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We present a knowledge representation framework based on the Event Calculus, that allows an agent to
recognise complex activities from low-level observations received by multiple sensors, reason about the lifecycle
of such activities, and take action to avoid or support their successful completion. Activities are understood as
multi-value fluents that change according to events that occur in the environment. The parameters of an activity
fluent consist of a unique label, a set of participants involved in the carrying out of the activity, and a unique goal
associated with the activity revealing the activity’s desired outcome. Our contribution is the identification of an
activity lifecycle describing how activities can be started, interrupted, suspended, resumed, or completed over time,
as well as how these can be represented. The framework also specifies activity goals, their associated lifecycle, and
their relation with the activity lifecycle. We provide the complete implementation of the framework, which includes
an activity generator that automatically creates synthetic sensor data in the form of event streams that represent the
everyday lifestyle of a type 1 diabetic patient. We also test the framework by generating very large activity streams
that we use to evaluate experimentally the performance of the recognition capability and study its relative merits.
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1. INTRODUCTION
We study the problem of how to develop an activity recognition capability as part of a

healthcare application with the aim of assisting a patient in the monitoring and management
of his diabetes. This problem is important because the possibility of delegating parts of
the monitoring and management of a diabetic’s activity to a software application has the
advantage of simplifying the patient’s lifestyle. Amongst other things, a patient would not
have to worry about where to systematically record regular measurements of his blood
glucose, or how to distinguish trends that may determine his well-being and, in the ultimate
analysis, his health. This is, however, a complex task because the application must be in
position to recognise the patient’s activities using sensor technology, relate these activities
to medical guidelines that must be reasoned upon and interpreted in conjunction to medical
expertise, as well as make suggestions that do not overwhelm the patient with notifications
or requests for input information.

We argue that such a challenging application can be naturally developed as a multi-
agent system for the following reasons. The problem of monitoring requires a continuous
and dedicated software process that observes the condition of the patient. First, this process
must also encapsulate its own state, to store information such as glucose measurements
or patient profile information. In addition, the process must be both reactive, in order for
example to alert the patient about significant events that are relevant to his condition, but also
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FIGURE 1. Continuous Glucose Monitoring (CGM) Agent in COMMODITY12.

proactive, to evaluate the significance of certain events, reason about their effects and choose
appropriate action that will be to the benefit of the patient. Furthermore, the process must be
also in a position to access and influence the environment via state-of-the-art sensor/actuation
technologies, for instance, to measure glucose values or administer insulin respectively.
Most importantly, the process should be able to interact and communicate with other similar
processes representing the interests of doctors, hospitals, or family members of patients, to
inform and alert of critical situations as they arise, and by using specific protocols, sometimes
formal and strict, while other times informal and flexible.

From our involvement in the FP7 COMMODITY12 project, we have been particularly
preoccupied with developing a monitoring agent that is a specialised version of the KGP
model (Kakas et al., 2008; Forth et al., 2006). Such an agent diagnoses (Kafalı et al., 2013),
ontologically reasons about (Kafalı et al., 2013) and together with specialised agents pre-
dict (Kafalı et al., 2014) medical emergencies such as hypoglycaemia. According to the
International Classification of Diseases (ICD), hypoglycaemia is defined as the patient’s
glucose level being below a certain threshold value. When it arises, it can produce a variety
of symptoms and effects but the principal problems is an inadequate supply of glucose to
the brain, resulting in impairment of function and, eventually, to permanent brain damage
or death. According to the severity level of hypoglycaemia, a series of actions may need to
be taken immediately, including informing the doctor of the patient as soon as possible, to
require advice, or to start an emergency protocol.

Patients with diabetes develop an increased risk of cardiovascular disease with both mi-
crovascular complications and macrovascular disease. Besides, the average individual with
type 1 diabetes experiences about two episodes of symptomatic hypoglycaemia per week,
which is a figure that has not been substantially reduced in the last years (see McCrimmon
and Sherwin (2010) and references therein). Amongst all the hypoglycaemia episodes, the
severe ones (those in which the patient requires help for recovery) have a relatively annual
high prevalence (between 30% and 40% of all type 1 diabetic patients suffer at least one
severe episode per year). There are several studies in the incidence of severe hypoglycaemia
in type 1 diabetics already following an insulin treatment, ranging from 62 to 320 episodes
per 100 patient-year as compiled in Desouza et al. (2010).

To address conditions such as hypoglycaemia we have developed an agent prototype
that monitors blood glucose levels of a diabetic patient as shown in Fig.1. The monitoring
knowledge and guidelines required for conditions such as hypoglycaemia, have been spec-
ified using a symbolic, computational logic approach combined with temporal reasoning of
the kind supported by the Event Calculus of Kowalski and Sergot (1986). This approach
is particularly suitable for reasoning about observations according to medical guidelines
and has been combined with diagnostic reasoning to provide the patient with suitable rec-
ommendations and explanation, even in the light of incomplete information. However, the
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current monitoring capability cannot cope with information that refers to lifestyle activities
of the patient, which are key to diabetes management, especially activities about the patient’s
physical exercise and diet. Therefore, our goal is to provide a run-time monitoring agent that
reasons about life threatening situations regarding the diabetic patient based on the perceived
events such as glucose readings and user activities. We envisage such an agent to be situated
in the patient’s mobile phone and directly interact with it to send alerts to the patient.

This paper significantly extends and has the following contributions with respect to our
previous work (Kafalı et al., 2014):

• We provide a specification for an activity recognition capability that is integrated within
the logic-based agent architecture discussed in Kafalı et al. (2013). The activity recognition
capability supports reasoning about complex activities from the recognition of basic events.
It relies on the identification of an activity lifecycle that treats activities as special temporal
fluents that can be started, interrupted, suspended, resumed, or completed over time. Such
information is related with a similar lifecycle about the patient’s goals, and is amalgamated
with a monitoring capability to improve the advice and explanation offered to the patient, as
well as corroborating hypotheses about conclusions that require further action. We build a
complete implementation of our activity recognition framework, which extends the original
prototype and its knowledge representation reported in Kafalı et al. (2014).
• We build an activity generator, a component interesting in its own right, that automatically
creates synthetic sensor data in the form of event streams that represent the everyday lifestyle
of a type 1 diabetic patient.
• We perform extensive experiments using the generated activity data. We evaluate the recog-

nition capability of our framework using relevant queries for diabetes such as identifying
the number of falls/faints occurrences per month, or understanding the glucose trend of the
patient during a faint. We evaluate our framework on large datasets under the assumption
that makes a time-window approach invalid (e.g. forgetting information is not a reasonable
assumption), and report its performance based on the underlying compiled version of the
Event Calculus.

The rest of the paper is structured as follows. Section 2 reviews the relevant literature
on activity recognition. Section 3 presents our use case, that is used throughout the paper.
Section 4 describes the components of our activity recognition framework. Section 5 de-
scribes the implementation details of our framework and explains the experimental setting.
Section 6 reports the recognition and performance results. Section 7 summarises our work
and discusses possible future extensions.

2. RELATED WORK
Activity recognition aims to recognise the behaviour of one or more agents, whether

human or artificial, resulting from monitoring a series of observations on the agents’ actions
and the spatiotemporal conditions of the environment in which these agents are situated,
see (Turaga et al., 2008; Avci et al., 2010; Aggarwal and Ryoo, 2011) for recent reviews
of the field and related applications. The means by which we obtain observations about the
actions of the monitored agent naturally divide activity recognition into two main groups:
video-based (Aggarwal and Ryoo, 2011; Turaga et al., 2008), where the task is to recognise
a sequence of images with one or more agents performing a certain activity, and sensor-
based activity recognition (often called “motion analysis”), which deals with data coming
from sensors like accelerometers, gyroscopes and, in general, any readings which could be
produced by a mobile or wearable device such as a mobile phone, an activity tracker or a
medical sensor. In this work we are concerned with sensor-based activity recognition of a
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FIGURE 2. General data flow for activity recognition.

single human agent (the user), as opposed to the activities of multiple users/agents (Gu et al.,
2009) or the activities of a group seen as a single entity (Gordon et al., 2013).

