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Abstract: 

Employers regularly complain of a shortage of qualified scientists and advocate that 

to remain competitive more scientists need to be trained. However, using a survey of 

graduates from British universities, I report that three years after graduation less than 

50% of graduates from science subjects are working in a scientific occupation.  

Accounting for selection into major and occupation type, I estimate the wages of 

graduates and report that the wage premium of science graduates only occurs when 

these graduates are matched to a scientific occupation—and not because science skills 

are in demand in all occupations. I also provide additional evidence to assess whether 

science graduates are pushed or pulled into non-scientific occupations. Altogether, the 

evidence does not support the claim that science graduates are pulled by better 

conditions, financial or otherwise, into non-scientific jobs. 
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I Introduction 

Around the world, the business community regularly bemoans the lack of 

(skilful) science graduates and warns that this hampers its competitive advantage and 

more generally future economic growth. The claims of science skill-shortages, first 

made by employers’ groups, have largely permeated to stakeholders, whom over the 

years have commissioned several reports on the (science) skill-shortage (see among 

others the Sainsbury review (2007) in the UK, but also the President’s Council of 

Advisors on Science and Technology (2012) for the US and in Europe, the European 

Parliament (2015) for examples). The claims of permanent skill-shortages do not sit 

well with economic models. Cappelli (2014), for example, largely dismissed them as 

baseless since in a competitive labour market, any skill shortages would result either 

in wage increase and a subsequent increase in the supply of such skills, or in the 

substitution of labour for capital to reduce the demand for scarce science skills. 

Similar points have recently been made in reviews produced by the Council of 

Canadian Academies (2015) and the UK Commission for Employment and Skills 

(2013).  

In this paper, I focus on the labour market decisions of a cohort of UK graduates 

observed three years after graduation. A puzzling finding is that about 50% of science 

graduates do not work in an occupation related to science. This large “leakage”
1
 of 

science graduates in the labour market is often mentioned in the context of the “pull 

factor” exercised by other industries, especially the financial sector, offering a 

justification for the skill shortage in scientific occupations. This paper attempts to 

document the reasons for the leakage of science graduates away from scientific 

occupations. In particular, I investigate the wages of graduates by STEM status and 

                                                 
1
 Throughout the paper I will use leakage in the very specific case of science graduates not working in 

a scientific occupation; these graduates may nonetheless be using their scientific skills, especially those 

who teach science, and have large public returns.  
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occupation type, accounting simultaneously for the selections into field of study and 

into occupation, to assess the claim that non-scientific occupations poach science 

graduates with higher wages. To do so, I rely on an extension of the standard 

Heckman (1979) selection model to include two selection equations, one for field of 

study and one for occupation type. I complement the analysis with information on the 

reasons for accepting the current job to check whether science graduates are pulled or 

pushed into a non-scientific occupation. 

A disequilibrium between demand and supply of scientists should result in a 

wage premium for scientists. Indeed, such a premium has been found in, among 

others, Chevalier (2011) and Walker and Zhu (2011) for the UK. However, simple 

OLS estimates of the returns to subjects are biased since individuals’ unobserved 

characteristics are likely positively correlated with subject choice and earnings. To 

account for this bias, new studies such as Hastings, Neilson and Zimerman (2013) and 

Kirkeboen, Leuven and Mogstad (2016) rely on administrative data from Chile and 

Norway, respectively. Using discontinuity in the allocation of applicants into field of 

study, they report large returns to science majors. Indeed, Altonji, Arcidiacono and 

Maurel (2015) conclude their extensive review of the literature by stating “The 

evidence suggests that much of the effect of major on earnings is causal, with STEM 

and business related majors leading the way.”  

This paper contributes to this literature by accounting for the selection into 

science majors and into scientific occupations. In addition it also assesses whether 

any premium for studying science is due to scientific skills in general or is specific to 

being matched to a scientific occupation. Similarly, Kinsler and Pavan (2015) 

highlight the importance of the occupational match on the returns to degree using a 

structural model of choice of field of study and occupation. Using the U.S. 

Baccalaureate and Beyond Longitudinal Study, they estimate returns to science of up 
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to 20% but only for science graduates working in an occupation related to their 

studies.  

Rather than building up a structural model, I rely on reduced form estimations 

that account for selection into STEM study fields and into scientific occupations. I 

use data from the Longitudinal Destination of Leavers of Higher Education (LDLHE) 

covering a sample of UK graduates from the 2003 cohort observed in November 

2006. Importantly, this survey is linked to (part of) the university application form. 

As such, I have detailed information on the family background of the student, which I 

use to identify the double selection model. Specifically, I rely on information on 

tuition fee status and parental occupation to identify subject choice and occupation, 

respectively. In both the simple OLS and selection model, I find an average wage 

premium of 6% to 10% for graduating with a science major. However, this premium 

is specific to working in scientific occupations, which contradicts claims that 

scientists are poached by higher wages in other occupations. Instead, I predict that 

science graduates working in non-scientific occupations would have experienced 

higher wages (3.7 to 10%) had they worked in a scientific occupation. This strongly 

rejects the pull hypothesis that science graduates are attracted to non-scientific 

occupations by higher wages. Contrary to a Roy model (1951), whereby individuals 

choose the field of study and occupation that maximises their expected earnings, I 

find that up to 40% of graduates would have higher expected earnings had they 

chosen a different major. But this may have to do with the inability to model taste for 

field of study. 

The second contribution is to examine non-financial reasons that may have 

pushed or pulled STEM graduates towards non-scientific occupations. To this end, I 

exploit subjective data on the reasons to have chosen the current job, as well as 

satisfaction with career and regrets about subject choice. These results are consistent 



 5 

with science graduates being pushed into non-scientific jobs. For example, science 

graduates working in a non-scientific occupation are 7 percentage points less likely 

than STEM graduates working in scientific occupations to report being satisfied with 

their careers.  

Thirdly, I investigate heterogeneity in these results along two dimensions: 

between science subject and between gender. I find a large amount of variation in 

earnings and leakage between subjects, with more applied subjects converting a 

greater fraction of graduates into scientific occupations. I find little differences in 

terms of returns and leakage to non-scientific occupations between graduates of Math, 

IT, Physics and Engineering (MIPE) and other STEM subjects, but the formers are in 

general less positive about their current job. Along the gender dimension, women 

have lower (but not significantly so) returns to studying science, especially MIPE, but 

also report the same reasons for having chosen their current job. 

Overall, the results on financial and non-financial factors are largely inconsistent 

with a pull hypothesis. Moreover, the lack of returns to scientific skills outside 

scientific occupations combined with the large proportion of science graduates not 

working in scientific occupations questions the emphasis on educating more science 

graduates.  

 

II Literature review  

Despite the disparities of data used, the literature generally agrees on a large 

heterogeneity in the returns to higher education by subject, with often a large wage 

premium for science degrees, see Altonji et al. (2015) for a recent review. However, 

these estimates often do not account for the self-selection into subject and are thus 

likely to be biased upwards. This self-selection is partly based on observable 

characteristics, such as academic ability or parental background, but also on 
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unobservable ones. Berger (1988), using the NLSY, was one of the first studies to 

account for selection on unobservable. The exclusion variables to determine subject 

choices were questionable, but Berger (1998) reported that the “self-selection bias is 

not overwhelming” (p424). To account for students receiving additional information 

about their ability and taste for the subject while at university
2
, Arcidiacono (2004) 

uses the National Longitudinal Study of the Class of 1972 to estimate a dynamic 

model of major choice. He reports that the largest returns to college are found in 

science (20% over not going to college) but that future monetary returns do not drive 

the major choice.  

Another identification strategy to estimate returns to majors has relied on 

discontinuity in admission due to subject specific cut-off at institutions. Hastings et 

al. (2013) and Kirkeboen et al. (2016), using university application data from Chile 

and Norway, respectively, and administrative records on life-time income (up to 30 

years), estimate major specific returns by comparing the earnings of individuals who 

were just accepted to their preferred field of study with individuals who just missed 

out. Hastings et al. (2013) report returns to health and science degrees of up to 25% 

and 12%, respectively. Kirkeboen et al. (2016) reports estimates of the returns 

compared to the alternative subjects, finding that while medical studies graduates 

have high returns, science and engineering have an average pay-off around $22,000, 

which is half of the payoff for Law or Business degrees.  

A related identification is found in Ketel, Leuven, Oosterbeek and van der 

Klaauw (2016). They rely on a lottery among all qualified applicants in the 

Netherlands to determine admission to medical schools. Admission to medical 

schools permanently shifts the earnings distribution to the right, with successful 

                                                 
2
 In the US, 50% of students originally registering in STEM do not graduate from a STEM subject 

(Altonji et al. (2015)). This selection is less of a concern in the UK, where switching subject at 

university is rare. 
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applicants to medical schools earning 20% to 50% more than candidates who lost the 

lottery. They conclude that these returns are mostly driven by monopoly rent rather 

than increased human capital; as such, they are specific to working in the health 

sector. 

Kingsley and Pavan (2015) also note that the specificity of returns to a degree to 

working in some occupations is not unique to medical studies. Specifically, they 

assume that agents are endowed with two skills (math and verbal) but are uncertain 

about this endowment until they reach the labour market. Moreover, skills are 

accumulated at different rates in different majors. Using a structural model, they 

estimate that for science graduates the returns to math skills are specific to working in 

a scientific job, and that there is no general return to scientific skills. As such, science 

majors are riskier investments than other fields of study. 

