Heusler monochromator only reflects neutrons

with the spins along the ẑ direction. The polarised neutron beam passes through
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the first flipper which if turned on, will flip the neutron spin into −ẑ direction. The

Helmhotz coil supplies a magnetic field around the sample so that the incoming

neutron is parallel along any arbitrary direction at the sample direction. Once the

neutron exits the coil, it returns to being parallel (or anti-parallel) to ẑ direction.

The neutron passes through the second flipper where its spin can be flipped if the

flipper is on. At the Heusler analyser, only neutrons with spin ẑ direction are

reflected.

Figure 2.6: TAS with XYZ polarisation analysis capability.

A Heusler alloy is a ferromagnetic metal alloy. The crystals chosen for mono-

chromators have an (hkl) reflection where the nuclear structure factor FN(Q) and

magnetic structure factor FM(Q) are roughly the same size. The scattered in-

tensity for a spin parallel to the internal magnetic moment is proportional to I ∝

(FN(Q)2 + FM(Q)2). For a spin anti-parallel to the internal magnetic moment the

intensity is proportional to I ∝ (FN(Q)2 − FM(Q)2). This allows one to obtain a

polarised beam via scattering from a crystal [63].

The flippers used in XYZ analysis are also called π flippers because they rotate

the spin direction from ẑ direction to −ẑ direction or vice versa. This is done using

coils to create a field perpendicular to ẑ [63, 81]. Similarly, the Helmholtz coil uses

a number of coils to produce a magnetic field in any given direction. The coil set
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up used on IN20 can be seen in figure 2.7(a). In figure 2.7(b), the magnetic field

created from each one of the coloured coils can be seen. The magnetic field in

the Helmholtz coil ensures an adiabatic rotation of the neutron polarisation axis.

This way the exact polarisation at the sample position can be controlled. Once

the neutron is leaving the sample, the neutron adiabatically reverts to its original

polarisation axis [82].

(a) (b)

Figure 2.7: Helmholtz coil used on IN20. (a) The Helmholtz coils

are composed of five different coils. (b) The direction of the field for

each one of the coils is represented in the same colour. Image sourced

from Ref. [82].

In a real experiment, there are some imperfections in the polarisation. Part of

this is the inefficiencies of the flippers. One way to quantify this is to look at the

flipping ratios. The direct beam or a non-magnetic sample can be used to measure

the flipping ratios. For a nuclear scattering event, there should be no spin flip. If the

flippers were fully efficient and the beam were fully polarised, one would expect no

signal in the spin flip channels. The flipping ratios for the two flippers are defined

as:
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F1 =
Izz
Izz

, F2 =
Izz
Izz

. (2.32)

Here Izz refers to intensity when both flippers are off, a line on first or second term

means that the respective flipper was on. An acceptable flipping ratio is 40 [63].

2.2.4 Neutron Instruments

TAS instruments

For this thesis work, experiments were carried out on thermal TAS instrument

IN20 and cold TAS instruments IN12, IN14, and ThALES. These instruments were

based at the Institut Laue Langevin, Grenoble, France. On a thermal TAS in-

strument a typical energy range of 5-60meV can be expected with a resolution of

0.8-4meV. For a cold TAS instrument the typical energy range which can be explored

is much lower at 0.1-10 meV with a resolution of 0.05-0.5 meV [63].

The experimental set-up for IN20 can be seen in figure 2.8 on page 55. IN20 is

positioned very close to the reactor which provides it with a large neutron flux. In its

polarised setting it can achieve 90% polarisation [83]. The principles of operation for

most of the components have already been discussed in earlier sections. The most

important components not yet discussed are the two monitors and diaphragms. The

monitors are a very inefficient neutron detector (typically 10−4). Monitor 1 is used

as a measurement of the incoming neutron flux. This measurement is important

as there can be fluctuations in the reactor power which in turn result in changes

in the neutron flux. However, if one normalises the counts in the detectors to the

flux as measured by Monitor 1, this will not be a problem. The second monitor

is useful for troubleshooting spurious signals [63]. The diaphragms are made of

neutron absorbent materials and are used to reduce the size of the neutron beam.

It is common in TAS experiment to use a sample which is many times smaller than
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the width and height of the beam at sample position. The neutrons which do not

scatter from the sample can end up in the detector and cause an increase in the

background. For this reason, the two diaphragms are closed as much as possible.

Various Bragg peaks are checked as the diaphragms are closed to make sure there

is no signal being lost from the sample.

Figure 2.8: IN20 Three-axis spectrometer. Image from Ref. [83].

The experimental set-up of cold TAS instruments ThALES and IN12 are very

similar. The set-up of IN12 can be seen in figure 2.9 on page 56, but this set up is

also representative of ThALES. The main difference between IN12 and IN20’s set up

is that IN12 has a velocity selector placed before the monochromator. This reduces
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the number of second and third order neutrons the sample will be subjected to. The

cold TAS IN14 is now a decommissioned instrument which has been replaced by

ThALES. The experimental set up of IN14 was similar to that of IN12, with the

main difference that there was no velocity selector. For this reason a beryllium filter

was used instead to filter out the second and third order neutrons. A photograph of

the IN14 instrument can be seen in figure 2.10 on page 57. Here the monochromator

is positioned behind the circular shielding. The sample is surrounded by environment

control unit. Between the sample and the analyser is the beryllium filter which is

cooled down by liquid nitrogen. Finally past the analyser the detector can be seen.

Figure 2.9: IN12 Three-axis spectrometer. Image from Ref. [83].
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Figure 2.10: IN14 Three-axis spectrometer. Image from Ref. [83].

Neutron diffractometer

Also used in this thesis work is the diffractometer D23 based at the Institut

Laue Langevin, Grenoble, France. Its principle is very similar to that of the TAS

instrument; however, it does not have an analyser. The set up of D23 can be seen in

figure 2.11 on page 58. Here it can be seen that the detector is placed directly after

the sample. The detector can tilt out of the horizontal plane to explore different

scattering planes. It can accommodate complex sample environments in order to

supply large magnetic fields, low temperatures, or high pressures. It is used for

magnetic structure and magnetic phase diagram determination [83].
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Figure 2.11: D23 diffractometer. Image from Ref. [83].

2.3 Magnetometry

Magnetometry is the experimental method of measuring the magnetic response of

a sample for changing environmental conditions such as temperature or applied field.

For crystals with net magnetic moments, the measurement of magnetic moment can

be very useful. Most importantly it can be used as a tool to identify magnetic

phase transitions. A discontinuity in magnetisation or its derivatives can indicate

a phase transition in the system. Aside from identifying phase transitions, the

magnetisation measurements can provide information with regards to the nature of

the magnetic phase. This can be through the phase transition, or through comparing

the temperature or field dependence to other known systems [84].

2.3.1 SQUID Magnetometry

One of the most sensitive methods for measuring magnetic field is through

a device called SQUID, which stands for “superconducting quantum interference
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device”. They make use of interference effects between two superconductors to de-

tect very small changes in magnetic field. They act as devices that convert magnetic

flux into voltage and they are the most sensitive detectors of their kind [85].

The operation of SQUIDs are based on two important phenomena regarding

superconductivity: the quantisation of flux and Josephson junctions. The flux inside

a superconducting ring will always be quantised in units of flux quantum Φ0 =

h/2e where h is the Planck’s constant and e is the electric charge. The Josephson

junction is composed of two superconducting materials separated by a thin non-

superconducting material. Josephson suggested that the Cooper pairs would be

able to tunnel through the non-superconducting material [86]. Starting from zero,

an increase in current (I) will not result in an increase in potential (V) because at low

currents, the Cooper pairs can tunnel through the non-superconducting material.

This is known as the DC (direct current) Josephson effect. However, past a critical

current Ic, the junction no longer acts like a superconductor and potential difference

is created across the junction. The IV behaviour for increasing current can be

seen in figure 2.12 on page 60 [85]. The critical current Ic is dependent on the

phase difference of the two superconductors. This phase difference between the two

superconductors oscillates as a function of time in the non-zero-voltage region. This

is known as the AC Josephson effect.

The SQUID is composed of a superconducting ring which has one or two Joseph-

son junctions on it. The version with two junctions is called the DC SQUID and the

version with one junction is called the rf SQUID. These SQUIDs rely on the DC and

AC Josepshon effects respectively to operate. Here rf stands for radio frequency, as

the electronics in a rf SQUID requires an oscillating current in the radio-frequency

range.
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(a)

Figure 2.12: IV curve for a Josephson junction. Starting from zero

current, the system acts like a superconductor until it reaches a critical

current Ic, after which it has a non-zero potential difference across it [85].

2.3.2 Magnetometry Instrumentation

The magnetometer used in this thesis is the Quantum Design Magnetic Proper-

ties Measurement System (MPMS). The MPMS is capable of reaching temperatures

as low as 1.8K and field strengths of 7 Tesla. The set up of the instrument can be

seen in figure 2.13 on page 61 [87].

The sample is temperature controlled by 4He based cryogenics and the applied

magnetic field is controlled by a superconducting magnet. The magnetic moment at

the sample position is not measured directly by the SQUID. Instead a superconduct-

ing coil is used to pick up the signal, which is referred to as the detection coil. As

seen in figure 2.14 on page 61, this coil has two positive and two negative turns. This

configuration is helpful for minimising signals originating from the fluctuations in

the applied magnetic field. A measurement is taken by moving the sample through

the coils. The samples magnetic field will cause a current change in the detection

coil which will be then sent to a rf SQUID. The detection coil and the rf SQUID are

not wired together, instead they are connected inductively [87].
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(a)

Figure 2.13: Quantum Design MPMS. Image sourced from Ref.

[87].

Figure 2.14: Detection coil in the MPMS. A measurement is taken

by moving the sample through the coils. This creates an electric signal

which is sent to the SQID. Image sourced from Ref. [87].
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Chapter 3

NaxCoO2

3.1 Introduction

NaxCoO2 has received attention for a wide range of properties. It has been

considered as a battery electrode material [2], a model thermoelectric [1], and also

it is the first Co based superconductor to be discovered [3]. For x >0.65 small

magnetic moments appear at TN ∼22K [88, 89]. The suggested magnetic structure

is an A-type AFM structure with spins along the c axis. However, there are large

number of anomalies below TN which requires a more complex magnetic structure

[4, 88–92]. Some of these models suggest a magnetic patterning influenced by the

long range Na superstructures known to exist in NaxCoO2 [17,19]. Inelastic neutron

scattering experiments show a large difference of out-of-plane exchange interaction

Jc for samples of very similar concentrations (x=0.75,x=0.82) but on samples of

unknown superstructures [4, 5]. There are three different superstructures possible

in this concentration range which might be responsible for the large discrepancy

observed for Jc.

In this thesis work, inelastic neutron scattering data is presented for Na0.8CoO2

crystals for which the superstructures are known. The possible relationship between
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the superstructures and the observed novel magnetic behaviour is considered.

3.1.1 Phase Diagram

The concentration of Na in NaxCoO2 directly controls the hole concentration

in the CoO2 layer. By varying x, a rich phase diagram of electronic ground states

appears which can be seen in detail in figure 3.1 on page 64 [93]. In the low concentra-

tion range 1/4< x <1/3 under hydration superconductivity is achieved. The super-

conducting region has an optimum Tc ∼4.5K with the composition Na0.35CoO2(H2O)1.3

[3]. This compound was the first Co-based superconductor to be discovered. Similar

to the cuprate superconductors it has a layered structure, but unlike the cuprates

it sits on a triangular lattice, not on a square one. The superconductivity in

NaxCoO2 is not very well understood, however, there are some experimental in-

dications that the superconductivity in NaxCoO2 might be unconventional [94, 95].

The system is insulating at x=1/2 but metallic on either side. The x >1/2 side is

called a “Curie-Weiss metal”, since it surprisingly shows linear conductivity and a

Curie-Weiss type susceptibility. In the regime x >0.65 long-range magnetic ordering

occurs below TN ∼23K [88–90]. At x=1, this magnetic phase disappears and the

system becomes insulating [96,97]. The nature of the magnetically ordered phase is

not completely clear, and it will be discussed in detail in section 3.1.4. The dotted

line at T ∼5K highlight some anomalous physical-properties measurements [89, 98]

which some has interpreted as another phase transition [98]. The phase diagram

shown in figure 3.1 has been obtained from Ref. [93]; however, it has been modified

to highlight some of the features of other published phase diagrams, namely those

of Refs. [99] and [98]. The work in this thesis will investigate the magnetism for the

concentration x=0.8.
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Figure 3.1: Phase diagram of NaxCoO2. There is a hydrated super-

conductor phase at x ∼0.35, an insulating phase at x=0.5 and a SDW

phase for x >0.65. Image has been obtained from Ref. [93]; however,

changes have been made in order to represent some features of phase

diagrams in Refs. [99] and [98].

3.1.2 Crystal Structure

The parent structure of NaxCoO2 (x >0.65) has hexagonal symmetry, space

group P63/mmm with a=b=2.85Å, c=10.8Å, β = 120o which can be seen in figure

3.2 on page 65. Here the Co and O atoms are given in black and white respectively.

Red and Blue colours represent the two possible sites for a Na atom. The red sites,

Na1, cost more energy because they sit right on top of the Co atoms compared to

the blue sites, Na2, which sit at the centre of the Co triangles [17].

Aside from controlling the hole concentration, the Na concentration also plays

an important role in creating long-range superstructures in the system. Across a

wide ranges of Na concentrations various superstructures were found to exist [2,17,

100–104]. The mechanism for the superstructure formation at high concentrations

was successfully explained by Roger et al. [17] by using a pure electrostatic model.
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Figure 3.2: Parent structure of NaxCoO2. There are two possible

Na sites Na1 (red) and Na2 (blue) which correspond to high and low

energy sites respectively [17]. The Co (black) and O (white) layers reside

between the Na layers.

In NaxCoO2, there are two possible sites for the Na atoms in the ab plane. If

viewed along the c axis, the Na1 positions sit directly above a Co site whilst the

Na2 positions are in the centre of the triangle made by the Co atoms. The Na1

site has a higher energy cost and, therefore, one would not expect it to be filled.

However, it can be calculated that the lowest energy configuration is clusters of Na

vacancies where at the centre of the cluster the Na atoms are in the Na1 position.

This can be seen in detail in figure 3.3(a). This di-vacancy cluster model can be

extended for a tri- vacancy model where there are three atoms in Na1 sites. The di-

vacancy model is lowest energy in the 0.5< x <0.71 regime whilst tri-vacancy model

is more favourable in the 0.75< x <0.8 regime. The energy of different cluster sizes

can be seen in figure 3.3(b) for mono (black), di (red), tri (blue), and quadri (green)

vacancy clusters. The clustering creates a Coulomb landscape on the Co-O layers

where there are higher potentials above and below the clusters. It is expected that

such an effect will have consequences on the electronic and magnetic properties of

the system [17].
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(a) (b)

Figure 3.3: Na vacancy superstructures. (a) For large Na concen-

trations, it is energetically more favourable to have the vacancies around

a Na1 site rather than have all Na on Na2 sites. (b) At even higher con-

centrations, different Na1 cluster size becomes possible. Here the energy

of mono (black), di (red), tri (blue), and quadri (green) vacancy clusters

are shown. Images from Ref. [17].

In the concentration range 0.75 < x < 0.85, there are three possible superstruc-

tures which can form. These are the square (x=0.8), stripe (x=0.8), and 1/13th

(x=0.77) phases and can be seen in figure 3.4 on page 67. The square and stripe

phases both have the same concentration and appear only below ∼285K [102]. The

1/13th has a lowest concentration of the three phases with x∼= 0.77, and will of-

ten coexist with the stripe or square phase. The samples will gradually lose Na if

left in contact with the atmosphere and the concentration of 1/13th phase will in-

crease [105]. All three phases are easy to distinguish using single crystal diffraction

methods. A calculated intensity of square, stripe, and 1/13th phase for neutron

diffraction can be seen in figure 3.5 on page 67. The superstructure of a sample can

be identified easily by checking the positions of the superstructure Bragg peaks.
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(a) Square (b) Stripe (c) 1/13th

Figure 3.4: Na layer of three possible superstructures for con-

centration range x ∼0.77-0.8. Here, the Na layers of (a) square, (b)

stripe, and (c) 1/13th phases can be seen. Images from work of Ref. [15].

(a) (b) (c)

Figure 3.5: Calculated neutron diffraction pattern for different

superstructures. Here, the calculated diffraction pattern of the (hk0)

plane for the (a) square, (b) stripe, and (c) 1/13th phase can be seen.

Images from work of Ref. [15].

The c lattice parameter has also been found to be closely correlated with the

Na concentration in the sample [105–107]. This correlation can be clearly seen in

figure 3.6, where with increasing x, the c lattice parameter becomes smaller. For the

square and stripe phase samples where x = 0.8, a c lattice of ∼10.7Å is expected.
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For the 1/13th phase, where x = 0.77, a c lattice of ∼10.8Å is expected. The data

points in figure 3.6 agree with this linear trend within ∼0.1Å [107].

Figure 3.6: Correlation between c lattice and Na concentration.

This image was obtained from Ref. [105]; however, the original source is

Ref. [107].

3.1.3 Thermoelectric Properties

Thermopower is the ability of a material to create a voltage difference from a

temperature difference. A high thermopower material would have great techno-

logical applications such as turning waste heat into electricity. NaxCoO2 started

receiving interest as a thermoelectric after it was discovered that NaxCoO2 has

a roughly ten times higher thermopower compared to similar materials [1]. The

thermopower of NaxCoO2 increases with x until x=1 where an insulating phase is

formed [96, 97]. Surprisingly, it was discovered that an applied magnetic field can

suppress the thermopower in NaxCoO2, which can be seen in figure 3.7. Because of
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this field dependence, it is believed that the thermopower is of magnetic origin, i.e.

due to spin entropy.

Figure 3.7: Suppression of the thermopower with applied mag-

netic field. This is an indication that the thermopower is of magnetic

origin. Image from Ref. [16].

There have been models which try to explain this by considering the degeneracy

in the Co3+ and Co4+ sites. For a Na concentration of x, it is expected that x sites

would have Co3+ and 1-x sites would have Co4+. It is expected that the Co3+ and

Co4+ sites are in the low spin configurations of S=0 and S=1/2 which would result

in degeneracies of one and six respectively. Therefore, a hole jumping away from a

Co4+ to a Co3+ site will transfer not only charge of +1e but also a finite amount of

entropy [16,108]. A better understanding of the magnetic structure and excitations

in NaxCoO2 would result in a better understanding of its unusual thermopower.

It has also been shown that the Na superstructures play a very important role

in the thermoelectic properties of NaxCoO2. In the square phase of Na0.8CoO2, the

large distance between the tri-vacancy Na1 clusters and the surrounding Na2 atoms

create an anharmonic potential in which the Na atoms can “rattle”. It has been
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shown that such rattling modes disturb the flow of heat throughout the material.

First-principles DFT calculations using the square phase superstructure were able

to successfully predict the existence of such flat rattling phonon mode at ∼13meV.

This rattling mode causes a reduction in the thermal transport by six times com-

pared to the x=1 version. This can be seen in figure 3.8 where physical-property

measurements (black) agree with measured phonon lifetimes from inelastic neutron

scattering (red) and x-ray (yellow) measurements. The calculated thermal transport

for x=1 (blue) is considerably larger [21].

Figure 3.8: Thermal transport of square phase Na0.8CoO2. The

thermal transport for NaCoO2 (given in blue), which has no superstruc-

ture, is much higher than the thermal transport of the square phase

Na0.8CoO2. This shows that the Na superstructure can have very im-

portant consequences for the physical properties. Image from Ref. [21].

3.1.4 Magnetism

NaxCoO2 shows a magnetic transition in susceptibility measurements for x=0.65-

0.95 at TN ∼22K [88, 89]. The most agreed upon magnetic structure is S=1/2, A-

type AFM structure which can be seen in figure 3.9(a) on page 73 and is in agreement

with neutron [4, 5], muon [91, 109], and physical-property measurements [88–90].
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However, the magnetism below TN has many anomalous features which suggests the

existence of a more complex magnetic structure. Many different models have been

suggested to try and account for these anomalies and they include charge ordered

structures [17,110], magnetic clusters [111], and a mixture of localised and itinerant

states [18,19]. INS experiments can be an important tool for distinguishing between

such models.

The interaction scheme of NaxCoO2 can be seen in figure 3.9(a) [5] where Jab

and Jc are the nearest-neighbour exchange interactions in the ab plane or along

the c axis respectively. INS measurements were performed on single crystals of

NaxCoO2 with concentrations x=0.75 [5] and x=0.82 [4]. Linear spin-wave theory

fits to the spectrum gave a result of Jab=-6(2)meV and Jc=12.2(5)meV for x=0.75 [5]

and Jab=-9.0(6)meV and Jc=6.6(6)meV for x=0.82 [4]. Two important observations

can be made from these findings. The first is that Jab and Jc are of similar magnitude.

This is surprising since the structure is two dimensional in nature and therefore

a relatively smaller Jc would be expected. The second observation is that even

though Jab is similar for both compositions, Jc is different by a factor of two. One

possible explanation for this could be the different superstructures which form in

this concentration range. The 1/13th phase Na0.77CoO2 has already been measured

and produced Jc ∼12meV and Jab ∼-6meV [69]. Therefore, it is possible that the

stripe or square phase might be responsible for the observed Jc ∼6meV.

The apparent three dimensionality of the magnetism was explained qualitatively

by first-principles DFT calculations. It was shown that a diagonal interaction J
′
c as

seen in figure 3.9(a) with its 12 next-nearest neighbours can be strong enough to

contribute significantly to the out-of-plane excitations. In particular for x=0.82 a

ratio of Jc/J
′
c = 9 is expected which would result in Jc=3.96meV and J

′
c=0.44meV,

thus making it less magnetically isotropic. In the DFT calculations a varying atomic

number of Z=10+x was used for Na which in principle would consider the effects
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of Na concentration. Using such a model it is possible to extrapolate the exchange

interactions of x=0.75 by using the exchange interactions of x=0.82 as a starting

point. Such an extrapolation has worked well for Jab but it does not work well

for Jc. In fact the model suggests that Jc should decrease with concentration, not

increase. This is summarised in figure 3.9(b) where the calculated spin-waves along

(hh0) and (00l) can be seen for the x=0.82 sample (dark green), the x=0.75 sample

(light green), and the x=0.82→0.75 extrapolation attempt (blue). Thus a Z=10+x

DFT model was incapable of explaining the factor of two discrepancy in Jc between

x=0.75 and x=0.82 results [112].

The spin waves along (hh3) direction showed two minor anomalies. Firstly, the

spin-wave intensity dropped much faster than expected with a drop of factor of

two from 6.5 to 14meV [5, 113]. Secondly, the excitations became broader in Q at

larger energies [4,5]. This could be indicative of short range correlation within the ab

plane or a Landau damping by charged quasiparticles [4]. Additionally, cold neutron

measurements showed that there are two gaps at (003). These were explained as

an easy-axis anisotropy along c axis and a twofold easy-plane anisotropy within the

ab plane. The easy-plane anisotropy would have to be twofold because a threefold

anisotropy would not result in two gaps [92].

The physical-property measurements also show various anomalous behaviours

for NaxCoO2. In fact the observed behaviour is not compatible with a purely local

moment interpretation. These anomalous behaviours are the entropy jump, the

large positive magnetoresistance, and thermomagnetic irreversibility which all occur

below TN [88–90]. This is an indication that the magnetic structure of NaxCoO2 is

more complex than the S=1/2 A-type AFM structure. The small moment size

of ∼0.13µB per Co as obtained by neutron and muon measurements is another

indicator of the complexity [4,91,92]. Surprisingly the magnetisation measurements

predict a much smaller moment size of 1.2×10−4µB per Co [88]. There is another
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(a) (b)

Figure 3.9: NaxCoO2 magnetic structure, interaction scheme,

and spin waves. (a) NaxCoO2 (x >0.65) has an A-type AFM struc-

ture [4]. Initial interaction models only considered Jab and Jc but DFT

calculations show that the diagonal interaction J
′
c can be important as

well [112]. (b) The spin waves along (hh0) and (00l) are calculated using

J parameters obtained from samples with x=0.75 (Helme et al. [5]) and

x=0.82 (Bayrakci et al. [4]). The J parameters are fixed to reproduce

the dispersion for x=0.82 (yellow crosses). The extrapolation to x=0.75

is shown by the blue line. This attempt fails to explain the factor of

two difference observed along (00l) for the two different concentrations.

Images (a) and (b) from Refs. [4] and [112] respectively.

discrepancy between the neutron and physical-property measurements. The fits to

susceptibility produce a negative Curie-Weiss constant which would indicate that

AFM correlations should be dominant; however, such a result is not compatible with

strong FM in-plane coupling observed for NaxCoO2 by neutrons [16,113,114].

There are quite a few different magnetic models that one can use to explain

the various anomalies in the magnetism of NaxCoO2. The main factor for most of
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these models is the idea that not all Co sites are the same. In NaxCoO2 (x >0.65)

the sodium concentration x also controls the electron doping and as a result the

Co3+/Co4+ ratio. For NaxCoO2, x sites will be Co3+ and 1-x sites will be Co4+.

Assuming low spin configuration, S=0 and S=1/2 is expected from Co3+ and Co4+

respectively. Herein lies a problem: for NaxCoO2 (x >0.65) only 10%− 35% of the

sites can have S=1/2. It is not possible to have large clusters of S=1/2 Co4+ because

the Coulomb cost would be too large [5]. So far this is assuming a completely

localised Co3+ and Co4+ picture. In reality, all or part of the electrons from the

Co sites could be delocalised, i.e. itinerant. Initial nuclear-magnetic resonance

(NMR) and susceptibility measurements were interpreted as evidence that Co3+

and Co4+ are both in their low spin state [115]. More recent NMR measurements

on NaxCoO2, x = 0.65 − 0.8, have been interpreted as ∼ 23% localised Co3+ with

S=0, and an itinerant band with an average charge Co3.5+ which is responsible for

the conductivity and the magnetism [19]. It is expected that the Na superstructures

control the electronic patterning directly. The Co3+ S=0 sites should localise under

the Na1 sites [106]. Such a prediction was previously made for the square phase

superstructure. The Na layer of the square phase superstructure can be seen in

figure 3.10(a) on page 75. From this Na layer, a specific Coulomb potential is

created on the Co layer which is shown in figure 3.10(b). The Co sites (green)

feel the largest potential when they are directly under or above a Na1 site. The

minimum is surrounded by a potential well much larger than the hopping integral

of t∼10meV [17, 116]. Therefore, it might be possible to localise a Co4+ at the

potential minima [17].

An itinerant and localised magnetic model has been tested for NaxCoO2. Such

a model predicts FM order appearing above x<0.67 [18]. This is consistent with

the susceptibility experiments which find magnetic transitions for concentrations

x=0.65-0.95 [88,89]. In contrast to the NMR results previously discussed, this itin-
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(a) (b)

Figure 3.10: Coulomb potential on the Co layer in square

phase superstructure. Na superstructure calculations suggest that

there must be some Co charge patterning. Here, (a) the square phase

Na0.8CoO2 structure and (b) its corresponding Coulomb potential land-

scape in the Co layer can be seen. The Co sites (green) situated below or

above an occupied Na1 site have the largest Coulomb potential and are

therefore expected to have S=0 Co3+. At the sites which correspond to

a potential minimum, Co4+ with S=1/2 are expected [17]. Image from

Ref. [17].

erant model uses a randomly placed, localised Co4+ S=1/2 within a sea of Co3+. It

is assumed that the localised Co4+ will break the symmetry of the surrounding Co3+

and drive it into the intermediate spin state of S=1. The Co3+ further away from the

Co4+ will remain in low spin S=0 state. The physical picture of such a model can be

seen in figure 3.11 on page 76. Here the localised Co4+ S=1/2 are given in white and

the surrounding cluster of Co3+ S=1 are given in black. It is these ferromagnetic-

ally correlated Co3+ S=1 clusters which connect and provide conduction pathways.

The non-magnetic Co3+ is represented by the white background [18]. The idea of

such FM clusters have also been suggested by muon [111] and physical-property
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measurements [98]. Muon measurements have been interpreted as nm size magnetic

clusters separated nm apart [111]. Similar to the previous model, Co4+ surrounded

by intermediate spin Co3+ is expected. The dominant interactions are expected to

be AFM, with a small FM interaction to cause a structure similar to A-type AFM

structure suggested before. As concentration is lowered, the clusters extend into

each other and become continuous at x<0.78. A tentative phase diagram for such

a cluster models suggests that the FM ordering does not occur until ∼8K [98]. It is

important to note that magnetisation measurements report an unexpected upturn

in magnetisation below 8K and similarly in the region 5-8K there is also a change

from Mab >Mc to Mc >Mab [89].

Figure 3.11: Random Co4+ spin distributions for Na0.8CoO2. In

the randomised model the S=1/2 Co4+(white arrows) are surrounded by

S=1 Co3+(black arrows) in intermediate spin configuration. Further out

the Co3+ is in the non magnetic, S=0 state (white background). Image

from Ref. [18].

The physical picture of a localised Co4+ S=1/2 creating an intermediate spin

Co3+ S=1 around itself can be considered as a spin-orbital polaron and can be seen in

figure 3.12(a) on page 78. Here, the exchange interactions J , J
′
and Jdiag can be seen.

Based on comparisons to susceptibility measurements and some assumptions about

the energetics within the Co layer, a rough estimate of these exchange parameters
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can be made. The J exchange constant between the Co3+ S=1 is AFM with |J | ∼10-

20meV. The diagonal interaction Jdiag is also AFM with |Jdiag| . |J |. As for the

interaction between the central Co4+ and its surrounding Co3+, J
′
, the interaction

could be AFM or FM. However, susceptibility measurements are indicative of |J ′| .

|J | and the existence of spin waves at low energies rule out the possibility of a large

AFM J
′
. Two polarons can also create a bipolaron as seen in figure 3.12(b). Here

the two Co4+, S=1/2 sites interact ferromagnetically with Jab, where Jab ∼ −J is

expected [117, 118]. A spin-orbital polaron model like this is capable of explaining

three major problems regarding the magnetism in NaxCoO2. Firstly, it can explain

the large susceptibility of NaxCoO2 which cannot be explained using only non-

magnetic Co3+ [118]. Secondly, it can explain the negative Curie Weiss constant

despite the strong in-plane FM coupling observed in INS experiments [118]. Thirdly,

it predicts a dampening of spin waves between 10-20meV [117] which has been

observed in INS experiments [4,5]. In the polaron picture, the spin-waves originate

from itinerant ferromagnetism within the CoO2 planes. The polarons have internal

excitations which correspond to higher order spin states. These states should show

in INS as broad non-dispersive excitations [118].
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(a) (b)

Figure 3.12: Spin-orbital polaron model for NaxCoO2. (a) A

localised Co4+ S=1/2 surrounded by Co3+ with S=1. (b) In a bipolaron

there are two Co4+ S=1/2 sites surrounded by Co3+ S=1. Images from

Ref. [117].

3.2 Experimental Set-Up

Spin-wave dispersion were measured for two different NaxCoO2 samples, each

with a different Na superstructure. The samples were grown using the floating zone

method by Sivaperumal Uthayakumar at Royal Holloway, University of London.

Each sample was measured on SXD, ISIS, UK and the dominant superstructure was

established. The list of samples, their superstructures, and the experiments they

were used in can be seen in table 3.1 on page 79. The dominant superstructure

of each sample is also shown here. It is important to note that in each sample

a small amount of 1/13th phase superstructure has been observed. In subsection

3.2.1, the superstructure determination for the samples will be discussed in greater

detail. The majority of the neutron experiments were carried out on the triple-axis

spectrometer IN20 at the ILL, Grenoble, France. This instrument was used with
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and without polarisation analysis on the square and stripe phase samples.

Sample Phase Neutron Experiments

Sample 1 stripe IN20 (unpol.)

Sample 2 square IN20 (pol. and unpol.)

Table 3.1: NaxCoO2 samples used for neutron experiments.

Here the sample name, dominant superstructure, and the experiments

the samples were used in can be seen.

The NaxCoO2 samples will gradually lose Na if it comes into contact with air.

It has been observed that a sample in the square or the stripe phase will gradually

decay into the 1/13th phase. In order to prevent this, samples were kept in desic-

cators. For the square and stripe phase samples used in IN20 experiments, special

aluminium canisters were built at the ILL. The canisters and the samples can be

seen in figure 3.13 on page 80. Once inside, the samples were sealed inside a helium

atmosphere with an indium seal. During each experiment, the dominant superstruc-

ture was checked by going to some of the large superlattice reflections unique to that

superstructure. For the alignment of the samples, neutron instruments such as IN3

(ILL), ALF (ISIS), SXD (ISIS), and a laboratory x-ray diffractometer were used.

Before displaying any results, it is important to state the experimental set-up

for each experiment. On IN20 four different experiments were carried out.

In the December 2012 IN20 experiment the spin-wave dispersions of the stripe

phase sample (Sample 1) along (hh3) and (00l) directions were measured. A fixed

wave vector of kf = 2.662Å−1 was used. For the monochoromator and analyser,

Si(111) and PG(002) crystals were used respectively. Horizontal and vertical focus-

ing was used on both the monochromator and the analyser. An orange cryostat

was used to keep the sample temperature at ∼ 1.6K during the experiment. Ver-

tical and horizontal slits were used before and after the cryostat in order to reduce
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(a) (b)

Figure 3.13: Photographs of the NaxCoO2 samples. Here, (a)

Sample 1 (stripe phase) and (b) Sample 2 (square phase) can be seen.

Both samples are aligned so that (hhl) scattering plane is vertical. The

samples are attached to an aluminium mount with aluminium wire. Once

alignment was complete, the samples were sealed in their aluminium

canisters with an helium atmosphere with an indium seal.

background.

In the April 2013 IN20 experiment the spin-wave dispersions of the square phase

sample (Sample 2) were measured along (hh3), (hh5) and (00l) directions. The

experimental conditions were the same as that of the December 2012 experiment.

In the May 2013 IN20 experiment, polarisation analysis was used to measure

the spin-wave dispersions of the square phase sample (Sample 2). Measurements

were performed along (hh3) and (00l) directions. Heusler(111) monochromator and

analyser was used in fixed kf = 2.662Å−1. Horizontal focusing was used on the

analyser. Flippers were placed before and after the sample; however, only the flipper

after the sample was used. At the (-1,-1,0) Bragg peak a flipping ratio of ∼22 was
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obtained which corresponds to ∼91.5% polarisation. An orange cryostat was used

to supply a base temperature of ∼1.8K throughout the experiment. The orange

cryostat was situated at the centre of a Helmholtz coil. On either sides of the coil,

vertical and horizontal slits were used to reduce background. The slits before the

sample had an opening of∼ 21mm and∼ 13mm vertically and horizontally. The slits

after sample had an opening of ∼ 46mm and ∼ 24mm vertically and horizontally.

In the June 2013 IN20 experiment the spin-wave dispersions of the square phase

sample (Sample 2) were measured along (h03), and (h, 0, 2.5) directions. Before the

experiment, the sample was re-oriented to the (h0l) scattering plane on IN3 and

re-sealed in its aluminium canister. The experimental set up was the same as that

of the December 2012 experiment.

