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 26 

ABSTRACT: Fluvial sequences from the late Pleistocene to the Holocene are exposed in Arlington 27 

Canyon, Santa Rosa Island, Northern Channel Islands, California, USA, including one outcrop that 28 

features centrally in the controversial hypothesis of an extra-terrestrial impact at the onset of the Younger 29 

Dryas.  The fluvial sequence in Arlington Canyon contains a significant quantity and range of organic 30 

material, much of which has been charred.  The purpose of this study was to systematically describe the 31 

key outcrop of the Arlington sequence, provide new radiocarbon age control and analyse organic material 32 

in the Arlington sediments within a rigorous palaeobotanical and palaeo-charcoal context. These analyses 33 

provide a test of previous claims for catastrophic impact-induced fire in Arlington Canyon. Carbonaceous 34 

spherular materials were identified as predominantly fungal sclerotia; ‘carbon elongates’ are 35 

predominantly arthropod coprolites, including termite frass. Glassy carbon formed from the precipitation 36 

of tars during charcoalification. None of these materials indicate high-temperatures formation or 37 

combustion. Charcoal and other materials in Arlington Canyon document widespread and frequent fires 38 

both before and after the onset of the Younger Dryas, recording predominantly low-temperature surface 39 
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fires.  In summary, we find no evidence in Arlington Canyon for an extra-terrestrial impact or catastrophic 40 

impact-induced fire.  41 

 42 

KEYWORDS: Fluvial sedimentology; stratigraphy; charcoal; Younger Dryas Impact Hypothesis; extra-43 

terrestrial impact;  44 

 45 

 46 

Introduction 47 
 48 

Quaternary fluvial records provide information on terrestrial palaeoclimate (e.g., Pigati et al., 2014), 49 

neotectonics (e.g., Pinter and Keller, 1995), archaeological context (Mishra et al., 2007), and a wide 50 

variety of other areas (see Bridgland & Westaway, 2014). These sediments offer unique challenges, and 51 

failure to consider these may hamper, or worse, lead to erroneous palaeoenvironmental interpretations. 52 

The Younger Dryas Stadial, which corresponds to Greenland Stadial-1 (GS-1; ~12.9-11.7 ka BP; 53 

(Rasmussen et al., 2006) has been well described and has been recognised in proxy records from 54 

California (e.g., Hendy et al., 2002).  The “Younger Dryas Impact Hypothesis” (YDIH) is the relatively 55 

new suggestion (Firestone et al., 2007) that global events approximately 12.9 kyBP – including climatic 56 

cooling, extinction of North American megafauna, demise of the Clovis archaeological culture, and other 57 

changes worldwide – resulted from the impact of a 5-km diameter comet into the southern margin of the 58 

Laurentide ice sheet.  The YDIH is controversial and has been heavily contested (e.g., Pinter and Ishman, 59 

2007; Pinter et al., 2011; Boslough et al., 2013; van Hoesel et al., 2014; Holliday et al., 2014; Meltzer et 60 

al., 2014; Daulton et al., 2016). Although many sites globally have been put forward as containing 61 

evidence for the YDIH (e.g., LeCompte et al., 2012; Bunch et al., 2012; Wittke et al., 2013; Petaev et al., 62 

2013; etc.) one key sedimentary section from Arlington Canyon, Santa Rosa Island, in the Northern 63 

Channel Islands of California (Fig. 1) has played a particularly important role in the ongoing development 64 

of the YDIH (AC003 in Kennett et al., 2008 et seq; site III in this study).  Several key papers have 65 

focused on this locality with the interpretation of “intense biomass burning” and associated rapid 66 

landscape change (Kennett et al., 2008), the presence of nanodiamonds (Kennett et al., 2009a) and shock-67 

synthesized hexagonal diamonds (Kennett et al., 2009b). More recently, dating evidence from the site was 68 

a key component used in a Bayesian chronological analysis which found a synchronous age for the start 69 

of the Younger Dryas boundary or ‘impact’ layer (Kennett et al., 2015).   70 

The purpose of this study was to systematically sample locality AC003 (Kennett et al., 2008 et 71 

seq; site III in this study) in Arlington Canyon for its evidence of palaeofire and relate this single site 72 

stratigraphy to other multiple sites along the canyon that we also investigated for fire history (see Pinter et 73 

al., 2011; Hardiman et al., 2016).  We demonstrate that evidence in Arlington Canyon is inconsistent with 74 
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3 

the catastrophic extraterrestrial impact and the associated local manifestations that have been proposed.  75 

More broadly, the widely divergent interpretations of events preserved in Arlington Canyon illustrate 76 

general challenges in using palaeobotanical and charcoal records from fluvial sequences.  We present 77 

recommendations and protocols for analysis of Quaternary fluvial deposits, particularly for the collection 78 

of macro-charcoal (defined here as >125 µm) and interpretation of palaeofire from these more complex 79 

sedimentary sequences. 80 

 81 

Material and Methods 82 
 83 

Arlington Canyon is one of a series of north-south oriented drainages along the northern flank of Santa 84 

Rosa Island, carrying discharge from the island's interior northward to the coast (Fig 1).  Santa Rosa 85 

Island has been slowly uplifting through the Quaternary (Pinter et al., 2001), resulting in rugged 86 

topography and streams within deeply incised canyons (Schumann et al., 2016).  At the base of Arlington 87 

and selected neighbouring canyons, one aggradational terrace level forms a morphological bench up to 88 

~25 m above the modern stream.  This terrace sedimentary fill consists of fluvial and localized colluvial 89 

deposits that aggraded from the canyon base during the latest Pleistocene until the mid-to late Holocene 90 

(Pinter et al., 2001; Schumann et al., 2014). This was followed by a cessation of deposition and 91 

reinitiation of incision that cut base level to the bottom of the canyon and exposed the Pleistocene to 92 

Holocene fill deposits in a narrow "slot canyon" through the terrace (Schumann et al., 2016).  The terrace 93 

fill sequence consists of several fluvial cut-and-fill packages, consisting of channel and floodplain 94 

deposits that pinch out laterally or grade into colluvial deposits at their margins.  Distinguishable 95 

stratigraphic units can be traced laterally over distances of metres to tens of metres, but these fluvial units 96 

change in texture and character both vertically and horizontally.  Sandy point bars and silt-dominated 97 

overbank deposits are punctuated by conglomeratic channel fills. Distinguishable depositional units range 98 

in thickness from less than 1 metre to more than 10 m. Between cut-and-fill packages, several 99 

depositional hiatuses and erosional unconformities are marked by weakly developed palaeosols, 100 

characterized by darker colour (Pinter et al., 2011; Schumann et al., 2014), enriched clay content, and 101 

weak soil structure developed on these undulating palaeo-topographic surfaces. 102 

 Our Locality I (see Scott et al., 2010 supplementary data) is an exposure more than 10 m high and 103 

100 m long (UTM). Our Localities II and III are located just 110 m and 190 m north, respectively, of 104 

Locality I, but the lateral variability in the fluvial architecture makes it impossible to correlate sections at 105 

the scale of individual units.  Locality III is a 4-m high exposure on the western side of the canyon 106 

(33°59’25.526”N 120 ° 9’32.208”W) (See Supplementary Materials, Fig. S1). Wittke et al. (2013) claim 107 

that “coordinates, photographs, stratigraphic descriptions, and radiocarbon ages presented in their papers 108 
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(e.g. Scott et al., 2010 and Pinter et al., 2011) conclusively demonstrate that none of their samples 109 

collected were taken from the same stratigraphic section studied by Kennett et al. (2008).”  On the 110 

contrary, our Locality III is identical to their locality AC003 (See Supplementary Materials, Fig. S2).  111 