Activity recognition approaches regarding a single user typically assume the operational
flow depicted in the schema of Fig. 2. First, a stream of observational data is received
from sensors - possibly mobile - and other sources (e.g. a smartphone or the CGM of a
diabetic patient). Second, these raw observations are preprocessed in a standard manner to
obtain usable features for the following stages. Then, using these features, computational
models recognise a set of low-level primitive events or actions (Turaga et al., 2008). These
events for our setting would correspond to the recognition of simple physical actions (e.g.
a person walking). Finally, the primitive events together with the context such as historical
information and user confirmations are used to recognise more complex activities (e.g. a
hypoglycaemic attack for a patient), represented in terms of the events which are captured in
the previous level (e.g. a patient stopped walking and then fainted). In our work we mainly
focus on the last step to recognise complex activities from primitive ones, represented in
Fig. 2 with a double box.

The recognition of complex activities is often formulated using logic-based symbolic
reasoning and in some of these cases it is linked to plan recognition (Kautz, 1987), goal
recognition (Lesh and Etzioni, 1995) or intention recognition (Sadri, 2012a). Plan recog-
nition refers to the mapping of sequences of atomic actions to high-level plans stored in
a plan library, see Krüger et al. (2013); Mirsky et al. (2016); Uzan et al. (2015). As our
approach is based on a logic-based formulation too, the similarity with plan recognition lies
with our use of domain-specific logic rules that recognise complex activities when specific
patterns of actions are observed by the agent that performs the monitoring task. However, our
monitoring agent does not rely on the notion of plans and does not map the observed actions
to plan instances from an explicit plan library. Rather, it focuses on avoiding unexpected
failures by recognizing activities that interfere with the user’s high-level goal. Similarly,
goal and intention recognition normally focus on the recognition of the high-level goals of
actions from observations (Geib et al., 2015; Do et al., 2013). Although the agent-oriented
system that we propose considers high-level goals explicitly and links them to activities, it
does not perform automatic recognition of goals (or intentions) because one of our system
requirements was that these goals should be explicitly specified by the user to trigger the
top-level monitoring process performing the recognition tasks.

Activity recognition is often studied using probabilistic techniques to deal with the
uncertainty originated from inherently noisy sensors. Good recognition results have been
obtained using generative models such as Hidden Markov Models (HMM) (Patterson et al.,
2005; van Kasteren et al., 2008) and discriminative models such as Conditional Random
Fields (CRF) (Chieu et al., 2006; van Kasteren et al., 2008) for both basic and complex
activities. Aggarwal and Ryoo (2011), for example, report very high values in accuracy for
basic activities showing performances from 85% to 95%. These models have been extended
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using hierarchical (Liao et al., 2007; Oliver et al., 2004) and segment (Duong et al., 2009;
Truyen et al., 2008) models to handle inter-dependencies between activities in time. How-
ever, all these models are supervised models and therefore require labelled data to learn
model parameters. In our previous work (Luštrek et al., 2015) we have used supervised mod-
els combined with symbolic rules on low-level activity datasets within the COMMODITY12

project (Kafalı et al., 2013) to predict high-level activities such as eating and exercise. Still,
these activities do not test directly life threatening situations for a patient. In addition, no life
threatening situations arose during the clinical trials carried out with real patients using the
COMMODITY12 system, and thus the scalability of potentially useful functionality in our
system could not be tested with real data. As a result, we extend here the logic-based, sym-
bolic approach of COMMODITY12 (Kafalı et al., 2013) with complex activity recognition
on synthetic data to show how to recognise life threatening situations in a scalable way.

Depending on the methods being used to perform the recognition task, symbolic ap-
proaches for complex activity recognition are divided into syntactic and description-based.
In syntactic approaches activities are defined as production rules of a grammar, reducing
the problem of recognition to the one of parsing. In order to handle uncertainty, stochastic
context grammars have often been used (Minnen et al., 2003). Joo and Chellappa (2006)
propose a framework for recognition of events using attribute grammars. They represent
sequences of events as grammar rules, they assign attributes to each event, while primi-
tive events are represented with terminal symbols. Using this representation, they look for
patterns in video sequences that match corresponding rules. Each rule is associated with a
probability stating how probable that sequence of events leads to the subject activity. They
evaluate their approach with video data from two different domains: casing vehicles in a
parking lot and departure of aircrafts. The main limitation of syntactic approaches is in the
recognition of concurrent activities. As argued in Ryoo and Aggarwal (2009) syntactic ap-
proaches are able to probabilistically recognise hierarchical activities composed of sequential
sub-events, but are inherently limited on activities composed of concurrent sub-events. Since
syntactic approaches are modeling a high-level activity as a string of atomic-level activities
composing them, temporal ordering of atomic-level activities has to be strictly sequential.
Our formulation of activity recognition does not suffer from this limitation, as events in our
Event Calculus formulation can happen at the same time.

Description-based approaches represent the temporal and spatial structure of activities
which they seek to recognise (Nevatia et al., 2003; Hongeng et al., 2004; Francois et al.,
2005; Vu et al., 2003). A high-level activity is understood in terms of relationships be-
tween simpler, more basic activities (or sub-events) composing the activity. In addition, a
time interval maybe associated with an occurring sub-event to specify necessary temporal
relationships among sub-events. To specify relationships (sequential, concurrent, and their
combinations) and time intervals explicitly, the interval temporal logic predicates discussed
in Allen and Ferguson (1997) have been widely adopted by these approaches. The approach
presented in this paper is description-based too but instead of Allen’s interval logic we use the
Event Calculus (Kowalski and Sergot, 1986) to formulate the run-time monitoring required
for activity recognition. Our monitoring approach is similar to that of run-time monitoring
of Chesani et al. (2013) who use a variant of the Event Calculus called the Reactive Event
Calculus (REC). In particular, our treatment of activity and goal lifecycles is similar to their
commitment lifecycle. However, we are not interested in modeling agent interactions as they
do. Instead, we model the activities and goals of a human user in a software agent who uses
these models to recognise the human user’s activities.

Artikis et al. (2012) study a Run-Time Event Calculus (RTEC) for recognising composite
events at run-time. Although composite events are like complex activities, an activity (com-
posite event) lifecycle as the one we specify is missing. Thus, the difference between our
work and RTEC is that our recognition process is more methodological and includes goals
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for activities as an important requirement for the background knowledge of the recognition
process. Another important difference between our work and RTEC is that RTEC focuses on
query-time reasoning with time-windows and a forgetting mechanism (Artikis et al., 2015).
Instead we focus on update-time reasoning, as in the Cached Event Calculus (CEC) (Chittaro
and Montanari, 1996), for large narratives that may cover more than a year of a patient’s
activities. CEC type of update-time reasoning has been applied in medical applications
before (Chittaro et al., 1995) for monitoring but not for activity recognition. Our compiler’s
implementation is in fact an extended version of a specialised CEC for multi-valued fluents
using the weak interpretation of initiates at/3. According to this interpretation, the update
predicates of CEC called propagateRetract/2 and propagateAssert/2, which are the most
computationally expensive at update-time, do not have to deal with persistence in the past.
Our extension also uses focused forward reasoning from an update event using causes at/3
definitions, to find out which other events are caused from that event and update the knowl-
edge of the agent with their effects to aid recognition. Any caused (derived) events from a
specific update are also cached for further use.