 

III Data and Institutional Set-up 

Prospective students in the UK apply to higher education institutions in the 

autumn preceding the start of the academic year. The application system is 

centralised, and for this cohort, applicants could apply to 6 institution/subject. Based 

on their predicted grades at the final secondary schooling national test (A-levels or 

equivalent), and in some cases interviews, applicants are rejected or accepted, 

conditionally on reaching a given grade at A-levels. Applicants receiving more than 

one offer must specify the one they want to accept, plus an insurance choice in case 

they do not eventually meet the grade criteria to enter their first choice course. When 

A-levels results become available, applicants meeting the conditions are accepted to 

their first or insurance course. At this stage, applicants who do not satisfy their 

admission conditions, or who did not get any offer in the first round, can apply for 

courses that still have vacancies. Those positions are filled on a first come first served 
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basis, conditional on some (usually weaker) entry conditions; some 10% of students 

usually gain access via clearing. In 2006 (the first year for which detailed data is 

available) the ratio of acceptance to applications was 18.3, with no significant 

difference by STEM status. 

Compared to previously used data, the LDLHE has some advantages: it is larger 

than other graduate datasets and can be linked to administrative data. It has thus 

precise information on academic achievement and family background. The LDLHE 

was conducted in November 2006 among a random sample of higher education 

leavers, who typically graduated in the summer of 2003
3
. The sampled population 

consists of leavers from higher education who responded to an initial questionnaire, 

the Destination of Leavers of Higher Education (DLHE) administered by the Higher 

Education Statistic Agency (HESA) six months after graduation. The response rate in 

the Destination of Leavers of Higher Education (DLHE) reaches 75%. A sample of 

55,900 of these original respondents was contacted three years after graduation by 

HESA to take part in the LDLHE.  24,823 responded to either a postal, phone or 

online questionnaire; Tipping and Taylor (2007) provide evidence in favour of the 

representativeness of the survey when reweighted. Item non-response on the earnings 

question leaves us with 19,979 observations. We then select first degree holders only, 

aged 18 to 25 on graduation, non-special entry students and those who are currently 

observed in employment
4
. This leads to a sample of 9,296 observations (See Table A1 

for details on the sample selection).  

Observing graduates three years after graduation limits the scope for 

investigation investment to post-graduate studies. This could create a selection bias if 

for example science graduates are the most likely to engage in post-graduate 

                                                 
3
 The survey only includes individuals who were UK domiciled prior to attaining higher education. 

4
 Like almost all of the literature, I condition on positive earnings. Hamermesh and Donald (2008) 

account for selection into employment, which compresses the earning differentials by 10 to 20%. 
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education. Evidence from the labour force survey (2001-2015) on the subsample of 

graduates aged 25 to 35 suggests this is not the case; the proportions with a post-

graduate qualification are not significantly different between STEM and non-STEM 

graduates. 

I first define science graduates or STEM as all graduates from Medicine, Subject 

allied to Medicine, Biological Science (including Psychology and Sport Science), 

Veterinary/Agriculture related subject, Physical science, Mathematical and Computer 

science, Engineering/Technologies, and Architecture. Individuals with mixed subjects 

in science are also classified as science undergraduates. As such, 49% of the sample 

has studied a STEM subject. Alternatively, I split this group into more 

mathematically oriented subjects only: Mathematics/IT, Physics/Chemistry, and 

Engineering (MIPE), which represents just over 40% of STEM graduates, and other 

STEM. In the UK, very few students switch major during their studies, so graduates 

typically gained entry to university for the subject that they end-up graduating from. 

As such, it is not necessary to model any decision regarding switching major choice. 

Table 1, reports the distribution of subject and the gender composition within subject. 

While the sample is 43% male, male graduates are over-represented in STEM, 

especially in MIPE where they represent 72% of graduates. Within STEM subjects 

there are large variations in gender composition, the two extremes being subject allied 

to medicine, where 17% of graduates are males, and Engineering and Technology, 

where 85% of graduates are males. 

To investigate the labour market of graduates, we define scientific occupations 

(using the 5-digit SOC2000 codes). This definition suffers from some arbitrariness 

(see note under Table 1); however, it delivers sensible results: only 5% of non-

scientific graduates work in a scientific occupation. Like in Roberts (2002), who uses 

an alternative definition based on industry, just under half of the scientific graduates 
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work in a scientific occupation
5
. I also report statistics for the financial and teaching 

sectors, since those are popular alternative careers for STEM graduates
6
.  

Table A2 reports a matrix of occupation mobility for science graduates at 6 

months and 3 years after graduation. Of interest here is that occupations are set early 

on. For example, 84% of STEM graduates working in a scientific occupation 6 

months after graduation are still in this occupational group 30 months later. The 

fraction remaining in the same occupational group between the first and second 

interviews are 73%, 66% and 53% for teaching, other and financial occupations, 

respectively. Another way of looking at mobility is that only 11% of STEM graduates 

in another occupation three years after graduation worked in a scientific occupation 6 

months after graduation. The rest of the paper focuses on occupational choice 36 

months after graduation, as more detailed information is available at this stage. 

Table 1 reports the fraction of graduates, by major, in the four occupation groups 

defined above: scientific, finance, teaching and other. In general more vocational 

science graduates (health, engineering, IT, architecture) have a higher probability of 

remaining in a scientific occupation than graduates from more theoretical scientific 

subjects (Biology, Physics and Math). Subjects with a lower mathematical content, 

like sport sciences and psychology, have the lowest proportion of graduates in 

scientific occupations. Financial occupations are an alternative only for graduates 

from math and combined science; for other majors less than 5% of graduates work in 

finance. Moreover, science graduates are less likely than non-science graduates to 

work in the financial sector, making this sector an unlikely culprit for the labour 

                                                 
5
 Using Labour Force Survey data, I also identify scientific occupations (at 2 digit level) as those in 

which the fraction of workers with a science degree is greater than the national average (42%). These 

more aggregated occupations overlap with the more precisely defined one that I keep for the analysis of 

the DLHE. Pooling Labour Force Survey data from 2001 to 2015, keeping degree holders aged 

between 25 and 35, I find that only 54% of science degree holders work in a scientific occupation; 

consistent with the presented findings. 
6
 While science graduates are likely to use their science knowledge in the education sector, we define 

teaching as a non-scientific occupation since most teachers are not science teachers, and the data at 

hand does not allow us to separate between STEM and non-STEM teachers. 
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shortages in scientific occupations. Teaching is a popular occupation for graduates, 

attracting 17% of non-science graduates and 11% of STEM graduates. This is 

particularly a popular occupation for sport sciences graduates (31%) but also for 

graduates in math, physics, biology and psychology (14-20%)
7
.  

LDLHE respondents self-report their annual gross pay. I recode 36 observations 

with an unusually high salary compared to their occupation’s average earnings due to 

coding errors (additional zero) and drop 149 individuals who claim to earn less than 

the national minimum wage (assuming they worked 52 weeks a year)
8
. The 

distribution of annual earnings for science and other graduates in October 2006 is 

reported in Figure 1, where science graduates are split between MIPE and other 

STEM. For all three groups, the distributions have a very similar bell-shape with a 

long right-hand tail, but are shifted to the right for MIPE graduates and even further 

to the right for other STEM graduates. Kolmogorov-Smirnov tests reject that the 

distributions for each of the groups are identical. On average, non-science graduates 

earn an annual income of £21,600, while MIPE and other STEM graduates earn 

£23,500 and 23,800, respectively.  

In Figure 2, I report the earnings of graduates by science/occupation pair to 

provide the first evidence whether the returns to science skills are generic or specific 

to working in a scientific occupation. The earnings distribution of non-STEM largely 

overlaps with the one of STEM not working in scientific occupation, even if a 

Kolmogorov-Smirnov test rejects the equality of the distributions. The earnings 

distribution of STEM graduates in a scientific occupation is shifted to the right and 

                                                 
7
 Similar conclusions are reached when using Labour Force Survey (2001-2015), and keeping 

graduates aged 25 to 35 only. 
8
 The LDLHE does not contain detailed information on hours of work, only an indicator for part-time 

or full-time employment. Relying on the labour Force Survey (2001-15), I find no significant 

differences in hours of work between STEM and non-STEM graduates or between graduates working 

in scientific and non-scientific occupations. So the differences in earnings that I observe in the LDLHE 

are unlikely to be driven by differences in hours of work between graduates from different subjects or 

in different occupations. 
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has a much fatter right tail—this is partially driven by graduates from medical 

schools. The mean earnings are £21,400, £21,900 and £26,700 for non-STEM, STEM 

not in scientific occupations and STEM in scientific occupations, respectively. The 

conclusion that the earnings distributions differ by occupation type rather than by 

subject type are similar when splitting science graduates between other-STEM and 

MIPE. 

Table 2 dwells further on the issue of wage differential by degree and 

occupation, reporting the average annual earnings by detailed subject and occupation 

categories. MIPE and other-STEM graduates earn more than non-science graduates, 

but the difference is only significant in scientific occupations where the gap is around 

20%. The absence of a premium for science graduates in non-scientific occupations 

suggests that there is little demand for scientific skills outside scientific occupations. 

