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Abstract	
	
Listeners	are	able	 to	extract	a	wealth	of	 information	 from	voices:	 linguistic	content,	

psychological	 states	 and	 speaker	 characteristics,	 such	 as	 age	 and	 sex,	 can	 all	 be	

decoded	 from	 vocal	 signals.	While	 human	 vocal	 communication	 is	 uniquely	 flexible	

and	variable,	studies	looking	at	the	extraction	of	speaker	characteristics	to	date	have,	

however,	mainly	used	neutral	speech	samples.	This	thesis	explores	the	perception	of	

speaker	 characteristics	 from	 variable	 vocal	 signals	 outside	 of	 neutral	 speech:	 Non-

verbal	 vocalisations,	 produced	 under	 different	 levels	 of	 volitional	 control	 (vowels,	

volitional	 laughter,	 spontaneous	 laughter	 and	 crying)	 and	 whispered	 speech	 were	

used	to	investigate	familiar	and	unfamiliar	listeners’	abilities	to	extract	and	generalise	

information	about	speaker	characteristics	from	such	variable	vocal	signals.	

	 Experiments	1-2	show	that	speaker	sex	perception	is	impaired	for	spontaneous	

vocal	 signals	 compared	 to	 volitional	 signals.	 Experiments	 3-4	 reveal	 that	 speaker	

identity	 discrimination	 is	 impaired	 for	 pairs	 of	 spontaneous	 vocalisations	

(spontaneous	 laughter	 and	 crying)	 compared	 to	 volitional	 vocalisations	 (volitional	

laughter	 and	 vowels),	 and	 performance	 decreases	 dramatically	 for	 pairs	 requiring	

generalisation	across	variable	social	signals	(e.g.	vowels	versus	spontaneous	laughter).	

Experiment	5	shows	that	while	familiarity	with	a	voice	can	to	some	extent	offset	these	

effects,	generalisation	is	still	drastically	impaired.	Experiment	6	further	suggests	that	

familiar	 listeners	 are	 afforded	 a	 greater	 advantage	 over	 unfamiliar	 listeners	 when	

extracting	 identity-related	 information	 from	 voiced	 vocals	 signals,	 compared	 to	

whispered	 signals.	 Experiments	 5-6	 thus	 suggest	 that	 a	 familiarity	 advantage	 only	

generalises	 to	 a	 certain	 extent	 for	 relatively	 unfamiliar	 vocal	 signals	 (spontaneous	

laughter,	whispered	speech).	Finally,	an	fMRI	study	(Experiment	7)	explored	the	neural	



	

 
	

4	

underpinnings	 of	 the	 effects	 described	 above.	 This	 thesis	 thus	 shows	 that	 1)	 the	

perception	of	speaker	characteristics	is	affected	in	a	differential	manner	for	different	

vocalisations	 and	 that	 2)	 generalisations	 of	 identity-related	 information	 across	

variable	vocal	signals	is	only	possible	to	a	limited	extent	–	even	in	familiar	listeners.	
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1 Introduction	

Human	voices	are	uniquely	variable	and	flexible:	Aside	from	(conversational)	speech,	

which	 is	 one	 of	 the	most	 prominent	 and	 frequently	 produced	 human	 vocal	 signals,	

human	 vocal	 communication	 includes	 many	 other	 vocalisations,	 such	 as	 laughter,	

sighs,	 and	 filler	 sounds	 (e.g.	 “erm,	 uhm”)	 that	 permeate	 everyday	 interactions	 and	

serve	diverse	social	and	communicative	functions.	Thus,	humans	routinely	produce	a	

wide	 range	 of	 vocalisations	 that	 differ	 vastly	 from	 each	 other	 in	 how	 they	 are	

produced,	their	acoustic	properties,	perceptual	qualities	and	meaning.	

While	evidence	for	vocal	flexibility	has	been	found	in	some	animals	(Pisanksi,	

Cartei,	McGettigan,	 Raine	&	Reby,	 2016),	 humans	 are	 exceptional	 in	 their	 ability	 to	

change	their	voices	volitionally,	for	example	to	convey	particular	social	traits	(such	as	

masculinity/femininity	or	confidence;	Cartei,	Cowles	&	Reby,	2012;	Hughes,	Mogilski	

&	 Harrison,	 2014)	 and	 in	 audience-dependent	 ways	 (e.g.	 the	 exaggerated	 pitch	

contours	 of	 infant-directed	 speech;	 Shute	 &	 Wheldall,	 1989).	 This	 pronounced	

flexibility	in	the	volitional	use	of	the	voice	is	illustrated	in	its	extreme	by	impressionists	

and	voice	artists,	who	can	 radically	 change	 their	 voices	 to	 sound	convincingly	 like	a	

different	person	–	a	skill	which	has	no	equivalent	in,	for	example,	the	visual	modality	

(Scott,	 2008).	 Further,	 transient	 changes	 in	 the	 voice	 introduced	 by	 involuntary	 or	

spontaneous	changes	 in	a	speaker’s	state	have	also	been	shown	to	drastically	affect	

the	 vocal	 output.	 Authentic	 emotional	 experiences	 are	 often	 accompanied	 by	

emotional	 intonation	 patterns	 in	 speech	 or	 spontaneous	 vocalisations,	 whose	

production	mechanisms	differ	dramatically	 from	those	employed	to	produce	neutral	

speech	 (e.g.	 Ruch	 &	 Ekman,	 2001,	 see	 Section	 1.2).	 Due	 to	 physiological	 changes	

apparent	 in	 spontaneous	 vocalisations	 produced	 during	 authentic	 emotional	
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experiences,	 the	 production	 of	 vocal	 signals	 is	 affected	 at	 both	 the	 source	 (sound	

production	by	vibration	of	the	vocal	folds	 in	the	larynx)	and	the	filter	 (shaping	of	the	

source	 sound	 by	 the	 articulators,	 including	 the	 lips,	 tongue,	 jaw,	 soft	 palate).	 Thus,	

humans	produce	highly	variable	and	 flexible	vocal	 signals	–	with	both	volitional	and	

spontaneous	processes	modulating	the	features	of	the	vocal	output.		

A	large	body	of	work	has	shown	that	a	wealth	of	information	about	a	speaker,	

such	 as	 a	 person’s	 age,	 sex,	 emotional	 state,	 state	 of	 health	 and	 identity	 are	 all	

encoded	in	vocal	signals	and	can	be	extracted	by	listeners	with	some	accuracy	(Belin,	

Fecteau	 &	 Bédard,	 2004;	 Kreiman	 &	 Sidtis,	 2011;	 Lass,	 Hughes,	 Bowyer,	Waters	 &	

Bourne,	1976;	Linville,	1996;	Mathias	&	von	Kriegstein).	Much	of	what	we	know	about	

the	extraction	of	speaker	characteristics	and	identity-related	information	from	voices,	

be	 that	 for	 explicit	 identification,	 recognition	 or	 discrimination	 of	 familiar	 and	

unfamiliar	persons,	has,	however,	been	based	on	speech	signals,	produced	under	full	

volitional	 control	 and	 in	 a	 neutral	 voice	 (e.g.	Winters,	 Levi	 &	 Pisoni,	 2008	 [words];	

Schweinberger,	 Herholz	 &	 Sommer,	 1997,	 Kreiman	 &	 Papcun,	 1991	 [extracts	 from	

discourse];	 Van	 Lancker	 &	 Kreiman,	 1987,	 Perrachione,	 Del	 Tufo	 	 &	 Gabrieli,	 2011	

[sentences]).	 However,	 such	 speech	 vocalisations,	 produced	 in	 a	 neutral	 voice,	 are	

only	a	limited	subset	of	the	vocal	signals,	that	humans	regularly	produce	in	everyday	

settings	 and	 do	 not	 reflect	 the	 variability 1 	and	 flexibility	 of	 human	 vocal	

communication:	 the	 extraction	 of	 speaker	 characteristics	 in	 the	 context	 of	 vocal	

flexibility,	 that	 is	 speaker	 perception	 based	 on	 a	 range	 of	 diverse	 vocal	 signals,	 has	

only	 received	 limited	 attention	 in	 the	 literature	 to	 date.	 The	 current	 thesis	 will	

																																																								
1	Variability	 as	 a	 concept	 is	 here	 used	 to	 describe	 between	 vocalization	 type	 variability,	 that	 is	
differences	between,	for	example,	laughter	and	vowels	and	not	within	vocalization	type	variability.	
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therefore	 attempt	 to	 address	 these	 aspects	 of	 voice	 perception	 through	 a	 series	 of	

behavioural	and	neuroimaging	experiments.	

The	 following	 section	 will	 provide	 an	 overview	 of	 how	 differences	 in	 voice	

production	affect	 vocal	 signals	 and	encode	 information.	Spontaneous	 and	volitional	

vocal	 production	 will	 be	 contrasted	 in	 term	 of	 the	 neural	 and	 physiological	

underpinnings	 as	 well	 as	 their	 acoustic	 consequences.	 This	 will	 be	 followed	 by	 a	

detailed	 review	 of	 voice	 processing	 based	 on	 Belin	 et	 al.’s	 (2011)	 model	 of	 voice	

perception.	 The	 introduction	will	 thus	 synthesise	 the	 literature	 on	 voice	 perception	

and	 production	 that	 is	 relevant	 to	 further	 investigate	 perception	 of	 speaker	

characteristics	outside	of	neutral-speech	signals.	

	

1.1 Voice	production:	a	dual	pathway	model	

	
Figure	1	Illustration	of	the	regions	implicated	in	the	production	of	volitional	vocalisations	(orange)	
and	spontaneous	vocalisations	(turquoise).	Purple	indicates	that	the	structure	is	thought	to	play	a	
role	 in	 both	 pathways.	 On	 the	 left,	 the	 lateral	 surface	 of	 the	 brain	 is	 illustrated,	 on	 the	 right	 a	
midline	sagittal	slice	is	shown.	Adapted	from	Pisanksi	et	al.	(2016).	
	
	
Variability	in	vocal	signals	can	be	introduced	through	volitional	as	well	as	spontaneous	

changes	 in	 voice	 production.	 There	 is	 evidence	 that	 the	 production	 of	 spontaneous	

and	 volitional	 vocalisations	 relies	 on	 at	 least	 partly	 distinct	 neural	 networks:	 For	
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example,	 some	aphasic	patients	with	disrupted	volitional	 speech	production	are	still	

able	 to	 produce	 spontaneous	 vocalisations	 such	 as	 laughter	 or	 emotionally-charged	

speech	 through	 swearing	 (e.g.	 Rohrer,	 Warren	 &	 Rossor,	 2009;	 Cappa,	 Guidotti,	

Papagno	 &	 Vignolo,	 1987;	 Van	 Lancker	 &	 Cummings	 1999).	 A	 model	 of	 vocal	

production	proposes	two	neural	pathways	that	underlie	the	production	of	innate	and	

learned	 vocalisations,	 respectively	 (see	 Figure	 1;	 e.g.	 Ackermann,	 Hage	 &	 Ziegler,	

2014;	 Pisanski	 et	 al.	 2016;	 Owren,	 Rendall	 &	 Amoss,	 2011):	 A	 pathway	 including	

primary	motor	cortex,	ventrolateral	and	 insular	parts	of	the	frontal	 lobes,	connected	

to	 subcortical	 structures,	 such	 as	 the	 reticular	 formation,	 pontine	 grey	 and	 the	

phonatory	motor	neurons	(located	in,	for	example,	the	nucleus	ambiguous)	is	involved	

in	the	production	of	 learnt	vocal	behaviours,	such	as	speech.	A	second	pathway	runs	

from	 the	 anterior	 cingulate	 cortex	 (aCC)	 via	 the	 periaqueductal	 grey	 (PAG)	 and	

adjacent	ventral	tegmentum	to	the	reticular	formation	and	pontine	grey,	finally	to	the	

phonatory	motor	 neurons	 in	 the	 nucleus	 ambiguus.	 This	 pathway	 is	 thought	 to	 be	

involved	 in	 the	 production	 of	 innate	 and	 automatic	 behaviours,	 such	 as	 non-verbal	

emotional	vocalisations	(Jürgens,	2009;	see	Ackermann	et	al.,	2014	for	a	review).	The	

contrast	between	innate	and	learned	vocal	behaviours	is	closely	linked	to	the	notion	of	

spontaneous	and	volitional	vocalisations	used	in	this	thesis.	The	dual	pathway	model	

thus	provides	valuable	insights	how	these	two	types	of	vocal	behaviours	may	arise	and	

differ	from	each	other.	

	

A	clear	separation	between	pathways?	

The	 evidence	 from	 animal	 and	 human	 studies	 thus	 suggests	 a	 phylogenetically	

continuous	 neural	 pathway	 for	 spontaneous	 vocalisations	 produced	 under	 reduced	
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volitional	control,	with	a	second	neural	pathway	in	humans	supporting	the	production	

of	 volitional	 and	 learned	 vocalisations,	 such	 as	 speech.	 Some	 research	 has	 recently	

challenged	 the	 independence	of	 these	 two	pathways,	noting	 that	 they	may	 interact	

under	 certain	 circumstances,	 such	 as	 during	 the	 production	 of	 emotional	 speech:	

while	 ‘spontaneous’	 emotional	 prosody	 is	 present,	 speech	 is	 also	 ‘volitionally’	

produced	at	the	same	time	(Ackermann	et	al.,	2014;	McGettigan	&	Scott,	2014).	This	

thus	also	implies	that	differences	in	volitional	control	are	likely	to	reflect	a	continuum	

instead	 of	 a	 clearly	 defined	 binary	 (see	 McKeown	 et	 al.,	 2015	 for	 a	 discussion).	

Nonetheless,	 given	 the	 presence	 of	 these	 basic	 differences	 in	 the	 neural	

underpinnings	of	volitional	and	spontaneous	vocalisation	production,	one	can	expect	

differences	 in	 the	 physiological	 processes	 underpinning	 volitional	 and	 spontaneous	

voice	 production,	 the	 vocal	 output	 and	 as	 a	 consequence	 the	 perception	 of	 such	

variable	signals.	These	differences	will	be	discussed	in	the	following	sections.	

	

1.2 How	are	vocal	signals	produced?	

	

Figure	2	Anatomy	of	the	vocal	apparatus,	adapted	from	Kreiman	and	Sidtis,	2011	
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In	 order	 to	 understand	 how	 information	 can	 be	 extracted	 from	 vocal	 signals,	 it	 is	

crucial	to	be	aware	of	the	physiological	mechanisms	underlying	voice	production	that	

lead	 to	 the	 encoding	 of	 information	 in	 a	 vocal	 signal.	 Figure	 2	 shows	 the	 basic	

anatomical	 layout	 of	 the	 human	 vocal	 tract.	 Voice	 production	 involves	 intricate	

interactions	between	breathing	patterns,	control	of	voicing	at	the	vocal	folds	(source)	

and	further	modulations	of	the	source	signal	through	the	shape	of	the	vocal	tract	and	

movements	 of	 the	 articulators	 (filter;	 Fant,	 1960).	 In	 order	 to	 phonate	 (i.e.	 produce	

voiced	vocal	signals)	the	air	that	is	expelled	from	the	lungs	passes	between	the	vocal	

folds,	 causing	 them	 to	oscillate	 (see	 the	Bernoulli	 effect	or	myoelastic-aerodynamic	

theory	 of	 speech;	 Titze,	 1994).	 This	 results	 in	 a	 quasi-periodic	 buzzing	 sound,	 the	

source	signal.	Depending	on	the	configuration	of	the	vocal	folds	and	the	pressure	with	

which	air	 is	passing	through	them,	humans	can	 regulate	 the	 fundamental	 frequency	

(the	lowest	frequency	of	a	periodic	signals,	perceived	as	pitch,	see	Figure	3),	intensity	

(perceived	 as	 loudness)	 and	 quality	 of	 their	 voice	 (e.g.	 falsetto,	 breathy,	 creaky	 or	

whispered).	This	source	signal	that	is	produced	in	the	larynx	is	then	further	modulated	

by	the	shape	of	the	supralaryngeal	vocal	tract,	in	the	oral	and	nasal	cavity:	Depending	

on	the	type	of	vocal	signal	produced,	the	articulators	assume	different	configurations	

and	gestures	during	voice	production.	

	

Speech	

The	 production	 of	 connected	 speech	 requires	 a	 stable	 subglottal	 pressure,	which	 is	

exerted	 on	 the	 lungs	 to	 maintain	 a	 slow	 release	 of	 air	 from	 the	 lungs	 (Draper,	

Ladefoged	 &	 Whitteridge,	 1959).	 This	 steady	 pulmonary	 airflow	 is	 essential	 for	

controlled	 and	 prolonged	 phonation	 as	 is	 best	 illustrated	 during	 attempts	 to	 speak	
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after	intense	exercise	when	breathing	heavily:	In	this	context,	air	is	rapidly	forced	out	

of	 the	 lungs	 to	 supply	 the	body	with	 fresh	oxygen.	As	a	 result	of	 this	 type	of	heavy	

breathing,	 speaking	 is	 difficult,	 allowing	 the	 speaker	 to	 only	 produce	only	 relatively	

brief	 vocal	 signals	 that	 are	 characterised	 by	 intakes	 of	 breath	mid-utterance	 rather	

than	 the	 complex	 vocal	 signals	 lasting	 several	 seconds	 that	 are	 characteristic	 of	

human	speech.		

	 In	 order	 to	 create	 voiced	 and	 unvoiced	 realisations	 of	 speech	 sounds	 (e.g.	

creating	phonemic	contrasts	between	/p/	and	/b/	to	create,	for	example,	the	minimal	

pair	 ‘pet’	 and	 ‘bet’),	 vocal	 folds	 rapidly	 alternate	 between	 oscillating	 and	 letting	 air	

pass	 through	 them	without	 oscillation.	 Articulator	movements	 of,	 for	 example,	 the	

tongue,	 jaw	 and	 lips	 are	 precise	 and	 quick,	 shaping	 the	 airflow	 via	 articulatory	

gestures	 into	a	 range	of	different	speech	sounds,	such	as	vowels,	 fricatives,	plosives	

and	 nasals	 (Scott,	 Sauter	 &	 McGettigan,	 2010).	 These	 articulator	 movements	 or	

articulatory	 gestures,	 partially	 or	 fully	 obstruct	 the	 airflow	 leaving	 the	 lungs.	 For	

example,	 forcing	 the	 air	 through	 a	 narrow	 channel	 between	 tongue	 and	 another	

articulator,	 such	 as	 the	 hard	 palate,	 introduces	 turbulent	 airflow.	 This	 affects	 the	

spectral	 properties	 of	 the	 vocal	 output,	 introducing	 high-frequency	 aperiodic	

properties	in	the	vocal	signal	to	form	consonants	such	as	/s/	and	/z/.	Other	articulator	

movements	during,	for	example,	vowel	production,	do	not	fully	obstruct	the	air	flow	

but	 change	 the	 shape	 of	 the	 supralaryngeal	 vocal	 tract	 which	 then	 introduces	

formants	(i.e.	bands	of	high	spectral	energy)	into	the	vocal	signal	–	these	formants	are	

crucial	for	making	the	different	vowels	in	speech	(Ladefoged	&	Disner,	2011;	see	Figure	

3).	
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Figure	3	Spectrogram	of	the	vowel	/i/,	showing	the	fundamental	frequency	(F0)	and	first	formants	
(F1	 and	 F2)	 volitionally	 of	 each	 other.	 Darker	 shading	 on	 the	 spectrogram	 represents	 higher	
intensity.	
	

	 This	 intricate	 control	 over	 respiration	 and	 the	 articulators	 required	 to	 produce	

speech	 is	 unique	 to	 humans.	 The	 groups	 of	 abdominal	 and	 thoracic	 muscles	 (e.g.	

intercostal	 muscles	 located	 between	 the	 ribs)	 that	 are	 used	 to	 exert	 respiratory	

control	 are	 used	 in	 quadrupedal	 primates	 during	 locomotion,	 breathing	 is	 coupled	

with	 movement	 and	 thus	 limits	 respiratory	 control.	 Bipedalism	 in	 humans	 has,	

however,	freed	up	these	groups	of	muscles	to	a	large	extent,	increasing	breath	control	

and	thus	enabling	the	production	of	long	speech	utterances	with	one	intake	of	breath	

(MacLarnon	 &	 Hewitt,	 1999,	 see	 also	 Provine,	 2016).	 Further,	 compared	 to	 other	

primates,	 humans	 have	 a	 descended	 larynx,	 a	 descended	 tongue	 root	 and	 more	

domed	 palate.	 These	 anatomical	 differences	 allow	 for	 a	 more	 diverse	 inventory	 of	

articulatory	 gestures,	 which	 subserve	 speech	 sounds	 (e.g.	 Fitch,	 2010;	 see	 also	 the	

discussion	of	differences	between	humans	and	non-human	primates’	LMC	in	Section	

1.1).	Finally,	 (adult)	humans	are	also	able	to	control	source	and	filter	volitionally	and	

independently	 of	 each	 other	 and	 vocalise	 predominantly	 without	 any	 associated	

affective	 or	 need	 state	 being	 present	 (Pisanski	 et	 al.,	 2016).	 Volitional	 voice	 and	

especially	speech	production	is	thus	a	uniquely	human	skill	arising	from	evolutionary	
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changes	 in	 anatomy	 and	 vocal	 control	 that	 requires	 intricate	 interactions	 between	

respiratory,	laryngeal	and	orofacial	muscles.	

	

Non-verbal	emotional	vocalisations	

Non-verbal	 emotional	 vocalisations	 are	 thought	 to	 pre-date	 speech	 and	 are	

considered	to	be	the	most	phylogenetically	continuous	means	of	expressing	emotion	

in	the	voice	(e.g.	Davila-Ross,	Owren	&	Zimmermann,	2010	for	 laughter).	They	have	

been	considered	to	be	more	similar	to	animal	calls	than	to	speech	due	to	their	origins	

that	seem	to	predate	speech	(Bryant	&	Aktipis,	2014;	Scott,	et	al.,	2010;	MacLarnon	&	

Hewitt,	 1999).	 In	 contrast	 to	 speech,	 non-verbal	 emotional	 vocalisations	 emerge	

earlier	 in	 development	 (Scheiner,	 Hammerschmidt,	 Jürgens	 &	 Zwirner,	 2006)	 and	

their	 production	 does	 not	 require	 any	 auditory	 experience	 (Eibl-Eibesfeldt,	 1972;	

Scheiner	 et	 al.,	 2006).	 They	 arguably	 also	 constitute	 clearer	 examples	 of	 emotional	

expression	 in	 the	 voice	 than	 speech-based	 emotional	 vocal	 signals,	 indicated	 by	

higher	 emotion	 category	 recognition	 rates	 (e.g.	 ~50%	 for	 14	 emotions	 encoded	 in	

speech	 prosody	 [Banse	 &	 Scherer,	 1996]	 and	 ~80%	 for	 10	 non-verbal	 vocalisations	

[Sauter,	 Eisner,	 Calder	 &	 Scott,	 2010a]).	 This	may	 be	 in	 part	 because	 they	 are	 not	

constrained	by,	for	example,	the	production	of	speech	sounds	or	other	linguistic	cues	

that	are	encoded	in	intonation	contours	(e.g.	rising	pitch	at	the	end	of	an	utterance	to	

signal	 a	 question;	 Scott	 et	 al.,	 2010).	 Emotional	 displays	 affect	 the	 whole	 body	 as	

evolutionary	accounts	of	the	production	of	emotional	displays	see	them	as	vestiges	of	

formerly	adaptive	behaviours,	such	as	 initiating	flight	responses	 in	the	presence	of	a	

threatening	stimulus,	thus	enhancing	an	individuals’	chances	of	survival	(Darwin,	1872;	

Izard,	 1992;	 Ekman,	 1992).	 Therefore,	 facial	 expressions	 frequently	 occur	
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simultaneously	 with	 the	 production	 of	 spontaneous	 vocalisations	 directly	 affecting	

the	 filter	 characteristics	 of	 the	 vocal	 output.	 For	 example,	 smiles	 modulate	 the	

acoustic	 characteristics	 of	 vocalisations,	 which	 can	 then	 be	 perceived	 by	 listeners	

(Aubergé	&	Cathiard,	2003).	

Non-verbal	 emotional	 vocalisations	 tend	 to	 be	 characterised	 by	 few	uniform	

segments	(e.g.	a	scream	or	gasp,	but	also	see	laughter	and	high	arousal	crying	that	are	

characterised	by	multiple	onsets,	Lloyd,	1938;	Sauter,	Eisner,	Calder	&	Scott,	2010b).	

The	 relatively	uniform	nature	of	 segments	within	 these	vocalisations	 is	 indicative	of	

the	absence	of	the	fast	and	precise	movements	of	the	articulators	that	are	typical	for	

speech.	The	relatively	short	duration	and	small	number	of	individual	segments	in	non-

verbal	 emotional	 vocalisation	 further	 suggest	 a	 lack	 of	 control	 over	 respiration	 as	

emotional	 states	 modulate	 breathing	 through	 the	 automatic	 contraction	 of	

abdominal	and	thoracic	muscles	(e.g.	Heim,	Knapp,	Vachon,	Globus	&	Nemetz,	1968).	

	

Spontaneous	and	volitional	vocalisations:	the	case	of	laughter	production	

In	humans,	vocalisations	that	occur	in	the	context	of	a	genuine	emotional	experience	

may	 be	 produced	 under	 reduced	 volitional	 control.	 For	 example,	 the	 production	

mechanisms	 underlying	 spontaneous	 laughter	 –	 which	 differ	 drastically	 from	 the	

mechanisms	 underlying	 volitional	 speech	 production:	 Intense	 laughter	 produced	

involuntarily	in	response	to	an	intense	underlying	emotional	state	is	characterised	by	

an	 initial	 forced	 exhalation	 (Ruch	 &	 Ekman,	 2001),	 expelling	most	 of	 the	 air	 in	 the	

lungs	due	 to	 spasming	of	 the	diaphragm	and	 the	 intercostal	muscles	 that	continues	

for	the	duration	of	the	laugh.	Breathing	during	intense	laughter	is	characterised	by	the	

sharp	inspirations	between	bouts	of	laughter	when	the	“inspiratory	muscles	overcome	
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the	 expiratory	 muscles”	 (Lloyd,	 1938,	 p.	 188).	 While	 the	 abdominal	 and	 thoracic	

muscles	 are	 engaged	 during	 laughter,	 very	 few	 supralaryngeal	 modulations	 occur	

during	 non-verbal	 emotional	 vocalisations.	 Ruch	 and	 Ekman	 (2001)	 suggest	 that	

laughter	 produced	 in	 the	 presence	 of	 an	 underlying	 emotional	 experience	 is	 an	

inarticulate	vocalisation,	with	articulators	being	mostly	in	their	resting	positions	(note	

however,	that,	for	example	the	 lips	tend	to	be	spread	due	to	smiling,	and/or	the	 jaw	

may	be	open).	The	more	intense	a	laugh,	the	less	control	the	laugher	has	over	these	

physiological	 changes	 that	 affect	 phonation	 as	 outlined	 above.	 In	 humans,	 these	

production	 mechanisms	 have	 been	 proposed	 to	 introduce	 ‘hard-to-fake’	 acoustic	

features	to	spontaneous	vocalisations,	marking	them	as	reliable,	authentic	signals	for	

receivers,	 which	 contrasts	 with	 volitional	 laughter	 being	 an	 unreliable	 signal,	

potentially	evolved	to	deceive	receivers	(Bryant	&	Aktipis	2014;	McKeown,	Sneddon	&	

Curran,	2015).	Bryant	and	Aktipis	 (2014)	have	consequently	proposed	that	due	to	an	

evolutionary	 arms	 race,	 humans	 have	become	experts	 both	 in	 producing	maximally	

authentic-sounding	volitional	laughter	by	approximating	the	production	mechanisms	

of	spontaneous	 laughter	but	have	also	developed	a	 fine-tuned	perceptual	system	to	

discriminate	between	potentially	well-matched	volitional	and	spontaneous	laughter	–	

both	beneficial	skills	for	the	individual.		

	

1.3 Acoustic	descriptions	of	volitional	and	spontaneous	
changes	in	vocal	signals	

The	field	of	phonetics	 is	dedicated	to	describing	the	acoustics	of	speech	sounds	and	

intonation	contours	to	convey	linguistic	information	(e.g.	differences	between	/s/	and	

/z/	or	rising	intonation	at	the	end	of	an	utterance	for	a	question).	Another	large	body	
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of	research	has	focussed	on	how	non-verbal	information,	such	as	affective	content,	is	

encoded	in	the	voice.	The	following	section	will	focus	on	this	literature	to	illustrate	the	

drastic	acoustic	changes	present	 in	vocal	signals	outside	of	neutral	voice	production.	

Due	 to	 ethical	 issues	 during	 stimulus	 recordings	 (e.g.	 inducing	 negative	 states	 in	

listeners	that	would	result	in	spontaneous	vocalisations	of	for	example,	fear	or	anger)	

or	quality	of	spontaneous	recordings	(e.g.	background	noise	or	verbal	content	within	

recordings	 made	 in	 naturalistic	 settings)	 only	 few	 studies	 to	 date	 have	 provided	

acoustic	 descriptions	 of	 spontaneous	 vocal	 signals.	 There	 is,	 however,	 a	 large	

literature	 discussing	 acoustic	 properties	 of	 emotional	 speech	 and	 non-verbal	

emotional	 vocalisations	 produced	under	 volitional	 control.	 Since	 these	 vocalisations	

are	(potentially	stereotyped)	close	approximations	of	spontaneous	vocalisations	(see	

Bryant	 &	 Aktipis,	 2014;	McKeown	 et	 al.	 2015),	 these	 descriptions	may	 nonetheless	

serve	as	a	useful	heuristic	to	describe	the	acoustic	changes	in	spontaneous	emotional	

vocalisations.		

	 Studies	 looking	 to	 obtain	 acoustic	 descriptions	 of	 vocal	 signals,	 usually	 use	

acoustic	parameters,	such	as	descriptions	of	fundamental	frequency	(e.g.	F0	mean,	F0	

variation	and	F0	range),	spectral	measures	(e.g.	spectral	centre	of	gravity,	proportion	

of	 high	 frequency	 energy	 above	 a	 certain	 threshold),	 measures	 of	 periodicity	 (e.g.	

harmonics-to-noise-ratio,	 shimmer	 and	 jitter)	 and	 descriptors	 of	 the	 amplitude	

envelope	 (e.g.	 total	 duration,	 rate	of	 articulations	 and	 intensity).	 It	 should	be	noted	

that	 one	 challenge	 to	 date	 has	 been	 to	 compare	 results	 across	 different	 studies:	

studies	use	distinct	sets	of	acoustic	parameters,	extracted	 in	study-specific	ways.	To	

make	studies	using	acoustic	parameters	more	comparable	to	each	other,	Eyben	et	al.	
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(2016)	 have	 proposed	 a	 minimalistic	 set	 of	 acoustic	 parameters	 meaningful	 for	

emotional	voice	analyses	based	on	computational	modelling.	

	

Finding	emotion-specific	acoustic	markers	

Studies	of	emotional	displays	in	vocal	signals	have	attempted	to	define	minimal	sets	

or	 a	 small	 number	 of	 emotion-specific	 acoustic	 cues	 for	 emotional	 prosody,	 that	 is	

emotionally-inflected	speech,	and	non-verbal	emotional	vocalisations.	Depending	on	

the	 specific	 study,	 a	 range	of	 emotion	 categories	 have	been	 explored,	 such	 as	 fear,	

anger,	 sadness	 and	 happiness,	 as	 well	 as	 occasionally	 different	 levels	 of	 emotional	

intensity	signified	by	category	labels	such	as	‘hot	anger’	versus	‘cold	anger’	and	‘fear’	

versus	“panic”	(see	Juslin	&	Laukka,	2003	overview	of	the	emotions	used).	Materials	in	

studies	 looking	at	 emotional	prosody	 range	 from	vowels	 to	pseudo-words	and	brief	

sentences	of	neutral	 linguistic	content.	Acoustic	parameters	are	then	extracted	from	

vocal	signals	and	used	to	describe	the	acoustic	profile	vocal	signals	in	relation	to	each	

other	While	individual	studies	report	distinct	profiles	for	different	emotions	based	on	

such	 acoustic	 analyses	 (e.g.	 Banse	 &	 Scherer,	 1996;	 Sauter	 et	 al.,	 2010b),	 an	

exhaustive	meta-analysis	 of	 studies	of	 acoustic	 features	of	 vocal	 emotions	by	 Juslin	

and	Laukka	(2003)	highlights	that	such	claims	may	be	problematic:	Acoustic	markers	

for	distinct	emotion	categories	largely	overlap	and	can	differ	vastly	for	low	compared	

with	 high	 intensity	 displays	 from	 the	 same	 emotional	 category,	 thus	 within-

vocalisation	 differences	 may	 be	 as	 large	 a	 across	 vocalisation	 differences	 in	 cues.	

Juslin	and	Laukka	(2003)	argue	these	heterogeneous	findings	may	partly	be	due	to	the	

lack	 of	 control	 and	 matching	 in	 the	 materials,	 for	 example,	 for	 arousal	 and	 other	

affective	features.	
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Acoustic	markers	of	continuous	affective	properties	

Some	studies	have	looked,	more	generally,	for	acoustic	markers	of	affective	features,	

based	on	Russell’s	 (1980)	circumplex	model	of	emotion:	This	model	assumes	that	all	

emotions	can	be	mapped	onto	a	multidimensional	space,	defined	by	a	small	number	

of	orthogonal	axes.	Studies	of	affective	features	across	emotion	categories	have	thus	

investigated	acoustic	correlates	of	for	example	arousal	and	valence,	which	have	been	

proposed	as	axes	in	Russell’s	(1980)	original	account.	In	this	context,	arousal	describes	

a	continuum	from	a	person	being	very	drowsy	and	sleepy	to	someone	feeling	highly	

alert,	while	valence	describes	a	continuum	between	very	pleasant	and	very	unpleasant	

experiences.	Such	studies	provide	clear	evidence	for	arousal-specific	cues	encoded	in	

vocal	 signals:	 higher	 fundamental	 frequency	 (F0),	 higher	 intensity	 (in	 dB),	 a	 faster	

speech	 rate	 and	 an	 increase	 in	 harmonic	 energy	have	 all	 been	 associated	with	 high	

arousal	 emotions	 compared	 to	 low	 arousal	 and	 neutral	 vocalisations	 (Scherer,	

Johnstone	 &	 Klasmeyer,	 2003;	 Sauter	 et	 al.,	 2010b).	 Intriguingly,	 acoustic	 analyses	

have	 been	 unable	 to	 distinguish	 between	 emotional	 displays	 of	 different	 valence	

(Scherer,	2003;	Juslin	&	Laukka,	2003):	Very	different	emotions,	such	as	happiness	and	

anger,	 show	 the	 same	 profile	 of	 acoustic	 features	 compared	 to	 neutral	 speech,	 i.e.	

higher	F0,	faster	speech	rate,	higher	intensity	and	more	energy	in	the	high	frequencies	

among	other	factors.	Studies	using	regression	analyses	to	predict	perceptual	 ratings	

of	arousal	and	valence	based	on	acoustic	measures	furthermore	report	that	relatively	

little	variance	in	valence	ratings	is	accounted	for	by	acoustic	measures	that	are	reliable	

predictors	of	arousal	 ratings:	Laukka,	 Juslin	&	Breslin	 (2005)	 found	 that	only	25%	of	

the	variance	in	valence	ratings	for	emotional	prosody	could	be	explained	by	acoustic	

parameters	 in	 contrast	 to	 74%	 of	 the	 variance	 of	 the	 arousal	 ratings	 (for	 similar	
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findings,	see	Bachorowski,	1999	and	Bänziger	&	Scherer,	2005).	Similarly,	in	Sauter	et	

al.’s	 study	 (2010b)	 looking	at	 the	 recognition	of	 non-verbal	 emotional	 vocalisations,	

acoustic	 predictors	 accounted	 for	 only	 17%	 of	 the	 variance	 in	 valence	 ratings	 as	

opposed	 to	 nearly	 60%	 of	 the	 variance	 in	 the	 arousal	 ratings.	 Therefore,	 while	

listeners	 are	 reliably	 able	 to	 judge	 the	 valence	 of	 vocal	 signals	 (see	 Section	 1.5.2),	

analyses	nonetheless	fail	to	describe	acoustic	cues	underlying	these	judgements.	This	

may	indicate	that	the	traditional	acoustic	measures	typically	applied	to	the	analysis	of	

neutral	 speech	 samples	 may	 not	 be	 sufficient	 for	 the	 investigation	 of	 emotional	

information	encoded	in	the	voice.		

	

Alternative	descriptions	of	the	signals	

Some	 attempts	 were	 made	 to	 find	 alternative	 descriptions	 of	 the	 acoustics	 of	

emotional	 speech	 and	 non-verbal	 vocalisations:	 Bänzinger	 and	 Scherer	 (2005)	

hypothesised	that	the	intonation	profiles	of	emotional	prosody	(as	opposed	to	global,	

averaged	 F0	measures)	may	 encode	 information	 about	 the	 valence	of	 the	 emotion	

conveyed	 in	 an	 utterance.	 The	 authors	 analysed	 the	 intonation	 contour	 based	 on	

tones,	measured	steepness	of	slopes	in	the	F0	contour,	general	F0	declination	over	the	

course	 of	 the	 utterance	 and	 counted	 the	 number	 of	 falls	 and	 rises	 during	 various	

segments	of	the	utterance.	They	did	not,	however,	find	reliable	evidence	for	emotion	

or	valence	specific	features	within	these	measures.	Other	studies	have	attempted	to	

find	alternative	frameworks	to	describe	the	acoustic	signal.	For	example,	Gobl	and	Nì	

Chasaide	(2003)	created	synthetic	stimuli	of	varying	types	of	voice	quality	and	asked	

participants	to	judge	the	emotional	content	of	the	stimuli.	The	authors	conclude	that	

certain	 voice	qualities	 seem	 to	be	 associated	with	 affective	qualities,	but	 similar	 to	
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traditional	 acoustic	 analyses,	 no	 distinct	 profiles	 of	 voice	 quality	 were	 found	 for	

individual	emotion	categories.	In	another	small-scale	study,	we	 investigated	whether	

ratings	 of	 phonatory	 and	 articulatory	 features	 could	 form	 a	 framework	 for	 better	

describing	perceptual	qualities	 in	 laughter	 (Lavan,	Scott	&	McGettigan,	2016).	Using	

trained	 listeners	 (phoneticians	 as	 well	 as	 speech	 and	 language	 therapists),	 we	

collected	ratings	of	nasality,	breathiness	and	mouth	opening	for	a	set	of	volitional	and	

spontaneous	 laughs.	 Regression	 analyses	 within	 and	 across	 these	 two	 types	 of	

laughter	then	explored	the	relationship	between	such	ratings	and	perceptual	qualities,	

such	as	authenticity	and	arousal.	The	 ratings	accounted	 for	a	 significant	amount	of	

variance	 for	most	 regression	models	 of	 arousal,	 valence	 and	 authenticity	 ratings	 –	

even	though	traditional	acoustic	measures	accounted	for	a	larger	amount	of	variance	

for	most	regression	models.		

In	sum,	different	approaches	and	measures	of	investigating	the	acoustic	cues	to	

different	emotions	 in	 the	 voice	have,	at	 times,	have	 shown	 that	emotional	 content	

reliably	 affects	 vocal	 signals.	 While	 there	 is	 some	 evidence	 for	 emotion-specific	

acoustic	 profiles	 in	 the	 voice	 as	 assessed	 by	 traditional	 acoustic	 measures,	 other	

studies	suggest	that	differences	in	continuous	properties	(such	as	arousal	and	valence)	

may	 explain	 these	 results,	 within	 and	 across	 different	 emotion	 categories.	 Even	

though	attempts	to	describe	emotion-specific	cues	in	the	voice	can	be	to	some	extent	

problematic,	 acoustic	 analyses,	 voice	 quality	 judgements	 of	 phonatory	 and	

articulatory	features	of	vocal	signals	confirm	that	emotional	content	–	especially	when	

modulating	 levels	 of	 arousal	 –	 has	 a	 significant	 impact	 on	 the	 acoustic	 features	 of	

vocal	signals	compared	to	neutral	vocalisations.		
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1.4 Voice	perception:	A	multi-step	model	

Listeners	are	able	 to	extract	a	wealth	of	 information	 from	vocal	 signals.	A	model	of	

voice	processing,	based	on	Bruce	&	Young’s	model	of	face	processing	(1986),	has	been	

proposed	as	a	heuristic,	offering	a	framework	for	understanding	the	different	aspects	

that	 may	 underlie	 voice	 processing	 (Belin,	 Fecteau	 &	 Bédard,	 2004;	 Belin,	

Bestelmeyer,	Latinus	&	Watson,	2011;	see	Figure	4).	The	model	proposes	that	voices	

are	 processed	 in	 a	 hierarchical	 manner,	 starting	 with	 the	 basic	 acoustic	 analysis	 of	

incoming	sounds	in	subcortical	nuclei	and	primary	auditory	cortex.	This	is	followed	by	

voice-signal	 specific	analyses	 in	 the	 temporal	 lobes,	 in	 the	so-called	Temporal	Voice	

Areas	 (TVAs;	Pernet	et	al.,	 2015).	Evidence	 from	neuroimaging	studies	 supports	 the	

notion	 of	 voice-selective	 areas	 in	 bilateral	 mid	 and	 anterior	 superior	 temporal	 gyri	

(STG)	 and	 superior	 temporal	 sulci	 (STS).	 These	 areas	 have	 been	 shown	 to	 respond	

more	 strongly	 to	 vocal	 signals	 compared	 to	 other	 non-vocal	 signals,	 such	 as	

environmental	 sounds	 (Pernet	 et	 al.,	 2015;	 see	 also	 Belin	 et	 al.,	 2011).	 It	 should	 be	

noted	that	a	large	part	of	this	selectivity	for	voices	can,	however,	be	explained	by	the	

physical	properties	of	 the	signals,	as	activations	 in	TVAs	 largely	disappear	when	the	

acoustic	properties	of	the	sounds	have	been	accounted	for.	This	suggests	that	within	

the	 TVAs,	 voice	 processing	 is	 still	 closely	 linked	 to	 specific	 acoustic	 features	 and	

activation	 of	 these	 regions	 may	 thus	 at	 least	 partially	 reflect	 the	 processing	 of	

complex	 or	 highly	 salient	 sounds,	 instead	 of	 (or	 in	 addition	 to)	 abstracted	 voice-

specific	processing	(Leaver	&	Rauschecker,	2010).	
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Figure	4	Hierarchical	model	of	voice	perception,	adapted	from	Belin	et	al.	(2011).	Light	blue	boxes	
contain	 information	 about	 auditory	 processing,	 turquoise	 boxes	 refer	 to	 visual	 processes,	 light	
green	boxes	refer	to	amodal	processing	steps.	Arrows	denote	interactions	within	(solid)	and	across	
(dotted)	modalities.	
	

Independence	of	voice	processing	pathways	

The	model	outlined	 in	 Figure	4	proposes	 that	within	 the	TVAs,	 speech-,	 affect-	 and	

identity-related	 information	 is	 extracted	 from	 the	 voice	 and	 processed	 along	 three	

partially	 independent	 pathways.	 Neuropsychological	 evidence	 confirms	 this	 partial	

dissociation:	 Studies	 of	 individuals	 with	 phonagnosia,	 that	 is	 individuals	 who	 are	

unable	 to	 recognise	 others	 from	 their	 voices,	 show	 a	 selective	 disruption	 of	 the	

processing	 of	 identity-related	 information	 (e.g.	 recognising	 a	 speaker	 or	

discriminating	 voices	 from	 each	 other)	 while	 emotion	 and	 speech	 processing	 from	

verbal	 and	 non-verbal	 emotional	 vocal	 signals	 remain	 intact	 (Garrido	 et	 al.,	 2009;	

Hailstone,	Crutch,	Vestergaard,	Patterson	&	Warren,	2010).	Van	Lancker	and	Canter	

(1982)	 further	 report	 that	 20	 out	 of	 21	 left	 hemisphere	 stroke	 patients,	 all	 of	 them	

aphasic	(according	to	the	authors:	“seven	Broca’s	aphasics,	three	mixed	anteriors,	two	

Wernicke’s,	 one	 amnesic,	 and	 five	 global	 aphasics.	 Three	 patients	 had	 mixed	
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symptomatologies	and	were	not	clinically	classifiable”	[Van	Lancker	&	Canter,	1982,	p.	