3.2.1 Crystal Superstructures

The superstructures of each sample was determined on SXD. The resulting dif-

fraction pattern was compared to the expected diffraction patterns of 1/13th, square

and stripe phase calculations (see figure 3.5). Each superstructure has a unique set

of superlattice Bragg-peaks such as the (0.8,0.8,0) for the square phase and the

(0.6,0.4,0) for the stripe phase. By searching for intensity at these unique positions,

it is possible to determine if a certain phase is present in the material. Once the

samples arrived at the ILL, their superstructures were checked on IN3. Many differ-

ent superstructure positions were measured for each sample. Some of the peaks were

close to aluminium powder lines, therefore, scans in h, k and l directions were per-

formed at each point. For sample 1, very clear stripe phase superlattice peaks were

measured at four unique Q positions: (-0.867,-0.667,0), (-1,-0.6,0), (-0.6,-0.4,0), (-

0.467,-0.667,0). No clear square phase signal could be found; however, some 1/13th

signal could be found at (-0.769,-0.923,-0.25) and (-0.462,-0.385,0.25). Some ex-

amples of these scans from the IN20 Dec 2012 experiment can be seen in figure 3.14.
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For sample 2, Bragg peaks at four unique square phase superlattice positions were

observed: (-1,-0.667,0), (-0.8,-0.8,0), (-0.6,-0.533,0), (-0.667,-0.333,0). No signature

of a stripe phase was found. Two clear 1/13th phase superlattice Bragg peaks were

measured: (-0.462,-0.385,-0.25), (-0.923, -0.769,-0.25). Some examples of these from

IN3 March 2013 can be seen in figure 3.15.

(a) (b)

Figure 3.14: Sample 1, example of superlattice peaks. Intensities

were measured at (a) stripe and (b) 1/13th superlattice Bragg peak

positions.

Both sample 1 and sample 2 had some quantity of the 1/13th phase. It is of

interest to quantify the volume fractions of the 1/13th phase to the other phase in

the sample; however, this is no simple task. For a simple unit cell, the structure

of a material can be solved by comparing the calculated intensities with measured

Bragg peak intensities. For the Na superstructures, the unit cell contains ∼100s

of atoms. This creates too many free parameters, and therefore a direct structure

determination becomes very difficult. In this thesis, two different methods were used

in an effort to quantify the amount of each superstructure in the NaxCoO2 samples.

For the first method, the intensities were calculated for the square, stripe, and

stripe superstructures. These intensities were calculated using software of D.G.
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(a) (b)

Figure 3.15: Sample 2, example of superlattice peaks. Intensities

were measured at (a) square and (b) 1/13th superlattice Bragg peak

positions.

Porter [15]. In these calculations, no atom displacement or variance in site occu-

pation was considered. These calculated intensities were used as reference point

to compare measured intensities of parent structure Bragg peaks and superlattice

Bragg peaks. For both samples, the calculations and measured intensities, were

within the same order of magnitude. For sample 2, the intensities of the square

phase superlattice Bragg-peaks were compared to that of the 1/13th phase. From

the data available, it was not possible to obtain a definitive answer. However, from

this data one could speculate that the volume ratio of 1/13th phase to square phase

is similar within a factor of ten. A similar result was found for sample 1 for a

comparison between stripe and 1/13th phase peaks.

The second method for determining the superstructure volumes relied on meas-

uring the c lattice parameter for each sample. It has already been stated that the

Na concentration x is closely related to the c lattice parameter. The square and

stripe phases (x=0.8) are expected to have a smaller c lattice parameter compared

to the 1/13th phase (x=0.77). These two slightly different c lattice parameters
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should be observable at (00l) type Bragg peaks, assuming sample quality and in-

strumental resolution are sufficiently good. In all of the TAS experiments, |Q| scans

were performed centred at Bragg peaks (002) and (004). In figure 3.16, this data is

presented in terms of d-spacing as given by the Bragg equation, d = lλ/(2sin(θ)). In

the legends, temperature and the date of the experiment are presented. Sample 2’s

results can be seen in figure 3.16(a). Some of the scans show a double peak structure

which could represent the two different phases. In the 11K, May 2013 data, which

is presented in black, the two peaks are positioned at ∼10.7 and ∼ 10.9Å. These

two peaks could represent the square and 1/13th phases respectively. If this is the

case, the volume fraction of the 1/13th phase is slightly less than that of the square

phase. The dataset is limited and therefore it is not possible to come to a definite

conclusion. A better resolution and more scans at different temperatures might be

necessary. In figure 3.16(b), sample 1’s data can be seen. Here the c lattice para-

meter determination is less consistent between different experiments. The reason

for this is not clear, but it could have to do with temperature history of the sample.

In these scans, the two-peak feature is not as clear either. The 5K November 2012

(002) and the 60K Dec 2012 (002) scans show the signatures of a secondary peak

on the right hand side. If one assumes that this smaller contribution corresponds to

the 1/13th phase, the 1/13th phase’s volume fraction must be roughly half of that

of the stripe phase.

To summarise, both samples have some amount of 1/13th phase. Even though it

is not possible to determine with certainty the volume fraction of the 1/13th phase

from the data available, the 1/13th phase does appear to be the minority phase. The

stripe and square phases appear to be dominant in samples 1 and 2 respectively.
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(a)

(b)

Figure 3.16: d spacing from (002) and (004) |Q| scans. These

scans can be used to determine the c lattice parameter and possibly the

volume fractions of certain superstructures. (a) For sample 2, the (004)

11K May 2013 scan shows a clear two-peak signature with both peaks

with similar intensities. (b) For sample 1, the 60K Dec 2012 scan shows

some evidence of two-peak feature with a factor of two difference in their

relative intensities.
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3.3 Experimental Results

3.3.1 Inelastic Neutron Scattering Results

The INS spectrum of NaxCoO2 samples in the square and stripe phase were

measured at IN20, ILL at a base temperature of ∼1.8K. For NaxCoO2, there is a

structural extinction at odd (00l). This is favourably positioned with respect to

the magnetic signals which is strongest at odd (00l). At IN20, with kf = 2.662Å,

one can only reach low energy excitations at (001) due to its small |Q|. For this

reason, the measurements were performed in the vicinity of (003). For both the

square and the stripe phase spin-wave like signal is measured along (hh3) and (00l).

Surprisingly, both phases have a very similar spin-wave spectrum. Additionally the

in-plane excitations of the square phase show some kind of anomaly.

The spin-wave spectrum for the stripe and square phase along the (00l) direction

can be visualised in figure 3.17(a) and (b) respectively on page 87. Here a number of

energy scans have been represented as a colour map where the colour of each pixel

corresponds to counts from a monitor of M1=2000000(∼200 seconds). This same

monitor will be used for all the colour maps from IN20 for consistency. Here it can

be seen that there is very little difference between the two INS spectra. They both

go to a maximum of ∼12meV at l=2.5. The square phase sample has a better signal

which is due to its larger crystal size.

The (hh3) direction spin waves have been measured for both of the phases as

well. In figure 3.18(a) and (b) on page 88, the INS spectra for the stripe and

square phases can be seen respectively. These colour maps were from Q scans

with a monitor of M1=2000000. For both samples there is a similarity below ∼

12meV: there is excitation at roughly h =0.08 and 10meV and it seems to go to

h =0 linearly. For the stripe phase sample, above 12meV the signal fades away and

there is no clear excitation branch. However, for the square phase sample there is
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(a) (b)

Figure 3.17: INS spectrum along (00l). The observed spectrum is

very similar for both the (a) stripe and (b) square phase samples. The

spin-wave spectrum reaches a maximum of ∼12meV at (0,0,2.5) for both

phases.

slight dip in intensity at ∼13meV but the intensity is regained at higher energies

and a clear excitation branch still remains. Surprisingly the dispersion remains at

h ∼0.08 between 13meV and 21meV. This kind of anomalous behaviour is referred

to as a “waterfall effect” in the literature due the dispersion’s visual similarity to a

waterfall [119]. At 23meV there is a strong optic excitation which means that the

waterfall feature cannot be followed any further in energy. This 23meV feature is

likely to be the optic phonon mode reported in literature [4, 5].
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(a) (b)

Figure 3.18: INS spectrum along (hh3). For both the (a) stripe

(b) square phase samples spin waves can be seen originating from (003).

For the square phase sample, the dispersion is fixed at h ∼0.08 between

13meV and 21meV. Such a feature is called the “waterfall effect” [119].

For the stripe phase sample, due to limited signal, measurements were only made

along (00l) and (hh3). However, for the square phase sample, measurements were

also made along (hh5), (h03), and (h,0,2.5). These measurements were performed

to shed more light on the nature of the observed “waterfall effect”. The square

phase INS data along (hh3) can be seen in more detail in figure 3.19(a) on page 89.

Here, there is an optic branch which starts at h =0.5, 20meV and moves towards

higher energies as h goes to zero. In figure 3.19(b) the square-phase (hh5) Q-scans

are collated in an colour map. At this Q, it is possible to go to higher energies

compared to (hh3) scans. The (hh5) scans do not reveal any clear continuation of

a waterfall but it does reveal multiple optical branches. It is possible that these

branches are of non-magnetic origin since they are considerably more intense than

the (hh3) spin-wave dispersion. One would expect the spin-wave intensity to drop

with increasing Q due to the magnetic form factor. Note that the large diagonal

intensity on the left hand side of the (hh5) colour map is a spurious signal, most likely
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originating from a higher order Bragg reflection. Its spurious nature is obvious from

two of its main properties. It is not symmetric about h = 0, and it is considerably

more intense than its surrounding excitations.

(a) (b)

Figure 3.19: Optic branches in square phase. Optic branches

are present along (a) (hh3) and (b) (hh5) directions. Part of an optic

branch is visible in the upper corners of the (hh3) colour map. In the

(hh5) colour map multiple optic branches are present. The large diagonal

signal on the left hand side of the (hh5) colour map is likely of spurious

origin.

Measurements performed along (h03) direction also show a waterfall feature

which can be seen in figure 3.20(a). Different to the (hh3) direction a smaller energy

step was used between Q scans. This has given a clearer picture of the waterfall

effect. Additionally, measurements were performed along (h,0,2.5) which can be seen

in figure 3.20(b). Here at 12meV the signal is most intense and there appears be

some excitations above 12meV; however, these excitations are rather diffuse and it is

difficult to identify any particular spin-wave branch. It is important to note that the

large intensity at h=0 at 19meV may not be due to spin waves. This is the position

where the scattering angle of the sample (A4 angle on triple-axis spectrometers) is

89



at its lowest. As this angle approaches zero, the sample approaches the direct beam

and the background increases.

(a) (b)

Figure 3.20: INS spectrum of square phase along (h03) and

(h, 0, 2.5) directions. (a) For the (h03) dispersion there appears to be

waterfall-like feature, similar to (hh3) dispersion. (b) Along (h,0,2.5)

direction there is not a well defined excitation branch. Part of the large

intensity at h =0, 19meV could be due to high background at low scat-

tering angles.

There are some unexpected spin-wave excitations in the 9meV and 10meV Q

scans performed along (h, 0, 2.5) direction which can be seen in figures 3.21(a) and

(b) respectively. At 9meV, there appears to be two excitations at roughly |h| ∼ 0.8.

At 10meV, even though they are more difficult to resolve, the the excitations have

moved closer together to |h| ∼ 0.65. For this direction, one wouldn’t expect any

spin-wave signal below ∼ 12meV.
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(a) (b)

Figure 3.21: Unexpected spin-wave signal for (h, 0, 2.5) direc-

tion. Below ∼ 12meV no spin-wave signal is expected; however, (a) at

9meV and (b) at 10meV there are excitations at |h| ∼ 0.8 and |h| ∼ 0.65

respectively.

3.3.2 Polarised Inelastic Neutron Scattering Measurements

for Square Phase Na0.8CoO2

It is highly likely that the acoustic modes emerging from (003) are magnetic in

origin. However, in the region of most interest above 12meV where there are rattling

modes, and up to 20meV where there are optical phonon modes, it is not clear

whether the observed excitations are structural or magnetic. In order to find out the

true nature of the waterfall feature, polarised INS measurements were performed on

the square phase sample at IN20, ILL, Grenoble, France. With the use of Helmholtz

coils and a spin flipper, a total of six different polarisation channels were explored.

These channels were the non spin-flip channels σxx, σyy, σzz, and the three spin-

flip channels σxx, σyy, σzz. Notice that all the spin-flip channels are obtained from

flipping with flipper 2, which is situated between the sample and the analyser.

Energy scans were performed at (003) and (0,0,2.5) to establish that the observed
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signal in the previous INS measurements was of magnetic nature. A polarised meas-

urement at the magnetic Bragg peak (003) is additionally useful as it will show if

the magnetic excitations are gapped. The (003) energy scans in the four different

polarisation channels can be seen in figure 3.22(a). The pure magnetic signal can be

obtained from a linear combination of the three spin flip channels via 2σxx−σyy−σzz
which can be seen in figure 3.22(b). Here it can be seen that the magnetic excita-

tion is indeed gapped. In fact it is better explained by two different gaps centred at

1.6(1)meV and 2.8(6)meV. In figure 3.23 on page 93, the (0,0,2.5) polarised energy

scans can be seen. This scan confirms that the excitation centred at ∼12meV is

indeed magnetic.

(a) (b)

Figure 3.22: Polarised energy scans at (003). From the (a) polar-

isation channels measured it is possible to obtain the (b) pure magnetic

signal. This magnetic signal is fitted with two Gaussians centred at

1.6(1)meV and 2.8(6)meV.

The remainder of the experiment was focused on measuring the waterfall feature

along (hh3) direction and determining if it was of magnetic nature. Q-scans were

made at fixed energy transfers 11meV, 17meV, and 21meV. The 11meV scan is just

before the waterfall feature whilst 17meV and 21meV scans are at different parts
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Figure 3.23: Polarised energy scans at (0,0,2.5). These scans show

that the ∼12meV excitation is of magnetic origin.

of the waterfall feature. The individual scans with all six polarisation channels can

be seen in plots on the left hand side of figures 3.24 and 3.25 on pages 95 and 96

respectively. These scans are not that useful in themselves, as often the important

information is in their linear combinations. The pure magnetic signal M⊥ for each

Q scan is plotted on the right hand side of figures 3.24 and 3.25. Here for the 17meV

signal only one Gaussian was fitted as the statistics on the negative h side was not

of sufficient statistics. Due to time constraints measurements were focused on the

positive h side. For these plots M⊥ was obtained using both the spin-flip and non

spin-flip equations 2σxx − σyy − σzz and σyy + σzz − 2σxx. Technically these linear

combinations do not give the same thing. Even though they both get rid of the

incoherent and direct nuclear contributions, some other contributions remain. The

difference between them can be seen in the equations below.

σyy + σzz − 2σxx = M∗
⊥M⊥ + (M⊥N

∗ +M∗
⊥N) (3.1)

2σxx − σyy − σzz = M∗
⊥M⊥ − ix̂.(M∗

⊥ ×M⊥) (3.2)

Here ix̂.(M∗
⊥ ×M⊥) is the chiral term and should be zero if there is no chirality
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in the structure. For the A-type AFM expected for Na0.8CoO2, this should be the

case. The (M⊥N
∗ +M∗

⊥N) term is a mixing term between structural and magnetic

signals. This second term must be very close to zero. If (M⊥N
∗ +M∗

⊥N) was non-

zero a large difference between the σyy + σzz − 2σxx and 2σxx − σyy − σzz signals

would be expected. No such difference was observed for these measurements.

It is important to note that it is possible to obtain the purely magnetic signal

via the linear combination M∗
⊥M⊥ = (σxx + σxx) − (σyy + σyy + σzz + σzz)/2. This

requires the spin-flip channels from flipper 1. This method was not used fro two

main reasons. The first reason is that the chiral and nuclear-magnetic signals were

considered to be negligible. The second reason is the fact that with flipper two, one

could obtain a better flipping ratio.

The pure magnetic signals from the Q scans in figures 3.24 and 3.25 can be

summarised in figure 3.26(a) on page 96. Here it can be seen that the centre of

the magnetic waterfall moves very little. The pure structural contribution can be

inferred from the σxx channel alone. The contributions to the σxx channel can be

seen below.

σxx = NN∗ + νi +
1

3
σi (3.3)

Here νi is the isotope-incoherent signal and σi is the spin-incoherent signal.

Neither of these should be Q dependent. Therefore, any features seen in the Q

scans can be attributed to the structural component NN∗, i.e., phonons. The plot

of the σxx channels can be seen in figure 3.26(b). Here it can be seen that both

11meV and 21meV have clear peaks. At 17meV however, there is a really broad

peak centred around zero. Since 11meV and 21meV have a clear phonon branch, it

is likely that at 17meV there is also a branch roughly at h ∼0.08.
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(a) (b)

(c) (d)

Figure 3.24: Polarised Q scans along (hh3) for 11meV and

17meV. The individual polarisation channels can be seen on the left

hand side (a,c), whilst the pure magnetic contribution can be seen on

the right hand side (b,d).
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(a) (b)

Figure 3.25: Polarised Q scans along (hh3) for 21meV. (a) The

individual polarisation channels, (b) and the pure magnetic contribution

can be seen.

(a) (b)

Figure 3.26: Summary of the polarised Q scans. Here, (a) the

pure magnetic componentM⊥ and the (b) the pure structural component

as inferred from the σxx channel can be seen.
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3.4 Analysis

In this section the INS spectrum will be studied in further detail. Background

will be removed and magnetic signal will be modelled using linear spin-wave theory.

Various magnetic superstructure models will be discussed as a means to explain

the waterfall feature. Finally, the INS spectrum will be compared to the expected

phonon spectrum from first-principles DFT calculations [21].

3.4.1 Fitting the Spin Waves

The interaction model for NaxCoO2 is shown in figure 3.9(a). The interactions

consist of Jab and Jc and J
′
c which correspond to nearest-neighbour interactions

in the ab plane, nearest-neighbour interactions along the c axis, and a diagonal

interaction between cobalt layers respectively. However, the dataset is not of high

enough quality to distinguish between different J
′
c models. One could use a fixed

ratio of J
′
c/Jc as used in Ref. [112]. For simplicity, in this thesis work J

′
c will be set

to zero and will not be considered in the calculations. Also, at (003) the polarised

energy scan revealed two separate gaps. The spin-wave model used must replicate

this double gap feature. Such a spin-wave model can be obtained from Ref. [92].

The Hamiltonian is given as:

H = −Jab
∑
<ii′>

SiSi′ − Jc
∑
<ij>

SiSj −D
∑
i

(Szi )2 − E
∑
i

[(Sxi )2 − (Syi )2] (3.4)

Here D is the easy axis anisotropy along the c axis and E is a two-fold easy plane

anisotropy. Such a Hamiltonian will result in a spin-wave of the following form given

below in equations 3.5-3.7 [92]. Note that E=0 produces a single gap and will be

assumed for the stripe case.

~ω =
√

(AQ +D)2 − (CQ ± E)2 (3.5)
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AQ = −Jab [cos(2πh) + cos(2πk) + cos(2π(h+ k))− 3]− Jc (3.6)

CQ = −Jccos(πl) (3.7)

With the theoretical spin-wave model defined, the next step is to obtain fits to

the spin waves from the INS data. For the Q scans the spin-wave positions can be

obtained easily with a Gaussian function and a constant background. For the (hh3)

and (h03) directions, an additional constraint was placed so that the positions of

the two Gaussian functions were symmetric with respect to h = 0. For the (h, 0, 2.5)

direction additional background subtraction was required to obtain the spin-wave

positions. In the 19meV h = 0 region the scattering angle (A4 angle on triple axis

spectrometers) is at it lowest and is subject to a higher background. The (h,0,2.5)

low scattering angle (A4) background can be seen in further detail in figure 3.27

on page 99. An energy scan was performed at (0.4,0,0.5) in order to determine low

A4 background. At h = 0.4, the energy scan should be sufficiently far away from

the excitations observed along (h,0,2.5) direction. This energy scan plotted as a

function of A4 can be seen in figure 3.27 in black. A Gaussian centred at zero is

fitted to this data which is presented in the black dashed line. For comparison, all

the Q scans performed along (h,0,2.5) direction are plotted as a function of A4 in

colours ranging from red to purple. It is important to note that in the (0.4,0,0.5)

energy scan there was a very high point at A4=7o with 1400 counts. This point

was discarded because including it results in an unrealistic, large A4 background.

It is possible that at this high point, which corresponds to (0.4,0,0.5), 13meV, there

is an excitation. The full background removed (h,0,2.5) spectrum can be seen in

figure 3.28 on page 99. Here the white circles are the fits to the Q scans. Note that

the spin-wave signal below 12meV can be seen also. The origin of this lower energy

signal is not clear. Also, after the A4 background removal, there is hardly any signal

left at (0,0,2.5) at 19meV.
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Figure 3.27: Removal of low scattering angle background. An

(0.4,0,0.5) energy scan is plotted as a function of the scattering angle

(A4) and shown in black. This scan is used to fit the low A4 background

(black dashed lines). Here the (h, 0, 2.5) Q scans are presented as a

function of A4 as well (coloured circles).

Figure 3.28: The background removed INS spin-wave spectrum

along (h, 0, 2.5). The white circles are fits to the Q scans after the

background subtraction.
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In the (00l) direction, the data is obtained via energy scans. In these scans,

the elastic incoherent signal was modelled with a Gaussian centred at zero energy.

The remainder background showed a slight linear dependence, with slightly higher

intensities at higher energies. A linear function was used to fit this dependence.

For both the square and the stripe phase INS data, the background was obtained

by fitting l =2.5,2.55,2.6 and 2.65 scans. For these energy scans, the background

signal and the spin-wave excitation is clearly distinguishable from one other. From

these fits an average background is obtained for the (00l) energy scans. From the

obtained spin-wave positions after background subtraction, only the energy scans

close to l = 2.5 could be used. Due to resolution effects any other energy scan

fit underestimated the spin-wave energy whilst a Q-scan-type fit overestimated the

spin-wave Q position. It is possible to overcome this problem by considering the

resolution of the instrument. However, it was found that, knowing the position

of the spin-wave in the vicinity of l = 2.5 is sufficient information to qualitatively

reproduce the observed INS features.

The obtained spin-wave positions were used with a χ2 minimisation routine in

order to establish a best fit to the theoretical spin-wave parameters. For the min-

imisation of χ2 the MINUIT [120] software package was used through its MATLAB

interface fminuit [121]. The parameter values for the best fit can be seen in table 3.2

on page 101 for the square and stripe phase samples. It is important to note that

not all measured spin-wave positions were used to obtain this fit. For the (hh3) and

(h03) directions, only data points below 12meV were used, i.e. the square phase wa-

terfall feature was not considered in the spin-wave fit. The (h, 0, 2.5) direction is not

considered in the spin-wave fit either. This is because the position of the spin wave

is dependent on the background correction. An incorrect background subtraction

could result in incorrect spin-wave positions.
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Sample Phase Jab (meV) Jc (meV) D (meV) E (meV)

Stripe 5.7(4) -11.35(8) -0.09(4) -

Square 5.5(2) -11.64(3) -0.18(3) 0.07(3)

Table 3.2: Spin-wave fit to stripe and square phase samples.

These fits to the spin-waves can be seen in figures 3.29 and 3.30 for the stripe

and square phase samples respectively. In these figures the left hand side colour map

shows the experimental data after the removal of elastic incoherent background and

a two dimensional interpolation of the data. The fits obtained from unpolarised

scans are given as white circles and the black line is the fit to the dispersion. On

the right hand side the colour map is given by the expected neutron intensity as

calculated using SpinW programme [122]. For these intensity calculations an arbit-

rary resolution and intensity scale has been used. The arbitrary resolution used is

sufficient for a qualitative comparison between calculated and measured spin-wave

dispersions. Therefore, more detailed resolution calculations were deemed unneces-

sary. For the square phase, the two different dispersions are represented by solid and

dashed lines. Additionally the fits to the polarised scans are given in black circles.

The stripe phase spin-wave fit can be seen in figure 3.29 on page 102 for the

(00l) and (hh3) directions. For the (00l) direction, very good agreement between

the measured and calculated INS spectrum can be seen. In figure 3.29(b), the

elastic incoherent background was modelled by collecting all the data performed at

(-0.2,-0.2,3) and fitting it with a Gaussian centred at zero. For the (hh3) direction,

there is a slight disagreement between measurement and calculations. The measured

spin-wave intensity disappears rapidly above ∼11meV which is not expected in the

calculations.
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(a) (b)

Figure 3.29: Spin-wave fit to stripe phase sample shows good

agreement along (a) (00l) direction. For the (b) (hh3) direction the

spin-intensity does die down rather rapidly.

For the square phase, the measurements along the (00l) direction can be modelled

more accurately than the stripe phase, as the location of the gaps are known. As seen

from figure 3.30(a) on page 103, there is very good agreement along this direction.

For the (hh3) and (h03) directions, which can be seen in figures 3.30(b) and (c)

respectively, there is disagreement between the measurement and calculations above

12meV. The largest difference is the waterfall feature where the dispersion becomes

infinitely dispersive above ∼12meV. There is also a difference in the rate of change

of intensity with increasing energy. For the calculation a steady decrease of intensity

with energy is expected, instead in the measurements there is a rapid decrease of

intensity up to ∼12meV, after which there is an increase in intensity which remains

roughly constant at higher energies. For the square phase, the measurements along

the (h,0,2.5) direction can be seen in figure 3.30(d). Here, the high background

from the low scattering angle has been removed. The white circles are the fits to Q

scans. These spin-wave positions have not been used in the theoretical spin-wave fit.

Despite this, the INS spectrum observed along (h,0,2.5) above 12meV does agree
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with the theoretical spin-wave dispersion. However, the observed spin-wave signal

below 12meV is not predicted in this theoretical spin-wave model.

(a) (b)

(c) (d)

Figure 3.30: Spin-wave fit to square phase sample. There is good

agreement between the measured and the calculated spin-wave spectrum

for (a) (00l) direction and partial agreement for (b) (hh3), (c) (h03),

and (d) (h02.5) directions. The theoretical spin-wave model cannot rep-

licate the waterfall feature observed along the (hh3) and (h03) directions.

For the (h,0,2.5) direction there is good agreement above 12meV; how-

ever, below 12meV there is there are some signals unaccounted by the

theoretical model.
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3.4.2 Waterfall Features

It is of interest to quantify the properties of the waterfall. This can be done by

looking at the fitted amplitude, area and full-width at half-maximum (FWHM) of

the (hh3) and (h03) Q scans which can be seen in figure 3.31 on page 105. Here,

the fitted amplitude and area are plotted in log scale on the y axis in order to

emphasize the change upon entering the waterfall. it can be seen that both the

area and the amplitude decrease exponentially until it reaches ∼14meV after which,

there is a slight increase. This trend is the same for both (hh3) and (h03) directions

as shown in blue and red points respectively. The fitted FWHM for (hh3) and (h03)

are roughly the same in units of Å−1. The overall trend for both dispersions is a

broadening with increasing energy.

The increase in FWHM with increasing energy can either originate from the

sample or the instrument. If it is originating from the sample, this indicates that

the excitations have a shorter correlation length at higher energies. The alternat-

ive is simply that the instrumental Q resolution becomes broader with increasing

energy. For these experiments it is not possible to distinguish between these two

cases. The experiments were not optimised for accurate measurements of FWHM

and the true instrumental resolutions are unknown. However it is possible to perform

simple calculations of the resolution using ResLibCal software [79] in order to gain

some understanding as to how the resolution should change with increasing energy.

ResLibCal can calculate the resolution ellipsoid for triple axis instruments given the

instrument geometry and sample mosaic. The calculations can be performed using

two different methods, the Cooper-Nathans method or the Popovici method. The

Popovici method considers the effect of focusing the monochromators and analys-

ers whilst Cooper-Nathans method does not. For the data displayed in figure 3.31,

focusing was used on the monochromator and the analyser. Therefore, one might

expect the Popovici method to give better results. Both methods were tested on
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(a) (b)

(c)

Figure 3.31: Fitted spin-wave area and FWHM for square

phase. (a) The fitted amplitude and (b) area for (hh3) and (h03)

Q scans decrease exponentially, show a minimum at ∼14meV, and then

start increasing again. (c) The FWHM of the (hh3) and (h03) disper-

sions increase at roughly the same rate. Such an increase is not predicted

by resolution calculations which indicates that the spin-waves could have

less correlation at higher energies.

(004) and (0.8,0.8,0) Bragg peak widths and showed reasonable agreement. The res-

olution FWHM was calculated along the (hh3) dispersion using both methods. The

Cooper-Nathan method gave ∼ 0.6 Å−1 at lower energies and ∼ 0.4 Å−1 at higher
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energies whilst the Popovici method gave a constant of ∼ 0.14 Å−1 for all energies.

Despite poor agreement with the data, an important insight can be achieved from

these calculations. Neither method predicts a broadening at higher energies along

the dispersion, in fact Cooper-Nathans method predicts the contrary. This would

mean that the broadening seen in figure 3.31(b) must be due to a loss of correlation

in the spin-waves. It is very important to note that these resolution calculations are

not conclusive and in order to make any strong statements concerning broadening

it is necessary to carry out another set of INS experiments.

Another important parameter is the waterfall wave vector, Qwf . The position of

the waterfall is at h =0.085 and h =0.14 for (hh3) and (h03) dispersions respectively.

For both directions, this corresponds to the same Q length of |Qwf |=0.37(2)Å−1

and distance dwf =17(1)Å. If the out of plane component of the wave vector is

considered, the waterfall Q length becomes |Qwf | ∼1.78Å−1 and distance of dwf ∼

3.5Å. These distances could potentially be a measure of the magnetic nano-clusters

or relate to the Coulomb landscape of Na0.8CoO2.

3.4.3 Comparison to Phonon calculations

The structural excitations for the square phase Na0.8CoO2 has been studied

extensively by DJ Voneshen et al. [21]. They have used a first-principles DFT model

to calculate the phonon spectrum which was later verified by inelastic neutron and x-

ray scattering methods. Using this DFT model it was possible to calculate neutron

intensity of the phonons in the regions of interest. This is extremely useful for

Na0.8CoO2 where it can be hard to say where the spin-wave branch ends and the

phonon branch begins. The results of the phonon calculations as obtained from DJ

Voneshen [123] compared to the INS measurements from this thesis work can be

seen in figure 3.32. Here, for each subfigure, the left hand side represents the INS

measurements and the right hand side represents the calculated neutron intensity
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of the phonons. The white data points are fits to unpolarised Q scan and the black

data points are the fits to the pure magnetic signal. The black lines represent the

theoretical spin-wave dispersion calculated using the parameters in table 3.2. In

figure 3.32(a) the (hh3) comparison can be seen. Here the red points are fits to

the structural part of the polarised measurements, i.e. the σxx channel. These

red points agree very well with the expected phonon intensities. In addition, the

17meV σxx measurement in figure 3.26(b) is also in great agreement with the phonon

calculations. In figure 3.32(b) the phonon comparison can be seen for the (h03)

direction. The phonon spectrum here is not too different to that observed along

(hh3) direction. In both cases the spin waves are measured accurately up to the

acoustic-like phonon branch after which it becomes difficult to fit the dispersion.

It is not clear if the spin waves cross this branch or not. In figure 3.32(c) the

(h,0,2.5) phonon comparison can be seen. Only a small presence of phonons are

expected in this direction which is consistent with the polarised measurement made

at (0,0,2.5) 12meV as seen in figure 3.23. It is noteworthy that both the nuclear and

magnetic signal happen to be at the same energy at (0,0,2.5). In figure 3.32(d) the

(hh5) direction comparison can be made. There are two main areas where there is

disagreement between neutron measurements and phonon calculations. The first is

the 17meV signal in the region h =0.25-0.5 and the second is 40meV signal in the

region h =0.2-0.4. The 17meV signal could be of magnetic origin but it is less likely

that the 40meV signal is magnetic due to its quite large intensity. The magnetic

form factor is expected to reduce the spin-wave intensity by roughly factor of two

going from (003) to (005). The 40meV is much stronger than the (003) spin-waves

which would mean it is not of magnetic origin.
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(a) (b)

(c) (d)

Figure 3.32: Comparison between measured INS spectrum and

calculated phonon intensities. Here in each subfigure the INS data

are presented on the left hand side and the phonon calculations are shown

on the right hand side. Fits to unpolarised data are given in white circles.

Pure magnetic or nuclear signals are given in black or red circles respect-

ively. The calculated spin-wave dispersion is given in black. Phonon

calculations by Ref. [123].
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3.4.4 Magnetic Superstructure Model

It was already mentioned in the introduction that for the square phase Na0.8CoO2

charge ordering might occur as a direct result of the Na ordering. It would be

expected that directly under the Na tri-cluster sites, there would be Co3+ with S=0

and Co sites far away from Na tri-clusters could be potential places for Co4+ with

S=1/2 to localise. This was established from calculations of the Coulomb potential

within the Co layer which can be seen in figure 3.10(b) [17]. The DFT calculations

for the square phase Na0.8CoO2 also predict some level of magnetic patterning within

the Co layer. In the DFT model, each Co site has a moment size between 0.07µB

and 0.11µB, distributed in such a way that there is a smaller moment size below

or above the Na tri-clusters. This can be seen in detail in figure 3.33 on page 110.

Here the size of the circles represents the moment size (0.07-0.11µB), and the colour

represents the position with respect to the Na tri-cluster. The red Co sites sit directly

above or under a Na tri-vacancy cluster and the blue sites do not [21, 123]. Such a

model is qualitatively in agreement with the Coulomb potential calculations [17].

In this section the aim will be to try out some fully localised models with the help

of the SpinW software [122]. The easy to use interface of SpinW allowed the test

of many different superstructures rapidly. Once a superstructure was established,

the spin-wave spectrum along (hh3) or (h03) was calculated and compared to the

neutron results. None of the tested magnetic superstructure models were able to

produce something similar to the magnetic waterfall observed. However there were

some models which shared some of the features of the (hh3) or (h03) dispersions.

Here two superstructure models will be discussed which individually can explain the

gap in intensity at ∼ 15meV, or the rapid drop in intensity.

The first magnetic superstructure model is very similar to the A-type AFM

structure proposed for the parent structure (see figure 3.9) but with one modification:

the spins were placed only on the blue sites and not on the red sites. The spin-wave
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Figure 3.33: Magnetic moment distribution for the square

phase as calculated by DFT. Here the size of the circles represents

the Co moment size and the colour represents different types of Co sites.

The red Co sites have a Na immediately above or below them, whilst the

blue Co sites do not. DFT calculation of moment sizes from Ref. [123].

dispersion from such a magnetic superstructure can be seen in figure 3.34(a). Here

the in plane exchange interaction Jab was scaled to Jab=12meV in order to match the

observed neutron results. The spin-wave dispersions as calculated from equations

3.5-3.7 and parameters 3.2 are given by the black lines. The white and black circles

are the fits to the unpolarised and polarised scans respectively. It can be seen that

such a model does produce a gap in the spin-wave dispersion similar to the INS

results. However, such a model does not have the rapid intensity drop and it has

additional spectral signatures which are not present in the INS data.

The second model approaches the same problem in a different way. In this model,

there is no spin removal. The magnetic structure is identical to the A-type AFM

structure. The superstructure is introduced by having different in plane exchange

interactions Jab between different sites. The out of plane interaction Jc is assumed

identical. There are too many non-equivalent sites therefore a major simplification
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was put in. It was assumed that all couplings between two blue sites will be identical

and similarly all red-red and blue-red couplings will be equivalent. This reduced the

system to three in plane interactions. By setting all red-blue and red-red interactions

close to zero, and by setting the blue-blue interactions to 12meV, a spectrum with

a rapid intensity decrease was observed which can be seen in figure 3.34(b). Such

a model predicts very faint features at higher energies which are not waterfall-like.

There is also a very low lying interaction which could technically also exist in the

neutron data. However, it would be very difficult to observe such a signal as it would

be overpowered by the incoherent signal.
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(a) (b)

Figure 3.34: Comparisons of magnetic superstructure calcula-

tions with INS data. Two different superstructure models have been

tested which present a qualitative description of the data. For both struc-

tures, the square phase supercell is used. (a) If spins are removed from

under and above the Na1 sites, and Jab is increased to 12meV, a gap

forms at ∼18meV. However, there are many spectral signatures which

are not compatible with neutron measurements. (b) In a different model

no spins are removed but different Jab interactions are used in plane. If

any interaction between two red sites or one blue and one red site is set

to zero, it is possible to obtain a dispersion which looses intensity rapidly.

