The geological history of the Latimojong region of western Sulawesi

Lloyd T. White^{1∞}*, Robert Hall¹, Richard A. Armstrong², Anthony J. Barber¹, Marcelle BouDagher Fadel³, Alan Baxter^{4, 5}, Koji Wakita⁶, Christina Manning⁷, Joko Soesilo⁸

- Southeast Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX
- 2. Research School of Earth Sciences, The Australian National University, Canberra, Australia, 0200
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
- 4. School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, Australia, 2351
- 5. Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- 6. Department of Earth Sciences, Yamaguchi University, Yamaguchi, Japan
- 7. Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX
- 8. Faculty of Mineral Technology, UPN Veteran Yogyakarta, Jalan SWK104, 52283, Yogyakarta, Indonesia

Research Highlights

- We review the stratigraphy and tectonic history of the Latimojong Mountains region.
- We found that the Latimojong Formation does not occur in this region.
- We present new fossil ages for the Toraja Fm., Makale Fm. And Enrekang Volcanics
- We present new U-Pb zircon SHRIMP data for igneous rocks in the region.
- The region is dominated by strike-slip faulting.

^{*} Corresponding Author

[∞] Present address: School of Earth and Environmental Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia, 2522

Abstract

34

35 We present an updated geological map and revised stratigraphy of the Latimojong 36 region of central-western Sulawesi. This work includes new biostratigraphic ages 37 from the Latimojong Metamorphic Complex, Toraja Group, Makale Formation and 38 Enrekang Volcanics, together with whole-rock geochemical data and sensitive high-39 resolution ion microprobe (SHRIMP) U-Pb analyses from zircons extracted from 40 igneous rocks in the region. Previous work on the study region and in other parts of 41 Sulawesi have discussed the age and character of two different rock sequences with 42 similar names, the Latimojong Complex and the Latimojong Formation. One would 43 assume that the type location for these two sequences is in the Latimojong Mountains. 44 However, there is considerable confusion as to the character and location of these 45 sequences. We make a distinction between the Latimojong Formation and the 46 Latimojong Complex, and propose that the Latimojong Complex be renamed the 47 Latimojong Metamorphic Complex to minimise the confusion associated with the 48 current nomenclature. The Latimojong Metamorphic Complex is an accretionary 49 complex of low- to high-grade metamorphic rocks tectonically mixed with cherts and 50 ophiolitic rocks, while the Latimojong Formation consists of Upper Cretaceous 51 weakly deformed, unmetamorphosed sediments or very low-grade metasediments 52 (previously interpreted as flysch or distal turbidites that unconformably overlie older 53 rocks). Our work indicates that the Latimojong Formation must be restricted to 54 isolated, unobserved segments of the Latimojong Mountains, or are otherwise not 55 present in the Latimojong region, meaning the Latimojong Formation would only be 56 found further north in western Sulawesi. Radiolaria extracted from chert samples 57 indicate that the Latimojong Metamorphic Complex was likely assembled during the 58 Cretaceous (Aptian-Albian) and was later metamorphosed. Ages obtained from 59 benthic and planktonic foraminifera were used to differentiate and map the Toraja 60 Group (Ypresian to Chattian: 56–23 Ma), Makale Formation (Burdigalian to 61 Serravallian: 20.5–11.5 Ma) and Enrekang Volcanic Series (8.0–3.6 Ma) across the 62 study area. U-Pb isotopic data collected from magmatic zircons record several phases 63 of volcanism (~38 Ma, ~25 Ma and 8.0–3.6 Ma) in the region. Each phase of 64 magmatism can be distinguished according to petrology and whole-rock geochemical 65 data. The isotopic ages also show that dacites from the Enrekang Volcanic Series are 66 contemporaneous with the emplacement of the Palopo Granite (6.6–4.9 Ma). Miocene 67 to Proterozoic inherited zircons within these igneous rocks support earlier suggestions

68	that Sulawesi potentially has a Proterozoic-Phanerozoic basement or includes
69	sedimentary rocks (and therefore detrital zircons) derived from the erosion of
70	Proterozoic or younger material. Some earlier work proposed that the granitic rocks in
71	the region developed due to crustal melting associated with plate collision and
72	radiogenic heating. Our observations however, support different interpretations,
73	where the granites are associated with arc magmatism and/or crustal extension. The
74	region was cross-cut by major strike-slip fault zones during the Pliocene. This
75	deformation and the buoyancy associated with relatively young intrusions may have
76	facilitated uplift of the mountains.
77	
78	1. Introduction
79	The study area, herein referred to as the Latimojong region, comprises the Latimojong
80	Mountains of central-west Sulawesi and the surrounding areas, including Tanah
81	Toraja to the west (Fig. 1 and 2). This mountainous area includes the highest peaks
82	found on Sulawesi, with some exceeding 3,400 m a.s.l (e.g. Rante Mario). The region
83	is considered to include part of a Cretaceous accretionary complex and records several
84	phases of deformation potentially associated with continent collision (Bergman et al.,
85	1996). Existing geological maps of the region vary in quality and there is poor age
86	control for many of the sequences in the area. We present the results of a geological
87	study of the Latimojong Mountains. This included the collection of new age,
88	geochemical and structural information to re-evaluate existing geological maps as
89	well as the stratigraphy and deformation history of the region.
90	
91	2. The geological framework of Sulawesi
92	Sulawesi is a region of amalgamated continental blocks and island arc crust that
93	records a Cretaceous to recent history of continent-continent collision, ophiolite
94	obduction, arc volcanism, strike-slip faulting and significant crustal extension (e.g.
95	Katili, 1970, 1978; Audley-Charles, 1974; Hamilton, 1979; Parkinson, 1998; Spencer,
96	2010, 2011; Hennig et al., 2016; van Leeuwen et al., 2016). These processes are
97	recorded in different parts of the island and this resulted in a complex geology, as is
98	shown in Figure 1. To provide further context, there was collision between different
99	parts of Sulawesi causing ophiolite emplacement (e.g. Audley-Charles, 1974;
100	Hamilton, 1979; Sukamto and Simandjuntak, 1983; Coffield et al., 1993; Bergman et
101	al 1996: Parkinson 1998) This is interpreted to represent an arc-continent collision

102	between the micro-continental Sula Spur and North Arm of Sulawesi in the Early
103	Miocene (e.g. Audley-Charles, 1974; Hamilton, 1979; Sukamto and Simandjuntak,
104	1983; Coffield et al., 1993; Bergman et al., 1996; Hall, 1996; 2002, 2012; van
105	Leeuwen and Muhardjo, 2005; van Leeuwen et al., 2007; Spakman and Hall 2010;
106	Watkinson et al. 2011). This period of collision was followed or accompanied by
107	Middle Miocene to Pliocene phases of magmatism and metamorphism in western and
108	north Sulawesi (e.g. Bergman et al., 1996; Elburg and Foden, 1999a; 1999b; Elburg et
109	al., 2003; van Leeuwen et al., 2007; 2016; Spencer, 2010; 2011; Hennig et al., 2016)
110	and strike-slip faulting (Katili, 1970; 1978; Hamilton, 1979; van Leeuwen, 1981;
111	Sukamto, 1982; Silver et al., 1983a; 1983b; Berry and Grady, 1987; Simandjuntak et
112	al., 1994; Surono, 1994; Jaya and Nishikawa, 2013; White et al., 2014; Hennig et al.,
113	2016; van Leeuwen et al., 2016). The uplift associated with collision, together with
114	other episodes of deformation and uplift, led to the exhumation of several
115	metamorphic basement inliers. This includes the Cretaceous Baru and Bantimala
116	complexes in south-western Sulawesi, as well as similar rocks in the Latimojong
117	Mountains, ~100-150 km to the NNE (e.g. Coffield et al., 1993; Bergman et al., 1996;
118	Wakita et al., 1996; Parkinson et al., 1998). These basement rocks are unconformably
119	overlain by Upper Cretaceous turbidite deposits (e.g. the Balangbaru and Marada
120	formations) and have been cross-cut by numerous faults (e.g. Querubin and Walters,
121	2012).
122	
123	3. The Geology of the Latimojong region
124	The Latimojong region is located to the west and southwest of Palopo, a town on the
125	northwestern coast of Bone Bay (Fig. 2). It is quite rugged, mountainous and heavily
126	forested terrane, and therefore the fieldwork that has been conducted in this region to
127	date has largely been restricted to an E-W section across the western slope of the
128	mountain range and along parts of the eastern margin of the mountain range. The
129	geology of the area, very simply, consists of a mountainous inlier of metasediments as
130	well as gabbro, basalt and serpentinite, as well as several carbonate sequences and
131	various Mio-Pliocene intrusions and volcanics (Fig. 2).
132	
133	The first reports on the study area were provided by Dutch geologists before World
134	War II (e.g. Brouwer, 1934). Geologists from the Geological Research and
135	Development Centre (GRDC) later mapped this region and other parts of Sulawesi at

1:250,000 scale during the 1970's and 1980's (e.g. Djuri and Sudjatmiko, 1974;

137	Simandjuntak et al., 1991). Isotopic dating and geochemical studies have provided
138	information on the age and nature of igneous rocks in the region (e.g. Priadi et al.,
139	1994; Bergman et al., 1996; Polvé et al., 1997; Elburg et al., 2003; Elburg and Foden,
140	1998; 1999a; 1999b) and there have been continued efforts to document the
141	stratigraphic and structural history (Coffield et al., 1993; Bergman et al., 1996;
142	Baharuddin and Harahap, 2000; Endaharto, 2000). Several reports also discuss the
143	local geology of the Awak Mas orogenic gold deposit that is found in the Latimojong
144	Mountains (e.g. van Leeuwen and Pieters 2011; Querubin and Walters 2012).
145	
146	Despite this earlier work, there is still considerable uncertainty about the region's
147	stratigraphy, structural architecture and deformation history. Current understanding of
148	the stratigraphy is based on 1:250,000 mapping and aerial photographic interpretation
149	as well as sparse biostratigraphic data (e.g. Djuri and Sudjatmiko, 1974; Coffield et
150	al., 1993; Bergman et al., 1996). Furthermore, conflicting radiometric age data have
151	been reported based on different isotopic systems used to date the same rocks (e.g.
152	low temperature thermochronology results are older than conventional ID-TIMS U-Pb
153	crystallization ages of zircon reported by Bergman et al., 1996). Also, as relatively
154	few studies have been conducted in the Latimojong region, much about its geology
155	has been inferred from comparisons to similar sequences of rocks exposed in other
156	parts of Sulawesi (e.g. Sukamto and Simandjuntak, 1983; van Leeuwen and
157	Muhardjo, 2005; Calvert and Hall, 2007; Hennig et al., 2016). These comparisons
158	with other areas have led to considerable confusion about the nomenclature that is
159	used to define the stratigraphy of western Sulawesi. We therefore attempt to resolve
160	these issues and report new biostratigraphic data from cherts and carbonate rocks as
161	well as new U-Pb zircon ages for granitoids and volcanic rocks across the Latimojong
162	region.
163	
164	3.1 The Latimojong Complex and the Latimojong Formation
165	The oldest units exposed in the region are weakly to moderately metamorphosed
166	rocks that include grey to black slates, phyllites, cherts, marbles, quartzites and
167	silicified breccia that are intruded by intermediate to basic rocks (Djuri and
168	Sudjatmiko, 1974; Coffield et al., 1993; Bergman et al., 1996; Djuri et al., 1998;
169	Querubin and Walters 2012). Djuri and Sudjatmiko (1974) classified all of these rocks

170 as part of the "Latimojong Formation". However, later workers subsequently used the 171 same name to define a series of thinly bedded sandstone and laminated shale deposits 172 or 'flysch' deposits found to the west, north-west and north of the Latimojong 173 Mountains (Sukamto and Simandjuntak, 1983; Ratman and Atmawinata, 1993; 174 Hadiwijoyo et al., 1993; Simandjuntak et al., 1991; van Leeuwen and Muhardjo, 175 2005; Calvert and Hall, 2007; van Leeuwen et al., 2016; Hennig et al., 2016). These 176 sandstones and shales are not metamorphosed or have a low-grade metamorphic 177 character. 178 The most detailed descriptions of the "Latimojong Formation" are therefore from 179 180 other areas, most of which are many tens to hundreds of kilometers from the 181 Latimojong region. This includes the distal turbidite sequences from the Lariang 182 region as described by Calvert (2000) and van Leeuwen and Muhardjo (2005). 183 Calvert (2000) reported dark grey shales with varying amounts of siltstones and 184 occasionally fine sandstone, with rare medium sandstone, locally with flute casts, 185 while van Leeuwen and Muhardjo (2005) described these as weakly metamorphosed 186 pelitic and fine-grained psammitic rocks. These sequences and their equivalents in the 187 Karama area yield Coniacian-Maastrichtian ages from nannofossil and foraminifera 188 (Chamberlain and Seago, 1995), Cretaceous detrital zircons (van Leeuwen and 189 Muhardjo, 2005) and Cretaceous ammonites (Reijzer 1920). Cretaceous (Campanian 190 to early Maastrichtian) ages were also reported for similar rocks from the Mamuju 191 map quadrangle to the west of Latimojong Mountains (Ratman and Atmawinata, 192 1993). Similar sequences of low-grade metasediments of Late Campanian-Late 193 Maastrichtian age also occur in the South Arm of Sulawesi in the Bantimala and 194 Barru areas (e.g. Balangbaru Formation; Sukamto, 1982; Hasan, 1991) and the Biru 195 area (e.g. Marada Formation; van Leeuwen, 1981). They are considered to have 196 formed in a fore-arc setting along the SE margin of Sundaland during NW-directed 197 subduction in the Late Cretaceous (van Leeuwen and Muhardjo, 2005) and they 198 overlie highly tectonized rocks of a Lower Cretaceous accretionary and ophiolite 199 complex (van Leeuwen, 1981; Sukamto, 1982; Wakita et al., 1996; Maulana et al., 200 2010). These low-grade metasediments are clearly different to those originally 201 described as the Latimojong Formation by Djuri and Sudjatmiko (1974) within the 202 Latimojong region.