189]),	 could	 still	 process	 identity	 information	 encoded	 in	 voices.	 This	 study	 thus	

provides	evidence	for	a	dissociation	between	speech	(linguistic	content)	and	identity	

processing.	With	regard	to	the	 independent	processing	of	emotion	and	speech	from	

the	voice,	Barrett,	Crucian,	Raymer	and	Heilman	 (1999)	 report	 the	case	of	a	patient	

with	 global	 aphasia	 after	 a	 left	 hemisphere	 stroke.	 While	 the	 patient’s	 speech	

comprehension	 was	 disrupted,	 her	 ability	 to	 match	 emotional	 prosody	 to	 facial	

expressions	(and	vice	versa)	in	a	nonverbal	task	remained	intact.	Heilman,	Scholes	and	

Watson	 (1975)	 further	 report	 the	 results	 of	 a	 study	 of	 six	 patients	 showing	 normal	

sentence	 comprehension	 but	 impaired	 on	 emotion	 recognition	 from	 emotionally	

inflected	sentences	after	 right	hemisphere	strokes.	By	 finding	evidence	 for	 selective	

impairments	of	one	pathway	versus	the	other,	these	patient	studies	thus	demonstrate	

dissociations	 for	 all	 three	 proposed	 processing	 pathways,	 providing	 evidence	 for	 at	

least	partial	independence.	

	

Interactions	between	voice	(and	face)	processing	pathways	

There	 is	 also	 some	 evidence	 that	 the	 three	 pathways	 for	 emotion-,	 speech-	 and	

identity-related	 information	 interact	with	 each	other	 in	 healthy	 listeners:	 Studies	of	

speech	 intelligibility,	 for	 example,	 show	 that	 listeners	 are	 better	 at	 understanding	

speech	 from	 familiar	 talkers	 compared	 to	 unfamiliar	 talkers	 (Goggin,	 Thompson,	

Strube,	 Simental,	 1991;	 Nygaard	 &	 Pisoni,	 1998;	 Pisoni,	 1993).	 Speaker	 recognition	

has	also	been	 shown	 to	be	 language	dependent:	Listeners	are	better	at	 recognising	

and	 learning	 vocal	 identities	 when	 exposed	 to	 speech	 samples	 produced	 in	 their	

native	language	(e.g.	Perrachione,	Pierrehumbert	 	&	Wong,	2009;	Perrachione	et	al.,	
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2011)	–	this	 is	the	case	even	when	the	 listeners	have	only	been	passively	exposed	to	

the	language	without	understanding	it	(Orena,	Theodore	&	Polka,	2015).		

Belin	 et	 al.’s	 (2004,	 2011)	 model	 furthermore	 proposes	 that	 voice	 and	 face	

processing	pathways	interact	at	each	of	the	different	stages	during	the	processing	of	

multimodal	 information.	 There	 is	 a	 wealth	 of	 evidence	 showing	 that	 signals	 from	

faces	 interact	 with	 information	 encoded	 in	 a	 voice.	 The	 McGurk	 effect	 (McGurk	 &	

MacDonald,	1976),	where	incongruent	visual	and	auditory	information	(e.g.	(seeing	a	

person	saying	/ga/	while	simultaneously	hearing	them	saying	/ba/)	for	a	speech	sound	

interact	 resulting	 in	an	auditory	 illusion	 (perceiving	the	audiovisual	stimulus	as	 /da/),	

shows	 such	 interactions	 for	 speech	 comprehension.	 Emotional	 information	 in	 one	

modality	has	been	shown	to	influence	the	perception	of	emotion	in	other	modalities:	

During	the	presentation	of	incongruent	audiovisual	pairings	of	emotional	displays,	the	

perception	of	 the	emotional	 content	of	 one	modality	has	been	 shown	 to	be	 shifted	

towards	 the	 emotional	 content	 of	 the	 other	 modality	 (Barrett	 &	 Kensinger,	 2010;	

Collignon	 et	 al.,	2008;	 De	 Gelder	 &	 Vroomen,	 2000;	 Lavan,	 Lima,	 Harvey	 &	

McGettigan,	2014).	The	posterior	STS	has	been	suggested	as	a	hub	for	the	integration	

of	 interactions	 between	 vocal	 and	 visual	 information	 (see	 Brück,	 Kreifelts	 &	

Wildgruber,	 2011	 for	 a	 review	 of	 emotional	 displays;	 MacSweeney	 et	 al.,	 2001	 for	

speech	reading).	As	a	final	stage	of	the	model,	information	from	the	identity	pathway	

in	both	faces	and	voices	(plus	any	other	identity	related	information	available)	finally	

culminates	in	an	amodal	person	identification	node	(PIN).	
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1.5 Voice	perception:	what’s	in	a	voice?	

According	to	Belin	et	al.’s	(2004,	2011)	model,	listeners	can	extract	information	about	

speech,	 emotional	 states	 and	 person-related	 characteristics	 from	 (speech-based)	

vocal	signals.	The	following	sections	will	review	the	evidence	supporting	these	claims.	

	

 Speech	1.5.1

A	 large	 body	of	work	 has	 shown	 that	 despite	 considerable	 variability	within	 speech	

signals,	 listeners	are	experts	at	extracting	 linguistic	 information	 from	vocal	 signals	–	

even	in	challenging	listening	situations.	Theoretical	models	have	described	the	neural	

underpinnings	of	speech	perception	(e.g.	Hickok	&	Poeppel,	2000;	Scott	&	Johnsrude,	

2003)	 and	 have	 proposed	 models	 for	 the	 underlying	 cognitive	 mechanisms	 (e.g.	

McClelland	&	Elman,	1986).	Since	most	of	the	current	thesis	is	not	concerned	with	the	

processing	 of	 linguistic	 information	 in	 speech	 signals,	 this	 literature	 will	 not	 be	

reviewed	in	detail	here.	

	

 Emotion	1.5.2

Much	of	 the	 research	on	emotion	perception	 from	 voices	has	 focussed	on	whether	

participants	 can	 accurately	 categorise	 emotions	 from	 vocal	 displays.	 Similar	 to	

emotional	expressions	from	other	modalities,	such	as	facial	expressions	(e.g.	Ekman	&	

Friesen,	 1971),	 there	 is	 conclusive	 evidence	 that	 emotional	 prosody	 and	 non-verbal	

emotional	vocalisations	can	be	 recognised	and	 reliably	categorised	both	across	and	

within	 cultures	 (Bryant	 &	 Barrett,	 2008;	 Scherer,	 Banse	 &	 Wallbott,	 2001;	 Pell,	

Monetta,	 Paulmann	&	Kotz,	 2009;	 Paulmann	&	Uskul,	 2014;	 Sauter	&	 Scott,	 2007;	

Sauter	 et	 al.,	 2010a).	 All	 studies	 report	 above-average	 categorisation	 accuracy	 for	
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anger,	 fear,	 sadness,	 disgust	 and	 amusement.	 It	 should	 be	 noted	 that	 in-group	

advantages	are	 regularly	 found	 in	cross-cultural	studies,	where	 recognition	 rates	are	

generally	 higher	 in	 cases	 where	 sounds	 are	 presented	 to	 listeners	 from	 the	 same	

culture	as	 the	speakers	–	 indicating	some	cultural	specificity	 in	emotion	expressions	

(Paulmann	 &	 Uskul,	 2014;	 Sauter	 et	 al.,	 2010a).	 Aside	 from	 the	 basic	 emotion	

categories	(anger,	fear,	sadness,	surprise,	disgust	and	joy)	initially	proposed	by	Ekman	

(1992),	it	has	also	been	shown	that	other	emotions	can	as	well	be	reliably	recognised	

by	 listeners	 within-culture:	 participants	 were	 for	 example	 shown	 to	 be	 able	 to	

distinguish	between	vocalisations	denoting	different	positive	emotional	states	such	as	

relief,	achievement	and	pleasure	(Sauter	&	Scott,	2007).	

	 Beyond	 accurate	 categorisation	 of	 vocal	 emotions,	 studies	 have	 also	 found	

that	participants	are	able	to	reliably	 judge	other	affective	qualities	within	and	across	

different	vocal	emotions.	Based	on	Russell’s	circumplex	model	of	emotion	(1980,	see	

Section	1.3	for	a	description),	 it	has	been	shown	that	participants	can	give	ratings	of	

arousal	 and	 valence	 among	 other	 dimensional	 affective	 judgements	 for	 vocal	

emotions	 with	 high	 interrater	 reliability	 (Juslin	 &	 Laukka,	 2003,	 Laukka,	 Juslin	 &	

Bresin,	 2005).	 Crucially,	 listeners	 can	 furthermore	 accurately	 assess	 other	 nuanced	

aspects	 of	 affective	 information	 in	 the	 voice,	 for	 example,	 they	 can	detect	whether	

vocalisations	 were	 produced	 volitionally	 or	 spontaneously	 	 (Bryant	 &	 Aktipis,	 2014;	

Lavan	&	McGettigan,	2016).	

	

Laughter:	The	perception	of	meaningful	distinctions	within	a	vocalisation	category	

Emotional	 vocalisations	 are	 not	 unitary	 in	 their	 meaning:	 one	 type	 of	 vocalisation,	

such	as	laughter,	can	signal	a	range	of	meanings,	depending	on	the	context	in	which	it	
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is	produced	 (or	perceived).	Recent	 research	on	 laughter	has	shown	that	participants	

are	 able	 to	 make	 accurate	 within-vocalisation	 judgements	 of	 affective	 features	 of	

certain	vocal	signals:	Participants	are	able	to	reliably	judge	the	authenticity	of	a	laugh,	

i.e.	whether	the	laugh	was	produced	in	response	to	genuine	amusement	or	whether	it	

was	 produced	 without	 an	 underlying	 emotional	 state	 (Bryant	 &	 Aktipis,	 2014;	

McGettigan,	Walsh,	Jessop,	Agnew,	Sauter,	Warren	&	Scott,	2015;	Lavan	et	al.,	2016).	

Szameitat	 and	 colleagues	 (2009a,	 2009b)	 presented	 participants	with	 recordings	 of	

ticklish	 laughter,	 taunting	 laughter,	 joyful	 laughter	 as	 well	 as	 laughter	 denoting	

schadenfreude	 (a	 laugh	 signalling	 both	 joy	 and	 taunting).	 The	 authors	 found	 that	

participants	 could	 not	 only	 distinguish	 between	 the	 different	 laughs	 and	 categorise	

them	accurately	but	that	they	also	perceived	these	laughs	to	be	significantly	different	

in	valence,	arousal	and	dominance;	the	affective	ratings	could	in	turn	be	predicted	by	

acoustic	 measures	 (Szameitat	 et	 al.,	 2009b).	 The	 laughter	 categories	 used	 in	

Szameitat	et	al.’s	 (2009a,	2009b)	studies	are,	however,	 to	some	extent	problematic:	

the	authors	used	professional	 actors	 to	produce	 the	 stimuli,	 asking	 them	 to	portray	

these	four	specific	types	of	laughter	and	assuming	ecological	validity	of	all	four	types	–	

the	 actors	 thus	 created	 maximally	 discriminable,	 potentially	 stereotypical	 laughter	

sounds	that	listeners	were	then	asked	to	classify,	which	may	have	inflated	recognition	

performance.	 In	 another	 study	 of	 laughter,	 Bachorowski	 and	Owren	 (2001)	 showed	

that	 authentic	 voiced	 laughter	 was	 rated	 as	 more	 positive,	 friendlier	 and	 more	

attractive	 compared	 to	 authentic	 unvoiced	 laughter	 (i.e.	 grunt-like	 or	 snort-like	

laughter).		Further,	Bryant	et	al.	(2016)	report	the	results	of	a	large-scale	cross-cultural	

study,	which	indicated	that	listeners	from	diverse	cultures	can	reliably	judge	whether	

brief	 samples	of	 laughter	were	produced	by	 two	 friends	or	 by	 two	 strangers.	 These	
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studies	 thus	 show	 that	a	wealth	of	nuanced	affective	 features	are	encoded	within	a	

single	vocalisation	type	(here:	laughter)	and	can	be	reliably	decoded	by	listeners.	

	

 Identity	(and	other	speaker	characteristics)	1.5.3

Listeners	 are	 able	 to	 extract	 a	 wealth	 of	 information	 about	 a	 speaker	 from	 vocal	

signals:	 information	about	physical	characteristics	of	a	speaker	 (age,	height,	weight,	

state	 of	 health,	 sex,	 arousal,	 etc.),	 psychological	 characteristics	 (arousal,	 emotional	

state,	stress,	etc.)	and	social	characteristics	 (education,	regional	origin,	social	status,	

sexual	orientation,	occupation,	etc.;	see	Kreiman	&	Sidtis,	2011	for	an	overview)	can	

all	be	readily	perceived	by	listeners.	While	some	of	these	speaker	characteristics	can	

be	established	from	voices	with	relatively	high	accuracy	(e.g.	speaker	sex,	estimates	

of	speaker	age	and	emotional	state),	other	characteristics	are	less	well	circumscribed	

and	 mainly	 socially	 but	 not	 biologically	 marked,	 making	 listener	 judgements	 less	

reliable	(e.g.	occupation,	regional	origin	and	sexual	orientation).	 In	addition	to	these	

relatively	 objective	 speaker	 characteristics,	 many	 judgements	 pertaining	 to	 a	

speaker’s	 personality	 as	 well	 as	 subjective	 assessments	 of	 specific	 qualities	 of	 a	

speaker’s	voice	can	be	extracted	from	vocal	signals:	Studies	have	shown	that	listeners	

are	 able	 to	 make	 judgements	 about	 personality	 features,	 such	 as	 attractiveness,	

trustworthiness,	dominance,	aggressiveness	and	likeability	of	a	speaker	among	others	

with	 high	 interrater	 reliability	 (Cronbach’s	 alpha	 >	 .88;	 McAleer,	 Todorov	 &	 Belin,	

2014).	While	 listeners	seem	to	agree	on	judgements	such	as	these,	 it	still	 remains	to	

be	 established	whether	 these	 judgements	 accurately	 reflect	 a	 speaker’s	 personality	

traits	or	whether	such	 judgements	are	associated	with	certain	acoustic	 features	that	

are,	however,	not	necessarily	linked	to	the	speaker’s	personality.		



Introduction	

 
	

35	

Aside	from	judgements	about	specific	speaker	characteristics,	such	as	age	and	

sex,	 listeners	 are	 also	 able	 to	 extract	 holistic	 information	 about	 a	 person’s	 identity	

from	 voices	 only:	 listeners	 can	 recognise	 and	 identify	 a	 familiar	 person	 from	 their	

voice	only	and	they	can	discriminate	between	different	(unfamiliar)	speakers.	Speaker	

identification	(most	frequently)	requires	listeners	to	explicitly	name	the	speaker	after	

being	presented	with	the	relevant	vocal	signals.	Speaker	recognition	is	tested	by	using	

forced	 choice	 paradigms	 including	 a	 range	 of	 speaker	 identities	 whereas	 speaker	

discrimination	tasks	are	based	on	same-different	judgements	of	pairs	of	vocal	signals.	

Reliable	speaker	identification	and	recognition	require	prolonged	prior	exposure	to	a	

speaker’s	 voice	 –	 with	 duration	 and	 type	 of	 exposure	 (incidental	 versus	 explicit)	

affecting	performance:	Earwitness	 studies,	 for	 example,	 report	 chance	performance	

for	 speaker	 recognition	 after	 a	 brief	 incidental	 15	 second	 exposure	 to	 a	 voice,	 i.e.	

listeners	talked	to	a	speaker	prior	to	the	experiment	without	knowing	that	they	will	be	

asked	about	 the	 speaker’s	 voice	 later	 (Yarmey,	Yarmey	&	Yarmey,	 1994).	However,	

after	listening	to	a	speaker	for	~1:30	minutes	with	the	explicit	instruction	to	remember	

the	 voices,	 Papcun,	 Kreiman	 and	 Davies	 (1989)	 report	 clear	 above	 chance	

performance	for	speaker	recognition.	Abberton	and	Fourcin	(1978)	further	report	very	

high	performance	of	 speaker	 identification	 for	 voices	of	 classmates	 that	had	known	

each	 other	 for	 5	 months	 (98%),	 while	 other	 studies	 show	 evidence	 for	 good	

recognition	 and	 identification	 accuracy	 of	 celebrities	 and	 other	 famous	 voices	 (e.g.	

Hanley,	Smith	&	Hadfield,	1998;	Schweinberger,	Herzholz	&	Sommer,	1997).		

Successful	 speaker	 recognition	 –	 especially	 for	 speakers	 that	 are	 not	 highly	

familiar	to	 listeners	–	has	furthermore	been	shown	to	depend	on	the	duration	of	the	

test	 stimuli,	 the	 information	encoded	 in	 the	 stimuli	 as	well	 as	 the	 retention	 interval	
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between	 exposure	 and	 test	 time:	 Papcun,	 Kreiman	 and	 Davis	 (1989)	 report	 a	

significant	drop	off	in	speaker	recognition	rates	after	4	weeks.	In	two	well-controlled	

studies,	Bricker	and	Pruzansky	(1966)	and	Schweinberger	et	al.	 (1997)	show	that	the	

longer	 the	 test	 stimuli	 and	 also	 the	 more	 (linguistic)	 information	 is	 encoded	 in	 a	

stimulus,	 the	 higher	 the	 recognition	 or	 identification	 rates.	 The	 authors	 link	 these	

findings	 to	 listeners	 being	 able	 to	 more	 thoroughly	 sample	 a	 speaker’s	 vocal	 and	

phonemic	 inventory.	 Yarmey	 and	 Matthys	 (1992)	 and	 Kerstholt,	 Jansen,	 Van	

Amelsvoort	and	Broeders	(2004)	similarly	find	complex	interactions	between	listener	

performance,	stimulus	duration	and	retention	intervals.		

Other	studies	have	investigated	speaker	discrimination	abilities	of	(unfamiliar)	

listeners.	 Van	 Lancker	 and	 Kreiman	 (1987)	 note	 that	 speaker	 recognition	 and	

discrimination	 are	 separate	 abilities	 with	 discrimination	 not	 necessarily	 preceding	

recognition.	The	authors	support	their	argument	with	patient	data	showing	a	double	

dissociation	 between	 speaker	 discrimination	 and	 recognition.	 Studies	 of	 speaker	

discrimination	in	general	show	that,	for	healthy	listeners	in	good	listening	conditions,	

accuracy	of	(unfamiliar)	speaker	discrimination	is	very	high	(>	90%	for	healthy	young	

adults;	Reich	&	Duke,	1979;	Van	Lancker	&	Kreiman,	1987;	Wester,	2012).	

It	 has	 thus	 been	 shown	 that	 listeners	 can	 extract	 a	 wide	 range	 of	 speaker	

characteristics,	 ranging	 from	 specific	 features,	 such	 as	 speaker	 sex	 to	 holistic	

judgements	about	speaker	 identity	as	well	as	 (subjective)	 impressions	of	a	speaker’s	

personality.	Performance	 for	 the	 tasks	varies	 (see	high	performance	 for	 speaker	 sex	

compared	to	at	times	low	performance	for	speaker	recognition)	as	a	function	of	task,	

listener,	stimulus	and	speaker	characteristics.	
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1.5.3.1 Mechanisms	underlying	successful	identity	perception	in	the	voice	

In	the	literature	on	the	perception	of	speaker	characteristics	from	vocal	signals,	some	

authors	have	proposed	candidate	processes	or	mechanisms	to	help	listeners	to	extract	

information	from	vocal	signals	in	a	reliable	way.	Prototype-based	processing	has	been	

suggested	 by	 some	 authors	 to	 underlie	 voice	 processing.	 In	 addition,	 a	 framework	

based	on	auditory	expertise	and	auditory	perceptual	 learning	aligns	with	 the	effects	

reported	in	the	literature	to	date.	These	processes	will	be	discussed	below.	

	

Prototype-based	processing	

Kreiman	and	Sidtis	 (2011,	2012)	propose	a	model	of	voice	 identity	processing	that	 is	

centred	on	 the	differential	processing	of	 familiar	and	unfamiliar	 voices.	The	authors	

offer	 a	 basic	 framework	with	 regard	 to	 the	 underlying	mechanisms	 involved	 in	 the	

higher	 order	 aspects	 of	 voice	 processing.	 They	propose	 that	 familiar	 and	 unfamiliar	

voices	are	processed	 in	 relation	 to	voice	prototypes.	The	notion	of	prototype-based	

processing	of	 signals	 is	 a	mechanism	 commonly	proposed	by	models	 in	 psychology	

and	 linguistics	 to	explain	 the	 categorisation	and	 recognition	of	 abstract	 information	

(e.g.	Homa,	Sterling	&	Trepel,	1981;	Osherson	&	Smith,	1981;	Posner	&	Keele,	1968).	

While	many	 versions	of	 prototype	 theories	 exist,	 they	 all	 revolve	 around	 the	notion	

that	 prototypical	 concepts	 of	 objects	 are	 stored	 in	 long-term	 memory.	 When	

encountering	an	object,	imagined	or	real,	this	object	is	compared	to	the	most	likely	or	

suitable	prototypes	available	in	long-term	memory.	Objects	within	a	certain	category	

can	be	more	or	less	representative	of	these	prototypical	concepts.	For	example,	while	

a	 sparrow	 might	 be	 highly	 representative	 of	 the	 category	 ‘bird’	 as	 it	 has	 wings,	

feathers,	a	beak,	lays	eggs	and	can	fly,	a	penguin	is	less	representative	of	this	category	
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as	 it	cannot	fly.	Prototypes	are	thought	to	be	shaped	by	an	individual’s	experience	–	

what	is	highly	familiar	and	encountered	frequently	will	be	highly	representative	of	an	

existing	and	potentially	very	specific	prototype.	

For	 voices,	 Kreiman	 and	 Sidtis	 (2011)	 propose	 that	 unfamiliar	 voices	 are	

processed	 based	 on	 their	 acoustic	 features	 in	 a	 stimulus-driven	 way	 and	 then	

compared	to	prototypical	templates	based	on	population	averages	(see	also	Kreiman	

&	 Papcun,	 1991	 and	 Papcun,	 Kreiman	 &	 Davis,	 1989).	 In	 contrast	 to	 this,	 familiar	

voices	 are	 thought	 to	 be	 processed	 in	 a	 more	 holistic	 way,	 based	 on	 salient	

idiosyncratic	features	in	a	vocal	signal.	After	detecting	the	idiosyncratic	features	of	a	

familiar	voice,	vocal	signals	produced	by	familiar	speakers	are	thought	to	be	matched	

to	 representations	 of	 the	 specific	 speaker’s	 vocal	 inventory	 that	 are	 stored	 in	 long-

term	memory.		

A	 small	 number	 of	 studies	 report	 evidence	 supporting	 this	 prototype-based	

model	of	voice	processing:	Papcun,	Kreiman	and	Davis	(1989,	for	a	similar	study,	see	

also	Kreiman	&	Papcun,	 1991)	 explored	 the	 long-term	memory	 for	 three	 unfamiliar	

voices	 that	were	 rated	 (by	 independent	 listeners)	 as	being	easy,	medium	or	hard	 to	

remember	 –	 the	 interpretation	 here	 was	 that	 easy-to-remember	 voices	 are	 very	

distinct	 and	 dissimilar	 to	 average	 voices,	 while	 hard-to-remember	 voices	 are	 very	

similar	 to	 the	average.	 In	a	between-subjects	design,	 three	groups	of	 listeners	were	

each	initially	exposed	to	one	of	these	three	target	voices	and	asked	to	remember	it.	In	

a	follow-up	testing	session	(after	1,	2	or	4	weeks),	listeners	were	then	asked	to	identify	

their	target	voice	from	within	a	set	of	10	voices	(containing	their	target	voice,	plus	9	

probes	including	the	2	other	targets	and	6	additional	distractors).	The	authors	report	

that	 correct	 identification	 rates	 for	 the	 target	 voice	were	 similar	 for	 listeners	 in	 the	
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hard-,	 medium-	 and	 easy-to-remember	 groups.	 Listeners	 did,	 however,	 make	

significantly	 more	 false	 identifications	 (i.e.	 false	 alarms)	 in	 the	 easy-to-remember	

group	 than	 the	 hard-to-remember	 group.	 A	 further	 analysis	 looked	 at	 false	

identifications	on	the	same	3	voices	when	 listeners	encountered	them	as	probes	 (i.e.	

for	 listener	who	did	not	hear	 the	voices	as	 targets):	 this	analysis	 showed	 that	 fewer	

false	 identification	 were	 made	 for	 the	 easy-to-remember	 probe	 while	 more	 false	

identifications	were	made	for	the	hard-to-remember	probe.	Papcun	et	al.	(1989)	thus	

note	 on	 the	 one	 hand	 that	 the	 easy-to-remember	 target	 voice	 diverges	 from	

population	 average-voices	 and	 therefore	 has	 a	 relatively	 unstable	 representation	 in	

long-term	memory.	 Over	 time,	 the	 memory	 of	 such	 distinct	 or	 atypical	 voices	 will	

degrade,	 thus	 resulting	 in	 frequent	 false	 identifications	of	other	voices	as	 the	 target	

voice.	 In	 contrast	 to	 this,	 when	 an	 easy-to-remember	 voice	 (i.e.	 atypical)	 voice	 is	

encountered	as	a	probe	and	the	listener	has	to	compare	it	to	their	remembered	target	

voice,	all	 acoustic	 features	of	 this	distinctive	probe	are	 immediately	available	 to	 the	

listener.	 This	 allows	 listeners	 to	 then	 dismiss	 this	 probe	 voice	 as	 a	 potential	 target,	

thus	making	 fewer	 false	 identifications.	On	 the	 other	 hand,	 the	 authors	 argue	 that	

hard-to-remember	voices	have	relatively	stable	mental	representations,	because	they	

are	more	 similar	 to	 the	 already	 established	 population-average	 prototype	 and	 thus	

easier	to	more	robustly	encode	on	first	presentation.	The	representation	in	memory	of	

such	 relatively	average	voices	does	 therefore	not	degrade	as	 rapidly	over	 time.	This	

then	results	 in	fewer	false	 identifications	when	hard-to-remember	voices	are	targets	

(and	the	 listener	has	to	recall	 the	features),	but	will	also	be	associated	with	a	higher	

number	of	false	identifications	when	these	voices	are	used	as	probes	as	their	physical	
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features	are	not	as	distinct	from	population-average	prototypes	compared	to	easy	to	

remember	voices.	

In	 another	 study	 looking	 at	 unfamiliar	 voice	 processing,	 Latinus	 and	 Belin	

(2011)	report	the	results	of	an	adaptation	paradigm	exploring	perceptual	after-effects	

from	exposure	 to	 ‘anti-voices’.	 This	work	was	modelled	on	 studies	 exploring	person	

recognition	 from	 faces,	 which	 showed	 that	 adaptation	 to	 an	 “anti-face”	 results	 in	

facilitation	 of	 identification	 of	 the	 original	 (e.g.	 Leopold,	 O’Toole,	 Vetter	 &	 Blanz,	

2001).	Anti-faces	and	anti-voices	are	described	as	a	caricature	of	the	average	identity,	

created	by	morphing	an	individuals’	face/voice	toward,	and	then	beyond,	the	average	

stimulus.	 Intriguingly,	 anti-faces	 (and	 anti-voices)	 are	 perceived	 as	 categorically	

distinct	 from	 the	original	person	 identity.	 Latinus	and	Belin	 (2011)	 found	perceptual	

after-effects	on	the	 identification	of	voice	morphs	 (between	an	original	 speaker	and	

the	population	 average)	 following	 adaptation	with	 the	matching	 anti-voice.	 That	 is,	

after	 several	 seconds	 of	 exposure	 to	 Anti-voice	 C,	 listeners	 were	 relatively	 more	

accurate	(in	a	3-way	forced	choice	task)	at	identifying	a	30%	morph	between	Speaker	

C	and	the	prototype	as	Speaker	C	(and	not	A	and	B).	However,	this	effect	did	not	hold	

for	adaptation	with	non-matching	anti-voices	(i.e.	exposure	to	Anti-voice	A	followed	

by	 test	on	 the	Speaker	C	morph.	Similar	 to	Leopold	et	 al.	 (2001),	 Latinus	 and	Belin	

(2011)	propose	that	the	exposure	to	voices	on	the	same	‘identity	trajectory’	-	that	 is,	

passing	 through	 a	 prototypical,	 average	 voice	 on	 the	 perceptual	 ‘voice	 space’	 -	 can	

cause	 aftereffects	 by	 adapting	 the	 ‘anti-features’	 of	 the	 talker	 and	 thus	making	 the	

original	 features	 more	 prominent	 in	 perception.	 The	 authors	 take	 this	 as	 evidence	

showing	that	prototypical	averaged	voices	play	a	central	role	in	voice	processing.		
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In	an	fMRI	study,	Latinus,	McAleer,	Bestelmeyer	and	Belin	(2013)	further	report	

that	activation	in	TVAs	is	modulated	as	a	function	of	acoustic	distance	of	a	voice	to	an	

average	 prototypical	 voice,	 that	 is	 the	 less	 prototypical	 a	 voice,	 the	 stronger	 the	

activation	 in	 the	 TVAs.	 Conceptually,	 this	 is	 similar	 to	 the	 easy-	 and	 hard-to-

remember	voices	found	in	Papcun	et	al.’s	(1989)	study	of	voice	prototypicality,	albeit	

that	 Latinus	 and	 colleagues	 defined	 this	 using	 acoustic	 properties	 as	 opposed	 to	

listeners	 ratings.	 Based	 on	 their	 fMRI	 results,	 Latinus	 et	 al.	 (2013)	 argue	 that	 voice	

processing	occurs	in	bilateral	TVAs	with	reference	to	prototypical	(or	averaged)	voice	

representations.	While	 these	 compelling	 findings	 could	be	 regarded	 as	 evidence	 for	

prototype-based	 processing	 of	 voices,	 this	 could	 also	 reflect	 an	 expertise	 effect	 –	

TVAs	may	respond	more	strongly	to	non-prototypical	or	unusual	voices	that	occur	less	

frequently	 in	 perceptual	 experience,	 which	 by	 definition	 will	 lie	 further	 away	 from	

population	averages	in	their	acoustic	properties	–	this	calls	into	question	whether	it	is	

the	 acoustic	 properties	 of	 average	 voices	 that	 play	 a	 prominent	 role	 during	 voice	

perception,	or	merely	the	listener’s	experience	with	those	properties.	Further,	it	is	also	

unclear	how	increasing	BOLD	(blood	oxygen	level	dependent)	responses	in	a	cortical	

area	 should	 be	 interpreted	 in	 this	 case	 –	 do	 these	 reflect	 greater	 novelty,	 or	 the	

presence	 of	 more	 elaborate	 neural	 computations?	 Nonetheless,	 these	 empirical	

studies	do	provide	some	evidence	for	a	role	of	prototypical	or	averaged	voices	during	

unfamiliar	 speaker	 identity	 processing,	 further	 supported	 by	 the	 alignment	 with	

findings	from	studies	of	face	perception	(Leopold	et	al.,	2001;	Leopold,	Rhodes,	Müller	

&	Jeffery,	2005;	Rhodes	&	Jeffery,	2006).	While	there	 is	some	evidence	from	studies	

regarding	the	processing	of	learned	voices	(Papcun	et	al.,	1989),	prototype	models	in	

the	context	of	familiar	voices	have	not	been	explored	in	detail.	
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Auditory	expertise,	familiarity	and	perceptual	learning	

It	has	been	proposed	that	humans	are	experts	at	face	and	voice	processing	based	on	

the	vast	amount	of	information	that	can	be	extracted	from	these	signals	(Belin	et	al.,	

2004;	2011)	–	in	their	discussion	of	familiar	voice	processing,	Sidtis	and	Kreiman	(2012)	

write	that	human	voice	perception	is	a	“prodigious	cognitive	ability”	(p.147),	and	that	

the	 capacity	 to	 recognize	 multiple	 vocal	 identities	 has	 no	 known	 limit.	 Through	

repeated	 exposure	 and	 engagement,	 humans	 can	 become	 experts	 in	 processing	

certain	stimuli.	 In	the	auditory	domain	in	general,	most	studies	of	auditory	expertise	

have	 focused	 on	 musicians:	 through	 prolonged	 exposure	 and	 engagement	 with	

sounds,	many	studies	have	shown	advantages	for	musicians	in	auditory	tasks,	such	as	

pitch	 discrimination,	 when	 directly	 compared	 to	 non-musicians	 (Spiegel	 &	Watson,	

1981;	 Kishon-Rabin,	 Amir,	 Vexler	 &	 Zaltz,	 2001).	 Further	 evidence	 for	 perceptual	

learning	 comes,	 for	 example,	 from	 studies	 showing	 that	 listeners	 can	 improve	 their	

ability	 to	understand	drastically	degraded	noise-vocoded	 speech	 (with	only	minimal	

spectral	 information	 in	 the	 auditory	 signal;	 Shannon,	 Zeng,	 Kamath,	 Wygonski	 &	

Ekelid,	1995)	after	some	training.	Other	studies	have	shown	that	listeners	are	able	to	

accurately	 remember	 the	 pitch	 of	 a	 television	 series	 theme	 tune	 they	 have	 been	

watching,	while	listeners	who	are	not	familiar	with	the	theme	tune	fail	to	identify	the	

original	 pitch	 (Schellenberg	 &	 Trehub,	 2003).	 With	 regard	 to	 auditory	 expertise	 in	

identity	 perception,	 only	 very	 few	 studies	 are	 available.	 One	 study	 has	 shown	 that	

musicians	are	better	than	non-musicians	at	identifying	individuals	from	their	musical	

performances	 (e.g.	 Koren	 &	 Gingras,	 2014	 for	 harpsichord	 performances;	 but	 see	

Gingras,	Lagrandeur-Ponce,	Giordano	&	McAdams,	2011	who	do	not	report	a	listener	

effect).	 Chartrand,	 Peretz	 and	 Belin	 (2008)	 note	 that,	 in	 the	 visual	 domain,	 studies	
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have	shown	that	dog,	bird	and	car	experts	and	chick	sexers	can	discriminate	between,	

recognise	 and	 identify	 individual	 exemplars	 within	 their	 expertise	 while	 lay	 people	

struggle	 to	 do	 so.	 Similar	 evidence	 exists	 for	 people	 being	 able	 to	 identify	 specific	

types	of	cars	or	train	by	the	sound	of	their	engines,	while	pet	owners	can	identify	their	

pet	by	its	name	–	although	all	of	this	evidence	appears	to	be	purely	anecdotal	rather	

than	empirical.	

	 These	 few	 examples	 thus	 provide	 evidence	 for	 auditory	 perceptual	 learning	

and	expertise,	which	has	an	impact	on	how	stimuli	are	perceived.	In	the	framework	of	

a	 prototype-based	 account	 of	 voice	 processing	 (Kreiman	 &	 Sidtis,	 2011),	 this	 thus	

suggests	 that	 listeners	 have	 formed	 robust	 and	 highly	 specific	 prototypes	 through	

perceptual	learning	of	the	sounds	that	fall	within	their	area	of	expertise.	This	will	then	

allow	them	to	make	more	fine-grained	distinctions	between	these	sounds.	Listeners	

who	have	no	particular	expertise	with	these	sounds,	lack	well-defined	representations	

of	 the	 category	 of	 stimulus	 in	 question,	 resulting	 in	 less	 fine-grained	 and	 thus	 less	

accurate	judgements	for	relatively	similar	and	non-distinctive	sounds.	

	

1.6 The	current	thesis	

The	 previous	 sections	 of	 this	 chapter	 have	 outlined	 the	 unique	 flexibility	 and	

variability	 of	 human	 vocal	 signals,	 described	 how	 these	 properties	 emerge	 due	 to	

volitional	and	spontaneous	changes	 in	voice	control	and	production,	and	considered	

how	 listeners	extract	 linguistic,	emotional	and	speaker-related	 information	 from	the	

voices	they	hear.	The	flexibility	in	vocal	signals	has	to	date	been	largely	neglected	by	

research	 investigating	 how	 speaker	 characteristics	 are	 perceived	 from	 voices,	 since	
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these	 studies	 have	 largely	 investigated	 voice	 perception	 in	 the	 context	 of	 speech	

sounds	 produced	 in	 a	 neutral	 tone	 of	 voice.	 This	 thesis	 will	 thus	 explore	 voice	

perception	 outside	 of	 neutral	 speech	 signals	 in	 familiar	 and	 unfamiliar	 listeners.	

Natural,	 unmanipulated	 non-verbal	 vocalisations,	 produced	 under	 different	 level	 of	

volitional	control	(vowels,	volitional	laughter,	spontaneous	laughter	and	spontaneous	

crying)	as	well	as	whispered	speech	will	be	used	to	investigate	familiar	and	unfamiliar	

listeners’	 ability	 to	 extract	 and	 generalise	 information	 related	 to	 speaker	 identity	

through	 behavioural	 testing,	 functional	 magnetic	 resonance	 imaging	 and	 acoustic	

analyses.	
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2 Speaker	 sex	 recognition	 from	volitional	 and	 spontaneous	
non-verbal	vocalisations	

	

Experiments	1	and	2	explore	how	a	basic	judgement	of	speaker	characteristics,	

speaker	 sex	 recognition,	 is	 affected	 by	 vocal	 flexibility,	 introduced	 by	

contrasting	 volitional	 and	 spontaneous	 vocalisations.	 In	 Experiment	 1,	

participants	judged	speaker	sex	from	two	spontaneous	vocalisations,	laughter	

and	 crying,	 and	 volitionally	 produced	 vowels.	 Listeners’	 performance	 was	

significantly	 impaired	 for	 spontaneous	 vocalisations	 compared	 to	 volitional	

ones,	 a	 pattern	 that	 was	 also	 reflected	 in	 longer	 reaction	 times	 for	

spontaneous	vocalisations.	Within	spontaneous	vocalisations,	performance	for	

laughter	 was	 additionally	 impaired	 compared	 to	 crying.	 In	 Experiment	 2,	

different	 stimuli	 were	 used:	 spontaneous	 laughter,	 volitional	 laughter	 and	

(volitional)	 vowels.	 Results	 indicate	 that	 performance	 was	 impaired	 for	

spontaneous	laughter	but	not	for	volitional	laughter	and	vowels.	Experiment	2	

therefore	 provides	 further	 evidence	 that	 differences	 in	 volitional	 control	 over	

production	but	not,	for	example,	differences	in	arousal	or	vocalisation-specific	

effects	 drive	 these	 effects.	 For	 both	 experiments,	 acoustic	 analyses	 did	 not	

show	 clear	 relationships	 between	 stimulus	 properties	 and	 participant’s	

performance.	 The	 results	 are	 discussed	 in	 the	 light	 of	 modulations	 of	 the	

salience	 of	 acoustic	 cues	 across	 variable	 vocal	 signals	 as	 well	 as	 potential	

modulations	 of	 attention	 during	 the	 perception	 of	 emotionally	 salient	 vocal	

signals.	
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2.1 Experiment	1	

 Introduction	2.1.1

Listeners	are	able	to	reliably	determine	speaker	sex	from	audio-only	vocal	signals	with	

high	accuracy	(Coleman,	1971;	Lass	et	al.,	1976).	Speaker	sex	can	be	assessed	rapidly,	

with	listeners	being	able	to	identify	sex	from	vowel	segments	lasting	under	15ms	(<	10	

glottal	cycles;	Owren,	Berkowitz	&	Bachorowski,	2007).	Speaker	sex	can	furthermore	

be	 successfully	extracted	even	 from	degraded	or	manipulated	vocal	 signals,	 such	as	

sine-wave	 speech	 (which	 retains	 only	 the	 amplitude-modulated	 formants	 from	 the	

original	 speech	 signal)	 and	 noise-vocoded	 speech	 (which	 retains	 the	 amplitude-

modulated	temporal	 information	for	a	 limited	number	of	 frequency	bands;	Shannon	

et	al.,	1995)	with	as	few	as	3	channels	(Gonzalez	&	Oliver,	2005).	While	speaker	sex	is	

traditionally	 conceptualised	 as	 a	 binary	 with	 two	 distinct	 categories,	 studies	 have	

found	 that	 when	 presented	 with	 stimuli	 morphed	 from	 male	 to	 female	 voices,	

listeners	perceive	 speaker	 sex	 in	a	 continuous	 (as	opposed	 to	a	 categorical)	manner	

(Mullennix	et	al.,	1995)	–	in	contrast	to	this,	phonemic	contrasts	show	clear	category-

based	perception	(Liberman,	Safford-Harris,	Hoffman	&	Griffith,	1975).	This	difference	

between	speech	and	speaker	sex	processing	may	thus	indicate	that	the	extraction	of	

speaker	characteristics	may	involve	different	mechanisms	to	speech	perception.	

The	 perceptual	 cues	 assumed	 to	 allow	 listeners	 to	 distinguish	 male	 from	

female	voices	are	linked	to	sex-specific	anatomical	features	of	the	vocal	tract:	Due	to	

the	pronounced	sexual	dimorphism	of	the	human	larynx	and	vocal	 folds,	males	tend	

to	on	average	have	 longer	and	thicker	vocal	 folds	as	well	as	 longer	vocal	tracts	than	

females	 (Titze,	1989).	These	 two	 features	mainly	 lower	F0	and	affect	 the	spacing	of	

frequencies	 of	 formants	 in	 vocal	 signals,	 thus	 making	 male	 and	 female	 voices	
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relatively	 distinct	 from	 each	 other.	 This	 sexual	 dimorphism	 is	 greater	 in	 humans	

compared	to	other	apes	and	has	frequently	been	linked	to	sexual	selection,	with	low	

F0	predicting	perception	of	(male)	attractiveness	and	dominance	(Puts	et	al.,	2016).		