Since non-science occupations pay, on average, less (or not significantly more in the 

case of finance) than scientific occupations, this first evidence does not square well 

with claims that the other occupations pull STEM graduates away from scientific 

occupations.  

The description by detailed fields of study reveals the large heterogeneity in 

earnings within the science group. Graduates from medical schools are the clear 

outliers, with average earnings of £39,000. The next best paid subjects have earnings 

around the £25,000 mark, and include subjects allied to medicine, mathematics, 

engineering and architecture. At the other end of the pay distribution, psychology, 

biology and sport science graduates earn less than the average non-scientist graduate. 

Graduates from Math, Engineering, IT and subjects allied to Medicine are the only 

ones who earn significantly more when working in science occupations than in other 

(non-financial) occupations. While the rest of the analysis groups science graduates 
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together, as it is not possible to identify the selection into each subject, it is important 

to remember the heterogeneity in earnings between science majors. 

 

IV Econometric considerations 

The descriptive evidence has highlighted that earnings differ by fields of study. 

However, since the characteristics of students, and the attended institutions, also 

differ, this is not conclusive evidence that there are returns to scientific skills. In line 

with the literature, I first rely on Ordinary Least Square estimates of the following 

model (omitting individual level subscripts): 

  10ln XSTEMY  ,     (1) 

where ln Y is the log annual wage, STEM is a dummy variable indicating graduation 

from a STEM subject
9
, so that γ is the estimated return to graduating from a STEM 

field. X1 are controls for the individual’s characteristics, including higher education 

institution dummies and dummies on employer’s postcodes to capture the effect of 

the local labour market on wages. 𝜇 is a random component assumed to be normally 

distributed. Standard errors are clustered at the three-digit level subject choice to 

account for possible correlations in error terms by major
10

. To test whether the returns 

to science are universal or specific to working in a scientific occupation, I extend the 

base model by including dummies for occupation (Ok) and their interactions with the 

STEM indicator. 

 1113210ln    XSTEMOOSTEMY
k

kk

k

kk   (2) 

 As mentioned above, these estimates of the returns to STEM might be biased 

by selection effects, for example, if more able graduates are the ones studying science 

                                                 
9
 In alternative specifications, I include a breakdown MIPE other STEM or even a full breakdown by 

subjects. 
10

 Results are not sensitive to the choice of cluster. For example, in the favoured specification of log 

annual earnings (Table3, column 3) the standard errors on STEM are 0.0122, 0.0115, 0.0128 and 

0.0159 when clustering at the job location, institution, occupation or subject level, respectively. 
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and gaining jobs in scientific occupations. I therefore now account for selection in 

both subject and occupation. To do so, I estimate a double selection model, whereby 

the decision to do a science degree and work in a scientific occupation are jointly 

estimated, and are allowed to be correlated. This is an extension of the Heckman 

(1979) 2-steps selection model, where the first step includes the joint decision to study 

a STEM topic and to work in a scientific occupation. This joint decision is estimated 

by a bivariate probit regression. As in Fishe, Trost and Lurie (1981), I analyse the 

cases where the error terms in the two selection equations are i) uncorrelated and ii) 

allowed to be correlated. The basic modelling idea stems from a Roy (1951) model 

whereby workers select the subject/occupation pair (say k1, k2 and k3) that maximises 

their expected earnings ( (E(wj / j = kl) > (E(wh / j = kl)). The model thus consists of 

two selection equations (graduate from STEM, work in a scientific occupation) 

estimated simultaneously and three wage equations which are specific to a 

subject/occupation pair
11

. For each selection equation, I only observe a dichotomous 

outcome, but this observed outcome results from an unobservable index of the utility 

of this decision, represented by an upper-script star: 

 {

𝑆𝑇𝐸𝑀𝑖
∗ = 𝛾1𝑍1𝑖 + 𝜀1𝑖

𝑆𝑂𝐶𝐶𝑖
∗ = 𝛾2𝑍2𝑖 + 𝜀2𝑖

𝑙𝑛𝑊𝑘𝑖 = 𝛽𝑘𝑋𝑘𝑖 + 𝜇𝑘𝑖        𝑘 = 1,2,3
  (3) 

The two selection equations define three different groups such that: 

{

𝑘 = 1 ≡ 𝑆𝑇𝐸𝑀𝑖
∗ ≥ 0  & 𝑆𝑂𝐶𝐶𝑖

∗ ≥ 0

𝑘 = 2 ≡ 𝑆𝑇𝐸𝑀𝑖
∗ ≥ 0  & 𝑆𝑂𝐶𝐶𝑖

∗ < 0

𝑘 = 3 ≡ 𝑆𝑇𝐸𝑀𝑖
∗ < 0  & 𝑆𝑂𝐶𝐶𝑖

∗ < 0
 

Unobservable characteristics correlated with wages might also be correlated with 

either or both selection variables (𝐸[𝜇𝑘𝑖𝜀𝑡𝑖] = 𝜎𝑘𝑡); to account for this endogeneity, 

                                                 
11

 I drop the pair non-science degree/scientific occupation due to small sample size and concerns about 

measurement error defining this group. 
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the wage regressions can be corrected. Since there are two selection equations, an 

additional difficulty is to account for the correlation structure between these two 

selection processes. Two different cases exist, i) the error terms in the two selection 

equations are independent (𝐸[𝜀1𝑖𝜀2𝑖] = 0) or correlated (𝐸[𝜀1𝑖𝜀2𝑖] = 𝜎12
𝑆 ).  

For each k-type individual, I predict the expected wages in the k-type group. Following 

the notations from Fishe, Trost and Lurie (1981), the expected wage equations in the 

case of uncorrelated selection equations (𝐸[𝜀1𝑖𝜀2𝑖] = 𝜎12
𝑆  =0) are defined as follow: 

{

𝐸[𝑙𝑛𝑊𝑘𝑖 / 𝑖 ∈ 𝑘 = 1] = 𝛽𝑘𝑋𝑘𝑖 − 𝜎𝑘1𝑀1𝑖 − 𝜎𝑘2𝑀2𝑖

𝐸[𝑙𝑛𝑊𝑘𝑖 / 𝑖 ∈ 𝑘 = 2] = 𝛽𝑘𝑋𝑘𝑖 − 𝜎𝑘1𝑀1𝑖 + 𝜎𝑘2𝑀4𝑖

𝐸[𝑙𝑛𝑊𝑘𝑖 / 𝑖 ∈ 𝑘 = 3] = 𝛽𝑘𝑋𝑘𝑖 + 𝜎𝑘1𝑀3𝑖 + 𝜎𝑘2𝑀4𝑖

  (4.1) 

The correction terms M1, M2, M3 and M4 , also known as the inversed Mills ratio, are 

defined as follows, where the function f(.) and F(.) refers to the density and cumulative 

normal distributions, respectively: 

  

{
 

 
𝑀1𝑖 = 𝑓(𝑍1𝑖𝛾1)/𝐹(𝑍1𝑖𝛾1)

𝑀2𝑖 = 𝑓(𝑍2𝑖𝛾2)/𝐹(𝑍2𝑖𝛾2)

𝑀3𝑖 = 𝑓(𝑍1𝑖𝛾1)/[1 − 𝐹(𝑍1𝑖𝛾1)]

𝑀4𝑖 = 𝑓(𝑍2𝑖𝛾2)/[1 − 𝐹(𝑍2𝑖𝛾2)]

    (4.2) 

When the two selection equations are correlated, the wage equations and selection terms 

become more cumbersome to compute. Again, following Fishe, Trost and Lurie (1981), 

they are computed as:  

{

𝐸[𝑙𝑛𝑊𝑘𝑖 / 𝑖 ∈ 𝑘 = 1] = 𝛽𝑘𝑋𝑘𝑖 + 𝜎𝑘1𝑀12𝑖 + 𝜎𝑘2𝑀21𝑖

𝐸[𝑙𝑛𝑊𝑘𝑖 / 𝑖 ∈ 𝑘 = 2] = 𝛽𝑘𝑋𝑘𝑖 + 𝜎𝑘1𝑀56𝑖 + 𝜎𝑘2𝑀65𝑖

𝐸[𝑙𝑛𝑊𝑘𝑖 / 𝑖 ∈ 𝑘 = 3] = 𝛽𝑘𝑋𝑘𝑖 + 𝜎𝑘1𝑀78𝑖 + 𝜎𝑘2𝑀87𝑖

 (5.1) 

Where the selection terms are defined as: 

 𝑀𝑙𝑗𝑖 = (1 − (𝜎12
𝑠 )2)−1 ∗ (𝑃𝑙𝑖 − 𝜎12

𝑠 𝑃𝑗𝑖)  
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑃1 =

∫ ∫ 𝜀1𝑓(𝜀1𝜀2)𝑑𝜀1𝑑𝜀2
𝑍1𝛾1
−∞

𝑍2𝛾2
−∞

𝐹(𝑍1𝛾1,𝑍2𝛾2)