Furthermore, material from AC003 was sent to the senior author in March 2007 by G. James West (via 112 

John Johnson) with a request to report on the charcoal. Lithological logs of other Arlington sections and 113 

radiocarbon data are given in Hardiman et al. (2016).  114 

 115 

Sampling procedures 116 

The large changes in depositional facies over short distances within the Arlington Canyon fluvial 117 

sequence, combined with high vertical-relief and cut-and-fill sedimentary packages require extensive 118 

detail in the stratigraphic descriptions (Fig. 2) and a large number of dated samples in order to correlate 119 

packages of sedimentary aggradation through the full sequence. Our sampling goals included: (1) to 120 

collect organic material in the sediments, with particular interest in charcoalified plants (macrocharcoal, 121 

>125µm), and (2) to obtain material for radiocarbon dating. Thus we sampled every horizon with visible 122 

charcoal. At some intervals where continuous sampling was necessary, we used a core box that could be 123 

hammered into the section and removed for later sub-sampling. All samples were photographed in situ 124 

before removal.  125 

 126 

Sample processing and radiocarbon dating 127 

In order to separate charcoal or macroscopic plant material from bulk sediment, we first removed any 128 

large rock clasts. Sediment was then soaked in warm water for disaggregation; if needed we used 10% 129 

hydrogen peroxide (Rhodes, 1998). It should be noted that the charcoal in such water baths generally does 130 

not float off, as suggested by Firestone et al. (2007).  The samples were then wet sieved to produce 131 

residues of below 62µm, below 125µm, and above 125µm. Charcoal was picked from the >125µm 132 

residues. We note that in all samples, charcoal pieces are liable to fragment, so counts of number of 133 

fragments are not meaningful, particularly in fluvial sediments. Some of the charcoal residues were 134 

cleaned by dissolving the sediment in 40% HF (see Scott, 2010).   135 

Particularly for fluvial deposits, a pervasive issue for radiocarbon dating is the potential for "old 136 

wood" charcoal dates (Schiffer, 1986; Gavin, 2001; Bird, 2013).  Because charcoal is chemically inert and 137 

mechanically robust, it can sometimes survive erosion from a pre-existing deposit, transport through the 138 

fluvial system, and redeposition.  In order to minimize the danger of dating secondary, re-deposited 139 

charcoal, we identified organic material before submission for radiocarbon analysis and selected only 140 

fragile but well preserved charred plant parts, rather than more robust charcoal fragments.  Picked 141 
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5 

samples of charcoalified wood, seeds, carbonaceous spherules and coprolites were sent for radiocarbon 142 

dating by two different laboratories: the Keck Carbon Cycle AMS Laboratory at University of California 143 

(UC) Irvine and the Oxford Radiocarbon Accelerator Unit, RLAHA, University of Oxford (see Hardiman 144 

et al., 2016).   145 

 There are several methods to separate charcoalified plant material from disaggregated sediment 146 

samples (see Scott, 2010). Samples picked from sediments were studied by light microscopy or mounted 147 

on aluminium stubs for scanning electron microscopy. Some charcoal was embedded into resin blocks 148 

and polished for examination under oil reflective microscopy. We attempted to use the protocol outlined 149 

in Firestone et al. (2007) and Kennett et al. (2008, 2009b) for specimen isolation, but following these we 150 

were not successful. We found that none of the charcoal separation techniques cited in Firestone et al. 151 

(2007) worked for the Arlington samples, so it is uncertain how these were collected, processed or picked. 152 

Sampling protocols provided in ‘‘Separation of YD Event Markers (8/10/2007),” a guide provided by one 153 

of its authors (Allen West, GeoScience Consulting), will break up charcoal fragments in to a large number 154 

of smaller fragments. 155 

 156 

Microscopy of palaeobotanical samples 157 

Samples were identified under water by reflected light under a low-power binocular microscope. Some 158 

samples were picked using dark-field lighting (see Glasspool and Scott, 2013) that facilitated the 159 

separation of charred and un-charred plant fragments.  Some specimens were gold-coated using a Poloron 160 

sputter coater. Uncoated specimens were studied using a Hitachi S3000N variable pressure SEM under 161 

low vacuum and in backscatter electron mode. Coated samples were studied using secondary electron 162 

mode. Specimens were also gold coated and examined using a Philips Environmental SEM.  163 

Uncharred fungal sclerotia, charred sclerotia, carbonaceous spherules, and wood charcoals were 164 

embedded in polyester resin, cut, and polished. Reflectance was measured using a Leica DM2500 165 

microscope linked to a MSP200 photometer reflectance system. The specimens were measured under oil 166 

of refractive index 1.518, using light filtered to 546 nm. Mean random reflectance (Ro %) was measured, 167 

and temperature conversion was achieved by comparison with wood and fungus charcoal experimental 168 

charcoalification curves. Full charcoal reflectance methodology and background are presented in Scott 169 

and Glasspool (2005, 2007), McParland et al. (2009), and Scott (2010). 170 

 171 

Organic Geochemistry (Analytical Pyrolysis) 172 

Analytical pyrolysis was carried out using an SGE Pyrojector pressurised with helium at 15 psi 173 

and fitted to an HP5890 Series II gas chromatograph (GC) interfaced to an HP5972 MSD mass 174 
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spectrometer at Royal Holloway University of London. Samples (~1 mg) were loaded into and introduced 175 

with a P-3 pelletizer, and pyrolysis was carried out at 650°C. Pyrolysate was transferred to the 176 

chromatography column with a constant flow of helium of 0.7 cm3/min. into the GC inlet kept at 280°C. 177 

The column (J&W DB5, 30 m x 0.25 mm x 0.25 µm film thickness) was initially at 50°C for 2 min., then 178 

heated at 7.5°C/min to a final temperature of 330°C. Splitless injection was applied with a delay time of 179 

1.5 min., and the GC-MS interface temperature was set at 300°C. 180 

 181 

Sedimentological , straigraphical and biological description 182 

 183 

Along much of the Arlington Canyon study area, the basal 1-2 m of Quaternary fill consist of horizontal 184 

to sub-horizontally bedded silt-dominated strata, with dispersed sand-size grains. We sampled and 185 

measured as low in the section as possible, sometimes hand-excavating several decimetres below 186 

groundwater level.  Because the basal sediments were wet in outcrop, they gave the impression of being 187 

darker in colour and, seemingly, more organic-rich (Kennett et al., 2008, 2009b). This was not the case; 188 

the samples lightened to a grey-brown colour upon drying (Fig. 2; Supplementary Materials, Fig. S3). 189 

Within these fine-grained basal facies are isolated sand- and gravel-rich laminae that occur as 190 

lenses, bar forms, and thin channels (Fig. 2, S3). This coarser clastic fraction includes small rounded 191 

granules and pebbles and a few, isolated more angular and larger rock fragments. Some of the horizons 192 

contain charcoal, but the charred fragments were not uniformly distributed within them. Conglomeratic 193 

units occurred as lenses or as distinct channel fills. The base of section IIIc, for example, comprises a >1 194 

m-thick gravel layer. Less than 8 m to the north, this horizon has thinned and is no longer present (Log 195 

IIIa). Log IIId is located identical to the section described by Kennett et al. (2008, 2009b), and the 196 

photograph showing the position of their recorded section is shown in Wittke et al. (2013, Supplementary 197 