The recognition of physical activities using smartphones and wearable sensors for health-
care is discussed in Kouris and Koutsouris (2012). The emphasis of this study is on the
recognition of low-level events using machine learning methods such as decision trees or
Bayesian networks, and little is shown about recognising higher-level (complex) activities.
As with works in sensor-based human activity recognition (Lara and Labrador, 2013) they
deal with recognition of low-level events by trying to find models achieving minimum error.
For the specific case of diabetes, not much work has been reported in the literature. A system
for monitoring diabetic patients with an activity-recognition module is presented in Helal
et al. (2009). While the work describes the architecture of the system and the use of HMMs
in the context of a smart home, there is little discussion about the possible activities that
could be recognised to aid the lifestyle of a diabetic patient, as in our work.

Han et al. (2012) introduce the notion of “Disease Influenced Activity”, which focuses
on monitoring uncommon patterns for diabetes, such as “frequent drinking”, which are
presented offline to a doctor (see Shoaib et al. (2015) for a review of offline activity recog-
nition approaches using embedded sensors on mobile phones). The fundamental difference
between “frequent drinking” and the “life threatening” activities we study in the paper is
as follows. The former is about activities that influence the management of the disease in
the medium/longer term and need to be reported to the doctors who follow the patient for
information about the patient’s lifestyle. On the other hand, the latter is about activities that
need to be dealt with immediately and alert the doctors now. In addition, in our work the
focus is to use a mobile phone to recognise life threatening situations online to assist the
patient, however, the observations can be shared with doctors offline, if necessary.

With the increasing popularity of lightweight and affordable wearable sensors the con-
tinuous monitoring of patients with chronic diseases has become easier. In this context the
role of activity recognition has become to detect abnormal situations and alert the patients
to prevent life threatening situations (see Mukhopadhyay (2015) for a survey on wearable
sensors). However, the engagement of patients in such wearable data collection has been
found to be challenging. Our approach to make activity recognition available on mobile
phones is an attempt to support more patient-centered approaches by aiding usability in care,
and secure handling of patient information with familiar devices (Chiauzzi et al., 2015).

Approaches for the detection of suspicious behaviour using video and audio data streams
(Arroyo et al., 2015; Elhamod and Levine, 2013) complement our recognition framework
in certain situations. Although monitoring a patient for life threatening situations does not
provide a controlled environment in comparison to a video surveillence problem (e.g. peo-
ple going into a shopping mall or using public transport hubs), we can utilise available
components of a smart home (Jakkula and Cook, 2011) or a smart city infrastructure to
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FIGURE 3. Diabetes monitoring and management in our framework. Red components show
the additional features of the continuous monitoring agent extended from the CGM agent in
COMMODITY12 (Kafalı et al., 2013).

improve recognition accuracy (e.g. the agent accesses a security camera feed to confirm a
faint event). Another relevant area of research is detecting anomalous behaviours in social
networks (Viswanath et al., 2014), which employs unsupervised learning techniques to detect
and prevent cybersecurity attacks using fake or compromised user accounts. Our approach is
similar in that we do not require labeled data to recognise faint events.

3. USE CASE: SAFETY-ENHANCED SMART STREET
We present a scenario from healthcare regarding the everyday lifestyle of diabetic pa-

tients, in order to demonstrate the significance of activity recognition in such a setting.

John, a type 1 diabetic, is returning home after having spent an evening to the movies with friends. The bus that
he took to go home does not reach John’s street directly, so John needs to walk back to his place. Once he alights
from the bus John feels a bit weak. As a precaution he starts a mobile phone app that allows him to set high-
level goals, in this case walk home, to be monitored until they are achieved. The app does so by capitalising on
knowledge it has about when such goals are considered achieved, in this case by comparing John’s home address
and his current GPS location coordinates. After John specified that he wants to walk home, the app estimates
that the walk will take him approximately 20 minutes. Halfway, however, John receives an alert informing him
that the content of glucose in his blood is abnormally low (a hypoglyceamia medical emergency). John does not
have enough time to respond to this alert as he passes out and falls on the pavement. Immediately after John falls
on the pavement, his doctor and family are informed, an ambulance is called, and the nearest street light starts
flashing to attract attention of passers-by and help the ambulance locate John.

To support such a scenario we assume that John’s mobile app is developed as a software
agent that monitors John’s glucose with an insulin pump and recognises John’s activities in
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relation to his diabetes. The insulin pump is a device that measures blood glucose, holds
an insulin cartridge and can deliver a continuous flow (basal rate) of insulin to the body at
the press of button. In regular intervals, it can communicate to the mobile app the patient’s
glucose measurements, so that the agent can detect abnormal glucose readings.

The scenario above requires that if the glucose level is dangerously low, the agent must
take a number of important steps. Immediately after sending the hypoglycaemia alert, the
agent must also ask John via the app’s display whether he feels well. If John does not respond
because he fainted, this can be recognised because the agent can observe that John fell while
suffering a hypoglycaemic attack. As a result, the agent must alert first John’s doctor, then
John’s family and an ambulance giving John’s location. We also assume a neighbourhood e-
infrastructure of the kind envisaged in Connected Communities (e.g. Mamdani et al. (1999);
Stathis et al. (2006)) and more recently in Smart Cities (e.g. Schaffers et al. (2011)). Using
such an e-infrastructure, the agent can observe the closest street light, also represented
electronically as a software agent, requesting it to flash about John’s medical emergency.

4. THE ACTIVITY RECOGNITION FRAMEWORK
In this section, we present various elements of our activity recognition framework.

4.1. Architecture
Fig. 3 shows how our agent framework, presented in the introduction, is extended with

activity recognition to support the smart street scenario. We use dark font to represent the cur-
rently supported features of the monitoring agent within the personal health system presented
in Fig. 1. We extend this original framework with a new set of features relevant to complex
activity recognition. The agent is situated in the smart phone of the user and interacts with the
application that receives input such as glucose and activity data from the sensors on the user.
The agent’s knowledge-base is also extended with logic rules regarding activity recognition
to process activity data (see Sections 4.2 and 5.1) as well as contextual information about
the user’s intentions (e.g. the user’s current goal). The agent can also interact with the user’s
surroundings – in an emergency it calls an ambulance, flashes the street lights to attract
attention and alerts the user’s doctor.

4.2. Recognising Lifecycle Transitions of Activities with the Event Calculus
We are now ready to describe our activity recognition framework. In this framework

an activity is understood as a parameterised template whose parameters consist of a label
naming the activity, a set of participants co-involved in the carrying out of the activity and
a goal revealing the desired outcome of the participants participating in it. The framework
identifies an activity lifecycle that presupposes the occurrence of primitive events (e.g. walks,
stands, lies) representing the input arriving from a low-level recognition system (see Fig.2).
Then the occurrence of primitive events treats activities as temporal fluents that can be
started, interrupted, suspended, resumed, or completed in time. The framework is driven
by an additional template for activity goals and their associated lifecycle, similar to that of
activities. Both lifecycles are presented in Fig.4.

To reason about the evolution of activities and the effects of events we use the Event
Calculus of Kowalski and Sergot (1986). Table 1 summarises the ontology of the domain-
independent axioms we employ by selecting multi-valued fluents as in Artikis et al. (2009)
to represent state properties including activities and goals. We further extend the ontology
of the Event Calculus with a causes at/3 predicate in order to represent explicitly when an
event causes another event to happen at a specific time. We will see later that this allows us
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TABLE 1. Ontology of our version of the Event Calculus.

Predicate Description

happens at(E, T) Event E happens at time T
holds at(F=V, T) Fluent F has value V at time T
holds for(F=V, [Ts,Te]) Fluent F continuously has value V from time Ts to time Te
broken during(F=V, [Ts,Te]) Fluent F has changed value V from time Ts to time Te
initiates at(E, F=V, T) Event E initiates value V for fluent F at time T
terminates at(E, F=V, T) Event E terminates value V for fluent F at time T
causes at(E1, E2, T) The occurrence of event E1 causes event E2 to happen at T

to rewrite rules using happens at/2 in both the head of a rule and in its body, thus saving
us from performing expensive forward reasoning when occurrence of certain events cause
others to happen. We will elaborate on this point further in Section 5.3, where we will discuss
the implementation techniques that we will use for our system.