Studies	 have	 indeed	 shown	 that	 acoustic	 cues,	mainly	 differences	 in	 F0	 and	

formant	characteristics,	are	crucial	for	determining	speaker	sex	from	vocal	signals	that	

have	been	produced	in	a	neutral	voice	(Bachorowski	&	Owren,	1999;	Bachorowski,	et	

al.,	 2001;	 Skuk	&	 Schweinberger,	 2014).	 The	 salience	 of	 these	 cues	 for	 speaker	 sex	

identification	is	furthermore	highlighted	in	a	study	by	Mullennix	and	colleagues	(1995),	

who	synthetically	shifted	F0	and	 formant	 frequencies	 in	vocalisations	and	were	thus	

able	to	successfully	create	continua	of	vocalisations	that	were	perceived	by	 listeners	

to	 morph	 from	 male	 to	 female.	 While	 both	 formant	 frequencies	 and	 F0	 –	 and	

potentially	other	less	explored	acoustic	factors	–	play	an	important	role	in	determining	

speaker	sex,	 it	has	been	argued	that	F0	may	be	the	more	salient	cue	for	speaker	sex	

judgements:	 Lass	 et	 al.	 (1976)	 have	 shown	 that	 removing	 the	 source	 signal	 (which	

encodes	F0	information)	by	using	whispered	speech	affects	participants’	 judgements	

of	speaker	sex	more	drastically	than	when	stimuli	are	low-pass	filtered	(thus	removing	

all	 filter	 information,	 which	 includes	 all	 formants	 [apart	 from	 F0]).	 Honorof	 and	

Whalen	 (2010)	 report	 that	 when	 F0	 is	 volitionally	manipulated	 by	 a	 speaker	 within	

their	natural	F0	range	while	producing	 isolated	vowels,	misidentifications	of	speaker	

sex	occur	at	the	extremes	of	the	Fo	range,	with	high	F0	vocalisations	being	identified	

as	 female	 and	 low	 F0	 vocalisations	 as	 male.	 These	 studies	 therefore	 show	 that	

changes	 in	salient	acoustic	cues	through	natural	volitional	voice	modulations	as	well	

as	 synthetic	 manipulations	 of	 the	 stimuli	 can	 affect	 the	 accuracy	 of	 speaker	 sex	

judgements	from	voices,	underlining	the	perceptual	salience	of	these	cues.	
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Given	these	findings,	it	can	be	expected	that	speaker	sex	identification	should	

be	impaired	for	other	examples	of	natural	vocal	flexibility:	spontaneous	vocalisations	

differ	 from	 neutral	 vocal	 signals	 in	 their	 acoustic	 (notably	 in	 F0	 which	 has	 been	

identified	as	a	 important	cue	to	speaker	sex	 judgements)	and	perceptual	properties,	

and	even	from	volitionally	produced	exemplars	of	the	same	vocalisation	(for	laughter,	

see	 Bryant	 &	 Aktipis,	 2014;	 Lavan	 et	 al.,	 2016).	 The	 current	 study	 explored	 sex	

identification	 from	 variable	 vocal	 signals:	 Participants	 performed	 a	 speaker	 sex	

identification	 task	 on	 Spontaneous	 Laughter	 (LaughterS),	 Spontaneous	 Crying	

(CryingS)	 and	 Vowels	 (‘staccato	 vowels’;	 see	 Figure	 5	 for	 example	 waveforms	 and	

spectrograms).	 It	 was	 hypothesised	 that	 the	 perception	 of	 speaker	 sex	 would	 be	

impaired	for	spontaneous	vocalisations,	with	listeners’	performance	for	LaughterS	and	

CryingS	 being	 significantly	 lower	 than	 for	 Vowels.	 Performance	 for	 LaughterS	 and	

CryingS	should	 be	 similar	 as	 both	 vocalisations	 a	 similar	 across	 a	 range	 of	 acoustic	

measures	(see	Materials).	

	

	
Figure	5	Waveforms	(top	panels)	and	spectrograms	(bottom	panels)	of	the	vocalisation	types	used	
in	 Experiment	 1-5	 and	 7:	 Spontaneous	 Laughter	 (LaughterS),	 Volitional	 Laughter	 (LaughterV),		
Spontaneous	Crying	(CryingS)	and	Vowels	(‘staccato	vowels’).	Darker	shading	on	the	spectrogram	
represents	higher	intensity.	
	



Speaker	sex	recognition	from	volitional	and	spontaneous	non-verbal	vocalisations	

 
	

49	

 Participants	2.1.2

44	participants	 (24	 female;	MAge:	 20.9	 years;	SD:	 1.2	 years;	 range	 19-24	years)	were	

recruited	at	 the	Department	of	Psychology	at	Royal	Holloway,	University	of	London	

and	 received	 course	 credit	 for	 their	 participation.	 Testing	 for	 this	 study	 (and	

Experiment	 3)	 was	 conducted	 by	 undegraduate	 students	 as	 part	 of	 their	 final	 year	

project.	 Each	 student	 was	 asked	 to	 test	 15	 participants,	 which	 resulted	 in	 the	 final	

sample	size	of	44.	All	participants	had	normal	or	corrected-to-normal	vision	and	did	

not	 report	 any	 hearing	 difficulties.	 Ethical	 approval	 was	 obtained	 from	 the	

Departmental	Ethics	Committee	at	 the	Department	of	Psychology,	Royal	Holloway,	

University	of	London.	None	of	the	participants	were	familiar	with	the	speakers	used.	

Average	performance	 across	 conditions	 for	 each	participants	was	within	 2	 standard	

deviations	from	the	mean	and	therefore	all	participants	were	included	in	the	following	

analyses.	

	

 Materials	2.1.3

LaughterS,	CryingS	and	Vowels	were	recorded	from	5	speakers	(3	male,	2	female,	age	

range:	23	–	46	years)	in	a	soundproof,	anechoic	chamber	at	University	College	London.	

Recordings	were	obtained	using	a	Bruel	and	Kjaer	2231	Sound	Level	Meter	fitted	with	

a	 4165	 cartridge,	 recorded	 onto	 a	 digital	 audio	 tape	 recorder	 (Sony	 60ES;	 Sony	UK	

Limited,	Weybridge,	UK)	and	 fed	 to	 the	S/PDIF	digital	 input	of	a	PC	sound	card	 (M-

Audio	 Delta	 66;	 M-Audio,	 Iver	 Heath,	 UK)	 with	 a	 sampling	 rate	 of	 22.050	 Hz.	 The	

speakers	 were	 seated	 at	 a	 distance	 of	 30	 cm	 at	 an	 angle	 of	 15	 degrees	 to	 the	

microphone.	 LaughterS	 was	 elicited	 from	 speakers	 while	 watching	 or	 listening	 to	

amusing	sound	or	video	clips	(see	McGettigan	et	al.	[2015]	for	a	detailed	description	of	
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the	 recording	 procedure).	 For	 CryingS,	 speakers	 recalled	 upsetting	 events	 and/or	

initially	 posed	 crying	 to	 encourage	 a	 transition	 into	 spontaneous	 crying	 associated	

with	genuine	felt	sadness.	Crucially,	speakers	informally	reported	genuine	feelings	of	

amusement	 and	 sadness	 during	 and	 after	 these	 recording	 sessions.	 No	 formal	

measurements	 of	 the	 speakers’	 emotional	 states	 were	 collected	 as	 obtaining	 such	

measures	would	have	 required	to	 interrupt	 the	 recording	session,	which	would	have	

been	detrimental	to	the	elicitation	of	spontaneous	vocalisations.	

In	a	pilot	study,	a	group	of	listeners	(N	=	13)	provided	ratings	of	arousal	(“How	

aroused	is	the	person	producing	the	vocalisation?”,	with	1	denoting	“the	person	is	feeling	

very	sleepy	and	drowsy”	and	7	denoting	“the	person	is	feeling	very	alert	and	energetic”),	

valence	 (“How	 positive	 or	 negative	 is	 the	 person	 producing	 this	 vocalisation	 feeling?”,	

with	 1	 denoting	 “very	 negative”	 and	 7	 denoting	 	 “very	 positive”),	 control	 over	 the	

vocalisations	 (“How	 much	 control	 did	 the	 person	 have	 over	 the	 production	 of	 the	

vocalisation?”,	 with	 1	 denoting	 “none	 at	 all”	 and	 7	 denoting	 “full	 control”)	 and	

authenticity	(“How	authentic	is	the	vocalisation?”,	with	1	denoting	“not	authentic	at	all”	

and	 7	 denoting	 “very	 authentic”).	 Note	 that	 volitional	 laughter	 and	 crying	 were	

included	in	this	pilot	study	as	well	(see	Experiments	2,	4-5	and	7	for	volitional	laughter	

stimuli;	 volitional	 crying	 was	 not	 included	 in	 this	 thesis).	 These	 pilot	 ratings	

established	that	participants	reliably	rate	spontaneous	 laughter	and	crying	as	higher	

in	arousal	and	authenticity,	 lower	 in	control	over	 the	production	of	 the	vocalisation,	

and	more	extreme	in	valence	(more	positive	for	laughter	and	more	negative	for	crying,	

respectively)	than	their	volitional	counterparts.	The	speakers	also	produced	series	of	

short	 vowels	 (‘staccato	 vowels’;	 /a/,	 /i/,	 /e/,	 /u/,	 /o/,	 average	 vowel	 duration	within	 a	

series	 =	 .35secs)	 with	 a	 relatively	 stable	 pitch	 (F0	 Mean:	 206.4	 Hz,	 SD:	 78.3	 Hz)	 to	
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preserve	 a	 percept	 of	 neutral	 emotional	 valence.	 This	 type	 of	 volitional,	 non-

emotional	stimulus	was	chosen	as	its	acoustic	structure	resembles	laughter	and	crying,	

given	 all	 three	 vocalisations	 are	 based	 on	 series	 of	 vocalic	 bursts	 (see	 Figure	 5).	

Individual	vocalisation	exemplars	were	extracted	from	the	recordings	and	normalised	

for	RMS	amplitude	using	PRAAT	(Boersma	&	Weenink,	2010).		

	

Perceptual	features	of	the	stimuli	

Based	on	 the	 ratings	 collected	 for	 a	 larger	 set	of	 vocalisations	 in	 the	pilot	 study,	25	

stimuli	per	vocalisation	(5	per	speaker)	were	selected,	choosing	series	of	vowels	that	

were	neutral	in	valence	(MValence:	3.92;	CI[3.85,	3.99])	and	low	in	arousal	(MArousal:	2.68;	

CI[2.56,	 2.81])	 and	 spontaneous	 laughter	 and	 crying	 exemplars	 that	 were	 high	 in	

arousal	 (MCryingS:	 3.79,	 CI[3.61	 3.96];	MLaughterS:	 4.78,	 CI[4.46,	 5.10];	 t[48]	 =	 5.691,	 p	

<	.001,	Cohen’s	d	=	1.643),	and	authenticity	(MCryingS:	3.58,	CI[3.25,	3.91];	MLaughterS:	4.79,	

CI[4.42,	5.16];	t[48]	=	5.022,	p	<	.001,	Cohen’s	d	=	1.5)	–	note	that	the	stimulus	set	did	

not	allow	 for	a	match	of	arousal	or	authenticity	 for	LaughterS	and	CryingS.	All	 three	

vocalisation	sets	were	matched	for	duration	(MVowels:	2.55	secs,	CI[2.43,	2.66];	MCryingS:	

2.61	secs,	CI[2.50,	2.73];	MLaughterS:	2.41	secs,	CI[2.32,	2.61];	F(2,48)	=	1.31,	p	=	.280).		
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Acoustic	features	of	the	stimuli2	

Table	1	shows	an	overview	of	the	means	for	the	acoustic	properties	of	the	stimuli.	The	

following	acoustic	measures	were	used:	

(1) Duration:	The	interval	between	the	first	zero-crossing	of	the	onset	to	the	final	
zero	crossing	after	the	offset	of	the	vocalisation.	

(2) Burst	duration:	The	interval	between	the	first	zero-crossing	of	the	onset	to	
the	final	zero	crossing	of	a	vocalic	burst.	

(3) Percentage	of	unvoiced	segments:	Percentage	of	frames	lacking	harmonic	
structure.	

(4) F0	mean:	Computed	using	the	auto-correlation	method	in	PRAAT.	F0	floor	
was	set	at	75	Hz	and	the	F0	ceiling	at	1000	Hz.	

(5) F0	standard	deviation:	The	standard	deviation	of	the	F0	mean	

(6) Spectral	centre	of	gravity:	Measure	for	the	mean	height	of	the	frequencies	
for	each	vocalisation,	which	captures	the	weighting	of	energy	in	the	sound	
across	the	frequency	range.	

(7) Mean	harmonics-to-noise-ratio	(HNR):	The	mean	ratio	of	quasi	periodic	to	
non-period	signals	across	time	segments.	

(8) Jitter:	The	average	absolute	difference	between	consecutive	periods,	divided	
by	the	average	period,	i.e.,	micro-fluctuations	in	the	duration	of	each	period.	

(9) Shimmer:	The	average	absolute	difference	between	the	amplitudes	of	
consecutive	periods,	divided	by	the	average	amplitude.		

	

T-tests	 were	 performed	 to	 assess	 acoustic	 differences	 between	 vocalisations	

(corrected	 for	 multiple	 comparisons,	 α	 =	 .006).	 These	 tests	 showed	 that	 while	

LaughterS	and	CryingS	were	acoustically	similar	for	all	acoustic	measures	(all	ps	≥	.016)	

with	 the	exception	of	 spectral	 centre	of	gravity	 (t{48]	=	4.389,	p	 <	 .001,	Cohen’s	d	 =	

																																																								
2	No	 formant	 measures	 were	 extracted	 from	 the	 stimuli.	 Previous	 studies	 have	 extracted	 formant	
measures	 from	 non-verbal	 emotional	 vocalisations,	 such	 as	 laughter	 (e.g.	 Szameitat,	 Darwin,	
Szameitat,	Wildgruber,	Sterr,	Dietrich	&	Alter,	2007a;	Bachorowski,	Smoski	&	Owren,	2001)	but	came	
to	conflicting	conclusions.	For	most	vocalisations,	especially	for	spontaneous	ones,	the	authors	report	
that	 it	was	difficult	 to	extract	 reliable	 formant	measures	 from	a	 representative	portion	of	 the	sounds	
(see	Bachorowski	et	al.,	2001,	for	a	discussion).	An	analysis	of	such	formant	measures	would	thus	have	
been	biased	and	was	therefore	omitted	from	the	current	studies.	
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1.267),	 CryingS	 differed	 from	 Vowels	 in	 all	 acoustic	 measures	 (ps	 <	 .001)	 with	 the	

exception	of	total	duration	(t[48]	=	 .805,	p	=	 .425,	Cohen’s	d	=	 .232),	F0	variability	(p	

=	 .029)	 and	 spectral	 centre	of	 gravity	 (t{48]	 =	 .013,	p	 =	 .994,	Cohen’s	d	 =	 .001).	 The	

acoustic	 properties	 of	 LaughterS	 were	 significantly	 different	 from	 Vowels	 for	 all	

measures	(p	≤	.001),	except	total	duration	(t{48]	=	.917,	p	=	.364,	Cohen’s	d	=	.131)	and	

F0	standard	deviation	(t[48]	=	2.706,	p	=	.009;	Cohen’s	d	=	.781).	Despite	constituting	

two	different	vocalisations,	LaughterS	and	CryingS	can	be	thus	considered	acoustically	

more	 similar	 to	 each	 other,	 while	 Vowels	 were	 acoustically	 very	 dissimilar	 to	 both	

LaughterS	 and	 CryingS.	 For	 a	 detailed	 breakdown	 of	 the	 acoustic	 properties	 of	 the	

stimuli	by	speaker	and	by	gender,	see	Table	1.	

	

 Methods	2.1.4

Participants	were	seated	in	front	of	a	computer	screen,	with	stimuli	being	presented	

at	 a	 comfortable	 volume	 via	 headphones	 (Sennheisser	 HD	 201),	 using	 MATLAB	

(Mathworks,	 Inc.,	 Natick,	 MA)	 with	 the	 Psychophysics	 Toolbox	 extension	

(http://psychtoolbox.org/).	 All	 trials	 were	 timed,	 giving	 participants	 2.5	 seconds	 to	

make	a	response	before	moving	on	to	the	next	trial.	Participants	were	presented	with	

75	 stimuli	 in	 total	 (25	 per	 vocalisation;	 Vowels,	 LaughterS	 and	 CryingS)	 in	 fully	

randomised	 order.	 During	 the	 presentation	 of	 the	 sounds,	 a	 fixation	 cross	 was	

presented	on	the	screen,	which	was	then	replaced	by	a	prompt	asking	participants	to	

indicate	 whether	 the	 speaker	 was	 male	 or	 female	 (two-way	 forced	 choice)	 via	 a	

keyboard	press.	The	task	lasted	for	approximately	10	minutes.	

	



Speaker	sex	recognition	from	volitional	and	spontaneous	non-verbal	vocalisations	

 
	

54	

	
	

	
Ta

bl
e	
1	
Ta

bl
e	
of
	m

ea
ns

	a
nd

	s
ta
nd

ar
d	
de

vi
at
io
n	
of
	a
co

us
ti
c	
de

sc
rip

to
rs
	o
f	v

oc
al
is
at
io
ns

	u
se
d	
in
	E
xp

er
im

en
t	1

	a
nd

	3
.	



Speaker	sex	recognition	from	volitional	and	spontaneous	non-verbal	vocalisations	

 
	

55	

 Results	2.1.5

Sex	recognition	from	volitional	and	spontaneous	non-verbal	vocalisations	
	

	

Figure	 6	a)	Average	d’	 scores	per	vocalisation	for	the	sex	 identification	task,	b)	average	reaction	
times	per	vocalisation	for	the	sex	identification	task	of	Experiment	1.	Significant	results	(p	<	.017)	
are	highlighted		with	an	asterisk.	
	
	
For	an	analysis	by	subject,	d’	scores	were	calculated	from	the	raw	responses.	For	this	

study,	 responding	 “female”	 to	 a	 vocalisation	 produced	 by	 a	 female	 speaker	 was	

scored	as	a	hit,	responding	“male”	to	a	vocalisation	produced	by	a	female	speaker	was	

scored	 as	 a	miss.	 Responding	 “male”	 to	 a	 vocalisation	 produced	 by	 a	male	 speaker	

was		scores	as	a	correct	rejection	and	responding	“female”	to	a	vocalisation	produced	

by	 a	male	 was	 scored	 as	 a	 false	 alarm.	 Hit	 and	 False	 Alarm	 rates	 of	 1	 and	 0	 were	

adjusted	 using	 the	 formula	 ((n	 -	 0.5)	 ÷	 n))	 (n	 =	 number	 of	 trials	 per	 condition;	 see	

Stanislaw	 &	 Todorov,	 1999)	 for	 all	 analyses.	 After	 this	 adjustment,	 d’	 scores	 could	

range	from	zero	to	4.11,	with	a	d’	score	of	zero	indicating	that	listeners	were	not	able	

to	discriminate	between	speaker	sex	while	gradually	higher	scores	indicate	a	greater	

ability	to	discriminate	between	speaker	sex	(Stanislaw	&	Todorov,	1999).		
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D’	scores	were	entered	into	a	one-way	repeated	measures	ANOVA.	There	was	

a	main	effect	of	vocalisation	on	performance	of	sex	 identification	 (F[2,86]	=	25.47,	p	

<	 .001,	 ηp
2	=	 .37).	 Three	 post-hoc	 paired	 t-tests	 (alpha	 =	 .017,	 Bonferroni	 corrected)	

showed	 that	 performance	 was	 lower	 for	 identifying	 speaker	 sex	 from	 LaughterS	

compared	to	Vowels	(t[44]=	6.22,	p	<	 .001,	Cohen’s	d	=	1.875)	and	as	well	as	CryingS	

(t[44]=	 2.72,	 p	 =	 .009,	 Cohen’s	 d	 =	 .82).	 Furthermore,	 performance	 was	 also	

significantly	lower	for	CryingS	compared	to	Vowels	(t[44]=	5.26,	p	<	.001,	Cohen’s	d	=	

1.586)	(Figure	6a).	A	one-way	repeated	measures	ANOVA	on	reaction	times	confirmed	

a	 main	 effect	 of	 vocalisation	 (F[2,86]	 =	 16.35,	 p	 <	 .001,	 ηp
2	 =	 .28).	 Post-hoc	 t-tests	

showed	 that	 reaction	 times	 were	 significantly	 faster	 for	 Vowels	 compared	 to	

LaughterS	(t[44]=	-4.60,	p	<	.001,	Cohen’s	d	=	1.39)	and	CryingS	(t[44]=	-4.89,	p	<	.001,	

Cohen’s	 d	 =	 1.474),	 while	 reaction	 times	 for	 CryingS	 and	 LaughterS	 were	 similar	

(t[44]=	.11,	p	=	.913,	Cohen’s	d	=	.03)	(Figure	6b).	D’	values	are	high	for	all	vocalisations	

and	correspond	to	average	accuracy	scores	of	92.65%	for	Vowels,	90.21%	for	CryingS	

and	80.36%	for	LaughterS.	

A	response	bias	analysis	was	conducted:	C	was	calculated	by	averaging	the	z	

scores	 of	 the	 hit	 and	 false	 alarm	 rate	 and	multiplying	 it	 by	minus	 (see	 Stanislaw	&	

Todorov,	 1999).	 Zero	 indicated	 no	 bias,	 negative	 values	 indicate	 a	 bias	 towards	

responding	 ‘female’,	 positive	 values	 indicate	 a	 bias	 towards	 respond	 ‘male’.	 For	

Vowels,	a	significant	bias	towards	responding	 ‘male’	was	found,	whereas	for	CryingS	

and	 LaughterS	 significant	 biases	 towards	 responding	 ‘female’	 were	 found	 (all	 ps		

≤	.003).	
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Differences	in	perception	of	speaker	sex	for	male	and	female	vocalisations

Figure	7	Raw	accuracy	scores	per	item	split	for	male	and	female	vocalisations	for	the	speaker	sex	
identification	task	
	
	

As	 the	speaker	set	contained	male	and	 female	voices,	 further	analysis	attempted	to	

assess	 whether	 there	 were	 differences	 in	 the	 perception	 of	 male	 and	 female	

vocalisations	in	the	experiment.	A	2	(speaker	sex)	x	3	(vocalisation	type)	ANOVA	was	

performed.	 There	 was	 a	 significant	 main	 effect	 of	 speaker	 sex	 (F[1,43]	 =	 10.232,	 p	

=	.003,	ηp
2	=	.192)	and	vocalisation	type	(F[2,86]	=	17.398,	p	<	.001,	ηp

2	=	.288)	as	well	as	

an	 interaction	 of	 speaker	 sex	 and	 vocalisation	 type	 (F[2,86]	 =	 26.971,	 p	 <	 .001,	 ηp
2	

=	.385).	Post-hoc	t-test	confirmed	that	performance	for	male	and	female	vocalisations	

was	significantly	different	for	all	vocalisations	(all	ps	≤	.002),	with	performance	being	

better	for	female	spontaneous	vocalisations,	and	better	for	male	vowels	(Figure	7).	
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Linking	performance	accuracy	to	acoustic	features	

To	 establish	 whether	 and	 which	 acoustic	 cues	 were	 particularly	 salient	 for	 sex	

perception	from	vocal	signals	 in	 the	context	of	 this	study,	acoustic	properties	of	 the	

stimuli	 were	 linked	 to	 the	 raw	 accuracy	 of	 speaker	 sex	 for	 the	 individual	 tokens.	

Initially,	 two	 multiple	 regression	 models	 were	 run,	 by	 speaker	 sex	 (one	 for	 stimuli	

produced	 by	 male	 speakers	 and	 one	 for	 stimuli	 produced	 by	 female	 speakers),	

including	F0	mean	as	a	predictor	of	raw	accuracy.	It	was	hypothesised	that	higher	Fo	

in	 females	 should	 enhance	 accuracy,	 while	 higher	 Fo	 in	 males	 should	 decrease	

accuracy	(see	Honorof	&	Whalen,		2010).	For	female	vocalisations,	F0	mean	was	not	a	

significant	 predictor	 for	 accuracy	 (R2	 =	 .047,	β	 =	 .218,	 t[44]	 =	 1.462,	p	 =	 .151),	while	

changes	 in	 F0	mean	 predicted	 accuracy	 for	male	 vocalisation,	 showing	 in	 line	 with	

predictions	 lower	 accuracy	 for	 higher	 pitched	 sounds	 (R2	 =	 .383,	β	 =	 -.618,	 t[29]	 =	 -

4.171,	p	 <	 .001).	To	 further	explore	whether	and	how	F0	 is	 linked	 to	accuracy	within	

each	 vocalisation,	 six	 additional	 regression	 analyses	 were	 run	 (2	 speaker	 sex	 x	 3	

vocalisations).	F0	mean	was	not	found	to	be	a	significant	predictor	of	accuracy	in	any	

of	 these	 models	 (all	 ps	 ≥	 .186)	 with	 the	 exception	 of	 male	 crying	 where	 against	

predictions	higher	pitch	was	associated	with	better	accuracy	(R2	=	.506,	β	=	.721,	t[9]	=	

2.865,	p	=	.021).	

To	 investigate	 whether	 acoustic	 properties	 other	 than	 F0	 significantly	

predicted	 accuracy,	 further	 multiple	 regression	 analyses	 were	 run,	 entering	 all	

remaining	acoustic	measures	as	predictors	using	 the	Enter	method.	These	were	 run	

with	Total	Duration,	Percentage	of	Unvoiced	Segments,	Burst	Duration,	F0	SD,	HNR	

and	Spectral	Centre	of	Gravity	as	predictors	(F0	min,	F0	max,	Shimmer	and	Jitter	were	

excluded	 from	 the	 analyses	 due	 to	 avoid	 excessive	 collinearity).	 Models	 were	 run	
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across	all	vocalisations	and	for	each	individual	type	of	vocalisation.	In	contrast	to	the	

previous	 multiple	 regression	 analysis,	 there	 were	 no	 a	 priori	 hypotheses	 regarding	

different	 directionalities	 of	 effects	 within	 speaker	 sex,	 therefore	 no	 analysis	 by	

speaker	 sex	 was	 performed.	 The	 regression	 model	 including	 all	 vocalisations	 was	

significant	 (R2	 =	 .186,	 p	 =	 .026)	 with	 total	 duration	 being	 a	 significant	 predictor	 of	

accuracy	 (β	 =	 -.257,	 t[74]	 =	 -2.102,	 p	 =	 .039,	 all	 other	 ps	 ≥	 .121),	 counterintuitively	

indicating	 that	 accuracy	 was	 higher	 for	 shorter	 vocalisations.	 Furthermore,	 the	

regression	model	 for	 Vowels	was	 significant	 (R2	 =	 435,	 p	 =	 .009)	 with	 HNR	 being	 a	

significant	 predictor	 (β	=	 -.7,	 t[24]	 =	 -3.285,	p	 =	 .004,	 all	 other	ps	 ≥	 .059),	 indicating	

higher	accuracy	for	vocalisations	that	were	more	harmonic	within	the	voiced	portions	

of	the	signal.	The	acoustic	predictors	did	not	explain	a	significant	amount	of	variance	

for	regressions	models	looking	at	LaughterS	and	CryingS.	

	

 Discussion	2.1.6

The	 current	 experiment	 explored	 whether	 vocalisations	 produced	 under	 reduced	

volitional	 control	 would	 affect	 the	 extraction	 of	 speaker	 sex	 from	 non-verbal	 vocal	

signals.	Performance	was	impaired	for	LaughterS	and	CryingS	compared	to	Vowels,	in	

line	with	the	prediction	that	reduced	volitional	control	during	voice	production	has	a	

detrimental	 effect	 on	 the	 extraction	 of	 speaker	 sex.	 Intriguingly,	 performance	 for	

CryingS	 was,	 however,	 also	 significantly	 better	 compared	 to	 LaughterS.	 Reaction	

times	supported	the	prediction	with	response	 latencies	being	significantly	 longer	for	

spontaneous	 versus	 volitional	 vocalisations,	 potentially	 indicating	 greater	 task	

difficulty.	
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The	 distinct	 perceptual	 and	 acoustic	 features	 of	 these	 spontaneous	

vocalisations	may	 have	 affected	 participants’	 performance	 in	 accurately	 identifying	

speaker	sex:	in	spontaneous	vocalisations,	drastic	changes	in	acoustic	properties,	such	

as	F0,	occur.	Cues	to	speaker	sex	that	are	usually	encoded	within	the	same	acoustic	

properties	 are	 affected	 in	 spontaneous	 vocalisation	 production.	 These	 diagnostic	

acoustic	 cues	 may	 thus	 be	 ‘overwritten’	 or	 become	 perceptually	 less	 salient	 (e.g.	

global	modulations	of	F0	for	laughter,	potentially	resulting	in	less	marked	differences	

between	male	and	 female	 laughter	or	 shifting	vocalisations	produced	by	males	 into	

the	 acoustic	 space	 traditionally	 inidicative	 of	 vocalisations	 produced	 by	 females)	 –	

these	 changes	 in	 diagnostic	 cues	 should	 therefore	 impair	 task	 performance.	 As	 an	

alternative	 hypothesis,	 performance	 could	 have	 been	 affected	 by	 perceptual	 and	

affective	 qualities	 of	 spontaneous	 emotional	 vocalisations:	 Previous	 research	 has	

shown	 that	 emotional	 content	 captures	 a	 perceiver’s	 attention	 (Öhman,	 Flykt	 &	

Esteves,	2001;	Vuilleumier,	2005).	With	such	emotional	content	requiring	 immediate	

assessment,	 its	 processing	may	 be	 prioritised	 over	 the	 extraction	 of	 other	 types	 of	

information,	 such	 as	 cues	 to	 identity.	 In	 this	 specific	 context,	 cues	 to	 speaker	

characteristics,	such	as	speaker	sex,	may	be	less	relevant	to	a	perceiver	compared	to	

the	emotional	information	conveyed,	thus	performance	on	judgements	of	speaker	sex	

are	impaired	(Stevenage	&	Neil,	2014;	see	also	Goggin,	Thompson,	Strube	&	Simental,	

1991).	A	third	alternative	explanation	may	be	found	in	the	differences	in	the	exposure	

of	 listeners	 to	 volitional	 vocal	 signals	 and	 spontaneous	 vocal	 signals	 –	 in	 everyday	

experience,	 listeners	 are	more	 familiar	 with	 extracting	 speaker	 characteristics	 from	

volitional	vocal	signals	as	these	are	more	frequent,	thus	potentially	leading	to	poorer	

performance	for	comparatively	unfamiliar	spontaneous	vocalisations.	
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Against	 predictions,	 performance	 for	 LaughterS	 was	 significantly	 lower	

compared	 to	 CryingS.	 This	may	 be	 due	 to	 the	 stimuli	 selected	 for	 LaughterS	 being	

rated	significantly	higher	in	arousal	and	authenticity	than	those	selected	for	CryingS	in	

this	 study.	 Arousal	 and	 volitional	 control	 have	 been	 shown	 to	 be	 intimately	 linked	

(Lavan	 et	 al.,	 2016;	 McKeown,	 et	 al.,	 2015)	 and	 the	 LaughterS	 used	 in	 these	

experiments	 is	 therefore	 arguably	 less	 controlled	 in	 its	 production,	 leading	 to	more	

extreme	changes	in	the	signal	and	consequently	impairments	to	performance.	In	line	

with	previous	 studies	 that	 report	 above-chance	accuracy	 for	 judgements	of	 speaker	

sex	despite	acoustic	manipulations	of	the	signal	(Honorof	&	Whalen,	2010;	Lass	et	al.,	

1995;	Mullenix	et	al.,	1995),	the	current	findings	confirm	that	speaker	sex	is	encoded	in	

a	 range	 of	 acoustic	 features,	 resulting	 in	 a	 robust	 percept	 of	 speaker	 sex	 despite	

drastic	changes	introduced	to	the	signal:	if	one	salient	acoustic	cue,	such	as	F0	in	the	

current	 stimuli,	 is	 modulated	 and	 may	 thus	 become	 relatively	 less	 salient	 and	

diagnostic,	other	acoustic	cues	to	speaker	sex	may	still	remain	informative	to	listeners.	

Intriguingly,	speaker	sex	effects	were	apparent	in	the	data	set:	When	analysing	

raw	accuracy	scores	per	 item	and	split	by	speaker	gender,	accuracy	for	spontaneous	

vocalisations	was	higher	for	vocalisations	produced	by	females,	while	it	was	lower	for	

female	 Vowels,	 a	 volitional	 vocalisation.	 Furthermore,	 response	 biases	 towards	

‘female’	for	LaughterS	and	CryingS	and	towards	‘male’	for	Vowels	were	apparent.	This	

may	be	a	further	 indication	that	 important	markers	for	speaker	sex,	such	as	F0	have	

been	modulated	drastically	 in	males	 in	spontaneous	vocalisations,	approximating	F0	

values	frequently	encountered	in	female	vocalisations.	This	finding	was	confirmed	in	a	

regression	analysis	 showing	 that	 a	higher	F0	 leads	 to	 lower	accuracy	 in	 speaker	 sex	

identification	for	males	but	not	for	females.	It	should,	however,	be	noted	that	this	may	
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merely	reflect	an	effect	of	vocalisation	type,	showing	a	trend	of	accuracy	decreasing	

across	 these	 vocalisation	 (Vowels	 >	 CryingS	 >	 LaughterS)	 while	 F0	 mean	 increases	

(Vowels	 <	 CryingS	 <	 LaughterS,	 see	 Table	 1).	 This	 finding	 more	 generally	 poses	

intriguing	 questions	 regarding	 the	 role	 of	 F0	 across	 vocalisations	 for,	 for	 example,	

mate	 selection:	 Based	 on	 anatomical	 features	 of	 the	 male	 and	 female	 vocal	 tract,	

lower	pitch	F0	in	vocal	signals	is	generally	associated	with	male	speakers	while	higher	

F0	 is	 associated	 with	 female	 speakers.	 A	 low	 F0	 in	 males	 has	 been	 shown	 to	 be	

perceived	 to	 be	 attractive	 and	 dominant	 by	 female	 listeners,	 as	 it	 arguably	 signals	

favourable	mate	choices	(see	e.g.	Puts	et	al,	2016).	For	the	spontaneous	vocalisations	

used	 in	 this	 study,	 the	 sexual	dimorphism	 is	drastically	 reduced	between	males	and	

females.	Thus,	the	production	of	high-Fo	spontaneous	vocalisations	as	a	male	should	

have	 detrimental	 effects	 on	 reproduction	 success.	 Future	 studies	 should	 determine	

whether	the	role	of	F0	is	comparable	across	vocalisations	and	the	signalling	context.	

No	 clear	 relationship	 was	 observed	 between	 other	 acoustic	 measures	 and	

accuracy,	within	or	across	vocalisations:	Only	F0	predicted	accuracy	in	CryingS	as	well	

as	across	all	vocalisations	produced	by	males	–	although	against	predictions:	higher	F0	

was	related	to	higher	accuracy	for	CryingS	but	lower	accuracy	across	all	vocalisations.	

This	was,	however,	not	the	case	for	LaughterS	or	Vowels,	indicating	that	vocalisation-

specific	acoustic	effects	of	may	be	present.	These	results	should	however	be	treated	

with	caution,	due	to	the	limited	number	of	stimuli	and	lack	of	variability	in	the	data.	

While	 there	 are	 some	 indications	 that	 acoustic	 features	 may	 have	 affected	

listeners’	performance,	their	specific	role	is	still	unclear.	It	is	furthermore	unclear	from	

the	 current	 set	 of	 results	 which	 specific	 perceptual	 properties	 of	 the	 spontaneous	

vocalisations	 drive	 this	 detrimental	 effect	 on	 performance.	 First,	 from	 the	 current	
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results	 it	 cannot	 be	 determined	 whether	 changes	 in	 performance	 are	 due	 to	 the	

acoustic	consequences	of	differences	in	the	degree	of	control	of	the	voice	production	

only,	 or	 whether	 there	 may	 be	 effects	 of	 vocalisation	 type:	 Non-verbal	 emotional	

vocalisations	may	be	generally	 less	 informative	 for	decoding	 speaker	 characteristics	

compared	 to	 vowels.	 They	 may	 furthermore	 not	 be	 well	 attended	 to	 in	 everyday	

communication	in	general,	as	reported	for	laughter	where	the	frequency	of	laughter	in	

everyday	 interactions	 is	 dramatically	 underestimated	 in	 self-report	 questionnaires	

(Vettin	 &	 Todt,	 2004).	 If	 this	 were	 the	 case,	 vocalisation	 type	 (i.e.	 laughter	 versus	

crying	 versus	 vowels)	per	 se	 could	 have	 a	 greater	 influence	 on	 the	 observed	 effects	

instead	of	other	features,	such	as	the	spontaneous	nature	of	the	vocalisations.		Finally,	

the	effects	may	be	a	simple	effect	of	increasing	arousal	(Vowels	<	CryingS	<	LaughterS).	

Experiment	 2	 addresses	 these	 issues	 by	 contrasting	 volitional	 and	 spontaneous	

laughter	stimuli	that	were	better	matched	in	arousal	and	can	be	classed	under	a	single	

type	 of	 vocalisation	 but	 differ	 in	 the	 degree	 of	 emotional	 content	 and	 volitional	

control.	
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2.2 Experiment	2	

 	Introduction	2.2.1

In	 Experiment	 2,	 the	 perception	 of	 speaker	 sex	 from	 LaughterS	 (produced	 during	

authentic	 amusement	 under	 reduced	 volitional	 control),	 LaughterV	 (produced	 on	

demand,	 under	 full	 volitional	 control)	 and	 Vowels	 will	 be	 compared	 as	 a	 follow-up	

study	 to	 Experiment	 1.	 For	 this	 experiment,	 LaughterV	 and	 LaughterS	were	 better	

matched	for	arousal	(see	Section	2.2.3)	but	showed	within-vocalisation	differences	in	

volitional	 control	 over	 production.	 With	 these	 stimuli,	 it	 could	 thus	 be	 directly	

assessed	whether	detrimental	 effects	on	performance	 in	 the	 tasks	 in	Experiments	 1	

resulted	from	reduced	volitional	control	over	the	voice,	differences	in	arousal	between	

vocalisations	 or	 whether	 the	 effects	 were	 indicative	 of	 general	 differences	 in	 the	

perceptual	processing	of	different	vocalisation	types	regardless	of	 levels	of	volitional	

control.	 If	 differences	 in	 vocalisation	 type	 or	 arousal	 modulate	 performance,	

performance	 for	LaughterS	and	LaughterV	 should	be	 lower	 than	 for	Vowels,	as	both	

types	of	laughter	differ	from	Vowels	in	arousal	and	are	a	different	type	of	vocalisation.	

If	reduced	volitional	control	over	production	modulates	performance,	performance	for	

Vowels	and	LaughterV	should	be	higher	than	for	LaughterS.		

	

 Participants	2.2.2

43	 participants	 (39	 female;	MAge:	 19.2	 years;	SD:	 1.1	 years;	 range	 19-21	 years)	were	

recruited	at	 the	Department	of	Psychology	at	Royal	Holloway,	University	of	London	

and	 received	 course	 credit	 for	 their	 participation.	 The	 sample	 size	 was	 determined	

based	on	the	sample	size	of	the	previous	study	in	which	a	similar	sample	size	resulted	

in	 reliable	 effects.	 No	 participant	 reported	 any	 hearing	 difficulties.	 Ethical	 approval	
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was	 obtained	 from	 the	 Departmental	 Ethics	 Committee.	 None	 of	 the	 participants	

were	familiar	with	the	speakers	used.	Average	performance	across	conditions	for	each	

participants	 was	 within	 2	 standard	 deviations	 from	 the	 mean	 and	 therefore	 all	

participants	were	included	in	the	following	analyses.	

	

 Materials	2.2.3

Materials	 were	 the	 same	 as	 in	 Experiment	 1	 with	 the	 exception	 that	 CryingS	was	

replaced	 by	 LaughterV	 produced	 by	 the	 same	 5	 speakers	 (see	 Experiment	 1).	 The	

procedure	for	the	recording	and	elicitation	procedure	was	as	described	in	McGettigan	

et	al.	(2015).	In	short:	For	LaughterV,	the	speakers	were	instructed	to	produce	natural	

and	 positive	 sounding	 laughter,	 without	 inducing	 a	 specific	 emotional	 state.	 Thus,	

LaughterV	 was	 produced	 under	 full	 volitional	 control	 over	 the	 voice	 (and	 in	 the	

absence	 of	 amusement),	 while	 LaughterS	 was	 produced	 spontaneously	 and	 thus	

under	 reduced	 volitional	 control,	 in	 response	 to	 viewing	 and	 listening	 to	 amusing	

stimuli.	 LaughterV	 was	 recorded	 in	 the	 same	 session	 as	 LaughterS,	 with	 LaughterV	

always	being	recorded	first	to	avoid	carry-over	effects.	Based	on	the	ratings	from	the	

pilot	study	(see	Experiment	1),	25	LaughterV	stimuli	(5	per	speaker)	were	selected.	

	

Perceptual	features	of	the	stimuli	

There	 were	 marked	 differences	 in	 perceived	 authenticity	 between	 LaughterV	 and	

LaughterS	(LaughterV	M:	 3.60,	CI[3.41,	 3.79];	LaughterS	M:	 4.79,	CI[4.42,	5.16];	 t[48]=	

5.881,	 p	 <	 .001).	 LaughterS	 and	 LaughterV	were	 significantly	 higher	 in	 arousal	 than	

Vowels	(LaughterV:	t[48]	=	12.789,	p	<	.001,	Cohen’s	d	=	3.692;	LaughterS:	t[48]	=	13.147,	

p	 <	 .001,	 Cohen’s	 d	 =	 3.795),	 but	 more	 closely	 matched	 (compared	 to	 the	 highly	
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significant	 differences	 in	 arousal	 between	 LaughterS	 and	 CryingS	 in	 Experiment	 1),	

albeit	 still	 significantly	 different	 from	each	 other	 (LaughterV	M:	 4.39,	 CI[4.16,	 4.62];	

LaughterS	M:	4.78,	CI[4.46,	5.10];	t[48]=	2.085,	p	=	.042,	Cohen’s	d	=	.602).	Note	that	

high	correlations	between	arousal	and	authenticity	ratings	are	present	for	laughter.	In	

order	to	minimise	the	differences	in	arousal,	the	laughs	that	were	rated	as	most/least	

authentic	could	not	be	included	in	the	stimulus	set	–	resulting	in	highly	significant	but	

not	extreme	differences	in	perceived	authenticity	for	LaughterS	and	LaughterV.	There	

was	no	perceived	difference	in	valence	between	the	laughter	types	(LaughterV	M:	5.28,	

CI[4.93,	5.43]	LaughterS	M:	5.23,	CI[4.79,	5.67];	t[48]=	.208,	p	=	.836,	Cohen’s	d	=	.06).	

The	overall	duration	of	the	stimuli	was	matched	(Vowels	M:	2.55	secs,	CI[2.43,	2.66];	

LaughterV	M:	2.32	secs,	CI[2.17,	2.47];	LaughterS	M:	2.41	secs,	CI[2.32,	2.61];	one-way	

repeated	measures	ANOVA:	F[2,48]=3.13,	p	=	.053).		

	

Acoustic	features	of	the	stimuli	

Table	2	shows	an	overview	of	the	means	for	the	acoustic	properties	of	the	stimuli.	T-

tests	were	performed	to	assess	acoustic	differences	between	vocalisations	(corrected	

for	 multiple	 comparisons,	 α	 =.006).	 As	 has	 been	 reported	 for	 Experiment	 1,	 the	

acoustic	 properties	 of	 LaughterS	 were	 significantly	 different	 from	 Vowels	 for	 all	

measures	(p	≤	.001),	except	total	duration	(t{48]	=	.917,	p	=	.364,	Cohen’s	d	=	.131)	and	

F0	standard	deviation	 (t[48]	=	2.706,	p	=	 .009;	Cohen’s	d	=	 .781).	LaughterV	was	also	

distinct	 from	 Vowels	 for	 all	 acoustic	 measures	 (ps	 ≤	 .003)	 with	 the	 exception	 of	

duration	(t[48]	=	2.456,	p	=	 .018;	Cohen’s	d	=	 .709)	spectral	centre	of	gravity	 (t[48]	=	

2.001,	p	=	.051;	Cohen’s	d	=	.577).	LaughterS	and	LaughterV	were	similar	to	each	other	

across	spectral	and	temporal	features	(total	duration,	F0	variability,	spectral	centre	of	
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gravity,	deviation	of	spectral	centre	of	gravity,	percentage	of	unvoiced	segments	and	

burst	duration;	all	ps	≥	.028)	and	differed	significantly	from	each	other	in	measures	of	

fundamental	 frequency	 and	 periodicity	 (F0	 mean,	 F0	 minimum,	 F0	 maximum,	 F0	

range,	 HNR,	 Shimmer,	 Jitter,	 all	 ps	 ≤	 .004).	 Thus,	 while	 LaughterS	 and	 Vowels	 are	

acoustically	most	 different	 from	 each	 other,	 LaughterV	appears	 to	 fall	 between	 the	

two	vocalisations.		

	

 Methods	2.2.4

The	experimental	 set	up	was	 identical	 to	 the	one	used	 in	Experiment	1.	Participants	

were	presented	with	all	75	stimuli	(25	per	vocalisation;	Vowels,	LaughterS,	LaughterV;	

see	 Section	 Error!	 Reference	 source	 not	 found.)	 in	 a	 fully	 randomised	 order.	

Participants	were	not	pre-informed	about	the	inclusion	of	spontaneous	and	volitional	

laughter	in	the	tasks.	