Information) and here in Fig. S2.  198 

  Overlying the basal, predominantly fine-grained deposits in Arlington Canyon is a sand-199 

dominated package, consisting predominately of laminated and cross-bedded sands. Charcoal and charred 200 

plant fragments are widespread, ranging in size up to >1 cm in diameter (See Supplementary Materials, 201 

Fig. S4); some horizons also contain un-charred and partially charred plant material. Within the coarse 202 

sands, there are abundant coarser granule lenses and isolated pebbles (Supplementary Materials, Fig. S5). 203 

At Locality III at the ~2 m level, there is a thin clay-rich band, dark but not organic-rich, that is clearly 204 

identifiable on the log and photos of Kennett et al. (2008, 2009b; Wittke et al., 2013) (Fig. 2). The next 205 

metre higher in the section at Locality III is predominantly fine sand with some cross beds, scattered 206 

charcoal fragments (Fig. 2), and some coarse sand that often fills small channels (Fig. 2). This unit is 207 
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cross-cut by an erosional ravinement surface that is widespread in Arlington Canyon, locally high in relief 208 

and down-cutting through the underlying units by >10 m in some locations.  209 

 210 

Charcoal distribution and identification 211 

Charcoal (Figs. 3, 4; Supplementary Materials, Fig. S6) in the Arlington Canyon sequence, especially 212 

wood charcoal is concentrated in the basal ~3 m of the sections (Table 1). Charcoal becomes less common 213 

higher in the sequence. Charcoal occurs as thin discontinuous layers, lenses and as scattered fragments 214 

(Fig. S4). In cross-bedded units, charcoal is concentrated in foreset cross-beds (Fig. S4a). In sample 215 

AC003, we have noted abundant charcoal, often up to 5 mm in size.  Secondary wood charcoal from 216 

Arlington Canyon samples tends to dominate (Table 1). However there is an equal proportion of conifer 217 

(Fig. 4a-c) and angiosperm (Fig. 4f-i) wood charcoal throughout the sequence (Fig. 4). In addition, small 218 

herbaceous angiosperm axes (Figure 4j) are common in some samples, but leaf (Fig. 4d,e), bark charcoal 219 

and seeds are relatively rare.  220 

 221 

Carbonaceous spherules and "elongate" forms 222 

Firestone et al. (2007) coined the term "carbon spherules," referring to “highly vesicular, 223 

subspherical-to-spherical objects 0.15–2.5 mm in diameter, with cracked and patterned surfaces, a thin 224 

rind, and honeycombed (spongy) interiors.” According to Firestone et al. (2007), these particles were 225 

formed during high-temperature ignition associated with the Younger Dryas extraterrestrial impact event.  226 

Kennett et al. (2008) identified "carbon elongates," which were described as similar in size, context, and 227 

origin, but ellipsoidal in shape and with “a much coarser interior cellular structure.”  In our Arlington 228 

samples, carbonaceous spherular forms occur throughout the section but are more common in the basal 2 229 

m (Table 1)(Fig. 3; Supplementary Materials, Fig. S7). They range in size from 250µm-1.5 mm in 230 

diameter. In cross section, they often show a thin surface rind and internally a spongy internal texture 231 

(Fig. S7). The internal anatomy of these spherules is very diverse. Most of the spherules are black in 232 

colour.  Our sediment sample AC003 from West contains common carbonaceous spherules (Fig. S5f).  233 

Carbonaceous particles that match the description of ‘carbon elongates’ occur throughout Locality III 234 

and other Arlington sections and are very abundant within several samples (Supplementary Materials, Fig. 235 

S8)(e.g., SRI-10-56; Table 1). Some 'elongate' forms show hexagonal morphology (Fig. S8f). In most 236 

samples they are black, but in SRI-10-55 they show a range of colours from brown to black (Fig. S8b).  237 

Sample AC003 contains a few ‘carbon elongates’.  238 

 239 

Glassy carbon 240 
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Firestone et al. (2007) also identified glass-like carbon, consisting of angular fragments up to several 241 

cm in size, with glassy texture “suggest[ing] melting during formation” purportedly recording impact-242 

generated, high-intensity fire. Material that could be described as "glassy carbon" occurs throughout the 243 

Arlington section but is rarely abundant (Table 1). It occurs as small pieces usually a few mm in size Fig. 244 

3l). It is common in sample SRI-10-55 from Log IIIa.  Sample AC003 from West contains a few 245 

specimens of glassy carbon.  246 

Three samples of glassy carbon from Arlington Canyon were examined by analytical pyrolysis/gas 247 

chromatography/mass spectrometry and compared with samples of charcoal prepared by treatment of 248 

Sequoia at 350°, 450° and 600°C (Scott and Glasspool, 2005) and with a sample of synthetic glassy 249 

carbon (Alfa-Aesar 42130, Type 1, 200-400 µm spherical). While we do not believe that there is any 250 

similarity between glassy carbon as recorded in sediments and true commercially produced glassy carbon, 251 

we nevertheless examined both materials. As anticipated, the synthetic glassy carbon, which is specified 252 

to be stable up to 1100°C, gave no chromatographic peaks. The chromatograms of the Sequoia and Santa 253 

Rosa samples are shown in Fig. S9-f, and compared in a bar chart showing the relative percentage peak 254 

areas of the 16 most prominent compounds present (Table 2). 255 

 256 

Nanodiamonds 257 

 We examined three different specimen sets of carbonaceous spherules for the presence of 258 

nanodiamonds: 1) five spherules/fragments from SRI 09-28A; 2) eight spherules/fragments from AC003; 259 

and 3) 13 acid-washed spherules/fragments from AC003.  For a detailed discussion on the interpretation 260 

of this evidence please refer to Daulton et al. (2016). 261 

 262 

 263 

Data interpretation 264 

 265 

Charcoal 266 

The majority, but not all, of charcoal found in Quaternary terrestrial sediments come from wildfires 267 

(Glasspool and Scott, 2013).  Most modern charcoal accumulations within fire areas are produced by the 268 

charring of surface litter from low-temperature surface fires (Scott, 2010; Scott et al., 2014).  Higher 269 

temperature crown fires often totally combust the plant material and leave no macroscopic charcoal 270 

residue.  Charcoal in fluvial settings may indicate not only fire occurrence but also, in some 271 

circumstances, deposition during post-fire erosion (Brown et al., 2013). Charcoal type also may indicate 272 

burning of trees, shrubs or herbs (Scott, 2010). In this study, charcoal from Arlington Canyon was derived 273 
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from conifer trees, angiosperm trees and shrubs and herbaceous angiosperms. This suggests that the fire 274 

was probably predominantly a surface fire (Scott et al., 2000; Scott, 2010).  275 

 276 

Carbonaceous Spherular Forms 277 

Two carbonaceous forms – widely known within palaeobotanical circles, but perhaps less so 278 

elsewhere – have been reported in samples from Arlington Canyon and have created much confusion. 279 

Carbonaceous spherular forms (so-called ‘carbon spherules’) ranging in size from less than 100 µm to 280 

over 1 mm occur frequently in charcoal residues from most wildfires. Such material is particularly 281 

common in charred litter from surface fires. Even in the case of a hot crown fire, most charcoal comes 282 

from the charring of surface-dwelling plants and litter (Scott, 2010).  283 

One of the most common spherular types found in the Arlington Canyon samples are fungal sclerotia 284 