Additionally, a very low level excitation is formed which could be lost in

the neutron incoherent signal. These two models are not successful in re-

producing the waterfall feature but can qualitatively account for the dip

in intensity at ∼12meV and the rapid drop in intensity as we approach

12meV.
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3.4.5 Spin-Orbital Polaron Model

The spin-orbital polaron model for NaxCoO2 has been used to explain the ex-

istence of negative Curie-Weiss constant and the drop in intensity of the (hh3)

spin-wave dispersion around ∼12meV [117]. It is possible to use the polaron model

to create a magnetic superstructure for the square phase. In the Coulomb landscape

calculations, there are two sites at the minimum of the potential where Co4+ S=1/2

moments are expected to localise [17]. Following the polaron-type scenario, the sur-

rounding eight nearest-neighbour sites would be Co3+ S=1, and Co3+ sites further

away would be in the low spin state of S=0. The resulting magnetic superstructure

of such a scenario can be seen in figure 3.35(a). Here the Co4+ S=1/2 sites are

shown in green, the Co3+ S=1 are shown in blue and the Co3+ S=0 sites are not

shown since they are non-magnetic. The AFM orientations between neighbouring

S=1 sites are taken from, Daghofer et al. [117]. This configuration is referred to

as the bipolaron, because it is composed of two Co4+ S=1/2 sites. The magnetic

superstructure, and its different type of next-nearest bonds can be seen in figure

3.35(b). Here, magnetic unit cell is related to the square phase unit cell after an

origin shift of a+b, where a and b are the principle axes of the parent compound.

Along the c axis, the bipolarons reside directly above each other and are stacked

in AFM order. In total four different nearest neighbour interactions are considered

within the Co layer. These are Jab which is between two S=1/2 sites, J which is

between two S=1 sites, J ′ which is between S=1 and S=1/2 sites, and finally, Jbipol

which is the coupling between two neighbouring bipolarons. In literature there are

estimates of the strength of the exchange parameters. It is expected that J ∼-10-

20meV(AFM), Jab ∼ −J , and |J ′| . |J |. The exchange coupling J ′ can either be

FM or weakly AFM. In figure 3.12(b), it can bee seen that there is also a AFM

second-nearest neighbour interaction (given in red) between the S=1 sites for which

AFM |Jdiag| 6 |J | is expected. This interaction Jdiag is also introduced in the
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magnetic superstructure model considered below. In this model Jdiag is used only

within the bipolaron as shown in figure 3.12(b) and is not used between two different

bipolarons.

The spin-wave dispersion of this magnetic superstructure was calculated along

(hh3) using SpinW Matlab code [122]. The exchange interactions Jab and J
′

were

taken to be FM. The resulting spectrum for J=-10 (AFM), Jab = J
′
= Jbipol = −J ,

and Jdiag = J can be seen in the colour map in figure 3.36 on page 116. The

presented spin-wave spectrum is an average of the different symmetry directions

and is presented in units of the parent structure. The fits to the spin-wave data are

given in black and white circles. The black lines are the calculates spin-wave from

equations 3.5-3.7 and parameters 3.2. This magnetic superstructure calculation is

incompatible with the INS observations. In the calculated spectrum, there are many

features which aren’t observed in experiments, such as the strong spin-wave branch

originating from (0.2,0.2,3).
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(a)

(b)

Figure 3.35: Bipolaron based magnetic superstructure model.

(a) The bipolaron can be visualised as two Co4+ S=1/2 sites (green)

surrounded by eight Co3+ S=1 sites (blue). (b) The unit cell of the

magnetic superstructure is the same size as that of the square phase su-

perstructure. Here the different possible exchange paths are highlighted

in different colours.
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Figure 3.36: Comparisons of bipolaron based magnetic super-

structure and INS data. The spectrum was calculated for J=10,

Jab = J
′

= Jbipol = −J , and Jdiag = J . The resulting spectrum is

incompatible INS experimental observations.

3.5 Discussion

One of the main motivations of the thesis work was to explain the large difference

in Jc for two samples with very similar concentrations, x =0.75 and x =0.82. It was

known that within this concentration range there are three possible superstructures:

the square, stripe, and the 1/13th phase. It was plausible that the different super-

structures resulted in different exchange parameters. However, the measurements

of square and stripe phase Na0.8CoO2 in this thesis and measurement of 1/13th

phase from Ref. [69] all show very similar interaction scheme of Jab ∼ −6meV and

Jc ∼ 12meV . This interaction scheme agrees with the previous measurements of

Na0.75CoO2 [5] but not of Na0.82CoO2 [4]. This is a very surprising result considering

the square and the stripe phase are closer in concentration to Na0.82CoO2. Therefore,

the factor of two smaller Jc observed in Na0.82CoO2 remains unexplained.

The double spin-wave gap feature at (003), which was preciously measured for

x =0.75 [92], was confirmed using polarised neutrons for square phase Na0.8CoO2.
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Both the square and the stripe phase samples had the same spin-wave anomalies

already reported in literature: at higher energies, the intensity drops rapidly and

excitations broaden in Q [4, 5]. However, additional to these measurements, the

square phase sample showed a waterfall dispersion. Polarised measurements con-

firmed that this waterfall is of magnetic origin, which makes this the first observa-

tion of a magnon waterfall. The explanation of the waterfall effect is no simple task

considering the fact that the true magnetic nature of NaxCoO2 is not fully under-

stood. Before considering how different magnetic models might reproduce such a

dispersion it is important to discuss the previous observations of the waterfall effect.

The waterfall effect has been observed in a wide range of relaxor materials of

type Pb(A1/3Nb2/3)O3 where A=Mg,Zn, with or without certain levels of PbTiO3.

Unlike NaxCoO2, in these compounds the waterfall is of pure structural origin. It

was initially thought that the waterfalls at qwf = 0.2Å−1 could indicate the size

of the polar nano regions within the sample. However, detailed INS measurements

showed that qwf changed in different Brillouin zones. This can be seen in figure

3.37(a). This indicates that the waterfall cannot be due to the polar nano regions.

Instead, it was possible to explain the waterfall feature through a coupling between

the transverse acoustic and transverse optic branches. Such a coupling creates ap-

parent dispersion which connects the two branches without changing the position

of the original branches [119]. A more recent discovery of a phonon waterfall was

observed in popular thermoelectric material PbTeO3 at the Γ point as seen in fig-

ure 3.37(b). The mechanism behind this is believed to be identical to those of the

relaxor materials. Different to the relaxor materials, the coupling is between a trans-

verse optic and longitudinal acoustic mode. This transverse optic mode acts like a

rattling mode due to its anharmonic coupling [124]. This makes it possible to draw

many parallels between PbTeO3 and square phase Na0.8CoO2. They are both good

thermoelectrics, they both have a waterfall feature, and they both have rattling like
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behaviour due to anharmonicity [21].

(a) (b)

Figure 3.37: Phonon waterfalls observed in literature. (a) In

Pb(Zn1/3Nb2/3)O3 based relaxor material, the waterfalls occured in dif-

ferent places for different Brillouin zones. (b) For the thermoelectric

material PbTeO3 the waterfal is observed at the zone centre, between the

two purple diamond symbols. Images (a) and (b) from [119] and [124]

respectively.

The similarities between PbTeO3 and square phase Na0.8CoO2 give an indication

that the magnon waterfall could also be of a similar origin. It is important to

note that, for the square phase, close to the minimum of the spin-wave intensity

(∼ 14meV) there is a rattling phonon mode (∼ 13meV [21]). This indicates that

there might be some phonon-magnon coupling in this vicinity. The existence of

coupling between phonons and electrons has been suggested by various Raman and

inelastic x-ray measurements [125, 126]. In fact it has been suggested that the

electron-phonon coupling is beneficial for the thermopower of NaxCoO2 [126]. In

118



principle, it would be of interest to calculate the magnon-phonon coupling. This

may require details of the magnetic ground state beyond the A-type AFM, and the

computational task is beyond the scope this thesis.

Spin waves of a few different magnetic superstructure models were calculated

in order to explain the waterfall effect observed in square phase Na0.8CoO2. Two

different magnetic superstructure models were tested. The first model depends on

low-spin Co4+ and Co3+ with S=1/2 and S=0 respectively. The placements of the

spins are based on square phase DFT calculations [21,123], Coulomb potential calcu-

lations [17], and NMR measurements [19]. The second model is based on spin-orbital

polaron model, where Co3+ can be in low spin or intermediate spin configurations

which correspond to S=0 and S=1 respectively [117]. For this magnetic superstruc-

ture bipolarons were placed at the potential minimum of the Coulomb landscape as

obtained from Ref. [17]. Neither of the magnetic superstructure models were capable

of reproducing the magnetic waterfall. Using the magnetic superstructure models it

is possible to recreate some of the measured spin-wave features such as the lack of

intensity at ∼14meV and the rapid drop in intensity as one approaches this energy.

It is possible that using linear spin-wave theory, it is not possible to reproduce the

magnon waterfall.

One possible way to improve the magnetic superstructure models is to introduce

a mixture of localised and itinerant magnetism. Such a mixture of localised and

itinerant magnetism was considered by Gao et al. [18]; however, in their model a

random Na vacancy distribution was used. There is some experimental signatures

that suggest a mixed localised-itinerant system. NMR measurements predict an

itinerant Co3.5+ band and Co3+ S=0 moments localised under or above Na1 sites [19].

This information could be combined with the knowledge of the Na superstructures

to create a mixed localised-itinerant system. There are many factors which make it

difficult to solve the true magnetic superstructure experimentally. Aside from the
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small moment size, a magnetic superstructure Bragg peak would have substantially

lower intensity compared to a magnetic Bragg peak such as the (003) for example.

In the likely scenario where structural and magnetic superstructure Bragg peaks

overlap, there is very little chance of ever observing the magnetic signal.

The magnon waterfall could also be possibly caused by magnetic nano-domains as

suggested by muon measurements of Ref. [111]. The muon data has been interpreted

as clusters on the nanometer scale which are composed of spin-orbital polarons.

Taking the waterfall wave vector |Qwf |=0.37(2)Å−1, this would give a cluster size

of dwf =17(1)Å. However, it is important to note that the NMR results can be

interpreted as contrary to the polaron model. NMR data suggest only Co3+ S=0,

and an itinerant band of Co3.5+ [19]. For the polaron model some Co3+ must be

in intermediate spin with S=1. If the polaron clusters did exist, they cannot be

randomly distributed. Because, the observed spin-waves are relatively sharp [5].

Another observation which could be explained by a cluster model is the broadening

in Q with energy for the in plane spin-waves. If the broadening is indeed caused by

a decrease in correlation length as the rudimentary resolution calculations suggest,

this could point towards a spacial inhomogeneity. However, more experiments are

necessary before concluding that the correlation length is reducing with energy.

It is clear that any improvements on the magnetic model of NaxCoO2 will also

result in a better understanding of its high thermopower. The simple models con-

sidered so far suggest that Co3+ must have low spin S=0 [16, 108]. However, there

has been very little done in terms of explaining the high thermopower by using the

various complex magnetic structures and mechanisms discussed in this thesis. It is

necessary that any magnetic model suggested should explain the magnetic anomalies

and the high thermopower.
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3.6 Conclusion

The square, stripe and the 1/13th phase superstructures have very similar ex-

change interactions. The measurements of these superstructures agree with previous

measurements of Na0.75CoO2 with unknown superstructure [5]. The factor of two

lower Jc observed in the Na0.82CoO2 with unknown superstructure remains unex-

plained [4].

Both the stripe and square phase samples show anomalies along (hh3) disper-

sion, consistent with the anomalies reported previously in literature [4,5,113]. These

anomalies were a rapid drop in intensity with increasing energy and a broadening in

Q with increasing energy. In addition to these anomalies, the square phase sample

produced the first ever observation of a magnetic waterfall, a spin-wave dispersion

with infinite gradient. The magnetic nature of the waterfall was confirmed using

three axis polarisation, which is capable of separating the pure magnetic cross sec-

tion. Additional to the infinite gradient, the waterfall has another important feature.

Before the waterfall feature starts, there is a dip in the intensity at ∼ 14meV. This is

surprising because in the same energy range there is a rattling phonon mode which

is known to suppress thermal transport in Na0.8CoO2 drastically. Previous obser-

vations of the waterfall effect in the literature have been originating from phonons

only. In these systems, the waterfall has been qualitatively explained by a coupling

between the optic and acoustic branches. In fact, for the thermoelectric material

PbTe, it is believed that a rattler-like phonon mode is causing the coupling. [119,124].

This parallel between PbTe and Na0.8CoO2 suggest that the waterfall in Na0.8CoO2

might be explained by a phonon-magnon coupling scenario. Even though there is

a very good understanding of the lattice dynamics in NaxCoO2 [21], it is difficult

to model magnon-phonon coupling due the confusion regarding the true magnetic

structure of NaxCoO2.

The broadening of spin-wave measurements along (hh3) and (h03) was quantified
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for the square phase sample. A steady increase in FWHM was observed for increasing

energy. Simple calculations suggest that the resolution should stay constant or

decrease with increasing energy. Therefore, the broadening in Q could mean a

lowering of the correlation length for the spin-waves at higher energies. However, to

confirm this, additional neutron measurements are necessary.
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Chapter 4

Linarite (PbCuSO4(OH)2)

4.1 Introduction

Linarite is a naturally occurring mineral with chemical formula PbCuSO4(OH)2

[22]. The Cu sites are closely spaced along the b axis direction and each of them

support a magnetic moment corresponding to spin 1/2. The magnetic interactions

between spins along the b axis are expected to be much stronger than for any

other direction, therefore, linarite can be considered as a (quasi)one dimensional

spin 1/2 chain [24–26]. For some one dimensional spin chains, theory predicts the

existence of novel quantum phases. The existence of these novel phases depends on

the strength of the magnetic interactions along the spin chain [38]. With the recent

discovery of many Cu based quasi one-dimensional systems like linarite, this field

started receiving more theoretical interest [38–42]. One of these materials, LiCuVO4,

has already shown compelling evidence for the existence of a novel quantum phase

[44,127]. Although no direct evidence of such a phase has been observed for linarite,

some experimental results indicate that it could be capable of supporting a novel

quantum phase [24–26].

Inelastic neutron scattering experiments on linarite can establish the strength of
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the magnetic interactions and in turn determine if linarite is capable of having a

novel quantum phase. Also, neutron diffraction experiments can be used to search

for more direct evidence of the novel quantum phases.

The introduction will start with the theory behind one dimensional spin chains

and the novel quantum phases predicted from them. Later on, the physical proper-

ties of linarite will be discussed. In the experimental sections results from inelastic

neutron scattering, neutron diffraction, and magnetisation measurements will be

discussed. Finally, in the discussion, the possibility of a novel quantum phase in

linarite will be considered in the light of all of the results obtained in this thesis.

4.1.1 Classical J1-J2 Chain

The J1-J2 chain is a one dimensional magnetic system which is visualised in figure

4.1 on page 125. Here, uniformly separated spins of magnitude S=1/2 (or integer

multiple of 1/2) create a spin “chain”. Exchange constants J1 and J2 are introduced

between the nearest neighbour and next-nearest neighbour spins respectively. For

the purposes of this thesis only the case where J1 is ferromagnetic (J1 >0) and J2

is antiferromagnetic (J2 <0) will be considered. Without J2, the ground state is a

simple ferromagnetic structure. However, with the introduction of an antiferromag-

netic J2, the two exchange interactions cannot be satisfied at the same time. Such

systems are referred to as magnetically “frustrated”. For a brief introduction to

frustrated magnetism refer to subsection 1.2.

The Hamiltonian of the J1-J2 chain can be presented in the following way:

H = −
∑

<ij>n.n.

SiJ 1Sj −
∑

<ij>n.n.n.

SiJ 2Sj − gµBH
∑
i

Szi . (4.1)

The first summation sums over the nearest neighbour (n.n.) < ij > pairs whilst the

second summation sums over next nearest neighbour (n.n.n.) < ij > pairs. S i is
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Figure 4.1: One dimensional J1-J2 chain. Between nearest neigh-

bour and next-nearest neighbour spins exchange constants of J1 and J2

are introduced respectively.

a spin vector, S z
i is the z component of the spin vector, g is the g factor, µB is the

Bohr magneton, and H is the applied magnetic field. In this scenario, the applied

magnetic field is along the z direction. Here, J 1 = J1I 3, and J 2 = J2I 3, where I 3

is a 3×3 identity matrix. This Hamiltonian in equation 4.1 is treated “classically”.

This is done by treating spins not as quantum objects, but instead as vectors S with

fixed length of S . The classical J1-J2 chain is easier to work with and still provides

valuable information regarding the magnetic structures and phase transitions of the

system.

The properties of the J1-J2 chain are best described by the ratio α = J2/J1. When

there is no magnetic field applied, the system is ferromagnetic for α >-0.25, but for

α ≤ -0.25 there is a helical magnetic structure. For a unit cell with one magnetic

site, the propagation vector of the helix is given as qinc = cos−1(-1/4α) [128]. These

helical structures can be confined to a particular spin-plane through an easy-plane

anisotropy. For example, such an anisotropy can be introduced through J1 in the

following way:
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J1 = J1


1 0 0

0 1 0

0 0 1−∆

 (4.2)

Here, ∆ is the exchange anisotropy along the z axis direction. Note that a

positive ∆ will cause an easy-plane in the xy plane. When there is no applied field,

the spins will be confined to the easy plane. Helical magnetic structures are given

different names depending of the orientation of the spin plane with respect to the

magnetic propagation vector. If the propagation vector is contained in the spin

plane it is referred to as a “cycloidal” magnetic structure. If the propagation vector

is perpendicular to the spin plane it is referred to as a “proper screw” structure

[37, 128]. The cycloidal and the proper screw structures are represented in figures

4.2(a) and (b) respectively.

Figure 4.2: Helical incommensurate structures. (a) A helical

magnetic structure is called a cyclodial structure if the spin plane is in

the same direction as its propagation direction. (b) If the spin plane is

perpendicular to the propagation direction it is called a “proper screw”

structure [37,128]. Images sourced from [37].

Helical magnetic structures have been subjected to interest from the field of

multiferroics. It is suggested that a helical magnetic structure can spontaneously
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create an electric polarisation P. This is mostly based on experimental observa-

tions and the underlying mechanism is not completely understood [36]. However,

it is suggested that having the normal of the spin plane, e, perpendicular to the

propagation vector, Q, is more favourable for observation of ferroelectricity. In fact

the polarisation P is expected to be effected in the following way: P ∼ e×Q [129].

Following this relation, for the cycloidal structure in figure 4.2(a), P is expected

to lie along the z axis direction. Furthermore, one would not typically expect any

ferroelectricty in the proper screw structure in figure 4.2(b) since Q//e; however,

there is research to suggest that structures like these still might be able to produce

ferroelectricity [37,130].

The magnetic field phase diagram has been well studied for the classical J1-J2

chain [131, 132]. The orientation of the applied magnetic field with respect to easy

plane is quite important. If the applied field is parallel to the easy plane, a number

of different phases can be observed before the fully saturated ferromagnetic state.

It was shown by Yoshimori et al. [128] that for small anisotropy energy and small

applied field there exists a critical field Hc for which the spin plane will become

perpendicular to the applied field. This kind transition is also referred to as a “spin-

flop” transition. Nagamiya et al. [131] and Kitano et al. [132], were able to expand

this model for different anisotropy and field strengths. The suggested phase diagram

can be seen in figure 4.3 on page 128. Here K is proportional to the strength of the

easy-plane anisotropy and the propagation vector Q is assumed to be small. Above

H0, the system reaches a fully ferromagnetic state for all anisotropy strengths. For

small anisotropies (i.e. small K), two phase transitions are expected before the fully

ferromagnetic phase. The first transition, Hc, is the spin-flop transition discussed

previously. Above Hc a conical magnetic structure is expected. At higher fields

there is a second transition, H
′
c, into a sine oscillation phase (also called the “fan”

phase), where the moments lie in the easy plane with angles smaller than 90o to the
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field direction and the spin directions sinusoidally oscillate as function of sites along

the chain. In the large anisotropy case, there is no spin-flop transition. Instead, with

increasing field, the screw phase will become increasingly distorted until it arrives

at Ht where it will turn into a fan phase. [131].

Figure 4.3: Classical phase diagram for a screw structure with an

easy-plane anisotropy assuming a small propagation vector Q. The ap-

plied field is parallel to the easy plane. Here K is proportional to the

easy-axis anisotropy. For low anisotropy (small K) there are two phase

transitions, first is from a proper screw into a cycloidal/conical structure

and the second is from a conical structure into a fan phase. However,

for high anisotropy (large K), there is only one phase transition before

saturation [131]. Image from Ref. [131].

4.1.2 Heisenberg J1-J2 Chain

A classical model is useful for understanding many features of the J1-J2 chain;

however, for a comprehensive understanding, the quantum nature of the spins must

be taken into account. Spin-interaction models which use quantum mechanics are
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called Heisenberg models. This is done by changing the spin vectors S with the

quantum spin operators Ŝ . The Heisenberg J1-J2 chain’s Hamiltonian will have the

form of:

H = −J1

∑
<ij>n.n.

ŜiŜj − J2

∑
<ij>n.n.n.

ŜiŜj − gµBH
∑
i

Ŝzi (4.3)

This system is purely one dimensional and in this thesis, only the S=1/2 case with

ferromagnetic J1 and antiferromagnetic J2 will be considered. The competing nearest

and next-nearest interactions are expected to cause strong quantum fluctuations

within the system. This combined with the low-spin and low-dimensionality of the

system makes it a likely place to observe novel quantum phenomena [42]. For this

system, an exotic quantum phase has been predicted for field strengths just below

saturation. This phase has been described as a multi-magnon bound state with no

long range order but quasi-long range spin-multipolar order [38–42].

In the J1=0 case, the system can be separated into two non-interacting AFM

chains. For a one-dimensional AFM chain the exact analytical solution can be ob-

tained using an approach called the Bethe ansatz [133]. The ground state of the

one-dimensional AFM chain is referred to as a Tomaga-Luttinger liquid or simply

the Luttinger liquid [29, 30]. In the Luttinger liquid, the excitations of the system

are composed of spinons and holons which carry spin and charge respectively. For

a detailed review of Luttinger liquid theory see ref. [134]. A non zero J1 can be

introduced perturbatively into the system, which couples the two Luttinger liquids

ferromagnetically [38]. This system is best parametrised by the ratio α = J2/J1.

Starting from zero field and increasing the field, the system will magnetise with steps

∆S z = 1. However, for certain regions of α, there is a critical field strength after

which the magnetisation increases in steps of ∆S z = 2, 3, or 4 instead. These phases

have been interpreted as a bound state of p=∆S z magnons (i.e. bound states of p

spin flips). In figure 4.4 on page 131, the phase diagram of the multi-magnon bound
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states can be seen for different m/msat, where m is the magnetisation and msat is the

magnetisation at saturation (i.e. at fully FM phase). Here the p=2 multi-magnon

bound state extends to α = −∞. As the value of α approaches α=-0.25 the number

of magnons creating a bound state increases from p=2 to p=3 and p=4. Bound

states with p>5 do exist but are thought to be thermodynamically unstable [42].

These multi-magnon phases do not posses long-range order but instead posses quasi-

long-range order. This can be seen from the longitudinal spin correlation function,

〈Sz0Szr 〉, which decays with distance r [39]. In contrast, the transverse spin correla-

tions, 〈S+
0 S
−
r 〉, decay exponentially. This indicates the instability of single-spin-flip

excitations within this phase. At higher fields, there is another correlation function

which decays slowly, depending on the value of p. For p=2 this is the quadrupolar

correlation term, 〈S+
0 S

+
1 S
−
r+0S

−
r+1〉. This shows that the principle excitations of the

system consist of two spin-flips rather than one spin-flip. For arbitrary p, this slow

decaying correlation function has the form [42]:

〈
p−1∏
n=0

S+
0+n

p−1∏
n=0

S−r+n〉. (4.4)

The region where these correlations decay the slowest has been interpreted as one-

dimensional analogue of a spin-multipolar phase. For p=2, 3, 4 these correspond

to nematic, triatic and quartic phases respectively [38, 39]. These spin-multipolar

phases exist at high fields, close to magnetic saturation. As the magnetisation is

lowered, the longitudinal spin-correlations, 〈Sz0Szr 〉, start to decay slower than the

multipolar correlators. This crossover region is indicated by a white dashed line in

figure 4.4. The region where longitudinal correlations are dominant can be thought

as a p-type spin density wave, SDW(p) [42]. It is important to note that in one

dimensional isotropic case, there is no phase transition between the SDW(p) phase

and the spin-multipolar phase. In both regions the magnetisation jumps in steps

of ∆S=p. The higher field region, which in this thesis is referred to as the spin-
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multipolar phase, is often referred to as the “spin-nematic phase” in literature.

Figure 4.4: Spin-multiplolar Luttinger liquid phase diagram.

The red, green, and blue regions indicate phases where p=2, 3, or 4

spin-flips become the primary excitations of the system. These phases

represent quadrupolar, octupolar, and hexadecapolar order respectively.

In these phases, at lower fields longitudinal rather than multipolar correl-

ations become more dominant. Therefore, these regions have been iden-

tified by a p-type spin density wave, SDW(p). [42]. Image from Ref. [42].

There are two important experimental signatures of the spin-multipolar phases.

The first is a field dependent magnetic characteristic vector. Using the longitudinal

spin-correlators, it has been shown that the magnetic characteristic vector, qmax,

will depend on the magnetisation in the following way:

qmax = π(1−m/msat)/p. (4.5)

Here, a one spin per lattice size is used and the distance between two nearest neigh-

bours is taken to be dNN = 1. In figure 4.5 on page 132, this dependence has been
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plotted for p=2, 3, and 4 in red, green, and blue dashed lines respectively. Neutron

diffraction measurements in the SDW(p) phase should be able to measure this as

an incommensurate magnetic Bragg peak. At higher field strengths in the spin-

multipolar phase, there should be no incommensurate magnetic Bragg peak [42].

The second experimental signature could be magnetisation. Upon increasing field, a

first order metamagnetic transition is expected to occur as one enters spin-multipolar

phases [42].

Figure 4.5: Magnetic characteristic vector within the spin-

multipolar phases. Here the equation qmax = π(1 − m/msat)/p is

plotted for p=2, 3, and 4 in red, green, and blue dashed line respect-

ively [42]. Image from Ref. [42].

A visualisation of a spin-multipolar phase for the case of a two-dimensional spin-

1/2 frustrated-ferromagnet can be seen in figure 4.6. Here, the green sites are where

spin-1/2 moments reside, and the blue surfaces show the spin fluctuations at bond

centres. In this system there is no ordering of the spin-1/2 moments, but instead it

is the spin fluctuations which form a quadrupolar order. The red cylinders represent

the order parameter of the system [135].
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Figure 4.6: Example of quadrupolar order for two-dimensional

system. The spin-fluctuation at bond centres are shown by the blue

surfaces [135]. Image from Ref. [135].

The one dimensional J1-J2 chain has also been considered at zero field. Similar

to the classical case, a helical magnetic structure is expected. However, due to

quantum fluctuations, the propagation vector of the helix is different to its classical

counterpart. Numerical models on finite size one dimensional models with α < −1/4

produced an approximation propagation vector of qinc ∼ (−α − 1/4)0.29. With

increased field a small dependence on field was observed but it was not certain if

this was a finite size effect [42].

So far the J1-J2 chain has been treated in a purely one dimensional manner.

It is of interest to see how the introduction of inter chain coupling and anisotropy

will have on the novel quantum phases predicted by the purely one-dimensional

model. It is thought that an AFM inter-chain interaction might be detrimental to

the stability of the spin-multipolar phases, whilst a FM interaction might strengthen

it [136]. However, it was shown that the geometry of the inter-chain coupling can

be as important as its strength. A coupling which is perpendicular with respect

to the chain direction (i.e. a skew interaction) will affect the stability differently

to a coupling which has a component along the chain direction (e.g. a diagonal
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interaction) [137]. The stability of the spin-multipolar phases with respect to an

AFM skew coupling, J IC
0 , can be seen in figure 4.7 on page 135. Here the p=2, 3,

and 4 magnon multipolar phases are given in red, green and blue respectively. It

can be seen that for large J IC
0 /J2, these phases cannot be supported. It can be seen

that the p=2 phases are much more stable against the AFM inter-chain coupling as

opposed to the p=3 and p=4 phases. Also in this figure, the effects of anisotropy

on the stability of the spin-multipolar phase is shown. The Hamiltonian used to

calculate the phase diagram in figure 4.7 has the following form:

H = H0 − J1

∑
<ij>n.n.

(∆− 1)Ŝzi Ŝ
z
j − J IC

0

∑
<nm>n.n.

ŜnŜm. (4.6)

Here, H0 is the Hamiltonian defined in equation 4.3, ∆ is the exchange anisotropy,

and < nm >n.n. sums over nearest neighbours between two different spin chains.

Note that ∆ = 1 corresponds to the isotropic case whilst ∆ > 1 and ∆ < 1

correspond to the easy-axis and easy-plane scenarios respectively. For the easy-axis

case, it will be energetically favourable for spins to be along z axis. However, for the

easy-plane scenario, it will be energetically favourable for spins to be perpendicular

to the z axis. In figure 4.7 it can be seen that for increasing easy-axis anisotropy,

the stability region of the spin-multipolar regions can be greatly enhanced, whilst

for an increasing an easy-plane anisotropy the stability is diminished [137, 138]. It

is important to note that in this Hamiltonian, both the field and the anisotropy is

introduced along the z axis. It is not clear how having the field perpendicular to the

anisotropy axis would affect the stability of the spin-multipolar states. Introducing

inter-chain coupling has another important effect on the system. For an isotropic

system with weak inter-chain coupling, the SDW(p) is much more likely to occur as

opposed to a two dimensional spin-multipolar phase [139].

The inter-chain coupling strength was also found to be important for finding the

saturation field. In the range 0 < α < 1 the saturation field of the system is given
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Figure 4.7: The stability of spin-multipolar phases with inter-

chain coupling and easy-axis anisotropy. Here an AFM skew inter-

chain interaction J IC
0 is used. The lightly shaded region is the enhanced

stability due to an easy-axis anisotropy along field direction [137]. Image

from Ref. [137].

only by the inter-chain coupling terms [140]. The suggested relationship is of the

following form:

gµBHsat = NIC

∑
i

−J IC
i . (4.7)

Here, g is the g tensor, µB is the Bohr constant, Hsat is the saturation field, NIC

is the number of nearest neighbours, and J IC
i with i=0, 1, 2, etc. indicates the

different types of inter-chain couplings in the system.

The fact that the spin-multipolar phases can still exist despite inter-chain coup-

lings and anisotropies makes it more likely to observe the spin-multipolar phases

in nature. Real spin systems within materials will always have some level of aniso-

tropy and inter-chain coupling. The most promising materials to observe these novel

quantum phases are the edge sharing copper oxides chains, which will be discussed

in section 4.1.7. The effect of anisotropy in the zero field case has also been studied
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in detail [141,142] but will not be discussed here. The main objective of this thesis

is to explore linarite’s capabilities for establishing a spin-multipolar phase.

4.1.3 Crystal Structure

Linarite (PbCuSO4(OH)2) is a naturally occurring mineral [22] which crystal-

lises in monoclinic space group P21/m. It has lattice parameters a=9.7Å, b=5.65Å

c=4.69Å, and angle β=102.65o [23,143]. The crystal structure can be seen in figure

4.8 on page 137. Here we can see the Cu sites (blue) surrounded by six O atoms

(red) creating a Cu-O octahedron (blue surface) which is elongated and distorted.

These octahedra are separated by lead (grey) and sulphur (yellow) atoms along the

a axis direction. Along the c axis direction the octahedra are much closer compared

to the a axis direction. Along the b axis direction, the neighbouring octahedra have

a common edge. If only the four closest O atoms to the Cu atoms are considered,

a CuO2 ribbon structure becomes apparent, as seen in figure 4.8(c). It can be seen

that this CuO2 ribbon is not straight, in fact there is a buckling of 24.5o between

each neighbouring CuO2 plate.

It is useful to know the orientation of the CuO2 plates and the long axis of

the octahedron with regards to the a axis. In an unit cell, there are two different

octahedra and CuO2 plates. These plates have slightly different orientations. The

average of the two normals to the CuO2 planes is at n⊥=(0.94, 0, -0.26) which is

-15.35o from the a axis. The long axis of the octahedron is not parallel to this but

it is in fact -7.5o from the a axis.

The structure which will be used for this thesis was obtained by Effenberger [23]

and Araki [143] using single crystal x-rays diffraction. In literature there are seem-

ingly two other structure solutions for Linarite. The first of these different structures

was obtained by Bachmann and Zemann [144] using x-ray single crystal diffraction.

The Bachmann structure has a different lattice parameter and monoclinic angle with
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(a) (b)

(c)

Figure 4.8: Crystal structure of Linarite with a=9.7Å, b=5.65Å

c=4.69Å, and angle β=102.65o [23, 143]. Here the Cu (blue) atoms are

surrounded by O (red) atoms creating a distorted octahedron which is

given by the blue surface. The Pb (grey) and S (yellow) atoms are

situated between such Cu-O octahedra along the a axis direction. The H

(white) atoms are positioned at the edges of the Cu-O octahedra. (a) The

Cu-O octahedra are closer along the c axis then the a axis direction. (b)

Along the b axis direction, the Cu-O octahedra share an edges, creating a

Cu-O chain. (c) The CuO2 ribbon structure propagates along the b axis

direction and has a buckling of 24.5o between each neighbouring plane.
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a=9.81Å and β=104.7o, as well as different atom positions. However, the Bachmann

structure is identical to the Effenberger-Araki structure. The only difference is the

choice of lattice vectors. The lattice vectors of the two notations are transformed in

the following way [145]:

aB = −aE − cE; bB = −bE; cB = cE; [000]B = [000]E (4.8)

Here the subscripts of E and B describe the Effenberger-Araki and Bachmann

notations respectively. The atom positions of the Effenberger-Araki notation and

Bachmann notation can be related to one another in the following way [23]:

(xyz)E = (xyz)B


−1 0 −1

0 −1 0

0 0 1

 (4.9)

Another different structure solution for Linarite was suggested by Schofield et

al. [146]. The lattice parameters were solved using x-ray powder diffraction and

the atom positions were solved using single crystal neutron diffraction. The res-

ulting Schofield structure has identical lattice parameters as the Effenberger-Araki

structure; however, the Schofield atom positions agree with that of the Bachmann

structure rather than that of the Effenberger-Araki structure. The most likely ex-

planation is that for the neutron measurement, the Bachmann unit cell was used

by mistake. The other structure solutions did not have this problem because the

lattice parameters and the atom positions were solved at the same time from the

same data. The one advantage of the Schofield solution is that by using neutrons,

it was able to determine the position of the hydrogen atoms. It is then possible to

transform these H positions into the Effenberger-Araki structure using equation 4.9.

The atomic positions of linarite can be seen in table 4.1 on page 140. Here,

all the positions of the atoms except for the hydrogen and sulphur positions, are

obtained from Effenberger [23]. In Effenberger’s article the x position of sulphur is
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incorrect; however in the inorganic crystal structure database (ICSD) [147], this x

position is corrected. This corrected value is used in the table. The correct hydrogen

positions are obtained by transforming the positions of Schofield et al [146] into the

Effenberger-Araki structure. It is important to note that in the thesis work of

Willenberg [148], single crystal neutron diffraction results are presented. In this

work the lattice parameters and the atom positions were obtained from the same

datasets. Their obtained structure is in agreement with the atomic positions stated

in table 4.1.