203

204	Other workers proposed the term "Latimojong Complex" for the rocks exposed in the
205	Latimojong region (Coffield et al., 1993). This term was used to encompass two
206	sequences: (1) unmetamorphosed sediments or very low grade metasediments,
207	described as flysch or turbidites, which overlie: (2) strongly deformed low to high
208	grade metamorphosed rocks, both of which were considered to exist in the
209	Latimojong region. Based on our own observations in the Latimojong region, as well
210	as other parts of western Sulawesi, we differentiate between these two sequences. We
211	use the term 'Latimojong Metamorphic Complex' for the older, strongly
212	deformed/metamorphosed rocks and 'Latimojong Formation' for the younger,
213	unmetamorphosed or very low-grade metamorphosed sedimentary rocks.
214	
215	The Latimojong Metamorphic Complex is exposed throughout the Latimojong
216	Mountains; it is unclear whether the Latimojong Formation exists in the Latimojong
217	region. Both sequences are considered to be Cretaceous (in a stratigraphic sense), with
218	the Latimojong Formation unconformably overlying the Latimojong Metamorphic
219	Complex. However, readers should note that no contact between the two units has
220	been observed, and that there is no reliable age data available for these sequences in
221	the Latimojong region. For example, these were originally assigned a Late Cretaceous
222	age on the basis of Globotruncana found within claystone (Djuri and Sudjatmiko
223	1974), but no localities for these fossils were reported. Later mapping reports by
224	GRDC (Simandjuntak et al., 1991) refer back to Djuri and Sudjatmiko (1974), and
225	also refer to Cretaceous aged fossils reported from grey limestones between Pasui and
226	Rante Lemo by Brouwer (1934). These fossils include Orbitolina and Astrarea cf.
227	Culumellata that were said to be potentially Cretaceous in age
228	
229	The Latimojong Metamorphic Complex includes multiply deformed quartz-
230	muscovite-albite schist, glaucophane-lawsonite schist, graphitic schists and slate
231	(Querubin and Walters 2011; this study). Meta-igneous rocks such as amphibolite,
232	meta-gabbro and meta-granitoids are tectonically juxtaposed within parts of the
233	Latimojong Metamorphic Complex. These could be mapped as part of the Latimojong
234	Metamorphic Complex, but potentially represent younger rocks (e.g. the Lamasi
235	Complex, Palopo Granite) that were tectonically juxtaposed with the older
236	metamorphic sequences.
237	

238	We assume that the Latimojong Metamorphic Complex is equivalent to the early Late
239	Cretaceous medium-high grade metamorphic rocks exposed in South Sulawesi in the
240	Bantimala and Barru areas (e.g. Wakita et al., 1996). We consider the Latimojong
241	Formation was deposited unconformably on the Latimojong Metamorphic Complex
242	and is equivalent in age to similar lithologies exposed in other parts of Western
243	Sulawesi such as the Balangbaru and Marada formations (Sukamto and Simandjuntak,
244	1983; Hasan, 1991; van Leeuwen and Muhardjo, 2005; Calvert and Hall, 2007; van
245	Leeuwen et al., 2016). We are just not certain whether the Latimojong Formation
246	exists within the Latimojong region.
247	
248	
249	3.2 The Lamasi Complex
250	Mafic to intermediate igneous rocks are exposed in the eastern Latimojong Mountains
251	and close to the northwest coast of Bone Bay (Fig. 2 and Fig. 3). These were
252	originally named the Lamasi Volcanics, and described as an Oligocene sequence of
253	lava flows, basalts, andesites, volcanic breccia and volcaniclastics (Djuri and
254	Sudjatmiko, 1974). Subsequent work demonstrated that the area originally mapped as
255	basalts and basaltic andesites (Djuri and Sudjatmiko, 1974), also includes serpentinite
256	layered gabbro, isotropic gabbro, microdiorite, basaltic sheeted dykes, pillow lavas
257	(with altered interstitial chert), dolerite, hyaloclastite, tuffs and volcaniclastic breccia
258	(Coffield et al., 1993; Bergman et al., 1996). This suite of more mafic rocks was later
259	re-named the Lamasi Complex (Coffield et al., 1993; Bergman et al., 1996). The
260	basaltic rocks were interpreted to represent obducted MORB or back-arc oceanic crust
261	as they have 'depleted' or MORB-like Sr and Nd isotopic ratios and REE
262	characteristics (Bergman et al., 1996). Various isotopic data (K-Ar, ⁴⁰ Ar- ³⁹ Ar, Rb-Sr
263	and Sm-Nd) suggest Cretaceous to Oligocene ages (Priadi et al., 1994; Bergman et al.
264	1996). These ages are supported by field observations that show that these volcanic
265	rocks are overlain by Lower to Middle Miocene marls and limestones (Djuri and
266	Sudjatmiko, 1974). Similar lithologies are exposed in the Bone Mountains region,
267	south of the Latimojong Mountains, where basalts, andesites and subordinate rhyolites
268	are interbedded within middle Eocene to early Miocene clastics and carbonates (e.g.
269	van Leeuwen et al., 2010).
270	
271	Other workers reported K-Ar ages (19 Ma to 15 Ma) for basalts and andesites that

272	were said to be part of the Lamasi Volcanics (Priadi et al., 1994; Elberg and Foden,
273	1999b). The ~15 Ma sample reported by Priadi et al., (1994) was a basaltic pillow
274	lava. However, the sample analysed by Elberg and Foden (1999b) was from andesite
275	float assumed to represent the Lamasi Complex. These ages are considerably younger
276	than the Cretaceous-Eocene ages presented by Priadi et al. (1994) and Bergman et al.
277	(1996). We suggest that these Miocene ages reflect a different magmatic event to
278	those we classify as the Lamasi Complex.
279	
280	3.3 Toraja Group (Eocene-Oligocene)
281	The Toraja Group is a c.1000m thick succession of locally folded terrestrial/marginal
282	marine to shallow marine deposits. It was initially named the Toraja Formation with a
283	type location in the Latimojong region (Djuri and Sudjatmiko, 1974) and was
284	subdivided informally into two members (Djuri and Sudjatmiko, 1974; Coffield et al.,
285	1993; Endaharto, 2000). The lowest member includes reddish-brown and grey shales,
286	claystone and limestone as well as quartz sandstone, conglomerate and coal. The
287	upper member has layers of white to grey limestone (Djuri and Sudjatmiko, 1974;
288	Coffield et al., 1993; Bergman et al., 1996; Endaharto, 2000). The same lithologies
289	and stratigraphic relationships are also observed in other parts of west Sulawesi
290	(Wilson and Bosence, 1996; van Leeuwen and Muhardjo, 2005; Calvert and Hall,
291	2007). They were later redefined as the Toraja Group, with the lower member named
292	the Middle to Upper Eocene Kalumpang Formation and the inter-fingering/overlying
293	carbonates assigned to the Middle Eocene to Upper Oligocene Budungbudung
294	Formation (Calvert and Hall, 2007).
295	
296	The Toraja Group has been interpreted as a terrestrial deltaic sequence in the
297	Latimojong and Makale regions (Fig. 4), deposited unconformably above Mesozoic
298	basement rocks (Coffield et al., 1993; Bergman et al., 1996; Calvert and Hall, 2007).
299	The sediments have been interpreted as a syn-rift sequence deposited during rifting
300	associated with extension in the Makassar Strait (Coffield et al., 1993; Bergman et al.,
301	1996; Calvert and Hall, 2007). This model is supported by reports of quartz-
302	dominated conglomerates at the base of the Toraja Group deposited during the early
303	stages of graben development (van Leeuwen, 1981; Coffield et al., 1993; Calvert and
304	Hall, 2007).
305	

306	Foraminifera from the Toraja Group were initially assigned a Middle Eocene to
307	Middle Miocene age (Djuri and Sudjatmiko, 1974) but the group is now considered to
308	have been deposited between the Eocene and Oligocene (Coffield et al., 1993; Calvert
309	and Hall, 2007). Thin nummulitic limestones deposited on tilted fault blocks in the
310	region mark a marine transgression during the Middle Eocene, including at the base of
311	the Budungbudung Formation (Coffield et al., 1993; Calvert and Hall, 2007).
312	
313	3.4 Makale Formation (Lower to Middle Miocene)
314	The Makale Formation is a 500m to 1000m-thick sequence of interbedded reef
315	limestone and marl that conformably overlies the Toraja Group (Djuri and
316	Sudkatmiko, 1974; Sukamto and Simandjuntak, 1983). It is considered to be the
317	regional stratigraphic equivalent of the Middle Miocene to Lower Pliocene Tacipi
318	Limestone (found to the east of the Walanae Fault), with the underlying Toraja Group
319	being equivalent to the Tonasa Limestone (Wilson and Bosence, 1996). The Makale
320	Formation probably developed as a series of pinnacle/patch reefs, similar to that
321	proposed for the Tacipi Limestone (e.g. Grainge and Davies 1985; Coffield et al.,
322	1993; Wilson and Bosence, 1996; Ascaria, 1997).
323	
324	Reef limestones of the Makale Formation cap many of the summits in the Latimojong
325	and Makale regions with recognizable steep cliffs and karst topography (Fig. 5). This
326	formation is thought to represent a widespread fully marine carbonate platform. Its
327	age is somewhat debated, with Early to Middle Miocene (Djuri and Sudkatmiko,
328	1974), Late Oligocene to Middle Miocene (Baharduddin and Harahap, 2000) and
329	Eocene to Middle Miocene (Coffield et al., 1993; Endaharto, 2000) ages proposed on
330	the basis of different fossil assemblages. The base of the formation has been described
331	as concealed or faulted (Djuri and Sudkatmiko, 1974), and as conformable on the
332	Toraja Group (Endaharto, 2000). The top of the formation has been eroded and
333	overlying units have been removed (Djuri and Sudkatmiko, 1974). The basal part is
334	overlain by deeper marine, outer shelf platform limestone (dominantly mudstones and
335	wackestones) (Coffield et al., 1993).
336	
337	3.5 Igneous Rocks
338	3.5.1 Oligocene Intrusives
339	Granites and granodiorite named the Kambuno Granite cross-cut Cenozoic volcanic

340	breccias near Rantepao. These granites yielded a K-Ar age of 29.9 Ma (Priadi et al.,
341	1994). Little information exists about location and extent of these granitoids, except
342	that they are found ~5 km north of Sadang Village along the Sadang River.
343	
344	3.5.2 Mio-Pliocene Extrusives (Enrekang Volcanic Series)
345	The Enrekang Volcanic Series is found to the west of the Latimojong Mountains and
346	covers large parts of central-West Sulawesi (Coffield et al., 1993). It consists of
347	volcaniclastic sandstones and conglomerates interbedded with tuffs and lava flows
348	(e.g. Fig. 6). These sequences are ~500m to ~1000m thick and were deposited during
349	the Middle Miocene to Pliocene, based on foraminifera and nannofossils in
350	sedimentary rocks (Djuri and Sudkatmiko, 1974; Maryanto, 2002) and ca. 13 Ma to
351	2.4 Ma ages determined from K-Ar dating of biotite (Bergman et al., 1996; Polvé et
352	al., 1997; Elburg and Foden, 1999b). The volcanic rocks are exclusively potassic to
353	ultra-potassic in composition (e.g. Polvé et al., 1997) and have been considered
354	equivalent to the Camba Volcanics in the South Arm of Sulawesi (e.g. Sukamto,
355	1982; Sukamto and Simandjuntak, 1983; Yuwono et al., 1988; Wilson and Bosence,
356	1996).
357	
358	3.5.3 Mio-Pliocene Intrusives
359	Mio-Pliocene intrusive rocks are found in the Latimojong region (Djuri and
360	Sudkatmiko, 1974; Coffield et al., 1993; Priadi et al., 1994; Bergman et al., 1996;
361	Polvé et al., 1997). These are considered to be the plutonic equivalents of the Middle
362	Miocene to Pliocene Enrekang Volcanic Series (Coffield et al., 1993; Bergman et al.,
363	1996). Rb-Sr, Nd-Sm and U-Pb isotopic data were used to infer that these magmatic
364	rocks melted a Late Proterozoic to Early Paleozoic crustal source during continent-
365	continent collision (Bergman et al., 1996).
366	
367	The granitoids exposed in the Latimojong region are known as the Palopo Granite
368	(Simandjuntak et al., 1991; Priadi et al., 1994) or Palopo Pluton (Bergman et al.,
369	1996). These granitoids intrude, or are in fault contact, with the Latimojong
370	Metamorphic Complex, the Lamasi Complex and the Toraja Group (Djuri and
371	Sudjatmiko, 1974; Simandjuntak et al., 1991; Priadi et al., 1994; Bergman et al.,
372	1996). The Palopo Granite consists of medium- to coarse-grained granite and
373	granodiorite (Simandjuntak et al., 1991) (Fig. 7). The granite is composed of quartz,

374	orthoclase and minor hornblende, while the granodiorite consists of larger
375	phenocrysts of plagioclase and K-feldspar within a quartz, feldspar, hornblende and
376	biotite groundmass (Simandjuntak et al., 1991). The mafic minerals in both granitoids
377	are commonly chloritized (Simandjuntak et al., 1991).
378	
379	K-Ar dates of the Palopo Granite were obtained from tonalite, granodiorite and a
380	granite dyke in the Palopo region and yielded ages of 5.0 Ma, 5.5 Ma and 8.1 Ma
381	respectively (Sukamto, 1975). These ages were reproduced in later K-Ar analyses of
382	the Palopo Granite (e.g. Priadi et al., 1994; Bergman et al., 1996; Polvé et al., 1997).
383	Bergman et al. (1996) also obtained Rb-Sr and Sm-Nd whole rock analyses, as well as
384	a U-Pb ID-TIMS date of zircon, together with fission track analyses of apatite, zircon
385	and titanite for several Palopo Granite samples. The ages that were obtained from
386	these various analyses range between ~11 Ma and ~2 Ma. The one U-Pb zircon age
387	from the Palopo Granite (5.4 Ma) was the same as K-Ar age (5.4 \pm 0.4 Ma) from the
388	same sample (Bergman et al., 1996). This is highly unusual, and indicates either that
389	there was a problem with one (or both) of these analyses, or that the granite must have
390	cooled rapidly on emplacement.
391	
392	3.6 Upper Miocene to Recent clastic deposits
393	The sedimentary rocks described above are overlain by Upper Miocene to Pliocene
394	mudstones, siltstones, sandstones and conglomerates of the Walanae Formation
395	(Grainge and Davies, 1985) (Fig. 8), as well up to c.100 m of recent alluvium, clay,
396	silt, sand, gravel and limestone (Djuri and Sudjatmiko, 1974).
397	
398	4. Mapping and sample details
399	The work we present is largely a summary of several field campaigns conducted
400	during 1995-1997 (AJB/JS) and in 2012 (LTW/RH). The majority of the results that
401	are presented here are from fieldwork conducted in September 2012, however, we
402	relied on the Southeast Asia Research Group's sample catalogue as well as existing
403	maps and thin sections to develop a revised map of the Latimojong region (Fig. 2).
404	Further details on the field observations and lithologies observed are included in
405	Supplementary File 1. This map was developed using a GIS using high-resolution,
406	remotely sensed data and aerial imagery to develop a better understanding of the
407	regional structural grain and potential contacts between units (Fig. 2). These data were