	

 Results		2.2.5

Sex	recognition	from	volitional	and	spontaneous	non-verbal	vocalisations	
	

	
Figure	 8	 Average	 d’	 scores	 per	 vocalisation	 for	 the	 sex	 identification	 task,	 b)	 average	 reaction	
times	per	vocalisation	for	the	sex	identification	task	of	Experiment	2.	
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Results	are	shown	in	Figure	8.	Data	were	analysed	in	the	same	way	as	in	Experiment	1	

(see	Section	Error!	Reference	source	not	found.).	D’	scores	were	entered	into	a	one-

way	 repeated	 measures	 ANOVA.	 This	 showed	 a	 main	 effect	 of	 vocalisation	 on	

performance	 (F[2,84]	 =	 28.93,	 p	 <	 .001,	 ηp
2	 =	 .41).	 Three	 post-hoc	 paired	 t-tests	

(corrected	alpha	=	.017,	Bonferroni	correction)	confirmed	that	performance	was	worse	

when	 identifying	speaker	sex	 from	LaughterS	compared	to	LaughterV	 (t[43]	=	7.77,	p	

<	.001,	Cohen’s	d	=	2.37)	and	Vowels	(t[43]	=	6.05,	p	<	.001,	Cohen’s	d	=	1.8452),	while	

performance	was	similar	 for	LaughterV	and	Vowels	 (t[43]	=	 -.22,	p	=	 .824,	Cohen’s	d	

=	.067)	(Figure	8a).	A	one-way	repeated	measures	ANOVA	on	reaction	times	confirmed	

a	main	 effect	 of	 vocalisation	 (F[2,	 84]	 =	 13.27,	 p	 =	 .001,	 ηp
2	=	.20).	 Post-hoc	 t-tests	

(Bonferroni-corrected	 alpha	 =	 .017)	 showed	 that	 reaction	 times	 were	 significantly	

slower	 for	 LaughterS	 compared	 to	 Vowels	 	 (t[43]	 =	 -3.643,	 p	 =	 .001)	 and	 LaughterV	

(t[43]	 =	 -4.29,	p	 <	 .001,	 Cohen’s	d	 =	 1.308)	 (Figure	 8a),	 while	 reaction	 times	 did	 not	

differ	 for	LaughterV	and	Vowels	 (t[43]	=	 .08,	p	=	 .938,	Cohen’s	d	=	 .02)	 (Figure	 8b).	 In	

line	 with	 Experiment	 1,	 D’	 values	 were	 generally	 high	 for	 each	 vocalisation	 and	

correspond	 to	 average	accuracy	 scores	of	 94.38%	 for	Vowels,	 94.75%	 for	 LaughterV	

and	86.78%	for	LaughterS.	

In	 line	 with	 Experiment	 1,	 a	 response	 bias	 analysis	 was	 conducted	 but	 no	

significantly	biases	were	found	(all	ps	≥	274).	

	

Differences	in	perception	of	speaker	sex	for	male	and	female	vocalisations	

In	 line	 with	 the	 analysis	 of	 Experiment	 1,	 further	 analysis	 attempted	 to	 assess	

differences	 in	the	perception	of	male	and	female	vocalisations.	A	2	(speaker	sex)	x	3	

(vocalisation	 type)	 ANOVA	 was	 performed.	 There	 was	 a	 significant	 main	 effect	 of	
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vocalisation	 type	 (F[2,86]	 =	 16.132,	 p	 <	 .001,	 ηp
2	=	.282).	 Neither	 the	main	 effect	 of	

speaker	 sex	 (p	 =	 .081)	 nor	 the	 interaction	 of	 speaker	 sex	 and	 vocalisation	 type	 (p	

=	.836)	were	significant,	means	are	illustrated	in	Figure	9.	

	
Figure	9	Raw	accuracy	scores	per	item	split	for	male	and	female	vocalisations	for	the	speaker	sex	
identification	task.	
	

Linking	accuracy	to	acoustic	features	

To	establish	whether	acoustic	 cues	were	particularly	 salient	 for	 sex	perception	 from	

these	vocal	signals,	acoustic	properties	of	the	stimuli	were	tested	as	predictors	of	the	

raw	 accuracy	 of	 speaker	 sex	 for	 the	 individual	 tokens.	 In	 the	 first	 instance,	 two	

multiple	 regression	 models	 were	 run,	 by	 speaker	 sex	 (one	 for	 stimuli	 produced	 by	

male	speakers	and	one	for	stimuli	produced	by	female	speakers),	 including	F0	mean	

as	a	predictor	of	 raw	accuracy.	Higher	F0	 in	 females	should	 increase	accuracy,	while	

higher	 pitch	 in	males	 should	 decrease	 accuracy.	 For	 female	 vocalisations,	 F0	mean	

significantly	 predicted	 accuracy,	 unexpectedly	 showing	 higher	 accuracy	 for	 lower	

pitched	 sounds	 (R2	 =	 .42,	 β	 =	 -.648,	 t[44]	 =	 -5.548,	 p	 <	 .001).	 Variation	 in	 F0	mean	

furthermore	predicted	accuracy	for	male	vocalisations,	(R2	=	.162,	β	=	-.403,	t[29]	=	-
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2.311,	p	=	 .027),	again	showing	higher	accuracy	 for	sounds	with	 lower	F0.	To	 further	

explore	 if	 F0	 could	 be	 linked	 to	 accuracy	 within	 each	 vocalisation,	 six	 additional	

regression	analyses	were	run	(2	speaker	sex	x	3	vocalisations).	F0	mean	was	not	found	

to	be	a	significant	predictor	of	accuracy	in	any	of	these	models	(all	ps	>	.245	regression	

analyses).	

Further	 multiple	 regression	 analyses,	 including	 all	 remaining	 acoustic	

measures	 as	 predictors	 using	 the	 Enter	 method,	 were	 run	 with	 Total	 Duration,	

Percentage	of	Unvoiced	Segments,	Burst	Duration,	F0	SD,	HNR	and	Spectral	Centre	

of	Gravity	 as	 predictors.	 In	 line	with	 the	 analyses	 of	 Experiment	 1,	 F0	min,	 F0	max,	

Shimmer	and	Jitter	were	excluded	 from	the	analyses	 to	avoid	excessive	collinearity.	

As	 in	 Experiment	 1,	 there	 were	 no	 a	 priori	 hypotheses	 regarding	 different	

directionalities	 of	 effects	 within	 speaker	 sex,	 therefore	 no	 separate	 analysis	 by	

speaker	 sex	was	 performed.	 None	 of	 the	models	 were	 able	 to	 explain	 a	 significant	

amount	of	variance	in	accuracy	(all	ps	≥	.229).	

	 	

 Discussion	2.2.6

By	 using	 LaughterV	 and	 LaughterS,	 Experiment	 2	 explored	 whether	 the	 effects	

observed	 in	 Experiment	 1	 reflected	 processing	 differences	 for	 different	 types	 of	

vocalisations,	 or	 whether	 they	 could	 have	 resulted	 from	 differences	 in	 the	 specific	

affective	 and	 perceptual	 qualities	 associated	 with	 spontaneous	 vocalisations.	

Performance	 was	 lower	 for	 LaughterS	 than	 for	 Vowels	 and	 LaughterV,	 while	

performance	 was	 comparable	 for	 Vowels	 and	 LaughterV.	 This	 pattern	 was	 also	

reflected	 in	 reaction	 times.	 The	 current	 results	 thus	 indicate	 that	 reduced	 volitional	

control,	 and	 not	 arousal	 or	 vocalisation	 type	 per	 se,	 affects	 sex	 identification	
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performance:	 If	 arousal	 or	 vocalisation	 type	 affected	 the	 listener’s	 perception	 of	

speaker	sex,	performance	for	LaughterV	should	have	been	lower	than	performance	for	

Vowels,	as	LaughterV	is	both	higher	in	arousal	and	a	different	type	of	vocalisation	from	

Vowels.		

In	 contrast	 to	 Experiment	 1,	 no	 systematic	 differences	 in	 accuracy	 for	 male	

versus	 female	 vocalisations	 was	 found,	 despite	 considerable	 overlap	 in	 the	 stimuli	

used	between	the	two	experiments	–	this	indicates	that	the	overall	context	created	by	

the	stimuli	used	within	an	experiment	may	affect	participants’	responses.	In	line	with	

the	results	of	Experiment	1,	no	clear	relationship	between	acoustic	cues	and	accuracy	

per	 item	 was	 found:	 Regression	 analyses	 did,	 however,	 indicate	 that,	 in	 line	 with	

Experiment	 1,	 performance	was	 higher	 for	 lower-pitched	 vocalisations	 produced	 by	

males	 (across	 all	 vocalisations).	 Additionally,	 performance	 was	 higher	 for	 lower	 F0	

sounds	for	female	speakers	across	all	vocalisations	–	it	is	unclear	why	this	might	be	the	

case	but	it	suggests	that	there	is	no	direct	and	linear	relationship	between	changes	in	

F0	 and	 sex	 judgements	 from	 vocal	 sounds.	 No	 other	 acoustic	 predictors	 explained	

significant	proportions	of	the	variance	in	judgements	for	any	of	the	conditions.	Thus,	

in	the	context	of	highly	variable	vocalisations,	changes	 in	acoustic	properties	cannot	

be	easily	linked	to	changes	in	performance.		

	

2.3 General	discussion	

Experiment	1	and	2	investigated	whether	the	identification	of	speaker	sex	from	non-

verbal	vocalisations	is	affected	by	vocal	flexibility,	introduced	by	using	different	types	

of	vocalisations	(laughter,	crying,	vowels)	produced	under	different	level	of	volitional	

control	 (spontaneous	 versus	 volitional	 vocalisations).	 Results	 indicate	 that	
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performance	 is	 impaired	 for	 spontaneous	 compared	 to	 volitional	 vocalisations,	with	

graded	 differences	 being	 apparent	 for	 different	 types	 of	 vocalisations	 (better	

performance	for	CryingS	compared	to	LaughterS).	It	remains	difficult	to	dissociate	the	

underlying	 mechanisms	 driving	 the	 reported	 effects:	 On	 the	 one	 hand,	 perceptual	

qualities	of	the	stimuli	may	be	driving	the	effect,	with	attention	being	automatically	

captured	by	spontaneous	(emotional)	vocalisations	(Öhman	et	al.,	2001;	Vuilleumier,	

2005).	 This	 may	 then	 allow	 for	 the	 rapid	 and	 prioritised	 processing	 of	 crucial	

emotional	 information	 in	 favour	 of	 the	 accurate	 extraction	 of	 identity-related	

information	(Stevenage	&	Neil,	2014;	see	also	Goggin,	et	al.,	1991).	On	the	other	hand,	

spontaneous	 vocalisations	 occupy	 an	 acoustic	 space	 that	 is	 relatively	 distinct	 from	

that	 of	 volitional	 vocal	 signals.	 Acoustic	 cues	 that	 are	 diagnostic	 for	 speaker	 sex	 in	

neutral	vocal	signals	are	drastically	modulated	during	the	production	of	spontaneous	

vocalisations,	 rendering	 them	 less	 diagnostic	 and	 thus	 potentially	 impairing	 task	

performance.		

The	analyses	attempting	to	link	acoustic	features	to	the	perception	of	speaker	

sex	 partially	 support	 this	 claim,	 showing	 that	 for	 vocalisations	 produced	 by	 males,	

performance	 is	highest	 for	vocalisations	with	a	relatively	 low	F0	–	notably,	however,	

no	evidence	for	these	trends	was	found	within	analyses	per	vocalisation,	and	as	noted	

in	 Experiment	 1,	 these	 results	 could	 therefore	 be	 attributed	 to	 simple	 effects	 of	

acoustic	 differences	 across	 the	 different	 categories	 of	 vocalisation	 used	 in	 the	 two	

experiments.	 There	 is	 therefore	 overall	 no	 clear	 relationship	 between	 acoustic	

parameters	 and	 listeners’	 performance.	 Despite	 a	 large	 literature	 showing	 clear	

relationships	between	changes	in	acoustic	features	and	perceptual	qualities	of	sounds	

(e.g.	Honorof	&	Whalen,	2010;	Mullenix	et	al.,	1995),	the	effects	 in	the	current	study	
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thus	appear	not	to	be	primarily	driven	by	linear	variations	in	acoustic	parameters.	An	

explanation	for	this	could	lie	 in	the	choice	of	acoustic	measures	and	their	extraction:	

Some	 of	 the	 acoustic	 features	 (jitter,	 shimmer,	 spectral	 measures)	 analysed	 in	 the	

current	study	may	not	be	perceptually	meaningful	in	the	context	of	the	vocalisations	

or	 task	 used	 (see	 e.g.	 Kreiman,	 Gerratt,	 Garellek,	 Samlan	 &	 Zhang,	 2014	 for	 a	

discussion).	 Furthermore,	 while	 F0	 is	 known	 to	 be	 a	 salient	 cue	 for	 speaker	 sex	

judgements	 from	 volitional	 speech	 sounds,	 its	 role	 and	 importance	 in	 determining	

speaker	 sex	 is	 largely	 unknown	 for	 other	 types	 of	 vocalisations.	 With	 F0	 being	

modulated	in	non-verbal	emotional	vocalisations	(volitional	or	spontaneous,	Bryant	&	

Aktipis	2014;	Lavan	et	al,	2016;	McGettigan	et	al.	2015),	 its	 importance	and	salience	

may	be	reduced,	while	other	cues	(that	may	not	accounted	for	in	the	current	analyses)	

may	gain	perceptual	importance.	

	 One	 limitation	 of	 these	 (and	 the	 following)	 experiments	 is	 that	 no	 formal	

ratings	 of	 the	 speaker’s	 emotional	 state	 during	 the	 production	 of	 the	 laughter	 and	

crying	 were	 collected:	 speakers	 only	 informally	 reported	 genuine	 feelings	 of	

amusement	or	sadness	during	and	after	 the	recordings	sessions	 (see	Materials).	The	

possibility	that	speakers	were	not	genuinely	sad	or	amused	during	the	production	of	

the	 ‘spontaneous’	 vocalisations	 cannot	 be	 fully	 ruled	 out.	 If	 this	were	 the	 case,	 the	

difference	 between	 what	 is	 labelled	 here	 as	 ‘spontaneous’	 and	 ‘volitional’	

vocalisations	 as	well	 as	 the	underlying	 causes	 for	 the	effects	 reported	here	become	

less	clearly	defined.	Future	studies	and	stimulus	recording	sessions	should	thus	obtain	

online	 (or	 post-hoc)	 data	 of	 the	 emotional	 state	 of	 speaker	 during	 the	 recording	

sessions.	It	should	also	be	noted	that	while	the	decrease	in	performance	for	LaughterS	

and	CryingS	compared	 to	LaughterV	and	Vowels	was	 significant,	 performance	across	
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vocalisations	 was	 overall	 still	 high	 (d’	 values	 >	 2,	 maximum:	 4.11),	 indicating	 that	

identifying	speaker	sex	was	relatively	easy	–	despite	drastic	modulations	of	F0.	Since	

there	was	only	relatively	little	variability	within	the	accuracy	scores	per	item,	this	may	

have	 additionally	 affected	 the	 results	 of	 the	 regression	 analyses.	 Given	 this	 high	

performance,	 future	 studies	 should	 thus	 increase	 task	 difficulty	 by,	 for	 example,	

presenting	 stimuli	 in	 noise	 to	 create	 more	 variability	 in	 performance.	 Intriguingly,	

despite	the	generally	high	performance,	 large	individual	differences	are	apparent	for	

both	experiments.	Assessing	and	describing	the	factors	underlying	these	differences	

will	 be	 a	 challenge	 for	 further	 research	 into	 how	 variability	 in	 vocal	 signals	 affects	

speaker	sex	identification	and	judgements	of	speaker	characteristics.		

	



	

3 Speaker	 discrimination	 from	 volitional	 and	 spontaneous	
vocalisations	

	

Experiments	 3	 and	 4	 investigate	 how	 the	 perception	 of	 another	 speaker	

characteristic,	 that	 is	 speaker	 identity,	 is	 affected	 by	 vocal	 flexibility,	

introduced	 by	 spontaneous	 and	 volitional	 vocalisations.	 Participants	

performed	 a	 speaker	 discrimination	 task	 on	 pairs	 of	 vowels,	 spontaneous	

crying	 and	 spontaneous	 laughter	 produced	 by	 5	 unfamiliar	 speakers.	

Performance	was	significantly	impaired	for	pairs	of	spontaneous	laughter	and	

crying	compared	to	vowels.	Additionally,	listeners	failed	to	generalise	identity	

related	 information	 across	 pairs	 including	 different	 types	 of	 nonverbal	

vocalisations	 (e.g.	pairs	of	 laughter	and	vowels)	with	performance	 indicating	

at	 times	 an	 inability	 to	 discriminate	 between	 speakers.	 Experiment	 4	 further	

assessed	 whether	 these	 effects	 may	 result	 from	 differences	 in	 arousal,	

vocalisation	 type	or	volitional	 control,	using	 spontaneous	 laughter,	 volitional	

laughter	 and	 vowels.	 Performance	 was	 similar	 for	 vowels	 and	 volitional	

laughter,	but	 impaired	for	spontaneous	 laughter.	Results	are	discussed	 in	the	

light	of	auditory	expertise	and	prototypical	representations	of	(volitional)	vocal	

signals.	
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3.1 Experiment	3	

 Introduction	3.1.1

Listeners	are	not	only	able	to	extract	specific	speaker	characteristics,	such	as	sex	and	

age,	from	a	person’s	voice.	Individual	voices	differ	from	each	other	–	the	anatomy	of	a	

person’s	vocal	 tract	and	 idiosyncratic	 features	of	voice	use	 result	 in	distinctive	vocal	

outputs	 that	 allow	 listeners	 to	 discriminate	 between	 and	 (in	 the	 case	 of	 familiar	

speakers)	 recognise	 and	 identify	 individuals	 from	 their	 voices	 alone	 (see	Kreiman	&	

Sidtis,	2011;	Mathias	&	von	Kriegstein,	2013	for	a	review;	see	Section	1.5.3).	In	terms	of	

identity	 processing	 from	 voices,	 Van	 Lancker	 and	 Kreiman	 (1987)	 propose	 that	

speaker	 discrimination	 and	 speaker	 recognition	 are	 separate,	 dissociable	 abilities	

based	 on	 a	 patient	 study	 showing	 selective	 impairments	 of	 both	 abilities.	 They	

suggest	 that	 (familiar)	 speaker	 recognition	 is	 underpinned	 by	 the	 processing	 of	

complex	 large-scale	 patterns	 of	 acoustic	 cues:	 Listeners	 perceive	 diagnostic	 and	

characteristic	 features	 in	 a	 familiar	 voice	 and	 thus	 recognise	 a	person	without	 close	

acoustic	analysis	of	the	voice.	In	contrast	to	this,	(unfamiliar)	speaker	discrimination	is	

thought	 to	 be	 based	 on	 performing	 close	 analysis	 of	 differences	 in	 a	wide	 range	 of	

acoustic	 features	 between	 voices	 (see	Kreiman	&	Sidtis,	 2011	 for	 an	 overview).	 The	

acoustic	factors	underlying	listeners’	ability	to	determine	speaker	identity	from	voices	

have	 not	 been	 established	 yet	 –	 while	 formant	 frequencies	 and	 F0	 generally	 allow	

listeners	 to	 determine	 speaker	 sex	 from	 voices,	 no	 one	 acoustic	 feature	 has	 been	

found	to	be	universally	salient	for	speaker	identification	or	discrimination	across	sets	

of	 speakers	 and	 listeners	 –	 salient	 acoustic	 cues	 have	 indeed	 been	 shown	 to	 vary	

across	speakers	and	across	listeners	(Kreiman,	Gerratt,	Precoda	&	Berke,	1992).	
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Nonetheless,	as	is	the	case	with	speaker	sex	identification,	listeners	are	readily	

able	 to	 discriminate	 between	 unknown	 voices	 with	 relatively	 high	 accuracy	 in	 the	

context	 of	 neutral	 speech	 stimuli	 (>	 90%	 for	 healthy	 young	 adult	 listeners;	 Van	

Lancker	 &	 Kreiman,	 1987;	 Reich	 &	 Duke,	 1979;	 Wester,	 2012).	 There	 is,	 however,	

evidence	that	variability	 in	speech	sounds,	 introduced	by	volitional	changes	to	vocal	

signals,	 has	 a	 detrimental	 effect	 on	 speaker	 discrimination:	 Reich	 &	 Duke	 (1979)	

conducted	 a	 study	 in	which	 listeners	were	 asked	 to	 discriminate	 speakers	 based	on	

pairs	 of	 sentences,	 with	 one	 sentence	 produced	 in	 undisguised	 voice	 and	 another	

produced	 in	 either	 an	 undisguised	 voice	 or	 a	 disguised	 voice	 (e.g.	 hoarse	 voice,	

extremely	slow	speech	and	nasal	speech).	Performance	in	their	study	was	significantly	

better	 for	 pairs	 of	 undisguised	 sentences	 compared	 to	 pairs	 that	 included	 both	

disguised	and	undisguised	sentences	and	thus	more	vocal	variability.	Similar	findings	

are	reported	in	studies	of	earwitness	accuracy:	listeners’	ability	to	identify	a	voice	from	

a	 line	 up	 decreases	when	 vocal	 variability,	 in	 this	 case	 due	 to	 (volitional)	 emotional	

content,	is	introduced	between	study	and	test	(Saslove	&	Yarmey,	1980;	Read	&	Craik,	

1995).	It	has	furthermore	been	reported	that	listeners’	accuracy	in	discriminating	and	

recognising	 speakers	 is	 affected	 when	 listeners	 are	 asked	 to	 discriminate	 between	

speakers	 across	 speech	 samples	 from	 different	 languages	 produced	 by	 bilingual	

speakers	(Perrachione	et	al.,	2011;	Winters	et	al.,	2008).	In	sum,	these	results	suggest	

that	 generalising	 identity-related	 cues	 across	 variable	 signals	 is	 challenging	 for	

listeners.	

	 All	 of	 the	 studies	 reviewed	above	have	used	 speech	 stimuli	 –	which	only	 form	

one	 (prominent)	 part	 of	 human	 vocal	 communication:	 other	 types	 of	 vocalisations,	

such	 as	 non-verbal	 vocal	 signals	 additionally	 permeate	 everyday	 interactions.	 It	
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should	be	noted	that	speech,	especially	when	produced	in	a	language	familiar	to	the	

listener	(see	Goggin	et	al.,	1991;	Orena	et	al.,	2015;	Winters	et	al.,	2008),	 is	uniquely	

rich	 in	 cues	 to	 speaker	characteristics	and	 identity,	 including	 regional	accent,	 lexical	

content	 and	 individual	 differences	 in	 pronunciation.	 Such	 speech-specific	 cues	 have	

been	 shown	 to	 be	 crucial	 for	 extraction	 of	 speaker	 characteristics	 and	 identity	 (e.g.	

Remez,	 Fellowes	 &	 Rubin,	 1997)	 but	 are	 largely	 absent	 in	 non-verbal	 vocalisations.	

Using	speech	signals	may	thus	have	provided	relatively	favourable	conditions	for	the	

extraction	 of	 speaker	 characteristics	 in	 previous	 studies,	 inflating	 stimulus	

discriminability	and	participant	performance.	For	nonverbal	vocal	signals,	 it	could	be	

hypothesised	that	the	detrimental	effects	of	variability	on	speaker	discrimination	may	

be	even	more	pronounced	for	non-verbal	vocal	signals	given	the	lack	of	such	speech-

specific	 cues.	 Further,	 as	 has	 been	 shown	 in	 Experiments	 1	 and	 2,	 the	 perceptual	

features	of	vocal	signals	produced	under	reduced	volitional	control	differ	from	those	

of	 vocal	 signals	 produced	 under	 full	 volitional	 control.	 It	 could	 thus	 additionally	 be	

predicted	 that	 this	 should	 also	 result	 in	 impaired	 performance	 on	 a	 speaker	

discrimination	task.	

For	 the	 current	 study,	 participants	 performed	 a	 same-different	 speaker	

discrimination	task	on	pairs	of	nonverbal	vocalisations,	including	3	within-vocalisation	

conditions	 (Vowels-Vowels,	 CryingS-CryingS,	 LaughterS-LaughterS)	 and	 3	 across-

vocalisation	 conditions	 (CryingS-LaughterS,	 CryingS-Vowels,	 and	 LaughterS-Vowels).		

Based	 on	 the	 findings	 of	 Experiments	 1	 and	 2	 and	 studies	 exploring	 how	 vocal	

flexibility	 affects	 generalisation	 (e.g	 Reich	 &	 duke,	 1979,	 Saslove	 &	 Yarmey,	 1980;	

Read	 &	 Craik,	 1995),	 it	 was	 predicted	 that	 natural	 flexibility	 of	 vocal	 signals	

(introduced	by	manipulating	 the	presence	or	 absence	of	 authentic	 emotional	 states	



Speaker	discrimination	from	volitional	and	spontaneous	vocalisations	 	

 
	

80	

and	thus	different	levels	of	volitional	control	over	voice	production)	would	affect	the	

perception	of	person	identity	in	unfamiliar	voices.	Specifically,	it	was	predicted	that	a)	

speaker	 discrimination	 performance	 would	 be	 better	 for	 within-vocalisation	 trials	

compared	to	across-vocalisation	trials,	b)	this	impairment	would	be	more	marked	for	

within-pair	mismatches	 in	 volitional	 control	 (i.e.	 when	 one	 vocalisation	 is	 produced	

under	 full	 control	 while	 the	 other	 is	 not)	 and	 c)	 performance	 would	 generally	 be	

impaired	 for	 pairs	 of	 vocalisations	 produced	 under	 reduced	 volitional	 control	 (see	

Experiments	1	and	2).	Specific	predictions	per	condition,	based	on	stepwise	decreases	

in	accuracy	in	the	presence	of	these	three	factors,	are	illustrated	in	Figure	10.	

	

	
Figure	10	Predicted	pattern	for	performance	on	the	speaker	discrimination	task	(from	
high	performance	to	 low	performance).	Boxes	with	rounded	edges	represent	within-
vocalisation	 pairs,	 hexagons	 represent	 across-vocalisation	 pairs.	 Black	 text:	
vocalisations	produced	under	full	volitional	control;	white	text:	vocalisations	produced	
under	 reduced	 volitional	 control.	 Specific	 predictions	 follow	 the	 pattern	 Vowels-
Vowels	 (full	 volitional	 control,	 within-vocalisation,	 matching	 levels	 of	 volitional	
control)	 >	 CryingS-CryingS	 (reduced	 volitional	 control,	 within-vocalisation,	 matching	
levels	of	volitional	control)	=	LaughterS-LaughterS	(reduced	volitional	control,	within-
vocalisation,	 matching	 levels	 of	 volitional	 control)	 >	 CryingS-LaughterS	 (reduced	
volitional	control,	across-vocalisation,	matching	levels	of	volitional	control)	>	CryingS-
Vowels	 (reduced	 volitional	 control,	 across-vocalisation,	 mismatching	 emotional	
content)	 =	 LaughterS-Vowels	 (reduced	 volitional	 control,	 across-vocalisation,	
mismatching	levels	of	volitional	control).	
	
	

 Participants	3.1.2

Participants	 were	 the	 same	 as	 in	 Experiment	 1	 (see	 Section	 2.1.2).	 Average	

performance	across	conditions	for	each	participants	was	within	2	standard	deviations	
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from	the	mean	and	therefore	all	participants	were	included	in	the	following	analyses.	

	

 Materials	3.1.3

Stimuli	 used	 were	 identical	 to	 the	 ones	 used	 Experiment	 1	 (see	 Section	 2.1.3):	 25	

stimuli	of	LaughterS,	CryingS	and	Vowels	each,	presented	in	pairs.	

	

 Design	and	Procedure	3.1.4

After	hearing	all	stimuli	once	in	a	brief	speaker	sex	identification	task	(see	Experiment	

1),	 participants	 performed	 a	 speaker	 discrimination	 task.	 Participants	 heard	

permutations	of	pairs	of	LaughterS,	CryingS	and	Vowels,	with	 the	 two	 sounds	being	

presented	sequentially	with	a	pause	of	0.7	seconds	between	them.	For	each	of	the	6	

conditions	 (3	 within-vocalisation	 conditions	 [Vowels-Vowels,	 CryingS-CryingS,	

LaughterS-LaughterS]	 and	 3	 across-vocalisation	 conditions	 [CryingS-LaughterS,	

CryingS-Vowels,	and	LaughterS-Vowels]),	there	were	50	trials,	with	25	trials	including	

two	 vocal	 signals	 from	 the	 same	 speaker	 and	 25	 trials	 presenting	 two	 sounds	 from	

different	 speakers	 –	 this	 yielded	 300	 trials	 in	 total.	 With	 the	 inclusion	 of	 across-

vocalisation	 conditions	 the	 hypotheses	 regarding	 listener’s	 ability	 to	 generalise	

identity	 information	 could	 be	 tested.	 With	 the	 inclusion	 of	 within-vocalisation	

conditions	 vocalisation	 type-	 and	 emotion	 effects	 could	 be	 probed.	 None	 of	 the	

speakers	was	known	to	participants	prior	to	the	experiment.	The	order	of	presentation	

for	 the	 two	 sounds	 within	 a	 trial	 was	 counterbalanced	 –	 for	 instance,	 for	 CryingS-

LaughterS	 trials,	 half	 began	 with	 a	 laughter	 stimulus	 and	 half	 began	 with	 crying.	

Speaker	pairings	were	fixed	across	participants.	After	the	presentation	of	the	sounds,	

participants	were	prompted	to	indicate	via	a	button	press	on	a	keyboard	whether	they	
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thought	 the	 two	 sounds	 were	 produced	 by	 the	 same	 speaker	 or	 by	 two	 different	

speakers.	Key	presses	and	reaction	times	were	recorded.	For	this	study,	reaction	times	

were	not	analysed	since	stimuli	were	presented	in	pairs,	which	could	have	introduced	

confounds.	The	task	lasted	for	approximately	35	minutes.	

	

 Results	3.1.5

Speaker	discrimination	from	non-verbal	vocalisations	

Figure	 11	 Average	 d’	 scores	 per	 condition	 for	 the	 speaker	 discrimination	 task.	 Significant	
comparisons	(Bonferroni-corrected,	,	α	=	.008)	are	highlighted	with	an	asterisk.	
	
D’	scores	were	calculated	from	the	raw	responses	as	described	in	Experiments	1	(see	

Section	 2.1.5).	 The	 d’	 values	 in	 the	 current	 study	 ranged	 from	 1.48	 to	 0.15,	 which	

corresponds	to	average	accuracy	values	of	75%	-	53%	(chance	level	=	50%).	D’	scores	

were	 entered	 into	 a	 one-way	 repeated	 measures	 ANOVA	 with	 6	 levels	 for	 the	

different	 conditions.	 There	 was	 a	 significant	 effect	 of	 condition	 on	 the	 d’	 scores	

(F[5,210]	 =	 74.01,	p	<	 .001,	ηp
2	=	.63).	 To	 further	 explore	 condition-specific	 effects,	 8	
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pairwise	post-hoc	 t-tests	 (Bonferroni	 corrected,	 α	 =	 .006)	were	 conducted	 to	 assess	

the	 prediction	 of	 a	 stepwise	 decrease	 in	 performance,	 introduced	 by	 1)	 across-

vocalisation	 judgements,	 2)	 the	 presence	 of	 authentic	 emotional	 content	 and	 3)	 a	

mismatch	 in	 authentic	 emotional	 content	 within	 a	 pair	 (leading	 to	 differences	 in	

control	over	voice	production	and	concomitant	acoustic	changes),	see	Figure	11.	

T-tests	confirmed	these	predictions,	with	the	exception	of	the	comparisons	of	

CryingS-CryingS	versus	LaughterS-LaughterS	 (t[44]	=	4.5,	p	<	 .001,	Cohen’s	d	=	1.356;	

prediction:	ns),	and	Laughter-Laughter	versus	LaughterS-CryingS	(t[44]	=	.616,	p	=	.54,	

Cohen’s	 d	 =	 .185;	 where	 a	 significant	 difference	 had	 been	 predicted;	 Figure	 11).	

Performance	for	speaker	identification	in	both	LaughterS-Vowels	and	CryingS-Vowels	

was	 close	 to	 zero	 (d’LaughterS-Vowels=	 .15,	 d’CryingS-Vowels	 =	 .19),	 suggesting	 very	 low	

discriminability	 for	 these	 across-vocalisation	 pairs.	 One-sample	 t-tests	 (against	 0)	

revealed	that	 listeners	were	able	to	discriminate	between	speakers	for	all	conditions	

except	 LaughterS-Vowels	 (α	 =	 .008,	 Bonferroni	 corrected,	 t[44]	 =	 2.65,	 p	 =	 .011;	 all	

other	ps	≤	.001).		

To	directly	assess	whether	performance	for	speaker	discrimination	was	higher	

for	within-vocalisation	trials	compared	to	across-vocalisation	trials,	the	scores	for	the	

three	conditions	 including	within-vocalisation	 trials	were	averaged	and	compared	to	

the	 averaged	 across-vocalisation	 trials.	 A	 paired-samples	 t-test	 showed	 that,	 as	

predicted,	participants	were	better	at	discriminating	speakers	for	within-vocalisation	

trials	compared	to	across	vocalisation	trials	(t[44]=	12.455,	p	<	.001,	Cohen’s	d	=	3.755).	

A	 response	bias	analysis	was	 run	 to	 further	explore	 the	underlying	processes	

for	 different	 trial	 types:	 C	was	 calculated	 as	 described	 in	 Experiments	 1	 and	 2.	 The	

values	for	every	condition	were	entered	into	one	sample	t-tests	(testing	against	0),	to	
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determine	whether	any	biases	observed	were	significant.	There	were	trends	towards	

responses	being	significantly	biased	towards	‘same’	for	within	vocalisation	trials	(all	ps	

<	 .024).	 For	 the	 across-vocalisation	 trials	 no	 bias	was	 found	 for	 Vowels	 paired	with	

LaughterS		or	CryingS	(ps	>	 .89)	while	a	trend	 level	bias	towards	 ‘same’	was	found	for	

LaugherS-CryingS	 (t[44]	 =	 2.427,	 p	 =	 .02,	 Cohen’s	d	 =	 .749).	 These	 results	may	 thus	

suggest	that	greater	within-pair	similarity	in	vocalisation	type	affected	how	responses	

were	 chosen	 for	 judgements	 of	 speaker	 identity	 (for	 similar	 effects	 of	 linguistic	

similarity	on	response	bias,	see	Narayan,	Mak	&	Bialystock,	2016).	

	

Contributions	of	acoustic	properties	to	speaker	recognition	performance	

Table	 3	Absolute	difference	scores	averaged	per	condition.	Heatmaps	per	acoustic	 feature	were	
overlayed	 onto	 the	 means	 (green	 =	 lowest	 value,	 red	 =	 highest	 values,	 yellow	 =	 intermediate	
values),	with	green	indicating	a	relatively	smaller	average	difference	within	pairs,	red	highlighting	
a	relatively	larger	difference.	

 	  	
Vowels-
Vowels	

CryingS-
CryingS	

LaughterS-
LaughterS	

CryingS-
LaughterS	

Vowels-	
CryingS	

Vowels-	
LaughterS	

Total	Duration	 Mean	 0.28		 0.30		 0.34		 0.33		 0.36		 0.43		

	
SD	 0.21		 0.28		 0.28		 0.28		 0.25		 0.26		

%	of	Unvoiced	Segments	 Mean	 25.71		 29.72		 23.27		 25.60		 27.51		 26.03		

	
SD	 17.32		 20.15		 18.13		 18.36		 19.32		 18.03		

Burst	Durations	 Mean	 0.44		 0.53		 0.42		 0.45		 0.47		 0.42		

	
SD	 0.28		 0.35		 0.33		 0.32		 0.33		 0.30		

F0	Mean	 Mean	 52.36		 108.88		 130.61		 121.19		 250.87		 283.77		

	
SD	 44.93		 81.54		 86.60		 90.94		 100.98		 114.06		

F0	SD	 Mean	 57.53		 47.86		 41.18		 44.82		 64.69		 63.90		

	
SD	 40.79		 36.02		 37.66		 37.78		 50.01		 54.12		

Spectral	Centre	of	Gravity	 Mean	 335.77		 135.88		 325.73		 326.98		 275.54		 371.18		

	
SD	 355.54		 181.52		 365.93		 414.35		 334.66		 545.66		

HNR	 Mean	 6.04		 7.70		 6.11		 6.53		 6.74		 6.08		

	
SD	 5.04		 4.92		 5.61		 5.21		 5.05		 5.03		

Jitter	 Mean	 1.35		 1.74		 1.69		 1.62		 1.49		 1.50		

	
SD	 0.83		 1.23		 1.27		 1.25		 1.05		 1.06		

Shimmer	 Mean	 0.45		 0.53		 0.43		 0.45		 0.47		 0.43		

 	 SD	 0.28		 0.35		 0.33		 0.32		 0.33		 0.30		
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To	 further	 explore	 whether	 acoustic	 factors	 may	 underlie	 these	 biases,	 per-trial	

averages	for	participant’s	responses	as	well	as	absolute	difference	scores	of	acoustic	

measures	for	each	stimulus	pair	for	each	trial	across	all	participants	were	calculated.	

Table	 3	 shows	 a	 breakdown	 of	 acoustic	 differences	 within	 pairs	 by	 condition.	 No	

overall	 pattern	 of	 small	 or	 large	 differences	 in	 acoustic	 measures	 by	 condition	

emerges	from	the	heat	maps.	It	is,	however,	apparent	that	the	range	of	means	across	

conditions	 can	be	 small	 for	 some	measures	 (e.g.	 shimmer,	 total	 duration)	while	 the	

standard	 deviations	 are	 large,	 indicating	 that	 acoustic	 differences	within	 conditions	

were	 very	 variable,	 at	 times	 exceeding	 differences	 in	 mean	 differences	 across	

conditions.		 	

To	formally	assess	whether	variability	in	acoustic	differences	can	predict	participants’	

responses,	hierarchical	logistic	regressions	were	run	using	the	Enter	method,	with	the	

binary	same/different	response	as	a	dependent	variable.	Participant	was	included	as	a	

covariate	 in	 a	 first	 block,	 to	 account	 for	 any	 potential	 subject	 effects.	 Absolute	

difference	scores	for	all	acoustic	measures	were	included	as	covariates	in	the	second	

and	 final	 block.	 These	 analyses	 were	 run	 across	 all	 pairs	 and	 within	 condition.	

Participant	 explained	 a	 significant	 amount	 of	 variance	 for	most	 of	 the	models	 (see	

Table	4).	For	all	7	models	(6	condition-specific	models,	1	overall),	the	model	fit,	after	

partialling	out	 the	variance	explained	by	participant,	was	 significant	with	a	 range	of	

acoustic	parameters	predicting	responses	(see	Table	4).	It	should	be	noted,	however,	

that	 Nagelkerke’s	 R2	 is	 low	 for	 all	 models,	 with	 the	 notable	 exception	 of	 Vowels-

Vowels	(Nagelkerke’s	R2	=	.322).	This	indicates	that	while	trends	may	be	apparent	for	

most	 conditions	 in	 this	 large	 data	 set,	 the	 overall	 model	 fit	 is	 poor	 and	 very	 little	
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variance	is	explained	by	these	acoustic	measures	(and	by	participant	effects)	may	be	

perceptually	meaningless.	

Table	 4	Results	of	 the	second	block	of	 the	 logistic	 regression	models.	Results	 for	 the	 first	block	
(including	only	participant)	are	omitted.	Significant	p	values	are	highlighted	in	bold	and	significant	
covariates	are	highlighted	in	light	grey.	