This confusion in the structure will no doubt reflect on the rest of the literature.

It will be important to make note of what structure notation each linarite publication

uses. In summary it can be either the Effenberger-Araki notation, which will be

used in this thesis, the Bachman notation, or the Schofield et al. notation. Unless

stated otherwise, it can be assumed that the references in this thesis are using the

Effenberger-Araki notation.
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Atom x(l.u.) y(l.u) z(l.u)

Cu 0 0 0

Pb 0.34201 0.25 0.32838

S 0.33190 0.75 0.88450

O1 0.47540 0.75 0.06560

O2 0.33470 0.75 0.56930

O3 0.25310 0.5355 0.94260

O4 0.03420 0.75 0.28264

O5 0.09520 0.25 0.26670

H1 0.05500 0.25 0.45050

H2 0.86820 0.25 0.61220

Table 4.1: Atom positions for Linarite. The hydrogen positions

are obtained from transformation of the Schofield et al.’s results [146].

The sulphur position is obtained from the crystallography database ICSD

[147], and the remainder is obtained from Effenberger [23]. The positions

are given in lattice units (l.u.).

4.1.4 Magnetic Structure

Using structural arguments alone it is possible to make some estimates about the

magnetism of linarite. Linarite is an edge sharing copper oxide chain, which can be

seen in detail in figure 4.8(c). According to the Goodenough-Kanamori-Anderson

rules of superexchange [55–57, 149], the Cu-O-Cu bond angle will determine the

nature of the interaction. At 90o bond angle, the interaction is expected to be FM

and for larger bond angle it is expected to become AFM. For linarite, the nearest-

neighbour interaction can be through Cu-O4-Cu or Cu-O5-Cu which correspond

to bond angles of 95o or 91.2o respectively. However, the next nearest-neighbour
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interaction must follow a Cu-O5-O4-Cu type of path which is much larger than 90o.

Therefore, for the nearest-neighbours a ferromagnetic interaction is expected whilst

for the next nearest-neighbours an antiferromagnetic interaction is expected [148].

DFT calculations performed for linarite agree with such a prediction [24, 26] (Note

Ref. [26] uses the incorrect Schofield structure notation). This nearest neighbour

FM, next-nearest neighbour AFM interaction model has also been suggested by

magnetic susceptibility and specific heat measurements [24–26].

One of the signatures of a nearest neighbour FM, next-nearest neighbour AFM

spin chain is having an incommensurate helical magnetic structure propagating along

the chain direction. Specific heat measurements suggested the formation of a hel-

ical magnetic structure at a Néel temperature of TN ∼2.8K [24]. Using neutron

diffraction, Yasui et al. [25] confirmed that below TN , a magnetic incommensurate

propagation vector of (0 k 0.5) appears, where k ∼0.189. The l=0.5 component of

the propagation vector points to an antiferromagnetic interaction along the c axis

direction. Magnetisation measurements of Yasui et al. showed spin-flop transition

for a field applied in the Cu-O plane within the ac plane. Therefore, they suggested

a magnetic structure with spins in the Cu-O plane, which can be seen in figure4.9(a)

on page 142. However, neutron diffraction data from Willenberg et al. [150] found

a different spin structure where the spins are -27(2)o from the a axis and structure

is elliptical with slightly larger moment along b axis 0.833(10)µB as opposed to ac

plane 0.638(15)µB. This structure can be seen in 4.9(b). It is important to note

that Willenberg et al. cites the Schofield structural notation which means that their

results are potentially incorrect. However, in the follow up article by Schäpers et

al. [151], the same result is stated using the Effenberger-Araki structure notation

for both the lattice parameters and the atomic positions. In the neutron diffraction

experiment the structure and the magnetic structure is solved from the same data-

set which greatly reduces the possibility of obtaining wrong orientation of the spin
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plane. The same cannot be said for the results of Yasui et al. where it is possible to

miss-orient the sample. This makes the magnetic structure in figure 4.9(b) obtained

by Willenberg et al. the more definitive magnetic structure.

(a) (b)

Figure 4.9: Suggested helical magnetic structures for linarite.

The two suggested magnetic structures are identical except for the ori-

entation of the spin plane (a) Yasui et al’s magnetisation data suggests

a spin plane within the Cu-O plane [25] whilst (b) Willenberg et al’s

neutron diffraction data suggest a structure where the spins are almost

perpendicular to the Cu-O plane (-27(2)o from the a axis) [150].

4.1.5 Magnetic and Thermodynamic Properties

The measurements of the dielectric constant in linarite is a possible probe into

its ferroelectric properties. As mentioned before in section 4.1.1, a helical magnetic

structure can create a polarisation in the spin-plane. Crossing this ferroelectric

transition it is possible to observe anomalies in the dielectric constant [36]. In the
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previous section the two different magnetic structures were suggested by Yasui et

al. [25] and Willenberg et al. [150]. The temperature dependence of the dielectric

constant was measured by both groups. Yasui et al. found that when the electric

field is applied along the CuO2 planes in the ac plane, there is a noticeable peak

at TN . Such a peak was not observed for the electric field along the b axis, or in

the direction perpendicular to the CuO2 planes. It is important to note that, as

discussed before, Yasui et al. may have miss oriented the sample, at least in their

magnetisation measurements, since their proposed magnetic structure is very differ-

ent from the more reliable neutron diffraction data. The capacitance measurements

of Willenberg et al.’s samples are shown in thesis work of Willenberg [148]. Here,

peaks were also observed in the dielectric constant but this time for a electric field

applied ∼35o from their defined spin plane. The electric field could not be applied

parallel to the spin plane due to experimental restrictions. Neither the work of Yasui

et al. [25] or of Willenberg [148] is enough to make a direct link to a ferroelectric

transition. The orientation of Yasui et al.’s crystal is not certain and Willenberg

was unable to orient the electric field directly parallel to the spin plane. However,

Willenberg was able to show that this peak in the capacitance follows the phase

boundary of the helical structure (see phase I in figure 4.11 where the green dots

indicate the phase boundary as obtained from capacitance measurements). This is a

possible indication that this helical structure can be linked to ferroelectricity [148].

Magnetic susceptibility and specific heat data from linarite has been used to

obtain fits to the J parameters for the J1 − J2 spin 1/2 chain. Three attempts at

this by different researchers has resulted in three very different sets of J parameters

and different ratios for α = J2/J1 [24–26]. These different values can be seen in table

4.2. All of these measurements agree on a ferromagnetic J1 and an antiferromagetic

J2. It is not clear why there is so much discrepancy between the results of the

different groups. It is important to note that Wolter et al. [26] also expands on the
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models by adding a small AFM inter-chain exchange interaction J IC along the c axis

and by adding an easy-axis exchange anisotropy on J1. The assumed strength of the

effective interchain coupling J IC was ∼ −0.6meV and the easy axis was expected

along the b axis.

Ref. J1(meV ) J2(meV ) α

Baran et al. [24] 2.6 -1.3 -0.5

Yasui et al. [25] 1.1 -1.8 -1.6

Wolter et al. [26] 8.6 -3.1 -0.36

Table 4.2: Suggested interaction schemes for linarite. All sugges-

ted models agree on FM J1 and AFM J2; however, there is no agreement

on the size of the J parameters [24–26].

From a fit to high temperature susceptibility measurements a Curie-Weiss tem-

perature of ΘCW=27(2) is obtained. The positive ΘCW is an indication that FM in-

teractions are dominant in linarite [26]. The maximum susceptibility occurs around

∼5K for a, b, and c axis directions. However, the maximum susceptibility occurs

at a slightly lower temperature for H//b, which could be interpreted as the b axis

being the easiest axis. The saturation field for the directions H//b, H//c, and

H ⊥ bc directions is given as µBHsat= 10.5T, 8.5T, and 7.6T respectively accord-

ing to Wolter et al. [26]. However, Wolter et al. references the Schofield structure

solution, which could mean that these directions may not be exact. To be pre-

cise, the H//b measurement would be correct, as it is the b axis is the same in all

structure notations.

Magnetisation measurements have been performed on rotation stages [152, 153]

which can be seen in figure 4.10 on page 146. These measurements indicate the level

of anisotropy in the paramagnetic regime. The two groups which have performed

these measurements obtain similar results; however, they disagree in the orientation
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of their crystal with respect to these results. In figure 4.10(a) the measurements of

Szymczak et al. performed at 5K can be seen [152]. In the top figure the change

in magnetisation with a rotation is about the b axis and where the angle φ is the

angle between the a axis and the magnetic field direction. In the bottom figure

the rotation is in the plane given by the b axis and the normal to the (-101) plane.

The angle θ = 90o corresponds to the field parallel to the b axis. From these

measurements it can be seen that the smallest moments are along the b axis and

about 10o from the a axis [152]. These findings are contrary to the measurements of

Schäpers et al. [153] which was performed at 40K and can be seen in figure 4.10(b).

Here, the minimum in the ac plane is ∼-57o from the a axis. This disagreement

extends to the g factors as well. Schäpers et al. suggest that ga⊥ > gc > gb (here,

a ⊥ is defined as the normal to the bc plane) whilst Szymczak et al. suggests

gc > gb > ga. The discrepancy between these two results is most likely related to

the confusion in the structure of linarite in the literature. Both articles cite the

Effenberger structure for linarite [23]. Schäpers et al. has the additional advantage

that its structure was solved using neutron diffraction measurements [151] and it is

definitively in the Effenberg-Araki structure notation. It is important to note that

Szymczak et al. also performed a measurement at 25K which showed differences to

the 5K data. The difference is most visible in the ac plane, where there is a shift

as large as ∼ 10o [152].

Another important estimate of the anisotropies present in the magnetism of

linarite comes from electron spin resonance (ESR) and nuclear magnetic resonance

(NMR) measurements. Through ESR experiments, Wolter et al. was also able to

obtain the g factors along a, b, and c axis directions respectively to be ga= 2.34,

gb = 2.1, gc =2.2. These results agree with their later work (Schäpers et al. [153])

seen in figure 4.10(b) but it does not agree with the findings of Szymczak et al. [152].

It should be noted again that Wolter et al. [26] references the Schofield structure
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(a)

(b)

Figure 4.10: Magnetisation with rotation in paramagnetic re-

gime. (a) Szymczak et al. [152] measured the rotation in the ac

plane(top) and in the b-(-101) plane(bottom). Here, φ=0 corresponds

to H//a and θ=0 corresponds to H//(-101) [152].(b) These results do

not agree with those of Schäpers et al., where the a axis is close to the

maximum in susceptibility [153]. Images from [152] and [153] respect-

ively.
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solution therefore it is not sure how accurate the values of ga and gc are. Since there

is some agreement with the Schäpers et al. [153] work, where the correct structure

is stated, it is likely that the Wolter et al. is also using the correct structure. For

temperatures above TN , the anisotropy seen in the saturation field can be mostly

explained via the anisotropy of the g factor. However, below TN , this is no longer

sufficient and it is necessary to consider different anisotropies such as exchange

anisotropies and Dzyaloshinskii-Moriya interactions [26]. The ESR measurements

do not show any change in linewidth down to TN for the field along b axis direction.

However for H//a and H//c a change occurs as early as 50K. Similarly, NMR

measurements of 207Pb and 1H signals also start show a broadening at ∼75K and

∼50K respectively. This is an indication that the system is strongly frustrated and

that short range correlations start developing for temperatures much higher than

TN [26].

4.1.6 Phase Diagram and Neutron Diffraction

The phase diagram for H//b field direction has been studied in great detail

through many different physical properties measurements [148,150,154]. The phase

diagram, which can be seen in figure 4.11 on page 148 [148], has five different phases.

Here, phase II might not be a distinct thermodynamic phase but a crossover from

phase I to phase IV. The magnetic structures of the remaining phases I,III,IV, and

V has been solved using neutron diffraction methods and the different magnetic

structures present in the phases can be seen in figure 4.12 on page 149 [148]. Here,

phase I is the helical ground state with the spin plane -27o from the a axis as

discussed earlier (figure 4.9(b)). In figure 4.12(a), the commensurate AFM structure

of phase IV can be seen. The propagation vector for this phase is (0,0,0.5) and the

spins are perpendicular to the b axis and -27o from the a axis. The orientation of

the spin plane in phase IV is identical to that of phase I. The structure of phase IV
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was solved at 4T and 5T and a total magnetic moment of 0.79(1)µB and 0.73(2)µB

was obtained respectively in the ac plane. This could be interpreted as a small

canting towards the field direction for higher field. In phase III, a coexistence of the

phase IV magnetic structure and an incommensurate magnetic helix similar to that

of phase I was observed. The only difference between the two structures is that the

phase III helix resides in the bc plane which can be seen in detail in figure 4.12(b).

The Phase V magnetic structure is a sinusoidally modulating structure with the

moments parallel to the b axis, which can be seen in figure 4.12(c).

Figure 4.11: Linarite phase diagram for H//b. The phase diagram

was obtained from many different physical properties measurements [148,

150,155]. Image from Ref. [148].

The magnetic Bragg peak was measured in phase V for a few different temper-

atures above 1.8K and for a large range of field strengths. The points where the

Bragg peaks were measured can be seen in figure 4.11 with gold stars. These Bragg

peaks were of the form (0,ky,0.5) and it was found that ky changes throughout phase

V. This change in ky can be seen in figure 4.13(a) on page 151. Here, the coloured
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(a) (b)

(c)

Figure 4.12: Magnetic structures observed for H//b phase dia-

gram. (a) In phase IV, the magnetic structure is AFM with the spins

tilted -27o from the a axis. (b) For phase III, there is a coexistence of

two magnetic structures. One of these is the phase IV magnetic structure

and the other is an incommensurate helix very similar to that of phase

I. Unlike the phase I helix, the phase III helix resides in the bc plane as

seen in the figure. (c) The phase V magnetic structure is established as

a sinusoidally spin modulated structure with spins along b axis. Images

from Ref. [148].

lines are the theoretical prediction of a SDW(p) characteristic vector as given in

equation 4.5. It can be seen that none of the theoretical predictions directly match
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with the measured ky positions [148,155]. In order to explain the change in ky with

increasing field, Willenberg et al. [155] created a field dependent αeff (H) model.

This was done by comparing the structure factor for two different models. The first

was a single chain J̃1 − J̃2 model, and the second model was a two chain J1 − J2

model with an inter-chain coupling J IC . The inter-chain coupling is assumed to be

J IC ∼ −0.9meV and it is taken to be a diagonal interaction as seen in figure 4.13(b).

For the two dimensional model, the J parameters obtained from Ref. [26] is used

which has α = −0.36. The magnetic structure factor is calculated for both the single

chain and two chain models. The J parameters of the single chain J̃1 − J̃2 model

are altered so that its structure factor agrees with that of the two chain model. The

effective frustration ratio of αeff = J̃2/J̃1 is obtained for different field strengths.

The calculated change in αeff with increasing magnetisation can be seen in figure

4.13(c). Using such an αeff , the expected SDW(p) phase will change from p=5 to

p=8 with increasing field, as shown in figure 4.13(d).
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(a) (b)

(c) (d)

Figure 4.13: The Willenberg et. al interoperation of linarite’s

ky dependence. (a) The position incommensurate propagation vector

(0,ky ,0.5) changes with different magnetic field strengths. The dashed

lines are predictions of a SDW(p) phase. These predictions do not directly

agree with measured ky values. (b) A diagonal AFM interaction of J IC

is assumed for the two chain model. (c) Structure factor comparisons

between the one- and two-dimensional models give a field dependent

αeff . (d) A field dependent αeff model like this would result in the

observations of SDW(p) phases where p changes from p=5 to p=8 with

increasing field [155]. Images taken from Ref. [155].
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4.1.7 Review of Cuprate J1 − J2 Chains

There are number of copper-oxide based quasi-one-dimensional systems which

are analogues for the spin 1/2 Heisenberg J1-J2 chain where J1 is FM and J2 is

AFM. The J values of some of these systems has been found using INS, magnetic

susceptibility χ, specific heat Cp, or optical conductivity σ. The details of some

copper-oxide based quasi-one-dimensional systems can be seen in table 4.3 on page

153. These details include the obtained J values, the experimental method used to

determine the J values, references, and magnetic structure information. For linarite

(PbCuSO4(OH)2), there are three different articles with three different J parameters

which are also represented in table 4.3. Similarly for LiCu2O2 three different models

are shown. Out of these three models only one of them (the J1= 7.0 model) is a

FM J1- AFM J2 chain. The other two models have AFM J1 which is very different

to linarite and to all of the other materials suggested in table 4.3.

For most cuprate J1 − J2 chains, a helical order or FM order is observed along

the spin chain direction. However, for some materials no long range order has been

observed yet. An incommensurate helical magnetic structure is observed among

linarite [150], LiCuVO4 [157], NaCu2O2 [156, 164], LiCu2O2 [163], and Li2ZrCuO4

[158]. An FM order along the chain direction is observed for Li2CuO2 [159, 165]

and Ca2Y2Cu5O10 [162]. An FM order along the chain for Ca2Y2Cu5O10 is not

surprising since because J2/J1 >>-0.25. However, for Li2CuO2 one might expect

helical order instead considering J2/J1 <-0.25 (see section 4.1.1). First-principle

density functional theory calculations show that for Li2CuO2 next nearest neighbour

inter-chain interactions are responsible for the favouring of FM order over helical

order [166]. Conversely, A2Cu2Mo3O12 (A=Rb,Cs) [161,167] and LiCuSbO4 [160] do

not show any magnetic order down to very low temperatures. The inelastic neutron

powder spectrum of LiCuSbO4 does show a signal at an incommensurate position;

however, there is no spin freezing down to 0.1K [160].
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Material Ref. Method J1(meV) J2(meV) J2/J1 Mag. Structure

NaCu2O2 [156] χ 4.1 -7.8 -2.41 Helical

Li2CuVO4 [157] INS,χ 1.6 -3.57 -2.23 Helical

Li2ZrCuO4 [158] Cp,χ 38.8 -31.3 -0.30 Helical

Li2CuO2 [159] INS, σ 19.8 -6.6 -0.33 Commensurate

LiCuSbO4 [160] INS,Cp,χ 6.5 -2.9 -0.45 No L.R.O

Rb2CuMo3O12 [161] Cp,χ 11.9 -4.4 -0.37 No L.R.O

Cs2CuMo3O12 [161] Cp, χ 8.0 -2.8 -0.35 No L.R.O

Ca2Y2Cu5O10 [162] INS 8.0 -0.4 -0.05 Commensurate

LiCu2O2 [163] INS -3.2 6.0 -1.86 Helical

LiCu2O2 [163] INS -52.8 -16.9 0.32 Helical

LiCu2O2 [163] INS 7.0 -3.8 -0.54 Helical

PbCuSO4(OH)2 [24] Cp,χ 2.6 -1.3 -0.5 Helical

PbCuSO4(OH)2 [25] χ 1.1 -1.8 -1.6 Helical

PbCuSO4(OH)2 [26] Cp,χ 8.6 -3.1 -0.36 Helical

Table 4.3: Summary of quasi-one-dimensional cuprate J1-J2

chains. For each material, the reference, experimental method, obtained

values of J1 and J2 and knowledge of magnetic structure is shown. For

LiCu2O2, three spin-wave models have been suggested. Out of these three

only one model (where J1 = 7.0) is a FM J1- AFM J2 chain. The three

proposed linarite (PbCuSO4(OH)2) J parameters are also presented for

comparison. Note that the ratio J2/J1 stated here is not always directly

related to the frustration ratio α. The materials for which no long range

order has been observed are labelled as “no L.R.O.”.

As mentioned before in section 4.1.1 and 4.1.2, the most important parameter

for the one dimensional J1-J2 chain is the ratio α = J2/J1. In table 4.3, the values of
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J2/J1 are given for each material. However, it is very important to note that these

systems are not one dimensional systems. There is always some level of coupling

between neighbouring spin chains. This means that the frustration ratio for these

real materials cannot be defined as α = J2/J1. The true frustration ratio must

consider the inter-chain interactions as well. For example, in LiCuVO4 the spin-

wave dispersion has been studied extensively using single crystal inelastic neutron

scattering along many different directions and four different inter-chain coupling

terms have been identified [157]. Two of these correspond to a coupling perpendic-

ular to the chain direction. The other two correspond to a diagonal coupling, i.e.

they have a component along the spin chain. Therefore, the frustration ratio for

LiCuVO4 is calculated as α = J2/(J1 + 2J5− 4J6). Here, J5 and J6 are the diagonal

interactions and they are FM and AFM respectively. Also, compared to J1, J5 and

J6 have twice and four times more equivalent neighbours respectively. When the

inter chain interactions are also considered, the frustration ratio for LiCuVO4 is

α=-1.43, which is quite different to J2/J1=-2.23 [157]. This is an important point to

remember when trying to compare real systems like LiCuVO4 with one dimensional

theoretical models discussed in sections 4.1.1 and 4.1.2.

Within the materials in table 4.3, only LiCuVO4 [157], LiCu2O2 [163], Li2CuO2

[159], and Ca2Y2Cu5O10 [162] have been measured with single-crystal inelastic neutron-

scattering techniques. Therefore, only for these materials the inter-chain-exchange

constants are known. For LiCu2O2 [163] the spin wave was measured close to the

magnetic Bragg peak along two high symmetry directions. The full dispersion was

not measured, instead it was measured up to ∼10meV energy transfer. Three differ-

ent spin-wave models were suggested to explain the data which can be seen in table

4.3. According to the authors, the most likely model is composed of an AFM J1

and FM J2 and an equally strong fourth-nearest neighbour J4, which is also AFM.

If this is indeed the case this would make LiCu2O2 considerably different from the
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other materials discussed in table 4.3. For Li2CuO2, initial single-crystal INS meas-

urements were interpreted as AFM J1 and AFM J2 [168]. However, later INS data

found that there was an overlooked highly dispersive branch which was measured up

to ∼20meV along one high symmetry direction [159]. The fit to this data provided

a FM J1 and AFM J2 as presented in table 4.3. For Ca2Y2Cu5O10 the single-crystal

inelastic neutron spectrum was measured along three high symmetry directions up

to ∼10meV. The AFM J2 interaction is very small for Ca2Y2Cu5O10 and there-

fore its existence is not certain [162]. For the other materials on table 4.3, where

single crystal INS data does not exists, the J parameters were mostly obtained using

a one dimensional model without any inter-chain interaction or anisotropies. For

LiCuSbO4 the INS experiments were performed on powder samples and therefore it

was not possible to determine the strength of inter-chain interactions.

In the cuprate J1 − J2 systems, obtaining the J parameters through inelastic

neutron scattering is not always straight forward. The usual assumption is that

LSWT can be used to extract the J parameters at zero field. However, the low di-

mensionality and low spin observed in the cuprate J1−J2 systems causes excitations

which are not accurately described by LWST. One way to overcome this problem is

to apply a large enough magnetic field so that the system becomes fully FM. In this

fully FM phase, the obtained J parameters will be the true parameters which de-

scribe the system. For the two dimensional frustrated quantum magnet Cs2CuCl4,

the J parameters were obtained at zero field and within the fully FM phase using

inelastic neutrons and LSWT. A clear difference was observed between the zero field

and FM phase J parameters. This difference can be considered as “quantum norm-

alisations” to the zero field J parameters [169]. This method cannot be performed

on quasi-one-dimensional cuprates LiCuVO4 or LiCuO2 due to their large saturation

fields of ∼50T [44] and ∼110T(estimate) [170]. However, the quantum normalisa-

tions on the LiCuVO4 parameters were obtained in a different way. It was expected
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that the AFM interactions would be normalised by π/2, whilst the FM interactions

should not be normalised. The high temperature susceptibility data was fitted with

a model based on the INS results, except where only J2 was a free parameter. The

obtained normalisation of J2 was found to be very close to π/2 as expected [157].

The zero field inelastic spectrum of LiCuVO4 along chain direction k can be

seen in figure 4.14(a) on page 157. It can be seen that instead of a clear spin-wave

branch, there is a continuum. This is in fact a spinon continuum. Spinons are spin

1/2 bosons with no charge. They are one of the elementary excitations of the one

dimensional AFM chain, the Luttinger liquid. Spinons are always created in pairs

and can be thought of as propagating magnetic domain walls. In figure 4.14(b), the

calculated two-spinon continuum can be seen. This calculation was performed using

the “true” J parameters of LiCuVO4, where the normalisations were taken into

account. The similarity between the data and the calculations is another validation

that the interaction scheme of LiCuVO4 is well understood [45].

In section 4.1.2 it was discussed that the one dimensional S=1/2 Heisenberg

J1 − J2 chain has the possibility to display novel quantum phases described as

multi-magnon bound states with spin-multipolar order. It was also shown that

these exotic quantum phases can survive under inter-chain coupling and anisotropy.

This makes it likely to observe these novel phases in real systems such as the quasi

one-dimensional cuprate chains. In fact, LiCuVO4 has already shown major exper-

imental evidence for the existence of a two-magnon spin-quadrupolar phase. This

has originated from magnetisation measurements close to saturation [44] and from

neutron diffraction measurements under an applied magnetic field [45]. These can

be seen in figures 4.15(a) and (b) respectively on page 158. In the magnetisation

data, between Hc3 and Hsat, the magnetisation becomes linear; this has been in-

terpreted as LiCuVO4 entering the spin-quadrupolar phase. Neutron diffraction

experiments measured the dependence of the incommensurate magnetic Bragg peak
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(a) (b)

Figure 4.14: LiCuVO4 measured and calculated spinon spec-

trum. (a) The inelastic neutron spectrum shows a continuum of excit-

ations. There is little difference between this measurement and (b) the

theoretical two-spinon continuum calculated using the “true” J paramet-

ers as obtained by Ref. [157]. Images taken from [127].

of LiCuVO4 on an applied magnetic field. In figure 4.15(b) it can be seen that the

magnetic Bragg peak does not change much until ∼6T, after which it jumps in posi-

tion and slowly decreases in k̃IC . Here, k̃IC is defined in an unit cell with one copper

per unit cell, rather than the usual two and IC stands for incommensurate. The

red line is the expected evolution of a SDW(2) phase as determined from equation

4.5. Here, it can be seen that beyond ∼ 6T, the k̃IC follows the exact dependence as

expected from a SDW(2) phase. Additionally, the magnetic Bragg peaks were also

measured along h and l directions. It was observed that beyond ∼ 6T the Bragg

peaks became broad in h and l directions. This effectively shows that below ∼ 6T

there is long range order (given in blue) whilst above ∼ 6T there is only short range
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order (given in red). The existence of quasi-long range order is another property ex-

pected from a spin-quadrupolar phase. These experimental signatures point towards

the existence of a two-magnon spin-quadrupolar phase within LiCuVO4.

(a) (b)

Figure 4.15: Evidence of a two-magnon bound state for

LiCuVO4. (a) Magnetisation measurements near saturation [44], and

(b) field dependence of the magnetic Bragg peak [45] has been used to

suggest two-magnon bound state might exist for LiCuVO4. Images taken

from Refs. [44] and [45] respectively.

As discussed in the previous section, linarite is considered a good candidate to

observe a spin-multipolar phase. All of the suggested J parameters in literature, as

stated in table 4.3, can support spin-multipolar phases in the purely one-dimensional

isotropic J1− J2 model. The zero field magnetic Bragg peak is positioned at l = 0.5

[25, 26], which indicates an AFM inter-chain coupling along c axis direction. This

could be detrimental to the stability of a spin-multipolar phase. However, from ESR

linewidths [26], a sizeable anisotropy is expected for linarite which could help with

its stability. The prospect of a spin-multipolar phase in linarite is very interesting
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due to linarite’s relatively low saturation field of ∼ 10T [26]. This would allow the

study of the spin-multipolar phases all the way up to complete magnetic saturation

using neutron scattering methods. Also, the spin-waves above saturation can be

measured and the “true” interaction scheme of the material can be obtained. This

is quite different to the other well studied quasi one-dimensional cuprates such as

LiCuVO4 and LiCu2O2 which have large saturation fields of ∼50T [44] and ∼110T

[170] respectively.

The phase diagram of Linarite can be compared to that of the two well studied

systems LiCuVO4 and LiCu2O2. These two systems are very similar. They both

have a helical magnetic structure in the ab plane at low temperatures; they both

show spin-flop transitions; and they both have high saturation fields of ∼50T, and

∼110T respectively [44,170]. The simple phase diagram of LiCuVO4 can be seen in

figure 4.16 on page 160. NMR measurements on LiCuVO4 show a spin-flop transition

at Hc1=2.5T when a field is applied along either the a or b axis direction [171]. At

Hc2=7T for all three field directions there is another transition into what has been

described as a sinusoidally modulated spin structure with spins aligned along the

field direction [172]. A third transition is observed close to the saturation from the

magnetisation measurements. For H//c this third phase appears at Hc3 ∼40T but

for H//a and H//b it appears at ∼47T. This is followed by saturation at ∼45T

for H//a, and at ∼52T for H//b or H//c field directions. This third phase is

considered as the two-magnon spin-quadrupolar phase [44].

The LiCu2O2 phase diagram can be seen in figure 4.17 on page 161. A spin-

flop transition was observed for H//a,b at ∼4T. For all principle axis directions,

a second transition is observed at ∼15T. The phase above this second transition

is thought to be a collinear spin modulated structure. The saturation field could

not be accessed but is estimated to be as high as ∼110T for the H//c direction.

Different to LiCuVO4, LiCu2O2 also has an additional transition at zero field. The
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Figure 4.16: Simple Phase diagram for LiCuVO4 shows four differ-

ent phases below saturation. The spin-flop transition Hc1 only occurs for

H//a or H//b as expected. Transition into a spin modulated structure,

Hc2=7T, occurs at the same field for H // (a, b, or c). The transition

into the spin-nematic phase occurs at Hc3 ∼40T for H//c and Hc3 ∼47T

for H // (a or b). Finally saturation occurs at Hsat ∼45T for H//c and

Hsat ∼52T for H // (a or b) [44]. Image from Ref. [44].

phase below Tc2 is the helical phase and the phase above Tc1 is the paramagnetic

phase. However, the phase between Tc1 and Tc2 is a magnetic structure where only

the component of the spiral along the a axis appears, and the component along the

b axis fluctuates [170].
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(a) (b)

Figure 4.17: The Phase diagram for LiCu2O2. (a) For H//b and

H//a, a spin flop is observed at ∼4T as well as a second transition at

∼15T. (b) ForH//c, only the ∼15T is observed, above which a collinear

spin modulated structure is expected. The saturation field is estimated

to be as high as ∼110T. Images obtained from Ref. [170].

Another two materials worth mentioning are Li2CuO2 and Ca2Y2Cu5O10. For

both of these materials the interaction scheme was obtained using inelastic neutron

scattering methods. It was found that using their inter-chain interaction paramet-

ers alone, it is possible to predict their saturation field. This was done using the

relatively simple equation 4.7 [140].
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4.2 Crystals and Orientation

Crystal Characterisation

All of the four Linarite crystals used in the experiments originated from Grand

Reef Mine in Arizona, USA. The largest three crystals were co-aligned and used in

inelastic neutron experiments. These crystals showed twinning, which is consistent

of a shared a∗ and anti-parallel b∗ axis. This type of twinning is common for

linarite [173]. The smaller two crystals did not show any twinning and were used

in diffraction experiments. The list of the crystals and their approximate sizes can

be seen in table 4.4. The crystals 1a and 1b used to belong to the same crystal and

were characterised before the break happened.

Size (mm2) Twinning Experiments

Crystal 1a 6x3x1 Inelastic neutron

Crystal 1b 6x0.5x0.5 Inelastic neutron

Crystal 2 6x2x1 diffraction, Inelastic neutron

Crystal 3 4x1.5x0.5 X diffraction, magnetisation

Crystal 4 4x1x1 X diffraction

Table 4.4: The table of linarite crystals used. Crystal 1a, 1b, and

2 were often used co-aligned and they all showed twinning. Crystals 3

and 4 did not show twinning.

The sample characterisation was performed on TAS instrument IN3 at the ILL,

Grenoble, France. In linarite the (001) and the (-101) Bragg peaks have very similar

|Q| and can be confused easily. At IN3 the collimation was high enough to resolve

the two peaks. However, the two peaks were still very close in 2θ (or A4 angle on

TAS instrument) with 29.9o and 30.4o for (001) and (-101) respectively. The lattice

parameters were in accordance with the Effenberger-Araki structure and not the
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Bachmann structure. In order to be certain, 32 Bragg peak intensities were meas-

ured for the untwinned crystal 3 and these Bragg peak intensities were compared

to the expected intensities for the Bachmann and Effenberger-Araki structures. For

the structure factor calculations, the atom positions in table 4.1 were used for the

Effenberger-Araki structure. For the Bachmann structure the atom positions were

converted using equation 4.9. The measured and calculated Bragg peak intensities

can be seen in tables 4.5 and 4.6 on pages 164 and 165 respectively. At each Bragg

peak a rocking scan (A3 scan) was performed and from a Gaussian fit, the amplitude

was obtained. In table 4.5, the obtained amplitude from this fit is given in “Amp.”

and it is given in units of counts per second. The values under the “I(Q)” column

are the same amplitudes but normalised to (020) amplitude and multiplied by 100

for clarity. The intensities for the Effenberger-Araki structure are calculated using

IEA(Q) = |FEA(Q)|2/sin(2θ) where FEA(Q) is the structure factor for Effenberger-

Araki structure. The intensities for the Bachmann structure are calculated in a

similar way. Both of the calculated intensities are normalised to their (020) amp-

litude and multiplied by 100 and presented under columns “I(Q)EA” and “I(Q)B”

respectively in tables 4.5 and 4.6. From the last three columns in these tables, it

can be seen that the Effenberger-Araki structure provides a much better description

of the data. If two different χ2 values are defined as χ2
EA =

∑
(I(Q) − I(Q)EA)2

and χ2
B =

∑
(I(Q)− I(Q)B)2, then this would result in χ2

EA ∼ 0.3χ2
B. This is not a

comprehensive structure determination, therefore a perfect agreement is not expec-

ted between I(Q) and I(Q)EA. However, it is sufficient to show that on IN3, the

Effenberger-Araki structure of linarite can be identified successfully.
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h k l Amp(cps) I(Q) I(Q)EA I(Q)B

0 2 0 120.7 100.0 100.0 100.0

-1 0 1 496.3 411.3 212.8 686.6

0 0 1 833.3 690.5 694.1 215.1

-3 0 1 379.9 314.8 61.9 38.1

-3 0 0 965.7 800.2 714.1 714.1

3 0 0 381.5 316.2 714.1 714.1

0 0 3 348.1 288.4 377.3 153.2

-3 0 2 182.9 151.5 67.1 1.0

1 0 1 266.5 220.8 88.2 57.1

-2 0 1 234.1 194.0 55.8 86.3

2 0 1 126.6 104.9 39.0 63.3

3 0 1 411.7 341.2 272.5 912.6

4 0 0 376.4 311.9 205.2 205.2

4 0 1 308.4 255.5 192.4 6.8

5 0 1 8.4 7.0 5.3 3.5

5 0 0 52.2 43.3 12.8 12.8

Table 4.5: Effenberger-Araki vs Bachmann structure compar-

ison (part 1). The amplitude of the Bragg peaks, obtained by rocking

scan at Q=(hkl), is presented under column “Amp” in units of counts

per second. In “I(Q)” the value 100×Amp(hkl)/Amp(020) is shown. In

columns “I(Q)EA” and “I(Q)B” the calculated intensities of Effenberger-

Araki and Bachmann structures after the same normalisation is presen-

ted. The Effenberger-Araki structure is a more accurate description of

the measurements. Table continued in table 4.6.
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h k l Amp(cps) I(Q) I(Q)EA I(Q)B

6 0 0 199.4 165.3 115.0 115.0

0 0 2 63.0 52.2 16.9 1.5

-4 0 1 831.6 689.1 894.4 267.1

-5 0 1 31.1 25.7 6.7 189.0

-5 0 2 67.4 55.8 17.6 62.1

-6 0 1 20.0 16.6 3.4 5.3

-6 0 2 334.9 277.5 3.0 464.9

-2 0 2 21.6 17.9 1.5 16.7

1 0 2 7.9 6.6 1.1 68.3

2 0 2 216.4 179.3 129.6 113.0

-4 0 2 205.0 169.9 110.5 126.7

3 0 2 126.8 105.1 63.5 18.1

-3 0 3 211.2 175.0 151.6 373.3

4 0 2 371.4 307.8 475.6 3.1

1 0 3 371.1 307.5 523.5 33.0

-4 0 3 80.4 66.6 32.5 515.0

Table 4.6: Effenberger-Araki vs Bachmann structure compar-

ison (part 2). This table is a continuation of table 4.5.