408	highly valuable as we did not locate many contacts between geological units in the
409	field. The majority of the contacts that we did observe were sub-vertical and these are
410	likely to be associated with phases of strike-slip faulting during the Late Miocene to
411	Recent.
412	
413	Several spot samples of chert, carbonate and volcaniclastic rocks were sampled from
414	the Latimojong Metamorphic Complex, Lamasi Complex, Toraja Formation,
415	Enrekang Volcanic Series and Makale Formation for radiolarian and foraminiferal
416	biostratigraphy (Fig. 2). The results for each sequence/formation are discussed below
417	(Section 5). Various granitic and volcanic rocks were also sampled in the area (Fig. 2,
418	Fig. 6, Fig. 7, Fig. 9). Eleven representative samples were selected for geochemical
419	analyses. Eight of these samples were then selected for zircon U-Pb dating. The
420	primary aim of the geochemical and isotopic analyses was to determine if certain
421	compositions were generated at specific times. In several cases, we were able to
422	obtain samples of dykes that cross-cut older sedimentary and igneous rocks that have
423	allowed us to limit the timing of deposition/emplacement of particular units.
424	
425	
426	5. Biostratigraphic results
427	5.1 Chert from the Latimojong Metamorphic Complex or Lamasi Complex
428	Several samples of chert intercalated with pillow basalts from the Lamasi Complex
429	(e.g. Fig. 3) were sampled, but no radiolarians could be identified due to extensive
430	veining and recrystallization. Identifiable radiolarians were extracted from a 0.5m
431	boulder of red chert found in a river to the west of the Latimojong Mountains (Fig. 2
432	and Fig. 10). This sample contained several poorly preserved radiolarian tests,
433	including Stichomitra ef. japonica, Xitus ef. clava, Thanarla ef. pulchra, Distylocapsa
434	sp., Hiscocapsa sp. and Dictyomitra spp. (Fig. 10), indicating an Early Cretaceous
435	(possibly Albian) age (O'Dogherty, 2009). The chert sample was found alongside
436	other river float, including pieces of schist, quartzite, sandstone, diorite and deformed
437	igneous breccia. We suspect this most likely represents material from the Latimojong
438	Metamorphic Complex.
439	
440	5.2 Foraminifera from the Toraja Group, Makale Formation and Enrekang Volcanics
441	Benthic and planktonic foraminifera from eighteen samples of packstone and

442 wackestones from the Latimojong region (Fig. 2) were dated based on BouDagher-443 Fadel (2008, 2013), and assigned ages using the time scale of Gradstein et al. (2012). 444 The age range of each of these samples and the stratigraphic unit they are assigned to 445 (Toraja Group, Makale Formation and Enrekang Volcanic Series; Djuri and 446 Sadjatmiko, 1974; Calvert and Hall, 2007) are summarised in Fig. 11. The location of 447 each of these samples is shown on the geological map in Fig. 2. Details of the sample 448 location and foraminifera identified in each sample are presented in Supp. File 1 and 449 the interactive map file. 450 451 5.2.1 The Toraja Group 452 Foraminifera analyses indicate that the Toraja Group is Eocene to Oligocene 453 (Ypresian to Chattian; 56–23 Ma) and was deposited in a reef and inner neritic setting 454 in the Latimojong region (Fig. 11 and Supp. File 1 and 2). Many of the samples 455 record age ranges that do not overlap (e.g. K12-10, K12-13, K12-17, PA178, PA277). 456 while the timing of deposition of other samples were poorly constrained (e.g. K12-457 22A, PA58, PA59) (Fig 10 and Supp. File 1). 458 459 5.2.2 The Makale Formation 460 Five samples of foraminifera-bearing packstones and wackestones (PA56, PA63, 461 PA184, K12-20A, K12-20B) from the Makale Formation (Fig. 2) have Miocene ages 462 of Burdigalian and Serravallian (20.5–11.5 Ma) (Fig. 11). These assemblages, along 463 with those obtained from the Toraja Group, indicate that there was potentially a 464 minimum of ~2.5 Myr. to a maximum of 15 Myr. without significant carbonate 465 deposition (Fig. 11), assuming no sampling bias. 466 467 5.2.3 Enrekang Volcanic Series 468 Two samples of indurated foraminifera-bearing wackestone (K12-20A and -20B) 469 were collected from the Enrekang Volcanic Series. Sample K12-20A provided only a 470 wide Cenozoic age as the foraminifera could be identified only to genus level (e.g. 471 Operculina sp., Amphistegina sp., Globigerina sp.), but sample K12-20B yielded a 472 Late Miocene–Early Pliocene age. The age of this sample is interpreted to indicate 473 that the Enrekang Volcanic Series was deposited at some time between the Tortonian 474 and Zanclean (11.5 Ma to 3.5 Ma) (Fig. 11) in the Latimojong region.

6. Geochemistry and isotopic dating of igneous rocks

- 477 6.1 Methodology: Geochemistry and Isotopic Dating
- 478 *6.1.1 Sample Processing*
- Samples were crushed into 2-5 cm³ pieces using a jaw crusher. The crushed aggregate
- 480 was rinsed to remove any potential contaminants and left to dry before being
- pulverised to a fine-powder using a tungsten carbide swing mill. The aggregate was
- sieved using a disposable nylon mesh to capture material that was <250 µm. This was
- 483 'deslimed' to remove the finest grain size fraction. A zircon concentrate was obtained
- by processing this material through high-density liquids and magnetic separation.
- Zircons were hand picked and set in 25 mm epoxy disks along with the Temora-2 U-
- 486 Pb zircon standard (Black et al., 2004). The mount was polished to expose the mid-
- sections of the grains and was examined with an optical microscope and photographed
- 488 under transmitted and reflected light. All zircons were then imaged with a Robinson
- 489 Cathodoluminescence (CL) detector fitted to a JEOL JSM 6610-A scanning electron
- 490 microscope (SEM) at the Research School of Earth Sciences, The Australian National
- 491 University (ANU).

492

- 493 *6.1.2 Zircon Geochronology*
- 494 U-Pb isotopic measurements were collected from zircons from eight samples using a
- sensitive high resolution ion microprobe (SHRIMP-RG) at the Research School of
- 496 Earth Sciences, ANU. The CL imagery as well as reflected and transmitted light
- 497 microscopy were used to identify zircon cores and growth rims that were suitable for
- 498 dating. Standard zircon SL13 (U = 238 ppm; Th = 21 ppm; Claoué-Long et al., 1995)
- was used to calibrate the U and Th concentrations and Pb/U ratios were corrected for
- instrumental inter-element fractionation using the ratios measured on the standard
- zircon Temora 2 (416.8 \pm 1.3 Ma; Black et al., 2004). One analysis of a Temora
- zircon was made for every four analyses of unknowns. The data were reduced in a
- manner similar to that described by Williams (1998, and references therein), using the
- 504 SQUID 2 Excel macro (Ludwig, 2009) and these were interrogated further using
- 505 Isoplot (Ludwig, 2003). The decay constants recommended by the IUGS
- Subcommission on Geochronology (as given in Steiger and Jäger, 1977) were used in
- age calculations. Uncertainties given for individual U-Pb analyses (ratios and ages)
- are at the 1-sigma level. All age results less than 800 Ma are reported using ²⁰⁷Pb
- corrected ²⁰⁶Pb/²³⁸U system because of the uncertainties associated with low ²⁰⁴Pb,

510	²⁰⁷ Pb and ²⁰⁸ Pb yields from zircons of this age. Ages >800 Ma are reported using
511	²⁰⁴ Pb corrected ²⁰⁷ Pb/ ²⁰⁶ Pb system. We assessed the common Pb concentrations
512	recorded for each of the analyses for each sample. We found that rejecting analyses
513	with >2% common Pb made no appreciable difference to the weighted mean age
514	calculated for each sample, but it did influence the MSWD associated with this age
515	The uranium concentrations and age obtained for each zircon were examined to assess
516	for potential matrix effects associated with high-U zircon sample (e.g. White and
517	Ireland, 2012). This issue was only observed in one sample (K12-6B), and in this case
518	analyses that recorded U concentrations >5000 ppm were rejected from the
519	calculation of the weighted mean age.
520	
521	6.1.3 Geochemistry
522	An aliquot of each milled rock sample (described above in 4.1.1) was collected prior
523	to being sieved. The aliquot was milled further and made into glass disks and pellets
524	for whole rock major and trace element geochemical analyses. The major and trace
525	element data were collected using a Panalytical Axios WDS XRF spectrometer as
526	Royal Holloway, University of London.
527	
528	7. Zircon Geochronology Results
529	The eight variably deformed granitoids and volcanic to hypabyssal rocks were dated
530	from the Latimojong region. The geochronology results are discussed below
531	according to lithology and age, ordered youngest to oldest. These results are
532	summarised in Table 1. Tera Wasserburg concordia diagrams and relative probability
533	age plots for the samples are shown in Fig. 12 and Fig. 13 respectively.
534	
535	7.1 Enrekang Volcanic Series
536	Three dacitic samples yielded latest Miocene to Pliocene zircon U-Pb ages and are
537	classified as the Enrekang Volcanic Series. The youngest sample is a fine-grained
538	felsic dyke (K12-33B) that cross-cuts a schist of the Latimojong Complex (Fig. 6a).
539	SHRIMP U-Pb analyses of five individual zircon crystals were appreciably older
540	(1432 Ma, 235 Ma, 213 Ma, 38 Ma, 35.8 Ma) compared to the dominant 3.9 Ma age
541	population. These older analyses are interpreted to be inherited ages from the partially
542	melted country rocks. The other fifteen zircon analyses are interpreted as magmatic
543	ages. Four of these analyses yielded >2% common Ph and were thus rejected from

544 further consideration. The remaining 11 analyses yielded a weighted mean age of 3.9 545 \pm 0.1 Ma (MSWD = 1.0) and is interpreted as the age of crystallization of this sample. 546 547 The second dacite sample (K12-21A) from the Enrekang Volcanic Series has a 548 weighted mean age of 6.8 ± 0.1 Ma (MSWD = 2.7) (n = 24 analyses). This sample 549 also contained two inherited zircon cores (136 Ma and 9.1 Ma). 550 551 The third sample of dacite (K12-27) from the Enrekang Volcanic Series yielded a 552 weighted mean age of 7.5 ± 0.1 Ma (MSWD = 1.5) (n = 15). There were several 553 inherited ages (193 Ma, 38.3 Ma, 37.7 Ma, 35.7 Ma, 36.3 Ma, 36.5 Ma and 34.5 Ma). 554 The inherited analyses between 38–34 Ma clearly define one age population and yield 555 a weighted mean age of 36.5 ± 0.7 Ma (MSWD = 1.2) (n = 6). All of these 38-34 Ma 556 analyses were obtained from zircon cores, or zircon grains that showed no evidence of 557 overgrowths. This age was also recorded by the Enrekang Volcanic Series dyke 558 (sample K12-33B) discussed above and a sample that we propose is part of the 559 Lamasi Volcanics (K12-11B) (Fig. 13a, 13d, 13h) discussed below. We therefore 560 interpret this 36.5 Ma age to record Eocene magmatism in Western Sulawesi, 561 preserved in zircon xenocrysts sampled by the Pliocene dacitic magma. 562 563 7.2 Palopo Granite 564 Zircons were extracted from one undeformed sample (K12-4B) and two deformed 565 samples (K12-35B and K12-6B) of granodiorite from the Palopo Granite. These 566 samples yielded weighted mean ages of: 567 • 5.0 ± 0.1 Ma (MSWD = 2.1) (n = 16) [K12-4B]. 568 • 6.3 ± 0.1 Ma (MSWD = 1.0) (n = 14) [K12-35B]. 569 • 6.4 ± 0.2 Ma (MSWD = 4.8) (n = 9) [K12-6B]. 570 571 Each of these granodiorite samples recorded inherited ages. Only one inherited age 572 (1728 Ma) was obtained from sample K12-4B. Multiple inherited ages [309 Ma, 265 573 Ma, 219 Ma, 195 Ma and 102 Ma] and [1460 Ma, 373 Ma, 260 Ma, 131 Ma, 102 Ma, 574 9.8 Ma and 8.3 Ma] were obtained from samples K12-35B and K12-6B respectively. 575 576 7.3 Bua Rhyolite Dyke [Lamasi Complex?] (Sample: K12-7-31)