𝑃2 =
∫ ∫ 𝜀2𝑓(𝜀1𝜀2)𝑑𝜀2𝑑𝜀1

𝑍2𝛾2
−∞

𝑍1𝛾1
−∞

𝐹(𝑍1𝛾1,𝑍2𝛾2)

𝑃5 =
∫ ∫ 𝜀1𝑓(𝜀1𝜀2)𝑑𝜀1𝑑𝜀2

𝑍1𝛾1
−∞

∞

𝑍2𝛾2

𝐹(𝑍1𝛾1,−𝑍2𝛾2)

𝑃6 =
∫ ∫ 𝜀2𝑓(𝜀1𝜀2)𝑑𝜀2𝑑𝜀1

∞

𝑍2𝛾2

𝑍1𝛾1
−∞

𝐹(𝑍1𝛾1,−𝑍2𝛾2)

𝑃7 =
∫ ∫ 𝜀1𝑓(𝜀1𝜀2)𝑑𝜀1𝑑𝜀2

∞
𝑍1𝛾1

∞
𝑍2𝛾2

𝐹(−𝑍1𝛾1,−𝑍2𝛾2)

𝑃8 =
∫ ∫ 𝜀2𝑓(𝜀1𝜀2)𝑑𝜀2𝑑𝜀1

∞

𝑍2𝛾2

∞

𝑍1𝛾1

𝐹(−𝑍1𝛾1,−𝑍2𝛾2)

   (5.2) 

 

V Results 

V.1 – OLS estimates 

The first items to discuss are the estimates resulting from the simple OLS model 

(1) of the average returns to STEM. This is the type of model that has often been 

estimated in the literature. The top panel of Table 3 reports several specifications of 

this model. In the simplest specification, controlling only for the local labour market 

(postcode dummies), I find a return to having graduated from STEM of 11.4%. In 

specification (2) I control for a rich set of individual characteristics including gender, 

age at graduation, disability status, but also parental social class, type of school 

attended and academic ability
12

. Including these controls reduces the science 

premium by 31% to 7.9%. In column (3) I further control for class of degree and 

include higher education institution dummies so as to capture the quality/reputation of 

the education received. This further reduces the return to STEM to 5.8%. Importantly, 

these last set of controls are often not observable, leading to an upward bias in the 

returns to science in most of the literature. The returns to studying science appear 

substantial, similar in scale to the returns to attending the highest quality institutions 

(Altonji et al., (2015) or Chevalier, 2014). The last two columns report estimates 

                                                 
12

 This is proxied by the A-levels grades. A-levels are the national exams taken at the end of secondary 

schools in England. A-levels, or their equivalent, determine admission to higher education. 
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when splitting the population by gender. The returns to studying science are 80% 

larger for males than for females (8.5% vs 4.8%) which partially comes from 

differences in subject choice by gender. As seen in Table 1, male scientists are 

disproportionally found in mathematics, IT, engineering and architecture, majors that 

have higher mean earnings than psychology and biology, two of the most female-

dominated fields (Subject allied to Medicine is also 84% female but has average 

earnings).  

The second panel of Table 3 separates science graduates between MIPE and 

other STEM. Returns to other STEM are marginally larger in the basic specification 

but no significant wage differential between MIPE and other STEM is found when 

the most extensive set of controls is included. Again, there are some differences in 

returns by gender. For males, returns are very similar when graduating from MIPE or 

other-STEM, at around 8.5%. Females graduating from other-STEM earn 

significantly more than non-STEM graduates (+5.3%), and even then, the returns are 

lower (not significantly) than for males. For females, no significant return to MIPE is 

found. Below, I explore further whether the differences in returns stem from 

differences in subject of study or differences in returns by subject. 

The last panel of Table 3 reports the wage premiums over a non-science graduate 

for each of the science majors. This confirms the descriptive statistics that large 

variations in the returns to science by major exist. Graduates from medical schools 

earn 51% more than non-STEM graduates. Graduates from engineering, architecture 

and subjects allied to medicine also enjoy premiums between 10% and 15%, while 

math and IT graduates’ earnings are about 6.5% more than non-STEM graduates. 

Only psychology graduates have significantly lower earnings than non-STEM majors 

(-5%). This is a concern when considering that psychology is the discipline, which 

according to HESA, has seen the largest increase in graduates between 2003 and 2014 
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(+89%). At this level of disaggregation, there are differences in returns to fields by 

gender, with male graduates generally enjoying larger returns to a science degree than 

their female peers (sport science is an exception), but these differences are not 

statistically significant. 

I now test whether the returns to a science degree are universal across 

occupations or specific to working in a scientific job. This is a crucial test of the 

argument that science graduates are poached to work in non-scientific occupations. 

Table 4 reports estimates of the return to STEM when controlling for occupation 

(using the full specification described in the previous paragraph). When occupation 

controls are included (column 1), returns to STEM drop to an insignificant 2%. This 

compares with an occupational premium in scientific, financial and educational 

occupations of 14% to 16%. In the second column, I add interactions between STEM 

and occupation groups, to assess whether scientific skills are rewarded in other 

occupations. None of the interactions are statistically significant. There is no overall 

return to studying science, and scientific skills are only rewarded in scientific 

occupations
13

. This conclusion is very similar to Kinsler and Pavan (2015), who 

estimate the wage returns to science for graduates not working in a job related to their 

studies to be, as is the case here, an insignificant 2%. 

This analysis is repeated in columns (3) and (4), separating the science graduates 

between MIPE and other STEM. The prior is that MIPE skills are less occupation 

specific and may generate returns even in non-scientific occupations. This is not 

supported by the data. The estimated wage returns to MIPE and other STEM are 

similar and again not statistically significant outside scientific occupations, i.e., there 

                                                 
13

 We also estimate a model excluding individuals who have not studied a STEM subject but still works 

in a scientific occupation (177 observations), as this may reflect measurement error, but our estimates 

are unchanged. 
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is no specific return to being a science graduate of any type in a non-scientific 

occupation.  

In the remaining two columns of Table 4, I report estimates separately by gender. 

The conclusions are very similar, the wage premiums to studying science is specific 

to being matched to a scientific occupation. Altogether, the differences between men 

and women estimates are also never statistically significant.  

The science wage premium is match-specific, which is puzzling since one often 

advocated reason for the leakage of science graduates is that non-scientific 

occupations value the skills of science graduates and offer higher wages than 

scientific occupations. This is not supported by the data. The next section assesses 

whether this conclusion is altered when accounting for selection by subject and 

occupation. 

 

V.2: Selection model 

The econometric section described that the naïve estimates of the returns to 

science and occupation may be biased if unobservable individual characteristics 

correlate with subject or occupation, and with earnings. To correct for this selection, I 

use the double selection model presented in the previous section. This model can only 

be identified if the set of variables (Z1 and Z2) does not fully overlap with X; i.e., 

exclusion restrictions which determine the choice variables but not earnings are 

needed. We discuss below the identifying variables.  

Due to the presumption that not enough pupils study STEM at tertiary level, 

grants and other policies reducing tuition fees disproportionally target STEM subjects 

over other subjects
14

. Indeed, Figure 4 reports local polynomial estimates of the 

                                                 
14

 Two articles have specifically investigated the effect of differential tuition fees on major decision. 

Stange (2015) relies on time differences between institutions in the introduction of differential pricing 

of majors, whereby engineer majors pay higher tuition fees. Their introduction leads to a drop in the 
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fraction of graduates studying STEM by tuition fees status, conditional on ability (A-

level score). At all levels of ability, students paying full tuition fees are less likely to 

be studying STEM. The gap is particularly large for high ability students, where a 15 

percentage point gap in the probability of studying STEM exists between those 

paying full tuition fees and those paying reduced or no fees. Of course, a concern 

would be that fee status has a direct impact on occupational choice and wages, for 

example, if needs to repay debt affect sector of work (Field, 2009). This is unlikely to 

be the case since the level of tuition fees was rather modest (£1,000 per year). Indeed 

tuition fee status has no statistically significant effect in a wage regression that 

controls for subject and occupation, nor is it related to occupation. As such, tuition 

fee status appears to be correlated with subject choice but not directly to subsequent 

career decisions.  

The decision to work in a scientific occupation is identified from 

intergenerational correlation in occupation; i.e., parents working in a scientific 

occupation may influence the career decisions of their child (Long and Ferrie, 2013). 

Figure 5 reports the proportion of graduates in scientific occupation by parental 

occupation. At all levels of ability, children of scientists are 5 percentage points more 

likely to be working in a scientific occupation. Again, a concern of this identifying 

strategy might be that parental occupation allows young graduates to secure higher 

earnings (nepotism, information,..). Estimating an extension of the previous wage 

regression, which includes parental occupational, I find no statistical evidence 

supporting the idea that parental occupation is correlated with child’s earnings.  

I now estimate the selection model as described in (3), whereby the first step is a 

bi-variate probit model jointly estimating the decision to study science and to work in 

                                                                                                                                            
share of engineering degrees of 9%. On the contrary, Evans (2013) evaluates the effect of a STEM 

specific grant on major decisions in Ohio but reports no significant effect. 
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a scientific occupation.
15

. The two exclusion variables are significantly different from 

zero individually, and an F-test of their joint significance has a value of 29. The 

estimated correlation in the residuals of the two selection equations is positive 

(𝜎12
𝑆 = 0.200), i.e., individuals who have unobserved characteristics making them 

more likely to study science are also more likely to work in a scientific occupation. 

