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Abstract

Let c, k be two positive integers. Given a graph G = (V,E), the c-Load
Coloring problem asks whether there is a c-coloring ϕ : V → [c] such
that for every i ∈ [c], there are at least k edges with both endvertices
colored i. Gutin and Jones (IPL 2014) studied this problem with c = 2.
They showed 2-Load Coloring to be fixed-parameter tractable (FPT)
with parameter k by obtaining a kernel with at most 7k vertices. In this
paper, we extend the study to any fixed c by giving both a linear-vertex
and a linear-edge kernel. In the particular case of c = 2, we obtain
a kernel with less than 4k vertices and less than 6k + (3 +

√
2)
√
k+4

edges. These results imply that for any fixed c ≥ 2, c-Load Coloring
is FPT and the optimization version of c-Load Coloring (where k is
to be maximized) has an approximation algorithm with a constant ratio.

1 Introduction

Given a graph G = (V,E) and an integer k, the 2-Load Coloring problem
introduced in [1], asks whether there is a coloring ϕ : V → {1, 2} such that for
i = 1 and 2, there are at least k edges with both endvertices colored i. The
coloring needs not be proper. This problem is NP-complete [1], and Gutin
and Jones studied its parameterization by k [9]. They proved that 2-Load
Coloring is fixed-parameter tractable (FPT)1 by obtaining a kernel with at
most 7k vertices. It is natural to extend 2-Load Coloring to any number c
of colors as follows. Henceforth, for a positive integer p, [p] = {1, 2, . . . , p}.
∗A preliminary version of this paper appeared in conference proceedings [3]. The main

differences between this version of the paper and [3] are listed in the end of Sec. 1.
1For comprehensive introductions to parameterized algorithms and complexity, see recent

monographs [7, 8]; [12, 15] are excellent recent survey papers on kernelization.
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Definition 1 (c-Load Coloring). Let c be a positive integer. Given a pos-
itive integer k and a graph G = (V,E), the c-Load Coloring problem asks
whether there is a c-coloring ϕ : V → [c] such that for every i ∈ [c], there are
at least k edges with both endvertices colored i. If such a coloring ϕ exists, we
call ϕ a (c, k)-coloring of G and we write G ∈ (c, k)-LC.

The c-Load Coloring problem can be viewed as a subgraph packing
problem [14]: decide whether a graph G contains c vertex-disjoint k-edge sub-
graphs. Hence, G ∈ (1, k)-LC if and only if |E(G)| ≥ k. In this paper, we
consider c-Load Coloring parameterized by k for every fixed c ≥ 2. Note
that c-Load Coloring is NP-complete for every fixed c ≥ 2. Indeed, we can
reduce 2-Load Coloring to c-Load Coloring with c > 2 by taking the
disjoint union of G with c− 2 stars K1,k.

We prove that the problem admits a kernel with less than 2ck vertices.
Thus, for c = 2 we improve the kernel result of [9]. To show our result, we
introduce reduction rules, which are new even for c = 2. We prove that the
reduction rules can run in polynomial time and that an irreducible graph with
at least 2ck vertices is in (c, k)-LC.

While there are many parameterized graph problems which admit kernels
linear in the number of vertices, usually only problems on classes of sparse
graphs admit kernels linear in the number of edges (since in such graphs the
number of edges is linear in the number of vertices), see, e.g., [4, 8, 15]. Only
a few problems for general graphs admit O(k)-edge kernels, see [10, 11, 16].
Our next result is in the same category: c-Load Coloring admits a kernel
with O(k) edges for every fixed c ≥ 2. Namely, the kernel has less than
6.25c2k edges when c ≥ 2 and, moreover, less than 6k+ (3 +

√
2)
√
k+4 edges

when c = 2.
The optimization version of c-Load Coloring, called the Max c-Load

Coloring problem, is as follows.

Definition 2. Let c be a positive integer. Given a graph G, the Max c-Load
Coloring problem asks to find the maximum k such that G ∈ (c, k)-LC.