577	Zircons were extracted from a rhyolite dyke that cross-cuts basalts from the Lamasi
578	Volcanics (Fig. 9). We refer to this rhyolitic dyke as the 'Bua Rhyolite' as it outcrops
579	near Bua Village (e.g. Fig. 2 and Fig. 9). The magmatic zircons in this sample exhibit
580	very low uranium and thorium concentrations ([U]: 15–108 ppm and [Th]: 2–47 ppm)
581	and most grains recorded common Pb concentrations >2% (Supp. Data File 3). If
582	these are excluded, the remaining analyses yield a weighted mean age of 25.0 Ma \pm
583	0.7 Ma (MSWD = 0.5) (n = 4). This age is effectively the same as a weighted mean
584	age that includes all of the high common Pb analyses [25.0 Ma \pm 0.3 Ma (MSWD =
585	1.1) (n = 23 analyses)]. The Bua Rhyolite is therefore interpreted to have crystallized
586	at 25.0 Ma \pm 0.7 Ma and this provides a minimum age for the Lamasi Complex. The
587	Bua Rhyolite Dyke also contains inherited Paleoproterozoic (2474 Ma) and Archean
588	(2680 Ma) zircon cores.
589	
590	7.4 Andesite [Lamasi Complex] (Sample: K12-11B)
591	Several zircons were extracted from one sample of andesite (K12-11B) and we were
592	able to date twelve grains from this sample. Four of the analyses were between 37 Ma
593	and 40 Ma. These yielded a weighted mean age of 38.2 ± 1.3 Ma (MSWD = 2.2) and
594	we interpret this as the age of crystallization of this sample. The remaining analyses
595	are interpreted as inherited ages (1717 Ma, 102 Ma, 101 Ma, 99.6 Ma, 99.2 Ma, 94.2
596	Ma, 89.6 Ma, 51 Ma and 44 Ma). We interpret this sample to be part of the Lamasi
597	Complex.
598	
599	8. Geochemistry results for the igneous rocks
600	The geochemical data obtained from the igneous rocks indicate that there are several
601	distinct populations with different whole rock chemistries. While many of the
602	volcanic samples show evidence of moderate to substantial alteration, three broad
603	compositional groups can be identified (Fig. 14a). Samples from the Enrekang
604	Volcanic Series and the Palopo Granite plot within the dacite/granodiorite field (Fig.
605	14a). Two analyses plot outside this dominant group represented by the Enrekang
606	Volcanic Series and Palopo Granite. These 'outliers' represent an altered andesite
607	(K12-11B) found within a strike-slip fault zone and the Bua Rhyolite Dyke (K12-31)
608	that cross-cuts basalts of the Lamasi Volcanics.
609	
610	The broad differences in geochemistry are also reflected in other geochemical indices

611	(e.g. Frost et al., 2001; Frost and Frost 2008) and discrimination plots (e.g. Modified
612	Alkali Lime vs. SiO ₂ ; FeO/(FeO+MgO) vs. SiO ₂ and Aluminium Saturation Index
613	(ASI) vs. SiO ₂) (Fig. 14b-d) (Supp. Data File 4). The geochemical groupings also
614	correspond to different crystallization ages (cf. Fig. 14 and the geochronology results
615	presented in Section 7).
616	
617	9. Discussion
618	9.1 Revised Geological Map and Stratigraphy
619	Our field investigations have shown considerable differences from earlier geological
620	maps of the Latimojong region (e.g. Djuri and Sudjatmiko, 1974; Simandjuntak et al.,
621	1991; Bergman et al. 1996) (Fig. 2). Some of these discrepancies reflect the location
622	of our traverses that sampled new exposures (e.g. new road cuttings) provided as the
623	region has been developed. Our fieldwork and access to high-resolution remotely
624	sensed data enabled a revised geological map to be produced (Fig. 2). The new
625	biostratigraphic and isotopic dating provide some limitations on the age of deposition,
626	igneous activity and deformation in the region. From what we observed, we consider
627	that many of the thrust contacts proposed by Bergman et al. (1996) could equally be
628	normal faults, strike-slip faults or stratigraphic (conformable or unconformable)
629	contacts. Because of the terrain and vegetation almost all contacts are interpreted.
630	
631	9.1.1 The Latimojong Metamorphic Complex
632	There are no precise age controls on the age of the Latimojong Metamorphic
633	Complex. Our mapping of the region has reduced its area compared to earlier
634	geological maps (Fig. 2) (e.g. Djuri and Sudjatmiko, 1974). The metamorphic rocks
635	are assumed to be Cretaceous as they are similar to lithologies that have been dated in
636	Barru and Bantimala (e.g. Wakita et al., 1996; Parkinson et al., 1998). The Aptian-
637	Albian age radiolaria that we identified in a piece of chert float, found to the west of
638	the Latimojong Mountains, provides some support for this assumption. More support
639	for this is provided by 128-123 Ma zircon fission track ages obtained from two
640	metasediment samples collected from the western edge of the Latimojong Mountains
641	as well as a Cretaceous (114 \pm 2 Ma) K/Ar age obtained from white mica in an
642	Oligocene sandstone from the Latimojong region (Bergman et al., 1996). When
643	considered together, these Cretaceous ages may indicate that the Latimojong
644	Metamorphic Complex formed in the Early Cretaceous. Future isotopic age data (e.g.

645	⁴⁰ Ar- ³⁹ Ar analyses of mica and U-Pb dating of zircon) from Latimojong Metamorphic
646	Complex schists should provide more clarity as to the age of metamorphism and the
647	age spectra of the protolith.
648	
649	9.1.2 The Lamasi Complex
650	The rocks of the Lamasi Complex are predominantly found to the east of the
651	Latimojong Mountains (Fig. 2). We assigned the majority of mafic volcanic (e.g.
652	basalt) and intrusive rocks (gabbros) that occur east of the Latimojong Mountains to
653	the Lamasi Complex. We interpret that the 25.0 ± 0.7 Ma date obtained from a
654	rhyolite dyke (the Bua Rhyolite) that cross-cuts basalt (Fig. 9) provides a minimum
655	limit on the age of the Lamasi Complex. A similar age (29.9 Ma) was obtained from a
656	K-Ar age for granite that cross-cut Cenozoic volcanic breccias near Rantepao (Priadi
657	et al., 1994). Together, these two ages from felsic rocks that crosscut mafic rocks
658	provide a minimum time estimate for the emplacement of the Lamasi Complex
659	volcanics. We therefore suspect that the \sim 38.2 \pm 1.3 Ma age obtained from a highly
660	altered andesite (Sample: K12-11B) reflects a phase of volcanism associated with the
661	Lamasi Complex. The evidence for this Eocene-Oligocene phase of magmatism is
662	also supported by ages obtained from inherited zircons from dacites of the Enrekang
663	Volcanic Series (e.g. K12-27: Fig. 13f). Similar ages have also been reported from
664	earlier K-Ar dating (e.g. Priadi et al., 1994) and from igneous rocks further north in
665	Central Sulawesi and Sulawesi's "Neck" (Hennig et al., 2016).
666	
667	We speculate that the gabbros and ultramafic rocks found in this area are part of the
668	Latimojong Metamorphic Complex and are of Cretaceous age (although this is not
669	reflected in the geological map shown in Fig. 2). Similar ultramafic rocks are found
670	associated with Cretaceous medium- to high-grade metamorphic rocks in the Barru
671	and Bantimala regions in southern Sulawesi (e.g. Wakita at al., 1996; Parkinson et al.,
672	1998).
673	
674	The isotopic and biostratigraphic ages obtained from the Lamasi Complex and the
675	Toraja Group indicate that the lowermost sediments of the Toraja Group were
676	deposited at the same time as the igneous rocks of the Lamasi Complex were
677	crystallizing during the Eocene (Fig. 15). Continued deposition of the Toraja Group
678	likely means that these sediments stratigraphically overlie the Lamasi Complex in

6/9	places. We could not verify this stratigraphic relationship in the Latimojong region
680	(partly due to the terrain, vegetation cover as well as the numerous strike-slip faults).
681	However, this stratigraphic relationship is observed in the Lariang and Karama
682	regions (Calvert and Hall, 2007). Eocene volcanics are also considered to represent
683	the acoustic basement in the East Sengkang Basin (Grainge and Davies, 1985), which
684	is directly to the south of the Latimojong region. The Lamasi Complex may also
685	correspond with the similar volcanics found within the mid- to late Eocene Matajang
686	Formation (Group B) in the Bone Mountains region. Considering this widespread
687	basaltic-andesitic volcanism, the Lamasi Complex may represent Eocene-Oligocene
688	arc/back-arc volcanic rocks obducted during the Early to Middle Miocene and/or
689	translated by movement along regional faults (e.g. Bergman et al., 1996; van Leeuwen
690	et al., 2010).
691	
692	9.1.3 Toraja Group
693	The biostratigraphic data obtained in this study indicate that the sedimentary rocks of
694	the Toraja Group were deposited during the Eocene (from the Ypresian) and
695	Oligocene (to the Chattian). This is largely in agreement with other work conducted in
696	the region and further afield (e.g. Coffield et al., 1993; Calvert and Hall, 2007).
697	However, all previous work indicates the Toraja Group was deposited between the
698	Middle Eocene and Oligocene, while one of our samples extends this range to the
699	Ypresian (Sample: K12-18). To our knowledge, there are no earlier reports of early
700	Eocene fossils for the Toraja Group, so this age is potentially quite important. While
701	this age was obtained from an isolated spot sample, we are confident of the age
702	assigned to this particular sample on the basis of the foraminifera present. This new
703	piece of information indicates evidence of shallow marine/reef conditions at c. 54-52
704	Ma. This may represent a marine incursion during the Early Eocene (e.g. Fig. 11 and
705	Fig. 15), similar to the thin layer of nummulitic carbonates deposited during the
706	Middle Eocene at the base of the Budungbudung Formation found northwest of the
707	Latimojong region (e.g. Calvert and Hall, 2007). The Toraja Group and associated
708	sequences from other parts of western Sulawesi indicate that shallow marine
709	carbonate deposition became more widespread during later parts of the Eocene and
710	Oligocene (Sukamto and Simandjuntak, 1983; Coffield et al., 1993; Wilson and
711	Bosence, 1996; Bergman et al., 1996; Calvert and Hall, 2007).
712	

713	9.1.4 Makale Formation
714	Our results from several spot samples indicate that the carbonates of the Makale
715	Formation were deposited during the Early to Middle Miocene (Burdigalian to
716	Serravallian) (Fig. 11 and Fig. 15). These ages are in agreement with the work of
717	Djuri and Sudkatmiko (1974). We consider the Eocene and Oligocene ages reported
718	by other workers (see Section 3.4) were obtained from the Toraja Group, rather than
719	the Makale Formation (e.g. Fig. 15). Our primary justification for dating the Makale
720	Formation as Early to Middle Miocene in age, and the Toraja Group as Eocene to
721	Oligocene in age is based on the pattern of outcrops that emerged through mapping
722	(Fig. 2) and because the ages obtained from foraminifera show that there could have
723	been a ~2.5 Ma break in deposition during the earliest Miocene (Aquitanian) (Fig. 11
724	and Fig. 15). The ages we propose for the Makale Formation support it being the
725	stratigraphic equivalent of the Tacipi Limestone located further to the south (e.g. see
726	Section 3.4 for further details)
727	
728	9.1.5 Enrekang Volcanic Series and the Palopo Granite
729	The Enrekang Volcanic Series was used by Coffield et al., (1993) to group several
730	formations of high-K volcanics together (the Sekata Formation and the Adang, Sesean
731	and Talaya volcanics). None of these formations have been studied in detail, but some
732	geochemical, isotopic and radiometric age data exist (Priadi et al., 1994; Bergman et
733	al., 1996; Elburg and Foden 1999). These data indicate that the Enrekang Volcanic
734	Series consists of stratovolcano and volcanic apron successions with various
735	pyroclastic and volcaniclastic deposits that were deposited between 13.1 Ma and 2.4
736	Ma (e.g. Priadi et al., 1994; Bergman et al., 1996). In the Latimojong region, we dated
737	two dacites that were emplaced between 6-8 Ma as well as a 3.9 Ma felsic dyke that
738	cross-cut part of the Latimojong Metamorphic Complex. On the basis of their age,
739	geochemistry and petrology, we classified these dacites as being part of the Enrekang
740	Volcanic Series. These results were compared alongside the biostratigraphic ages
741	obtained from foraminifera in two samples from the Enrekang Volcanic Series (K12-
742	22B) (Fig. 11). The overlap between the ages from foraminifera and those obtained
743	from U-Pb isotopic analyses of zircons define an age range of 8.0 Ma to 3.6 Ma for
744	the magmatism and volcaniclastic sedimentation of the Enrekang Volcanic Series (i.e.
745	mid-Tortonian to Zanclean) (Fig. 15). Readers should note however, that all of these
746	ages represent "spot samples", so the true age range for this sequence may be broader.

747	
748	Interestingly, the dacites and felsic dyke yield similar ages and compositions to the
749	Palopo Granite (Fig. 12-14) and it is possible that these are the plutonic and volcanic
750	equivalents of one another. Geochemically, the Enrekang Volcanic Series are similar
751	to the Palopo Granite, apart from two dacite samples (K12-21A/21B: taken from the
752	same outcrop) that are metaluminous and have higher K contents than the granitoids.
753	The geochemical data obtained from the Palopo Granite indicate these are high-K,
754	magnesian, peraluminous and calc-alkaline to alkali-calcic granitoids. These results
755	largely replicate the earlier work of Priadi et al., (1994) and indicate the granitoids fit
756	within Sulawesi's Mio-Pliocene high-K calc-alkaline ("CAK") granitoid belt (e.g.
757	Polvé et al. (1997); Hennig et al., 2016)).
758	
759	9.2 Post-crystallisation deformation
760	Several samples of the Palopo Granite exhibit mylonitic fabrics that developed after
761	the crystallization of the granite. This is confirmed from the microstructures, for
762	example brittle-fracturing and mechanically induced grain-size reduction of feldspars
763	and recrystallized quartz. The U-Pb SHRIMP zircon ages of c. 6.3 Ma obtained from
764	deformed granodiorite (e.g. K12-6B and K12-35B) compared to 5.0 Ma from
765	undeformed granodiorite (K12-4B) brackets the timing of mylonitization to between
766	6.3 Ma and 5.0 Ma. These mylonites are steeply dipping and record strike-slip
767	deformation, and we consider that these may reflect the westerly continuation of the
768	Kolaka Fault Zone (Fig. 2). An age of 4.4 ± 0.2 Ma from an undeformed dacite within
769	the Kolaka Fault Zone, was interpreted as being injected at the same time as fault
770	movement or after faulting had ceased (White et al., 2014). If the Kolaka Fault Zone
771	does extend from Kolaka, across Bone Bay, and into the Latimojong region (e.g. Fig.
772	1 and 2: Camplin and Hall, 2014; White et al., 2014), then the age of the deformed
773	(~6.3 Ma) vs. undeformed (~5.0 Ma) granodiorites from the Palopo Granite provides
774	a tighter limit on the timing of movement along the Kolaka Fault (at least on the
775	western side of Bone Bay) than that proposed by White et al., (2014). Additional
776	thermochronological analyses and petrographic investigations are underway to
777	constrain the timing of this fault movement.
778	
779	9.3 Basement Age
780	Rb-Sr, Nd-Sm and U-Pb isotopic data were used to infer that the Palopo Granite