However, this correlation is very imprecisely estimated, so I conduct the second step 

twice, first assuming that the correlation is in fact 0, then using the estimated 

correlation. The inverse Mills ratio are computed in both cases, and the wage 

equations for the three groups of interest (k=1: STEM in scientific occupation, k=2: 

STEM not in scientific occupation, k=3: non-STEM) is estimated. The second panel 

of Table 5 reports the coefficients on the selection correction terms in the wage 

equation for each group. Whether correlation of the error terms in the selection 

equations is assumed or not, the selection terms are only significant for the group of 

STEM graduates working in scientific occupations. These individuals have 

unobservable characteristics that are positively correlated with the subject and 

occupation decisions and their earning ability, maybe due to their greater interest for 

the subject.   

I also report the average predicted wages for the three groups. The results are not 

dependent on the assumption regarding the correlation of the selection processes. The 

expected wages of STEM graduates not working in scientific occupations are similar 

to non-STEM graduates, and the returns to working in a scientific occupation are 

20%. Using the observed proportion of STEM graduates in scientific occupation, the 

average return to a science degree is thus 10.01%. 

                                                 
15

 For this model to converge I exclude postcode and institution dummies. The model was also 

estimated separately by gender – Convergence was only achieved for the male sub-sample but point 

estimates were very similar to those obtained with the full population. 
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Figure 6 reports the distribution of the predicted wage differential in the observed 

occupation and in the alternative occupations (𝑙𝑛𝑊(𝑘 = 𝑙)̂ − 𝑙𝑛𝑊(𝑘 ≠ 𝑙)̂ /𝑘 = 𝑙). If 

individuals choose subjects and occupations maximising their expected earnings, as 

in a Roy model, this inequality should always be positive, i.e., individuals have 

greater earnings in their observed subject/occupation than in an alternative. For non-

STEM graduates, the expected wage differentials had they studied a STEM subject 

would have been very different depending on whether they would have worked in a 

scientific occupation or not (Figure 6A). Had they worked in a scientific occupation, 

they would have earned close to 100% higher wages. But if following graduation 

from a STEM subject they would have worked in a non-scientific occupation, they 

would have been worse off by 40% compared to their realised wages. These estimates 

are likely to be biased since we do not fully account for subject specific taste but they 

also reflect the large heterogeneity of expected earnings following graduation from a 

STEM subject (as is also the case in the US, see Kinsler and Pavan, 2015).   

For STEM graduates not working in a scientific occupation (Figure 6B), the 

distributions of the difference between predicted wages in their observed occupation 

and in alternative subjects or occupations are almost centred on 0. On average, they 

would have been 3.7% better off if they had worked in a scientific occupation. As 

such, there is no strong evidence that this group of graduates has been pulled to work 

in non-scientific occupations by higher expected wages. They are also marginally 

better off having studied science and not working in a scientific occupation than if 

they had not studied science altogether (the mean expected wage differential is 3.7%). 

If we consider these graduates to be marginal in their choices to study STEM and to 

work in a scientific occupation, these results could be interpreted as the marginal 

returns to studying science and to work in a scientific occupation. 
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Only graduates working in scientific occupations (Figure 6C) mostly conform to 

a Roy’s model of subject/occupational choice. They earn 13% to 18% more than if 

they did not work in a scientific occupation or had not studied science, respectively, 

with a clear majority of them having a positive wage differential between their 

realised wage and their expected alternative wage. 

Up to 40% of graduates would appear to have been better off if they had studied 

another field, but this may have to do with the inability to model taste for specific 

studies. Indeed, the limited role of future earnings on major choice is highlighted, 

among others, in Wiswall and Zafar (2015). Using experimental data in which a small 

group of New York University students was provided with information on the 

distribution of earnings by major, they conclude that for these high ability students, 

while the expected probability of graduation and expected earnings are related to field 

of study chosen, the main determinant is taste for the subject. 

Overall, I do not find consistent evidence that students are better off graduating 

from a STEM subject. For non-STEM graduates, this would have been the case only 

if they had subsequently worked in a scientific occupation, but not if they had worked 

in a non-scientific occupation. Across all three groups, I consistently find that 

graduates would have been (are) better off working in a scientific occupation. For the 

most marginal group, returns to studying science are low (+3.7%). This does not 

appear consistent with the often heard hypothesis that non-scientific occupations pull 

scientists away from science because of higher wages.  

 

VI Pull and Push Factors – Non Financial Concerns 

While the results so far have not been consistent with science graduates being 

pulled away from a career in science by higher wages in other occupations, I now 

focus on other dimensions of the job that may explain the attraction of non-science 
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occupations for STEM graduates. Table 6 reports OLS estimates of major and 

occupation on subjective measures reflecting the match between current job and 

education (panel A) and reasons for having accepted the current job (panel B).   

First, I proxy the quality of the job match, relying on the definition of over-

education provided in Elias and Purcell (2004). I then estimate a linear probability 

model similar to the one presented in (2). According to this definition, 26% of non-

science graduates are over-educated. Controlling for observable characteristics, a 

science major reduces the risk of over-education by 22 percentage points, but only for 

graduates working in scientific occupations. STEM graduates working in non-

scientific occupations are 20 percentage points more likely to be over-educated than 

STEM graduates working in scientific occupations. Since over-education is usually 

associated with a wage penalty, this is consistent with STEM graduates in scientific 

occupations earning more than peers working in other occupations.  

To further investigate the demand for scientific skills, columns 2 and 3 report 

estimates on whether the subject of study and skills, respectively, were important in 

obtaining the current position. For non-scientific graduates, 46% respond that the 

subject was either a requirement or important in obtaining the job. Again, for science 

graduates this probability is much larger (+36 pp), but only if working in a scientific 

occupation. The large majority (85%) of graduates believe that their skills were 

important in obtaining their current job, but for STEM graduates working in scientific 

occupation, this is even larger (+4.5pp). Scientific skills do not appear to be in large 

demand in non-scientific occupations; there is no difference in the self-report between 

non-STEM and STEM graduates not working in scientific occupation. 

The final two columns of Panel A report estimates for overall measures of match 

quality: satisfaction with career so far and whether with insight the respondent would 

rather have studied a different subject. One could assume that if science graduates had 
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been attracted to work in non-scientific occupations, they would report higher levels 

of satisfaction than other graduates. This is not the case. Only science graduates in 

scientific occupations are more satisfied with their career than non-science graduates, 

and they report greater levels of satisfactions with their field of study choice. 

Over all these outcomes, STEM graduates in scientific occupations have a better 

match of their skills with their jobs, resulting in greater career satisfaction, less risk of 

over-education and fewer regrets about field of study than other graduates. These 

results are not consistent with STEM graduates being pulled to non-scientific 

occupation. To investigate this issue further, I investigate popular reasons for having 

accepted the current job (Panel B). We can split these reasons between positive 

choices—the job fit with my career plan, is exactly the job I wanted, this was the best 

job offer, or the job allows for broadening skills—and negative reasons such as this 

was the only job offer, or I took it to pay-off debts. With the exception of “This was 

the best job offer”, STEM graduates working in scientific occupations are more likely 

than non-STEM graduates to mention one of the positive reasons for being in their 

current job, and the estimates are always different from the one obtained for STEM 

graduates not working in a scientific occupation. This later group is mostly 

indistinguishable from non-STEM graduates, apart from that they are 6 percentage 

points less likely to be in their current job because it was the “best job offer”. 

Regarding the two negative reasons for being in the current job, all STEM graduates 

are less likely to be in a job to pay-off debts. 

Taken altogether, this evidence does not support the claim that science graduates 

have been lured to work in non-scientific occupations by better amenities; they are 

mostly undistinguishable from non-STEM graduates and less positive than STEM 

graduates working in a scientific occupation.  
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As robustness checks I estimate three other specifications of these models. First, 

I include current wage to capture potential effects due to compensating wage 

differentials, but the conclusions remain broadly unchanged. Second, I estimate these 

models when adding interactions between gender, and the STEM and occupation 

status, to assess whether the reasons to work in a given occupation differ by gender. I 

then conduct an F-test of the joint significance of these interaction terms, reported as 

F(2,148) Gender in Table 6. The interactions are never significant, indicating that the 

reasons to be in a job requiring scientific knowledge or not are similar for male and 

female graduates. Finally, I split the STEM group between MIPE and other-STEM 

and test whether the coefficients on the interaction between subject group and 

occupation differ between STEM and MIPE (last two rows of each panel in Table 6). 

For science graduates not working in a scientific occupation, the only significant 

difference is that MIPE graduates are more likely to be in a non-graduate job than 

other STEM graduates. For graduates in scientific occupations, there are more 

differences between MIPE and other STEM, with other-STEM being better matched 

than MIPE. Altogether, these results suggest that for science graduates working in a 

non-scientific occupation, neither the reasons for taking such a position, nor the 

quality of the match differ between MIPE and other-STEM. More generally, the 

reasons are not different than those put forward by non-STEM graduates, confirming 

that science graduates not in scientific occupations, whatever their background, are 

mostly pushed into these occupations.  

 

VII: Who are the mis-matched STEM? 