(Fig. S7). Sclerotia are common both in the soil and attached to living and dead plant debris. The sclerotia 285 

are resting cysts (Fig. S5) that often form during periods of water stress (Amasya et al., 2015). Their 286 

occurrence in charcoal residues is not unexpected. The genus Sclerotium is common, but in both modern 287 

and Quaternary sediments, Cennococcum is also widespread (Ferdinandsen et al., 1925; Sakagami and 288 

Watanabe, 2009; Benedict, 2011). Sclerotia have a distinctive morphology: in cross section they have a 289 

thin crust, and the interior may be foam-like (Fig. S7). Their texture can be modified by fire, and the level 290 

of modification is a function of temperature (Scott et al., 2010). Just as with wood and other fungal 291 

material, the reflectance of charred sclerotia increases with increasing temperatures (Scott et al., 2010; 292 

Scott and Glasspool, 2007). The number of sclerotia in a sediment sample will be controlled by their 293 

abundance in the source area and by sedimentological processes. Many fluvial processes concentrate 294 

organic matter, including sclerotia (Malloch et al., 1986). 295 

 Carbonaceous spherular forms are found throughout the Arlington sequence but are more common 296 

near the base of the section. This concentration may be due to either external factors (greater 297 

concentration of the presumed source material) or internal processes such as sedimentary concentration 298 

(in the low-energy, fine-grained deposits that predominate near the base of the Arlington sequence).  It is 299 

possible that carbonaceous spherular forms have multiple origins, but most 'carbon spherules' that we 300 

have examined can be confidently identified as fungal sclerotia (see also discussion in Daulton et al., 301 

2016).  302 

 303 

 ‘Carbonaceous elongates’/ Coprolites 304 

The elongate forms described by Kennett et al. (2008) also may have a range of origins. Some may 305 

represent fungal sclerotia (Sakagami and Watanabe, 2009). However, by far the most common origin is 306 
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arthropod fecal pellets (coprolites) (Scott, 1992). Arthropod coprolites are abundant in fluvial and indeed 307 

all terrestrial sediments since the Devonian (e.g., Scott, 1977; Chaloner et al., 1991; Scott et al., 1992; 308 

Habgood et al., 2004; Edwards et al., 2012). They may be produced by a wide range of arthropods, the 309 

smallest (<50 µm) from mites, to collembolan and termites, and the largest coprolites (>1 mm) from 310 

millepedes (Scott, 1992). These particles have a range of shapes and contents. Many of the coprolites 311 

from the sediments at Locality III in Arlington are cylindrical with rounded ends (Fig. S8). These are 312 

uncharred, partially charred, or occur as charcoal (Fig S8b). When charred, coprolites may shrink and the 313 

inside preferentially combust, leaving hollow shells. A significant number of the Arlington coprolites 314 

have a hexagonal cross section, which is typical of termite frass (Light, 1930; Lance, 1946; Scott, 1992; 315 

Collinson, 1999b; Colin et al., 2011) (Fig. S8d). Such frass is abundant in archaeological deposits 316 

(Adams, 1984) and has been identified at other California sites (Light, 1930; Lance, 1946; Anderson and 317 

Stillick, 2013). We have experimentally charred termite frass at a range of temperatures. We found that 318 

the outer shape is retained and the reflectance increases with temperature (Scott and Glasspool, 2007; 319 

McParland et al., 2007).  320 

 321 

Glassy Carbon 322 

Some carbonaceous materials found in sediments have been termed “glassy carbon” because they 323 

exhibited a glassiness or vitreous appearance (Scheel-Ybert, 1998).  Material of the same name – but 324 

structurally and chemically distinct – was also synthesized by carbonization of polymer precursors 325 

starting in the mid-1950s.  True glassy or vitreous morphology in carbonaceous materials does not result 326 

exclusively from high temperatures (Marguerie and Hunot, 2007; Fabre 1996), but can also result from 327 

the fine-grained homogenous nature of the material. McParland et al. (2010) showed that neither the 328 

charcoals associated with glassy carbon, nor the glassy carbon itself in the sediments exhibited features of 329 

high-temperature formation. Another explanation for the origin of glassy carbon comes from the 330 

charcoalification process itself, which involves pyrolysis in the absence of oxygen (Scott, 2010; 331 

Beaumont, 1985, section 2.5).  332 

The chromatogram of the pyrolysate of sample AC003 (Fig. S9d) shows a composition similar to 333 

those obtained from samples of Sequoia experimentally charred at 350 and 450°C (Fig. S9bc). In addition 334 

to aromatic hydrocarbons, oxygen and nitrogen-containing compounds, viz. pyridine, phenol, 335 

benzonitrile, benzofuran, methylphenols and dibenzofuran, are present. The chromatograms of the 350° 336 

and 450° experimental Sequioa samples and AC003 are similar to those obtained by Kaal et al. (2009) 337 

from 6200 year-old Fabaceae-derived charcoal from Campo Lamiero, northwest Spain. The implication is 338 

that the charcoal sample AC0003 was formed at a temperature < 600°C.  Chromatograms produced from 339 
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samples 10-36 and 10-57 (Fig. S9ef) resemble those of the 600°C Sequoia charcoal (Table 2). The 340 

implication is that these charcoals were formed at a higher temperature than that experienced by sample 341 

AC003, but there is no evidence from this analysis of their formation at >1000°C. 342 

Based on the chromatographic and combustion results from the Arlington Canyon samples, we 343 

conclude that much of this glassy carbon was likely produced as solidified tar.  Tar is produced during 344 

charcoalification, mostly at temperatures below 500°C (Beaumont, 1985), and this represents the typical 345 

temperatures of many surface fires (Scott et al., 2014). The chemistry of tars produced during this process 346 

is well understood (e.g., Ku and Mun, 2006). 347 

 348 

What we can and cannot say about charcoal in fluvial sediments at Arlington Canyon. 349 

Quantity of charcoal - The quantity of charcoal in any one sample from fluvial sediments is not 350 

indicative of the size of a fire. The amount of charcoal depends on the amount of charred litter, as most 351 

macroscopic charcoal comes from the charring of surface-dwelling plants and litter from low-temperature 352 

surface fires (Scott, 2010). In addition, charcoal can be locally concentrated in some facies (Glasspool and 353 

Scott, 2013). After the Hayman fire in Colorado in 2002, charcoal was transported out of the fire-affected 354 

area by flooding rivers. One downstream channel was filled with several metres of charcoal (see Fig. 9c 355 

of Scott, 2010), which was not indicative of the size of the fire but rather of taphonomic processes.  356 

Local or regional fire – Large charcoal fragments may be transported a considerable distance. Large 357 

>1 cm pieces of charcoal may be transported down rivers and into marine sediments (e.g., Nichols et al., 358 

2000; Scott, 2010). Un-charred and charred plants have different hydrodynamic qualities, as do different 359 

plant organs and charcoal formed at different temperatures (e.g., Nichols et al., 2000; Scott, 2010; Scott et 360 

al., 2014). It is reasonable to infer that a fire was local if there is charcoal from a variety of plants, of a 361 

range of sizes and varying from charred to un-charred.  362 

Intensity, severity or type of fire - There has been much confusion of the terms “fire intensity”, “fire 363 

severity” and “burn severity” (Keeley, 2009). Fire intensity refers to the total energy released by a fire and 364 

not the energy release rate.  Fire intensity data do not provide information on the temperature of the fires 365 

or surface fire conditions. It is not possible to determine fire intensity simply from the amount of charcoal. 366 