781	melted a Late Proterozoic to Early Paleozoic crustal source during continent-continent
782	collision (Bergman et al., 1996). The source interpretation is supported by the
783	inherited ages obtained from zircon cores within granitic and volcanic rocks in this
784	study, and in other parts of Central Sulawesi, Southeast Arm and the Neck (White et
785	al., 2014; Hennig et al., 2016; van Leeuwen et al., 2016). The inherited ages most
786	likely represent the remains of igneous and sedimentary rocks that were partially
787	melted to produce the Palopo Granite and Enrekang Volcanic Series. These do not
788	necessarily require a basement age of Late Proterozoic to Early Paleozoic, but
789	indicate that there are Proterozoic and Paleozoic zircons within the basement rocks of
790	central-west Sulawesi.
791	
792	9.4 Tectonic Evolution
793	Western Sulawesi (including the Latimojong region) has been interpreted to have
794	developed in a foreland setting within a westward-verging orogenic wedge at the
795	eastern margin of Sundaland between the Eocene to Pliocene (Coffield et al., 1993;
796	Bergman et al., 1996). This model proposed that the Mio-Pliocene magmatic rocks
797	formed due to melting driven by crustal thickening after continent-continent collision
798	(Coffield et al., 1993; Bergman et al., 1996). This idea was largely influenced by the
799	interpretation of: (1) widespread thrusting during the Oligocene and Mio-Pliocene;
800	and (2) isotopic measurements from the Mio-Pliocene granitoids recording inherited
801	Paleozoic ages (Bergman et al., 1996).
802	
803	Our work has raised several questions about these earlier interpretations. For instance
804	there is little evidence for widespread thrusting in the Oligocene and Mio-Pliocene in
805	the Latimojong region. Most of the contacts that we observed were sub-vertical strike-
806	slip fault zones (as well as mylonites in granite), no definite thrusts were found.
807	
808	The same can be said about the inference of post-collision melting based on Paleozoic
809	age data obtained from various isotopic measurements of the granitoids (e.g. Bergman
810	et al., 1996). These simply show that the granites partially melted sedimentary rocks
811	composed of Paleozoic detritus. These data alone do not indicate an episode of
812	collision or thrusting occurred.
813	
814	We interpret the medium- to high-grade metamorphic rocks exposed in the

815 Latimojong Mountains (the Latimojong Metamorphic Complex) to be equivalent to 816 similar lithologies observed in Barru and Bantimala (e.g. Wakita et al., 1996; 817 Parkinson et al., 1998). These rocks represent the basement, and younger sequences 818 were deposited above an unconformity that developed during the Cretaceous. 819 820 It seems that Upper Cretaceous and Paleocene rocks have been removed from the 821 stratigraphic record in the Latimojong region, with widespread development of a 822 regional angular unconformity that is found at the top of Upper Cretaceous units (van 823 Leeuwen and Muhardjo, 2005), possibly due to uplift associated with a short lived 824 phase of subduction during the Paleocene (Hall, 2012). Continental and shallow water 825 sedimentation commenced again during the Eocene and continued into the Oligocene 826 (e.g. Toraja Group). This was associated with rifting and was interspersed with 827 periods of arc and backarc volcanism (e.g. Lamasi Complex). However, the collision 828 of the Sula Spur with Sulawesi's North Arm in the Early Miocene caused uplift and 829 the development of another unconformity. Later there was a period of relative 830 quiescence and growth of pinnacle and patch reefs (Makale Formation) during the 831 Early to Middle Miocene. This was followed by a renewed phase of magmatism, 832 related to crustal extension (Maulana et al., 2016) and/or flux-melting of the mantle 833 wedge driven by subduction (i.e. the crustal extension could be driven by slab 834 rollback and hinge migration). This produced the high K granitoids and volcanics 835 during the Late Miocene to Pliocene (Palopo Granite / Enrekang Volcanic Series). 836 Further uplift, alluvial fan deposition and strike slip faulting occurred later during the 837 Pliocene to Pleistocene (e.g. Walanae Formation). 838 839 10. Conclusion 840 New biostratigraphic, geochronological and geochemical analyses have provided 841 information about the tectonic history of the Latimojong region of South Sulawesi. 842 This began with the development of an accretionary complex (the Latimojong 843 Metamorphic Complex) that was assembled during the Cretaceous. These rocks were 844 subsequently deformed and uplifted above sea level at some point before the Eocene. 845 This may have been associated with the obduction of Eocene-Oligocene back-arc 846 rocks (the Lamasi Complex). Deposition of clastic material recommenced during the 847 Eocene, first in a terrestrial setting, which later evolved to reefs and near shore marine 848 deposits (Toraja Formation). Subsequence phases of volcanism occurred during the

849 Miocene to Pliocene (Enrekang Volcanic Series/Palopo Pluton) and were 850 contemporaneous with patch reef development (Makale Formation). Most of these 851 sequences were then tectonically juxtaposed along strike-slip fault zones that 852 developed due to transpressional forces associated opening of Bone Bay. This period 853 of deformation probably also drove the uplift of the Latimojong region, which in turn 854 led to alluvial deposits during the mid-Pliocene to present. 855 856 Our mapping of the region indicates substantial differences from earlier work. For 857 instance, we found no clear evidence of thrusts between geological units. However, 858 we did find evidence of brittle to ductile strike slip faults that were active between 6.3 859 Ma and 5.0 Ma according to our geochronological work. We also found that the 860 Latimojong Formation does not occur anywhere near the Latimojong region. Both of 861 these points will help to resolve issues associated with correlating lithostratigraphic 862 units across different parts of Sulawesi and in developing more accurate tectonic 863 models of the region. 864 865 866 Acknowledgements 867 This work was sponsored by a consortium of energy companies who fund the 868 Southeast Asia Research Group (SEARG) and we are grateful for this support. We 869 thank Kevin D'Souza for photographing the macroscopic detail of hand-specimens, 870 Ega Nugraha and Karen Oud for assistance collecting and preparing samples, as well 871 as Shane Paxton and Bin Fu for mineral separation and geochronology sample 872 preparation. We would also like to thank Theo van Leeuwen for his thorough review 873 of this manuscript. 874 875

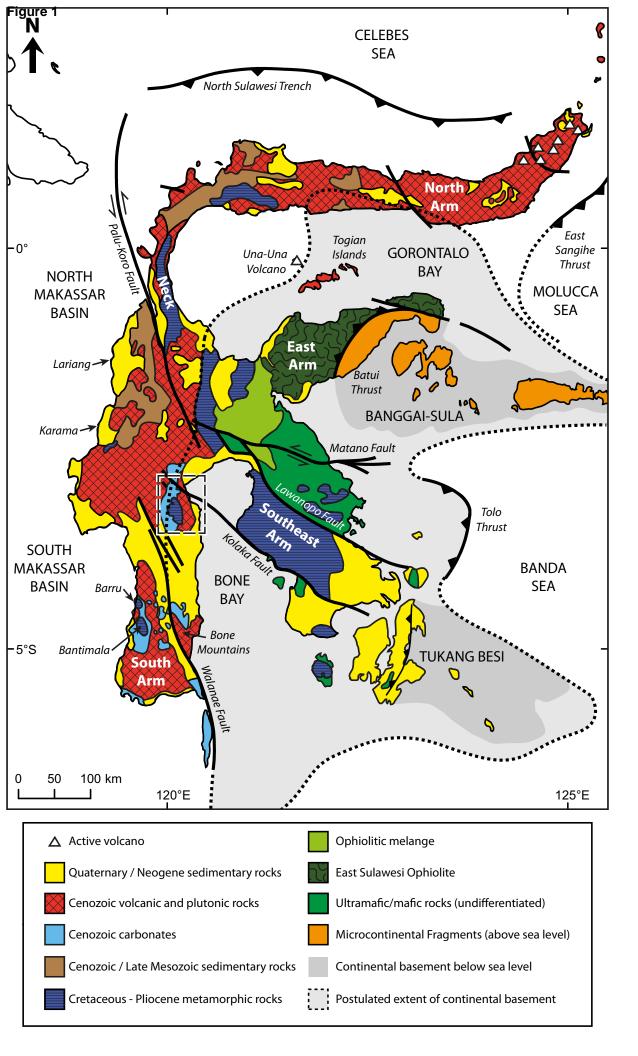
876 References 877 Ascaria, N.A., 1997. Carbonate facies development and sedimentary evolution of the 878 Miocene Tacipi Formation, South Sulawesi, Indonesia. PhD Thesis. University of 879 London, 397 p. 880 Audley-Charles, M.G., 1974. Sulawesi. In: Spencer, A.M. (Ed.), Mesozoic-Cenozoic 881 Orogenic Belts, Geological Society of London Special Publication, 4, 365–378. 882 Baharuddin, Harahap, B.H., 2000. Tinjauan kembali kerangka stratigrafi dan tektonik 883 daerah Palopo, Sulawesi Selatan. J. Geol. Sumberdaya Min. 10, 24–38. 884 Bergman, S.C., Coffield, D.Q., Talbot, J.P., Garrard, R.J., 1996. Tertiary tectonic and 885 magmatic evolution of Western Sulawesi and the Makassar Strait, Indonesia: 886 Evidence for a Miocene continent-continent collision. In: Hall, R., Blundell, D.J. 887 (Eds.), Tectonic Evolution of SE Asia, Geological Society of London Special 888 Publication, 106, 391–430. 889 Berry, R.F., Grady, A.E., 1987. Mesoscopic structures produced by Plio-Pleistocene 890 wrench faulting in South Sulawesi, Indonesia. Journal of Structural Geology 9, 891 563-571. 892 Black, L., Kamo, S., Allen, C., Davis, D., Aleinikoff, J., Valley, J., Mundil, R., Campbell, I., Korsch, R., Williams, I.S., 2004. Improved ²⁰⁶Pb/²³⁸U microprobe 893 894 geochronology by the monitoring of a trace-element-related matrix effect; 895 SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a 896 series of zircon standards. Chemical Geology 205, 115–140. 897 BouDagher-Fadel, M.K., 2008. Evolution and Geological Significance of Larger 898 Benthic Foraminifera. Developments in Palaeontology and Stratigraphy. Elsevier, 899 Amsterdam. 900 Boudagher-Fadel, M.K., 2013. Biostratigraphic and geological significance of 901 planktonic foraminifera, 2nd ed. University College London, London, United 902 Kingdom. 903 Brouwer, H.A., 1934. Geologische onderzoekingen op het eiland Celebes. Kolinien 904 Geologische-Mijnbouw Genootschap, Verhandelingen. Geologische Series 10, 905 39–218. 906 Calvert, S.J., 2000. The Cenozoic evolution of the Lariang and Karama basins, 907 Sulawesi. Indonesian Petroleum Association Proceedings 27th Annual 908 Convention, 505–511.

- 909 Calvert, S.J., Hall, R., 2007. Cenozoic evolution of the Lariang and Karama regions,
- North Makassar Basin, western Sulawesi, Indonesia. Petroleum Geoscience 13,
- 911 353–368.
- 912 Camplin, D. J., Hall, R., 2014. Neogene history of Bone Gulf, Sulawesi, Indonesia.
- 913 Marine and Petroleum Geology 57, 88–108.
- 914 Chamberlain, M., Seago, R., 1995. Geological Evaluation of the Lariang PSC area,
- 915 South Sulawesi., Unpublished Report. Amoseas International.
- 916 Claoué-Long, J.C., Compston, W., Roberts, J., Fanning, C.M., 1995. Two
- 917 Carboniferous Ages: a Comparison of SHRIMP Zircon Dating with Conventional
- 218 Zircon Ages and ⁴⁰Ar/³⁹Ar Analysis, in: Berggen, W.A., Kent, D.V., Aubry, M.P.,
- 919 Hardenbol, J. (Eds.), Geochronology Time Scales and Global Stratigraphic
- 920 Correlation, SEPM Special Publication, pp. 3–21.
- 921 Coffield, D.Q., Bergman, S.C., Garrard, R.A., Guritno, N., Robinson, N.M., Talbot,
- 922 J., 1993. Tectonic and Stratigraphic Evolution of the Kalosi PSC Area and
- Associated Development of a Tertiary Petroleum System, South Sulawesi,
- 924 Indonesia. Proceedings of the Indonesian Petroleum Association 22nd Annual
- 925 Convention, 679–706.
- 926 Djuri and Sudjatmiko. 1974. Geologic map of the Majene and western part of the
- Palopo quadrangles, South Sulawesi (1:250,000). Geological Survey of Indonesia,
- 928 Ministry of Mines, Bandung, Indonesia.
- 929 Djuri, Sudjatmiko, Bachri, S., Sukido. 1998. Geological map of the Majene and
- western part of the Palopo sheets, Sulawesi (1:250,000), 2nd Edition. Geological
- Research and Development Centre, Bandung, Indonesia.
- Elburg, M., Foden, J., 1998. Temporal changes in arc magma geochemistry, northern
- 933 Sulawesi, Indonesia. Earth and Planetary Science Letters 163, 381–398.
- Elburg, M., Foden, J., 1999a. Sources for magmatism in Central Sulawesi:
- geochemical and Sr–Nd–Pb isotopic constraints. Chemical Geology 156, 67–93.
- 936 Elburg, M.A., Foden, J., 1999b. Geochemical response to varying tectonic settings:
- An example from southern Sulawesi (Indonesia). Geochimica Cosmochimica
- 938 Acta 63, 1155–1172.
- 939 Elburg, M., van Leeuwen, T., Foden, J., Muhardjo, 2003. Spatial and temporal
- isotopic domains of contrasting igneous suites in Western and Northern Sulawesi,
- 941 Indonesia. Chemical Geology 199, 243–276.