This section examines whether some observable characteristics of STEM 

graduates are associated with the probability of not working in a scientific 

occupation. In particular, since the previous evidence has mostly been consistent with 
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STEM graduates being pushed to non-scientific occupation, I focus on measures of 

academic skills: field of study, degree grade, and institution quality, as well as 

gender. For STEM graduates, I report in Table 7, the estimates from a linear 

probability model on being observed working in a scientific occupation. 

In model 1, I explore the role played by major choice even after controlling for 

institution fixed effects. Fields of study are correlated with the probability of working 

in a scientific occupation. Compared to a math graduate, graduates from the more 

applied science fields—in particular medicine, subjects allied to medicine, 

engineering and IT—are 30 to 60 percentage points more likely to be observed 

working in a scientific occupation three years after graduation. Other subjects are 

largely indistinguishable from math in their probabilities of landing a scientific job. 

Consistent with selection by ability, class of degree is associated with a greater 

probability of working in science. There is, in particular, a sharp break at a 2.2 or 

lower, consistent with most graduate programs and graduate jobs stating that a grade 

of 2.1 or above is needed to apply. Note that, even after controlling for field of study, 

males are 9 percentage points more likely than female graduates to be in a scientific 

occupation.  

In the second column, I drop the institution fixed effects and include instead a 

measures of institution quality
16

. Institutions above median and, in particular, in the 

top quarter of quality have graduates with a greater probability of working in 

scientific occupations. Other results are largely unchanged. Graduate characteristics, 

in particular those correlated with skill accumulations and with more applied skills, 

are associated with a greater probability of working in a scientific occupation. This is 

                                                 
16

 Quality is measured as the first component in a principal component analysis including research 

assessment score, student staff ratio, academic expenditures per student, entry grades of students and 

graduate prospects; measures that are typically included in league tables. 
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consistent with the push explanations advanced previously for the leakage of 

scientists; STEM graduates with lower skills are pushed towards non-science jobs. 

I then split the sample between MIPE and other STEM (Columns 3 and 4). The 

selection into scientific job is mostly observed for MIPE graduates for which I found 

strong effects of grades, institution quality and gender. For other-STEM, none of 

these factors are correlated with the decision to work in a scientific job. While I 

previously found that the probability of working in a scientific occupation (Table 1) 

and its returns were not different between MIPE and other STEM (Table 4), the 

selection by which STEM graduates end up in a scientific occupation seems to differ, 

with MIPE selected on observables related to their skills. 

Finally, I split the sample by gender. The selection into scientific occupations is 

correlated with skill-related observables for males, but not for females. This is 

surprising considering that neither the returns to being matched to a scientific 

occupation nor the reasons for being in a job significantly differ by gender. This 

suggests that male and female science graduates opt for different scientific 

occupations. 

Overall, this section concludes on selection by highlighting that STEM graduates 

working in scientific occupations are positively selected on their skills, especially 

MIPE and male graduates. This also suggests that the market for scientific 

occupations is not homogenous. 

 

VIII: Conclusions and comments 

A puzzle in the labour market for science graduates is that there is a popular view 

that there is a shortage of science graduates, but at the same time, 50% of science 

graduates do not work in scientific occupations. An often advocated reason is that 

science graduates are pulled to work in non-scientific occupations.  
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This study provides evidence that the wages of STEM graduates are higher than 

non-STEM graduates, but this premium is driven by higher wages in scientific 

occupations, not by a premium for scientific skills across the labour market. This is 

true for all STEM, but it also holds when splitting STEM between more 

mathematically oriented subjects (Math, IT, Physics and Engineering) and other 

STEM. Another contribution of this manuscript is to account for both the selection 

into field of study and occupation. The self-selection bias in the returns to subject is 

small—the correction terms are often insignificant—and predicted earnings, when 

using the selection or a simple model, differ on average by less than 2%. Again, this 

leads to the conclusion that the returns to scientific skills are specific to being 

matched to a scientific occupation. Consistent with a sorting of science graduates, the 

returns to matching for STEM graduates in non-scientific occupations would be low 

(+ 3.7%). 

The career decisions of graduates may also be related to non-financial reasons. 

However, this study found little support for the notion that non-scientific occupations 

exert a pulling attraction for science graduates; on the contrary, science graduates in 

non-scientific occupations are more likely to be over-educated, less likely to report 

that their subject of study was important to get their job, less likely to be in the job 

they wanted to do, less satisfied with their careers and less likely to agree that with 

hindsight they would study the same major. It is thus unclear that the leakage of 

scientists is due to the appeal of other occupations.  

Numerous reports have claimed that there is a shortage of scientists. Indeed, this 

study estimates a wage premium for working in a scientific occupation, but the other 

results—such as no returns to STEM skills in non-scientific occupations, lower match 

quality of STEM graduates in non-scientific occupations and greater regret about 
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field of study among non-matched STEM graduates—caution against the claim that 

more STEM graduates are needed.  

The puzzle of why so many science graduates work in non-scientific occupations 

remains. It may be due to a mismatch between degree programmes and employers’ 

needs (see the Lambert (2003)), which would also be consistent with the 

heterogeneity in the returns to science by detailed fields. But then, rather than calling 

for more scientists to be trained, it would appear that employers should provide the 

training for graduates to have appropriate job-specific skills that are required. 

Alternatively, the institutional set-up of education in England, where students 

specialise early, increases the costs of switching majors. Individuals who become 

dissatisfied with their major choice are thus trapped and switch only when entering 

the labour market (Malamud, 2010). Allowing students to specialise later might thus 

reduce the leakage of scientists (see Bridet and Leighton, 2015, for some simulations 

of these effects).   
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Figure 1: Distribution of Annual Earning by Field of Study (October 2006) 

 

Note: Source LDLHE, Full time employees only- maximum annual earnings trimmed at £60,000. 

Epanechnikov kernel density. 

 MIPE: Math, Computing science, Physics, Engineering and Technology 

Other STEM: Medicine, Subject allied to Medicine, Biology, Veterinary, Agriculture, Architecture 
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Figure 2: Distribution of Annual Earning by STEM Status and Occupation Type 

(October 2006) 

 
Note: Source LDLHE, Full time employees only- maximum annual earnings trimmed at £60,000. 

Epanechnikov kernel density. Scientific occupation (Sc. Occ) defined as in Table 1.  
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Figure 3: Fraction Studying STEM by Tuition Fee Status and Academic Ability 

  
Note: Source LDLHE . Local polynomial estimates based on Epanechnikov kernel  

 

 

Figure 4: Fraction working in scientific occupation by grade and parental 

occupational choice 

 
Note: Source LDLHE. Local polynomial estimates based on Epanechnikov kernel  
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Figure 5: Predicted Earnings Differential in Observed Occupation and 

Alternative Occupations, by Observed Subject Choice 

A] Non STEM graduates 

 

B] STEM graduates, not in sc. Occupation 

 

C] STEM graduates in sc. Occupation 
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Table 1 Proportion of graduates working in specific occupational group and gender composition 

Subject Scientific 

occupation 

Financial 

occupation 

Education 

sector 

Other % Male Obs. 

Science subject:       
Medicine and Dentistry 0.95 0.01 0.00 0.04 41.8 390 

Sub. allied to Medicine 0.80 0.01 0.03 0.16 16.8 944 

Biology, vet, agriculture 0.30 0.01 0.14 0.55 30.3 378 

Psychology 0.23 0.02 0.20 0.55 14.1 305 

Sport Sciences 0.01 0.04 0.31 0.65 53.0 112 

Physical science 0.30 0.04 0.14 0.52 59.1 332 

Mathematics 0.25 0.20 0.19 0.46 53.8 203 

IT 0.47 0.04 0.06 0.043 75.1 630 

Engineering and Tech. 0.59 0.03 0.03 0.35 85.3 575 

Architecture & Planning 0.53 0.00 0.00 0.47 76.5 183 

Mixed 100% science 0.43 0.14 0.06 0.37 57.5 120 

Aggregated subjects       

Non-science 0.05 0.07 0.17 0.72 37.5 4525 

STEM (all) 0.43
+
 0.04

+ 
0.11

+ 
0.42

+ 
49.7 4851 

MIPE 0.45
+
 0.06

+ 
0.08

+ 
0.43

+ 
72.3 1740 

       Total 0.24 0.05 0.14 0.57 43.5 9376 
Note: Observations weighted to be nationally representative 
+ denotes that the mean is statistically different from the mean for the non-scientific graduates 

Science occupations are defined as the following SOC2000 codes:  Managers in construction (1122), mining and energy (1123), IT (1136), R&D (1137), Health services (1181), Pharmacy (1182) 

Healthcare practise (1183), Farm (1211), Natural environment (1212), Chemist (2111), Biologist (2112), Physicists/mathematicians (2113), Engineer (2121. 2122, 2123, 2124. 2125, 2126, 2127, 2128, 

2129), IT professional (2131), software professional (2132), medical occupation (2211), other medical professionals (2212), Pharmacist (2213), Optician (2214), Dentist (2215), Veterinarian (2216), 

Scientific researcher (2321), statisticians (24234), Actuaries (24235), Architects (24310), Technician (3111, 3112, 3113, 3114, 3115, 3119, 3121), draughtsperson (3122), building inspector (3123), IT 

technician (3131), Nurse (3211), Midwife (3212), Paramedic (3213), other medical associate professional (3214,3215, 3216, 3217,3218, 3221, 3222, 3223, 32290, 32291, 32292, 32293). 