	 	 β	 S.E.	 Wald	 p	 Odds	

Overall		 Participant	 -0.01	 0	 53.67	 <	.001	 0.99	

N	=	12993	 Total	Duration	 0.08	 0.07	 1.13	 0.289	 1.08	

Block	χ2	=	916.257,	p	<	0.001	 %	of	Unvoiced	Segments	 0	 0	 2.03	 0.154	 1	

Nagelkerke	R2=	.095	 Burst	Duration	 0.83	 0.29	 8.2	 0.004	 2.3	

	 F0	Mean	 0	 0	 642.19	 <	.001	 1	

	 F0	SD	 0	 0	 2.37	 0.124	 1	

	 Spectral	Centre	of	Gravity	 0	 0	 63.07	 <	.001	 1	

	 HNR	 0.01	 0.01	 2.08	 0.149	 1.01	

	 Jitter	 -0.05	 0.02	 4.96	 0.026	 0.95	

 	 Shimmer	 -0.81	 0.3	 7.35	 0.007	 0.45	

Vowels-Vowels	 Participant	 -0.01	 0	 6.67	 0.01	 0.99	

N	=	2177	 Total	Duration	 -0.68	 0.24	 8.14	 0.004	 0.51	

Block	χ2	=	593.163,	p	<	0.001	 %	of	Unvoiced	Segments	 0	 0	 0.56	 0.454	 1	

Nagelkerke	R2=	.322	 Burst	Duration	 1.19	 0.73	 2.65	 0.103	 3.29	

	 F0	Mean	 -0.03	 0	 307.34	 <	.001	 0.97	

	 F0	SD	 0.01	 0	 20.45	 <	.001	 1.01	

	 Spectral	Centre	of	Gravity	 0	 0	 32.71	 <	.001	 1	

	 HNR	 0.07	 0.01	 21.91	 <	.001	 1.07	

	 Jitter	 0.16	 0.09	 3.33	 0.068	 1.17	

 	 Shimmer	 -2.11	 0.77	 7.53	 0.006	 0.12	

CryingS-CryingS	 Participant	 0	 0	 1.04	 0.308	 1	

N	=	2170	 Total	Duration	 0.77	 0.19	 15.76	 <	.001	 2.15	

Block	χ2	=	172.504,	p	<	0.001	 %	of	Unvoiced	Segments	 0.01	 0	 3.4	 0.065	 1.01	

Nagelkerke	R2=	.11	 Burst	Duration	 0.9	 0.61	 2.19	 0.139	 2.46	

	 F0	Mean	 -0.01	 0	 102.37	 <	.001	 0.99	

	 F0	SD	 0	 0	 0	 0.961	 1	

	 Spectral	Centre	of	Gravity	 0	 0	 17.53	 <	.001	 1	

	 HNR	 0.03	 0.02	 4.75	 0.029	 1.04	

	 Jitter	 -0.13	 0.06	 5.51	 0.019	 0.88	

 	 Shimmer	 -0.67	 0.62	 1.14	 0.285	 0.51	
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	 	 β	 S.E.	 Wald	 p	 Odds	

LaughterS-LaughterS	 Participant	 -0.01	 0	 1.75	 0.186	 1	

N	=	2160	 Total	Duration	 -0.34	 0.17	 4	 0.045	 0.71	

Block	χ2	=	98.114,	p	<	0.001	 %	of	Unvoiced	Segments	 0	 0	 0.06	 0.808	 1	

Nagelkerke	R2=	.061	 Burst	Duration	 -1	 0.81	 1.5	 0.221	 0.37	

	 F0	Mean	 0	 0	 47	 <	.001	 1	

	 F0	SD	 0	 0	 9.66	 0.002	 1	

	 Spectral	Centre	of	Gravity	 0	 0	 4.84	 0.028	 1	

	 HNR	 0.03	 0.01	 4.02	 0.045	 1.03	

	 Jitter	 -0.19	 0.06	 11.57	 0.001	 0.83	

 	 Shimmer	 1.06	 0.84	 1.58	 0.209	 2.89	

CryingS-LaughterS	 Participant	 -0.01	 0	 4.04	 0.045	 0.99	

N	=	2158	 Total	Duration	 0.59	 0.17	 12.49	 <	.001	 1.8	

Block	χ2	=	97.266,	p	=	0.061	 %	of	Unvoiced	Segments	 0	 0	 0.02	 0.887	 1	

Nagelkerke	R2=	.012	 Burst	Duration	 0.51	 0.73	 0.49	 0.486	 1.66	

	 F0	Mean	 -0.01	 0	 72.49	 <	.001	 1	

	 F0	SD	 0	 0	 0.01	 0.925	 1	

	 Spectral	Centre	of	Gravity	 0	 0	 3.14	 0.076	 1	

	 HNR	 -0.01	 0.01	 0.69	 0.406	 0.99	

	 Jitter	 -0.08	 0.05	 2.46	 0.117	 0.93	

 	 Shimmer	 -0.19	 0.74	 0.07	 0.794	 0.83	

Vowels-CryingS	 Participant	 -0.02	 0	 21.27	 <	.001	 0.98	

N	=	2162	 Total	Duration	 -0.17	 0.2	 0.72	 0.396	 0.84	

Block	χ2	=	39.679,	p	<	0.001	 %	of	Unvoiced	Segments	 0	 0	 0.47	 0.493	 1	

Nagelkerke	R2=	.036	 Burst	Duration	 3.41	 1.19	 8.17	 0.004	 30.24	

	 F0	Mean	 0	 0	 21.55	 <	.001	 1	

	 F0	SD	 0	 0	 1.05	 0.305	 1	

	 Spectral	Centre	of	Gravity	 0	 0	 0.92	 0.339	 1	

	 HNR	 0.02	 0.01	 2.53	 0.112	 1.02	

	 Jitter	 0.04	 0.06	 0.39	 0.534	 1.04	

 	 Shimmer	 -3.85	 1.22	 10.02	 0.002	 0.02	

Vowels-LaughterS	 Participant	 -0.02	 0	 42.71	 <	.001	 0.98	

N	=	2166	 Total	Duration	 0.03	 0.19	 0.02	 0.892	 1.03	

Block	χ2	=	29.414,	p	=	0.001	 %	of	Unvoiced	Segments	 0	 0	 0.23	 0.63	 1	

Nagelkerke	R2=	.045	 Burst	Duration	 1.34	 0.89	 2.24	 0.135	 3.8	

	 F0	Mean	 0	 0	 3.07	 0.08	 1	

	 F0	SD	 0	 0	 0.42	 0.518	 1	

	 Spectral	Centre	of	Gravity	 0	 0	 3.44	 0.064	 1	

	 HNR	 0	 0.01	 0.02	 0.886	 1	
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	 Jitter	 -0.27	 0.07	 15.11	 <	.001	 0.77	

 	 Shimmer	 -0.87	 0.91	 0.93	 0.336	 0.42	

 Discussion	3.1.6

Previous	 research	 using	 only	 speech	 vocalisations	 reported	 high	 probabilities	 of	

correct	 responses	 for	 speaker	discrimination	 tasks	 (>	90%	 for	healthy	 young	adults;	

Van	Lancker	&	Kreiman,	1987;	Reich	&	Duke,	1979;	Wester,	2012).	The	current	results,	

however,	 indicate	 that	 impairments	 in	 the	 ability	 to	 discriminate	 between	 speakers	

can	emerge	when	listeners	are	presented	with	vocal	signals	produced	under	reduced	

volitional	 control,	when	 they	 encounter	within-pair	mismatches	 in	 volitional	 control	

and	when	they	are	required	to	perform	across-vocalisation	judgements.	Performance	

was	 highest	 for	 Vowels-Vowels	 –	 a	 volitionally	 produced,	 within-vocalisation	

conditions,	 while	 performance	 was	 significantly	 impaired	 for	 LaughterS-LaughterS	

compared	 to	 CryingS-CryingS	 (but	 was	 equivalent	 for	 the	 LaughterS-LaughterS	 and	

LaughterS-CryingS	 conditions).	 As	 in	 Experiment	 1,	 this	 could	 point	 towards	

modulation	 of	 voice	 perception	 through	 higher	 arousal	 –	 and	 concomitant	 acoustic	

variability	 (Ruch	 &	 Ekman,	 2001)	 –	 in	 laughter	 compared	 to	 crying.	 Similarly,	 basic	

differences	 across	 vocalisation	 types	 and	 the	 inherent	 variability	 within	 laughter	

vocalisations	 (e.g.	 noisy	 breathing,	 wheezing,	 vocal	 bursts,	 snorts,	 etc.,	 see	

Bachorowski	 &	 Owren,	 2001)	 could	 also	 underlie	 the	 lower	 performance	 for	

LaughterS-LaughterS.	 It	 should	 also	 be	 noted	 that	 male	 and	 female	 speakers	 were	

present	 in	 the	 current	 stimulus.	 This	 may	 have	 inflated	 performance,	 as	 male	 and	

female	 voices	 can	 be	 easily	 distinguished	 from	 another	 (in	 neutral	 speech	 –	 e.g.	

Owren	et	al.,	2007)	allowing	participants	to	base	their	judgement	on	basic	speaker	sex	
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discrimination	and	not	on	holistic	identity	discrimination	–	this	issue	was	addressed	by	

using	an	all-female	stimulus	set	in	Experiment	5.	

There	were	 response	biases	 towards	 ‘same’-responses	 for	within-vocalisation	

conditions	 while	 listeners	 more	 frequently	 perceived	 two	 sounds	 to	 come	 from	

different	speakers	 in	across-vocalisation	conditions.	 In	a	per-trial	analysis,	 responses	

were	shown	to	be	linked	to	the	degree	of	within-pair	acoustic	difference	on	a	range	of	

measures.	In	the	presence	of	great	variability	in	acoustic	differences	within	condition,	

however,	very	 little	of	 the	variance	 in	discrimination	accuracy	could	be	explained	by	

these	 acoustic	 difference	 measures,	 making	 it	 difficult	 to	 interpret	 the	 role	 of	

individual	acoustic	features	in	a	perceptually	meaningful	way.		

	 The	 striking	 effects	 of	 the	 different	 combinations	 of	 vocalisation	 pairs	 on	

participants’	task	performance	point	towards	listeners’	limited	ability	to	generalise	the	

markers	 of	 identity-related	 information	 in	 the	 presence	 of	 natural	 and	 meaningful	

variability	(introduced	here	by	differences	in	volitional	control	over	voice	production)	

across	different	vocal	signals	from	unfamiliar	individuals.	For	some	of	the	conditions,	

participants	 were	 not	 able	 to	 discriminate	 between	 speakers	 (as	 indicated	 by	 a	 d’	

score	 that	 is	 very	 close	 to	 or	 no	 different	 from	 zero).	 This	 is	 in	 line	 with	 previous	

findings,	 showing	 that	 variability	 in	 vocal	 signals	 introduced	 by	 volitional	 voice	

changes	 impairs	 performance	 on	 speaker	 recognition,	 identification	 and	

discrimination	 tasks	 (Read	 &	 Craik,	 1995;	 Reich	 &	 Duke,	 1979;	 Saslove	 &	 Yarmey,	

1980;	Winters	et	al.,	2008).	There	 is	 furthermore	a	body	of	 research	 that	has	shown	

that	by	manipulating	specific	acoustic	properties	of	a	vocal	signal	and	thus	introducing	

variability,	the	processing	of	identity-related	information	can	be	harmed	(see	Kreiman	

&	 Sidtis,	 2011	 for	 an	 overview).	 The	 primary	 aim	 of	 studies	 using	 acoustic	
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manipulations	 of	 stimuli	 was	 to	 identify	 sets	 of	 salient	 acoustic	 features	 used	 by	

listeners	to	make	inferences	about	a	speaker;	they	can,	however,	also	be	interpreted	

as	 evidence	 for	 a	 lack	 of	 generalisation	 across	 variability	 in	 vocal	 signals:	 For	

successful	generalisation,	 the	effect	of	manipulations	on	one	parameter	would	need	

to	be	compensated	 for	with	 little	 impact	on	performance,	as	 listeners	are	known	 to	

rely	 on	 a	 number	 of	 potentially	 speaker-specific	 acoustic	 cues	 when	 extracting	

identity-related	information	(Lavner,	Gath	&	Rosenhouse,	2000;	Sell,	Suied,	Elhilali	&	

Shamma,	2015).	

In	 parallel	 to	 the	 interpretation	 of	 the	 results	 of	 Experiment	 1,	 the	 lower	

discriminability	apparent	 for	vocalisations	produced	under	 reduced	volitional	control	

could	be	explained	in	different	ways,	which	are	not	mutually	exclusive:	1)	The	acoustic	

changes	in	vocal	signals	present	in	spontaneous	vocalisations	may	partly	override	cues	

to	speaker	identity;	2)	The	authentic	emotional	content	for	spontaneous	vocalisations	

is	 automatically	 processed	 in	 preference	 to	 speaker	 identity-related	 information;	 3)	

Listeners	 are	 less	 familiar	 with	 these	 spontaneous	 signals3,	 as	 they	 occur	 relatively	

rarely	compared	to	volitional	signals,	which	could	mean	that	the	observed	impairment	

in	speaker	discrimination	is	an	expertise	effect.	In	general,	current	results	indicate	that	

several	 factors	 have	 detrimental	 effects	 on	 the	 listener’s	 ability	 to	 extract	 indexical	

speaker	properties	 from	vocalisations.	As	was	 the	 case	 in	Experiment	 1,	which	used	

																																																								
3 	It	 may	 seem	 intuitive	 that	 the	 high-intensity	 spontaneous	 vocalisations	 that	 are	 being	
investigated	as	part	of	this	thesis	are	produced	relatively	infrequently	in	every	day	life	(compared	
to	 lower	 intensity	 version	 of	 these	 signals,	 speech	 or	 other	 vocalisations	 entirely).	 There	 is,	
however,	no	empirical	data	on	the	frequency	of	spontaneous	versus	volitional	laughter	production.	
A	 study	 of	 laughter	 production	 by	 Vettin	 and	 Todt	 (2004),	 reports	 an	 average	 of	 6	 bouts	 of	
laughter	during	10	minutes	of	conversation.	Self-report	studies,	do,	however,	report	a	 lower	rate	
of	laughter	(e.g.	an	average	of	17	laughs	per	day	has	been	reported	in	self-report	studies	[Martin	&	
Kuiper,	1999],	13.4	 laughter	bouts	per	day	 [Mannell	&	McMohan,	1982]).	Notably,	none	of	 these	
studies	 discriminate	between	different	 laughter	 types	 or	 intensities,	 nor	 do	 they	 relate	 laughter	
production	frequency	to	the	production	frequency	of	other	vocal	signals. 
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the	 same	 stimuli	 for	 a	 speaker	 sex	 identification	 task,	 it	 cannot	 yet	 be	 determined	

which	specific	properties	of	the	emotional	vocalisations	are	exerting	this	detrimental	

effect	 on	 performance:	 the	 effects	 could	 be	 due	 to	 differences	 in	 vocalisation	 type,	

with	 emotional	 vocalisations	 being	 processed	 in	 a	 different	 way	 to	 vowel	 sounds	

during	 the	 decoding	of	 speaker	 identity.	 Second,	 laughter	 and	 crying	 stimuli	 in	 this	

stimulus	 set	 differ	 in	 the	 perceived	 arousal	 and	 authenticity	 of	 emotional	 content	

ratings	–	these	differences	in	arousal	could	thus	be	a	confound	for	the	current	results.	

In	a	second	speaker	discrimination	experiment,	these	issues	were	therefore	addressed	

by	introducing	relevant	contrasts	in	affective	properties	within	the	same	vocalisation	

category,	through	the	use	of	LaughterS	and	LaughterV.	
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3.2 Experiment	4	

 	Introduction	3.2.1

In	 parallel	 to	 Experiment	 2,	 the	 speaker	 discrimination	 task	 from	Experiment	 3	was	

replicated	 to	 further	 explore	 whether	 the	 effects	 observed	 in	 Experiment	 3	 were	 a	

result	 of	 reduced	 volitional	 control	 over	 the	 production	 of	 the	 spontaneous	

vocalisations,	due	to	differences	in	arousal	between	conditions,	or	whether	the	effects	

were	indicative	of	general	differences	in	the	processing	of	different	vocalisation	types	

regardless	of	levels	of	volitional	control.	In	order	to	address	these	questions,	Vowels,	

LaughterS	 and	 LaughterV	 were	 used	 in	 the	 current	 experiment.	 LaughterV	 was	

produced	 under	 full	 volitional	 control	 over	 the	 voice	 (and	 in	 the	 absence	 of	

amusement),	 while	 LaughterS	 was	 produced	 under	 reduced	 volitional	 control,	 in	

response	to	viewing	and	listening	to	amusing	stimuli	(see	Experiment	2,	Section	2.2.3	

for	 a	more	 detailed	 description	 of	 the	 stimuli).	 Crucially	 for	 this	 study,	 arousal	 was	

more	 closely	 matched	 for	 LaughterV	 and	 LaughterS	 compared	 to	 LaughterS	 and	

CryingS	in	the	previous	experiment.	With	these	stimuli,	differences	in	volitional	control	

could	be	directly	contrasted	within	the	same	vocalisation	for	stimuli	 that	were	more	

closely	 matched	 in	 arousal	 but	 that	 differed	 in	 terms	 of	 volitional	 control	 over	

production.	 In	 line	 with	 the	 predictions	 of	 Experiment	 3,	 it	 was	 hypothesised	 that	

performance	 for	 across-vocalisation	 trials	 (LaughterV-Vowels,	 LaughterS-Vowels)	

would	be	less	accurate	than	for	within-vocalisation	trials	(Vowels-Vowels,	LaughterV-

LaughterV,	LaughterS-LaughterS,	LaughterV-LaughterS),	that	a	mismatch	in	volitional	

control	for	vocalisations	within	a	pair	and	the	presence	of	vocalisation	produced	under	

reduced	volitional	control	would	further	impair	performance.	Specific	predictions	are	

illustrated	in	Figure	12.	
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Figure	 12	 Predicted	 pattern	 for	 performance	 on	 the	 speaker	 discrimination	 task	 (from	 high	
performance	to	low	performance).	Boxes	with	rounded	edges	represent	within-vocalisation	pairs,	
hexagons	 represent	 across-vocalisation	 pairs.	 Black	 text:	 vocalisations	 produced	 under	 full	
volitional	 control;	 white	 text:	 vocalisations	 produced	 under	 reduced	 volitional	 control.	 Specific	
predictions	follow	the	pattern	Vowels-Vowels	(full	volitional	control,	within-vocalisation,	matching	
levels	 of	 volitional	 control)	 =	 LaughterV-LaughterV	 (full	 volitional	 control,	 within-vocalisation,	
matching	 levels	 of	 volitional	 control)	 >	 LaughterS-LaughterS	 (reduced	 volitional	 control,	 within-
vocalisation,	 matching	 levels	 of	 volitional	 control)	 >	 LaughterV-LaughterS	 (reduced	 volitional	
control,	 within-vocalisation,	 mismatching	 levels	 of	 volitional	 control)	 =	 LaughterV-Vowels	 (full	
volitional	 control,	 across-vocalisation,	 mismatching	 emotional	 content)	 >	 LaughterS-Vowels	
(reduced	volitional	control,	across-vocalisation,	mismatching	levels	of	volitional	control).		
	

 Participants	3.2.2

Participants	 were	 the	 same	 as	 in	 Experiment	 2	 (see	 Section	 2.2.2).	 Average	

performance	across	conditions	for	each	participants	was	within	2	standard	deviations	

from	the	mean	and	therefore	no	participant	was	excluded	in	the	following	statistical	

analyses.	

	

 Materials	3.2.3

Stimuli	 used	 were	 identical	 to	 the	 ones	 used	 Experiment	 2	 (see	 Section	 2.2.3):	 25	

stimuli	 of	 LaughterS,	 LaughterV	 and	 Vowels	 (including	 5	 stimuli	 from	 5	 different	

talkers)	were	selected.	
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 Design	and	Procedure	3.2.4

The	 task	 was	 the	 same	 as	 the	 one	 used	 in	 Experiment	 3	 (see	 Section	 3.1.4).	

Participants	heard	permutations	of	pairs	of	LaughterV,	LaughterS	and	Vowels,	the	two	

sounds	being	presented	sequentially	with	a	pause	of	0.7	seconds	between	them.	This	

yielded	 6	 conditions:	 4	 within-vocalisation	 conditions	 (Vowels-Vowels,	 LaughterV-

LaughterV,	 LaughterS-LaughterS,	 LaughterV-LaughterS)	 and	 2	 across-vocalisation	

conditions	 (LaughterV-Vowels,	 LaughterS-Vowels).	 Participants	 were	 not	 pre-

informed	about	the	inclusion	of	LaughterS	and	LaughterV	in	the	tasks.		No	stimuli	were	

repeated	during	 the	 task.	Further	 in	 contrast	 to	Experiment	 3,	 the	pairs	of	 speakers	

was	not	fixed	but	randomised	across	participants	in	the	current	experiment.	

	

 Results	3.2.5

Speaker	discrimination	from	non-verbal	vocalisations	

	
Figure	 13	 Average	 d’	 scores	 per	 condition	 for	 the	 speaker	 discrimination	 task.	 Significant	
comparisons	(Bonferroni-corrected,	see	Results	for	alpha	levels)	are	highlighted	with	an	asterisk;	
marginally	significant	results	are	highlighted	with	an	asterisk	in	brackets.	
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D’	scores	were	calculated	from	the	raw	responses	(for	details	see	Experiment	1	and	2,	

see	Section	2.1.5).	D’	values	ranged	from	1.78	to	0.15,	which	corresponds	to	average	

accuracy	values	of	78%	-	53%	(chance	level	=	50%).		The	d’	scores	were	entered	into	a	

one-way	repeated	measures	ANOVA	with	6	levels	for	condition.	Results	are	shown	in		

Figure	13.	There	was	a	significant	effect	of	condition	on	the	d’	scores	(F[5,220]	=	61.12,	

p	<	.001,	ηp
2	=	.59).	Post-hoc	t-tests	(8	comparisons,	corrected	alpha	=	.006)	tested	for	

the	predicted	pattern	illustrated	in	Figure	12.	Predictions	were	confirmed	for	all	within-

vocalisation	 judgements	 with	 performance	 LaughterS-LaughterS	 being	 significantly	

lower	 than	 for	 LaughterV-LaughterV	 and	 Vowels-Vowels	 (ps	 <	 .001),	 while	

performance	 for	LaughterV-LaughterV	and	Vowels-Vowels	was	similar.	Following	 the	

predictions,	 performance	 for	 LaughterV-LaughterS	 was	 also	 significantly	 lower	

compared	 to	 LaughterS-LaughterS	 (t[42]	 =	 	 10.706,	p	 <	 .001,	 Cohen’s	d	=	 3.304).	 As	

expected,	 performance	 for	 LaughterV-LaughterS	 and	Vowels-LaughterV	were	 similar	

(t[42]	 =	 	 10.706,	p	 =	 .535,	 Cohen’s	d	=	 .193).	 There	was,	 however,	 only	 a	marginally	

significant	 difference	 between	 Vowels-LaughterV	 and	 Vowels-LaughterS	 (t[42]	 =		

1.842,	p	=	 .073,	Cohen’s	d	=	 .568).	Overall,	 there	was	a	steep	decline	 in	performance	

across	the	conditions,	with	performance	being	not	significantly	different	from	zero	for	

Vowels-LaughterS	(one-sample	t-test,	against	zero:	t[42]	=	2.521,	p	=	.016;	Bonferroni-

corrected	 α	 =	 .008;	 all	 other	 ps	 ≤	 .004),	 indicating	 an	 inability	 of	 participants	 to	

discriminate	signal	from	noise	in	this	condition	(see		Figure	13).	

To	 directly	 assess	 whether	 speaker	 discrimination	 was	 more	 accurate	 for	

within-vocalisation	trials	compared	to	across-vocalisation	trials,	the	scores	for	the	four	

within-vocalisation	 conditions	were	 averaged	and	 compared	 to	 the	 averaged	 scores	

for	 the	 two	 across-vocalisation	 conditions.	 Participants	 performed	 better	 at	
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discriminating	speakers	for	within-vocalisation	trials	compared	to	across-vocalisation	

trials	(t[43]=	12.83,	p	<	.001,	Cohen’s	d	=	3.959).	

A	response	bias	analysis	using	C	as	a	measure	was	run	to	 further	explore	the	

underlying	 processes	 for	 different	 trial	 types	 (see	 Experiment	 3,	 Section	 3.1.5).	 C	

values	 per	 condition	 were	 entered	 into	 a	 one	 sample	 t-test	 (testing	 against	 0),	 to	

determine	whether	 any	 biases	 observed	were	 significant.	 In	 line	with	 findings	 from	

Experiment	 3,	 this	 showed	 that	 for	 all	 within-vocalisation	 conditions,	 with	 the	

exception	 of	 LaughterV-LaughterS,	 there	 was	 a	 significant	 bias	 towards	 responding	

‘same’	 (all	ps	<	 .001).	 In	contrast	 to	Experiment	3,	where	either	a	positive	or	no	bias	

was	 found	 for	 the	 across-vocalisation	 trials,	 there	 was,	 however,	 a	 significant	 bias	

towards	responding	‘different’	in	this	experiment	for	all	across-vocalisation	conditions	

as	well	as	LaughterV-LaughterS,	(all	ps	<	.001).	This	suggests	that	again	greater	within-

pair	 similarity	 in	 vocalisation	 type	 affected	 how	 responses	 were	 chosen	 for	

judgements	of	speaker	identity	(for	similar	effects	of	linguistic	similarity	on	response	

bias,	see	Narayan	et	al.,	2016).	

	

Contribution	of	acoustic	properties	to	speaker	discrimination	performance	

To	 further	 explore	 whether	 acoustic	 factors	 may	 underlie	 these	 biases,	 per	 trial	

responses	as	well	as	absolute	difference	scores	of	acoustic	measures	for	each	stimulus	

pair	 for	 each	 trial	 across	 all	 participants.	 Table	 5	 shows	 a	 breakdown	 of	 acoustic	

differences	by	condition.	From	the	heatmaps,	it	is	apparent	that	across	most	acoustic	

properties,	within-pair	differences	were	higher	for	the	across	vocalisation	conditions	–	

this	is	in	contrast	to	the	results	of	this	particular	analysis	conducted	for	Experiment	3,	

where	no	trend	was	apparent.	This	may	tie	in	with	the	bias	towards	being	more	likely	
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to	 perceive	 speakers	 as	 being	 different	 for	 across-vocalisations	 pairs	 as	 well	 as	 the	

overall	low	performance	for	these	conditions.	As	in	Experiment	3,	it	is,	however,	again	

apparent	 that	 standard	 deviations	 for	 acoustic	 measures	 are	 large,	 indicating	 that	

acoustic	 differences	 within	 conditions	 were	 very	 variable,	 at	 times	 exceeding	

differences	in	mean	differences	across	conditions.	

	

Table	 5	Absolute	difference	scores	averaged	per	condition.	Heatmaps	per	acoustic	 feature	were	
overlayed	 onto	 the	means,	 with	 green	 indicating	 a	 relatively	 average	 smaller	 difference	 within	
pairs,	 red	 highlighting	 a	 relatively	 larger	 difference	 (green	 =	 lowest	 value,	 red	 =	 highest	 values,	
yellow	=	intermediate	values),	with	green	indicating	a	relatively	smaller	average	difference	within	
pairs,	red	highlighting	a	relatively	larger	difference.	

 	  	
Vowels-
Vowels	

LaughterV-
LaughterV	

LaughterS-
LaughterS	

LaughterV-
LaughterS	

Vowels-
LaughterV	

Vowels-
LaughterS	

Total	Duration	 Mean	 0.28		 0.59		 0.34		 0.51		 0.48		 0.43		

	
SD	 0.21		 0.62		 0.28		 0.55		 0.47		 0.26		

%	of	Unvoiced	Segments	 Mean	 10.96		 13.14		 15.88		 17.33		 35.64		 36.79		

	
SD	 10.58		 12.75		 12.32		 12.55		 17.51		 18.34		

Burst	Duration	 Mean	 0.23		 0.38		 0.26		 0.34		 0.81		 0.58		

	
SD	 0.18		 0.37		 0.19		 0.29		 0.30		 0.26		

F0	Mean	 Mean	 52.25		 97.38		 129.19		 190.43		 128.93		 283.74		

	
SD	 44.59		 91.01		 86.96		 127.88		 78.88		 113.77		

F0	SD	 Mean	 57.05		 61.89		 40.98		 56.78		 72.89		 60.87		

	
SD	 40.27		 44.95		 31.15		 41.47		 47.13		 39.91		

Spect.	Centre	of	Gravity	 Mean	 356.77		 334.02		 368.07		 367.58		 442.93		 541.00		

	
SD	 336.09		 276.69		 323.25		 305.31		 297.71		 370.13		

HNR	 Mean	 4.89		 2.24		 3.05		 4.23		 12.50		 8.72		

	
SD	 3.24		 1.92		 2.16		 2.82		 5.04		 4.78		

Jitter	 Mean	 0.51		 0.81		 1.14		 1.30		 2.67		 1.78		

	
SD	 0.42		 0.98		 0.91		 0.86		 0.72		 1.01		

Shimmer	 Mean	 0.23		 0.38		 0.26		 0.34		 0.81		 0.58		

 	 SD	 0.18		 0.37		 0.19		 0.29		 0.30		 0.26		

	

To	 formally	 assess	whether	 acoustic	 differences	 can	predict	 participants’	 responses,	

hierarchical	 logistic	 regressions	 with	 the	 binary	 same/different	 responses	 of	 all	

participants	 as	 a	 dependent	 variable,	 using	 the	 Enter	 method.	 Participant	 was	

included	 as	 a	 covariate	 in	 a	 first	 block	 to	 account	 for	 any	 potential	 subject	 effects.	

Absolute	 acoustic	 difference	 scores	 for	 all	 acoustic	 measures	 were	 included	 as	
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covariates	in	the	second	and	final	block.	These	analyses	were	run	across	all	conditions	

(full	model),	and	within	each	condition	separately.	With	the	exception	of	the	models	

for	 LaughterS-LaughterV	(p	 =	 .027)	 and	 LaughterS-LaughterS	(p	 =	 .012,	 see	 Table	 6),	

none	of	the	other	models	showed	a	significant	effect	of	participant.	For	all	7	models	(6	

conditions,	 1	 overall),	 the	model	 fit	 was	 highly	 significant	 with	 a	 range	 of	 acoustic	

parameters	predicted	responses	(see	Table	6).	It	should	be	noted,	however,	be	noted	

that	 Nagelkerke’s	 R2	 is	 low	 across	 all	 models,	 indicating	 that	 while	 trends	 may	 be	

apparent,	the	overall	model	fits	are	relatively	poor	and	very	little	variance	is	explained	

by	 these	acoustic	measures	 (and	by	participant	effects).	This	may	be	 linked	 to	each	

measure	being	in	itself	vary	variable	–	see	the	large	standard	deviations.	It	 is	unclear	

why	 relatively	 little	 variance	 is	 explained	 for	 Vowels-Vowels	 (2.6%)	 compared	 to	

Experiment	3	(32.2%),	despite	the	same	stimuli	being	used	for	both	experiments.	

	

Table	 6	Results	of	 the	second	block	of	 the	 logistic	 regression	models.	Results	 for	 the	 first	block	
(including	only	participant)	are	omitted.	Significant	p	values	are	highlighted	in	bold	and	significant	
covariates	are	highlighted	in	light	grey.	

	
β	 S.E.	 Wald	 p	 Odds	

Overall	 Participant	 0	 0	 1.16	 0.281	 1	
N	=	12795	 Total	Duration	 0.37	 0.05	 63.52	 <	.001	 1.44	
Block	χ2	=	192.534,	p	<	0.001	 %	of	Unvoiced	Segments	 0	 0	 8.87	 <	.001	 1	
Nagelkerke	R2=	.02	 Burst	Duration	 0.3	 0.09	 10.61	 0.001	 1.34	

	
F0	Mean	 0	 0	 6.74	 0.009	 1	

	
F0	SD	 0	 0	 5.71	 0.017	 1	

	
Spectral	Centre	of	Gravity	 0	 0	 43.35	 <	.001	 1	

	
HNR	 0	 0.01	 0.3	 0.582	 1	

 	 Jitter	 0.08	 0.03	 7.79	 0.005	 1.08	
Vowels-Vowels	 Participant	 0	 0	 0.34	 0.56	 1	
N	=	2136	 Total	Duration	 -0.14	 0.24	 0.32	 0.571	 0.87	
Block	χ2	=	204.15,	p	<	0.001	 %	of	Unvoiced	Segments	 0.01	 0.01	 2.99	 0.084	 1.01	
Nagelkerke	R2=	.026	 Burst	Duration	 0.53	 0.33	 2.49	 0.115	 1.7	

	
F0	Mean	 -0.02	 0	 91.25	 <	.001	 0.99	

	
F0	SD	 0.01	 0	 11.59	 0.001	 1.01	

	
Spectral	Centre	of	Gravity	 0	 0	 36.43	 <	.001	 1	

	
HNR	 -0.04	 0.02	 4.98	 0.026	 0.96	

 	 Jitter	 0.28	 0.12	 5.38	 0.02	 1.33	
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	 	 β	 S.E.	 Wald	 p	 Odds	
LaughterV-LaughterV	 Participant	 0	 0	 0.06	 0.813	 1	
N	=	2136	 Total	Duration	 0.91	 0.14	 43.56	 <	.001	 2.48	
Block	χ2	=	106.201,	p	<	0.001	 %	of	Unvoiced	Segments	 -0.04	 0.01	 35.12	 <	.001	 0.96	
Nagelkerke	R2=	.02	 Burst	Duration	 -0.2	 0.24	 0.68	 0.41	 0.82	

	
F0	Mean	 0	 0	 1.81	 0.179	 1	

	
F0	SD	 0	 0	 0.71	 0.4	 1	

	
Spectral	Centre	of	Gravity	 0	 0	 6.3	 0.012	 1	

	
HNR	 -0.06	 0.03	 2.91	 0.088	 0.95	

 	 Jitter	 0.11	 0.1	 1.28	 0.258	 1.11	
LaughterS-LaughterS	 Participant	 0.01	 0	 7.05	 0.008	 1.01	
N	=	2131	 Total	Duration	 0.27	 0.17	 2.52	 0.113	 1.31	
Block	χ2	=	37.038,	p	<	0.001	 %	of	Unvoiced	Segments	 -0.01	 0	 7.04	 0.008	 0.99	
Nagelkerke	R2=	.024	 Burst	Duration	 0.29	 0.38	 0.57	 0.45	 1.33	

	
F0	Mean	 0	 0	 17.23	 <	.001	 1	

	
F0	SD	 0	 0	 0.02	 0.881	 1	

	
Spectral	Centre	of	Gravity	 0	 0	 0.34	 0.557	 1	

	
HNR	 0.03	 0.03	 1	 0.316	 1.03	

 	 Jitter	 -0.1	 0.09	 1.2	 0.273	 0.91	
LaughterV-LaughterS	 Participant	 0.01	 0	 4.94	 0.026	 1.01	
N	=	2132	 Total	Duration	 -0.29	 0.11	 6.95	 0.008	 0.75	
Block	χ2	=	19.241,	p	=	0.073	 %	of	Unvoiced	Segments	 0.01	 0.01	 2.13	 0.144	 1.01	
Nagelkerke	R2=	.012	 Burst	Duration	 0.2	 0.25	 0.65	 0.422	 1.22	

	
F0	Mean	 0	 0	 0.01	 0.934	 1	

	
F0	SD	 0	 0	 0.01	 0.932	 1	

	
Spectral	Centre	of	Gravity	 0	 0	 3.15	 0.076	 1	

	
HNR	 0.04	 0.03	 2.82	 0.093	 1.04	

 	 Jitter	 -0.05	 0.08	 0.39	 0.534	 0.95	
Vowels-LaughterV	 Participant	 -0.01	 0	 1.91	 0.167	 1	
N	=	2136	 Total	Duration	 0.24	 0.11	 4.96	 0.026	 1.27	
Block	χ2	=	29.369,	p	=	0.001	 %	of	Unvoiced	Segments	 0	 0	 0.02	 0.877	 1	
Nagelkerke	R2=	.019	 Burst	Duration	 -0.01	 0.22	 0	 0.979	 0.99	

	
F0	Mean	 0	 0	 9.93	 0.002	 1	

	
F0	SD	 0	 0	 4.92	 0.027	 1	

	
Spectral	Centre	of	Gravity	 0	 0	 4.36	 0.037	 1	

	
HNR	 0	 0.01	 0	 0.977	 1	

 	 Jitter	 -0.1	 0.09	 1.27	 0.261	 0.91	
Vowels-LaughterS	 Participant	 0	 0	 0.04	 0.84	 1	
N	=	2128	 Total	Duration	 -0.32	 0.18	 3.28	 0.07	 0.73	
Block	χ2	=	41.236,	p	<	0.001	 %	of	Unvoiced	Segments	 0	 0	 2.2	 0.138	 1	
Nagelkerke	R2=	.026	 Burst	Duration	 -0.44	 0.27	 2.64	 0.104	 0.64	

	
F0	Mean	 0	 0	 1.12	 0.289	 1	

	
F0	SD	 0	 0	 0.1	 0.755	 1	

	
Spectral	Centre	of	Gravity	 0	 0	 1.26	 0.263	 1	

	
HNR	 0.05	 0.01	 14.81	 <	.001	 1.05	

 	 Jitter	 -0.15	 0.07	 4.97	 0.026	 0.86	
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 Discussion	3.2.6

By	 using	 spontaneous	 and	 volitional	 laughter,	 Experiment	 4	 explored	 whether	 the	

effects	 observed	 in	 Experiment	 3	 were	 due	 to	 processing	 differences	 between	

different	categories	of	vocalisations,	differences	in	arousal	or	whether	they	could	have	

resulted	from	differences	in	volitional	control	over	the	voice.	Performance	was	highest	

and	similar	 for	LaughterV-LaughterV	and	Vowels-Vowels	–	 showing	 that	vocalisation	

type	 (laughter	 versus	 vowels)	 per	 se	 does	 not	 have	 an	 impact	 on	 performance	 for	

within-vocalisation	trials.	Furthermore,	LaughterV	is	higher	in	arousal	than	Vowels	but	

closely	matched	 to	 LaughterS	–	 if	 differences	 in	 arousal	 were	 driving	 these	 effects,	

performance	 should	 have	 been	 lower	 for	 LaughterV	 compared	 to	 Vowels	 and	

comparable	to	LaughterS.	For	vocalisations	produced	under	reduced	volitional	control	

(but	 in	 the	 absence	 of	 an	 across-vocalisation	 judgement	 or	 a	mismatch	 in	 levels	 of	

volitional	 control),	 performance	 for	 LaughterS-LaughterS	 was	 lower	 compared	 to	

Vowels-Vowels	 and	 LaughterV-LaughterV	 but	 higher	 than	 LaughterV-LaughterS	

(additional	mismatch	in	levels	of	volitional	control)	and	Vowels-LaughterV	(additional	

across-vocalisation	 judgement).	 Finally,	 performance	 was	 not	 significantly	 different	

from	 zero	 for	 Vowels-LaughterS,	 where	 all	 three	 detrimental	 factors	 (presence	 of	

vocalisations	 produced	 under	 reduced	 volitional	 control,	 across-vocalisation	

judgement	and	mismatch	in	degree	of	volitional	control)	impaired	performance.		

	 Per	 trial	 responses	 were	 linked	 to	 the	 degree	 of	 acoustic	 difference	 between	

stimuli,	across	a	range	of	measures	–	although,	in	line	with	the	results	of	Experiment	3,	

in	 the	presence	of	great	variability	 in	acoustic	differences	within	 condition,	at	 times	

exceeding	 across-condition	 variability,	 very	 little	 of	 the	 variance	 in	 same-different	

judgements	could	be	explained	by	these	measures.		
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3.3 General	discussion	

Experiments	 3	 and	 4	 strikingly	 illustrate	 how	 vocal	 flexibility	 affects	 speaker	

discrimination	from	voices	only.	While	listeners	were	able	to	successfully	discriminate	

between	 speakers	 for	 vocal	 signals	 that	 were	 similar	 in	 their	 properties,	 they	 were	

unable	 to	 link	 two	 distinct	 vocalisation	 types	when	 produced	 by	 the	 same	 speaker.	

That	 is,	 listeners	 failed	 to	 generalise	 identity	 related	 cues	 in	 voices	 across	 variable	

signals.	 Evidence	 from	 Experiments	 3	 and	 4	 further	 suggests	 an	 advantage	 in	 the	

processing	of	 speaker	 characteristics	 for	 vocalisations	 produced	under	 full	 volitional	

control.	This	 is	 in	 line	with	 findings	 from	Experiments	1	and	2	where	a	similar	effect	

was	 observed	 for	 the	 extraction	 of	 speaker	 sex.	 It	 should	 be	 noted	 that	 no	 formal	

analysis	 in	perceptual	distinctiveness	of	 the	 individual	 voices	was	performed	 for	 the	

current	 set	 of	 speaker	 discrimination	 experiments,	 since	 individual	 listeners	 in	 the	

current	study	were	only	presented	with	a	subset	of	all	possible	speaker	and	stimulus	

pairings	 –	 adequately	 assessing	 the	 distinctiveness	 of	 each	 speaker/stimulus	 within	

the	context	of	a	pair	would	require	data	from	all	participants	on	all	possible	pairings	

(see	Baumann	&	Belin,	2010).	Future	studies	should,	however,	explicitly	explore	how	

perceptual	 distinctiveness	 of	 different	 voices	 (and	 different	 vocalisations)	 interacts	

with	 vocal	 variability.	 As	 in	 Experiment	 1	 and	 2,	 large	 individual	 differences	 in	 task	

performance	are	apparent	in	the	data	–	future	research	should	aim	to	further	explore	

what	 the	 underlying	 causes	 and	 factors	 for	 such	 individual	 differences	 in	 speaker	

discrimination	may	be.	

Volitional	vocalisations	form	the	vast	majority	of	human	communication,	leading	

to	 greater	 exposure	 and	 expertise,	 while	 vocalisations	 produced	 under	 reduced	
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volitional	 control	 are	 not	 only	 comparatively	 infrequent	 but	 also	 diverge	 from	

volitional	 vocalisations	 in	 terms	 of	 production	 mechanisms	 and	 thus	 acoustic	

properties.	 It	 is	 thought	 that,	 during	 unfamiliar	 voice	 processing,	 vocal	 signals	 are	

analysed	with	 reference	 to	voice	 templates	or	 representations	based	on	population-

wide	 averages	 (Kreiman	 &	 Sidtis,	 2011;	 Latinus	 et	 al.,	 2013).	 Spontaneous	

vocalisations	 diverge	 from	 prototypical	 vocal	 signals	 (i.e.	 speech)	 in	 their	 acoustic,	

affective	as	well	as	perceptual	properties	and	may	thus	not	be	well-represented	within	

prototypical	 voice	 templates,	 thus	 generally	 impairing	 the	 extraction	 of	 speaker	

characteristics	 for	 such	 spontaneous	 signals	 (see	 also	 Experiment	 1	 and	 2).	 Further,	

without	 robust	 representations	 that	 link	 such	 non-prototypical	 and	 highly	

idiosyncratic	 signals	 to	 the	 (volitional)	 vocal	 repertoire	 of	 a	 single	 person,	

generalisations	of	identity-related	information	across	a	range	of	variable	vocal	signals	

only	 seems	 to	 be	 possible	 to	 a	 limited	 extent,	 as	 indicated	 by	 poor	 performance	 in	

across-vocalisation	judgements	 in	these	current	studies.	Only	relatively	 intimate	and	

personal	familiarity	with	and	exposure	to	a	speaker’s	full	vocal	inventory	may	enable	

listeners	 to	 form	 sufficiently	detailed	and	 robust	 representations	of	 a	 specific	 voice,	

including	 representations	 of	 non-prototypical	 vocal	 signals.	 Such	 detailed	

representation	may	then	allow	them	to	reliably	extract	speaker	characteristics	from	all	

vocal	signals.	Whether	familiarity	with	a	speaker	affords	listeners	an	advantage	in	the	

processing	of	identity-related	information	in	variable	vocal	signals	is	thus	be	explored	

in	the	next	experiments.	



Speaker	discrimination	in	familiar	and	unfamiliar	listeners	 	

 
	

103	

4 Speaker	discrimination	in	familiar	and	unfamiliar	listeners	

	

Experiments	 5	 and	 6	 explore	 the	 effects	 of	 familiarity	 with	 a	 voice	 on	 the	

extraction	 of	 identity	 relation	 from	 variable	 vocal	 signals.	 In	 parallel	 to	

Experiment	 4,	 familiar	 and	 unfamiliar	 listeners	 performed	 a	 speaker	

discrimination	task	on	volitional	and	spontaneous	laughter	as	well	as	vowels.	

While	 familiarity	 afforded	 listeners	 a	 consistent	 advantage	 for	 speaker	

discriminations,	 there	 was	 no	 interaction	 between	 familiarity	 and	 condition.	

Performance	 was	 therefore	 impaired	 to	 similar	 extents	 for	 familiar	 and	

unfamiliar	 listener	groups.	 In	Experiment	6,	speaker	discrimination	 in	familiar	

and	 unfamiliar	 listeners	 was	 explored	 based	 on	 whispered	 and	 voiced	 vocal	

signals	 of	 varying	 linguistic	 complexity.	 Better	 performance	 for	 familiar	

listeners	was	found,	while	additionally	for	this	study	the	familiarity	advantage	

was	greater	for	voiced	compared	to	whispered	signals.	Complex	interactions	of	

voicing,	 group	 and	 linguistic	 complexity	 were	 also	 apparent.	 Findings	 are	

discussed	 with	 reference	 to	 models	 of	 prototype-based	 voice	 processing,	

potential	 underlying	 mechanisms	 and	 representations	 of	 familiar	 and	

unfamiliar	voice	perception	and	different	types	and	aspects	of	familiarity.	
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4.1 Experiment	5	

 	Introduction	4.1.1

Experiments	3	and	4	showed	that	 listeners’	ability	 to	discriminate	between	speakers	

from	a	range	of	vocalisations	is	drastically	affected	by	the	demand	to	perform	across-

vocalisation	 generalisations	 and	 further	 by	 the	 variability	 introduced	 by	 reduced	

volitional	control	during	production.	 	The	 listeners	 in	 the	previous	 two	studies	were,	

however,	 unfamiliar	 with	 the	 voices	 they	 heard.	 Some	models	 of	 voice	 processing	

propose	different	mechanisms	 for	 the	processing	of	 familiar	and	unfamiliar	 voices	–	

thus	 predicting	 differences	 in	 performance	 as	 a	 function	 of	 familiarity.	 One	 such	

proposed	mechanism	for	 the	extraction	of	speaker	 information	 from	vocal	 signals	 is	

that	voices	are	processed	in	relation	to	prototypical	representations	(Kreiman	&	Sidtis,	

2011;	 Latinus,	 et	 al.,	 2013,	 see	 Section	 1.5.3.1).	 According	 to	 this	model,	 unfamiliar	

voices	 are	 processed	 based	 on	 their	 acoustic	 features	 in	 a	 stimulus-driven	way	 and	

compared	to	prototypical	templates	based	on	population	averages.	In	contrast	to	this,	

familiar	voices	are	thought	to	be	matched	to	representations	of	the	specific	speaker’s	

vocal	 inventory	 stored	 in	 long-term	 memory.	 When	 determining	 speaker	 identity	

from	vocal	signals,	the	prototypical	templates	used	during	unfamiliar	voice	processing	

may	 thus	 be	 underspecified	 with	 regard	 to	 individual	 voices	 and	 their	 flexibility,	

limiting	 the	 ability	 to	 form	 generalised	 percepts	 in	 the	 presence	 of	 dramatically	

different	 vocalisations	 and	 production	 states.	 When	 processing	 familiar	 voices,	 the	

detailed	 and	 person-specific	 representations	 can,	 however,	 potentially	 provide	 a	

better	 fit	 between	 representation	 and	 stimulus,	 which	may	 thus	 facilitate	 accurate	

identity	 perception	 despite	 variability	 in	 vocal	 signals.	 This	 prediction	 has	 been	 to	
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some	 extent	 confirmed	 by	 studies	 finding	 familiar	 talker	 advantages	 for	 speech	

comprehension,	where	 listeners	performed	more	accurately	 in	reporting	the	content	

of	speech	produced	by	 familiar	 talkers	 (e.g.	Nygaard	&	Pisoni,	1998).	Evidence	 from	

the	face	perception	literature	seems	to	also	support	this	representation–based	model:	

studies	 report	 that	assessments	of	 identity	 information	 from	photographs	are	more	

accurate	from	familiar	than	unfamiliar	viewers	(Bruce,	Henderson,	Newman	&	Burton,	

2001;	 Jenkins,	 White,	 van	 Montfort	 &	 Burton,	 2011;	 Ramon	 &	 Van	 Belle,	 2016).	