- 942 Endaharto, M., 2000. Studi stratigrafi kaitannya dengan perkembangan struktur
- geologi di Kawasan Latimojong, lengan Barat Sulawesi. Jurnal Geologi dan
- 944 Sumberdaya Mineral 10, 107 p.
- 945 Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001.
- A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–
- 947 2048.
- 948 Frost, B.R., Frost, C.D., 2008. A geochemical classification for feldspathic igneous
- 949 rocks. Journal of Petrology 49, 1955–1969.
- 950 Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., 2012. The Geological Time
- 951 Scale 2012, 1st ed. Elsevier.
- 952 Grainge, A.M., Davies, K.G., 1985. Reef exploration in the east Sengkang Basin,
- 953 Sulawesi, Indonesia. Marine and Petroleum Geology 2, 142–155.
- 954 Hadiwijoyo, S., Sukarna, D. & Sutisna, K. 1993. Geology of the Pasangkayu
- 955 Quadrangle, Sulawesi. (Quadrangle 2014) Scale 1:250,000. Geological Research
- and Development Centre, Bandung, Indonesia.
- 957 Hall, R., 1996. Reconstructing Cenozoic SE Asia. In: Hall, R., Blundell, D.J. (Eds.),
- 958 Tectonic Evolution of SE Asia, Geological Society London Special Publication
- 959 106, 153–184.
- 960 Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the
- 961 SW Pacific: computer-based reconstructions, model and animations. Journal of
- 962 Asian Earth Sciences 20, 353–431.
- 963 Hall, R., 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and
- the Indian Ocean. Tectonophysics 570-571, 1–41.
- Hamilton, W.B., 1979. Tectonics of the Indonesian region. USGS Professional Paper
- 966 1078, 345 pp.
- 967 Hasan, K., 1991. The Upper Cretaceous Flysch Succession of the Balangbaru
- Formation, Southwest-Sulawesi. Proceedings of the Indonesian Petroleum
- Association 20th Annual Convention, 183–208.
- 970 Hennig, J., Hall, R., Armstrong, R.A. 2016. U-Pb zircon geochronology of rocks from
- 971 west Central Sulawesi, Indonesia: Extension-related metamorphism and
- magmatism during the early stages of mountain building. Gondwana Research 32,
- 973 41–63. doi:10.1016/j.gr.2014.12.012
- Jaya, A., Nishikawa, O., 2013. Paleostress reconstruction from calcite twin and fault-
- slip data using the multiple inverse method in the East Walanae fault zone:

- 976 Implications for the Neogene contraction in South Sulawesi, Indonesia. Journal of
- 977 Structural Geology 55, 34–49.
- 978 Katili, J.A., 1970. Large transcurrent faults in Southeast Asia with special reference to
- 979 Indonesia. Geologische Rundschau 59, 581–600.
- 980 Katili, J.A., 1978. Past and present geotectonic position of Sulawesi, Indonesia.
- 981 Tectonophysics 45, 289–322.
- 982 Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.
- 983 Berkeley Geochronological Centre Special Publication 4, 70 pp.
- 984 Ludwig, K.R., 2009. SQUID 2, A User's Manual. Berkeley Geochronological Centre
- 985 Special Publication 5, 110 pp.
- 986 Maryanto, S. 2002. Stratigrafi tersier daerah Toraja, 31st Annual Convention of
- 987 Indonesian Association of Geologists, 734-768.
- 988 Maulana, A., Ellis, D.J., Christy, A.G., 2010. Petrology, geochemistry and tectonic
- evolution of the South Sulawesi basement rocks. Proceedings of the Indonesian
- 990 Petroleum Association 34th Annual Convention, IPA10-G-192 1–26.
- Maulana, A., Imai, A., van Leeuwen, T., Watanabe, K., Yonezu, K., Nakano, T.,
- Boyce, A., Page, L., Schersten, A. 2016. Origin and geodynamic setting of Late
- Cenozoic granitoids in Sulawesi, Indonesia. Journal of Asian Earth Sciences 124,
- 994 102-125.
- 995 O'Dogherty, L., 2009. Inventory of Mesozoic radiolarian species (1867-2008).
- 996 Geodiversitas 31, 371–503. doi:http://dx.doi.org/10.5252/g2009n2a6
- 997 Parkinson, C., 1998. Emplacement of the East Sulawesi Ophiolite: evidence from
- subophiolite metamorphic rocks Journal of Asian Earth Sciences 16, 13–28.
- 999 Parkinson, C.D., Miyazaki, K., Wakita, K., Barber, A.J., Carswell, D.A., 1998. An
- overview and tectonic synthesis of the pre-Tertiary very- high-pressure
- metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia.
- 1002 Island Arc 7, 184–200.
- 1003 Polvé, M., Maury, R.C., Bellon, H., Rangin, C., Priadi, B., Yuwono, S., Joron, J.L.,
- Atmadja, R.S., 1997. Magmatic evolution of Sulawesi (Indonesia): constraints on
- the Cenozoic geodynamic history of the Sundaland active margin. Tectonophysics
- 1006 272, 69–92.
- 1007 Priadi, B., Polvé, M., Maury, R.C., Bellon, H., Soeria-Atmadja, R., Joron, J.L.,
- 1008 Cotten, J., 1994. Tertiary and Quaternary magmatism in Central Sulawesi:

1009	chronological and petrological constraints. Journal of Southeast Asian Earth
1010	Sciences 9, 81–93.
1011	Querubin, C. D., Walters, S. 2012. Geology and mineralization of Awak Mas: A
1012	sedimentary hosted gold deposit, South Sulawesi, Indonesia. Majalah Geologi
1013	Indonesia 27(2), 69-85.
1014	Ratman, N., Atmawinata, S., 1993. Geology of the Mamuju Quadrangle, Sulawesi.
1015	Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral
1016	Resources, Geological Research and Development Centre, Bandung.
1017	Reijzer, J., 1920, Geologische aanteekeningen betreffende de Zuidelijke Toraja-
1018	landen, verzameld uit de verslagen der mijnbouwkundige onderzoekingen in
1019	Midden-Celebes. Jaarboek van het Mijnwezen in Nederlandsch Oost-Indië 47
1020	(1918), deel 1 Verhandelingen, p. 154–209.
1021	Silver, E.A., McCaffrey, R., Joyodiwiryo, Y., Stevens, S., 1983a. Ophiolite
1022	emplacement by collision between the Sula Platform and the Sulawesi island arc,
1023	Indonesia. Journal of Geophysical Research 88, 9419–9435.
1024	Silver, E.A., McCaffrey, R., Smith, R.B., 1983b. Collision, rotation, and the initiation
1025	of subduction in the evolution of Sulawesi, Indonesia. Journal of Geophysical
1026	Research. 88, 9407–9418.
1027	Simandjuntak, T.O., Rusmana, E., Surono, Supandjono, J.B., 1991. Geology of the
1028	Malili Quandrangle, Sulawesi. Scale 1:250,000. Geological Research and
1029	Development Centre, Department of Mines and Energy, Bandung, Indonesia.
1030	Simandjuntak, T.O., Surono, Sukido, 1994. Geology of the Kolaka Sheet, Sulawesi
1031	(Quadrangles 2111, 2210, 2211), Scale 1:250,000, Geological Research and
1032	Development Centre, Bandung.
1033	Spakman, W., Hall, R. 2010. Surface deformation and slab-mantle interaction during
1034	Banda arc subduction rollback. Nature Geoscience 3, 562-566.
1035	Spencer, J. E., 2010. Structural analysis of three extensional detachment faults with
1036	data from the 2000 Space-Shuttle Radar Topography Mission. GSA Today 20, 4-
1037	10.
1038	Spencer, J.E., 2011. Gently dipping normal faults identified with Space Shuttle radar
1039	topography data in central Sulawesi, Indonesia, and some implications for fault
1040	mechanics. Earth and Planetary Science Letters 308, 267-276.


Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: convention on the 1041 1042 use of decay constants in geo- and cosmochronology. Earth and Planetary Science 1043 Letters 36, 359–362. 1044 Sukamto, R., 1975. Geological map of the Ujung Pandang Sheet, Scale 1:1,000,000. 1045 Geological Survey of Indonesia, Bandung. 1046 Sukamto, R., 1982. Geological map of Pangkajene and Watampone Quadrangles, 1047 Scale 1:250,000. Indonesian Geological Research and Development Centre. 1048 Bandung. 1049 Sukamto, R., Simandjuntak, T.O., 1983. Tectonic relationship between geologic 1050 provinces of Western Sulawesi, Eastern Sulawesi and Banggai-Sula in the light of 1051 sedimentological aspects. Bulletin of the Geological Research and Development 1052 Centre 7, 1–12. 1053 Surono, 1994. Stratigraphy of the southeast Sulawesi continental terrane, Eastern 1054 Indonesia. Journal of Geology and Mineral Resources 4, 4–11. 1055 van Leeuwen, T.M., 1981. The geology of southwest Sulawesi with special reference 1056 to the Biru area. In: Barber, A.J., Wiryosujono, S. (Eds.), The Geology and 1057 Tectonics of Eastern Indonesia, Geological Research and Development Centre, 1058 Bandung, Special Publication, 2, 277–304. 1059 van Leeuwen, T.M., Muhardjo, 2005. Stratigraphy and tectonic setting of the 1060 Cretaceous and Paleogene volcanic-sedimentary successions in northwest 1061 Sulawesi, Indonesia: implications for the Cenozoic evolution of Western and 1062 Northern Sulawesi. Journal of Asian Earth Sciences 25, 481–511. 1063 van Leeuwen, T.M., Pieters, P. E., 2011. Mineral Deposits of Sulawesi. Proceedings 1064 of the Sulawesi Mineral Resources 2011 Seminar, MGEI-IAGI, 28-29 November, 1065 2011, Manado, North Sulawesi, Indonesia, pp. 130, doi:10.13140/2.1.3843.2322 1066 van Leeuwen, T., Allen, C.M., Kadarusman, A., Elburg, M., Michael Palin, J., 1067 Muhardjo, Suwijanto, 2007. Petrologic, isotopic, and radiometric age constraints 1068 on the origin and tectonic history of the Malino Metamorphic Complex, NW 1069 Sulawesi, Indonesia. Journal of Asian Earth Sciences 29, 751–777. 1070 van Leeuwen, T.M., Susanto, E.S., Maryanto, S., Hadiwisastra, S., Sudijono, 1071 Muhardjo, Prihardjo, 2010. Tectonostratigraphic evolution of Cenozoic marginal 1072 basin and continental margin successions in the Bone Mountains, Southwest 1073 Sulawesi, Indonesia. Journal of Asian Earth Sciences 38, 233-254.

1074	van Leeuwen, T., Allen, C.M., Elburg, M., Massonne, HJ., Palin, J.M., Hennig, J.,
1075	2016. The Palu Metamorphic Complex, NW Sulawesi, Indonesia: Origin and
1076	evolution of a young metamorphic terrane with links to Gondwana and
1077	Sundaland. Journal of Asian Earth Sciences 115, 133-152.
1078	Wakita, K., Sopaheluwakan, J., Miyazaki, K., Zulkarnain, I., Munasri, 1996. Tectonic
1079	evolution of the Bantimala Complex, South Sulawesi, Indonesia. In: Hall, R.,
1080	Blundell, D.J. (Eds.), Tectonic Evolution of SE Asia, Geological Society of
1081	London Special Publication, 106, 353–364.
1082	Watkinson, I.M., Hall, R., Ferdian, F., 2011. Tectonic re-interpretation of the
1083	Banggai-Sula-Molucca Sea margin, Indonesia. In: Hall, R., Cottam, M.A.,
1084	Wilson, M.E.J. (Eds.), The SE Asian Gateway: History and Tectonics of the
1085	Australia-Asia collision, Geological Society of London Special Publication, 355,
1086	203–224.
1087	White, L.T., Ireland, T.R., 2012. High-uranium matrix effect in zircon and its
1088	implications for SHRIMP U-Pb age determinations. Chemical Geology 306-307
1089	78–91.
1090	White, L.T., Hall, R., Armstrong, R.A., 2014. The age of undeformed dacite
1091	intrusions within the Kolaka Fault Zone, SE Sulawesi, Indonesia. Journal of
1092	Asian Earth Sciences 94, 105–112.
1093	Williams, I.S., 1998. U-Th-Pb Geochronology by Ion Microprobe, in: McKibben,
1094	M.A., Shanks, W.C., III, Ridley, W.I. (Eds.), Applications of microanalytical
1095	techniques to understanding mineralizing processes. Reviews in Economic
1096	Geology 7, 1–35.
1097	Wilson, M.E.J., Bosence, D.W.J., 1996. The Tertiary Evolution of South Sulawesi: A
1098	Record in Redeposited Carbonates of the Tonasa Limestone Formation. In: Hall,
1099	R., Blundell, D.J. (Eds.), Tectonic Evolution of SE Asia, Geological Society of
1100	London Special Publication, 106, 365–389.
1101	Yuwono, Y.S., Maury, R.C., Soeria-Atmadja, R., Bellon, H. 1988. Tertiary and
1102	Quaternary geodynamic evolution of South Sulawesi: constraints from the study
1103	of volcanic units. Geologi Indonesia, Jakarta 13(1), 32-48.
1104	
1105	
1106	
1107	

1108	Table Captions
1109	Table 1. Summary of the sample locations, lithologies and which samples were
1110	selected for geochemical and U-Pb dating. The samples have been grouped according
1111	to their petrology, proposed geological unit and their age (from youngest to oldest).
1112	
1113	
1114	Figure Captions
1115	Figure 1. Map showing the location of the geological terranes and major faults of
1116	Sulawesi. The location of the Latimojong region and the focus of this study is shown
1117	with a black box (adapted from White et al., 2014).
1118	
1119	Figure 2. Geological map of the study area showing the location of major geological
1120	units, interpreted structures as well as the location of samples and geographic
1121	locations discussed in the text. All of the geological boundaries represent
1122	interpretated, as contacts were not observed in the field. The ages reported on the
1123	map, represent those obtained in this study.
1124	
1125	Figure 3. Field photos of different units of the Lamasi Volcanics. These include (a-b)
1126	pillow basalts, often with altered glass and interstitial chert; (c) vesicular and non-
1127	vesicular basalt dykes, (d) gabbro, occasionally cross-cut by 1-10cm pegmatite veins
1128	and dykes, and: (e) serpentinite or altered basalt.
1129	
1130	Figure 4. Field photographs of the (a) 'red-bed' shales of the Toraja Formation and
1131	the well-bedded deposits of fluvial sandstones.
1132	
1133	Figure 5. Field photograph of the karst landscape on the western side of the
1134	Latimojong Mountains. These carbonates are part of the Makale Formation, which is
1135	the stratigraphic equivalent of the Tonasa Limestone.
1136	
1137	Figure 6. Field photographs of the Enrekang Volcanic Series at the outcrop scale as
1138	well as in hand specimen. Ages each of these outcrops/samples were acquired using
1139	SHRIMP U-Pb dating of zircon. (a-b) Shows a felsic dyke (sample K12-33B) cross-
1140	cutting basement schists of the Latimojong Complex; (c-d) shows a boulder of
1141	porphyritic dacite (K12-27) within the inferred north-western continuation of the