Financial occupations are defined as: Financial institution manager (1151), Chartered and certified accountant (2421), Management accountant (2422), Management consultants, actuaries, economists 

and statisticians (2423), finance and investment analyst (3534), taxation expert (3535), financial and accounting technicians (3537).  

Education sector is defined as all occupation in the group teaching professionals (231) 



Table 2: Average Annual Earnings by subject of study and occupation 

Subject Mean 

Earning 

Mean 

Earning 

and works 

in Science 

Mean 

Earning 

and works 

in Finance 

Mean 

Earning and 

works in 

Teaching 

Mean 

earning and 

other 

occupations 

Science Subjects      

Medicine and Dentistry 39,133 38,909    

Sub. allied to Medicine 24,580 25,074*  21,581 22,948 

Biology, vet, agriculture 20,294 20,217  20,822 20,178 

Physical science 21,612 22,079  23,226 20,649 

Mathematics 24,693 30,432* 27,334 22,802 22,162 

Engineering and Tech. 24,934 26,058*  20,308 22,592 

Architecture and Planning 24,476 25,150   23,812 

Sport science 20,552   20,938 20,207 

Psychology 19,285 18,924  19,310 19,355 

IT 22,792 24,618* 22,761 23,248 20,712 

Mixed 100% science 22,436 23,043   20,825 

Aggregated Subjects      

Non science 21,600 22,028 25,854 22,577 20,939 

Other-STEM 23,757
 

26,390*
 

26,583 22,039 21,197 

MIPE 23,488
 

25,190*
 

26,740 22,735 21,399 

      

Total 22,677 25,979 26,125 22,352 21,032 

Note: Source LDLHE 02/03. Weighted to be nationally representative. Sample restricted to Full time employees with annual salaries lower than £60,000. – means for cells with less 

than 20 observations are not reported. 

* indicates significant difference (95% confidence level) between earning in scientific occupation and all other occupations 



Table 3: OLS – (log)Annual Earnings by Field of Study 

Panel A All 

Base 

 

(1) 

All 

Pre-uni 

controls 

(2) 

All 

Graduation 

controls 

(3) 

Male 

 

 

(3) 

Female 

 

 

(3) 

STEM 0.114** 0.079** 0.058** 0.085** 0.048** 

 [0.010] [0.010] [0.016] [0.024] [0.018] 

Panel B       

MIPE 0.104** 0.071** 0.057** 0.082** 0.030 

 [0.013] [0.014] [0.015] [0.023] [0.020] 

Other STEM 0.121** 0.084** 0.060** 0.088** 0.053** 

 [0.012] [0.012] [0.023] [0.038] [0.023] 

Panel C      

Medicine 0.677** 0.533** 0.515** 0.564** 0.453** 

 [0.023] [0.028] [0.047] [0.068] [0.052] 

Subject allied to  0.161** 0.150** 0.141** 0.238** 0.117** 

Medicine [0.016] [0.015] [0.034] [0.056] [0.032] 

Biology, Veterinary -0.045* -0.047* -0.043 -0.006 -0.061* 

 [0.027] [0.025] [0.028] [0.044] [0.034] 

Physical science  0.039* 0.018 0.015 0.048** 0.008 

 [0.023] [0.024] [0.017] [0.024] [0.028] 

Mathematics 0.105** 0.068** 0.063** 0.054 0.055 

 [0.031] [0.028] [0.024] [0.049] [0.024] 

Engineering and  0.164** 0.127** 0.100** 0.120** 0.073 

Techno. [0.019] [0.020] [0.025] [0.028] [0.053] 

Architecture and  0.162** 0.154** 0.134* 0.143 0.144** 

Planning [0.042] [0.041] [0.071] [0.093] [0.044] 

Sport sciences 0.023 0.035 0.024 0.027 0.094** 

 [0.042] [0.043] [0.018] [0.031] [0.027] 

Psychology -0.062** -0.061** -0.052** -0.040 -0.059** 

 [0.026] [0.026] [0.013] [0.037] [0.015] 

IT 0.068** 0.068** 0.065** 0.111** -0.004 

 [0.023] [0.024] [0.014] [0.024] [0.029] 

Mixed 100% science 0.052 0.020 0.005 0.034 -0.013 

 [0.051] [0.049] [0.019] [0.029] [0.030] 

Socio-economic 

controls 

 Yes Yes Yes Yes 

HE controls   Yes Yes Yes 

Note: N=8280, reweighted to be nationally representative. Standard errors are adjusted for clustering at the 

subject level (150 clusters). ** indicates statistical significance at the 95% confidence interval.  

The omitted subject category is all non-science degree. 

STEM indicates all science subjects. MIPE indicates graduates from Math, IT, Physics or Engineering programs 

(1) includes a set of dummies for postcode of employer (3 digit) 

(2): (1) + controls for A-levels score, a dummy for missing A-levels score, a dummy for female, a set of dummy 

for parental social class, ethnicity, age on graduation, disability status, and type of previous institution attended.  

(3): (2) + dummies for class of degree and institution dummy 

. 



Table 4: OLS – (log) Annual Earnings by STEM and Occupation Type 

 All 

(1) 

All 

(2) 

All 

(3) 

All 

(4) 

Male 

(4) 

Female 

(4) 

STEM 0.021 0.024 0.024 0.023 0.063* 0.012 

 [0.015] [0.017] [0.020] [0.021] [0.036] [0.023] 

MIPE   0.017 0.024 0.032 0.021 

   [0.017] [0.021] [0.030] [0.028] 

Scien. occ 0.146** 0.105** 0.146** 0.105** 0.120** 0.116** 

 [0.014] [0.021] [0.014] [0.021] [0.040] [0.032] 

Scien. Occ * STEM  0.045  0.053 0.044 0.036 

  [0.027]  [0.034] [0.059] [0.039] 

Scien. Occ * MIPE    0.036 0.029 0.031 

    [0.030] [0.047] [0.055] 

Finance 0.137** 0.145** 0.137** 0.145** 0.144** 0.141** 

 [0.018] [0.024] [0.018] [0.024] [0.032] [0.038] 

Finance * STEM  -0.019  0.013 0.005 0.051 

  [0.027]  [0.034] [0.064] [0.057] 

Finance * MIPE    -0.039 -0.009 -0.093 

    [0.034] [0.048] [0.061] 

Teaching 0.156** 0.170** 0.156** 0.170** 0.134** 0.200** 

 [0.020] [0.021] [0.020] [0.021] [0.035] [0.024] 

Teaching * STEM  -0.034  -0.039 -0.118 -0.017 

  [0.028]  [0.039] [0.079] [0.037] 

Teaching * MIPE    -0.023 0.017 -0.061 

    [0.036] [0.049] [0.043] 

Socio-economic 

controls 

Yes Yes Yes Yes Yes Yes 

HE controls Yes Yes Yes Yes Yes Yes 

Note: N=8280, reweighted to be nationally representative. Standard errors are adjusted for clustering at the 

subject level (150 clusters). ** indicates statistical significance at the 95% confidence interval.  

The omitted subject category is all non-science degree. 

In column 1 and 2, STEM indicates all science subjects. In column 3 to 4 MIPE indicates graduates from Math, 

IT, Physics or Engineering programs, STEM then indicates graduates from other science programs. 
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Table 5: Double Selection Model – (log) Annual Earnings, STEM and 

Occupation 
 

1
st
 step Selection 

to STEM 

Selection 

to Science. 

occupation 

ln Wage 

not STEM 

ln Wage 

STEM not 

in Science 

occupation 

ln Wage 

STEM in 

Science 

occupation 

Paid Full Fee  -0.218**     

 [0.080]     

Parent in science occ.  0.511**    

  [0.186]    

 𝜎12
𝑆 = 0.200 

[0.396] 

 

 

   

Chi(2) 15.63    

2
nd

 Step     

A] 𝜎12= 0 

 
    

IMR1  -0.004 0.181* 0.085 

  [0.147] [0.104] [0.129] 

IMR2  0.023 -0.045 0.325** 

  [0.046] [0.078] [0.144] 

E[ ln(wage)]  9.91 9.92 10.13 

B] 𝜎12~=0 

 
    

IMR1  0.015 0.034 0.401** 

  [0.056] [0.026] [0.169] 

IMR2  -0.030 0.007 0.466** 

  [0.057] [0.007] [0.168] 

E[ ln(wage)]  9.91 9.92 10.12 

     

Observation 8103 3800 2306 1997 

Note: Standard error obtained from bootstrap (500 reps) allowing correlation at the subject level (block 

bootstrap). 

Other controls include gender, quadratic in A-level score, disability status, race dummy and school type 

dummy. 

 



Table 6: Push and Pull factors by science major and occupation -  

 

 

Panel A 

Non-

graduate 

job 

Subject 

important 

to get job 

Skills 

important 

to get job 

Satisfied 

with 

career 

Would 

choose # 

subject 

1- Non-STEM {0.258} {0.458} {0.850} {0.838} {0.357} 

2- STEM, not in sc. 