The twinning of the large samples is most apparent in the (h0l) scattering plane.

On IN3 in this scattering plane a 180o rocking scan (A3 scan) at a 2θ corresponding

to (001) results in two Bragg peaks for an untwinned sample and four Bragg peaks

for a twinned sample. This can be seen in figure 4.18(a) on page 166. Here the

untwinned and twinned sample measurements are given in blue and red respectively.

The (00-1)t and (10-1)t belong to the twin crystal and they are both positioned -2.51o

from (-101) and (001) Bragg peaks respectively. This observation is consistent with

the twinning composed of shared a∗ but anti parallel b∗, which is visualised in figure
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4.18(b). From the relative size of the (001) Bragg peaks in figure 4.18(a), it can be

concluded that the two twins must have a similar volume, since their intensities are

very similar. In fact a Gaussian fit to each of the (001) type peaks shows that the

(001)t is ∼ 30% smaller in intensity than (001) Bragg peak.

(a) (b)

Figure 4.18: Twinning in Linarite. (a) The twinning can be seen in

a IN3 A3 scan in the ac plane. Due to similar |Q| both (001) and (-101)

type peaks can be seen in such a scan. For an untwinned crystal only two

peaks in 180o is observed. For twinned crystals four peaks are observed

in 180o. (b) This indicates a twinning where b and bt at anti-parallel

and a∗ and a∗t is parallel.

Orientations of Co-aligned Crystals in INS Experiments

The twinned crystals were co-aligned in order to gain more intensity in INS

experiments. The crystals were glued onto a thin plate of aluminium using GE

varnish. The co-alignment was always accurate along b axis direction; however, the

alignment along c∗ axis direction was not accurate. In all of the experiments, at
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least one of the samples was in the (0kl) scattering plane; however, the other crystals

were rotated about the b axis direction to some extent. This has consequences to

the LSWT models used, therefore a detailed description of the orientation of each

crystal for each INS experiment is necessary.

The IN14 March 2013 experiment was carried out with at 12T cryomagnet. For

experiments with cryomagnets there is no usually capability to tilt the sample in

order to access a different scattering plane. Therefore, it is very difficult to know the

exact orientation during an experiment with the cryomagnet. There is a reliance on

previous experiments to determine the orientation. An experiment was carried out

at IN20 March 2013 where the orientations of the crystals were explored in detail.

At the IN20 experiment there were three samples co-aligned: crystals 1a, 1b and 2.

Crystal 1a and 1b used to be one piece; however, whilst the glue was drying, Crystal

1b (roughly 1/10th of the original crystal) broke off and rotated slightly about the

b axis. The rocking scans (A3 scans) around (020) and (001) Bragg peaks positions

resulted in three peaks as seen in figure 4.19(a,b) on page 168. From left to right

these Bragg peaks most likely correspond to crystals 1b, 2, and 1a respectively. An

upper goniometer scan (GU scan) of the large (020) peaks at A3=-72o showed that

they were only 0.5o out of plane. A lower goniometer scan (GL scan) was performed

on each one of the three peaks in the (001) A3 scan. The results are summarised

in figure 4.19(c). Note that in each GL scan there are in fact two peaks separated

by 2.51o. One of these will correspond to a (001) type peak and the other will

correspond to a (-101) type peak. The (-101) type peak is identifiable by its lower

intensity compared to the (001). Because of the twinning, the data have been fitted

to two Gaussian functions. Constraints are used so that the two Gaussians are 2.51o

apart and they have the same full width and half maximum. If the (-101) type peak

is the left of an (001) type peak, these peaks must be (-101)t and (001) respectively.

If the (-101) type peak is the right of an (001) type peak, these peaks must be (10-1)
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and (00-1)t respectively. Using this information the Bragg peaks in figure 4.19 has

been indexed. This means that the two large crystals, Crystal 2 and Crystal 1a, are

1.4o and 3.4o out of plane respectively but Crystal 1b is -29.1o out of plane.

(a) (b)

(c)

Figure 4.19: Orientation from IN20 March 2013 data. (a) An

A3 scan at the position of (020) reveals three peaks. (b) Similarly an

A3 scan at the position of (001) reveals three peaks. (c) A GL scan is

performed for each of these (001) peaks in (b). From Gaussian fits and

knowledge of the twinning in the sample, the orientation is obtained.
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The IN14 March 2013 experiment, where the 12T cryomagnet was used, was

performed very shortly after the IN20 March 2013 experiment. Therefore, there

should not be a large change in the orientation. In fact very little difference is

observed for (020) between the two experiments as seen in figure 4.20(a). However,

a slight difference is observed for the (001) Bragg peaks which can be seen in figure

4.20(b). Here only two peaks are apparent, but by comparing intensities with IN20

March 2013 data, it is clear that two different crystals contribute to the ∼27o Bragg

peak. The Bragg peak on the right, which most likely originates from Crystal 1a,

appears to have a slightly weaker signal than expected. This might indicate the

Crystal 1a has moved by ∼+2o out of the scattering plane.

(a) (b)

Figure 4.20: Orientation information from IN14 March 2013

data. (a) An A3 scan at the position of (020) reveals three peaks. (b)

An A3 scan at (001) reveals only two peaks; however, the peak at ∼27o

is likely to contains two Bragg peaks from two different crystals.

The next experiment where the co-aligned crystals were used was the IN14 April

2013 experiment where a 15T cryomagnet was used. In this experiment the orient-

ation of the crystals very clearly changed once the field was applied. This change

was apparent at 14.5T for (020) Bragg peaks as seen in figure 4.21(a) on page 170.
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For the (001) Bragg peaks a change was observed both at 11T and 14.5T. It is

important to note that at the end of the experiment it was observed that Crystal

1a was no longer attached to the sample mount; however, crystals 1b and 2 were

still in place. The most likely explanation is that at 14.5T Crystal 1a falls of the

sample mount. For the (001) Bragg peaks there is a change at 11T and at 14.5T.

The disappearance of the ∼29o peak is in agreement with Crystal 1a detaching. The

halving of intensity between 0T and 11T of the ∼27o (001) Bragg peak is harder to

explain. Either one or both crystals were rotating about the b axis. From figure

4.19(c) it can be seen that these Bragg peaks have a full width half maximum of

∼2.5o. Therefore, the rotation about the b axis of crystals Crystal 1b and Crystal

2 cannot be much larger than ∼2.5o.

(a) (b)

Figure 4.21: Orientation information from IN14 April 2013

data. (a) The (020) A3 scan shows one large peak with possibly a

second smaller peak on the right hand side. This smaller peak disap-

pears at 14.5T. (b) The (001) A3 scan shows that one crystal is lost at

11T and some more intensity is lost at 14.5T.

The last inelastic neutron experiment with a cryomagnet was the IN20 June

2013 experiment where an 11T cryomagnet was used. IN3 was used to co-align the
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crystals Crystal 1a and Crystal 2 on the same mount from the previous experiments.

The small Crystal 1b which was in previous experiments was not used. The results

from the IN3 May 2013 experiment, where the sample was co-aligned, can be seen in

figure 4.22. The (020) A3 scan shows that the two crystals are perfectly co-aligned

along this direction. However, a GL scan at (001) reveals three different peaks. The

Bragg peaks at ∼-15o and ∼12o must belong to the same crystal as this is the 25.3o

separation of the (001) and (00-1)t Bragg peaks of the same crystal (see figure 4.18).

For the large peak at ∼5o, it is not clear if the (001) type peak is on the left or the

right. A two Gaussian fit is performed to this peak with the constraint that they

must be separated by 2.51o. Such a fit suggest that the peak at 3.3o is of larger

intensity and therefore this must be the (00-1)t Bragg peak. Therefore, the two

crystals are -22o and -14.5o out of plane. It is important to note that the (00-1)t

Bragg peaks are only 3.3o and 10.8o out of plane.

(a) (b)

Figure 4.22: Orientation information from IN3 May 2013 data.

(a) The (020) A3 scan shows one peak. (b) A GL scan at (001) reveals

three peaks each composed of two peaks.

At the IN20 June experiment, where the 11T cryomagnet was used, the (020)

and (001) A3 scans revealed two Bragg peaks very close together. This can be seen
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in figure 4.23(a,b). The two peaks in (001) could be an indication that the crystal,

which was 10.8o away in IN3 May 2013 experiment, could potentially be much closer

to zero.

(a) (b)

Figure 4.23: Orientation information from IN20 June 2013

data. A3 scans at (a) (020) and (b) (001) reveals two peaks unlike

the IN3 May 2013 experiments where one peak was observed.

From the presented information so far, it is not possible to fully know the ori-

entation of each crystal in each INS experiment where a cryomagnet was used.

However, in the experiments where no cryomagnet were used, the exact orientations

are known and using this information it is possible to extrapolate the orientations

for all of the experiments. The orientation of each crystal in each experiment can

be seen in table 4.7 on page 173. Here the angle between the (0kl) plane and the

scattering plane is shown. It is assumed that the relative orientation of each crystal

does not change between the first three experiments. This allows the intensities in

figure 4.19(c) to be compared to (001) A3 scan intensities for each IN14 experiment.

It is important to note that for IN14 April 2013 experiment, Crystal 1a detached

from the sample mount during the experiment and did not contribute to inelastic

measurements. Also for IN3 May 2013 and IN20 June 2013 experiments Crystal
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1b was not used. From table 4.7 it may appear that most of the crystals are quite

drastically misaligned; however, an angle of -25.3o would correspond to (00-1)t being

in the scattering plane, which is equivalent to having (001) in the scattering plane.

Therefore, in the first three experiments in table 4.7, the maximum deviation from

(001) or (00-1)t is 5.4o. For the last two experiments the maximum deviation from

(00-1)t is 10.8o. For the experiments using a cryostat, the stated value is likely ∼3o

within the actual orientation. This is based on a typical full-width at half-maximum

from a GL scan of (001) Bragg peaks, for example in figure 4.19(c).

Experiment Crystal 1a Crystal 1b Crystal 2

IN20 March 2013 (no cryomagnet) 1.4o -29.1o 3.4o

IN14 March 2013 (12T cryomagnet) 3.4o -27.1o 5.4o

IN14 April 2013 (15T cryomagnet) - -28.1o 4.4o

IN3 May 2013 (no cryomagnet) -14.5o - -22o

IN20 June 2013 (11T cryomagnet) -14.5o - -22o

Table 4.7: The orientations of each crystal in INS experiments

with a cryomagnet. The angle between (0kl) plane and the scattering

plane is presented for each crystal. For each experiment with a cryomag-

net estimates are most likely within ∼3o.

Aside from the experiments listed in table 4.7, three different INS experiments

were carried out which did not use a cryomagnet. These zero field experiments

benefited from the use of goniometers which allowed the sample to be tilted out of

the original scattering plane. This way the exact orientation for at least one of the

crystals could be obtained.

No modifications were made to the co-alignment between IN20 June 2013 and

IN12 November 2014. Therefore, they most likely have the same orientations. In

the IN12 November 2014 experiment, two peaks 0.8o apart were observed in an
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(020) and (001) A3 scans which can be seen in figure 4.24(a,b) on page 175. A GU

scan at (001) revealed large peak centred at 2.5o can be seen in figure 4.24(c). A

two Gaussian fit to this places the (001) type peak at 0.6o. This observation is in

agreement with the previous IN20 experiment. Even though the second crystal’s

(001) or (-101) type Bragg peak was not directly measured in this experiment, its

relative position is likely unchanged from the last experiment. Therefore, the best

estimate of angle between (001) and the scattering plane for the two crystals is -24.7o

and -17.1o respectively.
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(a) (b)

(c)

Figure 4.24: Orientation information from IN12 December 2014

data. (a,b) The (020) and (001) A3 scan shows two peaks 0.8o apart.

(c) A GU scan at (001) reveals only one large peak.

The ThALES December 2014 experiment was carried very shortly after the IN12

experiment. However, surprisingly, the (020) and (001) Bragg peaks show three

peaks in A3 scans which can be seen in figure 4.25(a,b) on page 176. This is contrary

to the IN12 experiment where only two peaks were observed. A GU scan about (001)

identifies the (00-1)t peak at -0.2, which can be seen in figure 4.25(c). Even though

the orientation of the second crystal was not determined directly, it can be assumed

that it has the relative rotation between the crystals have not changed since the
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IN20 June 2013 experiment. Therefore, the orientations of the two crystals must be

-25.1o and -17.6o respectively.

(a) (b)

(c)

Figure 4.25: Orientation information from ThALES December

2014 data. (a,b) The (020) and (001) A3 scan shows three peaks. (c)

A GU scan at (001) reveals only one large peak.

For the ThALES April 2015 experiment a better co-alignment was achieved.

This was done by gluing the a∗ faces of the two crystals together. In the (020) and

(001) A3 scans there were two Bragg peaks ∼0.4o apart, which can be seen in figure

4.26(a,b) on page 177. The (001) GU scan showed one large peak which is given in

4.26(c). From fitting two Gaussians to this data it is expected that the (001) type
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peak is at -1.2o.

(a) (b)

(c)

Figure 4.26: Orientation information from ThALES April 2015

data. (a,b) The (020) and (001) A3 scan shows two peaks. (c) A GU

scan at (001) reveals only one large peak.

The orientations of the crystals for the INS experiments performed at zero Tesla

are summarised in table 4.8 on page 178. Here the angle between the (0kl) plane and

scattering plane is presented in degrees for each crystal. In the IN12 November 2014

and ThALES December 2014 experiments Crystal 1a was not directly observed,

therefore its position was extrapolated by using the relative crystal orientations

from the IN20 June 2013 experiment. For ThALES April 2015 experiment only
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one peak was observed in GU, therefore it was assumed that their orientations were

identical. It is important to remember that -25.3o corresponds to (00-1)t being in

the scattering plane. The choice of labelling (00-1)t over (001) is arbitrary. In these

experiments, the samples were tilted so that the Crystal 2 (00-1)t Bragg peak was

in the scattering plane. This meant that for the IN12 and ThALES December 2014

experiment Crystal 1a could be as much as ∼8o out of plane. In the ThALES April

2015 experiment both crystals should be perfectly in the (0kl) plane.

Experiment Crystal 1a Crystal 2

IN12 November 2014 -17.1o -24.7o

ThALES December 2014 -17.6o -25.1o

ThALES April 2015 -26.5 -26.5

Table 4.8: The orientations of each crystal in INS experiments

without a cryomagnet. The angle between (0kl) plane and the scat-

tering plane is presented for each crystal. The orientations of Crystal 1a

for the first two experiments are extrapolated using information from the

IN20 June 2013 experiment.

4.3 Spin-wave Measurements Above Saturation

Field

As discussed in the introduction, there is some confusion in the literature regard-

ing the value of the exchange parameters for Linarite. Inelastic neutron scattering

measurements provide a more direct way of measuring the J parameters and there-

fore could resolve the discrepancy in literature. Additionally, this method can obtain

the full interaction scheme of linarite, including inter-chain interaction terms and

exchange anisotropies. In order to obtain the true J parameters of linarite, the
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experiments must be carried out above saturation (i.e. in the fully FM phase). This

is done with the use of a cryomagnet, which can supply large enough magnetic field

strengths to saturate linarite. This method of saturating the system and measuring

the interaction parameters was developed for a two dimensional frustrated system

Cs2CuCl4 [169].

4.3.1 Experimental Set-Up

The inelastic neutron experiments were performed on TAS instruments IN14

and IN20 at the ILL, Grenoble, France. Over three experiments and three different

vertical cryomagnets, INS measurements were performed at field strengths 10T,

11T, and 14.5T. The 10T, 11T, and 14.5T datasets were obtained in IN20 June

2013, IN14 March 2013, and IN14 April 2013 experiments respectively. For all of

the experiments two or three twinned linarite crystals were used. The orientations of

each crystal in each experiment is discussed in detail in section 4.2 and summarised in

table 4.7. For each experiment the desired scattering plane was the (0kl) plane which

corresponds to H//a. The maximum deviation from this orientation should be ∼5o

for the 11T and 14.5T dataset experiments whilst for the 10T dataset experiment

a deviation of ∼11o is possible. The typical experimental set up for IN14 can be

seen in figure 2.10. The experimental set up is similar to that of IN12 in figure 2.9;

however IN14 does not have a velocity selector. Similarly the experimental set up

of IN12 can be seen in figure 2.8.

The 11T dataset was measured on IN14 using the 12T vertical cryomagnet. The

maximum field strength used was 11T and a base temperature of ∼1.7K was main-

tained throughout the experiment. Pyrolytic graphite (PG) crystals (002) reflection

was used for both the monochromator and the analyser. Vertical focusing was used

on the monochromator and horizontal focusing was used for the analyser. The ex-

periment was performed in fixed kf mode with kf = 1.5Å−1. The monitor M1 was
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placed after the monochromator. Diaphragms with vertical and horizontal slits were

placed on either side of the cryomagnet in order to minimise the background. The

diaphragms were placed as close as possible to the cryomagnet. The diaphragms

were closed down as much as possible without reducing the signal from the sample.

This was done by checking two strong nuclear Bragg peaks 90o apart. Using the

size of the first set of diaphragms and the size of the sample, it is possible to cal-

culate the optimum size of the second diaphragm. This optimum size corresponds

to the position where any neutron passing through the sample can reach any part

of the analyser without being blocked by the second diaphragm. After the second

diaphragm, a beryllium filter (cooled down to liquid nitrogen temperatures) was

placed to remove second order neutrons (i.e. neutrons with twice the wavenumber).

The 14.5T dataset was measured on IN14 using the 15T vertical cryomagnet.

The maximum field strength used was 14.5T and a base temperature of ∼1.6K was

maintained throughout the experiment. The experimental set up was very similar

to that of the 11T experiment. The same monochromator, analyser with the same

focusing and fixed kf was used. The monitor M1 was placed after the monochro-

mator. Diaphragms placed before the cryomagnet allowed a beam size of 8mm

horizontally and 20mm vertically to pass through. Similarly for the diaphragms

after the cryomagnet, beam size was reduced to 32mm horizontally and 37mm ver-

tically. A beryllium filter was also used in this experiment; however, it was placed

before the sample, between the monitor M1 and the first diaphragm.

The 10T dataset was measured on IN20 using the 11T vertical cryomagnet. The

maximum field strength used was 10T and a base temperature of ∼1.6K was main-

tained throughout the experiment. Si (111) monochromator was used in conjunction

with a PG(002) analyser. Vertical and horizontal focusing were used for the mono-

chromator and analyser. The experiment was performed in fixed kf mode with

kf = 2.662Å−1. Diaphragms were placed on either side of the cryomagnet. The
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openings of each diaphragm were optimised in the same manner as discussed before

for the 11T experiment. A PG filter was placed between the second diaphragm and

the analyser in order to remove second order neutrons.

4.3.2 Data Reduction

In the 14.5T and 10T experiments the focus was to measure as many points as

possible of the spin-wave branch in order to get a good fit to the interaction scheme of

linarite. A detailed background subtraction is unnecessary for these datasets because

the spin-wave signal is strong enough and it can be clearly distinguished from any

other possible backgrounds. For example, in the energy scans, the excitation is

always far away enough from the tail end of the incoherent signal so that they

can both be clearly distinguished. In the 11T dataset however, the motivations

were different. It was the first inelastic neutron scattering experiment on linarite,

therefore a large amount of time was spent exploring a large region of reciprocal

space. Some of the observed signals were rather weak, making it more important

to understand the background better. This meant that the 11T dataset required

plenty of treatment before analysis whilst the 10T and 14.5T datasets required no

such treatment.

The first step in the treatment of 11T data was the removal of inconsistent data.

A problem with the electronics resulted in some counts becoming artificially large.

It was possible to identify seven inconsistent points using the methods outlined

by Ref. [174]. Assuming Poisson statistics, multiple measurements performed at the

same Q and energy can be combined. The total count I, is obtained by the sum of all

the counts I =
∑

n In, and similarly the total monitor M is given by M =
∑

nMn.

If this were obtained in a single measurement the error would be σ2
sum = I/M2.

However, the error for N separate measurements (assuming same monitor for each
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run) is given by:

σ2
set =

N∑
n=1

Mn

M

(
In
Mn

− I

M

)2

(4.10)

For R = σset/σsum ∼1 the dataset is considered consistent. By plotting R for

each point in Q, it is possible to identify the artificially large data point. An example

of the inconsistent data can be seen in figure 4.27 for the (0 0.4 0.5) energy scan. Here

the coloured markers with error bars are the counts from the seven different runs.

The red markers connected by lines are the calculated R values for that energy. The

point indicated by the arrow is one of the inconsistent points which were removed.

It can be seen that for this energy R ∼4. For the 11T dataset, any point which

caused R > 3 was removed. This meant the removal of seven points in total.

Figure 4.27: Inconsistent point example for (0 0.4 0.5) energy

scan. Here the coloured markers with error bars represent the seven

different runs performed. The red markers connected with lines indicate

the calculated R value for that Q and energy. The inconsistent point

which causes R ∼4 is indicated by the arrow.

The second step for the 11T dataset was to apply a correction to the measured
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counts, due to the relative position of monitor M1 and the beryllium filter. If the

beryllium filter is placed after the monitor M1 and fixed kf setting is used on IN14,

the measured detector counts must be multiplied by 1+0.77999 k−2.3608
i . This is

because the monitor M1 is subjected to the second order neutrons whereas the de-

tector is not. If M1 was not subjected to second order neutrons on the detector the

counts divided by the monitor counts would provide a quantity proportional to scat-

tering function S(Q,ω). However, if the M1 is subjected to second order neutrons,

this is no longer the case. To get around this problem, the amount of second or-

der neutrons is measured specifically for IN14, from this information the correction

1+0.77999 k−2.3608
i was established. This way the corrected detector counts divided

by the monitor M1 counts will provide a quantity proportional to scattering function

S(Q,ω).

The third correction was to account for the low A4 signal. As A4 angle decreases,

the sample gets closer to the direct beam, thus the background increases. To find

the A4 dependence in the data, first all the energy scans are plotted as a function of

A4 as seen in figure 4.28(a) on page 184. Here the large jumps in intensity are due to

the energy scan entering the incoherent signal at lower energies. In order to fit the

A4 dependence clearly, all of the incoherent signal must be removed. Additionally,

any spin-wave signal must be removed as well, so that the only remaining signal

is from the background. With this in mind many of the data points are manually

rejected leaving the A4 dependence which can be seen in figure 4.28(b). Here a

Gaussian function centre A4=0o is fitted and a height of 48 counts, with fwhm=28o

is obtained. From this fit it can be seen that the signal increase is most prominent

at high energies for the scans with low Q, (0,0,0.5) and (0,-0.1,0.5). A similar A4

background probably also exists for the 14.5T dataset since they were both meas-

ured on IN14. However, in the 14.5T dataset, there are only a few measurements

where A4 angle is low. In the few energy scans performed close to (0,0,0.5) there
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is no obvious indications of a low-A4 signal. For the 10T datasets there are a few

measurements where low-A4 could be a problem. However, in this case the back-

ground is subtracted by using a zero field measurement. Therefore, low-A4 signal

contribution is not considered for the 14.5T and 10T dataset.

(a) (b)

Figure 4.28: Fitting A4 dependence of the 11T dataset. (a)

All of the energy scans are plotted as a function of A4. (b) All of

the incoherent and spin-wave signal is removed to give the background’s

dependence on A4. A Gaussian centred around A4=0o is fitted and a fit

with height of 48 counts, with fwhm=28o is obtained.

4.3.3 Experimental Results

The 11T and 14.5T datasets were obtained on IN14, where the low energy part

of the dispersion was accessed. The 10T datasets was performed at IN20, where

much higher energies could be accessed.

The 14.5T dataset performed on IN14 is the most useful dataset as at this field

strength, the spin-wave is sufficiently lifted above the incoherent line. Energy scans

performed at different points along (0,k,0.5) show a clear excitation around 1meV

which can be seen in figure 4.29(a) on page 186. The numerous Q scans were
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performed to follow this excitation towards higher energies which can be seen in

figure 4.29(b). Here the colour represents the number of counts in a monitor of

M1=1080000 and the colour to counts conversion is indicated in the colour bar.

The dispersion was also measured along (00l), which can be seen in figure 4.29(c).

Here, having a minimum at (0,0,0.5) instead of (001) indicates that coupling along

this direction is of AFM nature. The measurement at (001) was performed at two

field strengths which can be seen in figure 4.29(d).

The dispersion was also measured along (0,k,1) with an energy scan and Q scan.

These can be seen in figures 4.30(a) and (b) respectively on page 187.

The 11T data required some treatment before being viewed. This treatment is

clearly identified in section 4.3.2. In the 11T data there appears to be two different

excitations. One of these excitations is similar to the spin-wave dispersion observed

in the 14.5T dataset. The second is a lower energy excitation, which is visible in the

vicinity of (0,-0.9,0.5) at 1meV. In figure 4.31(a) on page 188, the energy scans after

these various corrections can be seen. Here, the low energy excitation around k=-

0.9 at 1meV can be seen clearly; however, the spin-wave like dispersion is not easily

identified. There are only two energy scans where the dispersion can be seen; these

are the k=-0.3 and k=-0.4 scans at 1.5meV and 3meV respectively. The spin-wave

like dispersion can be identified easily with the performed Q scans which can be seen

in figure 4.31(b). The energy scans for different (00l) can be seen in figure 4.31(c). In

all of these energy scans there seems to be two peaks, unlike the 14.5T dataset. The

first peak most likely corresponds to the excitation which was also observed in the

14.5T data. Perhaps the second peak in these scans belong to the same excitation

which is observed at (0 -0.9 0.5) 1meV. In figure 4.31(d) an important feature of

the spin-wave like dispersion can be seen: two clear modes instead of one. Even

though a clear separation can only be made at this Q scan, other Q scans do have

features which appear like a second spin-wave branch. This second branch most
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(a) (b)

(c) (d)

Figure 4.29: 14.5T INS dataset. (a) There is a clear excitation at

∼1meV at k=0 to k=-0.2. (b) Numerous Q scans show that this excita-

tion branch continues to 4meV at k=-0.4. (c) Measurements along (00l)

highlight an AFM inter-chain interaction. (d) Energy scans performed

at (001) but at different field strengths.
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(a) (b)

Figure 4.30: 14.5T INS dataset, other directions. The dispersion

was also measured along (0,k,1) with (a) energy and (b) Q scans.

likely originates from the crystal twin. The dispersion for the twin would be close

to ∼(0.453 -k -0.5). The nearest Cu-Cu distance along the a axis direction is much

larger than along the b or c axis direction. Furthermore, along the a axis direction

the Cu atoms are separated by Sulphur and Lead atoms. Therefore, a very small

exchange coupling constant along the a axis direction is expected. This would result

in very similar spin-wave energies for (0.453,-k, -0.5) and (0,k,0.5) dispersions. Since

the volume fractions of twins should be identical, the two branches should also have

similar intensities. These two points combined make a very good argument that the

secondary dispersion originates from the twin crystal.

In figure 4.32(a) on page 190 the excitations around (0,-0.9,0.5), 1meV can be

seen in more detail. These excitations seem to have a maximum at ∼1meV and

highest in energy at k=-0.9. These excitations appear to be slightly broader com-

pared to the 14.5T (0,0,0.5) excitations (figure 4.29(a)). Additionally, these 11T

excitations in figure 4.32(a) appear asymmetric, with more intensity in the positive

energy direction. This measurement of the broad excitation near k=-0.9 could not

be reproduced in a later experiment. The first measurement was performed on the
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(a) (b)

(c) (d)

Figure 4.31: 11T INS dataset after necessary corrections. (a)

Energy scans show two different excitations. The first is similar to the

excitations observed for 14.5T dataset and are visible at k=-0.4, 3meV

and k=-0.2, 1.5meV. The second excitation is a broad excitation visible

around k=-0.9, 1meV. (b) The spin-wave like excitation can be seen very

clearly from the Q scans. (c) Scans along (00l) show two peaks, which

could originate from the two different excitations seen previously. (d) In

this scan two clear excitations instead of one can be seen.

12T vertical cryomagnet on March 2013. The second measurement was performed

on April 2013 on the 15T vertical cryomagnet (this is the experiment where the
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majority of the 14.5T dataset was obtained). Both measurements were performed

at the same temperature of 1.7K and field strength of 11T at IN14 with very similar

experimental conditions. These two measurements can be seen in figure 4.32(b).

No scaling is performed between the datasets; however, the experimental conditions

were very similar and therefore very similar signal to background ratio is expected.

Here it can be seen that in the IN14 April 2013 data there is no excitation at (0,-

0.9,0.5) around 1meV. There are two major differences between the two experiments.

In the March 2013 experiment there are three crystals, crystals 1a,1b, and 2, but in

the April 2013 there are only two crystals, crystals 1b and 2. The (0,-0.9,0.5), 1meV

signal could be unique to the Crystal 1a which was only measured in March 2013.

The second major difference is orientation. As mentioned in section 4.2, crystals

were aligned well along b∗ axis direction but not so well along c∗ axis direction.

In the IN14 April 2013 data, the (001) Bragg peak roughly halves in intensity at

high fields, which could correspond to both crystals moving by ∼2o or by only one

crystal moving more than 5o. If both crystals have rotated by ∼2o, this should not

cause a large change in the INS spectrum. If only one crystal moved more than 5o,

this would require the other crystal to not move. Therefore, there should still be

some remnant of the (0,-0.9,0.5), 1meV signal. Regardless, the (0,-0.9,0.5), 1meV

signal could not be reproduced experimentally with what should be very similar

conditions. Since its origin is unknown, it will not be considered any further in this

thesis.

A similar observation can be made for the (001) energy scan. The (001) energy

scan at 11T was also repeated in the later experiment (the experiment of the 14.5T

dataset). The initial (001) measurement (figure 4.31(c), green) shows an unclear

signal which is most likely composed of two excitations centred at 1meV and 1.4meV.

The second measurement at a later date (figure 4.29(d), blue) shows a clear single

excitation centred at 1.4meV. Therefore, the signal centred around 1meV in the
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(a) (b)

Figure 4.32: 11T, (0,-0.9,0.5), 1meV signal. (a) In the vicinity

of (0,-0.9,0.5), an asymmetric broad excitation can be seen. (b) This

excitation disappears in the April 2013 experiment.

first (001) 11T measurement (figure 4.31(c), green) is most likely related to the

(0,-0.9,0.5) 11T 1meV signal.

In order to measure the higher energy part of the dispersion, measurements were

made on IN20 using a 10T magnet. The resulting Q scans can be seen in figure 4.33

on page 191. Measurements were performed along (0,k,0.5) and (0,k,1.5) and are

shown in figures 4.33(a) and (b) respectively. Here the 10meV scan in figure 4.33(a)

was performed in the vicinity of k=-1.4 but for simplicity the k+2 value is stated

instead. The higher energy scans show a larger, sloped background which makes

it difficult to identify the position of the excitation. Therefore, for energies above

10meV, measurements were performed at 0T and 10T. This can be seen 4.33(c)

where 0T and 10T data are shown using squares and circles respectively. The 0T

measurements can be used as a background for the 10T data. Here the assumption

has been made that there is no magnetic signal at 0T in 13meV and higher. This

assumption can be justified by later experiments which will be shown in section

4.4. In this section it will be shown that at 0T, the magnetic excitations lose their
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intensity very rapidly and cannot be easily identified above background for energies

above 1.5meV.

(a) (b)

(c)

Figure 4.33: 10T INS measurements. Excitations were measured

along (a) (0,k,0.5) and (b) (0,k,1.5) directions. (c) At higher energies

measurements were performed at 0T and 10T shown in squares and circles

respectively.

4.3.4 Analysis

In this section the measured spin-wave excitations will be compared to linear

spin-wave theory models. Fits to J parameters will be obtained for such models.

191



The initial challenge is to identify the positions of spin-wave excitation using the

Q and energy scans. For each scan, a fit to a Gaussian function was performed.

The peak position obtained from this fit is later on used in the linear spin-wave fit.

An example of a Q scan and an energy scan fit can be seen in figure 4.34(a) and

(b) respectively on page 193. Here it can be seen that for the Q scan a constant

background has been assumed. For all Q scan fits, this background is kept as a

free parameter. For the energy scans the background is more complicated. For

all energy scans there is a large signal centred at E=0 which corresponds to the

incoherent signal. To model this, each energy scan is fitted using two Gaussian

functions and a constant background. The centre of one one of the Gaussians is

fixed with E=0. One of the Q scans shows two clear peaks instead of one. For

this scan two Gaussian functions are used to describe each peak, and the fit can be

observed in figure 4.31(d). A more complicated method was required for obtaining

the background for the 10T dataset’s, 13meV, 16meV and 19meV Q scans. For

these energies measurements were taken at 0T and 10T. The 0T measurements

were fitted using a constant and linear background. The parameters obtained from

0T were used to describe the 10T Q scan’s background. Similarly as the other Q

scans, a Gaussian function was used to find the peak centres. The fit performed

on the 13meV Q scan can be seen in detail in figure 4.34(c). Here the 0T and 10T

measurements are given in red and blue respectively.
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(a) (b)

(c)

Figure 4.34: Finding the position of spin-wave excitations. (a)

Q scans were fitted with a constant background and a Gaussian function.

(b) The energy scans required an additional Gaussian function centred

about E=0 to consider the incoherent signal. (c) The high energy Q

scans of the 10T dataset required a sloped background. This background

was fitted using the 0T data (red).

There are 32 different excitation positions identified via fits to such Q or energy

scans, as shown in figure 4.34. The full table of these fits can be seen in tables

4.9 and 4.10 on pages 194 and 195 respectively. Here the 11T (001) scan is given

with an asterisk, as this measurement was made with the experiment of the 14.5T
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dataset. Also the 9.5T measurement belongs to the 10T dataset experiments.

µBH (Tesla) E (meV) (0 k 0.5) ∆k

11 0.65 -0.2453 0.0016

11 0.8 -0.2662 0.0022

11 0.8 -0.2322 0.0021

11 1 -0.2797 0.0024

11 1.8 -0.3346 0.0019

11 2.5 -0.3695 0.0019

11 4.5 -0.4335 0.0016

14.5 1.4 -0.2606 0.0017

14.5 1.8 -0.2985 0.0016

14.5 2.5 -0.3480 0.0016

14.5 3 -0.3687 0.0016

14.5 3.5 -0.3869 0.0021

14.5 4 -0.4040 0.0021

9.5* 3.5 0.4096 0.0011

10 3.5 0.4067 0.0011

10 7 0.5007 0.0020

Table 4.9: Fits to Q and energy scans of 10T, 11T and 14.5T

datasets (part 1). Here the 9.5T measurement with the asterisk be-

longs to the 10T dataset.
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µBH (Tesla) Q E (meV) ∆E (meV)

11 (0 -0.3 0.5) 1.262 0.020

11 (0 -0.4 0.5) 3.275 0.014

14.5 (0 0 0.5) 1.055 0.016

14.5 (0 -0.1 0.5) 1.013 0.020

14.5 (0 -0.2 0.5) 1.039 0.034

14.5 (0 0 0.75) 1.556 0.036

14.5 (0 0 1) 1.952 0.019

11* (0 0 1) 1.386 0.035

14.5 (0 -0.2 1) 2.007 0.024

µBH (Tesla) E(meV) (0 k 1) ∆k

14.5 2.1 0.2228 0.0034

µBH (Tesla) E (meV) (0 k 1.5) ∆k

10 3.5 0.4076 0.0035

10 7 0.5023 0.0026

10 10 0.5626 0.0029

10 13 0.6272 0.0067

10 16 0.6790 0.0050

10 19 0.7351 0.0057

Table 4.10: Fits to Q and energy scans of 10T, 11T and 14.5T

datasets (part 2). Here the 11T measurement with the asterisk belongs

to the 14.5T dataset.