1142	Kolaka Fault Zone; (e-f) shows quarry workers extracting this dacite as well as the
1143	grain-scale detail of dacite sample K12-21A/B.
1144	
1145	Figure 7. Field photographs of the granodiorites of the Palopo Granite. These
1146	granodiorites are (a-c) undeformed in parts, but are (d-e) mylonitised in other
1147	outcrops. The granites also contain xenoliths and enclaves, some of which show
1148	evidence of (b) mingling between the granite and restite. (d) These enclaves have also
1149	been flattened/stretched parallel to the mylonitic fabric in places and were later
1150	cross-cut by aplitic dykes. Sample K12-4B represents an undeformed granodiorite
1151	collected from the same location as is shown in (b) and (c). Sample K12-6A/6B were
1152	deformed samples collected from the sample location as is shown in (d). Sample K12-
1153	35B is a deformed granodiorite collected from the same location as is shown in (e).
1154	
1155	Figure 8. An example of (a) the well-bedded sandstones and conglomerate continental
1156	deposits of the Walanae Formation, as well as (b) some of the leaf fossils found within
1157	finer-grained units of this formation.
1158	
1159	Figure 9. Field photographs of the "Bua Rhyolite" which cross-cuts basalts of the
1160	Lamasi Volcanics.
1161	
1162	Figure 10. Scanning electron microscopy of radiolarians that were extracted from a
1163	sample of chert float collected west of the Latimojong Mountains. These were
1164	identified as follows: 1. Stichomitra cf. japonica (Nakaseko & Nishimura); 2 Xitus cf
1165	clava (Parona); 3. Gen. sp. indet.; 4. Gen. sp. indet.; 5. Dictyomitra sp.; 6
1166	Dictyomitra sp.; 7. Thanarla cf. pulchra (Squinabol); 8. Dictyomitra sp.; 9
1167	Distylocapsa sp.; 10. Gen. sp. indet.; 11. Hiscocapsa sp.; 12. Gen. sp. Indet.; 13. Gen
1168	sp. indet.
1169	
1170	Figure 11. Chronostratigraphic chart and corresponding biostratigraphic ages
1171	obtained from the identification of foraminifera in the Toraja Formation, Makale
1172	Formation and the Enrekang Volcanic Series.
1173	
1174	Figure 12. Tera-Wasserburg Concordia diagrams of the U-Pb SHRIMP results for
1175	each of the igneous samples that were dated in this study.

1176	
1177	Figure 13. Relative frequency apparent age plots of U-Pb SHRIMP results for each of
1178	the igneous samples that were dated in this study.
1179	
1180	Figure 14. Various plots showing the geochemical data collected from the igneous
1181	rock samples that were collected as part of this study. The distinctive chemical groups
1182	correspond with different petrological characteristics as well as the crystallization
1183	ages of these rocks.
1184	
1185	Figure 15. Revised chronostratigraphic chart for the Latimojong Mountains region
1186	that takes the results of this and previous studies into account.
1187	
1188	Supplementary Files
1189	Interactive Map File: A KMZ file containing location data of observed lithologies at
1190	various field sites across the Latimojong region.
1191	
1192	Supp. Data File 1. Details of foraminifera identified for various samples from the
1193	Latimojong region of Sulawesi.
1194	
1195	Supp. Data File 2. Representative and age determining foraminifera from the (a-h)
1196	Toraja Formation, (i) Makale Formation and (j) Enrekang Volcanic Series: (a)
1197	Cycloclypeus eidae [Sample: K12-10]; (b) Lepidocyclina isolepidinoides [Sample:
1198	K12-10]; (c) Globoquadrina sp. [Sample: K12-14]; (d) Asterocyclina sp., [Sample:
1199	K12-17]; (e) Discocyclina dispansa [Sample: K12-17]; (f) Nummulites sp. [K12-17];
1200	(g) Pellatispira sp. [Sample: K12-17]; (h) Dentoglobigerina altispira [Sample: K12-
1201	15]; (i) Globoquadrina dehiscens [Sample: K12-20B]; (j) Globorotalia miocenica
1202	[Sample K12-22B].
1203	
1204	Supp. Data File 3. Results of SHRIMP U-Pb analyses of zircons for the various
1205	igneous rocks that were dated as part of this study.
1206	
1207	Supp. Data File 4. Major and trace element data collected from whole-rock XRF
1208	analyses of the igneous samples that were investigated as part of this study.