Using the above bound on the number of edges in a kernel for c ≥ 2,
we show that Max c-Load Coloring admits constant ratio approximation
algorithms for any fixed c.

The paper is organized as follows. After providing additional terminology
and notation in the remainder of this section, we show that the problem admits
a kernel with less than 2ck vertices in Section 2. Then, in Section 3, we prove
the upper bound on the number of edges in a kernel for every c ≥ 2 and, in
Section 4, we show the constant ratio approximation result for Max c-Load
Coloring. We improve our bound for c = 2 in Section 5. We complete the
paper with discussions in Section 6.
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Graphs. Following [1, 9], we consider graphs without loops or multiple
edges. (Actually, our results generalize to graphs with loops and multiple
edges, see Section 6.) For a graph G, V (G) (E(G), respectively) denotes the
vertex set (edge set, respectively) of G, ∆(G) denotes the maximum degree
of G, n its number of vertices, and m its number of edges. A vertex u with
degree 0 (1, respectively) is an isolated vertex (a leaf-neighbor of v, where
uv ∈ E(G), respectively). For a coloring ϕ, we say that an edge uv is colored i
if ϕ(u) = ϕ(v) = i, otherwise we say that it is uncolored. Since we deal with a
particular kind of edge coloring, we may also assume without loss of generality
that the graphs under consideration do not have isolated vertices.

For a vertex x and a vertex set X in G, N(x) = {y : xy ∈ E(G)}, d(x) =
|N(x)|, NX(x) = N(x) ∩ X and dX(x) = |NX(x)|. For disjoint vertex sets
X,Y of G, let G[X] be the subgraph of G induced by X, E(X) = E(G[X])
and E(X,Y ) = {xy ∈ E(G) : x ∈ X, y ∈ Y }.

Differences between this version of the paper and [3]. There are three
main differences between the two versions of the paper: in this version, we
improve (i) the running time of our reduction rule algorithm from exponential
in c to quadratic in c, (ii) the approximation ratio from exponential in c to
linear in c, and (iii) the bound on the number of edges in the kernel for c = 2
from 8k to 6k + (3 +

√
2)
√
k+4 .

2 Bounding Number of Vertices in Kernel

In this section, we show that c-Load Coloring admits a kernel with less
than 2ck vertices. The fact that (ck−1)K2 is a No-instance suggests that this
kernel bound is likely to be optimal. The kernelization can be carried out in
time O((cn)2).

For any integer i ≥ 1 and τ ∈ {<,≤,=, >,≥}, K1,τ i denotes a star K1,j

such that j τ i and j ≥ 1. For instance, K1,≤p is a star with q edges, q ∈ [p].
Then, a K1,τ i-graph is a forest in which every component is a star K1,τ i, and
a K1,τ i-cover of G is a spanning subgraph of G which is a K1,τ i-graph. We
call any K1,τ i-graph a star graph and any K1,τ i-cover a star cover.

We first prove the bound for star graphs with small maximum degree.

Lemma 1. If G is a K1,<2k-graph with n ≥ 2ck, then G ∈ (c, k)-LC.

Proof. Let G be a K1,<2k-graph with n ≥ 2ck. We prove the lemma by
induction on c. The base case of c = 1 holds since a K1,<2k-graph has no

isolated vertices: this property implies G has at least |V (G)|
2 ≥ k edges.

Since all components of G are trees, for each one the number of vertices
is one more than the number of edges. If there is a component C, with

3



k ≤ |E(C)| < 2k, we may color V (C) with one color. Since we only used
|V (C)| ≤ 2k vertices, H = G − V (C) has at least 2(c − 1)k vertices and so
H ∈ (c− 1, k)-LC by the induction hypothesis. Thus, G ∈ (c, k)-LC.