Whether	 such	 familiarity	 advantages	 extend	 to	 the	 processing	 of	 identity-related	

information	in	voices	has,	however,	not	been	directly	tested	to	date.	

Given	 the	 findings	 in	 Experiment	 3	 and	 4	 indicating	 that	 unfamiliar	 listeners	

largely	fail	to	successfully	generalise	identity-related	information	across	variable	non-

verbal	 vocalisations,	 the	 current	 study	 explores	 whether	 familiarity	 with	 a	 voice	

affects	 performance	 in	 a	 speaker	 discrimination	 task.	 The	 current	 study	 also	

attempted	to	address	some	of	the	remaining	confounds	present	in	Experiments	3	and	

4:	A	new	set	of	stimuli	was	recorded	from	female	lecturers	working	in	the	Psychology	

department	 at	Royal	Holloway.	Given	 the	presence	of	male	 and	 female	 speakers	 in	

Experiment	3	and	4,	performance	may	have	been	inflated	as	male	and	female	voices	

can	be	easily	distinguished	 from	another	 (in	neutral	 speech:	e.g.	Owren	et	al.,	2007;	

see	 also	 Experiments	 1	 and	 2)	 without	 having	 to	 assess	 broader	 identity-related	

properties	 of	 a	 voice.	 This	 issue	 was	 addressed	 through	 the	 use	 of	 an	 all-female	

speaker	 set	 in	 Experiment	 5.	 Further,	 in	 Experiment	 4,	 the	 two	 types	 of	 laughter	

marginally	differed	in	arousal,	as	a	closer	matching	on	this	variable	was	not	possible.	

In	 the	new	set	of	stimuli	 for	Experiment	5,	 this	possible	confound	was	addressed	by	
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selecting	sets	of	volitional	and	spontaneous	laughter	that	did	not	significantly	differ	in	

arousal.		

In	 the	 current	 experiment,	 a	 group	 of	 listeners	 familiar	 with	 these	 speakers	

(students	and	other	members	of	the	Psychology	department)	as	well	as	an	unfamiliar	

listener	group	 (students	 from	other	departments)	were	 tested	 in	 a	 study	 replicating	

the	 design	 of	 Experiment	 4.	 Based	 on	 the	 previous	 research	 showing	 familiarity	

advantages	 across	 visual	 and	 auditory	 signals,	 better	 performance	 on	 speaker	

discrimination	overall	was	predicted	for	the	familiar	listeners.	Based	on	the	hypothesis	

that	familiar	listeners	should	have	a	well-formed	mental	representation	of	the	voices	

(Kreiman	 &	 Sidtis,	 2011),	 it	 was	 further	 predicted	 that	 familiar	 listeners	 should	

demonstrate	 a	 greater	 ability	 to	 generalise	 identity-related	 information	 across	

vocalisations.	

	

 Participants	4.1.2

46	participants	were	recruited	at	Royal	Holloway,	University	of	London	and	received	

course	credit	for	their	participation	or	were	paid	at	a	rate	of	£7.50	per	hour.	Twenty-

three	 (16	 female;	 MAge:	 31.7	 years;	 SD:	 10.1	 years;	 range:	 19-65	 years)	 of	 the	

participants	 were	 familiar	 with	 the	 voices	 of	 the	 speakers	 (referred	 to	 as	 familiar	

listeners	 here)	 represented	 in	 the	 stimuli	 set	 by	 virtue	 of	 having	 been	 lectured	 by	

these	individuals	for	between	12	and	28	hours	in	the	preceding	2-3	terms	(dependent	

on	the	time	point	of	testing	within	the	teaching	term)	as	part	of	their	degree	course	or	

having	worked	 in	the	department	 for	more	than	two	years.	Twenty-three	unfamiliar	

participants	 (17	 female;	 MAge:	 20.2	 years;	 SD:	 1.9	 years;	 range:	 19-27	 years)	 were	

recruited	 from	 other	 departments	 around	 campus	 and	 had	 had	 no	 exposure	 to	 the	
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voices	 used	 in	 the	 study.	 All	 participants	 reported	 normal	 or	 corrected-to-normal	

vision	and	did	not	report	any	hearing	difficulties.	Ethical	approval	was	obtained	from	

the	 Departmental	 Ethics	 Committee	 at	 the	 Department	 of	 Psychology,	 Royal	

Holloway,	University	of	London.	One	participant	from	the	familiar	group	was	excluded	

as	 they	 reported	 having	 general	 difficulties	 with	 recognising	 individuals	 from	 their	

faces	 and	 voices.	 One	 participant	 from	 the	 unfamiliar	 group	 was	 excluded	 as	 their	

average	 performance	 in	 the	 speaker	 discrimination	 task	 (measured	 in	 d’)	 across	 all	

conditions	was	more	 than	2	 standard	deviations	below	 the	 average	performance	of	

the	group,	thus	indicating	random	responses.	Note	also	that	listeners	groups	differed	

in	age	and	age	range.	

	

 Materials	4.1.3

New	stimuli	were	recorded	for	this	experiment.	The	vocalisation	types	were	identical	

to	the	ones	used	in	Experiment	4:	LaughterS,	LaughterV	and	Vowels.	The	sounds	were	

recorded	using	the	same	elicitation	procedure	described	in	Experiments	1	and	2	(see	

Sections	2.1.3	and	2.2.3).	Six	talkers	(all	female,	ages	range	from	29	–	42	years)	were	

recorded	 in	 a	 sound-treated	 recording	 booth.	 All	 speakers	 were	 lecturers	 at	 the	

Department	of	Psychology	at	Royal	Holloway	and	selected	based	on	their	exposure	to	

a	 subgroup	 of	 undergraduate	 degree	 students	 at	 the	 department.	 Recordings	were	

obtained	using	a	Røde	condenser	microphone	 (NT-A)	with	a	sampling	 rate	of	44100	

Hz.	 The	 output	 of	 the	 microphone	 was	 fed	 into	 a	 PreSonus	 Audiobox,	 which	 was	

connected	 to	 the	 USB	 port	 of	 the	 recording	 computer.	 Participants	 were	 asked	 to	

remain	as	still	as	possible	during	the	recordings	and	were	seated	at	a	distance	of	about	

50cm	 from	 the	 microphone	 to	 avoid	 that	 any	 movement	 associated	 with	 intense	
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laughter	production	would	interfere	with	the	recordings	or	move	the	microphone.	All	

laughs	 and	 vowels	 were	 extracted	 from	 the	 raw	 recordings	 and	 saved	 as	

uncompressed	 WAVE	 files,	 normalised	 for	 root-mean-square	 intensity	 in	 Praat	

(Boersma	&	Weenink,	 2010).	 All	 stimuli	 of	 a	 duration	 between	 1.2	 and	 3.3	 seconds	

were	 taken	 forward	 into	 a	 pilot	 study	 to	measure	 the	 perceptual	 properties	 of	 the	

stimuli:	 in	 a	 design	 identical	 to	 the	 one	 reported	 for	 the	 pilot	 study	 and	 stimulus	

selection	 for	 the	 validation	 of	 the	 stimulus	 sets	 of	 the	 previous	 experiments,	 12	

participants	 rated	 the	 perceived	 arousal	 of	 104	 spontaneous	 laughs,	 92	 volitional	

laughs	and	105	series	of	vowels	on	a	7-point	Likert	scale.	They	then	additionally	rated	

the	perceived	authenticity	of	laughter	on	a	7-point	Likert	scale.	

Based	on	the	ratings	of	this	pilot	study,	25	stimuli	were	selected	(5	per	speaker)	

per	vocalisation.	One	speaker	was	excluded	at	this	point	of	the	process	to	ensure	that	

the	 stimuli	 were	matched	 for	 arousal.	 There	 were	marked	 differences	 in	 perceived	

authenticity	 between	 LaughterV	 and	 LaughterS	 (LaughterV	 M:	 3.17,	 CI[2.94,	 3.41];	

LaughterS	 M:	 4.98,	 CI[4.79,	 5.18];	 t[48]=	 12.114,	 p	 <	 .001)	 ,	 Cohen’s	 d	 =	 3.497).	

LaughterS	and	LaughterV	were	significantly	higher	in	arousal	than	Vowels	(LaughterV:	

t[48]	=	28.503,	p	<	.001,	Cohen’s	d	=	8.228;	LaughterS:	t[48]	=	28.396,	p	<	.001,	Cohen’s	

d	=	8.197),	but	were	matched	for	arousal	with	each	other	(LaughterV	M:	4.67,	CI[4.53,	

4.81];	 LaughterS	M:	 4.77,	 CI[4.63,	 4.91];	 t[48]=	 .929,	p	 =	 .360,	 Cohen’s	d	 =	 .268).	 All	

vocalisations	 were	 furthermore	matched	 for	 overall	 duration	 (Vowels	M:	 2.55	 secs,	

CI[2.43,	2.66];	LaughterV	M:	1.90	secs,	CI[1.71,	2.09];	LaughterS	M:	1.92	secs,	CI[1.70,	

2.14];	 one-way	 repeated	measures	ANOVA:	F[2,48]=.501,	 p	 =	 .604).	 An	 overview	of	

the	acoustic	properties	can	be	found	in	Table	7.	
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 Design	and	Procedure	4.1.4

Participants	were	 tested	 in	 individual	 sessions	 lasting	 around	one	hour.	Participants	

were	 seated	 in	 front	 of	 a	 computer	 screen,	 with	 stimuli	 being	 presented	 at	 a	

comfortable	 volume	 via	 headphones	 (Sennheisser	 HD	 201),	 using	 MATLAB	

(Mathworks,	 Inc.,	 Natick,	 MA)	 with	 the	 Psychophysics	 Toolbox	 extension	

(http://psychtoolbox.org/).	The	testing	session	comprised	three	tasks:	

	

Task	1:	Perceived	number	of	speakers	

This	 task	 was	 designed	 to	 introduce	 listeners	 to	 the	 stimuli	 used	 in	 the	 main	 task	

(speaker	 discrimination)	 and	 thus	 results	 are	 not	 reported	 here.	 Participants	 were	

initially	presented	with	all	stimuli	in	randomised	order	and	were	asked	to	listen	to	the	

sounds	attentively.	After	the	presentation	of	the	sounds,	participants	were	prompted	

to	 estimate	 the	 number	 of	 different	 speakers	 they	 had	 heard.	 They	 were	 then	

presented	with	the	stimuli	blocked	by	vocalisation	(LaughterS,	LaughterV	and	Vowels)	

and	prompted	 to	provide	 the	 same	 judgement	 after	 each	block.	The	order	of	 these	

three	blocks	was	randomised.	This	task	lasted	for	approximately	10	minutes.	

	

Task	2:	Speaker	recognition	from	speech	

This	 task	 was	 included	 to	 objectively	 assess	 the	 familiarity	 of	 participants	 with	 the	

speakers.	Participants	were	informed	that	they	had	heard	5	different	speakers	in	the	

previous	 task	 and	 were	 asked	 if	 they	 were	 familiar	 (yes/no	 answer)	 with	 these	

speakers	based	on	pictures	and	the	names	of	the	individuals.	All	familiar	participants	

reported	 to	 be	 familiar	 with	 each	 of	 the	 speakers,	 while	 none	 of	 the	 unfamiliar	

listeners	reported	any	familiarity.	Following	this,	participants	underwent	a	brief	voice	
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(re)familiarisation	task:	they	were	presented	with	a	brief	speech	sample	of	each	of	the	

five	speakers	(two	consecutive	sentences	from	the	rainbow	passage	[Fairbanks,	1960;	

mean	 duration:	 6.6	 secs,	 SD	 =	 .49	 secs])	 while	 the	 speaker’s	 full	 name	 and	 a	

photograph	was	presented	on	the	screen.	After	this,	participants	were	presented	with	

6	sentences	(Bench,	Kowal	&	Bamford,	1979)	from	each	speaker,	as	well	as	their	time-

reversed	versions	 (i.e.	 30	 sentences	of	 forward	 speech	and	30	 sentences	 in	 reversed	

speech,	 60	 trials	 in	 total	 presented	 in	 a	 random	 order).	 Reversed	 versions	 were	

included	 to	 reduce	 interference	 from	 speaker-specific	 accents	 (Southern	 British	

English,	Canadian,	North	American,	Scottish	and	Northern	Irish	accents	were	present	

in	 the	 speaker	 set).	 Following	 this,	 participants	were	 asked	 to	 identify	 the	 speakers	

from	 the	 speech	 samples	 in	 a	 5-way	 forced	 choice	 paradigm	 via	 a	 prompt	 on	 the	

screen.	Trials	were	timed,	giving	participants	6	seconds	after	the	offset	of	the	stimulus	

to	make	a	response.	This	task	lasted	for	approximately	5	minutes.	

	

Task	3:	Speaker	discrimination	from	non-verbal	vocalisations	

Following	 Tasks	 1	 and	 2,	 familiar	 participants	were	 ask	 to	 report	 how	 familiar	 they	

thought	they	were	with	each	lecturer’s	speaking	voice	and	laughter,	on	a	scale	from	1	

(not	familiar	at	all)	–	7	(very	familiar).	These	data	confirm	that	familiar	listeners	indeed	

perceived	 themselves	 to	be	 familiar	with	 the	speaking	voices	 (Mall	speakers	=	5.04;	SDall	

speakers	 	 =	 1.73;	 means	 for	 individual	 speakers	 ranging	 from	 5.91	 to	 4.54)	 and	 their	

laughter	 (Mall	 speakers	 =	 4.28;	 SDall	 speakers	 	 =	 2.03;	 means	 for	 individual	 speakers	 range	

from	 5.71	 to	 3.54).	 Overall,	 listeners	 thought	 they	 were	 more	 familiar	 with	 the	

speaker’s	speaking	voices	than	with	their	laughter	(t[21]=	4.203,	p	<	.001,	Cohen’s	d	=	

1.8343).	After	this	 the	main	speaker	discrimination	task	was	started.	The	design	and	
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procedure	 of	 this	 task	were	 identical	 to	 the	 one	 used	 in	 Experiment	 4	 (see	 Section	

3.1.4).	This	task	lasted	for	approximately	35	minutes.	

	

 Results	4.1.5

Speaker	recognition	from	speech	

													

Figure	14	Unbiased	hit	rates	for	the	speaker	recognition	task.		

	

One	data	set	for	the	unfamiliar	group	was	lost	due	to	experimenter	error.	Results	are	

shown	 in	Figure	 14.	Unbiased	hit	 rates	 (Hu	scores)	were	calculated	using	the	formula	

provided	by	Wagner	(1993)	and	arcsine	transformed.	These	scores	were	into	entered	a	

2	 (familiar,	 unfamiliar	 listeners)	 x	 2	 (backward	 speech,	 forward	 speech)	 repeated	

measures	 ANOVA.	 There	 were	 significant	 main	 effects	 of	 listener	 group	 (F[1,41]	

=59.662,	p	<	 .001,	 ηp
2	=	.593)	 and	 condition	 (F[1,41]	=	 143.021,	p	<	 .001,	 ηp

2	=	.777)	 as	

well	 as	 an	 interaction	 (F[1,42]	=	 16.055,	p	<	 .001,	 ηp
2		=	 .281).	 Familiar	 listeners	were	
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significantly	better	 at	 identifying	 speakers	 from	both	backward	and	 forward	 speech	

than	unfamiliar	 listeners	 (ps	<	 .001).	The	difference	between	 familiar	 and	unfamiliar	

listener	was	bigger	 for	 forward	speech,	either	 indicating	that	 familiar	 listeners	had	a	

bigger	advantage	 for	 forward	 speech	or	 that	unfamiliar	 listeners	were	 close	 to	 floor	

(although	 unfamiliar	 scores	 were	 significantly	 above	 zero,	 as	 determined	 by	 a	 one	

sample	 t-test,	 t[20]	 =	 4.584,	 p	 <	 .001,	 Cohen’s	 d	 =	 2.05).	 In	 terms	 of	 raw	 accuracy	

scores,	 the	 familiar	 listeners’	performance	was	high	 for	 forward	speech	 (M	 =	89.9%;	

SD	 =	 11.5%),	 again	 confirming	 a	 high	 familiarity	 with	 the	 speech	 of	 the	 individuals	

recorded	for	this	stimulus	set.	Clear	above-chance	performance	(i.e.	>20%	correct)	for	

unfamiliar	 listeners	 (M	 =	 58.9%;	 SD	 =	 18.3%)	 can	 be	 explained	 by	 the	 brief	

familiarisation	phase	that	preceded	this	task.	For	backward	speech,	the	performance	

of	unfamiliar	listeners	was	close	to	chance	level	(M	=	26.4%;	SD	=	11.2%),	although	in	

line	with	results	based	on	Hu	scores,	a	one-sample	t-test	against	chance	performance	

revealed	 significantly	 higher	 performance	 for	 this	 group	 (t[20]	 =	 2.646,	 p	 =	 .015,	

Cohen’s	 d	 =	 1.183).	 Familiar	 listeners’	 performance	 was	 much	 higher	 compared	 to	

unfamiliar	listeners	(M	=	57%;	SD	=	18.4%).	Both	mean	accuracy	scores	and	Hu	scores	

for	backward	speech	thus	indicate	that	familiarity	with	the	voice	of	the	speaker	for	the	

familiar	group	goes	beyond	identification	based	on	–	in	this	context	–	speaker-specific	

cues,	such	as	regional	accents.	

	

Speaker	discrimination	from	non-verbal	vocalisations	

D’	scores	were	computed	and	entered	into	a	2	(listener	group)	x	6	(condition)	repeated	

measures	 ANOVA.	 There	 were	 significant	 main	 effects	 of	 listener	 group	 (F[1,42]	 =	

371.399,	p	<	 .001,	 ηp
2	=	.898)	 as	well	 as	 of	 condition	 (F[5,210]	 =	 65.004,	p	<	 .001,	 ηp

2	
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=	.607)	but	no	interaction	(F[5,210]	=	.263,	p	=	.933,	ηp
2	=	.006).	Post-hoc	t-tests	further	

explored	 the	 effects	 of	 condition	 and	 listener	 group.	 Significant	 advantages	 for	

familiar	 listeners	were	 expected	 across	 all	 conditions.	 The	 predictions	 for	 condition	

effects	were	identical	to	those	for	Experiment	4	(see	Figure	12).	The	post-hoc	paired	t-

tests	(8	comparisons,	corrected	alpha	=	.006)	largely	replicated	the	pattern	of	results	

per	condition	shown	in	Experiment	4	(see	Figure	15).	

	
Figure	 15	 Average	 d’	 scores	 per	 condition	 for	 the	 speaker	 discrimination	 task.	 Significant	
comparisons	(Bonferroni-corrected)	are	highlighted	with	an	asterisk;	marginally	significant	results	
are	highlighted	with	an	asterisk	in	brackets.	
	
	

In	contrast	to	the	findings	of	Experiment	4,	performance	for	Vowels-Vowels	was	lower	

and	 significantly	 worse	 compared	 to	 LaughterV-LaughterV	 (t[43]	 =	 4.929,	 p	 <	 .001,	

Cohen’s	 d	 =	 1.502)	 but	 was	 similar	 to	 LaughterS-LaughterS	 	 (t[43]	 =	 .289,	 p	 =	 .774	

Cohen’s	d	=	 .088).	 Furthermore,	 performance	 for	 LaughterV-LaughterS	 and	 Vowels-

LaughterV	were	different	(t[43]	=	7.385,	p	<	 .001,	Cohen’s	d	=	2.252),	while	there	was	
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no	difference	between	Vowels-LaughterV	and	Vowels-LaughterS	(t[43]	=	.567,	p	=	.573,	

Cohen’s	d	=	.173;	see	Figure	15).	In	line	with	previous	findings	from	Experiments	3	and	4,	

participants	performed	better	at	discriminating	speakers	for	within-vocalisation	trials	

compared	to	across-vocalisation	trials	(t[44]=	13.23,	p	<	.001,	Cohen’s	d	=	3.989),	with	

performance	dropping	 to	 zero	 for	unfamiliar	 listeners	 in	 the	 two	across-vocalisation	

conditions	(one-sample	t-tests,	both	ps	≥	.116).	

Post-hoc	independent-samples	t-tests	(6	comparisons,	corrected	alpha	=	.008)	

were	 run	 to	explore	 the	effect	of	 listener	group	 for	each	 condition.	This	 showed,	as	

predicted,	a	significant	advantage	for	familiar	listeners	over	unfamiliar	listeners	for	all	

conditions	(all	ps	≤	.004),	with	the	exception	of	marginally	significant	advantages	for	

Vowels-Vowels	 (t[21]	=	2.679,	p	 =	 .011,	Cohen’s	d	 =	 1.169)	 and	LaughterV-LaughterV	

(t[21]	=	2.548,	p	=	.015,	Cohen’s	d	=	1.112).	

In	parallel	to	Experiment	3	and	4,	a	response	bias	analysis	was	run.	Collapsing	

across	 listener	 group,	 one-sample	 t-tests	 showed	 that	 for	 LaughterV-LaughterV	and	

LaughterS-LaughterS	 there	 was	 a	 significant	 bias	 towards	 responding	 ‘same’	 (ps	

<	 .001).	 For	 the	 across-vocalisation	 trials	 as	well	 as	 LaughterV-LaughterS	 there	was,	

however,	a	significant	bias	towards	responding	‘different’	(all	ps	<	.001).	No	bias	was	

found	LaughterV-LaughterS	(t[43]=	.209,	p	=	.836,	Cohen’s	d	=	.06	).		

	

 Discussion	4.1.6

Experiment	 5	 formed	 a	 replication	 of	 Experiment	 4	 that	 additionally	 explored	 the	

effect	of	familiarity	with	a	speaker	on	listeners’	abilities	to	generalise	identity-related	

information	 across	 diverse	 vocalisations.	 The	 results	 were	 very	 similar	 to	 those	 in	

Experiment	4,	 in	terms	of	overall	 levels	of	performance	as	well	as	a	stepwise	decline	
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across	conditions.	This	replication	suggests	that	despite	the	relatively	small	number	of	

speakers	 used,	 stimulus	 set	 effects	 and	 influences	 of	 speaker	 idiosyncrasies	 are	

limited	 in	 the	current	set	of	studies.	Performance	for	Vowels-Vowels	was	noticeably	

lower	in	Experiment	5	compared	to	Experiment	3	and	4,	which	could	be	attributed	to	

the	 vowel	 tokens	 being	 relatively	 similar	 across	 the	 speakers	 used	 in	 the	 current	

stimulus	et	(who	were	all	female	and	with	relatively	low	average	pitch)	in	contrast	to	

the	clear	differences	between	male	and	female	speakers	in	Experiment	4	(e.g.	in	Fo).	

Otherwise,	no	striking	differences	were	found	between	Experiment	4	and	5.		

In	 line	 with	 findings	 from	 face	 and	 speech	 perception	 (Bruce	 et	 al.,	 2001;	

Jenkins	et	al.,	2011;	Nygaard	&	Pisoni,	1998;	Ramon	&	Van	Belle,	2016),	a	consistent	

advantage	for	familiar	listeners	over	unfamiliar	listeners	was	found,	where	the	familiar	

listeners	 have	 a	 greater	 ability	 to	 generalise	 identity-related	 information	 across	 a	

range	 of	 spontaneous	 and	 volitional	 non-verbal	 vocalisations	 in	 a	 speaker	

discrimination	 task.	 The	 current	 data	 can	 be	 interpreted	 in	 line	 with	 Kreiman	 and	

Sidtis’	(2011)	proposal	regarding	the	differential	processing	of	familiar	and	unfamiliar	

voices:	given	prior	experience	with	the	heard	voices,	familiar	listeners	can	additionally	

compare	 the	 pairs	 of	 vocalisations	 to	 speaker-specific	 templates	 that	 entail	

idiosyncrasies	and	are	based	on	a	range	of	vocal	outputs.	Unfamiliar	listeners	can	only	

access	 averaged,	 prototypical	 voice	 templates,	 which	 may	 serve	 well	 as	 a	 useful	

heuristic	 to	 assess	 speaker	 characteristics.	 The	 prototypical	 voice	 templates	 are,	

however,	 underspecified	 compared	 to	 a	 familiar	 listener’s	 speaker-specific	

representations	 (see	 also	 Experiments	 3	 and	 4).	 The	 increased	 specificity	 of	

representations	for	familiar	voices	offer	a	more	precise	fit	between	the	incoming	vocal	
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signal	 and	 the	perceptual	 template	 for	 a	 speaker,	 thus	 listeners	 can	assess	 identity-

related	information	more	accurately	compared	to	unfamiliar	listeners.	

No	 interaction	 between	 groups	 was	 found,	 which	 suggests	 that	 despite	 the	

general	 advantage	 for	 familiar	 listeners,	 the	 factors	 implicated	 in	 impairing	

performance	 in	 the	 previous	 experiments	 (across-vocalisation	 judgements,	 the	

presence	of	vocalisations	produced	under	reduced	volitional	control	and	mismatches	

in	 volitional	 control	 within	 a	 pair)	 had	 a	 similar	 effect	 on	 familiar	 and	 unfamiliar	

listeners.	 It	 should	 be	 noted	 that	 unfamiliar	 listeners	 were	 not	 able	 to	 discriminate	

between	 speakers	 for	 the	 across-vocalisation	 conditions	 (LaughterV-Vowels	 and	

LaughterS-Vowels)	 as	 indicated	by	d’	 scores	 that	are	not	 significantly	different	 from	

zero,	which	could	potentially	mask	interactions.	Another	consideration	here	could	be	

the	 nature	 of	 the	 familiarity	 of	 the	 listeners	 in	 the	 study.	 The	 current	 study	 thus	

suggests	that	familiar	listeners	were	able	to	recognise	the	five	speakers	with	very	high	

accuracy	based	on	their	speech,	which	serves	as	an	objective	measure	of	 familiarity,	

and	 it	 was	 also	 shown	 that	 perceived	 familiarity	 with	 the	 speakers’	 speech	 and	

laughter	 from	 self-report:	 however,	 the	 familiar	 listeners	 in	 this	 study	 had	 engaged	

with	 these	 speakers	 in	 specific	 contexts	 (lectures,	 professional	 settings),	which	may	

have	resulted	 in	a	familiarity	with	the	voices	that	 is	skewed	towards	certain	kinds	of	

vocal	 signals	 (e.g.	 speech	 and	 other	 volitional	 vocalisations,	 with	 high-intensity	

spontaneous	laughter	being	rare).	This	possibility	is	reflected	in	subjective	familiarity	

ratings,	where	 familiarity	with	 the	 speaking	 voice	 of	 each	 lecturer	was	 rated	higher	

than	familiarity	with	that	person’s	laughter.	Previous	research	has	suggested	that	the	

type	 of	 familiarity	 (e.g.	 self	 versus	 personally	 familiar	 close	 friends,	 partners	 versus	

famous	people	or	work	colleagues)	will	affect	how	a	voice	 is	perceived	 (see	Sidtis	&	
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Kreiman,2012;	Sugiura,	2014	and	McGettigan,	2015	for	discussions).	In	the	context	of	

the	current	study,	 it	could	therefore	be	argued	that	 listeners	may	have	been	able	to	

more	 successfully	 generalise	 across	 vocalisations	 if	 they	 has	 been	 presented	 with	

vocal	signals	from	speakers	they	know	in	a	wider	range	of	contexts.	More	exposure	to	

the	 speakers’	 full	 vocal	 inventory,	 in	 a	 way	 that	 is	 more	 representative	 of	 having	

learned	a	vocal	 identity	through	social	 interaction,	could	have	linked	all	vocal	signals	

to	such	a	familiar	speaker	and	allowed	for	better	generalisation.	A	lack	of	interaction	

of	 condition	with	group	 is	 therefore	perhaps	not	 too	 surprising,	given	 that	even	 the	

familiar	 listeners	 tested	were	 relatively	unfamiliar	with	 the	vocal	 signals	used	 in	 the	

study	 (especially	 with	 spontaneous	 laughter).	 Based	 on	 these	 results,	 a	 further	

experiment	 explored	 the	 performance	 of	 a	 similar	 group	 of	 familiar	 listeners	 on	

speaker	discrimination	using	 (voiced	and	whispered)	words,	nonwords	and	vowels	–	

volitionally	produced	vocal	signals	that	should	be	more	familiar	to	the	listeners.	
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4.2 Experiment	6	

 	Introduction	4.2.1

Experiment	 5	 explored	 how	 familiarity	 with	 a	 voice	 affects	 speaker	 discrimination	

from	volitional	and	spontaneous	vocalisations.	Familiarity	with	the	speakers	afforded	

listeners	 an	 overall	 advantage,	 although	 relative	 performance	 for	 spontaneous	

vocalisations	showed	an	equivalent	impairment	for	familiar	and	unfamiliar	listeners.	In	

the	current	experiment,	 the	effect	of	 familiarity	on	 identity	processing	 in	voices	was	

further	 explored	 by	 contrasting	 whispered	 and	 voiced	 vocal	 signals,	 specifically,	

vowels,	nonwords	and	words	(C-V-C	structure).	Voiced	and	whispered	speech	signals	

differ	in	a	number	of	properties	from	the	stimuli	used	in	the	previous	experiment,	such	

as	 the	 presence	 or	 absence	 and	 modulation	 of	 source	 and	 filter	 characteristics,	

(linguistic)	 complexity	 and	 familiarity	 with	 the	 stimulus	 type:	 In	 contrast	 to	

spontaneous	 vocalisations,	 where	 source	 information	 is	 drastically	 modulated	 and	

filter	 modulations	 are	 arguably	 reduced,	 filter	 information	 is	 fully	 preserved	 in	

whispered	 speech	 while	 source	 information	 is	 largely	 absent.	 Given	 this	 lack	 of	

diagnostic	source	information,	previous	studies	using	whispered	speech	have	reliably	

shown	 that	 while	 listeners	 are	 still	 able	 to	 extract	 speaker	 characteristics	 from	

whispered	speech,	performance	is	significantly	impaired	compared	to	voiced	speech	–	

even	when	 familiar	 with	 a	 voice	 (Abberton	&	 Fourcin,	 1978;	 Bartle	 &	Dellwo,	 2015;	

Orchard	&	Yarmey,	1995;	Pollack,	Pickett	&	Sumby,	1954;	Yarmey,	Yarmey,	Yarmey	&	

Parliament,	 2001).	 For	 the	 current	 experiment,	 it	 was	 thus	 predicted	 that	 the	 task	

would	be	more	difficult	for	whispered	signals	compared	to	voiced	signals.	

With	regard	to	the	stimuli	used	 in	Experiment	3-5,	spontaneous	vocalisations	

have	been	described	as	unarticulated	vocalisations	with	only	minimal	modulation	of	
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the	 filter	characteristics	being	apparent	during	their	production	 (see	Ruch	&	Ekman,	

2001	 for	 a	 discussion	 of	 laughter).	 Further,	 laughter	 has	 been	 described	 as	 a	

‘stereotyped’	 vocalisation	 (Provine	 &	 Yong,	 1993).	 Previous	 studies	 using	 speech	

samples	have	shown	that	not	only	 increasing	the	duration	of	stimuli	but	also	merely	

increasing	 the	 (linguistic)	 content	 of	 speech	 (e.g.	 number	 of	 phonemes)	 while	

controlling	for	duration	improves	listeners’	accuracy	in	determining	identity	from	the	

voice	 (Bricker	&	Pruzanksy,	 1966;	Pollack	et	 al.,	 1954).	The	authors	of	 these	 studies	

consequently	 propose	 that	 stimuli	 that	 include	 more	 linguistic	 content	 allow	 the	

listeners	 to	 sample	 more	 of	 the	 phonetic	 inventory	 of	 a	 speaker	 as	 well	 as	 more	

information	about	the	dynamic	use	of	their	vocal	apparatus,	resulting	in	more	reliable	

and	 accurate	 decoding	 of	 speaker	 identity-related	 information.	 To	 directly	 test	

whether	 this	 is	 the	 case	 for	 whispered	 and	 voiced	 speech	 (and	 for	 familiar	 and	

unfamiliar	 listeners),	 vowels,	 nonwords	 and	 words	 were	 used	 in	 the	 current	 study,	

thus	 modulating	 the	 linguistic	 complexity	 of	 the	 stimuli.	 It	 was	 predicted	 that	

increasing	 linguistic	complexity,	as	 indexed	by	more	phonemes	(vowels:	V	structure,	

nonwords/words:	C-V-C	structure),	would	improve	performance.	

With	regard	to	familiarity,	it	was	expected	that	familiar	listeners’	performance	

would	 be	 better	 compared	 to	 unfamiliar	 listeners,	 replicating	 the	 results	 of	 listener	

group	 in	Experiment	5.	Crucially,	and	 in	contrast	to	the	findings	of	Experiment	5,	an	

interaction	between	listener	group	and	voicing	was	expected	because	all	stimuli	in	the	

current	study	are	speech-based.	The	familiar	 listeners	had	been	extensively	exposed	

to	the	speech	of	all	the	speakers	used	in	the	current	experiments	and	should	therefore	

be	highly	 familiar	with	 this	 kind	of	 vocal	 output.	 It	 could	 thus	be	hypothesised	 that	

familiar	 listeners	 should	 have	 a	 greater	 advantage	 for	 voiced	 speech-based	 vocal	
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signals	over	unfamiliar	listeners,	while	they	may	be	similarly	affected	by	the	relatively	

unfamiliar	whispered	speech	signals.	The	current	experiment	can	thus	provide	further	

insights	into	the	extent	of	the	familiarity	advantage	of	the	listener	groups	used	for	the	

previous	 experiments.	 It	 also	 investigates	 how	 linguistic	 complexity,	 voicing	 and	

familiarity	 (with	 a	 stimulus	 and	with	 a	 speaker)	 affect	 identity-related	processing	 in	

the	voice,	 factors	which	most	previous	 studies	 (but	 see	Bartle	&	Dellwo,	2015)	have	

only	looked	at	in	isolation.	

	

 Participants	4.2.2

32	familiar	(MAge:	21.13	years;	SD:	3.15	years,	27	female),	33	unfamiliar	listeners	(MAge:	

21.64	years;	SD:	4.19	years,	18	female)	were	recruited	at	Royal	Holloway,	University	of	

London.	In	line	with	the	familiar	listener	group	of	Experiment	5,	familiar	listeners	had	

been	 exposed	 to	 the	 voices	 featured	 in	 the	 stimulus	 sets	 by	 virtue	 of	 having	 been	

lectured	 by	 these	 individuals	 for	 between	 12	 and	 28	 hours	 in	 the	 past	 2-3	 terms	

(dependent	 on	 the	 timing	 of	 the	 testing	 session)	 as	 part	 of	 their	 degree	 course	 or	

having	worked	 in	 the	Department	 of	 Psychology	 for	more	 than	 two	 years	 (see	 also	

Experiment	 5).	 Unfamiliar	 listeners	 were	 recruited	 from	 other	 departments	 around	

campus	and	had	had	no	exposure	to	the	voices	used	in	the	study.	All	participants	were	

native	 speakers	 of	 English,	 had	 normal	 or	 corrected-to-normal	 vision	 and	 did	 not	

report	any	hearing	difficulties.	Ethical	approval	was	obtained	from	the	Departmental	

Ethics	 Committee	 at	 the	 Department	 of	 Psychology,	 Royal	 Holloway,	 University	 of	

London.	 Two	 participants	 from	 the	 familiar	 listener	 group	were	 excluded	 from	 any	

analyses	 due	 to	 an	 average	 performance	 (measured	 in	 d’)	 in	 the	 speaker	
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discrimination	 task	 that	 was	 more	 than	 2	 standard	 deviations	 below	 the	 group	

average,	leaving	30	familiar	listeners.	

	

 Materials	4.2.3

Words,	 nonwords	 and	 isolated	 sustained	 vowels	 were	 recorded	 in	 voiced	 and	

whispered	versions	from	5	speakers	(all	female,	ages	range	from	29	–	42	years).	As	in	

Experiment	5,	all	 speakers	were	 lecturers	at	 the	Department	of	Psychology	at	Royal	

Holloway	 and	 selected	 based	 on	 their	 exposure	 to	 a	 subgroup	 of	 undergraduate	

degree	 students	 at	 the	 department.	 Recordings	 were	 obtained	 using	 a	 Røde	

condenser	microphone	 (NT-A)	with	 a	 sampling	 rate	of	 44100	Hz.	The	output	of	 the	

microphone	was	fed	into	a	PreSonus	Audiobox,	which	was	connected	to	the	USB	port	

of	 the	 recording	 computer.	 Speakers	 recorded	 monosyllabic	 words	 with	 a	 C-V-C	

structure	with	two	voiced	consonants	(‘bad’,	‘big’,	‘man’,	‘long’).	15	words	were	chosen	

from	 the	 MRC	 psycholinguistics	 database	 (Wilson,	 1988)	 based	 on	 being	 relatively	

frequent	as	assessed	by	a	Brown	verbal	frequency	ranging	between	50	and	140	in	the	

stimulus	set.	Words	were	furthermore	chosen	to	minimise	regional	accents	cues:	since	

the	 sample	of	 speakers	 included	 individuals	 speaking	of	 varieties	Scottish,	Northern	

Irish,	North	American,	Canadian	and	Southern	British	English,	care	was	taken	to,	for	

example,	 not	 include	 words	 including	 potentially	 rhotic	 segments,	 such	 as	 ‘car’	 or	

words	 including	 diphthongs	 that	 may	 be	 monothongised	 in	 some	 of	 the	 regional	

accents,	such	as	the	vowel	 in	 ‘game’.	Furthermore,	15	nonwords	were	created	based	

on	 the	 same	 constraints	 within	which	 the	words	were	 selected.	 All	 nonwords	were	

monosyllabic	C-V-C	words,	with	consonants	exclusively	being	voiced	obstruents	(e.g.	

/geb/,	/boib/,	/roim/).	For	the	vowel	category,	speakers	produced	/i/,	 /a/,	and	/u/,	with	
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each	 individual	 vowel	 lasting	 for	 around	 0.6	 seconds	 to	 match	 the	 duration	 of	 the	

words.	 All	 stimuli	 were	 extracted	 and	 normalised	 for	 root-mean-square	 intensity	 in	

Praat	(Boersma	&	Weenink,	2010).	

	

 Design	and	Procedure	4.2.4

Participants	 completed	 two	 computer-based	 tasks	 for	 during	 the	 testing	 session:	 A	

brief	 speaker	 recognition	 task	 to	 objectively	 assess	 familiarity	 in	 listeners,	 and	 a	

speaker	 discrimination	 task.	 For	 speaker	 recognition	 from	 speech,	 the	 task	 was	

identical	to	the	one	used	in	Experiment	5	(see	Section	4.1.4):	Participants	listened	to	

brief	 sentences	 presented	 as	 forward	 and	 backward	 speech,	 while	 identifying	

individual	 speakers	 in	 a	 5-way	 forced	 choice	 paradigm.	 The	 speaker	 discrimination	

task	was	similar	to	the	one	used	in	Experiments	3-5:	Participants	were	presented	with	

paired	triplets	of	vocalisations	(e.g.	 ‘/i/	 /a/	 /u/’	or	 ‘gone	bad	mean’)	and	indicated	in	a	

two-way	 forced	 choice	 paradigm	 whether	 they	 thought	 these	 two	 triplets	 were	

produced	by	the	same	speaker	or	by	two	different	speakers.	Triplets	were	chosen	to	

approximate	the	duration	of	the	stimuli	in	Experiments	3-5	(~2	seconds).	In	the	current	

experiment,	there	were	six	conditions	including	two	triplets	of	vowels,	nonwords	and	

words	 each	 –	 presented	 either	 in	 voiced	 or	 whispered	 realisations.	 No	 across-

vocalisation	or	across-voicing	conditions	were	included.	The	beginning	of	each	triplet	

was	 cued	 by	 a	 tone	 to	 avoid	 confusions	 with	 regard	 to	 which	 stimuli	 belonged	 to	

which	 triplet.	A	brief	 silent	 period	of	 0.1	 seconds	was	 inserted	between	each	 sound	

within	a	triplet.	Triplets	were	separated	by	another	0.5	seconds	of	silence.	The	order	

of	sounds	within	triplets	was	pseudorandomised	for	the	vowel	category,	ensuring	that	

each	 triplet	 included	 one	 exemplar	 per	 vowel	 (/i/,	 /a/,	 /u/;	 presented	 in	 randomised	



Speaker	discrimination	in	familiar	and	unfamiliar	listeners	 	

 
	

124	

order).	Stimuli	within	triplets	containing	words	and	nonwords	were	fully	randomised.	

Following	 these	 tasks,	 familiar	 participants	 were	 asked	 to	 report	 how	 familiar	 they	

thought	they	were	with	each	lecturer’s	speaking	voice	on	a	scale	from	1	(not	familiar	

at	all)	–	7	 (very	 familiar).	These	data	confirm	that	 familiar	 listeners	 indeed	perceived	

themselves	to	be	highly	familiar	with	the	speaking	voices	(Mall	speakers	=	5.58;	SDall	speakers		

=	1.53;	means	for	individual	speakers	ranging	from	6.54	to	4.92).	

	

 Results	4.2.5

Speaker	recognition	from	speech	

Figure	16	Performance	in	the	speaker	recognition	task.		

	

Data	from	30	familiar	and	29	unfamiliar	participants	were	entered	into	the	analysis	–	4	

data	 sets	 of	 unfamiliar	 listeners	 for	 this	 task	 were	 lost	 due	 to	 experimenter	 error.	

Results	 are	 shown	 in	 Figure	 16.	 The	 same	 analyses	 were	 run	 as	 in	 Experiment	 5:	
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unbiased	hit	rates	(Hu	scores)	were	calculated	using	the	formula	provided	by	Wagner	

(1993)	 and	 arcsine	 transformed.	 These	 scores	 were	 entered	 into	 a	 2	 (familiar,	

unfamiliar	 listeners)	 x	 2	 (backward	 speech,	 forward	 speech)	 repeated	 measures	

ANOVA.	 There	 were	 significant	 main	 effects	 of	 listener	 group	 (F[1,57]	 =51.492,	 p	

<	 .001,	 ηp
2	=	.484)	 and	 condition	 (F[1,42]	 =	 107.308	p	<	 .001,	 ηp

2	=	.661)	 as	well	 as	 an	

interaction	 (F[1,57]	 =	 20.151,	 p	 <	 .001,	 ηp
2	 	=	 .268).	 The	 results	 were	 very	 similar	 to	

those	of	the	same	task	reported	for	Experiment	5:	Familiar	listeners	were	significantly	

better	 at	 identifying	 speakers	 from	 both	 backward	 and	 forward	 speech	 than	

unfamiliar	 listeners.	 Reversing	 the	 speech	 had	 a	 bigger	 effect	 on	 familiar	 listeners,	

possibly	driven	by	unfamiliar	listeners	being	close	to	floor	(although	again	unfamiliar	

scores	were	 significantly	 above	 zero,	 as	 determined	 by	 a	 one	 sample	 t-test,	 t[28]	 =	

7.839,	 p	 <	 .001,	 Cohen’s	 d	 =	 2.963).	 In	 terms	 of	 raw	 accuracy	 scores,	 the	 familiar	

listeners’	performance	was	high	for	forward	speech	(M	=	84.1%	SD	=	13.6%).	Similar	to	

the	results	of	Experiment	5,	 the	clear	above-chance	performance	 (i.e.	>20%	correct)	

for	forward	speech	for	unfamiliar	listeners	(M	=	53.1%	SD	=	23.5.3%)	can	be	explained	

by	 the	brief	 familiarisation	phase	 that	preceded	 this	 task.	For	backward	speech,	 the	

performance	of	unfamiliar	 listeners	was	close	 to	chance	 level	 (M	 =	31%	SD	 =	15.5%)	

although	 a	 one-sample	 t-test	 against	 chance	 performance	 revealed	 significantly	

above-chance	performance	for	this	group	(t[28]	=	3.839,	p	=	.001,	Cohen’s	d	=	1.451).	