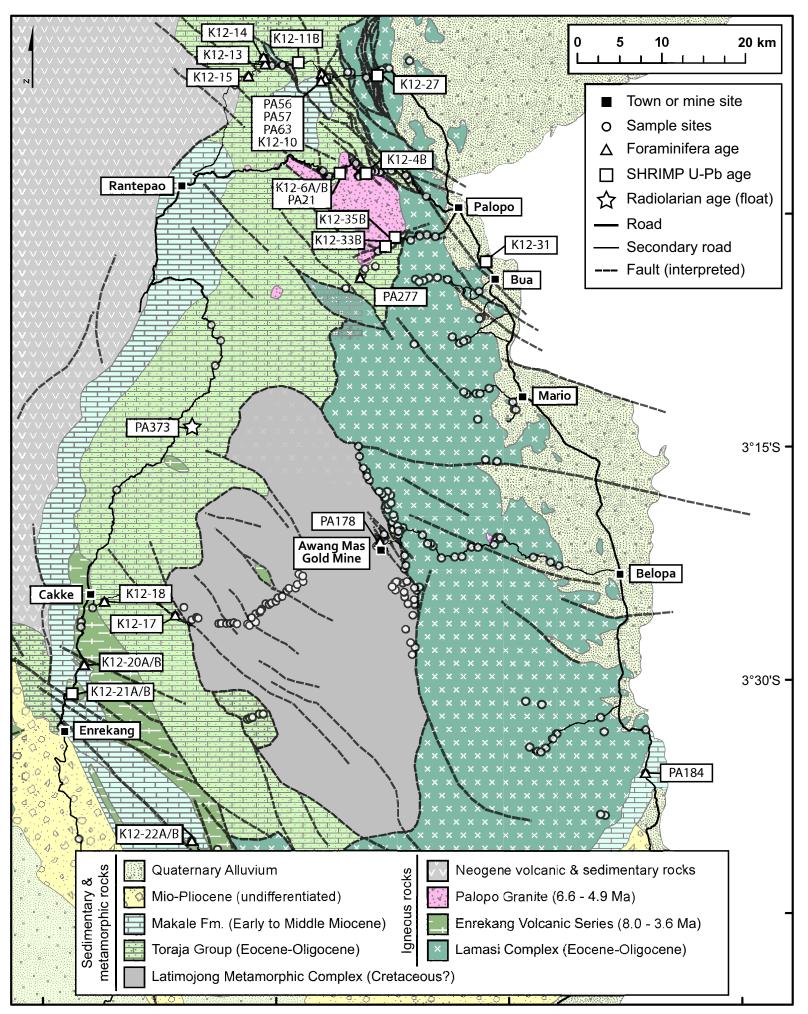


Figure 3
Click here to download high resolution image

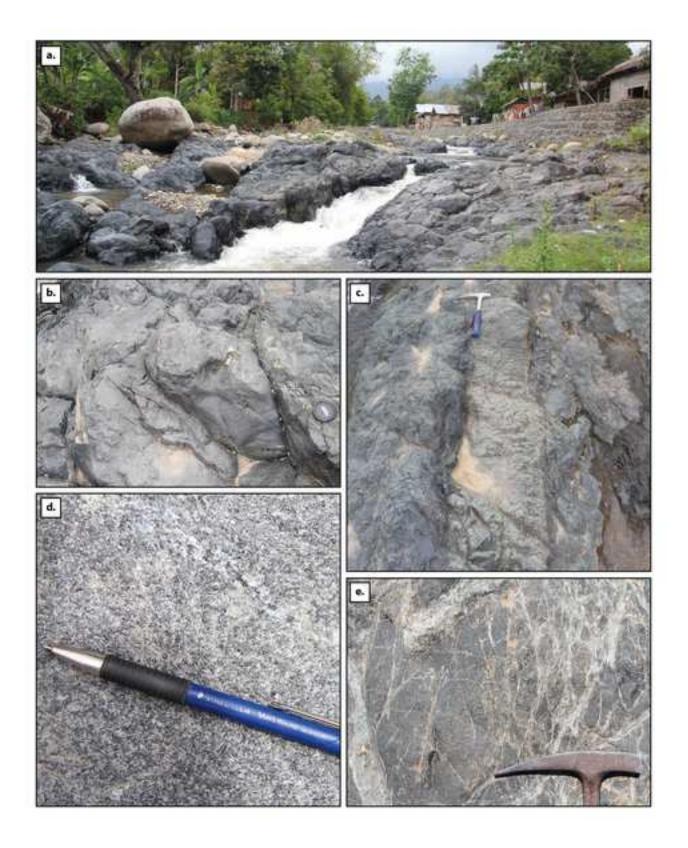


Figure 4 Click here to download high resolution image

Figure 5 Click here to download high resolution image

Figure 6 Click here to download high resolution image

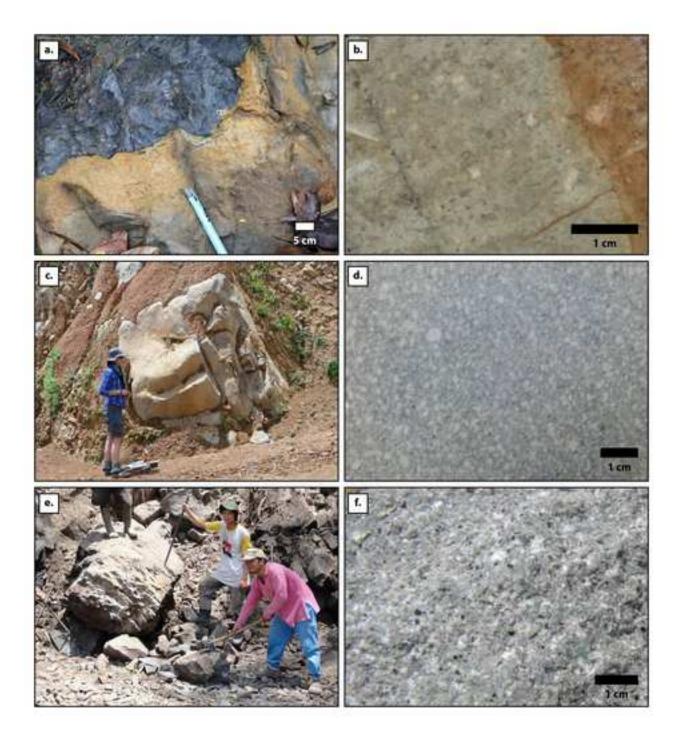


Figure 7
Click here to download high resolution image

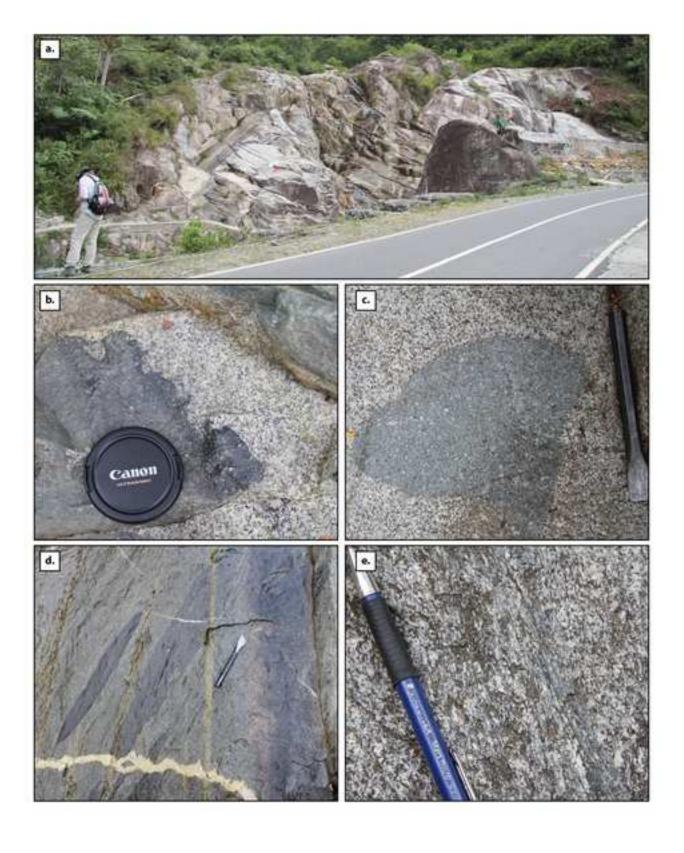


Figure 8
Click here to download high resolution image

Figure 9 Click here to download high resolution image

Figure 10 Click here to download high resolution image

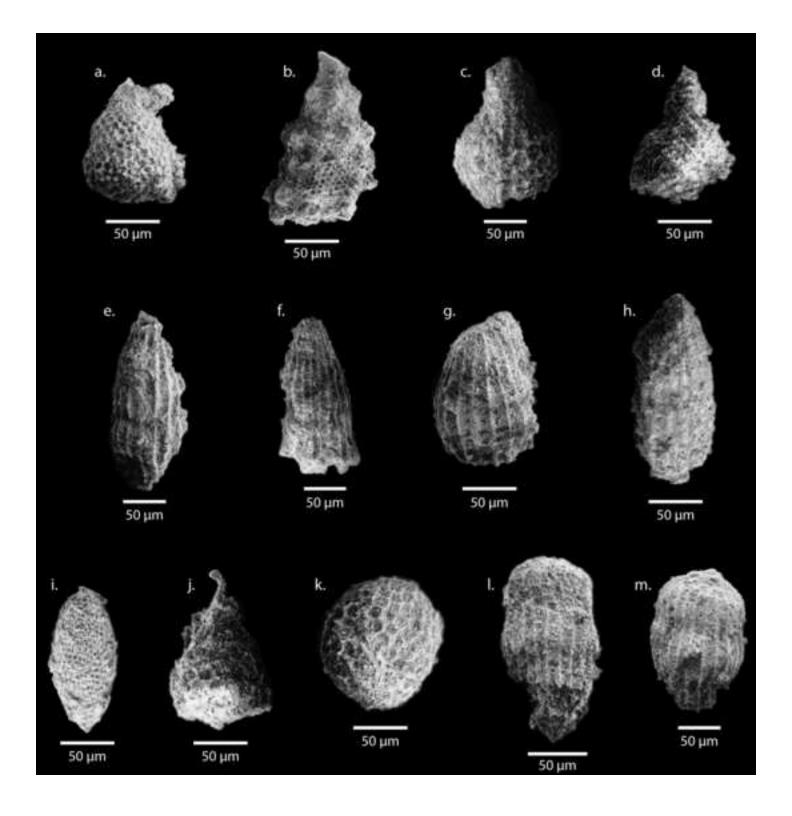


Figure 11

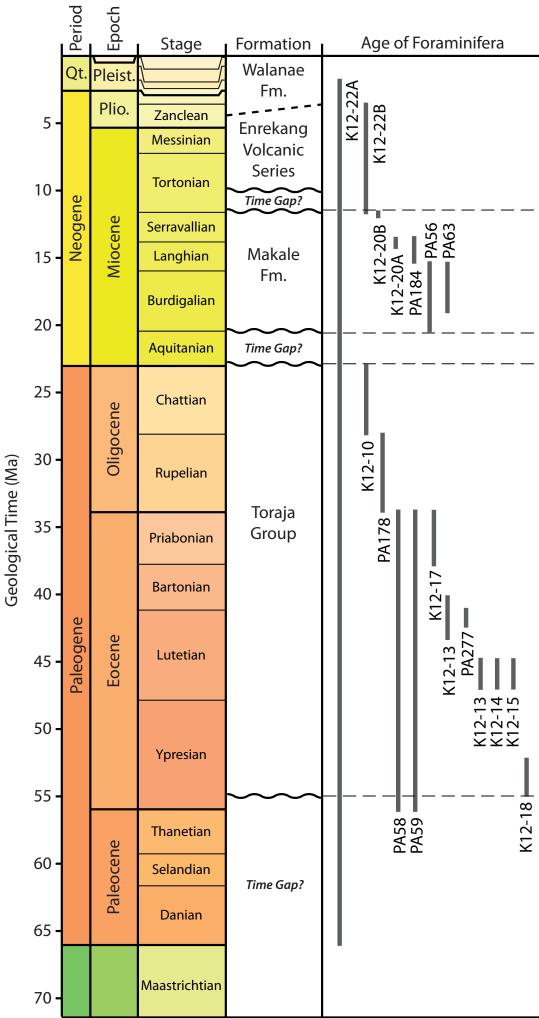
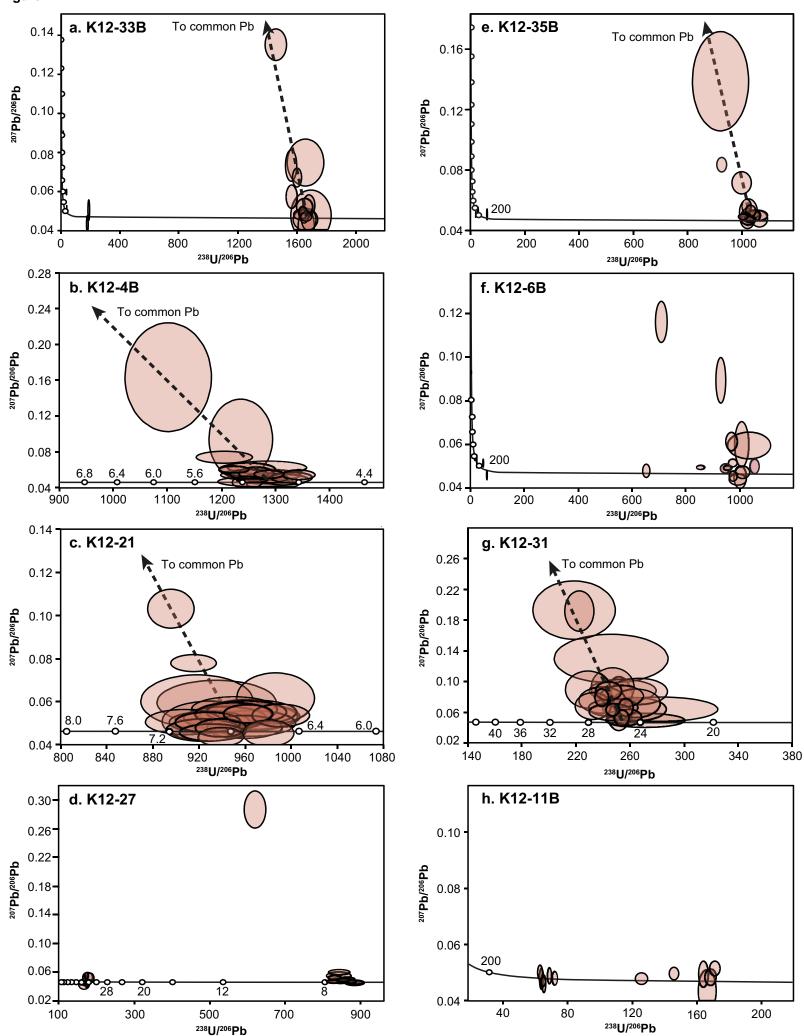
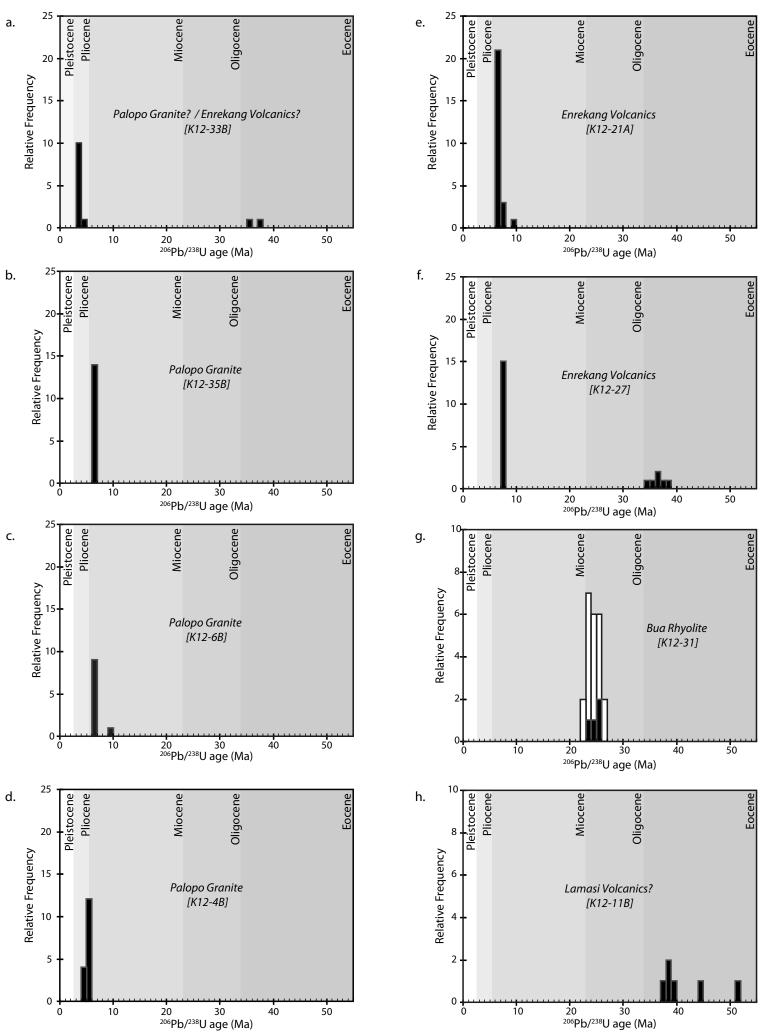
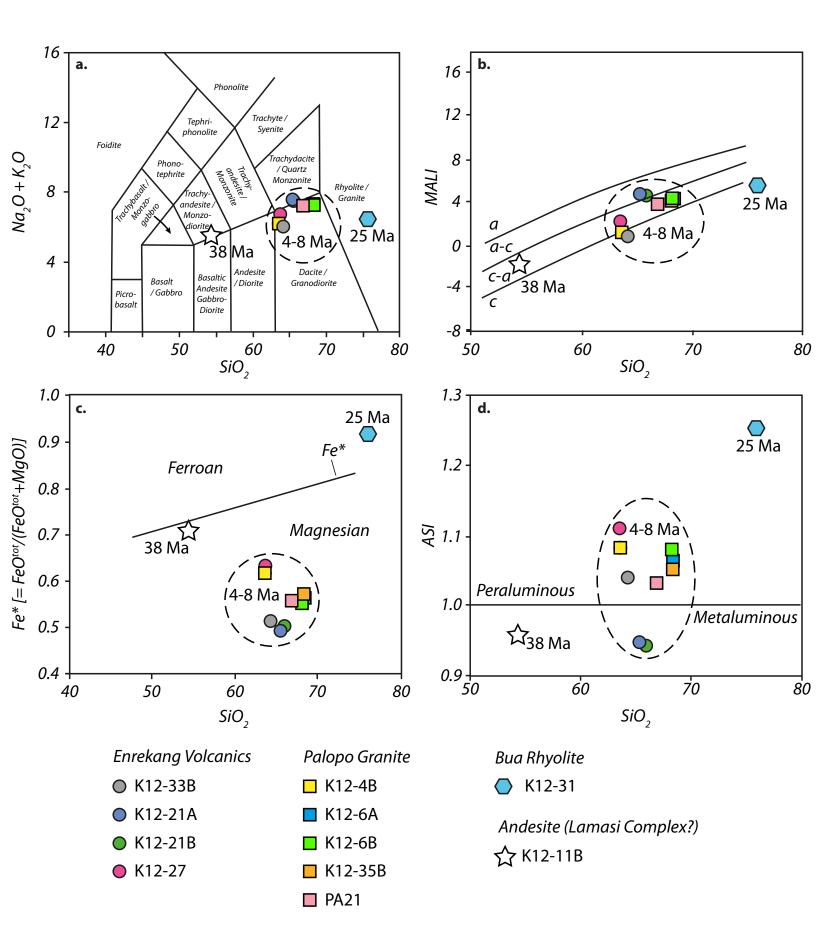
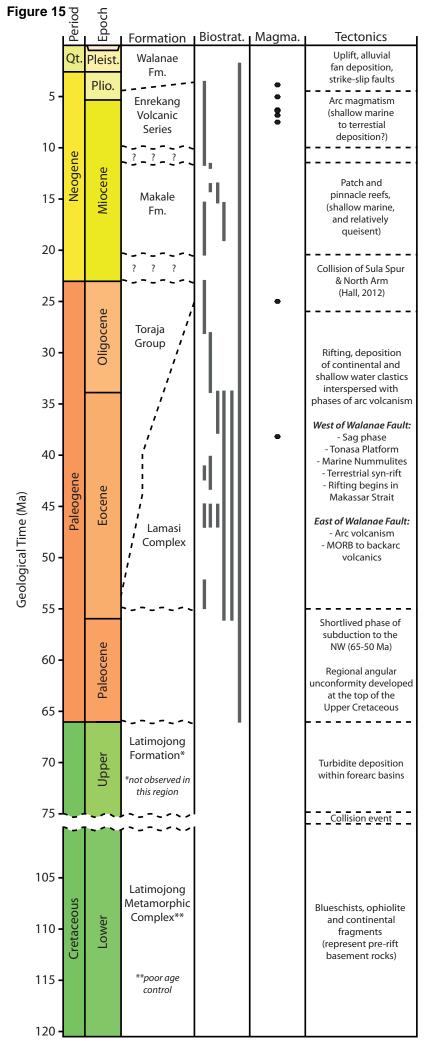
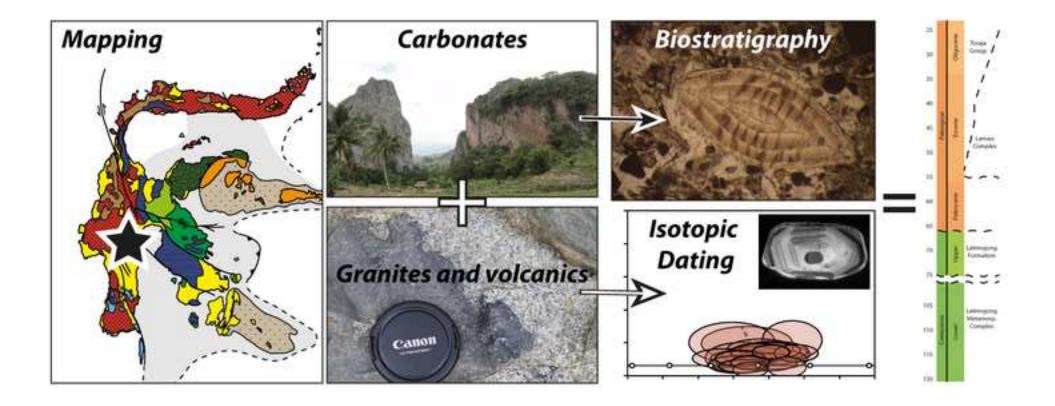


Figure 12


Figure 13

Sample	Lat.	Long.	Lithology	Geochem.	U-Pb age (± 1σ)
Enrekang Volcanics					
K12-33B	-3.03571	120.11734	Felsic Dyke	x	3.9 Ma ± 0.1 Ma
K12-21A	-3.51503	119.78141	Dacite (porphyritic)	х	6.8 Ma ± 0.1 Ma
K12-21B	-3.51503	119.78141	Dacite (porphyritic)	х	-
K12-27	-2.85184	120.10847	Dacite (porphyritic, altered)	х	7.5 Ma ± 0.1 Ma
Palopo Granite					
K12-4B	-2.95663	120.09621	Granodiorite (undeformed)	х	5.0 Ma ± 0.1 Ma
K12-35B	-3.02595	120.12712	Granodiorite (deformed)	х	6.3 Ma ± 0.1 Ma
K12-6A	-2.95646	120.06854	Granodiorite (deformed)	х	-
K12-6B	-2.95646	120.06854	Granodiorite (deformed)	х	6.4 Ma ± 0.2 Ma
PA21	-2.95253	120.07236	Granodiorite (deformed)	х	-
"Bua Rhyolite"					
K12-31	-3.05184	120.22453	Rhyolite (altered)	х	25.0 Ma ± 0.7 Ma
Altered Andesite (Lamasi Volcanics?)					
K12-11B	-2.83792	120.02377	Andesite (highly altered)	х	38.2 Ma ± 1.3 Ma