Fire severity refers to the extent of loss or damage to vegetation, which again cannot be determined from 367 

charcoal assemblages. It is possible to obtain some temperature data from the measurement of the 368 

reflectance of charcoal (Scott, 2010), and charcoal temperature profiles may help distinguish the 369 

occurrence of ground, surface, or crown fires (Scott et al., 2014; McParland et al., 2009; Hudspith et al., 370 

2014). Ground fires, as opposed to surface fires tend to destroy the vegetation, with little charcoal 371 

remaining. Crown fires can reach higher temperatures than most surface fires.   372 
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Vegetation affected by wildfire – an important feature of charcoal is that it retains anatomical 373 

information that allows taxonomic identification (Scott, 2010). The charcoal from the Arlington section is 374 

mainly from coniferous and angiosperm secondary wood and indicates that a forested ecosystem was 375 

affected by wildfire. However, small axes of herbaceous angiosperms and shrubs suggest that fire on this 376 

landscape included mainly surface fire. The reduction of charcoal at higher levels in the Arlington 377 

sequence likely results from the documented loss of most large conifers from the Northern Channel 378 

Islands by the end of the Pleistocene (Anderson et al., 2010). Grasslands produce much smaller inputs of 379 

charcoal (Bond, 2015).  380 

 381 

What can and cannot be interpreted from organic fractions 382 

The occurrence of fungal sclerotia tells us little about the environment of deposition, and less about 383 

fire regime. They are common in many soils and especially those of temperate and arctic-alpine climatic 384 

zones (Sakagami and Watanabe, 2009). However, more sclerotia are formed during periods of water 385 

stress, so there may be some indication of rainfall variability (Benedict, 2011; Fernandez and Koide, 386 

2013). The sizes of coprolites that are composed of plant material may also indicate the occurrence of 387 

mites, springtails and millipedes, all found in decaying plant litter (e.g., Chaloner et al., 1991; Scott et al., 388 

1992), or of termites, which tend to be found in somewhat drier environments (Harris, 1971).  389 

 390 

 391 

Dating 392 

Eleven radiocarbon dates were obtained from site III primarily from charcoal fragments and also from a 393 

piece of uncharred wood (see Table 3). All new dates are shown calibrated using the IntCal13 calibration 394 

curve (Reimer et al., 2013) using OxCal v4.2.4 (Bronk and Lee, 2013) (see Table 3). The oldest age 395 

returned was 14,080-14,500 cal BP, and the youngest age 12,710-12,850 cal BP (see Fig. S2c). These new 396 

chronological data are consistent with the radiocarbon dates presented in Kennett et al. (2008) from the 397 

same locality. However radiocarbon dates on charcoal fragments from elsewhere in Arlington Canyon and 398 

from similar deposits in neighbouring canyons shows deposition and fire activity as early as 29,222–399 

28,394 cal BP (Pinter et al., 2011), with charcoal diminishing in quantity higher in the Arlington 400 

sequence, but on-going into the Holocene (Anderson et al., 2010). Indeed the distribution of charcoal 401 

through Arlington Canyon clearly indicates a record of more than one fire event, as shown in both the 402 

wider chronological and sedimentological evidence (Hardiman et al., 2016). These data are inconsistent 403 

with the single, catastrophic impact-induced ignition interpreted by Firestone et al. (2007), Kennett et al. 404 

(2008), and other YDIH proponents.  405 
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 406 

Discussion 407 

 408 
Like many Quaternary deposits, the fluvial sequence in Arlington Canyon contains a significant 409 

quantity and range of organic material, much of which has been charred.  Abundant charcoal implies the 410 

occurrence of fire, but whether these fires were started by lightning, humans, or extraterrestrial impact 411 

requires additional lines of evidence (Hardiman et al., 2016; Scott et al., 2016).  412 

Arlington Canyon has featured centrally in results suggesting a global-scale impact drove broad 413 

changes at the onset of the Younger Dryas (the YDIH).  Wittke et al. (2013) assert that we did not study 414 

the same section as theirs (AC003). This is not true.  While Kennett et al. (2008, 2009b) gave UTM 415 

coordinates without specifying which datum or map projection was used, we were able to navigate to their 416 

published location using the North American Datum 1983 (NAD83) and found there the largest, best 417 

exposed, and most accessible outcrop in Arlington Canyon.  Later we surmised that Kennett et al. (2008, 418 

2009b) had used NAD27 (confirmed in Wittke et al., 2013). We subsequently measured, sampled, and 419 

dated the small section at that location.   420 

We have described, analyzed, and sampled sequences in Arlington and in other canyons on Santa 421 

Rosa Island, which include material ranging in age from ~29,000 cal a BP to ~5,000 a BP (Scott et al., 422 

2010; Pinter et al., 2011; Hardiman et al., 2016). We continue to be puzzled why YDIH proponents have 423 

focused extraordinary attention on one single age horizon in one <5 m section, when such a broad range 424 

of deposits and ages are represented in the surrounding area (see Hardiman et al., 2016). We show from 425 

our lithological logging and analysis that there was not an ‘impact horizon’ as claimed. 426 

Carbonaceous materials from Arlington Canyon do not require extraterrestrial input or ignition, or in 427 

some cases preclude such an event.  Carbonaceous spherular forms (‘carbon spherules’) and coprolites 428 

(‘carbon elongates’) occur in multiple samples from multiple horizons on Santa Rosa Island and on 429 

neighboring islands and from sites throughout the world. They occur in sediments of a wide range of ages, 430 

from well before the Younger Dryas to well after (e.g. Anderson et al., 2010; Scott et al., 2010) (Table 1). 431 

Many of the carbonaceous spherular forms have features identical to those of fungal sclerotia. None of the 432 

samples or morphologies observed to date require catastrophic high-temperature combustion or other 433 

extraterrestrial influence. Many of the ‘carbon elongates’ are demonstrated to be arthropod faecal pellets 434 

(Fig. S8); those with hexagonal morphology are identified as termite frass (see Scott, 1992).  435 

Many YDIH proponents repeatedly use glassy carbon as an indicator of high-temperature fires 436 

(Firestone et al., 2007; Kennett et al 2008; Bunch et al 2012; Witke et al., 2013; Kinzie et al., 2014). Most 437 

glassy carbon is in fact produced as solidified tars from a low- to medium-temperature charring process, 438 

as shown here, being common in fires of those temperatures. This has also been referred to as vitreous 439 
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charcoal, glassy charcoal, etc. by numerous authors and was demonstrated by McParland et al. (2010) to 440 

be of low-temperature origin. None of the carbon forms from Arlington Canyon yield evidence of higher-441 

than-normal burning temperatures.  442 

Wood charcoal is abundant in lower portions of the Arlington Canyon sequence, including from 443 

deposits both older and younger than the Younger Dryas. Charcoal distribution in fluvial sediments is 444 

strongly influenced by taphonomic processes, so that the type and quantity of charcoal varies both 445 

laterally and vertically. The number of charcoal particles per unit volume or weight of sediment samples 446 

cannot be interpreted in terms of “fire frequency” or “fire intensity”. 447 

Kennett et al. (2008, 2009b) repeat the narrative from Firestone et al. (2007) that the purported 448 

Younger Dryas impact created intense wildfires across much of the planet, including in particular, Santa 449 

Rosa Island. Marlon et al. (2009) found no evidence of regionally synchronous fires across North 450 