Replicating	 the	 results	 of	 Experiment	 5,	 familiar	 listeners’	 performance	 was	 much	

higher	(M	=	56.3%;	SD	=	16.8%).	
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Speaker	discrimination	from	voiced	and	whispered	vocalisations

		
Figure	17	Average	d’	scores	per	condition	for	the	speaker	discrimination	task	of	Experiment	6.	

	

D’	 scores	 were	 computed	 and	 entered	 into	 a	 2	 (listener	 group)	 x	 2	 (voicing)	 x	 3	

(linguistic	 complexity)	 repeated	 measures	 ANOVA.	 There	 were	 significant	 main	

effects	of	listener	group	(F[1,61]=	8.483,	p	=	.005,		ηp
2		=	.122),	voicing	(F[1,61]=	311.291,	

p	 <	 .001,	ηp
2		=	 .836)	and	 linguistic	complexity	 (F[2,122]=	8.475,	p	 =	 .001,	 ηp

2	 =	 .122).	

There	was	 furthermore	a	 significant	 interaction	between	voicing	and	 listener	group	

(F[1,60]=	 4.684,	p	 =	 .034,	ηp
2	 	=	 .071),	 indicating	 that	 the	 difference	 in	 performance	

between	 familiar	 and	 unfamiliar	 listeners	 is	 overall	 bigger	 for	 voiced	 compared	 to	

whispered	conditions.	A	further	interaction	was	found	between	voicing	and	linguistic	

complexity	 (F[2,122]=	 15.277,	 p	 <	 .001,	 ηp
2	 	 =	 .2).	 Neither	 the	 two-way	 interaction	

between	linguistic	complexity	and	listener	group		(F[2,122]	=	1.435,	p	=	.242)	nor	the	

three-way	 interaction	 between	 linguistic	 complexity,	 listener	 group	 and	 voicing	

(F[2,120]=	1.962,	p	=	.145)	were	significant.	
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Post-hoc	t-tests	further	explored	the	effects	of	condition,	voicing	and	listener	

group.	Paired	t-tests	(3	comparisons	x	2	groups)	were	run	to	investigate	the	effect	of	

voicing:	this	shows	that	listeners	were	able	to	better	discriminate	speaker	from	voiced	

signals	across	all	 listeners	and	within	 listener	group	 for	all	 three	vocal	 signals	 (all	ps	

<	.001).	Post-hoc	paired	t-tests	(3	comparisons,	corrected	alpha	=	.017)	also	explored	

the	 effect	 of	 linguistic	 complexity	 using	 averaged	 scores	 of	 voiced	 and	 whispered	

conditions	 by	 vocal	 signals.	 Against	 predictions,	 increasing	 linguistic	 complexity	 did	

not	 result	 in	 better	 performance.	 In	 fact,	 performance	 was	 significantly	 better	 for	

vowels	compared	to	words	and	nonwords	(ps	≤	.003),	while	performance	was	similar	

for	words	 and	nonwords	 (t[61]	 =	 .839,	 p	 =	 .388,	Cohen’s	d	 =	 .215).	 Further	 post-hoc	

independent-samples	 t-tests	 (6	 comparisons,	 corrected	 alpha	 =	 .008)	 were	 run	 to	

explore	 the	 effect	 of	 group	 for	 each	 condition.	 While	 there	 were	 trends	 apparent	

across	 all	 conditions	 (ps	 ≤	 .065;	 although	 whispered	 words,	 t[61]	 =	 1.174,	 p	 =	 .245,	

Cohen’s	d	=	 .301),	 indicating	better	performance	for	 familiar	compared	to	unfamiliar	

listeners,	performance	differed	significantly	only	for	voiced	nonwords	(t[61]	=	3.561,	p	

=	.001)	and	voiced	words	(t[61]	=	3.18,	p	=	.002,	Cohen’s	d	=	.912).	Means	are	displayed	

in	Figure	17	and	highlight	the	complex	pattern	on	interactions	between	the	factors	of	

interest.	

In	parallel	to	the	previous	speaker	discrimination	experiments,	a	response	bias	

analysis	was	 run.	Collapsing	across	 listener	group,	one-sample	 t-tests	 showed	 there	

was	a	significant	bias	towards	responding	‘same’	for	voiced	nonwords	t[61]	=	3.012,	p	

=	.004,	Cohen’s	d	=	.771).	Significant	biases	towards	responding	“different”	were	found	

for	 voice	 and	whispered	 vowels	 and	whispered	 nonwords	 (all	 ps	 <	 .001).	 No	 biases	

were	found	for	whispered	and	voiced	words	(ps	>	.037).	While	this	complex	pattern	of	
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response	biases	does	not	correspond	to	the	findings	from	the	previous	experiments,	

conditions	and	vocalisations	differed,	which	may	explain	these	divergent	results.	

	

 Discussion	4.2.6

The	 current	 study	 investigated	 how	 familiarity,	 voicing	 and	 linguistic	 complexity	

affect	 listeners’	 ability	 to	 discriminate	 between	 speakers.	 In	 line	with	 the	 results	 of	

Experiment	 5	 and	 a	 large	 literature	 showing	 familiarity	 advantages	 during	 the	

processing	 of	 vocal	 signals,	 a	 main	 effect	 of	 familiarity	 was	 found,	 with	 familiar	

listeners	 performing	 better	 at	 the	 task	 than	 unfamiliar	 listeners	 (although	 this	 was	

statistically	 significant	 for	 only	 2	 conditions).	 The	 current	 study	 further	 replicates	

findings	 from	 work	 (Abberton	 &	 Fourcin,	 1978;	 Bartle	 &	 Dellwo,	 2015;	 Orchard	 &	

Yarmey,	1995;	Pollack	et	al.,	1954;	Yarmey	et	al.,	2001),	showing	that	the	extraction	of	

identity	 related	 information	 from	voices	 is	more	difficult	 for	whispered	 speech	 than	

for	voiced	speech,	 since	crucial	 source	 information	 is	absent	 in	whispered	speech.	 It	

should	be	noted	that	despite	the	absence	of	source	information	in	whispered	speech,	

performance	 across	 all	 whispered	 conditions	 in	 the	 discrimination	 task	 was	 still	

relatively	 high	 (d’	 >	 1.8).	 This	 suggests	 that	 even	with	 only	 filter	 information	 being	

available,	 enough	 cues	 to	 speaker	 identity	 are	 still	 encoded	 in	 the	 vocal	 signals	 to	

allow	listeners	to	accurately	discriminate	between	speakers	–	a	finding	consistent	with	

previous	 studies	 on	 whispered	 speech	 (Abberton	 &	 Fourcin,	 1978;	 Bartle	 &	 Dellwo,	

2015;	Orchard	&	Yarmey,	1995;	Pollack	et	al.,	1954;	Yarmey	et	al.,	2001).		

Intriguingly	 and	 in	 contrast	 to	 the	 findings	 of	 Experiment	 5,	 there	 was	 an	

interaction	between	voicing	and	 listener	group	–	with	the	difference	 in	performance	

between	familiar	and	unfamiliar	listeners	being	overall	bigger	for	voiced	compared	to	
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whispered	conditions.	Bartle	and	Dellwo	(2015)	conducted	a	study	on	whispered	and	

voiced	 speech	 samples	 with	 a	 group	 of	 naïve	 listeners	 and	 an	 expert	 group	 of	

phonetically	 trained	 listeners.	 These	 authors	 first	 report	 an	 overall	 advantage	 for	

phoneticians.	 They	 also	 report	 an	 interaction	 between	 listener	 group	 and	 stimulus	

type:	 they	 found	 that	 the	 difference	 in	 performance	 between	 naïve	 and	 trained	

listeners	 was	 smaller	 for	 voiced	 speech	 compared	 to	 whispered	 speech.	 The	

interaction	 reported	 by	 Bartle	 and	 Dellwo	 (2015)	 shows	 the	 opposite	 pattern	

compared	 to	 the	 one	 in	 the	 current	 study:	 Trained	 listeners	 were	 less	 affected	 by	

whispered	speech	compared	to	untrained	listeners.	This	does	not	necessarily	conflict	

with	 the	 current	 findings.	 While	 overall,	 both	 formally	 trained	 listeners	 (Bartle	 &	

Dellwo,	 2015)	 and	 untrained	 familiar	 listeners’	 performances	 (current	 study)	 were	

better	than	those	of	the	naïve	listener	groups,	these	two	groups	of	expert	listeners	are	

not	directly	comparable.	Phoneticians	are	likely	to	use	different	strategies	to	pick	up	

on	 secondary	 cues	 to	 speaker	 identity	 to	 perform	 the	 task	 based	 on	 their	 specific	

training,	while	untrained	 (albeit	 familiar)	 listeners	may	not	adapt	 the	 same	 listening	

strategies.	 As	 hypothesised,	 the	 familiar	 listeners	 in	 this	 study	 had	 mainly	 been	

exposed	to	speech	signals	from	the	speakers	prior	to	the	study,	having	been	taught	by	

them	 in	a	 lecture	 setting	–	 this	 increased	exposure	 to	voiced	speech	 (as	opposed	 to	

whispered	 speech)	 may	 thus	 have	 resulted	 in	 the	 bigger	 advantage	 for	 the	 voiced	

conditions	 for	 familiar	 compared	 to	 unfamiliar	 listeners.	 Familiar	 listeners	 were,	

however,	unlikely	 to	have	heard	the	speakers	whisper	 for	prolonged	periods	of	 time	

and	are	 thus	 relatively	unfamiliar	with	 this	 specific	 type	of	 vocal	 signal	produced	by	

the	familiar	speakers	(see	also	the	discussion	of	Experiment	5).	With	no	explicit	formal	

training	 to	 compensate	 for	 the	 lack	 of	 acoustic	 information	 (see	 Bartle	 &	 Dellwo,	
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2015)	 and/or	 low	 familiarity	 with	 the	 whispered	 speech	 of	 their	 lecturers,	 the	

advantage	over	unfamiliar	listeners	is	thus	less	pronounced	for	whispered	speech.	This	

finding	 thus	 implies	 that	 the	 familiarity	 advantage	 in	 untrained	 listeners	 is	 closely	

linked	to	the	vocal	signals	listeners	to	which	they	have	been	most	frequently	exposed,	

with	only	limited	compensation	being	apparent	for	a	lack	of	source	cues.		

	 Another	 factor	 explored	 in	 the	 current	 study	 was	 the	 effect	 of	 linguistic	

complexity	on	speaker	discrimination.	Based	on	studies	showing	that	speech	samples	

including	 more	 (linguistic)	 information	 result	 in	 better	 performance	 (Bricker	 &	

Pruzansky,	1966;	Pollack	et	al.,	1954;	Schweinberger	et	al.,	1997),	it	was	hypothesised	

that	 increasing	 the	 linguistic	 complexity	of	 the	 stimuli	would	enhance	performance.	

This	was	not	the	case,	as	performance	for	vowels	was	significantly	better	compared	to	

words	 and	nonwords.	On	 the	one	hand,	 it	 could	 be	 argued	 that,	 in	 the	 presence	of	

only	limited	linguistic	context	(V	versus	C-V-C	structures),	there	is	a	benefit	in	having	

reliable,	 steady-state	 filter	and	 (for	voiced	signals)	 source	 information	as	 is	 the	case	

for	 vowels	 in	 contrast	 to	 more	 rapid	 changes	 in	 signals	 involving	 consonants	 –	

although	this	would	directly	conflict	with	previous	findings	(Brick	&	Pruzanksy,	1966;	

Pollack	et	 al.,	 1954).	On	 the	other	hand,	 this	 effect	 could	be	an	artefact	of	 the	 task	

design:	For	vowels,	participants	directly	compared	two	triplets	of	the	same	vowels	(/i/,	

/a/	 and	 /u/	 in	 randomised	 order),	 while	 for	 words	 and	 nonwords,	 participants	

compared	different	item	sets	of	words	(i.e.	it	was	possible	that	none	of	the	words	from	

the	 first	 triplet	occurred	 in	 the	 second	 triplet).	Therefore,	 comparing	word/nonword	

triplets	 would	 require	 a	 higher	 level	 of	 abstraction	 or	 generalisation,	 potentially	

decreasing	accuracy.	It	is,	however,	particularly	surprising	that	performance	for	words	

(both	whispered	and	voiced)	was	similar,	or	even	 lower,	compared	to	nonwords	and	
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vowels.	The	words	used	in	the	study	were	frequent	and	should	thus	be	highly	familiar	

as	 a	 stimulus	 –	 at	 least	 in	 contrast	 to	 novel	 nonwords.	 The	prototype	 theory	would	

have	 predicted	 that	 through	 this	 familiarity	 with	 the	 words,	 well-formed	 specific	

representations	 for	 these	 words	 should	 be	 present,	 while	 no	 well-formed	

representations	should	be	present	for	the	novel	nonwords.	This	should	potentially	be	

even	more	strongly	the	case	for	the	familiar	listeners,	if	they	had	previously	heard	the	

speakers	 utter	 the	 same	 words	 (although	 this	 cannot	 be	 verified	 for	 the	 current	

sample	of	participants).	Stimulus	effects	or	unexpected	interactions	with,	for	example,	

intelligibility	may	thus	have	led	to	the	results	reported	here.		

	 Overall,	 this	 study	 confirms	 the	 findings	 of	 Experiment	 5,	 showing	 that	

familiarity	 with	 a	 voice	 affords	 listeners	 an	 advantage	 during	 the	 extraction	 of	

identity-related	information	from	voices	for	a	range	of	vocal	signals.	In	the	context	of	

untrained	 familiar	 listeners,	 the	 magnitude	 of	 this	 advantage	 seems	 to	 be	 directly	

linked	to	the	vocal	signals	to	which	these	listeners	have	previously	been	exposed	-	in	

this	 case,	 mainly	 voiced	 speech.	 The	 current	 study	 did	 not	 find	 any	 conclusive	

evidence	 to	 show	 that	 increasing	 the	 linguistic	 complexity	 of	 a	 signal,	 providing	

greater	 semantic	 and	 phonological	 content,	 increases	 performance	 for	 speaker	

discrimination,	 thus	 failing	 to	 replicate	 findings	 from	 previous	 work	 (e.g.	 Bricker	 &	

Pruzansky,	1966).	From	the	current	study,	 it	 thus	remains	unclear	whether	sampling	

more	 varied	 spoken	 signals	 allows	 listeners	 to	 extract	 speaker-related	 information	

more	successfully.		
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4.3 General	discussion	

The	last	two	studies	have	shown	that	accurately	attributing	divergent	vocal	signals	to	

a	single	individual	is	challenging	even	in	the	context	of	being	familiar	with	a	person’s	

voice.	 Without	 prior	 exposure	 to	 the	 full	 vocal	 inventory	 of	 a	 speaker,	 (untrained)	

listeners	 cannot	 fully	 compensate	 for	 the	 absence	 (e.g.	 missing	 F0	 in	 whispered	

speech)	or	drastic	modulation	(e.g.	modulations	of	source	and	filter	characteristics	in	

spontaneous	 vocalisations)	 of	 one	 or	 more	 diagnostic	 cues	 to	 a	 speakers’	 identity.	

Experiments	 5	 and	 6	 further	 highlight	 that	 familiar	 listeners	may	 need	 to	 be	 highly	

familiar	with	 a	 vocal	 signal	 from	 these	 speakers	 in	 order	 to	 reliably	 extract	 speaker	

characteristics:	 When	 processing	 relatively	 infrequent	 and	 thus	 unfamiliar	

vocalisations,	 such	 as	 spontaneous	 laughter	 in	 Experiment	 5,	 familiar	 listeners	 still	

have	 an	 advantage	 over	 unfamiliar	 listeners	 but	 performance	 decreases	 drastically.	

Bigger	advantages	 for	 familiar	 listeners	can	be	seen	for	highly	 familiar	vocal	signals,	

such	 as	 voiced	 speech	 signals	 in	 Experiment	 6,	 that	 listeners	 are	 likely	 to	 have	

encountered	 before	 by	 these	 speakers.	 Along	 a	 similar	 line	 of	 argument,	 studies	

further	 show	 that	 the	 type	 of	 familiarity	 (famous	 person,	 professional	 relationship,	

friendship	 or	 romantic	 relationship,	 etc.)	 will	 on	 the	 one	 hand	 affect	 which	 vocal	

signals	listeners	have	been	exposed	to	–	on	the	other	hand,	additional	features,	such	

personal	significance	(e.g.	famous	person	versus	partner),	will	be	present	or	absent	in	

such	different	 types	of	 familiarity.	Both	 factors	may	 influence	 listener’s	 judgements	

through	 expertise	 in	 processing	 highly	 familiar	 stimuli	 or	 through	 socio-emotional	

associations	formed	with	a	voice	(Sidtis	&	Kreiman,	2012;	Suguira,	2014;	McGettigan,	

2015).	
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In	 line	 with	 a	 prototype-based	 approach	 to	 voice	 perception,	 the	 familiarity	

advantage	observed	during	speaker	discrimination	may	be	based	on	the	retrieval	and	

matching	 of	 the	 incoming	 vocal	 signal	 to	 underlying	 representations	 (prototypical	

representations	 for	 unfamiliar	 listeners	 versus	 speaker-specific	 representations	 of	

voices	for	familiar	listeners,	see	Kreiman	&	Sidtis,	2011).	It	is	to	date	unclear	what	the	

nature	 and	 degree	 of	 abstraction	 of	 these	 prototypical	 and	 speaker-specific	

representations	 of	 voices	might	 be.	 Listeners	may	 encode	 voices	 based	on	 abstract	

representations	 of	 the	 vocal	 tract,	 that	 is	 its	 source	 and	 filter	 properties.	 With	

increasing	exposure	 to	 a	 voice	 and	 its	 full	 repertoire,	 knowledge	of	 speaker-specific	

vocal	tract	morphology,	and	of	variation	 in	how	the	articulators	shape	vocal	outputs	

under	 varying	 levels	 of	 volitional	 control	 (e.g.	 speaking	 different	 languages,	 versus	

producing	sounds	in	extreme	emotional	states	or	in	ill	health)	are	integrated	into	this	

percept,	allowing	listeners	to	gradually	build	more	robust	estimates	of	the	dynamics	

of	the	vocal	system	of	that	speaker.		

Representations	 of	 voices,	 be	 they	 for	 familiar	 individuals	 or	 generic	

prototypes	 (see	also	Experiments	 3	 and	4),	 are	 furthermore	 likely	 to	be	 formed	and	

shaped	 based	 on	 the	 specific	 long-term	 exposure	 to	 vocal	 outputs	 of	 each	 familiar	

person.	Thus,	more	frequently	encountered	vocalisations	from	a	familiar	speaker	will	

have	 a	 more	 robust	 representation,	 while	 representations	 for	 infrequently	

encountered	vocal	 signals	will	be	 less	well	 formed.	 It	 is	unclear	 if	 representations	of	

familiar	voices	are	qualitatively	different	from	the	generic	prototypes	associated	with	

unfamiliar	 voice	 processing.	 Over	 time	 and	 exposure,	 the	 initial	 perceptual	

assessment	of	an	unfamiliar	voice	may	evolve	to	be	underpinned	by	a	new	speaker-
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specific	 representation,	while	the	original	generic	prototype	to	which	this	voice	may	

been	compared	could	remain	largely	unaffected.	

It	 should	 be	 noted	 that	 Experiments	 5	 and	 6	 have	 explored	 familiar	 voice	

discrimination.	Theoretical	and	empirical	 investigations	have	 traditionally	considered	

voice	 identity	 perception	 in	 familiar	 voice	 recognition	 and	 unfamiliar	 voice	

discrimination	tasks	 (see	Kreiman	&	Sidtis,	2011;	Mathias	&	Von	Kriegstein,	2013	for	

recent	 reviews).	 Thus	 familiarity	 as	 a	 factor	 in	 voice	 perception	 has	 been	 strongly	

associated	 with	 task	 type,	 and	 this	 tradition	 has	meant	 that	 direct	 comparisons	 of	

familiar	and	unfamiliar	listeners	within	the	same	task	are	rare	in	the	literature.	Yet	in	

order	 to	 probe	 the	 underlying	 representations	 of	 voices,	 it	 is	 important	 to	 consider	

how	 familiarity	 affects	 voice	 perception	 in	 multiple	 contexts,	 not	 just	 in	 overt	

recognition.	 For	 example,	 there	 is	 evidence	 that	 listeners	 can	 report	 a	 sense	 of	

familiarity	with	a	known	voice	in	the	absence	of	overt	recognition	(see	Hanley,	Smith	

&	Hadfield,	1998),	thus	directly	providing	evidence	that	familiarity	is	not	reducible	to	

the	 task	of	person	naming.	The	data	of	Experiment	5	and	6	 suggest	 that	 familiarity	

with	voices	can	affect	performance	on	a	speaker	discrimination	task.	In	the	context	of	

the	current	studies,	familiar	listeners’	prior	exposure	to	the	voices	may	have	led	to	the	

development	 of	 speaker-specific	 expertise	 that	may	 be	 linked	 to	 the	 refinement	 of	

prototypical	 representation,	 which	 may	 interact	 with	 different	 aspects	 of	 voice	

processing	across	a	range	of	tasks.		

One	 limitation	 of	 the	 current	 experiments	 is	 that	 while	 familiarity	 with	 the	

voices	 used	 was	 assessed	 based	 on	 self-report	 and	 speaker	 recognition	 based	 on	

sentences,	 no	 explicit	 speaker	 recognition	 task	 was	 run	 to	 shed	 further	 light	 on	

whether	listeners	were	actually	able	to	recognise	the	voices	based	on	the	stimuli	they	
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heard	 in	 the	 speaker	 discrimination	 task	 and	 whether	 there	 were	 speaker-specific,	

vocalisation-specific	 or	 listener-specific	 biases.	 Future	 studies	 will	 need	 to	 formally	

assess	 speaker	 recognition	 from	 a	 wider	 range	 of	 vocalisations.	 Future	 work	 will	

furthermore	 need	 to	 determine	 the	 strategies	 used	 to	 perform	 the	 task	 in	 familiar	

listeners:	 From	 the	 current	 studies,	 it	 remains	 to	 be	 determined	 whether	 familiar	

listeners	recognised	one	or	both	of	the	stimuli	presented	within	a	pair	and	based	their	

decision	on	 (partial)	 recognition,	or	whether	other	strategies	were	used.	 It	would	be	

interesting	 to	 explore	 if	 the	 listener’s	 performance	 differed	 across	 trials	 where	 a	

speaker	 was	 recognised	 for	 one	 vocal	 signal	 in	 a	 pair,	 compared	with	 trials	 lacking	

recognition.	 It	 could	 further	 be	 explored	 how	 discrimination	 performance	 on	 such	

trials	 interacts	with	 recognition	 accuracy	 (i.e.	whether	 performance	 is	 affected	by	 a	

sense	of	recognition,	regardless	of	whether	that	impression	is	correct).	
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5 The	 neural	 underpinnings	 of	 voice	 identity	 processing	 in	
familiar	and	unfamiliar	listeners	

	

Experiment	7	aims	to	investigate	how	familiarity	with	a	speaker	and	variability	

in	 vocal	 signals	modulate	 the	neural	networks	associated	with	voice	 identity	

processing.	 Familiar	 and	 unfamiliar	 listeners	 performed	 a	 one-back	 speaker	

discrimination	 task	 in	 the	scanner	while	 listening	 to	short	 sentences,	vowels,	

volitional	laughter	and	spontaneous	laughter.	Results	suggest	that	activation	

in	 auditory	 cortices	 (overlapping	 with	 the	 TVAs,	 Pernet	 et	 al.,	 2015)	 is	

modulated	 by	 vocalisation	 type	 and	 speaker	 identity.	 Activation	 in	 frontal	

lobes	 is	modulated	 by	 familiarity	with	 a	 voice.	 Findings	 are	 discussed	 in	 the	

context	of	differences	in	task	demands	and	stimulus	properties.	
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 Introduction	5.1.1

Neuroimaging	 studies	 have	 attempted	 to	 probe	 the	 neural	 underpinnings	 of	 the	

processing	of	person-related	information.	The	majority	of	these	studies	have	focussed	

on	 faces	 in	 the	visual	domain,	establishing	 that	 faces	are	preferentially	processed	 in	

fusiform	gyrus	 (FG,	also	known	as	 the	 fusiform	face	area)	by	contrasting	pictures	of	

human	 faces	 with	 other	 similarly	 complex	 objects,	 such	 as	 houses	 (Kanwisher,	

McDermott	 &	 Chun,	 1997).	 In	 parallel	 to	 this,	 it	 was	 proposed	 that	 voices	 are	 also	

processed	 in	a	 specific	brain	area	 (e.g.	Belin	et	al.,	 2004,	2011;	Ellis,	 Jones,	Mosdell,	

1997):	 The	 temporal	 voice	 areas	 (TVAs)	 have	 consequently	 been	 described	 as	

candidate	 regions	 for	 voice-selective	 processing,	with	 sections	 of	 bilateral	 STG	 and	

STS	preferentially	responding	to	human	vocal	sounds	compared	to	other	non-human	

sounds	 (Pernet	 et	 al.,	 2015;	 see	 also	 Belin	 et	 al.,	 2011).	 Researchers	 have	 thus	

attempted	to	further	on	the	one	hand	describe	and	map	out	the	specific	functions	of	

(subsections	of)	these	temporal	voice	areas.	On	the	other	hand,	they	have	attempted	

to	 link	 speaker	 identity	 processing	 to	 responses	 in	 the	 TVAs.	 For	 explicit	 speaker	

identity	 processing,	 anterior	 regions	 of	 STG	 which	 is	 part	 of	 the	 TVAs,	 have	 been	

implicated	to	be	involved	in	speaker	identity	processing	(see	Mathias	&	von	Kriegstein,	

2013	for	a	review):	Studies	have	shown	that	anterior	STG/STS	activation	is	modulated	

by	speaker	identity	in	unfamiliar	voices	(Belin	&	Zatorre,	2003;	Formisano,	De	Martino,	

Bonte,	&	Goebel,	 2008;	 Imaizumi	et	 al.,	 1997;	 von	Kriegstein,	Eger,	Kleinschmidt,	&	

Giraud,	 2003)	 and	 by	 hearing	 familiar	 voices	 (learned	 voices:	 Andics	 et	 al.,	 2010;	

Latinus,	Crabbe,	&	Belin,	2011;	personally	familiar	voices:	Nakamura	et	al.,	2001;	von	

Kriegstein	 &	 Giraud,	 2006;	 von	 Kriegstein,	 Kleinschmidt,	 Sterzer	 &	 Giraud,	 2006).	

Furthermore,	the	temporal	pole	has	specifically	been	highlighted	by	authors	has	a	hub	
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for	 the	 (amodal)	 processing	 of	 person	 identity	 (Belin	 et	 al.,	 2011;	Olson,	 Plotzker	&	

Ezzyat,	 2007;	 see	 Perrodin,	 Kayser,	 Abel,	 Logothetis	 &	 Petkov,	 2015	 for	 a	 recent	

review),	which	is	in	line	with	the	evidence	from	the	literature	of	other	identity	related	

stimuli	 (e.g.	 faces	 or	 names;	 see	 Gorno-Tempini	 et	 al.,	 1998;	 Pourtois,	 Schwarz,	

Seghier,	Lazeyras	&	Vuilleumier,	2005).	

		 Speaker	 identity	 processing	 may,	 however,	 not	 be	 strictly	 limited	 to	 the	

processing	of	voices	but	may	also	 include	higher-order	and	abstracted	processing	of	

the	 vocal	 signals,	 outside	 of	 the	 TVAs.	 Some	 studies	 have	 indeed	 associated	

additional	 regions	 outside	 of	 temporal	 cortices	 with	 the	 processing	 of	 familiar	 and	

unfamiliar	 voices:	Parietal	 regions,	 including	 the	precuneus,	have	been	 shown	 to	be	

sensitive	to	voice	identity	processing	in	general	(Rämä	et	al.,	2004)	while	also	showing	

differential	 responses	 to	 familiar	 and	 unfamiliar	 voices	 (von	 Kriegstein	 et	 al.,	 2006;	

Shah	 et	 al.,	 2001;	 see	 Van	 Lancker,	 Cummings,	 Kreiman	 &	 Dobkin,	 1988	 and	 Van	

Lancker,	 Kreiman	 &	 Cummings,	 1989	 for	 patient	 studies).	 It	 should	 be	 noted	 that	

parietal	 activation	has	mostly	been	 found	 in	 fMRI	 studies	using	both	 face	and	voice	

cues,	as	opposed	to	just	audio	or	video	stimuli	(e.g.	von	Kriegstein	et	al.,	2006;	Andics	

et	 al.,	 2010):	 Latinus	 et	 al.	 (2013)	 do	 not	 report	 any	 parietal	 activation	 in	 a	 purely	

auditory	 study.	 It	 has	 thus	 been	 proposed	 that	 parietal	 cortex	 may	 serve	 as	 a	

crossmodal	hub	for	identity	processing	(e.g.	Campanella	&	Belin,	2007;	Latinus	et	al.,	

2013).	Additionally,	 studies	 using	 a	 range	of	 designs	 and	 task	 have	 reported	 frontal	

regions,	 such	 as	 right	medial	 frontal	 gyrus	 (MFG)	 and	 superior	 frontal	 gyrus	 (SFG),	

dorsolateral	prefrontal	cortex	(DLPFC)	as	well	as	other	 inferior	regions	of	the	frontal	

cortex	(Latinus,	Crabbe	&	Belin,	2011;	Stevens,	2004;	von	Kriegstein	&	Giraud,	2004)	

to	be	 selectively	activated	 for	 voice	 identity	processing	over	 linguistic	processing	as	
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well	 as	 for	 familiar	 versus	 unfamiliar	 voice	 processing.	 This	 has	 been	 at	 times	

described	 as	 a	 result	 of	 differences	 in	 task	 difficulty	 between	 conditions	 and	 tasks,	

resulting	in	differential	responses	in	areas	linked	to	executive	functions.	Additionally,	

the	 fusiform	 gyrus,	 implicated	 in	 selectively	 processing	 faces,	 has	 been	 linked	 to	

familiar	 voice	 processing	 by	 some	 authors,	 proposing	 that	 cross-modal	 processing	

takes	places	where	the	memory	is	a	person’s	face	is	automatically	co-activated	when	

recognizing	 a	 familiar	 person	 from	 their	 voices	 (e.g.	Giraud	&	 von	Kriegstein,	 2004;	

von	Kriegstein	et	al.,	2006;	von	Kriegstein	et	al.,	2007).	

	 In	 sum,	 the	 processing	 of	 speaker	 identity	 has	 been	 strongly	 linked	 with	

activation	 in	 right	anterior	STS	by	studies	using	a	 range	of	 tasks	and	manipulations.	

Other	sites	in	parietal	and	frontal	regions	as	well	as	fusiform	have	also	been	linked	to	

(familiar)	voice	processing.	As	is	the	case	with	behavioural	studies	of	voice	processing,	

these	 neuroimaging	 studies	 have	 almost	 exclusively	 used	 relatively	 uniform	 vocal	

stimuli,	 such	 as	 short	 sentences	 or	 vowel	 sounds.	 The	 current	 study	 explored	 the	

processing	of	speaker	identity	related	information	in	unfamiliar	and	familiar	listeners,	

using	variable	vocal	signals	 (sentences,	vowels	as	well	as	spontaneous	and	volitional	

laughter).	 Based	 on	 previous	 research,	 a	 sensitivity	 to	 the	 presence	 of	 different	

speakers	in	anterior	temporal	cortices	was	predicted,	with	activation	in	(right)	anterior	

STS	and	temporal	poles	being	modulated	by	listener	familiarity,	despite	the	variability	

in	vocal	signals.	

	

 Participants	5.1.2

21	 unfamiliar	 (14	 female,	 mean	 age:	 21.1	 years,	 SD:	 3.2	 years)	 and	 19	 familiar	 (17	

female,	 mean	 age:	 20.3	 years,	 SD:	 1.5	 years)	 participants	 were	 scanned.	 One	



The	neural	underpinnings	of	voice	identity	processing	in	familiar	and	unfamiliar	listeners	 	

 
	

140	

unfamiliar	 listener	 was	 excluded	 from	 all	 analyses	 due	 to	 an	 abnormality	 that	 was	

found	 in	 their	 brain.	 None	 of	 the	 participants	 reported	 any	 history	 of	 neurological	

incidents.	All	participants	were	right-handed,	native	speakers	of	English	and	reported	

healthy	hearing.	The	study	was	approved	by	the	Ethics	committee	of	the	Department	

of	Psychology	at	Royal	Holloway,	University	of	London	and	participants	were	paid	£15	

for	their	participation.	

	

 Materials	5.1.3

Stimuli	 recorded	 from	 6	 female	 speakers	 (including	 the	 5	 speakers	 recorded	 for	

Experiment	 5	 plus	 one	 additional	 speaker)	 were	 used	 in	 this	 experiment:	 Vowels,	

LaughterS,	LaughterV	and	brief	sentences	(BKB	sentences;	Bench,	Kowal	&	Bamford,	

1979)	were	 included	 in	 the	 stimulus	 set,	with	 8	 tokens	 per	 vocalisation	 per	 speaker	

being	 selected.	 Brief	 sentences	 were	 included	 as	 a	 control	 condition	 –	 familiar	

participants	 have	 been	 shown	 to	 very	 reliably	 recognise	 the	 speakers	 used	 in	 this	

study	from	these	sentences	and	should	thus	most	reliably	show	processing	differences	

between	 familiar	 and	 unfamiliar	 listeners	 (see	 Speaker	 Recognition	 tasks	 in	

Experiment	5	and	6,	as	well	as	the	results	reported	below).	For	details	recording	the	

recording	 procedure,	 see	 Experiment	 5.	 Based	 on	 ratings	 from	 a	 pilot	 study	 (see	

Experiment	 5),	 stimuli	 were	 selected.	 This	 resulted	 in	 a	 stimulus	 set	 including	 192	

sounds.	 Vowels	 included	 /a/	 and	 /i/	 only,	 and	 each	 sentences	 trial	 included	 two	

sentences	 in	order	 to	 approximate	 the	duration	of	 the	other	 vocalisations.	Stimulus	

durations	across	all	vocalisations	ranged	from	1.05	–	2.6	seconds	(Mean:	2.14	seconds;	

SD	 =	 .43	 seconds).	Mean	 durations	 across	 vocalisations	were	matched	 as	 closely	 as	

possible	 (VowelsMean	=	2.1	seconds,	SD	=	 .33	seconds;	LaughterS	Mean	=	2.06	seconds,	
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SD	=	 .42	 seconds;	LaughterV	Mean	 =	 1.88	 seconds,	SD	=	 .51	 seconds;	SentencesMean	 =	

2.49	 seconds,	SD	=	 .1	 seconds).	 LaughterS	was	 selected	 to	 be	 significantly	 higher	 in	

authenticity	than	LaughterV	(LaughterS	Mean	=	5.39,	SD	=	 .44;	LaughterV	Mean	=	3.2,	SD	

=	.75;	t[94]	=	17.166,	p	<	.001,	Cohen’s	d	=	3.541).	While	an	as	close	as	possible	match	

for	 arousal	was	 attempted,	 LaughterS	was	 nonetheless	 higher	 in	 arousal	 (LaughterS	

Mean	=	5.13,	SD	=	.48;	LaughterV	Mean	=	4.53,	SD	=	.42;	t[94]	=	6.887,	p	<	.001,	Cohen’s	d	=	

1.421).	

	

 Practice	Task	5.1.4

Before	 entering	 the	 scanner,	 participants	 performed	 a	 behavioural	 practice	 of	 a	

variation	 of	 the	 task	 they	would	 perform	 in	 the	 scanner.	 For	 this,	 participants	were	

presented	once	with	all	192	sounds.	Participants	then	completed	a	covert	(i.e.	no	overt	

responses	 necessary)	 same/different	 speaker	 1-back	 task.	 40	 occasional	 on-screen	

prompts	asking	participants	to	judge	whether	the	previous	two	sounds	were	produced	

by	the	same	or	two	different	speakers.	Prompts	were	spaced	out	through	the	task	to	

gather	responses	from	4	trials	per	comparison	(2	same,	2	different)	of	the	possible	10	

vocalisation	 pairings	 (Sentences-Sentences,	 Vowels-Vowels,	 LaughterV-LaughterV,	

LaughterS-LaughterS,	Sentences-Vowels,	 Sentences-LaughterV,	Sentences-LaughterS,	

Vowels-LaughterV.	 Vowels-LaughterS,	 LaughterV-LaughterS).	 Sounds	 were	

pseudorandomised	 to	 result	 in	 an	 approximately	 equal	 number	 of	 ‘same’	 and	

‘different’	 speaker	 trials	 to	at	 least	partially	account	 for	 task	difficulty.	One	data	 set	

was	lost	due	to	experimenter	error.	Independent	samples	t-tests	show	that	in	line	with	

the	previous	studies	(Experiments	5	and	6),	even	in	this	very	small	data	set	the	familiar	

listeners’	 overall	 performance	measured	 in	 percent	 correct	was	 higher	 compared	 to	
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that	of	the	unfamiliar	group	when	averaged	across	all	conditions	(t[37]=2.305,	p	=	.025,	

Cohen’s	d	=	.7578).	The	small	number	of	trials	precluded	any	further	statistical	analysis	

of	the	data.	

	

 fMRI	image	acquisition	5.1.5

Functional	 images	were	acquired	 in	a	3T	MR	scanner	 (Magnetom	Tim	Trio,	Siemens	

Medical	Solutions,	Erlangen,	Germany).	The	auditory	stimuli	were	presented	via	MRI-

compatible	 insert	 earphones	 (Sensimetrics	 Corporation,	 Malden,	 MA,	 EUA)	 via	 a	

SONY	 STR-DH820	 digital	 AV	 control	 centre	 (Sony,	 Basingstoke,	 UK)	 in	 MATLAB	

(version	 2013b,	 Mathworks,	 Inc.,	 Natick,	 MA)	 using	 the	 Psychophysics	 Toolbox	

extension	(http://psychtoolbox.org/).	Visual	information	was	presented	on	a	screen	via	

a	 back	 projector,	 which	 participants	 viewed	 through	 a	mirror	 placed	 on	 top	 of	 the	

head	coil.	Two	functional	runs	were	collected,	presenting	all	stimuli	twice	throughout	

the	 experiment.	 The	 two	 functional	 runs	 were	 split	 into	 2	 miniblocks	 each	 (lasting	

around	 9	 minutes),	 with	 the	 order	 of	 miniblocks	 being	 counterbalanced	 across	

participants	 using	 a	 Latin	 square.	 For	 each	miniblock,	 120	 echo-planar	 whole-brain	

volumes	(TR	=	4.3	seconds,	TA	=	1.6	seconds,	TE	=	30ms,	flip-angle	=	78	degrees,	24	

slices,	3mm	x	3mm	x	3mm	in	plane	resolution	with	an	inter-slice	gap	of	0.75mm)	were	

acquired	in	ascending	order.	Data	were	acquired	using	sparse	acquisition,	allowing	for	

auditory	stimuli	to	be	presented	in	silence	(Hall	et	al.,	1999).	The	onset	of	the	auditory	

stimuli	for	each	trial	was	timed,	so	that	the	mid-point	of	the	sound	occurred	always	at	

the	same	point	of	the	trial,	1.3	seconds	after	trial	onset,	with	the	varying	duration	of	

the	 sounds	 thus	providing	natural	 jitter.	Each	miniblock	 included	96	 sound	 trials,	 12	

rest	trials	(fixation	cross	presented	on	the	screen,	participants	did	not	engage	in	any	
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specific	 task	 or	 behaviour),	 6	 vigilance	 trials	 (including	 two	 volumes	 each)	 plus	 3	

dummy	 scans	 at	 the	 start	 and	end	of	 each	block.	The	 in-scanner	 vigilance	 task	was	

identical	 to	 the	practice	 task:	 participants	 performed	a	 same/different	 speaker	 one-

back	 task	 with	 occasional	 prompts	 to	 monitor	 whether	 participants	 were	 paying	

attention	 to	 the	 sounds	 presented	 to	 them.	 Each	 run	 included	 6	 prompts,	 thus	

requiring	participants	to	make	12	overt	judgments	in	total	throughout	the	experiment.	

On	average,	participants	responded	to	the	prompt	82%	of	the	time	(SD	=	17%),	with	

the	 lowest	 percentage	 per	 participant	 being	 55%.	 One	 factor	 that	 may	 have	

contributed	 to	 the	 at	 times	 relatively	 low	 response	 rate	 may	 have	 been	 that	

participants	only	had	 two	 seconds	 to	press	 a	button,	 thus	despite	paying	attention,	

participants’	responses	to	these	infrequent	prompts	may	have	been	delayed	and	this	

not	logged.	Further,	response	rate	may	have	been	this	low	for	some	participants	as	a	

result	 of	 not	 paying	 attention	 to	 the	 task.	 A	 response	 rate	 of	 over	 50%	 was,	

nonetheless	considered	to	be	sufficient	evidence	of	participants	being	alert,	 thus	no	

participants	were	excluded	on	this	basis.	

	 Within	 the	 four	miniblocks,	 two	 fixed	 sets	of	 stimuli	were	presented	 twice	per	

participant,	thus	keeping	the	content	of	each	miniblock	 independent	from	the	other	

miniblock	and	keeping	the	content	furthermore	constant	across	all	participants.	The	

two	 subsets	 of	 stimuli	 presented	 within	 each	 miniblock	 were	 matched	 for	 arousal,	

duration	 and	 authenticity	 across	 sets	 (all	 ps	 ≥	 .54).	 The	 order	 of	 trials	 was	

pseudorandomised	 within	 each	 miniblock:	 Randomisations	 were	 balanced	 for	

same/different	judgements	in	order	to	control	to	some	extent	potential	differences	in	

task	 difficulty	 across	 different	 sequential	 pair	 types	 (see	 response	 bias	 analyses	 in	

Experiments	3-5).	Rest	trials	were	presented	 in	two	blocks	of	6	trials	at	 jittered	time	
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points	 within	 each	 miniblock.	 Further,	 a	 high-resolution	 T1-weighted	 anatomical	

image	was	acquired	(HiRes	MP-RAGE,	160	sagittal	slices,	voxel	size	=	1	mm3)	after	the	

functional	runs.	The	total	time	in	the	scanner	was	around	55	minutes.	

	

 Data	analysis	5.1.6

Data	 were	 preprocessed	 using	 SPM8	

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).	 Scans	 were	 realigned	 to	 the	

anterior	 commissure,	 spatially	 normalised	 to	 2	 mm2	 isotropic	 voxels	 using	 the	

parameters	derived	from	the	segmentation	of	each	participant’s	T1-weighted	image,	

and	 smoothed	with	 a	Gaussian	 kernel	 of	 8	mm	 full-width	 at	 half	maximum.	At	 the	

single-subject	level,	event	onsets	from	25	conditions	(4	vocalisation	types	x	6	speakers	

+	 vigilance	 task)	 and	 6	 movement	 regressors	 of	 no	 interest	 were	 modelled	 as	

instantaneous	 and	 convolved	 with	 the	 canonical	 hemodynamic	 response	 function.	

Rest	 trials	were	not	modelled	and	were	 thus	used	as	an	 implicit	baseline.	First-level	

models	were	masked	with	subject-specific	binarised	grey	matter	masks,	created	from	

the	 subject-specific	 segmented	 grey	matter	 (smoothed	with	 a	Gaussian	 kernel	 of	 8	

mm	full-width	at	half	maximum	to	match	the	smoothing	kernel	of	the	functional	data).	