On top of the domain-independent axioms, our framework consists of the following
additional components:

• an activity theory that follows the activity lifecycle;
• a goal theory that follows the goal lifecycle;
• a domain model that describes the recognition domain;
• an event narrative that contains the events that happened in the system.

We start with the generic components of the event recognition framework, i.e. the activity
theory and the goal theory (see Section 5.1 for the domain model and the event narrative).
Fig. 4 describes the lifecycle of an activity (a) and a goal (b). The recognition of activities
is driven by the goals of the user, which we represent as a modification of the goal lifecycle
presented in van Riemsdijk et al. (2008) for our purposes. An activity is first activated due to a
goal being adopted by the user and a low-level event happening to start the activity. While the
activity is being performed, if the user’s goal changes, then the activity is no longer required
(e.g. the goal is dropped), then the activity is interrupted. If the goal remains, but another
goal supersedes it temporarily (e.g. the goal is deactivated), then the activity is suspended.
When the user reactivates the goal again, the activity is resumed. The activity completes
successfully when the user achieves the goal, in which case the activity is completed.

Active

Suspended

Interrupted

Completed

start

suspend

resume

interrupt complete

(a) Activity lifecycle

Active

Deactivated

Dropped

Achieved

adopt

deactivate

reactivate

drop achieve

(b) Goal lifecycle

FIGURE 4. Lifecycle of an activity and a goal. Double ellipses represent terminal states.



10 COMPUTATIONAL INTELLIGENCE

Listing 1 presents the Event Calculus axioms specifying the domain independent activity
lifecycle. Note that A is a term representing an action. Terms that start with capital letters
represent variables as in Prolog notation. Lines 1–10 describe how the recognised events
initiate different values for the activity fluents; termination of these fluents are handled
automatically by a generic terminates at/2 definition, see Artikis et al. (2009) (axiom 19).

1 initiates_at(start(A), A=active, T) :-
2 happens_at(start(A), T).
3 initiates_at(suspend(A), A=suspended, T):-
4 happens_at(suspend(A), T).
5 initiates_at(resume(A), A=active, T):-
6 happens_at(resume(A), T).
7 initiates_at(interrupt(A), A=interrupted, T):-
8 happens_at(interrupt(A), T).
9 initiates_at(complete(A), A=completed, T):-

10 happens_at(complete(A), T).

LISTING 1. Domain independent activity theory.

Similar to the activity lifecycle, Listing 2 presents the Event Calculus axioms for the
goal lifecycle, where G represents a goal. Lines 1–10 describe how the goal events initiate
different values for the goal fluents.

1 initiates_at(adopt(G), G=active, T):-
2 happens_at(adopt(G), T).
3 initiates_at(deactivate(G), G=deactivated, T):-
4 happens_at(deactivate(G), T).
5 initiates_at(reactivate(G), G=active, T):-
6 happens_at(reactivate(G), T).
7 initiates_at(drop(G), G=dropped, T):-
8 happens_at(drop(G), T).
9 initiates_at(achieve(G), G=achieved, T):-

10 happens_at(achieve(G), T).

LISTING 2. Domain independent goal theory.

We show next how to develop the domain dependent part of our framework in order
to support the activity recognition we envisage for our scenario. We represent an activity
fluent as activity(Name, Participants, Goal)=State. The Name is an atom (e.g. walking),
the Participants is either a list of atomic identifiers (e.g. [john, peter] or a single such
identifier (e.g. john), and Goal is the name of a goal that specifies what the activity is
seeking to achieve (e.g. at home) with the possibility of a null value. The State represents
the current state of the activity, which is drawn from the set of possible values active,
suspended, interrupted and completed (see Fig. 4(a)). Similarly, we represent a goal
fluent as goal(Name, Participants)=State. The State represents the current state of the
goal, which is drawn from the set of possible values active, deactivated, dropped and
achieved (see Fig. 4(b)).

4.3. Domain Dependent Definitions for Activities and Goals
We show next how to define domain-dependent clauses to specify the lifecyles of activi-

ties and goals for the specific low-level events of an application. Listings 3 and 4 assume the
person has the goal of going home (G=at home). Listing 3 shows an extract of the domain
dependent activity theory exemplified, in part, by the activity of walking. The starting of
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this activity is caused when a low-level event walks(P) happens (stating that the participant
P walks, see lines 1-5). We assume that the low-level activity recognition module will not
send us more low-level walks(P) events, only when it recognises that walking has stopped
and something else has happened. When a new (different) event is recognised by the low-
level module, it will be communicated to the high-level one, which will in turn cause to
suspend the current activity. Note that the \+ symbol denotes negation as failure (Clark,
1987). Lines (7-10) show how when the low-level event stands(P) happens (stating that
the participant P stands) causes walking to be suspended. The walking activity is resumed
(becomes active again) when a low-level walks(P) event happens (Lines 12-15). An activity
is interrupted when that activity’s goal is dropped (Lines 17-19), and, an activity is completed
when that activity’s goal has been achieved (Lines 21-22), but refer to Listing 4 for the
detailed conditions of this happening.

1 causes_at(walks(P), start(activity(walking, P, G)), T):-
2 happens_at(walks(P), T),
3 holds_at(goal(G, P)=active, T),
4 \+ holds_at(activity(walking, P, G)=active, T),
5 \+ holds_at(activity(walking, P, G)=suspended, T).
6 ...
7 causes_at(stands(P), suspend(activity(walking, P, G)), T):-
8 happens_at(stands(P), T),
9 holds_at(goal(G, P)=active, T),

10 holds_at(activity(walking, P, G)=active, T).
11 ...
12 causes_at(walks(P), resume(activity(walking, P, G)), T):-
13 happens_at(walks(P), T),
14 holds_at(goal(G, P)=active, T),
15 holds_at(activity(walking, P, G)=suspended, T).
16 ...
17 causes_at(drop(G, P), interrupt(activity(A, P, G)), T):-
18 happens_at(drop(G, P), T),
19 holds_at(activity(A, P, G)=active, T).

21 causes_at(achieve(goal(G, P)), complete(activity(A, P, G)), T):-
22 happens_at(achieve(goal(G, P)), T).

LISTING 3. An example of domain dependent activity theory.

Similarly, Listing 4 shows an extract of a domain dependent goal theory exemplified,
in part, by assuming that the diabetic user will be specifying the goal a graphical user
interface (GUI) of the mobile phone application. In this domain, actions of the user at the
GUI are interpreted as internal events that cause the adoption of a new goal (Lines 1–4) or
the deactivation / reactivation / dropping of an existing goal (Lines 6–8, 10–12, and 14–16
respectively). Finally, the achievement of the goal is specified by the person arriving at the
destination specified in the goal (Lines 18–22).
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1 causes_at(adopt_goal_fromGUI(P, G), adopt(goal(G, P)), T):-
2 happens_at(adopt_goal_fromGUI(P, G), T),
3 \+ holds_at(goal(G, P)=active, T),
4 \+ holds_at(goal(G, P)=deactivated, T).

6 causes_at(deactivate_goal_fromGUI(P, G), deactivate(goal(G, P)), T):-
7 happens_at(deactivate_goal_fromGUI(P, G), T),
8 holds_at(goal(G, P)=active, T).

10 causes_at(reactivate_goal_fromGUI(P, G), reactivate(goal(G, P)), T):-
11 happens_at(reactivate_goal_fromGUI(P, G), T),
12 holds_at(goal(G, P)=deactivated, T).

14 causes_at(drop_goal_fromGUI(P, G), drop(goal(G, P)), T):-
15 happens_at(drop_goal_fromGUI(P, G), T),
16 holds_at(goal(G, P)=active, T).