America, and the current study finds no evidence of high-temperature fires in Arlington Canyon. The 451 

occurrence of 'carbon spherules' does not indicate high temperature. Spherules and charcoal from AC003 452 

had low reflectance, typical of low-temperature surface fires. Wittke et al. (2013) claim to have produced 453 

spheres from high-temperature experiments involving combusting wood (their Fig. 8). However, these are 454 

not carbon spheres but rather are inorganic in composition, comprising aluminium and silica and are not 455 

relevant to the origin of the carbonaceous spherules. 456 

The occurrence of nanodiamonds, particularly the hexagonal 2H polytype lonsdaleite, in Younger 457 

Dryas boundary sediments is considered by YDIH proponents as among the strongest evidence of impact 458 

shock processing of the crust.  We have demonstrated elsewhere (Daulton et al., 2016) that the 459 

observations and interpretations were erroneous.  460 

We conclude that YDIH proponents fail to explain the broad discrepancies between their 461 

interpretations and the findings of independent researchers.  Contrary evidence is ignored, and a broad 462 

range of evidence is twisted to fit the YDIH.  On Santa Rosa Island (Pinter et al., 2011) as well as other 463 

California Channel Islands (Pigati et al., 2014), widespread and frequent fires occurred both before and 464 

after the onset of the Younger Dryas, recording predominantly low-temperature surface fires. 465 

Stratigraphic concentrations of charcoal are related to the nature of the original fires but also to how much 466 

litter there was to char and a wide range of other taphonomic as well as transportation and depositional 467 

processes. The sediments in Arlington Canyon lack evidence for meteoritic/cometary material from an 468 

impact in North America, evidence of associated impact processes, and evidence of impact generated fires 469 

(see also comments by Boslough et al., 2013). 470 

 471 

Conclusions 472 
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Fluvial deposits in Arlington Canyon, Santa Rosa Island, and material in those deposits document a 473 

long-term and mostly gradual evolution of the Arlington palaeo-landscape since the latest Pleistocene. 474 

This was driven by some combination of climate change, post-glacial sea-level rise, climate-driven 475 

vegetation changes, extinction of the local megafauna (Mammuthus exilis), and the arrival and subsequent 476 

expansion of human activities (e.g., Rick et al., 2014). These changes have driven a long-term shift in fire 477 

regimes.  The size range of the charcoal fragments in the latest Pleistocene to Holocene sediments from 478 

Arlington Canyon, as well as the presence of charred and non-charred plant material, suggests a surface 479 

fire regime, with charcoal moved to the stream by overland flow and subsequent fluvial transport. This 480 

range of material, together with SEM and reflectance analyses, indicate low-temperature surface-fire 481 

regimes of coniferous and mixed coniferous/angiosperm forests. The distribution of charcoal in the 482 

sequence suggests multiple fire events through the record. We find no evidence for a single, high-intensity 483 

crown fire, nor any evidence of the kind of catastrophic, transformative fire event proposed in the YDIH.   484 

Carbonaceous spherules recorded by Kennett et al. (2008) are predominantly fungal sclerotia, and 485 

‘carbon elongates’ are predominantly arthropod coprolites; those with hexagonal cross sections probably 486 

are termite frass. Glassy carbon present in these deposits formed from the precipitation of tars during the 487 

charcoalification process. None of these materials indicate high temperatures. The presence of 488 

nanodiamonds in Arlington Canyon spherules has not been confirmed by independent studies, and we 489 

find no evidence of nanodiamonds.  Material identified as lonsdaleite at Arlington Canyon by Kennett et 490 

al. (2009b) is inconsistent with the lonsdaleite structure and more consistent with polycrystalline 491 

aggregates of graphene and graphane (see Daulton et al., 2010, 2016). None of the evidence supports the 492 

contention that there is an impact horizon in the Arlington sequence.  By extension, our research suggests 493 

that similar problems may exist at other sites supporting the purported Younger Dryas impact.  494 

 495 
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Figure Captions 
 

Figure 1. Map of Santa Rosa showing location of Section III (AC 003 of Kennett et al., 2008). 

 

Figure 2. Detailed lithological logs of site III, Arlington Canyon, showing site in 2010 (above) and 2013 

(below). 

 

Figure 3. Organic fractions from sieved samples, Site III Arlington Canyon. Images (a,c,e) are reflected 

light under water; images (b,d,f) are dark field images of same samples highlighting charred and 

uncharred plant material.  (a,b) Sample 10-56 Section IIIa mid section. The image shows large 

uncharred wood fragments (brown) with wood charcoal (black) and coprolites. (c,d) Sample 10-56 

Section IIIa mid section. (e,f) Sample 10-56 Section IIIa mid section. (g) Large charcoal 

fragments, sample SRI-13-19, section IIIf below mid section. (h) Specimen of wood charcoal 

shown in g and put into water showing fragmentation. (i) Glassy carbon, sample SRI-10-56, 

section IIIa.  (j) Carbonaceous spherules, sample SRI-10-56, section IIIj.  (k) Carbon elongates 

(coprolites). Sample SRI-10-56, section IIIa 

 

Figure 4. Charcoal from sediments from Site III, Arlington Canyon.  (a) Scanning Electron Microscopy of 

conifer secondary wood, SRI-10-65, section IIIc.  (b) Detail of image a showing rays and ray pits.  

(c) Detail ofimage  a showing growth ring.  (d) Conifer leafy shoot, cf Cupressus sp., SRI-13- 11, 

section IIIc.  (e) Conifer needle, Pinus sp., SRI-13-21.  (f) Angiosperm secondary wood, SRI-13 

core IIID, 37 cm from base.  (g) Detail of image f showing vessels.  (h) Angiosperm secondary 

wood, SRI-13-21.  (i) Detail of image h showing multiseriate rays. (j) Small angiosperm axis, SRI-

13 core IIID, 37 cm from base.  (k) Detail of image j showing vessels. 
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Table 1. Distribution of charcoal and other organic materials from site III Arlington Canyon.  
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Table 1.  Distribution of charcoal and other organic materials from site III Arlington Canyon.  