A	2	(listener	group)	x	4	(vocalisation	type)	x	6	(speaker)	ANOVA	was	conducted	at	the	

group	 level	 in	 GLM	 flex	 fast2	 (http://mrtools.mgh.harvard.edu/)	 using	 first-level	

contrast	 images	 of	 each	 individual	 condition	 compared	 with	 the	 implicit	 baseline.	

GLM	Flex	fast2	was	used	as	it	uses	partitioned	error	terms	and	can	be	used	to	run	full-

factorial	models	with	more	than	2	within-subject	factors,	while	in-built	ANOVA	tools	

in	SPM	only	allow	for	a	pooled	error	term	across	all	within-subject	factors.	All	results	

of	the	functional	runs	 in	the	experiment	are	reported	at	an	uncorrected	voxel	height	
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threshold	of	p	<	.001,	with	FWE	(family-wise	error)	cluster	extent	correction	(number	

of	 voxels	 is	 dependent	 on	 the	 number	 and	 size	 of	 cluster,	 as	 implemented	 in	

bspmview	 [http://www.bobspunt.com/bspmview/]).	 The	 anatomical	 locations	 of	

significant	 clusters	 (at	 least	 8	mm	apart)	were	 labelled	 using	 the	Anatomy	Toolbox	

(version	18;	Eickhoff	et	al.,	2005).	

	

 Results	5.1.7

Second-level	2	x	4	x	6	ANOVA:	Effects	of	listener	group,	speaker	and	vocalisation	type	

The	main	effect	of	speaker	gave	rise	to	clusters	in	the	temporal	lobes	(Figure	18a).	The	

main	effect	of	 listener	group	gave	rise	to	a	cluster	of	activation	 in	right	superior	and	

medial	 frontal	 gyri	 (Figure	 18b).	 For	 the	main	 effect	 of	 vocalisation	 type,	 clusters	 in	

bilateral	 STG,	 bilateral	 inferior	 frontal	 gyrus	 (pars	 triangularis,	 IFG)	 and	 bilateral	

inferior	 occipital	 gyrus	 among	 others	 were	 found	 (Figure	 18c).	 For	 the	 interactions	

between	group	and	vocalisation	type,	activations	in	right	IFG,	right	insula	lobe	and	left	

STG	 were	 found	 (Figure	 18d).	 Auditory	 areas	 in	 the	 temporal	 lobes,	 extending	

anteriorly	 into	 the	bilateral	 temporal	 poles,	were	 found	 for	 the	 interaction	between	

vocalisation	 type	and	speaker	 (Figure	 18e).	A	 small	 cluster	 in	 left	 fusiform	gyrus	was	

found	 for	 the	 interaction	 between	 listener	 group	 and	 speaker	 (Figure	 18f).	 Notably,	

effects	 of	 speaker	 and	 vocalisation	 as	 well	 as	 the	 interaction	 between	 speaker	 and	

vocalisation	overlap	with	each	other	and	also	with	bilateral	TVAs	(Pernet	et	al.,	2015;	

see	Figure	19).	For	a	full	list	of	peak	and	sub-peak	voxels	for	all	significant	effects,	see	

Table	7.	
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Figure	18	Results	of	the	univariate	analysis	(peak	threshold	of	p	=	0.001	with	FWE	cluster	correction).	
Parameter	estimates	are	displayed	in	the	y-axis	of	each	line	plot.	Data	points	in	boxplots	represent	
mean	 parameter	 estimates	 per	 condition	 based	 on	 the	 first-level	models.	 Sen	 =	 sentences,	 L-V	 =	
volitional	laughter,	L-S	=	spontaneous	laughter,	V	=	Vowels.	
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Table	7	Results	of	the	univariate	analysis	at	peak	threshold	of	p	=	0.001	and	FWE	cluster	correction.	
Local	maxima	separated	by	more	than	20	mm	are	listed.	

	 	 	 	
MNI	coordinates	

Main	Effects	and	
Interactions	 Region	Name	

No	of		
Voxels	 F/t	 x	 y	 z	

Vocalisation	Type	 L	Middle	Temporal	Gyrus	 5599	 177.78		 -58	 -18	 0	

 	 L	Temporal	Pole	
	

85.87		 -52	 8	 -12	

 	 L	Fusiform	Gyrus	
	

14.78		 -34	 -32	 -10	

 	 R	Superior	Temporal	Gyrus	 4093	 145.61		 60	 -4	 -4	

 	 R	Middle	Temporal	Gyrus	
	

64.93		 54	 -34	 6	

 	 R	Temporal	Pole	
	

54.30		 50	 12	 -16	

 	 L	Superior	Medial	Gyrus	 5955	 26.23		 -6	 52	 8	

 	 L	Superior	Frontal	Gyrus	
	

22.04		 -18	 46	 42	

 	 R	Mid	Orbital	Gyrus	
	

19.00		 12	 42	 2	

 	 L	IFG	(p.	Triangularis)	 1200	 25.26		 -44	 16	 24	

 	 R	IFG	(p.	Triangularis)	 1298	 21.92		 50	 24	 26	

 	 R	Parahippocampal	Gyrus	 310	 14.85		 36	 -36	 -10	

 	 L	Inferior	Temporal	Gyrus	 42	 14.40		 -54	 -16	 -24	

 	 L	Inferior	Occipital	Gyrus	 188	 11.67		 -44	 -72	 -4	

 	 L	Cerebellum	(VII)	 125	 11.49		 -14	 -76	 -34	

 	 R	Inferior	Occipital	Gyrus	 258	 10.26		 44	 -68	 -8	

 	 R	Inferior	Occipital	Gyrus	
	

8.60		 34	 -86	 -6	

 	 Left	Hippocampus	 55	 10.20		 -14	 -28	 0	

 	 L	Precuneus	 56	 9.27		 -12	 -54	 16	

 	 R	Insula	Lobe	 24	 8.37		 28	 16	 -14	

 	 R	Precuneus	 33	 8.22		 16	 -50	 18	

 	 R	IFG	(p.	Orbitalis)	 33	 7.93		 30	 28	 0	

Speaker	 R	Superior	Temporal	Gyrus	 3340	
	

88.01		 60	 -4	 -4	

 	 R	Temporal	Pole	
	

12.07		 50	 12	 -14	

 	 L	Superior	Temporal	Gyrus	 3570	 76.84		 -60	 -14	 4	

 	 L	Temporal	Pole	
	

10.81		 -52	 8	 -12	

Group	 R	Superior	Frontal	Gyrus	 299	 5.21		 20	 54	 22	

 	 R	Superior	Medial	Gyrus	 299	 3.62		 2	 56	 10	

Group	*	Vocalisation	 L	IFG	(p.	Triangularis)	 194	 9.54		 32	 34	 16	

 	 R	Insula	Lobe	 32	 7.88		 36	 14	 18	

 	 L	Superior	Temporal	Gyrus	 44	 7.59		 -40	 -38	 16	

Group	*	Vocalisation	 L	Fusiform	Gyrus	 25	 5.25		 -30	 -36	 -22	

Speaker	*	Vocalisation	 L	Middle	Temporal	Gyrus	 3066	 25.08		 -60	 -14	 0	

 	 L	Temporal	Pole	 3066	 6.41		 -52	 8	 -12	

 	 R	Superior	Temporal	Gyrus	 2651	 22.71		 62	 -8	 -4	

 	 R	Temporal	Pole	 2651	 5.13		 52	 10	 -12	
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Figure	 19	 Overlays	 of	 activations	 for	 main	 effect	 of	 speaker,	 main	 effect	 of	 vocalisation	 and	
interaction	between	speaker*vocalisation	
	

	

Group	effects	by	vocalisation	

Table	8	Results	of	the	listener	group	effects	by	vocalisation,	thresholded	at	p	=	.001	with	a	cluster	
extend	of	k=211	vowels.	Local	maxima	separated	by	more	than	20	mm	are	listed.	

	 	 	 	
MNI	coordinates	

T-Test	 Region	Name	
No	of		
Voxels	 F/t	 x	 y	 z	

Sentences	 R	Superior	Frontal	Gyrus	 213	 -5.96		 20	 54	 22	

unfamiliar	>	familiar	 R	Superior	Frontal	Gyrus	 251	 -5.10		 16	 34	 40	

 	 L	Superior	Frontal	Gyrus	 607	 -4.43		 -14	 50	 24	

 	 L	Middle	Frontal	Gyrus	 607	 -4.28		 -22	 20	 40	

 	 L	ACC	 607	 -3.80		 -2	 20	 36	

Vowels	 -	  	  	  	  	  	

unfamiliar	>	familiar	
	 	 	 	 	 	

LaughterV	 R	Superior	Frontal	Gyrus	 267	 4.37	 22	 54	 22	

unfamiliar	>	familiar	 R	Superior	Medial	Gyrus	 267	 3.65	 4	 54	 6	

LaughterS	 -	  	  	  	  	  	

unfamiliar	>	familiar	  	  	  	  	  	  	
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Figure	20	Overlays	of	activations	for	listener	group	effects	by	vocalisation.	

	

For	the	vocalisations	used	 in	this	study,	speaker	recognition	(which	may	aid	speaker	

discrimination)	may	 have	 been	 differentially	 difficult	 across	 vocalisations.	 This	may	

thus	have	resulted	in	distinct	patterns	of	neural	activation	dependent	on	vocalisation	

type.	To	explore	whether	neural	activity	differed	between	listeners	groups	for	specific	

vocalisations,	 four	 two-sample	 t-tests,	 one	 for	 each	 vocalisation	 type,	 were	 thus	

performed	 in	 SPM8.	 Results	were	 thresholded	 at	 peak	 threshold	 of	p	 =	 .001	with	 a	

cluster	extend	threshold	of	k	=	211	voxels	(the	equivalent	of	the	FWE	corrected	cluster	

threshold	 for	 the	main	 effect	 of	 group	 in	 the	ANOVA	 reported	 above).	 Clusters	 are	

illustrated	in	Figure	20	 (see	Table	8	 for	details	of	 local	peaks	and	sub-peaks).	Notably,	

all	vocalisations	showed	increased	activation	on	SFG	for	unfamiliar	listeners	compared	

to	 familiar	 listeners	 (not	 shown),	 although	 only	 the	 clusters	 for	 Sentences	 and	

LaughterV	 survived	 FWE	 cluster	 correction.	 No	 activations	 showing	 increased	

activation	for	familiar	over	unfamiliar	listeners	were	found.	
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 Discussion	5.1.8

The	 current	 study	 set	 out	 to	 explore	 differences	 in	 voice	 processing	 in	 familiar	 and	

unfamiliar	 listeners	 in	 the	 context	 of	 variable	 vocal	 signals.	 As	 expected,	 speaker	

identity	modulated	 activation	 in	 bilateral	 temporal	 cortices.	 It	 should,	 however,	 be	

noted	that	the	main	effects	of	speaker,	vocalisation	and	the	interaction	of	these	two	

factors	 all	 resulted	 in	 activations	 of	 bilateral	 temporal	 cortices	 that	 overlap	 a)	 with	

each	other	and	b)	with	bilateral	TVAs	(Pernet	et	al.,	2015).	The	activation	found	for	the	

main	 effect	 of	 speaker	 can	 thus	 not	 be	 exclusively	 attributed	 to	 speaker	 identity	

processing	 but	 may	 related	 to	 more	 general	 processes	 that	 are	 part	 of	 voice	

perception.		

The	 overlap	 with	 TVAs	 was	 found	 for	 comparisons	 between	 conditions	 that	

were	 exclusively	 vocal	 in	 nature.	 TVAs	 are	 localised	 using	 a	 range	 of	 human	 vocal	

sounds	 (including	 speech	 and	 emotional	 vocalisations)	 contrasted	 with	 other	

environmental	sounds	 (e.g.	bells,	animal	calls,	engine	sounds,	see	Belin	&	Grodbras,	

2010;	Beling,	Zatorre,	Ahad	&	Pike,	2000;	Belin,	Zatorre	&	Ahad,	2002;	Bestelemeyer,	

Belin	&	Grosbras,	2011;	Pernet	et	al.,	2015).	This	approach	is	problematic	since	1)	the	

auditory	 categories	 are	 far	 more	 diverse	 in	 the	 environmental	 sound	 category	

compared	to	the	vocal	category	and	2)	vocal	and	environmental	sounds	have	not	been	

fully	matched	to	each	other	in	their	acoustic	properties.	It	has	indeed	been	suggested	

that	 activation	 of	 the	 TVAs	 may	 not	 represent	 voice-selective	 processing	 but	 may	

rather	 be	 a	 result	 of	 differences	 in	 acoustic	 properties	 or	 acoustic	 complexity	 of	

auditory	signals	in	general	–	Leaver	and	Rauschecker	(2010)	show	that	a	large	part	of	

the	variance	 in	 the	data	underlying	TVA	activations	 can	be	accounted	 for	by	 simple	

acoustic	properties	of	the	stimuli.	The	current	results	support	this	notion,	suggesting	
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that	 TVAs	 in	 fact	 generally	 respond	 to	 differences	 in	 auditory	 signal	 properties,	 be	

that	 acoustic	 features	 or	 low-level	 auditory	 object	 processing	 and	 thus	may	 not	 be	

voice-selective.	 This	 is	 to	 some	 extent	 different	 to	 face	 perception	 in	 FG,	 where	

increased	activation	 for	 (upright)	 faces	 can	be	observed	even	when	 contrasted	with	

inverted	faces	(perfect	match	for	low-level	visual	features,	but	processed	differently	to	

upright	faces;	Kanwisher,	Tong	&	Nakayama,	1998).	Although	note	that	the	FG	may	

also	 respond	preferentially	 to	visual	objects	a	person	has	 is	highly	 familiar	with	 (see	

evidence	 for	 FG	 activation	 for	 viewing,	 for	 example,	 cars	 in	 car	 experts;	 Gauthier,	

Skudlarski,	Gore	&	Anderson,	2000).	The	‘selective’	activation	in	both	FG	(and	TVAs)	

may	 thus	 at	 least	 partly	 reflect	 an	 expertise	 response	 since	 faces	 (and	 voices)	 are	

frequently	encountered	and	highly	salient	in	social	encounters.	

Notably,	 for	 the	 effect	 of	 vocalisation	 parameter	 estimates	were	 highest	 for	

sentences	 compared	 to	 all	 other	 vocalisations.	 This	 pattern	 holds	 within	 the	

interaction	of	speaker	and	vocalisation	as	well:	while	different	voices	show	different	

profiles	 across	 the	 vocalisations,	 parameter	 estimates	 are	 overall	 highest	 for	

sentences.	 This	 may	 reflect	 the	 fact	 that	 in	 contrast	 to	 LaughterV,	 LaughterS	 and	

Vowels,	 sentences	 also	 include	 meaningful	 linguistic	 content	 that	 is	 processed	 in	

STG/STS	 (Scott,	 Blank,	 Rosen	 &	 Wise,	 2000).	 Arguably,	 this	 thus	 allows	 for	 more	

elaborate	computations	to	be	performed,	hence	potentially	a	BOLD	response	that	 is	

more	 extensive	 and	 greater	 in	 magnitude	 (but	 see	 Section	 1.5.3.1	 for	 a	 different	

interpretation	of	an	increase	in	BOLD	response	in	STG	with	regard	to	typical	and	less	

typical	voice	by	Latinus	et	al.,	2013).	

For	 the	 main	 effect	 of	 listener	 group,	 activations	 were	 found	 in	 the	 right	

superior	frontal	gyrus,	extending	into	the	right	superior	medial	gyrus.	Previous	studies	
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on	voice	processing	also	 report	 increased	activation	 in	 right	superior	 frontal	cortices	

for	 unfamiliar	 listeners	 compared	 to	 familiar	 listeners	 (e.g.	 Stevens,	 2004;	Giraud	&	

von	 Kriegstein,	 2004).	 Specifically,	 Giraud	 and	 von	 Kriegstein	 (2004)	 report	 similar	

findings	 for	 listeners	 that	 were	 presented	 with	 familiar	 and	 unfamiliar	 voices.	 The	

authors	 argue	 these	 differences	 may	 be	 a	 result	 of	 varying	 task	 demands	 for	 the	

processing	of	familiar	and	unfamiliar	voices.	In	the	current	study,	vocalisation-specific	

t-tests	 for	 listener	 group	 show	 that	 the	 pattern	 of	 activation	 is	 similar	 for	 all	

vocalisations:	while	differences	between	unfamiliar	and	familiar	listeners	appear	to	be	

largest	 for	 sentences,	 followed	 by	 LaughterV,	 all	 vocalisations	 show	 (subthreshold)	

clusters	 in	 prefrontal	 cortices	 –	 but,	 crucially,	 not	 in	 anterior	 temporal	 lobes	 which	

have	been	associated	with	speaker	identity	processing.	The	activations	for	the	listener	

group	 effect	 in	 Sentences	 include	 anterior	 cingulate	 cortex	 (ACC)	 in	 addition	 to	

bilateral	 dorsolateral	 prefrontal	 cortex	 (DLPFC).	 This	 frontal	 network	 has	 been	

strongly	 associated	 with	 cognitive	 control,	 with	 DLPFC	 being	 linked	 to	 the	

implementation	of	cognitive	control	and	ACC	being	linked	to	performance	monitoring	

(MacDonald,	Cohen,	Stenger	&	Carter,	2000).	These	analyses	are	thus	still	in	line	with	

an	interpretation	that	these	effects	reflect	differences	in	task	difficulty	or	engagement	

with	 the	stimuli	between	 listeners	groups	 rather	 than	stimulus	driven	differences	 in,	

for	example,	the	representation	of	speaker	identity.		

For	the	main	effect	of	vocalisation,	a	range	of	brain	region	outside	of	sensory	

cortices	were	 activated,	 including	 bilateral	 IFG	 as	well	 as	 a	 large	 cluster	 in	 superior	

medial	frontal	gyrus.	While	IFG	has	been	strongly	associated	with	speech	processing	–	

which	 may	 be	 reflected	 in	 stronger	 activation	 for	 sentences	 that	 contain	 linguistic	

meaning	compared	to	the	other	vocal	signals	(Hagoort,	2005),	these	regions	have	also	
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been	 associated	 with	 the	 frontal-opercular	 executive	 processing	 network	

(Geranmayeh,	 Brownsett	 &	 Wise,	 2014).	 This	 network	 has	 been	 shown	 to	 be	

upregulated	 in	 the	 context	 of	 higher	 task	 demands,	 reflecting	 effortful	 processing.	

This	may	 reflect	 the	 differential	 difficulty	 of	 extracting	 speaker	 identity	 from	 these	

different	vocalisations:	 it	 is	 interesting	to	note	that	superior	medial	gyrus	 is	the	only	

region	 that	 was	 activated	 less	 for	 sentences	 compared	 to	 the	 other	 vocal	 signals.	

Arguably,	discriminating	speaker	from	full	sentences	is	easier	compared	to	nonverbal	

signals	(see	for	example,	performance	of	>	90%	accuracy	for	sentences,	Van	Lancker	

&	Kreiman,	1987;	Reich	&	Duke,	1989;	Wester,	2012)	and	task	demands	are	therefore	

lower	for	speech	signals	 in	the	context	of	this	study.	Left	 IFG	was	also	found	for	the	

interaction	between	vocalisation	type	and	listener	group	–	this	interaction	is	driven	by	

stronger	 activation	 for	 sentences	 in	 unfamiliar	 listeners	 compared	 to	 the	 other	

vocalisation,	while	this	pattern	 is	not	as	apparent	 in	 familiar	 listeners.	This	cluster	 in	

IFG	 may	 similarly	 reflect	 processes	 relating	 to	 task	 demands:	 since	 speaker	

information	is	relatively	easily	processed	from	sentences,	it	may	be	far	more	difficult	

for	 the	 other	 vocalisations,	 especially	 in	 unfamiliar	 voices.	 These	 differences	 may	

therefore	modulate	attention	and	effort	 in	this	 listener	group.	 	A	small	cluster	 in	 left	

FG	was	 found	 for	 the	 interaction	between	 speaker	 and	 listener	 group.	 FG	has	 been	

associated	with	familiar	voice	processing:	Some	authors	have	argued	that	argue	when	

processing	speaker	identity-related	information	from	vocal	signals,	representations	of	

this	speaker’s	 face	are	automatically	co-activated,	aiding	amodal	person	recognition	

(Giraud	&	von	Kriegstein,	2004;	von	Kriegstein	et	al.,	2006;	von	Kriegstein	et	al.	2007).	

The	current	pattern	of	activations	 (see	plot	 in	Figure	 18f)	does	not	allow	for	a	simple	

interpretation	 of	 this	 result	 –	 familiar	 listeners	 were	 far	 more	 familiar	 with	 the	
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speakers’	 faces	but	 the	BOLD	 response	does	not	 clearly	 show	greater	activation	 for	

familiar	compared	unfamiliar	listeners.	Unfamiliar	listeners	were,	however,	also	briefly	

presented	 with	 pictures	 of	 the	 speakers	 during	 the	 speaker	 recognition	 task	 that	

participants	 performed	 before	 being	 scanned,	which	 in	 principle	 could	 have	 lead	 to	

this	complex	pattern	of	activations.	

The	results	of	this	fMRI	study	thus	suggest	that	listener	groups	did	process	the	

vocal	sounds	and	speaker	identity	differently,	although	most	effects	may	be	related	to	

differences	in	task	demands	with	the	task	being	in	general	more	difficult	for	unfamiliar	

listeners.	Against	predictions,	no	group	differences	were	 found	 in	anterior	 temporal	

cortices	 that	 have	 been	 reported	 to	 the	 activated	 during	 the	 processing	 of	 identity	

related	 information	 in	 familiar	 (and	 depending	 on	 the	 task)	 unfamiliar	 listeners	 in	

previous	studies.	Previous	studies	contrasting	familiar	and	unfamiliar	voice	processing	

have	either	asked	participants	 to	perform	two	different	 tasks,	 for	example	 linguistic	

processing	 versus	 identity	 processing	 to	 probe	 identity	 processing,	 have	 included	

familiar	 and	unfamiliar	 voices	 for	 the	 same	 listener	group	 (Giraud	&	 von	Kriegstein,	

2004;	Nakamura	et	al.,	2001;	von	Kriegstein,	et	al.,	2006;	von	Kriegstein	et	al.,	2007)	or	

have	trained	one	listener	group	on	a	set	of	voices	initially	unfamiliar	to	them	and	have	

used	artificial	morphed	voices	as	stimuli	 (Latinus	et	al.,	2011;	Andics	et	al.,	2010).	 In	

contrast	 to	 this,	 the	 current	 study	 used	 the	 same	 stimuli	 to	 control	 for	 acoustic	

differences	across	the	familiar	and	unfamiliar	listener	groups,	which	further	allowed	to	

ensure	that	familiar	listeners	had	been	exposed	to	the	voices	in	a	relatively	naturalistic	

context	 instead	 of	 artificial	 training	 environments	 (or	 using	 manipulated	 stimuli).	

These	are	factors	that	may	have	influenced	the	results:	since	both	participant	groups	

were	engaged	 in	 the	same	task,	group-based	differences	 in	magnitude	 in	 the	BOLD	
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response	 may	 have	 been	 masked	 by,	 for	 example,	 additional	 task	 demands	 for	

unfamiliar	 listeners	 (see	Giraud	&	von	Kriegstein,	2004).	The	nature	of	 familiarity	of	

the	 current	 listener	groups	 combined	with	 the	naturalistic	but	 variable	 vocal	 signals	

(see	Experiments	5	and	6)	may	furthermore	explain	the	lack	of	replication	of	previous	

findings.	 Additionally,	 as	 has	 been	 shown	 in	 previous	 behavioural	 experiments	

(Experiments	 4	 and	 5),	 listeners	 struggle	 to	 reliably	 link	 different	 vocalisations	 to	 a	

single	speaker,	even	when	they	are	familiar	with	the	speaker.	Thus,	variability	within	

the	 current	 stimuli	 may	 have	 further	 affected	 results	 (although	 note	 that	 even	 for	

sentences	 no	 group	 differences	 in	 temporal	 lobes	 was	 found).	 Future	 analyses	 and	

studies	should	attempt	to	use	more	sensitive,	multivariate	approaches	(see	Formasino	

et	 al.,	 2008	 or	 Evans	 &	 Davis,	 2015	 for	 methods)	 to	 identity	 pattern-based	

representations	 of	 vocalisations	 and	 speakers.	 With	 such	 approaches	 neural	

representations	 of	 speaker	 within	 and	 across	 vocalisation	 type	 could	 be	 identified,	

compared	 and	 contrasted.	 This	 would	 thus	 allow	 insights	 into	 how	 familiarity	 and	

variability	 in	 vocal	 signals	 affect	 the	 fidelity	 (or	 indeed	 presence	 or	 absence)	 of	

speaker	specific	representations	on	a	neural	level.		
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6 General	discussion	and	future	directions	

The	human	voice	is	a	rich	and	uniquely	variable	communicative	signal.	Its	potential	for	

flexibility	has	been	largely	neglected	in	studies	of	voice	perception	to	date,	as	studies	

to	 date	 have	 almost	 exclusively	 used	 speech	 stimuli	 produced	 in	 a	 volitional,	 highly	

controlled	manner	and	in	neutral,	modal	voice.	This	thesis	has	started	to	address	the	

gap	in	the	literature	by	examining	voice	perception	in	the	context	of	sex	identification	

and	speaker	discrimination	tasks	across	a	range	of	verbal	and	nonverbal	vocalisations	

representative	of	vocal	flexibility	(exemplified	here	by	the	degree	of	volitional	control	

over	their	production	[Experiments	1-5	and	7]	or	the	presence	and	absence	of	voicing	

[Experiment	6]).	

The	 results	 of	 these	 experiments	 show	 that	 while	 listeners	 can	 display	

relatively	 high	 accuracy	 in	 extracting	 speaker	 characteristics	 from	 volitional	

vocalisations,	they	have	a	more	limited	ability	to	do	this	for	spontaneous	vocal	signals:	

performance	 was	 impaired	 for	 sex	 identification	 and	 speaker	 discrimination	 tasks	

when	 performed	 on	 spontaneous	 laughter	 and	 spontaneous	 crying,	 while	

performance	for	vowels	and	volitional	laughter	was	relatively	unaffected.	Similarly	to	

spontaneous	 vocalisations,	 the	 absence	 of	 voicing	 during	 whispered	 speech	

significantly	 impaired	 listeners’	 performance	 for	 speaker	 discrimination.	 Thus,	 the	

extraction	 of	 speaker	 characteristics	 from	 vocal	 signals	 that	 diverge	 from	 voiced	

volitional	vocal	signals	seems	to	be	more	challenging	for	listeners.	Further,	for	speaker	

discrimination,	when	listeners	were	required	to	make	judgements	across	vocalisation	

types,	performance	became	highly	unreliable	–	 listeners	were	for	example	unable	to	

link	the	laughter	produced	by	a	speaker	to	the	vowels	produced	by	the	same	speaker.	

While	in	general	an	advantage	was	observed	for	familiar	listeners	in	the	processing	of	
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indexical	 speaker	 properties,	 they	were	 nonetheless	 affected	by	 vocal	 flexibility.	An	

fMRI	study	showed	that	when	discriminating	speakers	based	on	varied	vocal	signals,	

unfamiliar	 listeners	 more	 strongly	 recruit	 brain	 regions	 and	 networks	 implicated	 in	

executive	 function,	 such	 as	 the	 frontal-opercular	 network,	 compared	 to	 familiar	

listeners.	 This	 indicates	 that	 task	 difficulty	 and	 processing	 demands	 differ	 between	

the	 two	groups.	 Intriguingly,	 and	 in	 contrast	 to	previous	 studies	 (Andics	et	al.	 2010;	

Formisano	 et	 al.	 2008;	 Latinus	 et	 al.,	 2013),	 the	 current	 analyses	 did	 not	 show	 any	

group	 differences	 in	 voice-sensitive	 cortical	 regions	 (i.e.	 auditory	 cortex	 and	 the	

superior	temporal	 lobes)	that	could	be	linked	to	differential	perceptual	processing	of	

familiar	and	unfamiliar	voices.	

	

6.1 Aspects	of	familiarity	affecting	the	perception	of	speaker	
characteristics	

Throughout	this	thesis,	different	types	of	familiarity	or	expertise	with	a	stimulus	have	

been	considered	as	potential	explanations	for	advantages	or	impairments	in	listener’s	

performance.	 Previous	 research	 has	 already	 shown	 that	 familiarity	 with	 a	 stimulus	

type	affords	listeners	processing	advantages:	musicians	are	better	than	non-musicians	

at	identifying	individuals	from	their	musical	performances	(Koren	&	Gingras,	2014	for	

harpsichord	 performances),	 individuals	 familiar	 with	 a	 television	 show	 are	 able	 to	

identify	the	original	theme	tune	in	a	set	of	pitch-shifted	theme	tunes	(Schellenberg	&	

Trehub,	2003).		There	are	further	countless	examples	of	anecdotal	evidence	of	farmers	

recognising	their	animals	by	their	calls	or	car	enthusiasts	identifying	cars	from	engine	

sounds	(while	non-experts	fail	to	do	so).	Listeners	have	also	been	shown	to	be	more	

accurate	at	discriminating	and	recognising	speakers	when	presented	with	speech	in	a	
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language	 they	 are	 familiar	 with,	 versus	 an	 unfamiliar	 language	 Perrachione	 et	 al.,	

2009;	 Perrachione	 et	 al.,	 2011).	 Thus	 expertise,	 through	 prolonged	 exposure	 and	

engagement	with	a	stimulus	appear	to	affect	performance	for	identity	processing.	In	

the	 context	 of	 the	 stimuli	 used	 in	 this	 thesis,	 spontaneous	 vocalisations	 can	 be	

considered	to	occur	relatively	rarely	compared	to	spoken	signals.	This	relative	lack	of	

familiarity	 or	 expertise	 in	 the	 processing	 these	 vocal	 signals	 in	 listeners	 may	 thus	

underlie	the	impairment	in	the	extraction	of	speaker	characteristics	from	spontaneous	

(or	 whispered)	 vocal	 signals	 reported	 in	 this	 thesis.	 Future	 work	 would	 need	 to	

formally	 assess	 how	 frequently	 spontaneous	 vocalisations	 are	 heard	 and	 whether	

performance	in	the	extraction	of	speaker	characteristics	is	also	impaired	for	other	less	

frequently	 encountered	 (volitional)	 vocalisations,	 such	 as	 singing.	 Learning	 studies	

could	 further	 assess	 whether,	 if	 trained	 on	 either	 volitional	 or	 spontaneous	

vocalisations	 that	 are	 matched	 for	 familiarity,	 subsequent	 increases	 in	 the	

discrimination	 or	 recognition	 of	 speakers	 (compared	 with	 no-training	 control	

conditions)	 are	 similar	 or	 different	 across	 vocalisations.	 Similar	 increases	 in	

performance	 would	 suggest	 that	 an	 expertise	 effect	 is	 present,	 while	 differential	

increases	dependent	on	the	training	condition	would	suggest	that	other	factors	might	

be	affecting	performance.	

Another	aspect	of	 familiarity	 that	may	affect	participants’	 responses	pertains	

to	the	context	 in	which	familiarity	 is	acquired.	Familiarity	with	a	speaker	 is	a	specific	

type	 of	 expertise,	 and	 familiarity	 with	 a	 person	 can	 take	 many	 different	 forms	 –	

celebrities,	 colleagues,	 close	 friends,	 relatives	 and	 partners	 are	 all	 in	 some	 way	

familiar	 to	 a	 listener.	 In	 contrast	 to	 familiarity	with	 a	 stimulus	 type,	 these	 different	

types	of	familiarity	with	a	person	are	not	only	marked	by	differential	exposure	with	a	
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speaker’s	 full	 vocal	 inventory.	 With	 different	 types	 of	 interpersonal	 relationships,	

socio-emotional	 attributes	 become	 associated	 with	 hearing	 a	 familiar	 voice	 (see	

McGettigan,	2015;	Sidtis	&	Kreiman,	2012;	Suguira,	2014	for	discussions):	Hearing	the	

voice	of	a	partner	after	a	prolonged	absence	will	have	a	different	effect	on	the	listener	

than	hearing	the	highly	familiar	voice	of	Meryl	Streep	while	watching	“Mamma	Mia!”	

again	 after	 3	 years.	 How	 these	 socio-emotional	 aspects	 of	 personal	 familiarity	may	

affect	 voice	 processing	 remains	 a	 largely	 open	 question.	 The	 challenge	 of	 future	

research	will	be	to	more	thoroughly	address	and	describe	the	effects	of	different	types	

of	 familiarity	 on	 task	 performance.	 Specifically,	 familiarity	 in	 the	 sense	 of	 mere	

expertise	through	exposure	and	engagement	needs	to	be	delineated	and	disentangled	

from	familiarity	additionally	 involving	 the	 formation	of	 socio-emotional	associations	

with	a	stimulus.	

	

6.2 Identifying	the	underlying	mechanisms	of	speaker	
processing	in	the	context	of	vocal	flexibility	

In	 this	 thesis,	 the	 extraction	 of	 speaker	 characteristics	 has	 been	 shown	 to	 be	

significantly	 impaired	 for	 spontaneous	 vocalisations	 such	 as	 authentic	 laughter	 and	

crying.	It	has	been	hypothesized	that	acoustic	features	of	the	signal	may	underpin	this	

effect:	Acoustic	 cues	 to	 speaker	 identity	or	 speaker	 sex	may	be	absent	within	 these	

vocalisations,	since	during	production,	authentic	emotional	content	may	be	encoded	

preferentially	 to	 cues	 to	 speaker	 identity.	 Alternatively,	 it	 was	 hypothesized	 that	

spontaneous	 vocalisations	 are	 not	 only	 produced	 relatively	 infrequently	 but	 also	

(possibly	as	a	result)	also	occupy	an	acoustic	space	that	is	only	rarely	encountered	and	

is	 thus	 relatively	unfamiliar	 to	 listeners,	 impairing	speaker	 identity	processing.	From	
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the	current	studies	it	is	unclear	which	hypothesis	is	more	likely	to	explain	the	findings	

reported	 above.	 Future	 studies	 could	 resolve	 this	 issue,	 for	 example,	 by	 shifting	

spontaneous	 vocalisations	 into	 the	 acoustic	 space	 of	 volitional	 vocalisations	 (e.g.	

lowering	the	fundamental	frequency)	and	vice	versa	in	studies	of	speaker	perception.	

It	could	be	predicted	that	if	the	impairment	of	performance	is	due	to	being	relatively	

unfamiliar	with	the	acoustic	space	for	spontaneous	vocal	signals,	performance	should	

be	better	for	shifted	spontaneous	vocalisations,	while	it	should	decrease	for	volitional	

vocalisations	 that	 have	 been	 shifted	 into	 the	 acoustic	 space	 of	 spontaneous	

vocalisations.	 If,	 however,	 cues	 to	 speaker	 identity	 are	 absent	 in	 spontaneous	

vocalisations,	 shifting,	 for	 example,	 the	 pitch	 of	 spontaneous	 vocalisations	 down	

should	not	improve	performance.	From	a	perception	point	of	view,	it	was	furthermore	

hypothesized	 that,	 while	 all	 necessary	 cues	 may	 be	 encoded	 in	 spontaneous	 and	

volitional	 vocalisations	 alike,	 the	 processing	 of	 the	 authentic	 emotional	 content	

present	 in	 spontaneous	 vocalisations	 may	 be	 prioritized	 over	 identity-related	

information	 (Goggin	 et	 al.,	 1991).	 Future	work	 should	 therefore	 directly	 investigate	

modulations	 of	 attention	 for	 spontaneous	 and	 volitional	 vocal	 signals	 to	 explore	

potential	differences	between	these	types	of	affective	information.	

	 In	 Experiment	 3	 and	 4	 it	 was	 attempted	 to	 explain	 patterns	 of	 behavioural	

responses	 through	 within-pair	 acoustic	 dissimilarity	 of	 vocal	 signals.	 It	 was	

hypothesized	that	the	more	acoustically	dissimilar	pairs	of	vocal	signals	from	a	single	

speaker	 are,	 the	more	 difficult	 it	 should	 be	 for	 listeners	 to	 assign	 them	 to	 a	 single	

speaker	(in	the	absence	of	familiarity	with	any	of	the	speakers).	This	hypothesis	was	

not	 clearly	 confirmed	 since	 measures	 of	 acoustic	 dissimilarity	 only	 predicted	 a	

negligible	 amount	 of	 variance	 in	 logistic	 regression	 models.	 Future	 work	 should	
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further	 explore	 whether	 acoustic	 or	 perceptual	 descriptions	 of	 the	 stimuli	 (using	

multidimensional	 scaling	 approaches,	 see	Baumann	&	Belin,	 2008)	 can	 shed	 further	

light	on	how	variability	in	vocal	signals	affects	performance.	

	

6.3 Interactions	between	affect	and	identity:	implications	for	
the	pathways	in	Belin	et	al.’s	(2004)	model	of	voice	
processing		

Belin	et	al.’s	(2004)	model	of	voice	processing	proposes	the	hierarchical	processing	of	

human	 vocal	 signals	 along	 three	 partially	 independent	 pathways	 (see	 Section	 1.5).	

Interactions	 during	 the	 processing	 of	 vocal	 signals	 have	 already	 been	 shown	 for	

speech	 and	 identity	 pathways,	 with,	 for	 example,	 familiar	 speakers	 being	 more	

intelligible	and	speakers	being	more	easily	identified	when	speaking	a	language	with	

which	the	listeners	are	familiar	(Nygaard	&	Pisoni,	1998;	Pisoni,	1993;	Perrachione	et	

al.,	 2009;	 Perrachione	 et	 al.,	 2011;	 see	 Section	 4.3	 for	 an	 overview).	 Interactions	

between	emotion	and	 identity	 (and	 speech)	processing	have	already	been	 shown	 in	

the	 face	 perception	 literature	 (Schweinberger	 &	 Soukup,	 1998).	 The	 findings	

presented	 in	 this	 thesis	 provide	 novel	 empirical	 evidence	 for	 striking	 interactions	

between	 affect	 and	 identity	 processing	 pathways	 for	 vocal	 stimuli	 –	 crucially,	 with	

specifically	spontaneous	emotional	 information	 impairing	 identity	processing.	Future	

research	will	need	 to	determine	whether	 further	 interactions,	 for	example,	between	

speech	 and	 emotion	 pathways	 may	 be	 present:	 Highly	 emotional	 speech	 may,	 for	

example,	 be	 less	 intelligible.	 Studies	 of	 speech	 prosody	 have	 already	 reported	

generally	 lower	 emotion	 recognition	 rates	 than	 studies	 of	 non-verbal	 vocalisations	
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(see	Section	1.5.2)	–	further	work	should	directly	test	whether	the	presence	of	speech	

during	emotional	vocal	displays	impairs	emotion	recognition.	

	

6.4 Individual	differences	

For	 most	 experiments	 in	 this	 thesis,	 individual	 differences	 in	 listener	 performance	

were	 apparent.	 While	 individual	 differences	 in	 face	 recognition	 have	 been	 widely	

assessed	 (e.g.	Dennett,	McKone,	Edwards	&	Susilo,	 2012;	Hedley,	Brewer	&	Young,	

2011;	 Wang,	 Li,	 Fang,	 Tian	 &	 Liu,	 2012),	 very	 little	 research	 exists	 on	 individual	

differences	in	voice	processing.	Recently,	a	validated	test	of	voice	memory,	assessing	

the	 ability	 of	 listeners	 to	 memorise	 and	 recognise	 a	 set	 of	 unfamiliar	 voices	 has	

reported	 substantial	 variability	 in	 listeners’	 ability	 to	 recognise	 voices,	 ranging	 from	

severely	impaired	performance	for	a	phonagnosic	patient	to	highly	proficient	listeners	

scoring	 far	 above	 average	 (Aglieri,	Watson,	 Pernet,	 Latinus,	Garrido	&	Belin,	 2016).	

While	 this	 research	 into	 individual	 difference	 in	 voice	 identity	 processing	 has	 thus	

established	that	there	are	individual	differences	that	appear	to	be	relatively	specific	to	

voice	processing,	 future	work	will	need	 to	determine	what	 the	specific	physiological	

and	 psychological	 factors	 are	 that	 may	 underlie	 such	 differences	 in	 performance	

across	a	number	of	tasks	 in	healthy	 listeners	as	well	as	 in	special	populations.	 It	also	

remains	to	be	determined	whether	individual	differences	in	the	processing	of	identity	

information	 are	modality-specific	 or	 amodal	 (see	 Lewis,	 Lefevre	&	 Young,	 2016	 for	

potential	methodological	approaches).	
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6.5 Looking	across	different	subfields	

While	a	relatively	large	body	of	work	on	identity	processing	from	vocal	signals	exists,	

reporting	 a	wealth	 of	 findings,	 studies	 are	 spread	 across	 several	 research	 traditions	

(applied	 earwitness	 research	 versus	 experimental/psychoacoustic	 approaches)	 with	

only	limited	synthesis	of	findings	occurring:	studies	have	already	shown	that	stimulus	

type,	 task	type,	 retention	 interval	and	type	of	exposure	to	a	voice	at	 test	or	prior	 to	

the	 test	 have	 all	 been	 shown	 to	 have	 an	 impact,	 at	 times	 substantial,	 on	 task	

performance	 (e.g.	 Bricker	 &	 Pruzanksy,	 1966;	 Kerstholt,	 Jansen,	 Van	 Amelsvoort	 &	

Broeders,	 2004;	 Orchard	 &	 Yarmey,	 1995;	 Schweinberger	 et	 al.,	 1997;	 Yarmey	

&Matthys,	1992;	Yarmey,	Yarmey,	Yarmey,	1994).	Methods,	tasks	and	stimuli	differ,	

however,	vastly	between	 research	 traditions,	making	 it	at	 times	difficult	 to	evaluate	

how	 an	 effect	 reported	 for	 applied	 earwitness	 studies	 (using	 one	 shot	 line-up	

approaches,	long,	relatively	uncontrolled	stimulus	materials,	see	Yarmey,	1995	for	an	

overview)	 would	 translate	 to	 more	 controlled	 experimental	 approaches	 (and	 vice	

versa).	 Even	 within	 experimental	 approaches	 to	 voice	 processing,	 task	 type	 and	

familiarity	are	closely	linked:	For	speaker	recognition	and	speaker	identification	tasks	

familiar	voices	are	used,	while	for	speaker	discrimination	mainly	unfamiliar	voices	are	

used.	 Future	 studies	 should	 aim	 at	 synthesizing	 the	 divergent	 literature	 into	 a	

common	framework.	They	will	thus	be	able	continue	to	create	a	more	comprehensive	

picture	of	voice	processing	by	addressing	novel	questions	through	the	use	of	a	wider	

range	of	 tasks	and	stimuli,	 testing	existing	frameworks	and	 if	appropriate	proposing	

new	models	of	voice	processing.	
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6.6 Conclusion	

Overall	 this	thesis	highlights	that	while	vocal	signals	can	encode	a	wealth	of	cues	to	

identity	 our	 full	 vocal	 repertoire	 is	 highly	 variable.	 Accurately	 attributing	 these	

divergent	 vocal	 signals	 to	 a	 single	 individual	 becomes	 challenging	 without	 prior	

familiarity	with	the	person’s	full	vocal	inventory.	The	presence,	absence	or	modulation	

of	salient	stimulus	properties,	such	as	limited	source	information	in	whispered	speech	

and	 drastically	 modulated	 acoustic	 signals	 for	 spontaneous	 vocalisations,	 poses	

additional	 challenges	 for	 the	 extraction	 of	 speaker	 characteristics	 for	 familiar	 and	

listeners	 alike.	 The	 findings	 of	 this	 thesis	 thus	 put	 into	 perspective	 our	 ability	 to	

extract	speaker	characteristics	from	vocal	signals,	calling	for	a	more	nuanced	as	well	

as	 more	 comprehensive	 approach	 to	 voice	 processing	 that	 accounts	 for	 vocal	

flexibility	as	well	as	stimulus	and	listener	characteristics.	
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