18 causes_at(arrived(P, L), achieve(goal(G, P)), T):-
19 happens_at(arrived(P, L), T),
20 holds_at(goal(G, P)=active, T),
21 holds_at(destination_of(G)=L, T),
22 holds_at(activity(A, P, G)=active, T).

LISTING 4. An example of domain dependent goal theory.

5. EXPERIMENTS
In this section, we (i) formalise the use case described in Section 3 in the Event Calculus,

(ii) describe an activity generator to produce narratives relevant to the use case, (iii) propose
a process for incremental compilation of such narratives in the Event Calculus, and (iv)
describe our experimental setup regarding the use case.

timeline (mins)3 15 18

FIGURE 5. John’s activities.

5.1. Implementation of the Use Case
We now focus on the scenario described in Section 3, and implement the domain specific

predicates of Event Calculus for recognising the falling and fainting of a person1. Let us first
review the primitive events that lead to John falling on the street due to a hypoglycaemia
episode. Fig. 5 shows the timeline of John’s activities after he gets off the bus and heads
home. We capture the temporal intervals of such activities using the predicate holds for/2,
implemented in our Event Calculus representation. It represents the validity period for ac-
tivities that are in active or suspended state. This is shown in Listing 5. John stops walking

1The complete implementation can be found at https://bitbucket.org/dice rhul/mvfcec.
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at time 15. This initiates a transition in the activity lifecycle: standing becomes active and
walking becomes suspended in the next time point (16). Similarly, when John stops standing
at time 18, this initiates a transition in the activity lifecycle: lying becomes active and
standing becomes suspended in the next time point (19).

happens_at(adopt_goal_fromGUI(john, at_home), 1).
happens_at(walks(john), 3).
happens_at(stands(john), 16).
happens_at(lies(john), 19).

holds_for(activity(walking, john, at_home)=active, [3, 15]).
holds_for(activity(standing, john, null)=active, [16, 18]).
holds_for(activity(lying, john, null)=active, [19, infPlus]).

holds_for(activity(walking, john, at_home)=suspended, [16, infPlus]).
holds_for(activity(standing, john, null)=suspended, [19, infPlus]).

LISTING 5. Recognition of intervals for primitive activities.

Using this knowledge only, we can recognise if someone is falling. Listing 6 describes
a basic approach for the recognition of the composite event falls. The person must go from
walking to standing, and then to lying in a short period of time in order to be recognised
as a fall event. Note that this rule does not take into account the activity theory described
in Section 4.2, and thus requires explicit temporal interval reasoning (i.e. the predicate
immediately before/2) to check the order of activities.

happens_at(falls(Person), T):-
happens_at(lies(Person), T),
holds_for(walking(Person)=true, [_, T1]),
holds_for(standing(Person)=true, [T2, T3]),
immediately_before(T1, T2),
immediately_before(T3, T).

immediately_before(T1, T2):-
T is T2 - T1,
lt(T,2).

LISTING 6. Recognition of a fall event without the activity theory.

Listing 7 improves the previous rule with the use of our activity framework. Here, since
the states of the activities are handled by the activity theory, the rule does not need to check
explicitly the validity periods of the walking and standing fluents as previously done with
the immediately before/2 predicate shown in Listing 6. Because we use activity lifecycles
to develop domain specific rules linking the goals of a person, these domain specific rules
can use the values of activity fluents (e.g. suspended, active, completed) and the events that
happen at a time T to recognise which new events are caused. For example, if the low level
event that the person is lying down has been recognised at time T, and at that time standing
is active for the goal to go home, and walking is suspended for that goal, then the fact that
he is now lying causes the recognition of the event that the person has fallen. If we did not
have the activity lifecycles with the goal, the search for previous activities (i.e. walking) is
not guided. As a result, we need to query for previous times T1, T2 and T3 (as described in
Listing 6), which are not instantiated at query time and thus make the system less efficient
in searching unguided for the previous activity as there could be other occurrences in which
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walking could have been active but without our framework we cannot express the fact that
these could have been related to other goals and not the current one.

causes_at(lies(Person), falls(Person), T):-
happens_at(lies(Person), T),
holds_at(activity(standing, Person, G)=active, T),
holds_at(activity(walking, Person, G)=suspended, T).

LISTING 7. Recognition of a fall event using the activity theory.

In order to recognise that John has fainted, we need additional knowledge about the
environment as well as the intentions of John. Listing 8 describes this domain knowledge
relevant to our scenario. John’s goal is to walk home after watching the movie. As he starts
walking home after he gets off the bus, he receives a hypoglyceamia alert and stops to look
at his smartphone. Unfortunately, he falls down soon after checking the alert. The agent
running on his smartphone asks for John’s status immediately after he falls.

happens_at(adopt_goal_fromGUI(john, at_home), 1).
happens_at(measurement(john, glucose, 2.8), 14).
happens_at(requests(john, confirm_status), 20).

LISTING 8. Contextual information significant to recognising event interruption.

Now we can combine this knowledge together with the formalisation of the fall event
to conclude that John has fainted. In order to recognise that walking is interrupted (by an
emergency) rather than just suspended for a period of time, we need additional contextual
information as well as the fact that John has fallen. More specifically, the agent distinguishes
fainting from falling if the following happens:

• the agent has sent an alert to John following a hypoglycaemia before he fell,
• the agent has asked John to confirm his status soon after he fell, and it has not received a
response,
• John has a goal that has not been achieved yet.

Definition 1 formalizes a faint event according to the above description.

Definition 1: A faint event ef occurs at time tf in narrative N={〈e1, t1〉, . . . , 〈en, tn〉} if
and only if

• ∃〈ei, ti〉, 〈ej , tj〉 ∈ N : ei is a hypoglyceamia alert sent by the agent, ej is a fall of the patient,
and ti < tj < tf ;
• ∃〈ek, tk〉, 〈el, tl〉 ∈ N : ek is a fall of the patient, el is a status confirmation request sent by

the agent, and tk < tl < tf ;
• @〈em, tm〉 ∈ N : em is a response from the patient to the status confirmation request and
ti < tm < tf .

Listing 9 describes the rule for recognising faint events. We capture fainting as a special
case of the fall event (e.g. the interruption of walking).
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1 causes_at(no_response(Person, WaitingTime), faints(Person), T):-
2 happens_at(no_response(Person, WaitingTime), T),
3 happens_at(raises_alert(Person, hypoglycaemia), T1),
4 happens_at(falls(Person), T2),
5 lt(T1, T2),
6 happens_at(requests(Person, confirm_status), T3),
7 lt(T2, T3),
8 T4 is T3 + WaitingTime,
9 holds_at(goal(Goal, Person)=active, T),

10 ge(T, T4).

LISTING 9. Recognition of a faint event.

Theorem 1: Soundness: Listing 9 correctly recognises a faint event.

Proof. We prove Theorem 1 by contradiction. Assume Listing 9 recognises an event ef as
faint, and ef is not a faint event (Definition 1). Then, either of the following must hold:

• @〈ei, ti〉, 〈ej , tj〉 ∈ N : ei is a hypoglycaemia alert sent by the agent, ej is a fall of the patient,
and ti < tj < tf . Lines 3–5 of Listing 9 ensure that this is not the case. Therefore, this is a
contradiction.
• @〈ek, tk〉, 〈el, tl〉 ∈ N : ek is a fall of the patient, el is a status confirmation request sent by

the agent, and tk < tl < tf . Lines 4 and 6–7 of Listing 9 ensure that this is not the case.
Therefore, this is a contradiction.
• ∃〈em, tm〉 ∈ N : em is a response from the patient to the status confirmation request and
tm < tf . Lines 1–2, 8, and 10 of Listing 9 ensure that this is not the case. Therefore, this is
a contradiction.