A=Abundant; C=Common; F=Frequent, R=Rare, P=Present 

Uncharred

Sample    

No. Section

Height    above    

base    (cm) >1    cm

5mm-

1cm <5mm <1mm

1-2mm    

axes Leaves Spherules Coprolites

Glassy    

carbon Wood

SRI-10-47 IIIA 10-12 C C R P C

SRI-10-48 IIIA 20-22 A C R R C

SRI-10-49 IIIA 27 R

SRI-10-50 IIIA 69 R

SRI-10-51 IIIA 53 C R R R R

SRI-10-52 IIIA 62 P P A

SRI-10-53 IIIA 72 P R R

SRI-10-54 IIIA 88 C R R

SRI-10-55 IIIA 95 A R R A P

SRI-10-56 IIIA 118-120 A C C F A C

SRI-10-57 IIIA 131 C C F F R R C C

SRI-10-58 IIIA 147-148 A F F F R R C

SRI-10-59 IIIA 197-198 F R R

SRI-10-60 IIIA 260

SRI-10-61 IIIA 131 F R F

SRI-10-62 IIIA 131 R R R

SRI-10-63 IIIA 215 P A F P C

SRI-10-65 IIIB 55 A F F F

SRI-10-66 IIIB 83 R R

SRI-10-67 IIIB 110 R R

SRI-13-01 IIID 118-120 A A R C

SRI-13-02 IIID 135-140 A A C

SRI-13-03 IIID 154-156 F R

SRI-13-04 IIID 200-202 A F R R R

SRI-13-05 IIID 210-212 C C C A R

SRI-13-06 IIID 270-242 C C

SRI-13-07 IIID 15-17 C F P R C

SRI-13-08 IIID 28-30 C R

SRI-13-09 IIID 40-42 C F C R F

SRI-13-10 IIID 60-62 C F R C

SRI-13-11 IIIF 0-4 A P C F

SRI-13-12 IIIF 50-52 A F F C R F P

SRI-13-13 IIIF 115-117 R

SRI-13-14 IIIF 125-127 C R R

SRI-13-15 IIIF 150-152 A C C P

SRI-13-16 IIIF 190-192 A F R C R

SRI-13-17 IIIF 200-202 C C F

SRI-13-18 IIIF 220-222 A R F R

SRI-13-19 IIIF 140-142 A C A

SRI-13-20 IIIE 100-102 C C C C F

SRI-13-21 IIIE 153-155 A A C R

SRI-13-22 IIIE 192-194 P A C F

SRI-13-23 IIIE 218-220 C F F R

SRI-13-24 IIIC 12-15 A A C C C

Charcoal
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Table 2. List of compounds detected by pyrolysis-gas chromatography-mass spectrometry of glassy carbon and charcoals.  "Ret Time" is 
retention time andreflects size of molecules going through the mass spectrometer. 
 

Ret Time compound Peak Area % Peak Area % Peak Area % Peak Area % Peak Area % Peak Area %

1 3.67 benzene 3870640 3.16 7580848 15.19 40095737 61.92 3269558 13.35 5264142 48.17 10828341 47.92

2 4.82 toluene 7961682 6.51 11875708 23.79 9754648 15.06 6938243 28.33 1952563 17.87 3464002 15.33

3 6.36 ethylbenzene 221024 0.18 466479 0.93 1496316 2.31 601975 2.46 190718 1.75 0.00

4 6.53 xylene 1531400 1.25 2302114 4.61 704280 1.09 1350791 5.52 291081 2.66 93810 0.42

5 6.94 styrene 975975 0.80 1184472 2.37 4603983 7.11 1218587 4.98 390031 3.57 324752 1.44

6 8.62 phenol 9613598 7.86 8787116 17.60 0.00 2488814 10.16 430317 3.94 497775 2.20

7 8.90 benzonitrile 0.00 101814 0.20 0.00 954222 3.90 0.00 646202 2.86

8 9.09 benzofuran 1187128 0.97 1338316 2.68 0.00 991371 4.05 0.00 0.00

9 10.17 2-methylphenol 2085471 1.70 1878744 3.76 0.00 1838438 7.51 0.00 0.00

10 10.63 4-methylphenol 4177201 3.41 3869322 7.75 0.00 2038107 8.32 0.00 0.00

11 13.05 naphthalene 1902648 1.55 4387767 8.79 5362078 8.28 848406 3.46 1386444 12.69 3971877 17.58

12 15.19 methylnaphthalene 820391 0.67 1924983 3.86 334955 0.52 478329 1.95 114184 1.04 320448 1.42

13 15.48 methylnaphthalene 300671 0.25 815107 1.63 286347 0.44 349751 1.43 99494 0.91 172470 0.76

14 16.69 acenaphthene 0.00 438952 0.88 0.00 178534 0.73 248839 2.28 718862 3.18

15 19.10 dibenzofuran 849154 0.69 1381920 2.77 276435 0.43 262903 1.07 70450 0.64 435839 1.93

16 23.22 phenanthrene 355260 0.29 921184 1.85 399201 0.62 113065 0.46 256888 2.35 1124154 4.97

17 23.51 anthracene 94274 0.08 2747425 5.50 42551 0.17 36582 0.33 0 0.00

SEQUOIA350 SEQUOIA450 SEQUOIA600 AC003 SRI-10-36 SRI-10-57
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Table 3 – New radiocarbon dates obtained from Site III, Arlington Canyon, Santa Rosa Island, 
CA in this study. (References, 1= Hardiman et al., 2016)  
 

 

14C publication 

code 

Site 

signifier 

Sample number Dated material δ13C 14C age (yr BP) 14C age error 

(1σ) 

Reference 

UCIAMS-84951 IIIa SRI-10-63 Charcoal ˗ 11005 25 1 

UCIAMS-84950 IIIa SRI-10-63 Charred coprolites ˗ 11755 30 1 

UCIAMS-84949 IIIa SRI-10-62 Charred twigs ˗ 11030 30 1 

UCIAMS-84948 IIIa SRI-10-61 Uncharred wood ˗ 10935 30 This Study 

UCIAMS-84947 IIIa SRI-10-56 Charred coprolites ˗ 11095 30 1 

UCIAMS-84946 IIIa SRI-10-56 Charred twigs ˗ 11035 30 1 

UCIAMS-84945 IIIa SRI-10-52 Charred twigs ˗ 11000 25 1 

UCIAMS-84944 IIIa SRI-10-47 Charred twigs ˗ 12310 30 1 

UCIAMS-84943 IIIa SRI-10-47 Charred coprolites ˗ 11885 30 1 

OxA-29224 IIIf SRI-13-11 Small charred axis -24.55 11130 50 1 

OxA-29225 IIIf SRI-13-11 Small charred axis -24.62 11085 50 1 
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Figure 1. Map of Santa Rosa showing location of Section III (AC 003 of Kennett et al., 2008).  
carrying discharge from the is  
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Figure 2. Detailed lithological logs of site III, Arlington Canyon, showing site in 2010 (above) and 2013 
(below).  

detail in the stratigraphic de  
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Figure 3. Organic fractions from sieved samples, Site III Arlington Canyon. Images (a,c,e) are reflected light 
under water; images (b,d,f) are dark field images of same samples highlighting charred and uncharred plant 
material.  (a,b) Sample 10-56 Section IIIa mid section. The image shows large uncharred wood fragments 

(brown) with wood charcoal (black) and coprolites. (c,d) Sample 10-56 Section IIIa mid section. (e,f) 
Sample 10-56 Section IIIa mid section. (g) Large charcoal fragments, sample SRI-13-19, section IIIf below 
mid section. (h) Specimen of wood charcoal shown in g and put into water showing fragmentation. (i) Glassy 
carbon, sample SRI-10-56, section IIIa.  (j) Carbonaceous spherules, sample SRI-10-56, section IIIj.  (k) 

Carbon elongates (coprolites). Sample SRI-10-56, section IIIa  
Charcoal (Figs. 3, 4; Suppleme  
527x752mm (72 x 72 DPI)  
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Figure 4. Charcoal from sediments from Site III, Arlington Canyon.  (a) Scanning Electron Microscopy of 
conifer secondary wood, SRI-10-65, section IIIc.  (b) Detail of image a showing rays and ray pits.  (c) Detail 
ofimage  a showing growth ring.  (d) Conifer leafy shoot, cf Cupressus sp., SRI-13- 11, section IIIc.  (e) 

Conifer needle, Pinus sp., SRI-13-21.  (f) Angiosperm secondary wood, SRI-13 core IIID, 37 cm from 
base.  (g) Detail of image f showing vessels.  (h) Angiosperm secondary wood, SRI-13-21.  (i) Detail of 
image h showing multiseriate rays. (j) Small angiosperm axis, SRI-13 core IIID, 37 cm from base.  (k) 

Detail of image j showing vessels.  
Charcoal (Figs. 3, 4; Suppleme  
526x753mm (72 x 72 DPI)  
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Supplemental	  Materials	  
	  
Supplemental	  Figure	  Captions	  	  
	  
Figure S1 Photograph of outcrop of Site III, Arlington Canyon.  (a) Site in 2010.  (b) Detail of position of 

logs IIIa and IIIb.  (c) Detailed log IIIa with dated samples.  (d) Key to lithological logs. 