Now that the position of the spin wave is known at 32 different points, it is

possible to compare these positions to theoretical spin-wave models and obtain a

fit. In order to obtain the best fitting parameters for a given theoretical model,

chi-squared minimisation algorithms are used. The χ2 was defined in the following
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form:

χ2 = χ2
Q + χ2

E (4.11)

χ2
Q =

∑
n

(Qn −Qtheory(En))2

(∆Qn)2
, χ2

E =
∑
m

(Em − Etheory(Qm))2

(∆Em)2
(4.12)

Here χ2
Q and χ2

E are contributions from Q scans and energy scans respectively.

The measured spin-wave position is given by Qn with an error of ∆Qn for the n’th

Q scan performed at energy En . Similarly, the measured spin-wave position is given

by Em with an error of ∆Em for the m’th energy scan performed at position Qm .

The position of the theoretical model is given by Qtheory and Etheory . Assuming a

single magnon branch, Etheory(Qm) has a unique value for any value of Qm . However,

Qtheory(En) does not have a valid value for energies above or below the magnon excit-

ation. In these regions, the χ2 is set to a large constant. This way, the minimisation

algorithm will avoid entering these invalid regions.

Using linear spin-wave theory, it is possible to create models to apply to the data.

For simplicity, it will be assumed that the two Cu sites in linarite are equivalent.

Therefore, in the fully saturated phase, there is only one site per magnetic unit

cell. For the moment, it will also be assumed that all interactions are isotropic.

Anisotropic models will be considered later on in this section. The interaction

scheme used can be seen in figure 4.35 on page 197. Here J1 and J2 are nearest and

next nearest interactions along the b axis direction respectively. In the bc plane,

the spin chains are coupled by a skew interaction Jc0 and a diagonal interaction

Jc1. Along the a axis, another skew inter-chain interaction Ja is considered. From

the experimental data it should be possible to obtain a unique solution to these

parameters. Any additional interaction beyond this model would correspond to

large distances, and therefore the effects of such an interaction should be very small.
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Figure 4.35: Interaction scheme of Linarite.

The magnon dispersion for a ferromagnetic structure with H//a is given by

equation 4.13 below [58]:

~ω(q) = 2S[J (0)− J (q)] + gaµBH (4.13)

Here J (q) is the Fourier transform of the exchange integral and it has the form

[58]: ∑
q

J (q) =
∑
ρ

J(ρ)eiqρ (4.14)

Using the interaction scheme in figure 4.35, this becomes:

J (q) = J1cos(πk) + J2cos(2πk) + Jc0cos(2πl) + 2Jc1cos(2πl)cos(πk) + Jacos(2πh)

(4.15)

Therefore, the spin-wave dispersion becomes:

~ω(q) = −J1cos(πk)−J2cos(2πk)−Jc0cos(2πl)−2Jc1cos(2πl)cos(πk)−Jacos(2πh)

+ J1 + J2 + Jc0 + 2Jc1 + Ja + gaµBH (4.16)

It is important to note that the crystals used for these experiments were twinned.

Therefore, one would expect two different spin-wave dispersions to appear, ~ω and

~ωt . Here the dispersion of the twin is given by:
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~ωt(q) = 2S[J (0)− J (qt)] + ga′µBH (4.17)

Here ga′ and qt account for the slightly different orientation of the twinned crystal

with respect to the magnetic field and scattering plane. Since the geometry of the

twinning is known, qt can be obtained from q. The twinning corresponds to a 180o

rotation about the a∗ axis. The following relation can be derived if starting with a

right handed coordinate system where a∗//x̂ and b∗//ŷ:

qt = q


1 0 0

0 −1 0

−2a
c

cos(β) 0 −1

 (4.18)

Using the lattice parameters from the Effenberger-Araki structure −2a
c
cos(β) =

0.906 is obtained. Considering the twin in a spin-wave fit requires some care. There

is only one Q scan (0.8meV 11T Q scan) where both dispersions can be individually

identified (figure 4.31(d)). Upon careful inspection, it is possible to see that in

the 11T, 0.65meV Q scan only the lower branch can be identified. The second

higher branch must be almost parallel to q at this energy, therefore its intensity

spread out in this scan. Assuming Ja is ferromagnetic, ~ωt would reside above

~ω along q = (0, k, 0.5). This assumption must be valid since at zero field, the

ground state magnetic structure has a propagation vector q = (0, k, 0.5). It is

important to note that this same propagation vector of q = (0, k, 0.5) was measured

in untwinned crystals as well (see section 4.5). Therefore, this magnetic Bragg peak

at q = (0, k, 0.5) corresponds to the true crystal and not to the twin crystal, i.e. the

magnetic propagation vector cannot be q ∼ (−0.453, k, 0.5). This gives us one direct

data point for ~ωt and two for ~ω. The remaining 29 other points cannot be simply

fitted to ~ω or ~ωt . Therefore, the remaining points were fitted to the average of the

two excitations (~ω + ~ωt)/2. There are a number of justifications for this. During
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the sample characterisation process, Bragg peaks of both the twins were measured

using neutron diffraction. The observations from these measurements are consistent

with similar sized twin volumes (see section 4.2). If the twin volumes are roughly

the same, spin-wave branches should be of similar intensity for both ~ω and ~ωt . In

fact, in the Q scan where the two excitations can be identified (figure 4.31(d)), the

intensity of the branches are very similar, in agreement with the equal twin-volume

concept. Therefore, using the average magnon dispersion to obtain a fit should be

sufficiently accurate.

In section 4.2, the orientations of each crystal in the three main inelastic neutron

experiments were detailed. For the 11T and 14.5T datasets the crystals were most

likely within ∼5o; however for the 10T dataset, one of the crystals was as much as

∼10o out of plane. Additionally, the knowledge of the orientations is not from the

same experiment but relies on previous experiments. The only true information is

that for each experiment at least one crystal was sufficiently in plane to provide a

Bragg peak at (001). An ideal spin-wave model should incorporate the orientation

of each crystal. For example the crystal which was ∼10o out of plane might have a

sufficiently different g factor than the others. Such a model would have too many

parameters to fit and they would be based on incomplete orientational information.

For this reason, it will be assumed that all of the crystals are perfectly within the

(0kl) plane.

This twinned spin-wave model has seven free parameters (5 J parameters, ga and

ga′) which can be fitted to the 31 data points obtained from Q and energy scans.

The fitting parameters displayed a strong level of correlation. Some minimisation

routines do not consider correlation between parameters which can lead to incorrect

confidence intervals of the parameters. For the minimisation of χ2 the MINUIT [120]

software package was used through its MATLAB interface fminuit [121]. The best

fit to the isotropic-exchange and twinned linarite model has a χ2 of 101, the values
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of the parameters and their confidence intervals can be seen in table 4.11. The

consideration of the correlation also results in a very small confidence interval for

α = J2/J1. In a χ2 where the α parameter is refined instead of J2, α=-0.275(1) can

be obtained. Note that amongst the inter-chain interactions, Jc0 is dominant. The

other inter-chain interactions Jc1 and Ja are very close to zero. One can also notice

that both ga and ga′ have relatively large error bars as well. However, if the average

gavrg = (ga + ga′ )/2 is refined instead of ga one can see that it has a much smaller

confidence interval of gavrg = 2.36(3).

Parameter J1 J2 Jc0 Jc1 Ja ga ga′

Value 14.5(1) -3.99(4) -0.6(1) 0.06(3) 0.04(17) 2.25(24) 2.47(29)

Table 4.11: The isotropic-exchange spin-wave fit result for linarite

above saturation.

The comparison between the fit and the data can be seen in figure 4.36 on page

201 for different Q directions. The majority of the data was taken along (0,k,0.5)

direction, which can be seen in figure 4.36(a). Here the red, green and blue data

sets represent spin-wave measurements made at 10T, 11T and 14.5T respectively.

The 10T and 11T datasets have been lifted up in energy by gavrgµB(14.5-H) for the

purpose of clarity. The black dashed line is the average of ~ω and ~ωt , calculated

using the values from table 4.11. Almost all of the data is fitted to this average

spin-wave because the individual dispersions cannot be resolved. In figure 4.36(b)

the dispersion measured along (00l) and (0k1) can be seen. Here the blue and the

red lines correspond to dispersions of ~ω and ~ωt respectively. The suggested fit to

the model must be unique since it is composed of three different directions and the

twinning essentially provides another additional direction of ∼(0.453,k,0.5).
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(a)

(b)

Figure 4.36: The spin-wave fit to saturated data. (a) the fit

along the (0,k,0.5) direction is given by the black dotted line which is

the average of ~ω and its twin ~ωt . The 10T and 11T data are lifted in

energy by gaµB(14.5-H). (c) The fit to the dispersion along (00l) and

(0k1) was made using 14.5T data. Here ~ω and its twin ~ωt are given in

blue and red respectively.
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It is necessary to take a closer look at the lower energy part of the dispersion

along (0,k,0.5) to see the good agreement the twinned model brings. In figure 4.37

on page 203 and figure 4.38 on page 204, the 11T and 14.5T Q scan intensity colour

maps can be seen with the fitted dispersion and the data points used for the fit.

Here ~ω and its twin ~ωt are given in blue and red respectively and their average

is given in the black dashed line. In figure 4.37 at 0.65meV and 0.8meV are the

only three points which were fitted to either ~ω or ~ωt and not their average. Aside

from being a relatively good fit, this model manages to explain some of the intensity

features in the Q scans. In figure 4.37 at 0.65meV at k ∼0.185 the intensity feature

in the colour map agrees perfectly with the position of the ~ωt dispersion given in

red. In the 14.5T dataset the 1.2meV Q scan has a two peak like feature; however, it

could not be fitted with one or two Gaussians therefore it was omitted from the spin-

wave fit. However, its intensity features are in perfect agreement with the expected

this dispersions. This can be seen in figure 4.38, where at 1.2meV, the increased

intensity at k ∼ 0.21 and k ∼ 0.26 agree perfectly with the positions of ~ωt and

~ω respectively. The 1.4meV scan also shows some double peak features which are

consistent with the twinning model.

The isotropic exchange parameter spin-wave model is successful in explaining

many components of the data. It is a relatively simple model with few paramet-

ers. It has the added advantage that the calculations are much simpler because no

anisotropy is considered. However, the model has three main shortfalls. The first

shortfall is the lack of a good fit to the high energy points of 10T. In figure 4.36(a),

it can be seen that the three highest energy points are lower than the results the

spin-wave model expects. The addition of anisotropy to the spin-wave model could

provide a better fit the 10T data. The second shortfall is to do with the value of the g

factors. This isotropic model underestimates the value of the average g factor, gavrg.

This is most apparent from the energy scans performed at (001). At (001) there
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Figure 4.37: The spin-wave fit to 11T data, visible twinning at

low energies. The 11T Q scans are presented as an intensity colour

map. The green points are the fits to these Q scans and the blue, red

and black lines are the obtained best fits to ~ω, ~ωt and their average

respectively. The 0.65meV and 0.8meV data points are the only ones to

be fitted to either ~ω, ~ωt . The twinned spin-wave model manages to

explain some of the intensity features, such as the k ∼ 0.185 intensity

feature at 0.65meV.

are two energy scans performed at different field strengths, one at 11T and another

at 14.5T. It is important to note that both of these measurements were performed

during the same experiment. The energy shift of the average dispersion from 11T

to 14.5T is given by gavrgµB(14.5− 11). If the gavrg was calculated solely based on

these two measurements one would expect gavrg=2.79(2). This is very different from

the spin-wave fit of gavrg=2.36(3). It is important to note that at room temperature

ga = 2.34 was found by ESR measurements [26]. This ESR value supports the spin-
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Figure 4.38: The spin-wave fit to 14.5T data, visible twinning

at low energies. The 14.5T Q scans are presented as an intensity

colour map. The red points are the fits to these Q scans and the blue,

red and black lines are the obtained best fits to ~ω, ~ωt and their average

respectively. The intensity features at 1.2meV, k ∼ 0.21 and k ∼ 0.26

can be explained by this spin-wave model.

wave fitted result rather than the gavrg=2.79(2) result. The third shortfall of the

isotropic model comes from the estimation of the saturation field. A lower estimate

for the saturation field can be obtained by considering the field strength for which

the minimum of the magnon branch will touch zero energy. The minimum of the

dispersion occurs at (0,k,0.5), where cos(πk)= (2Jc1− J1)/(4J2). Depending on the

choice of the g factor, three different saturation fields can be obtained at this posi-

tion. With ga=2.25(14), a rather high saturation field of µ0H
sat =7.95T is found. By

using the average g factor from the spin-wave fit, gavrg=2.36(3), a lower saturation

field of µ0H
sat=7.36T is obtained. If one uses the average g factor as obtained from
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(001) energy scans, gavrg=2.79(2), a much lower saturation field of µ0H
sat=6.18T is

obtained. Magnetisation measurements at T=1.8K have found a saturation field of

µ0H
sat
a∗ ∼7.6T [26]. Note that this estimate is for H//a∗ rather than H//a used

in this thesis work. However considering the difference in orientation is only 12.65o,

the two directions should have similar saturation fields.

So far the spin-wave model considered has been isotropic. Earlier in the introduc-

tion it was discussed that linarite shows strong indications of anisotropy, and that

this anisotropy cannot simply be attributed to the anisotropy of the g factor [26].

One way to consider the anisotropy is by introducing it in the exchange couplings

matrices. The biggest contribution for the exchange anisotropy will come from the

J1 or J2 matrices since they are the two largest interactions in the system. The

anisotropy should also be of such form that it produces a helical magnetic structure

at zero field. One of the simplest anisotropies which can be applied is an easy-axis

anisotropy. Such an anisotropy can be introduced to J 1 and J 2 in the following

way:

J1 = J1


1 0 0

0 1 0

0 0 1−∆1

 , J2 = J2


1 0 0

0 1 0

0 0 1−∆2

 (4.19)

Here the isotropic system corresponds ∆1 = ∆2 = 0. For ∆2=0, a positive ∆1

will produce an easy-plane anisotropy, whilst negative ∆1 will produce an easy-axis

anisotropy. The calculations of the spin-wave which included these anisotropies were

made using the SpinW programme [122]. To simplify the calculations, the unit cell

was reduced to one Cu site along b axis and β was changed to β = 90o to create

an orthorhombic system. Both ∆1 and ∆2 are along the z axis. In linarite, this

direction will correspond to the normal to the spin plane. From neutron diffraction

results it is known that the spin plane is -27o from the a axis. It will be shown

in section 4.6 that this result is in agreement with magnetisation measurements
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performed for this thesis. In the INS experiments the field is applied along the a

axis, therefore the angle between the normal of the spin plane and the field direction

is 63o. This angle is different for the twin crystal since the field is along the a axis

and not along at. Therefore, for the twin, the angle between the normal of the spin

plane and the field direction is -37.7o. To consider this in the anisotropic spin-wave

model, the field is applied 63o from the z axis and for the twin the field is applied

-37.7o from the z axis. For both cases the magnetic structure is chosen such that

the spins are parallel to the respective field direction.

Before the anisotropic models are used, the SpinW model is tested for the iso-

tropic case of ∆1 = ∆2 = 0. The calculated SpinW dispersion is found to be identical

to the analytical method described in this section. Two different anisotropic models

were used for linarite. In the anisotropic J 1 model only ∆1 was used and ∆2 was

set to zero. In the anisotropic J 1 − J 2 model both ∆1 and ∆2 were refined. The

minimisation of χ2 was also performed using fminuit for these two models. For the

anisotropic models, an additional constraint was used for fitting. It was assumed

that at (001) the difference between ~ω and ~ωt cannot be larger than 0.5meV.

This is because the fits to the energy scans have a full width at half maximum

of ∼ 0.4meV. Therefore, to have any larger separation would not be in agreement

with the data. The resulting fits to these models, as well as that of the isotropic

model (which was solved analytically), can be seen in table 4.12 on page 212. One

problematic feature of the anisotropic models is their large ga values which are not

realistic. Using SpinW, an attempt was made to calculate the saturation field for the

anisotropic models. The smallest possible field where the spin-wave branches were

still positive was found. For the anisotropic J 1 model and the anisotropic J 1− J 2

model, the saturation fields were found to be µ0H
sat ∼ 9.3T and 8.8T.

The comparison between data and the anisotropic model dispersions can be seen

in figures 4.39 and 4.40 on pages 208 and 209 respectively. It can be seen that
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neither anisotropic model is capable of explaining the two main problems discussed

earlier in this section. The fit for the 10T, high energy points along (0,k,0.5) has not

improved. The (001) 14.5T and 11T points are still a distance apart. Aside from

this, the anisotropic models bring additional problems. At 14.5T, both anisotropic

models predict very little splitting between the two branches along (0,k,0.5). On the

contrary, the data is consistent with considerable spitting between the two branches

at 14.5T.
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(a) (b)

(c) (d)

Figure 4.39: The anisotropic J1 model fits. (a) The average spin-

wave dispersion along (0,k,0.5) can be seen in black dashed line cal-

culated for 14.5T, with all data points energies lifted up to 14.5T by

gavrgµB(14.5 − H). (b) For the (00l) and (0k1) directions the ~ω and

~ωt dispersions are shown in blue and red respectively. The blue data

point represents the 11T (001) measurement which has been lifted by

gavrgµB(14.5 − 11). (c) The 11T dataset can be be compared to the

dispersion evaluated at 11T. (d) Similarly, the 14.5T dataset can be

compared to the dispersion evaluated at 14.5T.
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(a) (b)

(c) (d)

Figure 4.40: The anisotropic J 1−J 2 model fits. (a) The average

spin-wave dispersion along (0,k,0.5) can be seen in the black dashed line

calculated for 14.5T, with all data point’s energies lifted up to 14.5T

by gavrgµB(14.5 − H). (b) For the (00l) and (0k1) directions the ~ω

and ~ωt dispersions are shown in blue and red respectively. The blue

data point represents 11T (001) measurement which has been lifted by

gavrgµB(14.5 − 11). (c) The 11T dataset can be be compared to the

dispersion evaluated at 11T. (d) Similarly, the 14.5T dataset can be

compared to the dispersion evaluated at 14.5T.

A second isotropic exchange model was created to try and address the main two
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discrepancies observed so far. The first is the unexpected large energy shift from

11T to 14.5T observed at (001). In LWST, an isotropic exchange model will linearly

increase in energy with increasing field strength. For this second isotropic model,

this will not be the case. The gaµBH term will be removed from the spin-wave

equation and will be replaced with ∆E (H ). There are measurements at four different

field strengths in total: 9.5T, 10T, 11T, and 14.5T. For each one of these datasets

∆E (H ) will be set as a free parameter. The second discrepancy observed so far is

the inadequate description of high energy 10T data along (0,k,0.5). To address this

issue this second isotropic exchange model will also have a third-nearest neighbour

interaction along the b axis direction, J3. The result of such a fit is tabulated

in table 4.13 on page 212. A χ2 fit of 36 is obtained from these ten parameters.

When the strong correlation between J1 and J2 is considered the resulting ratio

α = J2/J1 has a smaller confidence interval with α=-0.259(4). By looking at the

four different ∆E (H ) values an interesting observation can be made. It would

be expected that the spin-wave energy would always increase with increasing field

strength; however, at 10T, the energy gain is larger than it is for the 11T dataset.

Another interesting observation can be made by converting these four energies into

an average g factor, gavg, for each field strength. For 9.5T, 10T, 11T, and 14.5T field

strengths, gavg= 2.45(7), 2.49(6), 2.22(3), 2.31(2) values are obtained respectively.

Each of the individual g factors are sensible on their own; however, it is not clear

how they could change for different field strengths. The saturation fields based on

these g factors are µ0H
sat =7.5T, 7.3T, 8.2T, and 7.9T respectively.

The result of the second isotropic fit can be seen in further detail in figure 4.41

on page 211. Here it can be seen that this model tackles the previous two problems

observed in other spin-wave fits. The high energy 10T data has a much better fit

and the (001) data points at 11T and 14.5T are very close.
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(a) (b)

(c) (d)

Figure 4.41: The second isotropic exchange model. In this model,

a non-linear field dependence, and a third nearest-neighbour interaction

along the b axis direction, J3, is introduced. (a) The average spin-wave

dispersion along (0,k,0.5) can be seen in the black dashed line calcu-

lated for 14.5T, with all data points energies lifted up to 14.5T. (b) For

the (00l) and (0k1) directions the ~ω and ~ωt dispersions are shown in

blue and red respectively. The blue data point represents the 11T (001)

measurement which has been lifted 14.5T. (c) The 11T dataset can be

compared to the dispersion evaluated at 11T. (d) Similarly, the 14.5T

dataset can be compared to the dispersion evaluated at 14.5T.
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Model χ2 J1 J2 Jc0 Jc1 Ja ga ga′ ∆1 ∆2

1 111 14.6(1) -3.99(4) -0.6(1) 0.06(3) 0.04(17) 2.2(2) 2.5(3) - -

2 88.6 14.6(1) -3.97(4) -0.7(1) 0.07(0) 0.3(2) 3.1(3) 1.9(3) 0.04(1) -

3 83.3 14.6(1) -4.3(2) -0.6(1) 0.05(3) 0.2(2) 2.7(4) 2.0(3) 0.18(4) 0.6(2)

Table 4.12: The isotropic-exchange and anisotropic-exchange spin-wave fit results for linar-

ite above saturation. Models 1, 2 and 3 correspond to the isotropic model, the anisotropic J 1 model

and the anisotropic J 1− J 2 model. The J parameters are presented in units of meV.

χ2 J1 J2 J3 Jc0 Jc1 Ja ∆E(9.5T) ∆E(10T) ∆E(11T) ∆E(14.5T)

36 13.6(2) -3.5(1) -0.65(5) 0.08(3) 0.114(8) -0.11(3) 1.35(4) 1.44(4) 1.41(2) 1.94(2)

Table 4.13: An isotropic-exchange model with J3 and a non-trivial magnetic field dependence

introduced. The J parameters and the energy shifts ∆E(H) are given in units of meV.
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4.4 Spin-wave Measurements at Zero Field

At zero field it is known that linarite has a helical magnetic structure [150];

however, the nature of its excitations is not known. In LiCuVO4, which also has a

helical magnetic structure, inelastic neutron scattering experiments reveal a spinon

continuum [127]. A similar excitation spectrum could be expected for linarite. Re-

gardless, the measurement of the excitation spectrum at zero field is likely to shed

information to the nature of zero field ground state.

4.4.1 Experimental Set-up

Inelastic neutron scattering experiments at zero field were carried out on linarite.

The experiments were carried out at the cold triple axis instruments IN12 and

ThALES, ILL, Grenoble. For all experiments very similar set up was used, which

can be seen in detail in figure 2.9. An orange cryostat was used to achieve a base

temperature of ∼1.6K. A PG(002) monochromator and analyser was used with fixed

kf mode with kf=1.5Å−1. A velocity selector and a beryllium filter was used to filter

some of the neutrons with wavenumber 2kf and 3kf . Vertical and horizontal slits

were used before and after the sample to reduce the beam size. The slits before

the sample were closed as much as possible without cutting into the intensities

of the (020) or (001) Bragg peaks. The slits after the sample were set using the

information about the sample size, analyser height, analyser effective width, and

distances between the sample, slits, and the analyser.

For the IN12 November 2014 experiment the PG(002) analyser with vertical

focusing and monochromator with vertical and horizontal focusing was used. A

velocity selector was used to filter out the higher order neutrons. The size of the

beam after the sample was reduced to 15.5mm and 31mm vertically and horizontally

with the help of slits.
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For the ThALES December 2014 experiment, the PG(002) monochromator with

horizontal focusing and analyser with vertical and horizontal focusing was used. The

top slit before the sample could not be moved during the experiment, therefore it

is possible that it was cutting into the intensity of the (020) or (001) Bragg peak.

Horizontal and vertical slits reduced the beam size after the sample to 29mm high

and 26mm wide. For the ThALES April 2015 experiment, the set up was the same

except for a slightly different sized opening for the beam after the sample.

4.4.2 Data Reduction

For the zero field INS data, no major alteration to the data was necessary. The

raw data without any correction is presented within the experimental results in

section 4.4.3. The data is normalised to monitor M1 for the IN12 November 2014

and ThALES April 2015 experiment; however, for the ThALES December 2014

experiment, no monitor was used. This meant that the counts had to be normalised

to time instead. This is not ideal, as any large fluctuation in the reactor power will

have an effect in the INS measurements.

In the analysis section, the incoherent elastic background is modelled by using

the (0,-1,0.5) energy scan. These can be seen in figure 4.42 on page 215 for IN12

and ThALES April 2015 experiments. Here a Gaussian centred at zero energy and

a constant is used to model the background. For the Q scans only a constant

background is used. For the spin-wave fits this background is left as a free variable

for the Q scans.
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(a) (b)

Figure 4.42: Incoherent elastic background. (a) The background

is obtained from fitting the (0,1,0.5) energy scan for IN12. (b) For

ThALES April 2014, the fit is performed on the (0,-1,0.5) energy scan.

4.4.3 Experimental Results

Inelastic neutron scattering measurements were performed at zero field for lin-

arite. The resulting spectrum has sharp excitations with at least three distinct

branches coming out of the incommensurate Bragg peak with possibly one of the

branches gapped. The data was collected from ThALES and IN12 at ILL, Grenoble,

France. In figure 4.43 on page 217(a) the IN12 data along (0,k,0.5) is presented in an

intensity colour map. Here a branch can be seen originating from the Bragg peaks

at k ' ±0.19 and reaching ∼0.8meV at k=0. Two other branches can be seen emer-

ging from k=-0.19 and increasing in energy towards negative k. In figure 4.43(b) a

similar colour map shows the data obtained from ThALES April 2015 experiment,

where the focus was on the low lying excitations between k=0 and k=0.19. Here

two branches can be identified in the scans k=0.025 to k=0.075. The lower branch

might not have any energy gap at the Bragg peak position; however, the higher

energy branch seems to have a gap of ∼0.4meV. This can be seen more clearly in
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figure 4.43(c) where individual energy scans are compared. Here at k=0 there is a

broad hump which most likely contains two excitations; at k=0.075 three branches

can be identified: 0.4, 0.6, and 0.9meV (the latter is not focused due to tilting of

the resolution ellipsoid); finally, at k=0.19 there is still at least one, possibly two

branches between 0.2meV and 0.6meV. The k=1 scan can be used as a guide for

the incoherent elastic signal. It is important to note that some of these low energy

signals close to k=0.19 might be a spurious signal which originates from the tail of

the resolution ellipsoid being close to a Bragg peak. This kind of spurious signal

has a linear dispersion originating from the Bragg peak and a rapid intensity gain

as one gets closer to the Bragg peak.

In order to identify the branches above 1meV, Q scans were performed on the

ThALES April 2015 experiment and the ThALES December 2014 experiment, which

can be seen in figure 4.44 on page 218. All these Q scans show the same thing: three

distinct excitations, one between k=-0.19 and k=0 and two others between k=-0.19

and k=-0.5. The intensities of the excitations drop quite quickly and becomes dif-

ficult to detect above 1.15meV. The 0.2, 0.7, 1, and 1.3meV Q scans were obtained

from ThALES December 2014 experiment where no monitor was used; therefore

their counts here are normalised to 300 seconds. The remaining Q scans were meas-

ured during the ThALES April 2015 experiment and are normalised to a monitor

of M1=260000.
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(a)

(b) (c)

Figure 4.43: Zero field INS energy scans. (a) Energy scans per-

formed at IN12 show three clear branches leaving the magnetic Bragg

peak. (b) Measurements performed on ThALES April 2015 experiment

show that there are in fact two branches between k=0 and k=0.19. (c)

From individual scans of the ThALES April 2015 data it is clear that

at least one of these branches remains at ∼0.4meV at the Bragg peak

position.
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(a) (b)

Figure 4.44: Zero field INS Q scans. (a) From the Q scans three

clear branches can be seen: one between k=-0.19 and k=0 and two others

between k=-0.19 and k=-0.5. (b) At higher energies the intensity drops

rapidly and the branches become hard to resolve. The 0.2, 0.7, 1, and

1.3meV Q scans are normalised to 300 seconds and the other Q scans are

normalised to monitor of M1=260000.

4.4.4 Analysis

Estimating the branches of the zero field spin waves was not as straight forward

as for the saturated phase. At zero field, there is the possibility of other types of

magnetic excitations occurring, such as a spinon continuum. For this reason the

first step was to find all possible excitations in all energy and Q scans. Some of the

fitted peaks have a very small intensity and therefore might not be a real signal. The

results for such a fit for ThALES and IN12 data can be seen in figure 4.45 on page

219 in red and black points respectively. Here the colour map is given by IN2 energy

cuts after removal of the incoherent elastic background and some interpolation. The

incoherent elastic background was modelled on the (0,1,0.5) energy scan which can

be seen in figure 4.42. For the interpolation a two dimensional interpolation function
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from MATLAB was used. In the background removed colour map, to the left of both

incommensurate Bragg peaks, a large spurious signal can be seen. This spurious

signal is created by the tail of the resolution ellipsoid coming close to the Bragg

peak. The black and red points in figure 4.45 correspond to the fits to the IN12

energy scans and ThALES Q scans respectively.

Figure 4.45: Zero field IN12 colour map with the spin-wave fits.

Here the black points are fits to IN12 energy scans and red points are

fits to ThALES Q scans.

Note that in figure 4.45, from the ThALES Q scan fits (red points), three clear

branches can be seen. However, there are many IN12 energy scan fits (black points)

that do not lie on these three branches, such as the 1meV, k=-0.25 signal. This k=-

0.25, 1meV signal could not be reproduced on a ThALES April 2015 experiment,

where a better crystal co-alignment was implemented. It is not clear if in the

ThALES April 2015 experiment the signal to background ratio was unfavourable or

if the k=-0.25, 1meV signal is due to the imperfect alignment in IN12 experiment.
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The comparison between ThALES April 2015 and IN12 scans can be seen in figure

4.46 on page 221. Here the black squares are the k = ±1 energy scans and are

a guide to the incoherent background. For the ThALES April 2015 data in figure

4.46(b), the data has been normalised to a much larger monitor so that the (0,0,0.5)

inelastic intensity at ∼0.6meV are similar for both experiments. Here it can be seen

that for the IN12 experiment in figure 4.46(a) at 1meV, there is higher intensity

at k=-0.25 compared to k=-1. However, for ThALES April 2015 data in figure

4.46(b), the intensities are the same at k=-0.25 and k=1. Note that, the k=1 scan

is not a great estimate for the k=0 incoherent background therefore it might not be

an accurate estimate for the k=-0.25 incoherent background either. Two different

scenarios can be considered: either the k=-0.25 signal is real but it could not be

measured on ThALES April 2015 experiment due to its small intensity or the k=-

0.25 signal originates from the imperfect orientation used on IN12. Even though

there is insufficient evidence to show that the k=-0.25, 1meV signal is spurious, it

will still be removed. Similarly, other features which do not fit in with the three

clear branches, as identified by the Q scans, will be removed and not considered.

For spin-wave fits, only the Q scan fits will be used.

In order to understand the low energy part of the dispersion, a set of energy

scans were performed in the ThALES April 2015 experiment, which can be seen in

figure 4.47 on page 222 in the form of a colour map. The incoherent elastic signal

has been modelled through the (0,-1,0.5) energy scan, which can be seen in figure

4.42. This background was removed from the ThALES April 2015 energy scans and

a two dimensional interpolation was performed. Note that there is a discontinuity

in the colour map at k=0.1. This is not a real effect. It originates from interpolation

of data from k=0.075 to 0.125. Since no measurement was performed at k=0.1 on

ThALES, the transition appears discontinuous at this point. Aside from this, there

is an indication that a lower branch is heading toward the magnetic Bragg peak,
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(a) (b)

Figure 4.46: Comparing (0,-0.25,0.5) energy scans for IN12 and

ThALES April 2015 experiments. (a) In the IN12 (0,-0.25,0.5) en-

ergy scan there is a signal at ∼1meV. (b) In the ThALES April 2015

(0,-0.25,0.5) energy scan it is not clear if there is a signal at ∼1meV. Here

the monitors have been scaled so that for both experiments the (0,0,0.5)

∼0.7meV signal is of a similar size.

while and upper branch is staying at 0.45meV at k=0.19. In figure 4.47 the fits to

the spin waves are given in circles and squares for the IN12 data and the ThALES

April 2015 data respectively. The fits above 0.8meV are defocused due to the tilt of

the resolution ellipsoid and therefore can be ignored.
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Figure 4.47: Zero field ThALES April 2015 colour map with

fits to spin waves. Here the focus is on the lower energy part of the

spectrum. There seems to be at least two branches with one approaching

zero energy at the incommensurate Bragg peak position and the other

one remaining at 0.45meV. The circles and the squares are fits obtained

from IN12 and ThALES April 2015 experiments respectively.

The fits to excitations in energy and Q scans can be seen in more detail in figure

4.48 on page 223. Here in figure 4.48(a,b) IN12 energy scans at (0,-0.4,0.5) and

(0,-0.097,0.5) are presented. The black dashed line is the fixed background obtained

from the (0,1,0.5) energy scan. In figure 4.48(c,d) the ThALES December 2014 and

April 2015 Q scans can be seen respectively. Here the background was described

by a constant and was used as a free parameter. It can be seen that at 1meV the

three branches can be clearly identified. However, at 1.5meV, the intensity drops

and the excitations appear broader. The complete table of fits can be seen in tables

tables 4.14 to 4.16. on pages 224 to 226.
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(a) (b)

(c) (d)

Figure 4.48: Examples to spin-wave fits for zero field INS data.

(a,b) Three branches can be seen for both IN12 energy scans presented.

(c) Thales December 2014 Q scan shows three clear branches at 1meV.