After the agent detects there is something wrong with John, it has to take appropriate
action to make sure John is safe. Listing 10 describes the events that connect the agent with
the environment. It can alert his doctor and call an ambulance as well as interacting with the
street lights (provided a suitable infrastructure).

alert(doctor). %via the smartphone
alert(ambulance). %via the smartphone
alert(street_light). %via the smart city infrastructure

LISTING 10. Ambient assist during a faint event.

5.2. Activity Generator
In order to test both the flexibility and the efficiency of our approach we have developed

an event generator for the diabetes scenario proposed in section 3. Such a generator consists
of a discrete event simulation algorithm (Banks et al., 2010; Buss, 1996), and outputs a
sequence of events (i.e. an event narrative) coming from the agent’s sensors with a set
of “days” (one file per day) where one person comes back home walking from work. An
example narrative is shown below in Listing 11. Fig. 6 shows the corresponding event graph
for the generator. The generator is not designed to produce data similar to the real one but
instead, to create a dataset large enough to prove that our approach is able to deal with
an important volume of events, and to prove that it properly detects the faint ones, even
when some randomness is introduced. Thus, even when faint events should be very rare in
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FIGURE 6. Event graph for the synthetic data generator where nodes represent different
events and arrows possible transitions between them. A transition can only happen if the
condition stated between parentheses in the edge holds (some transitions are ‘unconditional’,
meaning that the following event always holds). The time for the next event is computed as
the current time plus a (possibly random) quantity, placed at the beginning of the node. We
denote by u(a, b) a random integer number between a and b, and q and s are random real
numbers in [0, 1]. When one event can have different events as the next one, only one is
chosen (conditions are mutually exclusive), therefore only one single value for q and s are
computed before each transition. Finally, the parameters of the model are phypo = 0.05,
pconfirm = 0.5, pchat = 0.25 and the measurement period, τ is adjusted to produce 500
measurements per day. The simulation starts with two events in the queue, a measurement
event and at home, both happening at time zero.

a real environment, we have introduced certain parameters that overestimate the probability
of these, therefore producing many of them that can be used as a validation of our method.

Before the walk, an event is generated (possibly from the GUI of a mobile phone ap-
plication) setting the goal to go home. The rest of events happening are randomly generated
according to several parameters (probability distributions) that can be specified by the user.

Events are processed sorted by their time attribute, in which they are supposed to
happen. Therefore, the list of events is a priority queue (ordered by time), and every event
which is processed generates future events which are introduced in the queue accordingly.
This general scheme is summarised in Algorithm 1 which is shown in the Appendix. Each
event is processed and the Prolog narrative corresponding to that event is generated (this is
summarised in Algorithm 2 in the Appendix). After that processing, from that current event
the next event is generated based on several random conditions (this procedure is shown in
Algorithm 3 in the Appendix).

Following the set of generated events, the person may (or may not) stop to talk to a
friend, may suffer (or not) a hypoglycaemia and, in that case, if the person does not recover,
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the sequence of events corresponding to a faint episode would be produced. In parallel, the
events corresponding to glucose measurements are periodically generated.

initially(location_of(john)=busStop).
initially(glucose(john)=3.8).

happens_at(adopt_goal_fromGUI(john, at_home), 1).
happens_at(walks(john), 3).
happens_at(measurement(john, glucose, 3.3), 3).
happens_at(stands(john), 4).
happens_at(measurement(john, glucose, 3.1), 4).
happens_at(walks(john), 5).
happens_at(measurement(john, glucose, 2.8), 5).
happens_at(stands(john), 6).
happens_at(raises_alert(john, hypoglyceamia), 6).
happens_at(lies(john), 7).
happens_at(requests(john, confirm_status), 8).

LISTING 11. Narrative of events that leads to fainting of John.

Listing 11 describes a short narrative of events created by the activity generator, that
leads to fainting of John. The CGM device takes measurements as John starts his walk from
the bus stop towards his house. Note that John’s blood glucose gradually drops and reaches a
critical value, after which John eventually falls down on the pavement. The last event on the
narrative is the message John receives from the agent on his smartphone. John faints before
responding to the message. Note that the activity generator does not necessarily reflect real-
life situations. This is intentional as there would be very few (if not none) hypoglycaemia
related faint incidents in real life. For the purposes of experimentation and validation of our
approach, we generate more than usual faint incidents.

5.3. Incremental Compilation of sensor data to EC Narratives
We have developed an update-time reasoning component that processes streams of events

arriving to the agent from its sensors. Such events are processed incrementally by calling the
updates at/2 clauses shown in 12 (Lines 1–4). An update with a single event (Lines 6–9)
first applies the effects of the event to the knowledge-base and then processes the updates
that are caused by the event.

1 updates_at([], _).
2 updates_at([Event|Events], T):-
3 update_at(Event, T),
4 updates_at(Events, T).

6 update_at(Event, T) :-
7 effects_at(Event, T),
8 findall(CausedE, causes_at(Event, CausedE, T), CausedEs),
9 updates_at(CausedEs, T).

LISTING 12. Processing a list of event updates.

The effects at/2 predicate essentially asserts the event in the knowledge-base and then
maintains a compiled version of maximally validity intervals (MVIs) as in Chittaro and
Montanari (1996) but for multi-valued fluents. We represent a multi-valued fluent p with
variables X1, X2, ..., Xn and value V for an MVI with starting time Ts and ending time Te
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FIGURE 7. Experimental design.

as

holds for(p(X1, X2, ..., Xn) = V, [Ts, Te])

but we compile it at run-time and store it as:

p holds for(p(X1, X2, ..., Xn) = V, [Ts, Te]).

This way of storing MVIs is more efficient as it queries a more specific predicate starting
with the name of p rather than the generic holds for/2. However, as we hide these details
from the user of the framework, the query mechanism for holds for/2 needs to be changed
to take into account these compilation details. In this way the compiled version of the MVI
is accessed each time a holds for/2 query is posed to the system.

Once the effects of an event have been applied to the state of the knowledge-base, the
events caused by these effects are also added via updates and cached. We find these events
straightforwardly using forward reasoning with causes at/3 definitions and we avoid the
unguided forward reasoning that would have been necessary if we used happens at/2 rules.
This point further justifies why we extended with causes at/3 the original ontology of the
Event Calculus in our framework.

5.4. Experimental Setup
We use the activity generator to create and represent the everyday lifestyle activities

of a type 1 diabetic patient, John. In total, we create 365 separate narratives with 500
approximately events on average. This represents a time span over a year of John’s activities.
We configure the activity generator such that approximately 10% of the days include a ‘faint’
event that John faces. We conduct the following two sets of experiments.
Performance statistics We test the performance of our activity-theory on the combined
dataset of the 365 individual day-long datasets. For this purpose, we use the incremental
compilation technique as described in Section 5.3. We run different queries for the ‘falls’
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and ‘faints’ events described in Listing 6 (without the activity theory), Listing 7 (using the
activity theory), and Listing 9.
Recognition details We provide a set of queries that are supported by our framework to
demonstrate various details of recognizing ‘faints’ events. The queries can be used for two
purposes: (i) to get general information about a patient such as identifying the number of
faint occurrences per month, and (ii) to focus on the details of a specific faint occurrence
(e.g. to understand the glucose trend of the patient before and after a faint).

Fig. 7 summarizes our design for running the experiments. First, the activity generator
is run by specifying its input parameters such as number of events per day, glucose mea-
surement frequency, etc. Based on the given parameters, it generates a set of datasets, each
representing a day of the patient’s activities. These datasets are then fed into the EC compiler,
which compiles the events and creates the compiled knowledge-base. During the compilation
stage, we collect performance statistics regarding the compilation of events (update time).
After the compilation of the whole data is finished, we evaluate the run time performance by
running various findall/3 and holds at/2 queries. We also run queries to identify interesting
details regarding the faint occurrences.

6. RESULTS
In this section, first we show the performance results regarding our incremental com-

pilation process for Event Calculus narratives including query times, and then we present
sample queries that our framework supports regarding the activities of diabetic patients.