 

Figure S2. The central part of the Site III section (AC003) of Kennett et al. (2008, 2009b; Wittke et al., 

2013) at Arlington Canyon.  (a) Lithological log showing dated horizons (from Kennett et al., 

2009b). Note the dark layer labelled 2m from the surface. Note also the YD ‘impact horizon’ has 

been identified between 3.8 m and 5 m below surface.  (b) Photograph from Wittke et al. (2013) 

supporting materials of the site identified as AC003. This clearly shows sample points and 4 of 

which are denoted with arrows. It also shows position of sampled section and a scale. The distance 

from the top to the black layer is 2m. However, the distance to the base of the section shown is just 

over 4m. The YD ‘impact horizon’ is indicated by these authors with yellow lines. However this 

corresponds to a depth of 3.8-4.1m. It is unclear where the units below recorded in Kennett et al. 

(2008, 2009b) are situated.  (c) Photograph of the same section taken by Scott in 2010 clearly 

showing the Kennett section with four sample positions indicated by red arrows, as in B. The 

position of the claimed YD ‘impact horizon’ as reported by Wittke et al. (2013) is indicated with the 

yellow dots. The water in the stream is approximately 4 m from the top of the section. There is no 

evidence of material being accessed below the water surface. It is unclear, therefore, where the 

section 4-5-5.0 m occurs and it is these samples that contain most of their ‘impact’ markers and 

dated material. 

 

Figure S3. Lateral variation of facies at the base of the section at Site III, Arlington Canyon. Section IIId is 

the position of the section described in Kennett et al. (2008). Note the dark bed below the thin 

conglomerate (3-4m below surface; it is dark because it is wet. This is part of a channel complex 

with silts, sands and gravels. 2m laterally (section IIIc) these beds are represented by coarse gravel 

conglomerates that thin out only a few metres to the north (section IIIa).  

 

Figure S4. Sediments and carbonaceous fossils from our locality III in Arlington Canyon, which is the same 

locality as AC003 of Kennett et al., (2008, 2009b) and Wittke et al. (2013).  (a) Typical distribution 

of charcoal in the mid sandy layers in the section. Note the charcoal is strongly related to 

sedimentary structures and not evenly distributed. Note samples taken from each of the three lines 
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would give quantitatively different results.  (b) Range of charcoal sizes from very small < 1mm 

fragments to pieces >1cm in fine sands. Note also the larger pieces break on extraction. (c) Taking 

and recording sample of charcoal-rich sand from section IIIa.  (d) Taking sediment core from base of 

section IIIf.  

 

Figure S5. Sieved samples (>125µm) from Site III Arlington Canyon.  (a) Sample SRI-13-11. Base of 

section IIIf. The predominantly silty rocks also contain a significant amount of sand and pebbles. 

The pebbles are both angular and rounded and are of a variety of rock types.  (b) Pebbles from 

sample SRI-13-17 showing rounded dark organic rich silt pebbles. Mid section IIIf. This horizon is 

dark and can be traced across the outcrop half way up the section.  (c) Range of pebble types from 

sample SRI-13-05 showing they comprise both rounded and angular pebbles. Section IIId upper part 

of section.  (d) Iron stained sand with charcoal fragments from upper sandy layer, sample SRI-13-23, 

Section IIIe.  (e) Sand, pebbles with charcoal fragments, including coprolites, and bone (brown), 

sample SRI-13-05, section IIId upper part.  (f) Charcoal residue with wood fragments, small axes, 

carbonaceous spherules and glassy carbon, sample SRI-13-11, base of section IIIf.  (g) Sample 2007 

AC003 from G. James West, sieved in water. Note brown iron staining of some of the charcoal 

fragments and sand grains.  (h) Charcoal-rich sample after dissolving mineral matter in 40% HF. 

(Dish 9cm across) 

 

Figure S6. Sediments and charcoal from Site III, Arlington Canyon.  (a) Sediment sample from the base of 

section IIIC showing fine-medium silty-sand that becomes lighter as the sediment dries.  (b) Lower 

surface of sediment sample from the base of section IIIC showing fine-medium silty-sand that 

becomes lighter as the sediment dries.  (c) Top of specimen b showing a single large charcoal 

fragment.  (d) Specimen shown in c that has been gently sieved in water through 125µm sieve. Note 

that one piece can break in to many hundreds of fragments.  

 

Figure S7.  Carbonaceous spherules from Arlington Canyon, Site III.  (a) Carbonaceous spherules from 

sample from G. James West collection AC003.  (b) Specimen from Arlington Canyon, sample 

2007AC-003 (collected by J. West and J.J. Johnson) (12.8-13.1 Ka ) Section through spherule.  (c) 

Detail of image b showing outer rind and ‘cellular’ interior.  (d) Carbonaceous spherules (fungal 

sclerotia). from charcoal residue after low temperature surface fire, Thursley, Common, Surrey, 

England. (e,f) Scanning Electron Micrographs of carbonaceous spherules from charcoal residue after 

low temperature surface fire, Thursley Common, Surrey, England, 2006 showing features 
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comparable to the Spherules in images  a-c.  (e) Broken spherules.  (f) Detail of image e showing 

rind, radially arranged outer cells and equi-dimensional inner ‘cortical’ cells and fused medullary 

hyphae.  (g-i) Scanning Electron Micrographs of sclerotia from the fungus Conococcum geophilum 

Fr. In mycorrhiza with young growth of Picea glauca after fire event, Peace River, Canada. 

Collected by T. Längle and photographed by A.G.Heiss.  (g)Whole sclerotium.  (h) Broken 

sclerotium. (i) Broken sclerotium showing rind and fused medullary hyphae.  Figures S7b and S7c 

from Scott et al., (2011). Figures S7g-i from Auxillary Material from Scott et al., (2010). Note 

Figure S7e was also published in Pinter et al., (2011) and origin stated clearly.  

 

Figure S8. Coprolites (‘Carbon elongates’) from Arlington Canyon, Site III.  (a) Charcoal fragments, carbon 

spherule and carbon elongates (coprolites) from SRI-10-56.  (b) Carbon elongates (coprolites) from 

SRI-10-56 showing a range from uncharred (brown) to charred (black) forms. Some of the coprolites 

show hexagonal morphology indicating their origin as termite frass.  (c) Cluster of carbon elongates, 

probable charred termite frass, sample SRI-13, core section IIID, 72-74 cm from base.  (d) Scanning 

Electron Micrograph of cluster of modern charred termite frass.  (e) Scanning Electron Micrograph 

of single termite coprolite.  (f) Scanning Electron Micrograph of broken termite coprolite showing 

hexagonal morphology.  (g) Scanning Electron Micrograph of cluster of termite frass.  

 

Figure S9.  Chromatograms of charcoals pyrolysed at 650C.  (a) Sequoia charcoal made at 350C.  (b) 

Sequoia charcoal made at 450C.  (c) Sequoia charcoal made at 600C.  (d) Santa Rosa glassy carbon 

sample AC003.  (f) Arlington glassy carbon sample SRI-10-36.  (g) Arlington glassy carbon sample 

SRI-10-57. 
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