(d) At 1.5meV, the ThALES April 2015 data also shows three branches;

however, they are much lower in intensity.
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Experiment (0 k 0.5) En (meV) ∆En (meV)

IN12 -0.5 0.8896 0.0299

IN12 -0.5 1.2039 0.0650

IN12 -0.5 1.5680 0.0769

IN12 -0.45 0.9114 0.0172

IN12 -0.45 1.3505 0.0439

IN12 -0.4 0.7796 0.0059

IN12 -0.4 1.2641 0.0352

IN12 -0.4 0.9277 0.0094

IN12 -0.35 0.6290 0.0061

IN12 -0.35 1.1550 0.0089

IN12 -0.35 1.0112 0.0089

IN12 -0.3 0.7643 0.0028

IN12 -0.3 1.0706 0.0142

IN12 -0.3 0.4680 0.0026

IN12 -0.25 0.9945 0.0183

IN12 -0.25 1.2774 0.0262

IN12 -0.2 0.9927 0.0474

IN12 -0.1 0.9960 0.0087

IN12 -0.05 0.6619 0.0094

IN12 -0.05 0.9011 0.0064

Table 4.14: Fits to all of the energy scans as obtained from the

IN12 experiment and the ThALES April 2014 experiment (part

1). Continued in table 4.15.
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Experiment (0 k 0.5) En (meV) ∆En (meV)

IN12 0.0 0.7447 0.0025

IN12 0.025 0.7306 0.0065

IN12 0.05 0.5741 0.0025

IN12 0.05 0.7947 0.0108

IN12 0.1 0.8210 0.0382

IN12 0.1 0.6409 0.0032

IN12 0.1 0.4326 0.0017

IN12 0.15 0.5545 0.0110

IN12 0.15 1.0123 0.0144

ThALES 04/15 0 0.6214 0.0137

ThALES 04/15 0 0.7221 0.0102

ThALES 04/15 0.025 0.5859 0.0091

ThALES 04/15 0.025 0.7086 0.0125

ThALES 04/15 0.05 0.525 0.0007

ThALES 04/15 0.05 0.6407 0.0092

ThALES 04/15 0.05 0.8736 0.0571

ThALES 04/15 0.075 0.4568 0.0022

ThALES 04/15 0.075 0.6446 0.0041

ThALES 04/15 0.075 0.8877 0.0125

ThALES 04/15 0.125 0.2964 0.0022

ThALES 04/15 0.125 0.4299 0.0126

ThALES 04/15 0.15 0.4773 0.0105

ThALES 04/15 0.19 0.4599 0.0086

Table 4.15: Fits to all of the energy scans as obtained from the

IN12 experiment and the ThALES April 2014 experiment (part

2). Continued from table 4.14.
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Experiment (0 k 0.5) En (meV) ∆k

ThALES 12/14 0.1643 0.2 0.0005

ThALES 12/14 0.2074 0.2 0.0013

ThALES 12/14 -0.0033 0.7 0.0024

ThALES 12/14 -0.2875 0.7 0.0023

ThALES 12/14 -0.3735 0.7 0.0054

ThALES 12/14 -0.0920 1.0 0.0022

ThALES 12/14 -0.3301 1.0 0.0021

ThALES 12/14 -0.4492 1.0 0.0079

ThALES 12/14 -0.3743 1.3 0.0076

ThALES 12/14 -0.1552 1.3 0.0116

ThALES 04/15 -0.3457 1.15 0.0022

ThALES 04/15 -0.4735 1.15 0.0084

ThALES 04/15 -0.1294 1.15 0.0072

ThALES 04/15 -0.0378 0.85 0.0028

ThALES 04/15 -0.3046 0.85 0.0017

ThALES 04/15 -0.4049 0.85 0.0060

ThALES 04/15 -0.3567 1.5 0.0177

ThALES 04/15 -0.5273 1.5 0.0372

ThALES 04/15 -0.1932 1.5 0.0081

Table 4.16: Fits to all Q scans as obtained from the ThALES

December 2014 and ThALES April 2015 experiments.

A fit was obtained from the zero field data using the SpinW [122] programme.

In order to obtain a fit, a number of simplifications were introduced. Firstly, it was

assumed that the system is fully isotropic. SpinW uses a rotating coordinate system

to work with incommensurate magnetic structures and the introduction of an aniso-
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tropy breaks this rotational symmetry. Therefore, an isotropic system is mandatory.

This also means that the considered magnetic structure is a perfectly circular helix

and not an elliptical one as neutron diffraction studies suggest [150]. Secondly, it

was assumed that the ground-state magnetic structure and its excitations behave

classically. It is known that for quasi-1D systems, quantum fluctuations can change

kic drastically from its classical value. Despite this, the magnetic structure was cal-

culated using classical Monte Carlo methods within SpinW. The output kic from

this algorithm was compared to previously measured kic and included in the χ2

calculation. Here the χ2 definition is the same as the one used previously for spin-

waves above saturation field. Twinning is apparent in the (0,0,0.5) ThALES energy

scans where two peaks are visible. The energy difference of 0.1meV between the two

branches is used to fix Ja=0.5(1). Because of this twinning the average spin-wave

position is calculated for comparison with the data. The average used is simply

(~ω + ~ωt)/2, and does not consider the relative intensities of the two branches.

The calculated average spin-wave was fitted to the ThALES Q scans only, where

each branch can be clearly identified. Using the 18 data points a fit with χ2 = 175

was obtained by varying the four free parameters. The fitted parameters can be

seen in table 4.17. Similar to the saturated case, the correlation between the para-

meters were considered for the estimation of the confidence intervals. Also due to

the correlation, the error of α is very small with α = −0.3035(6).

Parameter J1 J2 Jc0 Jc1 Ja

Value 6.38(4) -1.94(1) -0.398(8) 0.0000(1) 0.05(1)

Table 4.17: The spin-wave fit result for Linarite at zero field.

The J parameters are stated in units of meV.

The calculated spin-wave spectrums can be compared to the IN12 and ThALES

colour maps as it can be seen figure 4.49 on page 229 and figure 4.50 on page
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230 respectively. Here the data points used in the fit are given in red, blue, and

green and they correspond to the spin-wave branch of the same color. The solid

lines correspond to the crystal in (0kl) orientation, whilst the dashed lines are the

contributions of the twin. The calculated spin-wave model can explain the majority

of the features observed in the data. For example, the k=0.19, 0.45meV signal could

have been interpreted as a gapped excitation, instead this spin-wave model showed

that it originates from the twinned crystal.

There are two major issues which the used spin-wave model fails to explain.

The first issue is the models failure to reproduce the magnon branch in the region

k=0.05-0.14, ∼0.6meV (see figure 4.50(a)). The second issue is the sudden drop in

intensity above ∼0.8meV. This drop in the area of the branches obtained from the Q

scans can be seen in figure 4.51(a) on page 231. In figure 4.51(b) it can be seen that

the FWHM does not change drastically over this region. Here the three branches

are given in blue, red, and green and correspond to the branches of same colour

seen in figure 4.49. It is important to note that the squares and circles represent

the ThALES December 2014 and ThALES April 2015 experiments respectively. In

the Thales December 2014 experiment no monitor was installed and for this reason

counts were only normalised to time. However, even with the square data points

removed, the overall trend remains the same. It is also important to note that for

each Q scan a constant background was fitted which was left as a free parameter.

Overall the suggested simple method was successful in reproducing many of the

observed features. It is possible that with the addition of anisotropy the missing

features can be reproduced. In future experiments measurements along the (00l)

direction would help determine the inter-chain interactions in a more rigorous way.
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(a)

(b)

Figure 4.49: Zero field spin-wave fit IN12 comparison. Here the

(a) IN12 intensity colour map and (b) calculated neutron intensity are

shown. The red blue and green lines were fitted to the Q scans of the

same colour. The solid lines correspond to the crystal in (0kl) orientation

whilst the dashed lines are the contributions of the twin.
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Figure 4.50: Zero field spin-wave fit ThALES comparison. Here

the (a) ThALES intensity colour map and (b) calculated neutron in-

tensity are shown. The solid lines correspond to the crystal in (0kl)

orientation whilst the dashed lines are the contributions of the twin.
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Figure 4.51: Intensity and FWHM of the three branches. (a)

The fitted area of all three branches drop sharply; however (b) the

FWHM does not change much. Here the three branches are given in

blue, red, and green and correspond to the branches of same colour seen

in figure 4.49. The square and circles represent two different experiments.

4.5 Diffraction Measurements with an Applied Field

It was discussed earlier, in section 4.1.2, that one of the predictions of a SDW(p)

phase is a characteristic vector dependent on magnetisation given by equation 4.5.

For LiCuVO4, the behaviour of the incommensurate Bragg peak above ∼6T has

already been interpreted as an entry from a helical phase into a SDW(2) phase [45].

For linarite, a change in the magnetic propagation vector (0, kic, 0.5) was observed

with increasing magnetic field for H//b. This dependence was observed in the

phase V of the H//b phase diagram as shown in figure 4.11. Neutron diffraction

measurements indicate that magnetic structure of phase V is a SDW. The observed

movement change in kic with increasing field within phase V was interpreted as the

existence of a SDW(p) phase, where p varied from p=4 to p=8 with changing field

[154]. However, these measurements were not performed at the same temperature.

It would be more compelling evidence if kic showed a similar field dependence at

fixed temperature. For this reason the H//b measurement is performed at ∼50mK
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temperatures. Additionally, the H//a direction is also measured for the first time.

4.5.1 Experimental Set-up

The measurements of the magnetic Bragg peaks at different field strengths were

carried out using the TAS instrument IN14 and the diffractometer D23 at ILL,

Grenoble, France.

The majority of the data presented in this section originates from D23. The

typical configuration of D23 can be seen in figure 2.11. For the measurements, a PG

(002) monochromator was used without focusing in order to obtain a wavelength of

λ = 2.38Å. A 3He stage was used in conjunction with a 12T vertical cryomagnet

which supplied a base temperature of ∼50mK throughout the experiment. A PG

(002) filter was placed between the monochromator and the cryomagnet in order to

reduce the amount of second order reflections. For the H//b experiment pieces of

boron carbide (B4C) based shielding were taped to the sides of the cryomagnet in

order to vertically reduce the opening to 8mm both before and after the sample.

The intensity of the (300) and (003) Bragg peaks were monitored to make sure no

sample intensity was lost. For H//a instead of such shielding circular slits of 10mm

were used before and after the sample. The most common type of measurement was

along (0,k,0.5). For H//a, the scattering plane is (0kl) therefore any value of k can

be accessed easily. However, for H//b, in order to access a non zero value k, the

detector has to move up or down vertically. This limits the range of k which can

be studied. The difference in configuration means that H//b and H//a (0,k,0.5)

measurements will not have the same resolution in k.

The crystals used in D23 experiments were untwinned crystals. This was con-

firmed previously on IN3 at the ILL, Grenoble, France. Crystal 3 from table 4.4

was mounted with the b axis vertically, whilst crystal 4 was mounted with a axis

vertically. On D23, a number of Bragg peaks were measured to ensure that the
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Effenberger-Araki structure was used. The crystal in the H//b set up broke during

the D23 experiment, which drastically limited the quality of the dataset.

Measurements were also performed on IN14 on coaligned crystals with H//a.

The relative orientations of the crystals is discussed in detail in section 4.2. The

best estimate of the orientation is that Crystal 1b and Crystal 2 were perfectly

aligned along b∗ but the c∗ axes were ∼-4o and ∼3o out of plane respectively. The

incommensurate Bragg peak at (0,kic,0.5) was measured at a base temperature of

∼1.6K and at field strengths ranging from 0T to 5.5T. The main purpose of this

experiment was to measure spin waves at 14.5T. The detailed experimental set up

of this experiment has already been stated in subsection 4.3.1.

4.5.2 Experimental Results

For the H//b direction, measurements were made at 7T and above which can be

seen in figure 4.52 on page 234. Both 7T and 8T measurements show a large peak at

(0,0,0.5); however, the 8T measurement also shows a smaller peak at kic∼=0.1. For

measurements at 8.5T and above the k=0 peak does not exist. The kic∼=0.1 peak is

most intense at 8.5T and with increasing field strength, it shrinks in intensity and

moves towards slightly larger kic until it is no longer visible at 9.5T.

The magnetic Bragg peaks were also measured with scans along h and l direc-

tions. These can be seen in figure 4.53 on page 234. These scans show no obvious

signs of broadening with increasing field. Here 7T data is divided by 5 and scaled

up by 300 for clarity.
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(a) (b)

Figure 4.52: H//b kic dependence. (a) 7T and 8T show a large

peak at k=0, but 8T also show a small peak at kic∼=0.1. (b) above 8T,

this small peak shrinks in intensity and moves towards larger |kic| until

it is no longer visible at 9.5T.

(a) (b)

Figure 4.53: H//b incommensurate Bragg peak h and l scans.

No broadening is observed for (a) (h, kic,0.5) nor (b) (0, kic, l) scans.

Here kic is obtained initially from a (0, k, 0.5) scan. Note that the counts

in 7T data are divided by 5 and scaled up by 300 counts for clarity.

The H//a D23 dataset can be seen in figure 4.54(a) on page 236. Here |kic|
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dependence can be summarised in the following way: from 0T to 1.5T |kic| ∼=0.19

is constant, from 1.5T to 3T |kic| slowly decreases, from 3T to 3.25T it rapidly

increases to |kic| ∼=0.2, from 3.25T to 4.75T it slowly decreases, from 4.75T to 5.75T

it rapidly decreases to |kic| ∼=0.13, from 5.75T to 6.25T it slowly increases. In a

general sense, there are three regions where kic is roughly constant (|kic| ∼=0.19,

0.2, 0.13) and two regions where |kic| changes with field. These regions can be

seen in more detail in figure 4.54(b). The region where |kic| ∼=0.13 can be seen in

more detail in figure 4.54(c). Here with increasing field, the Bragg peak weakens

and moves towards larger |kic|. Here the 0T measurement is given in black as a

guide for the background. This helps to identify the small amount of intensity left

at 6.25T. This signal at 6.25T is small, with only four data points above the 0T

data points. It is possible to construct a better estimate of the background rather

than just using the 0T measurement. If one assumes that at 7T the system is

fully saturated, all the scans from 7T onwards can be combined with the 0T to

create a “better” estimate of the background. No statistically significant difference

is observed between the measurements performed at 0T,7T, or above 7T in the near

vicinity of k=-0.13. Therefore, it is possible that all of these measurements describe

the same background. In figure 4.55 on page 237 the 6.25T measurement can be

compared to the 0T and to the “better” estimate of the background (given in black).

Here it can be seen that if this background is correct, it can be argued that at 6.25T

there is still some Bragg peak intensity. Note that for H//b a magnetic Bragg peak

at k=0 was also observed. For H//a scans were also made in the vicinity of k=0 for

few field strengths as seen in figure 4.54(a). None of these measurements observed

a magnetic signal at k=0.
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(a)

(b) (c)

Figure 4.54: H//a kic field dependence for 50mK. (a) Here the

Q scans are represented in a kic-field colour map. The colour corresponds

to the neutron intensity normalised for a monitor of M1=6000000. There

are three regions where kicis roughly constant.(b) Some of the individual

scans can be seen in detail. The 0.5T, 4T, and 5.75T are the three regions

where kic is roughly constant.(c) In the kic∼0.13 region, |kic| is increasing

with increasing field. There is a small amount of intensity left at 6.25T.
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Figure 4.55: Statistical significance of 6.25T peak. The 6.25T

signal (blue) is compared to the 0T measurement (red) and to a “better”

background attempt (black). The “better” background is created by

combining 0T with measurements at and above 7T.

The incommensurate Bragg peak was also measured along the (0, kic,l) direc-

tion as well and can be seen in figure 4.56. Here kic used was obtained from the

(0, kic,0.5) scans. Similar to the H//b measurements in figure 4.53, no obvious signs

of broadening can be seen. The lack of broadening is an indication that long range

order is preserved both for H//a and H//b.

Figure 4.56: H//a (0 , kic, l) scans were performed at 0T, 4T, and 6T.

These showed no obvious signs of broadening for increasing field strength.
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The 1.6K H//a measurements were performed on IN14 on two twinned co-

aligned crystals, the results can be seen in figure 4.57. Here measurements were

made every 0.5T up to 5.5T. The overall behaviour of kic seems similar to the

50mK version with a few major differences. Firstly, kic is unchanged only up to

∼0.5T (∼1.5T for 50mK). The movement of |kic| between 1T and 3.5T is much

more exaggerated compared to the 50mK data. The kic∼=-0.2 region appears to be

only ∼0.5T wide (rather than ∼1T wide for 50mK data). Most importantly, it is

not clear if there is a kic∼=-0.13 phase for 1.6K because the measurements did not

extend to this range.

Figure 4.57: H//a kic dependence for 1.6K. The results are very

similar to the 50mK results. It is not clear if a kic∼=-0.13 phase exists, as

measurements did not extend to this range.

It is important to note that this IN14 measurement presented in figure 4.57 was

significantly different to the D23 experiments where a single untwinned crystal was

used. In this IN14 experiment there are two main problems. The first one is that it is

not possible to know if the measured magnetic Bragg peak belongs to the twin or not.

If it did belong to the twin, the true magnetic Brag peak would be (-0.453,k,0.5)

instead of at (0,k,0.5). Note that untwinned samples only produced a magnetic

Bragg peak of the type (0,k,0.5) and not of (-0.453,k,0.5) at 0T. Therefore, it is safe
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to assume that in the IN14 experiments the Bragg peaks are also of (0,k,0.5) type.

The second problem is the imperfect co-alignment of the sample. The two crystals

used were roughly in the (0,k, l) scattering plane. Despite this their orientations are

not the same because of the twinning. For one crystal the (001) Bragg peak of its

twin is 25o out of the scattering plane whilst for the other crystal it is −25o out of

the scattering plane. Therefore, the two crystals might not have the same response

in kicwith increasing field.

The intensity of the incommensurate magnetic Bragg peak is lost between 6.25T-

6.5T and 9.25T-9.5T for H//a and H//b field directions respectively. One might

imagine that this disappearance of intensity corresponds to an entry into a fully

saturated phase, i.e. FM phase. This idea can be checked by measuring the intensity

of an FM Bragg peak. As demonstrated in section 2.1.2, the magnetisation of

the system is proportional to the square of the intensity of the FM Bragg peak.

Therefore, by measuring the intensity of a FM Bragg peak with increasing field,

it will be possible to determine the saturation field both H//a and H//b. The

(200) and (002) Bragg peaks were measured with a rocking scan for H//b and

H//a field directions respectively. These Bragg peaks were chosen for their large

Cu contribution in their structure factor but overall weak nuclear intensity. This

can be seen in table 4.18 on page 240 where the structure factor, F , and the Cu

contribution to the structure factor, FCu, can be seen. The Bragg peaks neutron

intensity is proportional to FF ∗. If only Cu atoms were present, the intensity would

be given by FCuF
∗
Cu. From table 4.18 it can be seen that the (200) Bragg has a very

weak overall intensity but it has a large Cu contribution. The (002) Bragg peak has

a stronger overall intensity but it still has a strong Cu contribution. The structure

factor calculations were carried out using the atom positions given in table 4.1.

The (002) and (200) Bragg peaks both gained intensity with increasing field

strength. A Gaussian was fitted to each rocking scan to obtain the area under the
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Bragg Peak F FCu FF ∗ FCuF
∗
Cu

(002) 9.2 15.4 85.2 238.3

(200) -3.1 15.4 9.9 238.3

Table 4.18: The structure factors of (200) and (002). Here FCu

is the structure factor with only Cu intensity. Both Bragg peaks have a

large Cu contribution.

curve. The end results can be seen in figure 4.58 on page 241. Here the plotted

quantity is m =
√
A(H)− A(0) where A(H) is the area obtained from the rocking

scan at field strength µ0H. This quantity, m, is now proportional to the magnetisa-

tion of the system. In order to determine the saturation field, a fit is performed on

m. The fitted function has the functional form given below:

m(H) =

a1 + b1H H ≤ Hsat

a2 + b2H H > Hsat

(4.20)

Using these equations µ0Hsat= 9.25±0.25T and 6.05±0.05T were obtained forH//b

and H//a respectively. The fits for these equations are plotted in red in figure 4.58.

It is important to note that a linear fit to magnetisation is not ideal. The main aim

of these fitted curves was to try and identify the discontinuity in the magnetisation.

This discontinuity is very obvious in figure 4.58(a) but not as clear for figure 4.58(b).

There is not sufficient data in (200) to determine the transition point accurately.

Additionally in figure 4.58(b), m seems to increase above µ0Hsat. For both H//b

and H//a, it would be beneficial to confirm these results with a physical property

measurements.
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(a) (b)

Figure 4.58: Magnetisation as obtained from rocking scans on Bragg

peaks with large Cu contribution. For (a) H//a direction the (002)

Bragg peak and for (b) H//b the (200) Bragg peak was measured. The

red lines are the fit obtained by using equation 4.20.

4.5.3 Analysis

The change in the incommensurate Bragg peak position (0,kic,0.5) with field

could be an indication of a SDW(p) phase. In order to check this, a Gaussian fit

is performed to all Q scans. The obtained kic field dependence is compared to the

theoretical predictions of a SDW(p) phase. From the Gaussian fits, it is also possible

to quantify the change in the area of the incommensurate Bragg peaks. The area

of the Bragg peaks is related to M⊥, the magnetic moment perpendicular to Q.

Therefore, any discontinuity in the derivative of the Bragg peak area is indicative

of a phase transition.

The Bragg peak position and area are plotted together in figure 4.59(a) on page

243, in black and red respectively for the H//a, 50mK dataset. Here, red vertical

lines are presented at 2.5T and 6.29T where there appears to be a phase transition.

The 2.5T phase transition is apparent from the large change in the derivative of
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the Bragg peak area. The 6.29T phase transition is obtained by extrapolating the

Bragg peak area to zero which occurs precisely at µ0Hc =6.29(1)T. In this figure

the movement of kic can be seen in more detail. It can be seen that kic=-0.1935(3)

remains fixed until 1.5T. Between 1.5T and 3.5T, kic moves until at 3.5T kic reaches

-0.199(8) and remains fixed until 4.5T. There is then movement of kic until 5.75T. At

5.75 kic=-0.133(2) and with increasing field |kic| increases slowly until at 6.25T kic=-

0.135(1). At higher fields the Bragg peak intensity becomes too small to be directly

measured. The H//a, 1.6K dataset can also be seen in figure 4.59(b) in a similar

manner. Here only one clear transition can be identified. That is the transition at

2.5T, where the area drops dramatically. It is possible that kic continues to ∼0.13

for 1.6K dataset as well; however, measurements did not extend that far. Therefore,

it is not clear if there is another transition at higher temperatures.

The H//a 50mK and 1.6K datasets are seen compared directly in figure 4.60

on page 244. Here the 50mK and 1.6K dataset is given in blue and red respectively.

The area is normalised to the zero field area, A0. In figure 4.60 it can be seen that

kic and Bragg peak areas behave very similarly for both temperatures. There are a

few differences which are worth noting. For 50mK, kic is constant up to 1.5T whilst

for 1.6K it is constant up to 0.5T. When kic is constant the area seems to be roughly

constant as well. For 1.6K data the |kic| at 2.5T is much smaller than for 50mK

data. Also the 1.6K data does not extend to |kic| ∼ 0.199.

For the H//b direction there is a slight increase in the position of the Bragg

peak and a steady decrease of the intensity with increasing field. This can be seen

in figure 4.61 on page 244, where the Bragg peak measurements above and below

k=0 can be seen in blue and red points respectively. Here k<0 measurements were

close to a hard limit of the instrument and therefore its fitted position could be

affected by this. It is for this reason that k <0 and k >0 are plotted separately.

Note that the 8T measurement is where there is coexistence between the k=0 and

242



(a)

(b)

Figure 4.59: Field dependence of kic and area. The kic and area

field dependence is given in black and red respectively for (a) H//a

50mK dataset and (b) 1.6K dataset. Phase transitions obtained from

changes in Bragg peak area are given in red vertical lines.
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Figure 4.60: Field dependence for H//a with 50mK and 1.6K

compared via (a) kic and (b) area of the Bragg peak normalised by the

0T Bragg peak area (A0)

kic∼0.1 phases. The individual fits to the H//b data can be seen in figure 4.62 on

page 245. Note that here the 8T, 8.5T, and 9T datasets have been scaled up by 100,

300, and 500 counts respectively for clarity.

Figure 4.61: Field dependence for H//b at 50mK can be seen in

(a) kic and (b) area of the Bragg peak. Here k <0 measurements (given

in red) were close to a hard limit and therefore fits to this data may not

be correct.

For theH//b dataset, it is possible to extrapolate where the Bragg peak intensity
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Figure 4.62: Fits to H//b, 50mK, (0,k,0.5) scans. Note that 8T,

8.5T, and 9T datasets have been scaled up by 500, 300, and 100 counts

respectively for clarity.

at kic will reach zero. This can be done by fitting a line to the last few points of the

area. This gives a critical field of µ0Hc =9.74(8)T. Using the same method forH//a

a critical field of µ0Hc =6.29(1)T was obtained. These values may correspond to the

saturation field of the system. It is of interest that both of these values are higher

than the estimated saturation field from (002) and (200) Bragg peak intensities as

seen in figure 4.58 which provided µ0Hc =9.25(25)T and µ0Hc =6.05(5)T for H//b

and H//a.

It is possible to check if the observed field dependence of kic is compatible with

a SDW(p) phase. The expected characteristic vector of such a SDW(p) phase is

qmax = π(1−m/msat)/p. This is defined for a one site per unit cell with the nearest

neighbour distance dNN = 1. In linarite there are two Cu sites along the b axis.

Therefore k̃ic = kic/2 is defined, which corresponds to the new b axis with length

dNN = b/2. The expected dependence of the incommensurate Bragg peak becomes
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k̃ic = (1 −m/msat)/2p. The magnetisation, m, is obtained from interpolating and

smoothing the m(H) curves presented in figure 4.58. For msat the 6.29T and 9.74T

results are used for H//a and H//b respectively. These saturation fields were

obtained by extrapolating the drop in incommensurate Bragg peak area to zero.

The calculated and the measured k̃ic(H) for H//a and H//b can be seen in figures

4.63(a) and (b) respectively. From these figures it is clear to see that the measured

field dependence of k̃ic does not follow the predictions of a SDW(p) phase for any value

of p. It is important to note that this prediction was made for a one-dimensional

J1-J2 chain with isotropic exchange.

(a) (b)

Figure 4.63: The measured incommensurate Bragg peak posi-

tion and the expected position from a SDW(p) phase. Here the

theoretically predicted characteristic vector for a SDW(p) phase is given

in the coloured lines as obtained from the equation k̃ic = (1−m/msat)/2p,

where k̃ic corresponds to dNN = b/2. For no value of p is there agree-

ment between the SDW(p) prediction and the experimentally measured

k̃ic(black points). This is true for both (a) H//a and (b) H//b field

directions.
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4.6 Magnetisation Measurements

Magnetisation measurements on linarite were performed for two main reasons.

The primary reason was to identify the position of the spin plane as there were two

different proposed magnetic structures in the literature (see subsection 4.1.4). These

two structures correspond to having the spin plane -27o or 74.5o from a axis. The

latter corresponds to having the spins in the Cu-O plane. This disagreement in the

orientation of the spin plane could originate from the confusion in literature regard-

ing the crystal structure (see subsection 4.1.3). The aim of this part of the thesis

work was to perform magnetisation measurements within the ac plane for linarite.

For the experiment, an untwinned crystal was used and its correct orientation was

determined using neutron diffraction experiments. When the field is applied along

the spin-plane, a spin-flop transition is expected which is easily identifiable by a “S”

shaped curve in the magnetisation.

Magnetisation measurements were performed on a Quantum design MPMS at

Max-Planck Institute, Stuttgart, Germany. A rotation stage was able to perform

360o rotations at a base temperature of 1.8K and at a maximum field strength of

7T. An untwinned crystal of mass ∼21mg (crystal 3) was mounted on the copper

rotation stage with the rotation axis along the b axis, so that the magnetisation

in the ac plane could be explored. This set-up can be seen in figure 4.64 on page

248 where the c∗ crystal face and the positive rotation direction are shown. The

direction of b∗ and the crystal faces were obtained on IN3 triple axis spectrometer at

the ILL, Grenoble. By measuring the (-101) and (001) type reflections it is possible

to distinguish between the b∗ and -b∗ directions.

The rotation mechanism was calibrated using a small piece of magnetised Ni

wire. However, when changing between positive and negative rotation 10 to 15o

of backlash was observed in the measurements. This made determining the exact

angular position of the crystal inside of the MPMS challenging. Three different
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Figure 4.64: Experimental set up for magnetisation measure-

ments. The crystal was mounted in the rotation stage as shown. The

b∗ direction and the c∗ face were identified in prior neutron diffraction

experiments.

methods were used to determine the orientation of the crystal within the MPMS,

they were all within ∼ 5o agreement. The first method depends on measuring the

magnetisation with rotation above TN . Such a measurement can be seen in figure

4.65 on page 249, which was obtained by supplying a small field of µ0H=0.1T.

Since Linarite has a Néel temperature of TN ∼2.8K [24], the 4K measurement

(red) probes the paramagnetic phase whilst the 1.8K measurement (blue) probes

the helical phase. In the paramagnetic phase of linarite, the largest moment should

be perpendicular to the CuO2 planes. This is due to the Jahn-Teller distortion [175]

on the Cu-O octahedron. An elongation of an octahedron along the z axis will

cause the degeneracy between dz2 and dx2−y2 to split and dz2 to shift to a lower

energy [176]. Therefore, the maximum long moment in 4K data corresponds to

H//n⊥, i.e. at the maximum of 4K curve the field is parallel to normal of the

CuO2 planes, n⊥ [177]. For now this method for determining the orientation will

be assumed to be correct. At the end of this section it will be compared to the

other two methods for determining the orientation. The 1.8K measurement shows

a phase shift of -100o compared to the 4K data. For a helical magnetic structure,
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the smallest induced uniform magnetic moment is expected when the field is applied

within the spin plane. Therefore, one can conclude that the spin-plane should be

-10o from n⊥. However, a more robust method of determining the position of the

spin plane is to find the lowest field for which a spin-flop transition occurs. The spin

plane position obtained using this method is different to the minimum of the 1.8K

data and is denoted by SP in figure 4.65.

Figure 4.65: Magnetisation vs rotations scans at 4K (red) and

1.8K (blue) which are above and below the Néel temperature. The 4K

maximum provides n⊥, the direction perpendicular to the Cu-O planes.

The spin-plane is denoted as SP and does not correspond to the minimum

of 1.8K data.

At a base temperature of 1.8K, magnetisation measurements were performed

at various angles with field scans from 0T to 7T and back to 0T. For most of the

directions two clear phase transitions were observed. The resulting phase diagram

can be seen in figure 4.66 on page 250. Here the field angle θ is the same as that

in figure 4.65 and the orientation of the crystal was obtained in the same way. The
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field-rotation phase diagram can be split into three main regions: the 200o-250o

region where there are transitions at 3T and 4T, 200o-150o where there are two

transitions with hysteresis, and 150o-110o where there is only one transition visible.

There is potentially a fourth region at 90o which shows hysteresis and therefore

might be similar to the 200o-150o region. Note that the location of saturation was

not clear, therefore it is not shown in the phase diagram in figure 4.66.

Figure 4.66: Field-rotation phase diagram as obtained for 1.8K

and H ⊥ b. The ∼3T transition in the region 200o-250o is most likely a

spin-flop transition. The 200o-150o region show hysteresis. In the region

150o-110o only one transition was measured up to 7T.

In figure 4.67 on page 251, examples of each one of these three man regions can

be seen. At 225o the first transition can be seen at 3T with a “S” shaped curve

and the second, less pronounced, transition at 4T. At 134o only one transition can

be seen; however, another transition could easily exist at higher field strengths. At

172o two transitions can be seen and at each transition hysteresis is observed. The

“S” shaped curve is indicative of a spin-flop transition, all of the ∼3T transitions in
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the range 200o-250o show this kind of curve. The minimum field for a spin-flop was

extrapolated using these points and was found to be at -5o from n⊥ at a field of

2.96(1)T. Therefore, the spin plane is at -5o from n⊥ which corresponds to -20.35o

from the a axis.

(a) (b)

(c)

Figure 4.67: Example magnetisation curves. An example for each

region of the phase diagram in figure 4.66 can be seen. (a) At 225o there

is a “S” shaped transition at 3T which is indicative of a spin-flop. (b)

At 134o there is a only one measured transition. (c) Measurements at

171o show two transitions and both of them have hysteresis.

Aside from various rotations, a detailed field and temperature dependence was
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also measured for H//n⊥ which can be seen in figure 4.68. Both temperature and

field scans were used to construct the phase diagram which are given in red and

black respectively in the figure. The phase transitions going into the helical phase

were very easy to identify; however, the others were usually a very small signal in

the gradient of magnetisation. These smaller signatures are shown as squares in

figure 4.68. Despite this uncertainty from the small signatures, a consistent phase

diagram does appear where three different phases can be identified. In this phase

diagram the saturation limit is not shown because it could not be reached. Using

the ∂M/∂H = 0 definition for saturation, none of the measured angles showed

saturation at 7T and 1.8K.

Figure 4.68: Field-temperature phase diagram for H//n⊥.

There are three clear phases apart from the paramagnetic and FM phases.

Some of the M(H), M(T) curves which make up the H//n⊥ field-temperature

phase diagram can be seen in figure 4.69 on page 254. In figure 4.69(a) the M(H)

curve at 1.8K and its three clear transitions can be seen. In figure 4.69(b) a similar

measurement at 2.05K can be seen. These two higher field transitions are much
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weaker at 2.05K compared to 1.8K. Note that both the 1.8K and 2.05K M(H) curves

were measured from 0T to 7T. The regions of interest were measured again with a

much smaller step size. It is these smaller step sized M(H) curves which are shown

in figures 4.69(a) and (b). The M(T) curves in figure 4.69(c-d) both show two clear

transitions and an anomalous transition like signal at 2.2K. This 2.2K signal was

present in all M(T) curves measured from 1T up to 7T. This makes it unlikely that

it is caused by the sample. The most likely explanation is the superfluid transition

of 4He, which is at 2.172K [178]. Note that all M(T) curves were measured up to 4K.

The regions of interest were measured in smaller step size. It is these measurements

which are presented in figures 4.69(c-d).

Note that the M(T) curves have been measured up to 4K but only in figures

4.66(c-d) only the measurements with small step sizes are shown.

The H//n⊥ phase diagram in figure 4.68 is mostly self-consistent despite some

relatively small thermomagnetic signatures (which are given in black or red squares).

There are two points which appear to be inconsistent, which are close to 4.25T, 2K.

The first can be seen in figure 4.69(b) in the 2.05K M(H) curve at 4.16T. A very

weak peak can be observed in the derivative here, because it is so weak this point

might not be an actual transition but simply a fluctuation in the background. The

second inconsistent point can be seen in figure 4.70(a,b), on page 255, in the 4.25T

M(T) curve at 1.97K. Here there is a clear jump in magnetisation. The fact that

one of the points is much higher than the others indicates that this point might be

from a spurious signal. A similar peak is observed at 1.98K in the 7T M(T) curve.

This can be seen in figure 4.70(c,d). This peak is not observed clearly in any other

M(T) curve despite a measurement every 0.5T between 7T and 4.5T. Therefore,

the small peak in magnetisation at ∼1.97K for 4.25T and 7T must originate from

a spurious signal. This could mean that the two inconsistent points in the H//n⊥

phase diagram in figure 4.68 could potentially be discarded.
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(a) (b)

(c) (d)

Figure 4.69: Examples of H//n⊥ M(H) and M(T) curves. These

curves have been used to construct the field-temperature phase diagram

in figure 4.68. (a,b) In the M(H) curves the clearest signal is from

the helical phase boundary. (c,d) The M(T) curves show some clear

signals as well; however, they also show a spurious signal at 2.2K which

is believed to originate from the superfluid transition of 4He.

The H//n⊥ phase diagram also sheds some light into the 1.8K H-θ phase dia-

gram presented in figure 4.66. Note that in the angular range 200-250o only two

phase transitions are shown. However in the H//n⊥ phase diagram at 1.8K there is

three clear transitions. This is because a much smaller step size was used for obtain-
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(a) (b)

(c) (d)

Figure 4.70: Spurious signal in M(T) seen at (a,b) 4.25T and (c,d)

7T. The peaks in magnetisation appear at ∼1.97K for both fields. None

of the M(T) measurements between 7T and 4.25T has such a feature.

ing H//n⊥M(H) curves. It is possible that throughout the 200-250o region there

is a third phase transition just above the ∼ 4T transition. Further measurements

with a smaller step size are necessary to confirm this.