6.1. Performance Evaluation
We will first provide a benchmark on the update time. Using the generator presented in

section 5.2, we built a dataset for one single person, for a whole year (365 days) using the
default parameters. All benchmarks were run on a computer with an Intel Core i7 2.6GHz
processor and 16GB RAM, running Mac OS version 10.10.5 and SWI Prolog Version 7.3.6.

We first show a benchmark on the update time: we start compiling the narrative for the
first day and we run updates on our dataset adding the rest of the days one by one until the
end of the year. Fig. 8 shows the individual update times for each new day, i.e. the time it
takes for compiling the events of day N given that all previous events from days 1 . . . N-1
are compiled in the knowledge-base. The results show that the update time is approximately
linear with respect to the number of days already added onto the knowledge-base. The last
day of a whole year, where the knowledge-base already contains more than 175, 000 events,
can be compiled in less than three minutes, which shows that our approach is efficient, even
for high-volume datasets. Since our approach is intended for run-time monitoring, this is
a significant result. For example, if we had been monitoring the activities of John for 350
days, each new event in day 351 would take less than one third of a second to compile,
which enables our monitoring agent to detect life threatening situations in real-time.

In order to test the performance of the query time in our approach we will show different
experiments. First of all, we will run a query to find all “fall” and “faint” events of the patient
for a whole year. These two queries are shown in Listing 13. Since these two queries take a
really small amount of time, we have repeated them 100 of times and gathered the minimum,
maximum and average query time for each one. The query time distributions are shown in
Fig. 9(a) and Fig.9(b); fall events are found in less than 0.1 ms, even for the worst case, with
an average query time of 0.033 ms. The query for faint events, although more complicated,
is still very efficient: they can be queried in less than 20 ms, with an average of 0.2 ms. This
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FIGURE 8. Benchmark on the update time.

shows that our approach provides query time which run virtually in real time, our narrative
was based on 184,448 events that have happened over the period of a year.

findall(T, happens_at(faints(P), T), Ts).
findall(T, happens_at(falls(P), T), Ts).

LISTING 13. Finding all fall and faint events.

We have run benchmarks on glucose-related queries, as well. First of all, for each day of
the year, we have queried the glucose values of the person in the same dataset. Each query is
run 100 times as in the previous case and, in figure 10(a). Query time is very efficient, with
a maximum run time of 70 ms for the worst case, and averages of around 10 ms. We show
the same experiment in a monthly basis, in figure 10(b), with query times in the same order
of magnitude. This clearly shows that, for a use case involving complicated queries over the
glucose values the runtime is almost immediate.

6.2. Supported Queries
We provide a sample set of queries to demonstrate the sort of information that can

be inferred from our activity recognition framework. While our framework supports these
queries on the compiled datasets in order to gather details on ‘faints’ events, the range of
possible queries is not limited to the following. A designer may construct other queries
depending on the end users’ needs. We assume the designer has familiarity with declarative
programming. But, the end user would be given an interface to produce customised queries,
e.g. daily, monthly, or yearly reports of fainting.
Faint frequency shows the number of faint occurrences per month. This is useful to
identify whether the patient has a particular trend during the year. For example, we can
answer questions such as ‘Are all the faint occurrences uniformly distributed?’ or ‘Are they
clustered in a short period of time, e.g. one month?’ Listing 14 lists the query to find all
faint occurrences per month. The external user query abstracts away all time-related details
of EC, and only requires the user to enter the subject month, e.g. “january”. The internal
computation of months with respect to time points is performed by the EC reasoner. Each
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FIGURE 9. Execution benchmark for ‘findall/3’ queries.

50 100 150 200 250 300 350
Time (days)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Query: all glucose values for one year, daily
minimum query time
maximum query time
average query time

(a) Each day

1 2 3 4 5 6 7 8 9 10 11 12
Time (months)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Query: all glucose values for one year, monthly
minimum query time
maximum query time
average query time

(b) Each month

FIGURE 10. Execution benchmark to find all glucose measurements.

day has an interval of 2500 timepoints, and starts with where it has left from the previous
day. Thus, a month on average has 75000 timepoints.

% external user query
?- findall(T, (happens_at(faints(P), T), in(T, Month)), Ts).

% internal computation of time with respect to months
in(T, january):- T > 0, T =< 75000.
in(T, february):- T > 75000, T =< 150000.
in(T, march):- T > 150000, T =< 225000.
in(T, april):- T > 225000, T =< 300000.
in(T, may):- T > 300000, T =< 375000.
in(T, june):- T > 375000, T =< 450000.
in(T, july):- T > 450000, T =< 525000.
in(T, august):- T > 525000, T =< 600000.
in(T, september):- T > 600000, T =< 675000.
in(T, october):- T > 675000, T =< 750000.
in(T, november):- T > 750000, T =< 825000.
in(T, december):- T > 825000, T =< 900000.

LISTING 14. Finding all faint occurrences per month.

Fig. 11(a) depicts the bar graph that is plotted using our activity data.
Glucose trend shows the glucose measurements of the patient during the occurrence of a
specific faint. This is useful to identify whether there is a glucose pattern going from bad to
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FIGURE 11. Supported queries.

worse. Listing 15 shows the queries to extract this information using the knowledge-base.
Note that glucose measurements occur every five minutes.

?- happens_at(faints(P), T), T > 650000,
findall(V, (happens_at(measurement(P, glucose, V), Ti),

T - Ti > 0, T-Ti < 25), Vs).
?- happens_at(faints(P), T), T > 650000,

findall(V, (happens_at(measurement(P, glucose, V), Ti),
Ti - T > 0, Ti-T < 40), Vs).

LISTING 15. Finding glucose measurements regarding a faint event.

Fig. 11(b) shows the glucose trend of the patient for a specific occurrence of a faint event
on Day 299 of the dataset (T = 747521, which corresponds to October), between 8AM and
9AM.
Faint details show various other information related to a faint event. We can identify where
the faint happened, and what the patient was doing just before faint happened. We can also
answer important questions such as ‘Is there a correlation between the faint event and the
time of day, goal or location of the user?’ Listing 16 shows such example queries and results.

?- happens_at(faints(P), T), holds_at(location_of(P)=L, T).
P = john,
T = 18,
L = on_street.

?- happens_at(faints(P), T), holds_at(goal(G, P)=active, T).
P = john,
T = 18,
G = at_home.

LISTING 16. Details for a faint event.

7. CONCLUSIONS
We have presented an activity recognition capability that is integrated within a logic-

based agent architecture to recognise complex activities related to diabetes monitoring. The
approach makes use of an activity lifecycle, in which activities are treated as temporal fluents
that can change state according to events that occur through time. The framework also
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proposes a goal lifecycle for goals that drive activities. The monitoring agent utilises the
activity recognition capability to reason about the user’s activities given the user’s high-level
goals. The added value of such monitoring is in the detection of life threatening situtions
when the agent advises the user about what to do, it alerts the user’s carers about the user’s
condition and it interacts with the surrounding ambient (when possible) so that the user’s
location can be easily identified.

We have motivated the work with a specific scenario illustrating how monitoring and
recognising activities of a type 1 diabetic patient can be naturally conceived as a compu-
tational logic problem. The approach we have developed is particularly suitable for sym-
bolic reasoning agents that use heuristic rules based upon medical guidelines. The main
emphasis of the work has been on motivating and conceptually organising the knowledge
representation of the recognition in terms of activity and goal lifecycles. In this context, we
have evaluated our framework by outlining different ways to carry out the recognition of
significant events for a case study with and without these lifecycles. We have shown that our
recognition rule regarding a faint event is sound.