Occ 

0.028 

[0.022] 

-0.006 

[0.031] 

0.006 

[0.018] 

-0.006 

[0.016] 

0.043* 

[0.025] 

3- STEM, in sc. occ -0.218** 

[0.016] 

0.357** 

[0.027] 

0.045** 

[0.016] 

0.076** 

[0.018] 

-0.093** 

[0.032] 

F(1,149) (2=3) 116.23** 198.65**  3.99** 16.24** 13.23** 

F(2,148) Gender 1.06  0.20 0.67 2.23 0.55 

F(1,149) MIPE = other 

STEM, not in sc. occ 
4.10** 0.71 0.86 1.60 0.13 

F(1,149) MIPE = other 

STEM, in sc. occ 
0.17 3.69* 1.84 0.00 0.58 

      

         Table 6 to be continued 
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Table 6 continues      

 

 

Panel B 

Job fitted 

with 

career 

plan 

Job I 

wanted 

Best Job 

Offer 

To 

broaden 

skills 

Only Job 

Offer 

Pay off 

debts 

1- Non-STEM {0.640} {0.497} {0.459} {0.622} {0.184} {0.281} 

2- STEM, not in sc. 

Occ 

-0.30 

(0.022) 

-0.027 

[0.022] 

-0.060** 

[0.018] 

0.001 

[0.018] 

-0.029 

[0.018] 

-0.065** 

[0.018] 

3- STEM, in sc. occ 0.138** 

(0.028) 

0.108** 

[0.033] 

-0.002 

[0.024] 

0.059** 

[0.023] 

0.005 

[0.021] 

-0.055* 

[0.020] 

F(1,149) (2=3) 31.71** 16.86** 6.02** 8.08** 2.02 0.13 

F(2,148) Gender 0.15 0.05  2.29 0.79  0.12 1.62 

F(1,149) MIPE = other 

STEM, not in sc. Occ 
0.28 0.20 0.02 2.21 1.27 0.01 

F(1,149) MIPE = other 

STEM, in sc. occ 
3.64* 6.83*** 2.58 1.83 2.88* 0.35 

Note: Standard errors are adjusted for clustering at the 3-digit subject level (150 clusters). * and ** indicates statistical significance at the  90% and 95% confidence interval respectively.   Mean values of dependent 
variable for non-STEM graduates reported in {}. The analysis is based on specification (3) details of which can be found in the note under Table 4.   

“Non-graduate job” is defined using Elias and Purcell (2004) which defines 5 categories of graduate jobs 1 Traditional occupation, 2 Modern occupation, 3 New occupation, 4 Niche occupation, 5 Non-graduate job.   

“Subject (skills) important to get job” is recoded into a dummy for respondents replying “a formal requirement” or “important”. 
“Career satisfaction” is coded as 1 for respondents who are very satisfied or fairly satisfied, and 0 for everybody else. 

“Would study the same subject include 4 categories”: 1 very likely different , 2 likely different , 3 not likely different, 4 not likely at all different, I recode the first two categories as 1 and the remaining two as 0. 

Variables in Panel B are answers to reasons for choosing current jobs – all reasons that apply are coded as 1. 
F(1,149) (2=3) reports an F-test of whether the coefficient for STEM, not in scientific occupation is significantly different from the coefficient on STEM, in scientific occupation 

F(2,148) Gender, is an F-test on the joint significance of interactions between gender and STEM, not in scientific occupations and gender and STEM in scientific occupation. The model is not reported here. 

F(1,149) MIPE=Other STEM, not in sc.occ and F(1,149) MIPE=Other STEM, in sc.occ are F-test on the joint the equality of the coefficients on MIPE and other STEM for graduates in non-scientific and scientific 
occupations respectively 



Table 7: Linear Probability Model: Observed in Scientific Occupation 

 All STEM All STEM MIPE Other-

STEM 

Female Male 

Male 0.089** 0.087** 0.201*** 0.004   

 (0.036) (0.034) (0.051) (0.031)   

Class degree:2.1 -0.045 -0.066** -0.073 -0.036 -0.036 -0.076* 

 (0.036) (0.032) (0.059) (0.028) (0.037) (0.045) 

Class degree 2.2 -0.079** -0.103*** -0.173*** -0.016 -0.022 -0.154*** 

 (0.035) (0.035) (0.049) (0.035) (0.036) (0.051) 

Class degree Pass -0.145** -0.182*** -0.211*** -0.010* -0.069 -0.232*** 

 (0.044) (0.041) (0.060) (0.050) (0.063) (0.051) 

Unclassified degree -0.044 -0.044 -0.137* 0.053 0.097* -0.152* 

 (0.053) (0.060) (0.077) (0.066) (0.049) (0.079) 

Institution Q2 

 

0.011 

(0.030) 

 

0.018 

(0.043) 

 

0.007 

(0.041) 

 

0.015 

(0.040) 

 

0.000 

(0.042) 

 
Institution Q3  0.045* 

(0.026) 

0.124** 

(0.054) 

-0.008 

(0.029) 

0.018 

(0.034) 

0.072* 

(0.037) 

Institution Q4 

 

0.064** 

(0.029) 

0.141** 

(0.055) 

0.024 

(0.029) 
0.049 

(0.035) 

0.068 

(0.048) 

Medicine 
0.636*** 

(0.094) 

0.629*** 

(0.093)  Omitted 
0.632*** 

(0.061) 

0.623*** 

(0.134) 
Subject allied to 

Medicine 
0.578*** 

(0.087) 

0.0607*** 

(0.088)  

0.033 

(0.059) 

0.725*** 

(0.051) 

0.400*** 

(0.134) 

Biology/veterinary/ 

agriculture 
0.147* 

(0.078) 

0.124 

(0.082)  

-0.441*** 

(0.059) 

0.236*** 

(0.043) 

-0.026 

(0.153) 

Physics 
0.097 

(0.082) 

0.087 

(0.084) 

0.076 

(0.068)  

0.165*** 

(0.051) 

0.039 

(0.130) 

Engineering/ 

Technoloy 
0.319*** 

(0.093) 

0.345*** 

(0.093) 

0.298*** 

(0.086)  

0.330*** 

(0.209) 

0.302** 

(0.142) 

Architecture/Planning 
0.263 

(0.181) 

0.280 

(0.204)  
-0.247 

(0.192) 

0.335 

(0.209) 

0.230 

(0.240) 

Sport science 
-0.134* 

(0.076) 

-0.156** 

(0.074)  

-0.710*** 

(0.058) 

-0.032 

(0.034) 

-0.237* 

(0.125) 

Psychology 
0.073 

(0.070) 

0.053 

(0.073)  

-0.522*** 

(0.051) 

0.171*** 

(0.032) 

-0.139 

(0.121) 

IT 
0.268*** 

(0.074) 

0.264*** 

(0.077) 

0.231*** 

(0.066)  

0.169*** 

(0.047) 

0.270** 

(0.128) 

Mixed science 
0.192** 

(0.078) 

0.168** 

(0.073)  
-0.392*** 

(0.054) 

0.218*** 

(0.034) 

0.145 

(0.125) 
Institution fixed 

effects 
Yes No No 

No 
No No 

N 4851 4466 1647 2819 2514 1952 

Note: Standard errors adjusted for clustering at the subject level. 

Other controls include gender, age dummies, quadratic in A-level score, disability status, race dummy, 

school type dummy, parental social class and accommodation type while studying. Math is the omitted 

subject category. 
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Appendix: 

Table A1: Sample Selection: 

Selection criteria Number of observations 

Original sample 19,979 

First degree only 11,866 

Age on graduation [19,25] 9,850 

Not special entry student 9,738 

Employed FT or PT 9,296 

 

 

Table A2: Occupational choice of science graduates 6 months and 3 years after 

graduation.  

 Occupation: 3 years after graduation 

 

 

 

 

 

Occupation: 

6 months 

after 

graduation 

 Scientific Finance Teaching Other Total Obs. 

Scientific 

[84%] 

(63%) 

1,322 

[1%] 

(9%) 

14 

[1%] 

(2%) 

12 

[14%] 

(11%) 

222 

 

(32%) 

 

1,570 

Finance 

[8%] 

(0%) 

8 

[53%] 

(30%) 

50 

[7%] 

(1%) 

6 

[32%] 

(1%) 

30 

 

(2%) 

 

94 

Teaching 

[7%] 

(1%) 

12 

[0%] 

(1%) 

1 

[73%] 

(24%) 

129 

[19%] 

(2%) 

34 

 

(4%) 

 

176 

Other 

[22%] 

(18%) 

373 

[3%] 

(32%) 

53 

[9%] 

(29%) 

155 

[66%] 

(55%) 

1,130 

 

(35%) 

 

1,711 

 

Not working 

[30%] 

(19%) 

391 

[4%] 

(28%) 

46 

[18%] 

(44%) 

241 

[48%] 

(31%) 

622 

 

(27%) 

 

1,300 

 Total [43%] [3%] [11%] [42%]   

 Observation 2,106 164 543 2,038  4,851 
Note: In each cell the percentage in brackets pertains to the row percentage, the percentage in 

parentheses reports the column’s percentage; the last row is the number of observations in the cell.  

 

 

 