So far it has been assumed that the maximum of the 4K curve in figure 4.65 cor-

responds to H//n⊥. However, this is only the first of three different methods used

to try to obtain the orientation. The second method for determining the orientation

of the crystal within the cryostat was to remove the sample at various angles and to
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take pictures of it. Using the knowledge of the crystal faces, it was possible to make

some rough estimates of the orientation of the crystal. Ten different pictures were

used in total. The average of this picture method is in -1(5)o disagreement with the

first method. This cannot be taken as a direct confirmation of the first method for

determining the structure. The photograph method was simply not precise enough.

However, it does suggest that the first method must be correct within roughly ∼5o.

For the third method, the crystal was put in with H//a and no rotation operations

were performed. The obtained M(H) curve for H//a was then compared to the

53.65o and 75.11o measurements which can be seen in figure 4.71(a-b) on page 257.

The H//a M(H) curve is very similar to that of the 75.11o measurement except for

the higher field region where H//a M(H) curve is a bit higher. However compared

to the 53.65o M(H) curve, the H//a M(H) curve is lower at high fields. This guar-

antees that the H//a exists between 53.65o and 75.11o. By linear interpolation, it

is possible to obtain an angle for H//a measurement. The low field part of H//a

measurement results in an angle of ∼72o whilst the higher field part results in an

angle of ∼65o. In the first method model, shown in figure 4.65, the a axis belongs

at 70.5o. Therefore, there is an overall agreement between the first and third meth-

ods as well. In the worst case scenario, the difference between the first and third

methods is ∼5o.

There is another possible problem with assuming the first orientation model is

correct. It has been assumed that at 4K, the temperature is high enough so that

the magnetic response is only due to the anisotropy in the g tensor and not due

to the anisotropy of the exchange interactions. In fact, ESR line widths indicate

that short range correlations could start developing at ∼50K. Therefore, one cannot

simply assume that at 4K, the system is fully paramagnetic and only the g tensor

anisotropy applies.

It would be useful to make similar magnetisation with rotation measurements at
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(a) (b)

Figure 4.71: Determining the orientation of the sample within

the MPMS. The sample is placed within the MPMS with H//a ori-

entation. The M(H) curve obtained is compared to the (a) 75.11o and

(b) 53.65o measurements of the previous dataset.

much higher temperatures. For linarite, the magnetisation with rotation was meas-

ured for temperatures up to 10K. In order to find the phase shift with temperature,

the following function was fitted to the data:

f(θ) =
√
y2

1sin
2(θ + θ0) + y2

2cos
2(θ + θ0) (4.21)

Here θ is the rotation angle θ0 is the phase and y1 and y2 are arbitrary constants.

The evolution of θ0 with temperature can be seen in figure 4.72 on page 258. It is

important to note that this data was obtained from a slightly different mounting

of the crystal and therefore it does not share the same θ offset as the rest of the

results stated in this section. Two important observations can be made from the θ0

temperature dependence in figure 4.72. The first is that the position of the magnetic

transition is apparent at ∼2.7K. The second important observation is that from 4K

to 10K, there is a phase shift of 1o. This shows that at 4K the magnetisation signal

is not only dependent on the g tensor. It might be necessary to go to temperatures
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above 10K to obtain a magnetisation signal only dependent on the g tensor.

Figure 4.72: Temperature dependence of phase θ0. From 4K to

10K there is 1o difference.

4.7 Discussion

The main achievement of the thesis work is shedding light to the magnetic in-

teraction scheme of linarite by performing INS experiments above saturation field.

A total of four different spin-wave models are used to describe the data. All of

the models point towards exchange interactions J1 ∼14meV (FM) and J2 ∼-4meV

(AFM). In most of the models the strongest inter-chain interaction appears to be

an AFM skew interaction Jc0 ∼ −0.6meV. These values are much different from

those reported in literature. The J parameters obtained from spin waves are lar-

ger than those reported from physical-property measurements. Similarly, the ratio

α = J2/J1 ∼ −0.275 obtained from INS data is much closer to α = −0.25 than

any other reports in literature [24–26]. It is important to reiterate that even within

the models which are based on physical-property measurements there is very little

agreement.

It must be acknowledged that the spin-wave models used to describe the INS data

above the saturation field were not perfect. Firstly, there is imperfect information
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regarding the orientations of the crystals in the experiments. It is possible that these

orientations may have changed for some of the crystals for different field strengths.

At least in the D23 experiments it was observed that the torque on the crystal due

to the magnetic field was large enough to break the crystal. Secondly, there appears

to be a large energy difference observed between the (001) spin waves measured at

11T and 14.5T. If the observed energy change of ∼0.6meV were only attributed to

gavrgµBH, one would expect an average g factor of gavrg = 2.79(2), which is too

large and incompatible with the rest of the dataset. For this reason a spin-wave

model was tested which does not have a linear field energy dependence, instead, the

relative energy shift for each field strength was left as a free parameter. The validity

of such an approach is questionable; however, this model provided a much better fit

to the data compared to the other models. A non-linear energy-field dependence is

beyond the simple LSWT models which have been used in this thesis and therefore a

different theoretical approach might be necessary. It would be beneficial to validate

the non-linear energy-field dependence with another set of INS experiments. An

experiment with a better orientation should be carried out and the (001) spin-wave

dispersion should be measured for different field strengths. At every field strength,

the orientation of the crystal should be checked. The third imperfection of the spin-

wave models is their disagreement with the 10T high energy data. This problem

might be related to the non-linear energy-field dependence of the spin-waves or it

might be related to the imperfect orientations. Either way, to describe this part of

the data a third nearest-neighbour interaction J3 was introduced. In the non-linear

energy-field dependence spin-wave model a small AFM J3 = −0.65(5) interaction

was able to provide a more accurate fit to the high energy 10T data.

Putting aside the non-linear energy-field dependency concept, the average g

factor gavrg=2.36(3) obtained from the isotropic J1−J2 spin-wave model is in agree-

ment with ga=2.34 obtained by Wolter et al. via ESR measurements at ∼50K [26].
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Even though in their initial article they cite the Schofield article for structure, their

later work (Ref. [153]) has the correct atomic positions which indicates that they

are using the Effenberg-Araki structure as well.

In addition to the saturated phase, linarite’s zero field excitations were measured.

The excitations appear magnon-like and therefore a simple spin-wave model was

used to obtain some J parameters. It is important to note that the zero field

spin-wave model has no anisotropy and is treated classically. For frustrated quasi-

one-dimensional spin-1/2 systems, quantum fluctuations can become strong which

can stabilise complex ground states. A simple spin-wave model can still be used to

parametrise the system; however, these parameters are now non-trivially related to

the original J parameters of the system. The J parameters obtained at zero field,

Jzero, can be compared to those obtained above saturation field, Jsat, in table 4.19

on page 260. Here the isotropic J1-J2 model has been used for Jsat. These two

parameter sets are often compared through RiJ
sat
i = Jzeroi , where R is referred to as

the normalisation for zero field [169]. Here it can be seen that Ri ∼ 0.5 for almost

all interactions. This is different to the observations of LiCuVO4 where only the

AFM J2 interaction was normalised by R2 = π/2.

Parameter J1 J2 Jc0 Jc1 Ja

Jsati 14.6(1) -4.02(4) -0.62(7) 0.05(4) 0.124(5)

Jzeroi 6.38(4) -1.94(1) -0.398(8) 0.0000(1) 0.05(1)

Ri 0.44(4) 0.48(1) 0.64(7) - 0.40(2)

Table 4.19: Comparison of J parameters obtained above sat-

uration (Jsati ) and at zero field (Jzeroi ). The normalisation due to

quantum fluctuations are given by Ri = Jzeroi /Jsati . The J parameters

are given in units of meV.

The zero field spin-wave model does manage to qualitatively explain many of
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the INS features observed. There are a few features that it fails to explain. Firstly,

one of the spin-wave branches observed between (0,0,0.5) and (0,0.2,0.5) is not re-

produced in the calculations. Secondly, the intensity of the spin-waves drop rapidly

and become hard to resolve above ∼1meV. However, in the spin-wave calculations,

there is no rapid decrease in intensity. It might be possible to explain some of these

features by expanding upon the simple spin-wave model used. Ideally, a theoretical

model which considers the quantum nature of the system would be used. However,

by introducing anisotropy to the LSWT model one could improve the fit. It might

be necessary to introduce an anisotropy which would result in an elliptical helical

magnetic order.

The position of the magnetic Bragg peak was measured at ∼50mK for H//b.

The obtained results can be compared to the H//b phase diagram of Willenberg et

al. [148], as seen in figure 4.11. Based on this phase diagram, for 50mK, phase IV

is expected from ∼4T to 8T and phase V is expected from 8T to ∼ 9.5T . Phase

IV is known to be an AFM structure with a propagation vector of (0,0,0.5), and

phase V is estimated to be a SDW with an incommensurate propagation vector of

(0,kic,0.5) [148,150]. In phase V, the value of kic first decreases then increases with

increasing field, as seen in figure 4.13(a) [154]. The results presented in this thesis

can expand upon the results of Willenberg et al. [154]. At ∼ 50mK for H//b,

Bragg peaks were measured at (0,0,0.5) and (0,kic,0.5), which can be taken as an

indication of phase IV and phase V respectively. In agreement with Willenberg et

al.’s phase diagram, the (0,0,0.5) Bragg peak was observed at 7T and 8T. However,

at 8T both (0,0,0.5) and (0,kic,0.5) Bragg peaks are measured which would suggest

a coexistence of phase IV and phase V. The (0,kic,0.5) Bragg peaks continued from

8T until 9.25T. From a linear extrapolation of the Bragg peak area, the area is

expected to reach zero at µ0Hc = 9.74(8)T. This is slightly higher than the value of

∼ 9.5T stated the phase diagram. From 8T to 9.25T the measured position of the
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Bragg peak changes from kic∼ 0.1 to kic∼ 0.11 in an linear fashion. This is similar

to the value of kic∼ 0.1 which has been reported in literature for ∼7T, 1.8K [154].

The position of the magnetic Bragg peak was also measured for H//a direction.

In literature, this field direction has not been explored with diffraction experiments.

Neutron diffraction measurements at ∼50mK and ∼1.6K can be compared to the

magnetisation measurements carried out for this field direction. For H//a, there

are two very clear transitions at ∼50mK, as obtained from change in Bragg peak

area. The first one is at 2.5T and the second one is at µ0Hc=6.29(1)T which is

obtained by extrapolating the Bragg peak area to zero. For 1.6K diffraction data

a clear transition at 2.5T can also be seen. Another clear transition may exist at

higher field strengths, but this was not adequately explored. From the magnetisation

measurements, for H//a at 1.8K, a spin-flop transition is expected at ∼3T and a

second transition is expected at ∼4.4T. For H//n⊥, which is only -15.35o from

the a axis, at 1.8K these two transitions are also observed but additionally a third

transition can be observed at ∼0.1T after the second transition. It is possible that

such a weak third transition also exists for H//a magnetisation data as well. One

would assume that the 2.5T transition observed in neutron diffraction would also

correspond to the spin-flop transition observed in magnetisation measurements at

∼3T. The slight differences in spin-flop field might be attributed to the differences in

the experiments. The diffraction measurements were carried out on twinned crystals

at 1.6K with a step size of 0.5T. The magnetisation measurements were carried out

on untwinned crystals at 1.8K.

The saturation field has been estimated in a few different ways. It would be

of interest to see how these different estimates compare to each other. Before the

comparison, it is important to note that for H//a and H//b the incommensurate

Bragg peaks are still visible at 6.2T and 9.25T respectively. These field strengths

can be used as lower limits for the saturation field. Note that, in literature for
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H//a∗ at 1.8K, magnetisation measurements have found µ0H
sat
a∗ ∼7.6T [26]. This

orientation is only 12.65o from H//a; therefore, it is expected for the two field

directions to have similar saturation fields. The different saturation limit estimates

are tabulated in table 4.20 on page 264. Here the first method uses the areas of the

(002) or (200) Bragg peaks to determine a critical field. It can already be seen that

for H//a this method provides a value lower than the lower limit of 6.2T. Based

on this, the estimate for H//b could be inaccurate as well. The second method is

linearly extrapolating the area of the incommensurate Bragg peak area to zero field.

The third and fourth methods use the isotropic and anisotropic LSWT fits to the

data. Using LWST, it is possible to obtain a lower limit to the saturation field. For

the isotropic model, many different estimates for the lower limit were made, and

here only the largest and smallest values are stated. It is not clear how accurate

any of these estimates are considering the data is not compatible with a linear

field-energy dependence for the spin-wave branches. In order to obtain an accurate

estimate of the saturation, the issues with the field-energy dependence of the spin

waves must be addressed. Regardless of these problems, it can be seen that these

current isotropic LSWT estimates are similar to that of µ0H
sat
a∗ ∼7.6T [26] as found

for H//a∗. On the contrary, the anisotropic LSWT models give a larger saturation

field. One could speculate that the true saturation field for H//a is in the region

of ∼7T, which could mean that there is another phase between 6.29(1)T and ∼7T.

In order to determine the saturation field reliably, and to search for any additional

phases, a detailed magnetisation measurement at 50mK would be necessary. For the

H//b, the end of phase V is stated at ∼9.5T in the phase diagram in figure 4.11 for

∼0.25K. This is in compatible with the 50mK results which states that the lower

limit is 9.25T and that the (0k0.5) area extrapolated to zero reaches 9.74(8)T.
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Method µ0H
sat
a (Tesla) µ0H

sat
b (Tesla)

(002) or (200) area 6.05(5) 9.3(3)

(0k0.5) area reaches zero 6.29(1) 9.74(8)

LSWT isotropic models 7.3-8.2 -

LSWT anisotropic models 8.8,9.3 -

Table 4.20: Estimating the saturation fields for H//a and

H//b. Note that first two methods were performed at 50mK, but for

the LWST models, measurements were made at ∼1.6K.

The magnetisation measurements performed on linarite were able to help on three

important points. Firstly, the orientation of the spin-plane was found at ∼-20o from

a axis with an accuracy of ∼5o. Magnetic structure solutions based on neutron

diffraction find the spin plane at -27(2)o [150]. This result is in agreement with the

findings in this thesis. On the contrary, the magnetic structure stated by Yasui et

al. [25], which suggest that the spin-plane is in the Cu-O planes, is not compatible

with the findings in this thesis. A strong part of the crystal orientation determination

was the magnetisation measurements within the ab plane performed above the Néel

temperature. The structure determined from these measurements (figure 4.65) is in

agreement with similar measurements made by Schäpers et al. [153] (figure 4.10(b)),

but not in agreement with those of Szymczak et al. [152](figure 4.10(a)). Secondly,

a preliminary magnetic phase diagram was established for rotation within the ab

plane for 1.8K. This phase diagram shows that a spin-flip type transition can be

observed at ∼3T, even at ∼30o from the spin plane. In this angular range another

transition is observed at ∼ 4T . Thirdly, a detailed field-temperature phase diagram

was performed for H//n⊥ (figure 4.68). This field direction is only 5o from the

spin plane. From this phase diagram it was seen that just above the ∼4T transition

there is a second, much smaller transition. It is possible that this second transition
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exists for all angles where a spin-flop is observed. However, it is only at this field

direction where the step size is small enough to successfully observe it. The lowest

field phase must be the helical phase. The true nature of the second and third phases

observed at 1.8K are unknown. However, it is known that from the helical to the

second phase a spin-flop transition is observed. In the classical J1 − J2 chain with

easy-plane anisotropy suggested by Nagamiya et al. [131], two phase transitions are

expected before saturation. The first one is a spin-flop into a conical structure and

the second transition is into a fan phase (see figure 4.3). It is important to note

that this is for a system with no inter-chain coupling. Additionally the anisotropy

of linarite might be more complicated. This is apparent from the differences in

the H//b and H//n⊥, phase diagrams. The suggested ellipticity of the helical

structure is another indication that the anisotropy could be more complicated than

an easy-plane anisotropy. The H//n⊥ phase diagram can be compared to those of

LiCuVO4 or LiCu2O2 (figures 4.16, 4.17), where there is a spin-flop transition into a

conical phase and a second transition into a SDW phase. Based on this comparison,

the second phase transition observed for H//n⊥ could be into a SDW phase.

One of the most important results to be taken from this thesis work is that for

the field directions H//a and H//b, the incommensurate propagation vectors ob-

served at (0,k,0.5) close to saturation do not show a simple SDW(p) type behaviour.

The comparison between theory and measurements can be seen in figure 4.63. For

the field directions H//a and H//b, at high field close to saturation, the incom-

mensurate Bragg peak is observed at |k| ∼0.14 and |k| ∼0.1 respectively. For both

field directions, |k| increases slightly with increasing field strength. The fact that

the measured incommensurate Bragg peaks do not match expected SDW(p) type be-

haviour is not sufficient to disprove the existence of a spin multipolar phase within

linarite. A spin multipolar phase could be at much smaller field range close to sat-

uration. For one dimensional J1 − J2 chains, the closer the ratio α is to -0.25, the
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smaller the spin-multipolar phases are (figure 4.4). For linarite this α is much closer

to -0.25 than it was for LiCuVO4. Therefore, in linarite one would expect the spin-

multipolar phases to appear much closer to saturation than it did for LiCuVO4. It is

possible that the characteristic vector of the SDW(p) phase is too small in intensity,

or it is located at another region in reciprocal space.

The H//b magnetic Bragg peak versus field dependence in phase V has been

reported in detail by Willenberg et al. [154] (figure 4.13). These measurements

were performed at different field strengths and temperatures. The observed mag-

netic Bragg peak did not follow a simple SDW(p) type behaviour. To account for

this, a field dependent α model was used. There are a few problems with this ap-

proach. Firstly, the data is obtained at different temperatures. There could be

some unknown temperature dependence which is coming into play. The constant

temperature measurements in this thesis expand upon this issue. Secondly, the used

interaction model is incompatible with the spin-waves observed above saturation.

From the spin waves a much smaller |α| is expected with α ∼-0.275. In Willenberg

et al.’s model a large Jc1 is assumed, whereas from LSWT the largest inter-chain

interaction is found to be Jc0, and a small Jc1 is found in most models. It is only in

the non-linear E(H) model where Jc1 is larger than Jc0. Even in this model, Jc1 is

roughly nine times smaller than the Jc1 assumed by Willenberg et al.

It is difficult to comment on the possibility of a spin multipolar phase of linarite.

For the one-dimensional S=1/2 J1 − J2 spin chain, many different spin-multipolar

phases are predicted for different values of the parameter α = J2/J1. At α = −∞,

spin-quadrupolar (p=2) phases can exist. As α approaches α =-0.25, phases with

octupolar (p=3) or hexadecapolar (p=4) can exists [42]. For linarite, α ∼-0.275

and by comparing this to the phase diagram in figure 4.4, a four-magnon bound

state with hexadecapolar order might be expected. However, unlike the theoretical

model for which this phase diagram was calculated, linarite is subject to inter-chain
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coupling and anisotropy. Nishimoto et al. has shown that an AFM inter-chain

coupling can be detrimental to the stability of the spin-multipolar phases. If the

field applied is along an easy-axis anisotropy, the stability can be enhanced; however,

if the field is applied perpendicular to an easy-plane the stability is diminished [137].

It is not clear how the stability is affected if the field is applied within the easy-

plane or for an arbitrary angle. In figure 4.7, the stability of the spin-multipolar

phases can be seen. For linarite, 1/α ∼3.64 and J IC0 /J2 = Jc0/J2 ∼0.15. Comparing

these values to figure 4.7, it could determined that in linarite the spin-multipolar

phase cannot be stabilised. However, this is a rather simple estimate. In order

to be more rigorous, the full interaction scheme of linarite, including anisotropies,

must be considered. This could be done with the parameters obtained in this thesis.

However, it is important to note that these parameters do not provide the best

description of spin-wave data. One possible way to check that the used anisotropy

is correct is to calculate the spin-flop transition field and compare it to experimental

observations. Nagamiya et al. has analytically calculated the spin-flop transition

field for a model which does not have inter-chain interactions [131]. This model could

be improved by including inter-chain interactions and used to establish the strength

of the anisotropy. Once the anisotropy is established it would be of interest to know

if there is any field direction for which a spin-multipolar phase can be stabilised.

4.8 Conclusion

The INS measurements of the spin waves above saturation field has shed import-

ant information with regards to its magnetic interaction scheme. The obtained J

parameters from the spin-waves are much larger than those previously reported in

literature [24–26]. With a value of α ∼-0.275, linarite could sustain a four-magnon

bound state with hexadecapolar order. Its ability to sustain such a phase depend
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on the exact values of the anisotropies and inter-chain coupling. The strongest type

of inter-chain interaction is a skew AFM interaction, Jc0. An easy-plane anisotropy

was assumed on both nearest and second nearest interactions along the spin chain,

J1 and J2 interactions. These anisotropic models were not able to explain some

features of the data. In the INS data there is some indications that the spin-wave

increases non-linearly with increasing field strength. The origin of this non-linear

behaviour is not clear. In future INS experiments the non-linearity can be explored

in greater detail. This would provide more confidence in the obtained J parameters

from LSWT.

The anisotropy in linarite can also be established from the magnetisation meas-

urements. At 1.8K, a spin-flop transition is observed in the ac plane for ∼3T. Using

this field strength it could be possible to calculate the strength of the easy-axis an-

isotropy by building upon the calculations of Nagamiya et al. [131].

The INS spectrum of linarite was also explored for zero field. The observed

excitations do not appear to be spinons like observed in LiCuVO4 [127]. Instead,

clear spin-wave branches were observed. Using the SpinW software [122], a fit was

obtained to the spin-wave branches. The model considered the system classically

and did not include any anisotropies. Such a model was capable of explaining most

of the features; however there are still some discrepancies between the INS data and

the model. It is not clear if these discrepancies can be resolved by simply introducing

an anisotropy or if a more rigorous model, which considers the quantum mechanical

nature of the system, is required. The obtained J parameters from zero field can

be compared to those obtained above saturation field. The zero field J parameters

are roughly half as small compared to those obtained above saturation field and the

ratio α = J2/J1 also changes to α ∼-0.3. It is important to note that the parameters

obtained at zero field are non-trivially related to the true J parameters of the system.

At zero field LSWT has been used because there is no clear alternative. Many of
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the approximations used for LSWT could be invalid for zero field.

Diffraction measurements has been carried out at 50mK for H//a and H//b for

untwinned crystals. For H//b, a coexistence of phase IV and phase V is observed

(figure 4.11) which produce Bragg peaks at (0,0,0.5) and (0,∼0.1,0.5) respectively.

The field dependence of incommensurate Bragg peak (0,kic,0.5) of phase V is meas-

ured at constant temperature for high field strengths. A small increase in kic is

observed with increasing field strength. The observed change in kic is not compat-

ible with a p-type spin-density wave SDW(p). The previous measurements of kic in

phase V had been interpreted as a SDW(p) phase where p changes due to a field

dependent αeff . The interaction model that has been used to calculate αeff is very

different to the interaction model obtained by spin-waves at field strengths above

saturation. Based on this discrepancy, it is possible to say that there is no direct

evidence so far of a SDW(p) phase for linarite for H//b. The H//a field direction

has also been explored in detail. The magnetic Bragg peak remains incommensurate

up to ∼6.3T for this field direction. Between zero field and ∼6.3T, kic changes with

field in a complicated manner, and none of its regions are directly compatible with

a SDW(p) phase. The only clear phase transitions observed by change in Bragg peak

area are at ∼2.5T and ∼6.3T. This ∼2.5T transition is also measured at ∼1.6K as

well as 50mK. This transition could be the same as the ∼3T spin-flop transition

observed with magnetisation measurements at 1.8K.

Magnetisation measurements were performed at 1.8K on an untwinned linarite

crystal. With the help of a rotation stage, the ac plane of linarite was explored and

a preliminary phase diagram was established. The spin plane was assumed to be at

the angle which corresponds to the lowest spin-flop transition field. The spin-plane

was found at -20(5)o from the a axis, in agreement with the -27(2)o estimate of

Willenberg et al. [150], as obtained from neutron diffraction. Two transitions are

observed ∼30o either side of the spin plane. There is a spin-flop transition at ∼3T,
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and a second transition at ∼4T. For H//n⊥, which is only 5o from the spin plane,

a detailed field-temperature phase diagram was obtained. In this phase diagram,

a third phase can be identified. At 1.8K, three transitions are observed at ∼3T,

∼4.1T and ∼4.3T. The nature of the phases in this phase diagram is not known.

Based on comparisons to the H//b phase diagram of linarite [148,150,155], it could

be speculated that the phase between ∼4.1T and ∼4.3T is a SDW phase. Since the

∼3T transition is a spin-flop transition the phase between ∼3T and ∼4.1T could be

a conical phase, where the new spin-plane is perpendicular to the field direction.
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Chapter 5

Summary and Outlook

5.1 Na0.8CoO2

5.1.1 Summary

The aim of this thesis work for NaxCoO2 was to study the effect of the Na

superstructures on the magnetic exchange interactions. Previous inelastic neutron

measurements on samples of unknown superstructure but with similar concentra-

tion (x=0.75 [5] and x=0.82 [4]), found a factor of two difference in the out of plane

exchange constant Jc. In this concentration range there are three different Na super-

structures: the square (x=0.8), the stripe (x=0.8), and the 1/13th (x ∼0.77) phases.

It was already shown that the magnetic exchange constants of the 1/13th [69] were

very similar to that of the x=0.75 sample [5]. In this thesis work it was shown that

exchange constants of the stripe and square phase are also very similar to that of the

x=0.75 sample. Therefore the origin of the smaller Jc observed for the x=0.82 [4]

sample remains unexplained.

In the spin-wave dispersion of the square phase Na0.8CoO2, an interesting an-

omaly was observed along the (hh3) and (h03) directions. Below ∼14meV a typical
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acoustic spin-wave branch is present. At ∼14meV there is a dip in intensity and

after this dip the spin-wave dispersion becomes infinitely dispersive, i.e. it does not

move in q with increasing energy. An infinitely dispersive excitation has been seen

before in phonon spectra and is referred to as the “waterfall effect” [119]. In prior

observations it was explained by coupling between an acoustic and an optic phonon

branch. To the authors knowledge, the waterfall observed in Na0.8CoO2 is the first

ever observation of a magnetic version of the waterfall effect. The magnetic nature

of the waterfall was confirmed with XYZ polarisation analysis on the triple-axis

spectrometer IN20 at the ILL.

The origin of the magnetic waterfall effect is not clear. Two different possibilities

are suggested in this thesis. The first is the coupling between acoustic magnons and

optic phonons. Such a model might explain the dip in intensity at ∼14meV. It

is known that for the square phase Na0.8CoO2, there are many flat optic phonon

modes at ∼13meV. These are the rattling modes and are responsible for a factor

of six drop in the thermal transport [21]. It might not be a coincidence that these

flat optic modes are at the same energy where the spin-wave waterfall features start

to appear. In future work, it might be possible to calculate the magnon-phonon

coupling directly. However, before this can be done a better understanding of the

magnetism in NaxCoO2 must be established. Experiments suggest the need for a

magnetic model more complicated than the currently adopted A-type AFM structure

[19, 111]. In this thesis more complex magnetic structures were considered. The

resulting spin-wave spectrums from these superstructures could account for some

but not all of the features observed in Na0.8CoO2. The second model for explaining

the waterfall is a magnetic cluster model. In this model, the position of the waterfall

qwf is related to the size of the magnetic clusters. From |qwf |=0.37(2)Å−1 one would

expect magnetic clusters of the size 17(1)Å. This is in agreement with nm-sized

clusters as suggested from muon experiments [111]. There are some indications that
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the spin-wave waterfall loses correlation with increasing energy. If this effect is real,

it could corroborate the magnetic cluster model.

5.1.2 Outlook

There are at least two possible experiments one could carry out to expand upon

the result of this thesis work. The first is to determine if the waterfall’s decrease

in correlation length at higher energies is a real effect. The experiments in this

thesis work were not optimised for measuring correlation lengths therefore its results

cannot be fully trusted. However, the measurements can be easily repeated on a

TAS instrument after it has been optimised for Q resolution. The results from such

an experiment might help understand the origin of the magnetic waterfall.

The second experiment would be to study the effect of a magnetic field on the

spin-wave dispersion, in particular the effects it might have on the magnetic water-

fall. If magnon-phonon coupling is responsible for the magnetic waterfall, a change

to the waterfall should be observed with increasing magnetic field. For an applied

magnetic field, the spin-wave dispersion should shift to a higher energy, however the

phonon dispersion should remain unchanged. This would alter the position where

phonon and magnon branches would cross each other in Q, ω space and this could

result in a shift of the position of the waterfall. This would apply to fields up to ∼8T,

as at this field a spin-flop transition is reported [92]. There is another important

reason for studying the field dependence of the spin waves. It is believed that the

high thermopower of NaxCoO2 is of magnetic origin, since it can be suppressed with

a magnetic field [16]. It would be of interest to see how the magnetic excitations

of NaxCoO2 would change with increasing field strength. At low temperatures, one

would expect to suppress the thermopower almost completely at 10T [16]. A good

comparison between 0T and 10T excitation spectrum might shed light to NaxCoO2’s

large magnetic thermopower.
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5.2 Linarite

5.2.1 Summary

For linarite, the main aim of the thesis work was to obtain the exchange inter-

actions above saturation field strength and comment on the possibility of a multi-

magnon spin-nematic phase. Of the tested interaction models, all of them indicated

a ratio of α = J2/J1 ∼-0.275. If linarite was a fully one-dimensional system without

any anisotropies, this would mean linarite could support a four-magnon bound state

with hexadecapolar order. However, it is not clear if linarite can sustain such an

exotic quantum phase when inter-chain interactions and anisotropies are considered.

More experimental and theoretical work is necessary in order to obtain a reliable

prediction.

By looking at the spin-wave data obtained above saturation, it is possible to

speculate that the spin-wave energy gain with increasing field is not linear. For an

isotropic LWST model, the field dependence should be linear. Uncertainties over

alignment perpendicular to the chain direction make it difficult to assess whether

the non-linearity is a real effect. Further experiments are required to explore this

phenomenon.

INS measurements were also performed at zero field for linarite. In a similar

compound, LiCuVO4, at zero field, a spinon continuum is present [127]. However,

for linarite the zero-field excitations are relatively sharp and resemble spin waves

instead. A spin-wave fit is performed to this dispersion using SpinW software [122],

however, the model used is relatively simplistic. This model includes no anisotropies,

even though anisotropy appears to be important for linarite. The obtained exchange

parameters are roughly twice as small compared to the true exchange parameters

as obtained above the saturation field. The theoretical spin-wave model used does

manage to explain most of the observed features, but it fails to explain the existence

274



of a complete spin-wave branch. In order to explain all the observed features, a

more detailed theoretical model might be necessary.

The magnetisation measurements indicate that the spin-plane is -20(5)o away

from the a axis. This is in agreement with the magnetic structure solution of -27(2)o

as obtained by Willenberg et al. [150] using neutrons. The detailed measurements

at H//n⊥ find that there are at least three phase transitions observable at 1.8K

with a change in magnetic field. The first one is the spin-flop transition at ∼3T.

The second is a weaker transition at ∼4.1T and the third one is a very weak signal

at ∼4.3T. These findings can be compared to the neutron diffraction results for

H//a, since n⊥ and a are only -15.35o apart. The magnetisation data shows that

the spin-flop transition should occur at slightly larger field at H//a compared to

H//n⊥. However, in the H//a, ∼1.8K diffraction data the only clear transition

is at ∼2.5T. There may be other transitions but they cannot be resolved in this

dataset. It is not clear why the first transition in diffraction data is at slightly lower

fields compared to magnetisation data.

The magnetic Bragg peaks were measured at ∼50mK for H//a or H//b. For

H//a, the magnetic Bragg peak remained incommensurate up to ∼6.3T where

the intensity reached zero. For H//b, only the high field region was studied. A

coexistence of commensurate and incommensurate phases was observed at 8T. At

higher fields, only the incommensurate field was present which disappeared at∼9.7T.

From the diffraction dataset, the saturation fields could not be reliably obtained.

Therefore it is not clear if ∼6.3T and ∼9.7T correspond to saturation for H//a or

H//b respectively. This could be clarified by a series of magnetisation measurements

at similar temperatures.

The field dependence of the H//a or H//b incommensurate Bragg peaks meas-

ured in this thesis do not follow the expected field dependence of a p-type SDW

phase. However, this is not sufficient to disprove the existence the a p-type SDW
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phase in linarite for these field directions. It is possible that the p-type SDW phase

presents a Bragg peak at a different, unexplored region of reciprocal space. Altern-

atively, the intensity of the Bragg peak could be very small, or perhaps this phase

only appears at a very narrow region of field strengths. Willenberg et al. [154] stated

that their H//b field dependence at 1.8K is proof of p-type SDW phase. However,

the interaction model they have used in their calculations is incompatible with the

spin-wave measurements presented in this thesis. The spin-wave data indicate that

α = J2/J1 ∼-0.275, and that the diagonal inter-chain interaction is rather small.

On the contrary, the Willlenberg model assumes α=-0.36 and adopts a rather large

diagonal inter-chain interaction.

The results from this thesis allow one to make some qualitative statements re-

garding the anisotropy in linarite. To first approximation, one might think that the

helical structure ground state of linarite at zero field indicates an easy-axis aniso-

tropy. The a axis is only ∼20o away from the spin plane and magnetisation data at

1.8K show that these two directions should be relatively similar. The b axis is in the

spin plane as well, however, diffraction data show very different magnetic response

for H//a or H//b field directions. Therefore the anisotropy in linarite must be

more complicated than an easy-axis anisotropy. This results is in agreement with

the proposed elliptical nature of the helical ground state [150].

5.2.2 Outlook

There are many different experiments one could perform to clarify or expand

upon results stated in this thesis. One of the first to perform would be to clarify

the issue with the apparent non-linear field dependence of the spin waves above

saturation field. One possible explanation is the presence of imperfect crystal ori-

entations throughout the experiments. An INS experiment in a cryomagnet at a

cold triple axis instrument must be carried out to figure out if the non-linear beha-
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viour is real. Perfect orientational information is necessary for all the crystals used

in this experiment. The spin wave can be measured at (0,0,0.5) and (0,0,1) for many

different field strengths, especially between 10T and 14.5T. For each field, nuclear

Bragg peaks must be checked to ensure the sample has not moved.

The next task is to determine the shape and size of the anisotropy seen in linarite.

This might not be possible with only the experimental measurements presented in

this thesis. However, if one assumes an easy-axis anisotropy, it should be possible

to extrapolate the strength of the anisotropy based on the spin-flop field. This can

be done by expanding slightly on the theoretical work of Nagamiya et al. [131]. A

more complex anisotropy model might be necessary, as indicated by some of the

results of this thesis. In order to establish the values for a more complex model,

more experimental data might be required.

Once the problems surrounding non-linearity and anisotropy have been solved,

another fit can be performed to the spin-wave data obtained above saturation. This

would give the final interaction parameters which can be used to determine the

possibility of a spin-multipolar phase for linarite. The calculations for this would be

similar to the work of Nishimoto et al. [137]. These calculations should be performed

for as many different field directions as possible, especially if a complex anisotropy

model is adopted.

Another task for linarite is to find a better model to explain the magnetic ex-

citations at zero field. Perhaps an introduction of an easy-plane anisotropy into the

LSWT model can account for some of the shortcomings of the isotropic model used

in this thesis. It is possible that some of the features cannot be explained by LSWT

at all and that a more complex excitation model is required.

In the H//a or H//b, 50mK neutron diffraction data, the incommensurate

Bragg peaks disappeared at ∼6.3T and ∼9.7T respectively. However, from the

diffraction data it is not clear if this corresponds to saturation. Magnetisation
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measurements performed at these temperature and field directions would solve this

discrepancy. This could provide valuable insight into the nature of the magnetic

transitions close to saturation.
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