Our approach has maintained the split of domain independent versus domain dependent
specifications of the original Event Calculus, however, our version is applicable for com-
plex activities as follows. In the original Event Calculus the persistence axioms holds at/2,
holds for/2 and broken during/2 are domain independent while the definition of the predi-
cates initiates at/3, terminates at/3 and happens at/2 is domain dependent. In the multi-
valued fluents version of the Event Calculus that we use, terminates at/3 is specified do-
main independently (as in Artikis et al. (2009)); this optimisation avoids multiple domain
dependent definitions of terminates at/3 for any multi-valued fluents including the activity
ones. In addition, in our extension of the multi-valued fluents Event Calculus we have
included a domain independent theory about activity and goal lifecycles as specified in
Listings 1 & 2, which can be used across domains. Moreover, we have also introduced
domain specific causes at/3 definitions that enabled us to guide the forward reasoning
required for caching updates. Our caching mechanism extended the Cached Event Calculus
with multi-valued fluents and supports very efficient querying of large event bases.

We have implemented a prototype agent to realize our activity recognition process in
GOLEM (Bromuri and Stathis, 2008), the agent platform we used to implement agents in
COMMODITY12 (Kafalı et al., 2013). Our agent can reason about data produced by our
activity generator and raises alerts when life-threatening situations are recognized. However,
we have not deployed this agent as a stand alone application for a mobile phone that a
diabetic patient can use. Such integration is a crucial next step to perform further experi-
mentation with the proposed system. It will also require to address assumptions that we have
made here, viz., that the phone will never be dropped without the user realising it, or that the
user is rational and will never ignore the important messages that are precondition to alerts
such as calling an ambulance.

We have performed extensive experiments on activities produced by an activity gen-
erator that we have developed. We plan to perform further experiments with real activity
data, gathering sensory information from the user’s mobile phone. Our participation in the
COMMODITY12 project has given us access to activity data from the clinical trials with
actual patients. However, no life threatening situations have arisen during these trials. There-
fore, we could not make use of the COMMODITY12 data in this work. We have configured
our activity generator to produce more than usual hypoglyceamia and faint events to validate
the correctness of our framework.

Comparing our approach to supervised models such as HMMs would further highlight
our advantages such as expressiveness with the inclusion of temporal constraints and no
need for labelled data to construct models. Moreover, exploration of additional domains and
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datasets would be useful, in particular for smart home environments (Cook and Schmitter-
Edgecombe, 2009; van Kasteren et al., 2008).

We have connected the lifecycles of activities and goals in such a way that our framework
recognises activities first and then obtains knowledge of goals as part of the context provided
by the user. We use the high-level goal of the user to minimise uncertainty created by the
user’s surroundings. Identifying plans and goals from performed users’ activities is also
investigated in the literature (Kautz, 1987; Lesh and Etzioni, 1995; Sadri, 2012b). This
is particularly significant when agents are performing collaborative activities to achieve a
common goal. We believe that a plan recognition approach is helpful and can be incorporated
as a complementary model to automatically recognise users’ goals rather than asking them
to specify those goals. We will further investigate this direction in future work.

We have provided a case study from the healthcare domain, motivated by our partic-
ipation in the COMMODITY12 project. With the addition of domain ontologies, we will
investigate how this can be extended and generalised to other domains, where run-time
continuous monitoring is essential.
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KAFALI, ÖZGÜR, MICHAL SINDLAR, TOM VAN DER WEIDE, and KOSTAS STATHIS. 2013. ORC: an
ontology reasoning component for diabetes. In Proceedings of the 2nd International Workshop on Artificial
Intelligence and Netmedicine (NetMed).

KAKAS, ANTONIS C., PAOLO MANCARELLA, FARIBA SADRI, KOSTAS STATHIS, and FRANCESCA TONI.
2008. Computational logic foundations of KGP agents. J. Artif. Intell. Res. (JAIR), 33:285–348.

KAUTZ, HENRY A. 1987. A formal theory of plan recognition. PhD thesis, University of Rochester.
KOURIS, IOANNIS, and DIMITRIS KOUTSOURIS. 2012. A comparative study of pattern recognition classifiers

to predict physical activities using smartphones and wearable body sensors. Technology and Health
Care, 20(4):263–275.

KOWALSKI, ROBERT, and MAREK SERGOT. 1986. A logic-based calculus of events. New Generation
Computing, 4(1):67–95.
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APPENDIX Activity Generation Algorithms

Algorithm 1: Main loop of the generator
Input: initial time: T0
Result: Event stream of one day of our scenario

1 q ← priority queue() // sorted by time
2 q.push(at home, T0)
3 q.push(measurement, T0)
4 while not q.empty() do
5 current event, T ← q.pop()
6 write narrative(current event, T )
7 ev, T ′ ← next event(current event, T )
8 if ev 6= ∅ then
9 q.push(ev, T ′)

10 return
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Algorithm 2: procedure write narrative
Input: event: event
Input: time: T
Input: person name: name
Input: glucose value (only for measurements): g
Result: list of Prolog statements: narrative

1 narrative← list()
2 if event == at home then
3 if T == 0 then
4 narrative.append(“ initially(status of(name)=ok). ”)
5 narrative.append(“ initially(home of(name)=h1). ”)
6 narrative.append(“ initially(location of(h1)=homeAddress). ”)
7 narrative.append(“ initially(location of(name)=busStop). ”)
8 narrative.append(“ happens at(adopt goal fromGUI(name, at home(T )), T ). ”)
9 else if event == walking or continuing walk then

10 narrative.append(“ happens at(walks(name), T ). ”)
11 else if event == chatting with friend then
12 narrative.append(“ happens at(stands(name), T ). ”)
13 else if event == hypo then
14 narrative.append(“ happens at(stands(name), T ). ”)
15 narrative.append(“ happens at(raises alert(name, hypoglyceamia), T ). ”)
16 else if event == fainted then
17 narrative.append(“ happens at(lies(name), T ). ”)
18 else if event == no response then
19 narrative.append(“ happens at(requests(name, confirm status), T ). ”)
20 narrative.append(“ happens at(no response(name, 2), T + 2). ”)
21 else if event == recovered then
22 narrative.append(“ happens at(requests(name, confirm status), T ). ”)
23 narrative.append(“ happens at(stands(name), T + 1). ”)
24 narrative.append(“ happens at(walks(name), T + 2). ”)
25 else if event == arrived then
26 narrative.append(“ happens at(arrived(name, homeAddress), T ). ”)
27 else if event == measurement then
28 narrative.append(“happens at(measurement(name, glucose, g), T ). ”)
29 return narrative
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Algorithm 3: procedure next event
Input: event: current event
Input: time: T
Input: glucose measurement period: period
Input: probability values: pchat, phypo, pconfirm
Result: (next event, future time T ′)

1 if current event == at home then
2 return (walking, T+ randint(1, 10))
3 else if current event == walking then
4 if rand() < pchat then
5 return (chatting with friend, T+ randint(1, 10))
6 else if rand() < phypo then
7 return (hypo, T+ random.randint(1, 10))
8 else
9 return (arrived, T+ randint(15, 25))

10 else if current event == chatting with friend then
11 return (continuing walk, T+ randint(1, 10))
12 else if current event == continuing walk then
13 if rand() < phypo then
14 return (hypo, T+ random.randint(1, 10))
15 else
16 return (arrived, T+ randint(5, 15))

17 else if current event == hypo then
18 if rand() < pconfirm then
19 return (recovered, T+ randint(1, 3))
20 else
21 return (fainted, T + 2)

22 else if current event == no response then
23 return (,) /* No next event, return empty */
24 else if current event == fainted then
25 return (arrived, T+ randint(1, 10))
26 else if current event == recovered then
27 return (arrived, T+ randint(1, 10))
28 else if current event == measurement then
29 if measurement is the closest to a hypo then
30 return (measurement, T + period, glucose=uniform(2.0, 3.7) )
31 else
32 return (measurement, T + period, glucose=uniform(3.9, 9.0) )

33 else
/* the only remaining case is arrived */

34 return (at home, T + 3000+ randint(1, 100))