We may assume that every component has less than k edges and let
C1, . . . , Ct be the components of G. Let b be the minimum nonnegative
integer for which there exists I ⊆ [t] such that Σi∈I |E(Ci)| = k + b ≥ k.
Since there is no isolated vertex in a star graph, m ≥ n

2 ≥ ck, and thus
such a set I exists. Observe that for any i ∈ I, |E(Ci)| > b, as otherwise
Σj∈I\{i}|E(Cj)| = k + b− |E(Ci)| ≥ k, a contradiction to the minimality of b.
Since every component has less than k edges, b ≤ k − 2.

For a star (V,E), the ratio |V |
|E| increases when |E| decreases. Thus, we

have Σj∈I |V (Cj)| ≤ Σj∈I |E(Cj)|maxh∈I(
|V (Ch)|
|E(Ch)| ) ≤ (k+ b) b+2

b+1 . But 2k− (k+

b) b+2
b+1 = (k−2−b)b

b+1 ≥ 0, and so Σj∈I |V (Cj)| ≤ 2k. We may color the components
Ci, i ∈ I, by the same color. Again, we have that H = G− V (

⋃
i∈I Ci) has at

least 2(c− 1)k vertices and so H ∈ (c− 1, k)-LC by the induction hypothesis.
Thus, G ∈ (c, k)-LC.

For any star graph S and τ ∈ {<,≤,=, >,≥}, let C(S) (L(S), respectively)
be the centers (leaves, respectively) of stars in S (for the case of isolated edges
in S, assign one vertex to C(S) and one vertex to L(S) arbitrarily). Let Sτ be
the subgraph of S consisting of all stars whose centers v satisfy d(v) τ 2k− 1.

Corollary 1. If |C(S≥)|+ |V (S<)|
2k ≥ c, then S ∈ (c, k)-LC.

Proof. Clearly, S≥ ∈ (|C(S≥)|, k)-LC. We also have S< ∈ (b |V (S<)|
2k c, k)-LC by

Lemma 1. Thus, S ∈ (|C(S≥)|+ b |V (S<)|
2k c, k)-LC.

We now introduce a family (Oi,k)i,k∈N of overloads.

G′

u1

u2

u3

|Vu1 | ≥ 2

|V1| = 3

Figure 1: An overload from O3,2
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Definition 3. We call a pair (V1, V2) of disjoint vertex sets an overload from
Oi,k if |V1| = i, N(v) ⊆ V1 for all v ∈ V2, and for every u ∈ V1 there is a set
Vu ⊆ NV2(u) such that |Vu| ≥ k and for every pair u, v of distinct vertices of
V1, Vu ∩ Vv = ∅ (see Fig. 1).

Note that V2 in Definition 3 is an independent set.
If a graph G has an overload (V1, V2) from Oi,k, then G[V1 ∪ V2] ∈ (i, k)-

LC: for each u ∈ V1, color Vu ∪ {u} with one color. From this observation, we
deduce the following set of reduction rules:

Reduction rule Ri,k. If an instance G of c-Load Coloring contains an
overload (V1, V2) ∈ Oi,j , j ≥ k, delete the vertices of V1 ∪ V2 from G and
decrease c by i.

Since the existence of an overload from Oi,j for i ≥ c and j ≥ k, in a graph
G implies G ∈ (c, k)-LC, we only consider Ri,k for i < c. If it is not possible
to apply any rule Ri,k, i < c, to a graph G, we say that G is irreducible for
(c, k)-LC, otherwise we apply the reduction rule and say that the resulting
graph is reduced from G using (V1, V2).

Observe that Ri,k may create isolated vertices, however, we will show in
the following that we only use Ri,k in cases that do not produce isolated ver-
tices.

Let G′ be a graph reduced from G using (V1, V2) ∈ Oi,j , i < c.

Proposition 1. If G′ ∈ (c− i, k)-LC then G ∈ (c,min{j, k})-LC.

Proof. We obtain a (c,min{j, k})-coloring of G by merging any (c − i, k)-
coloring of G′ with an (i, j)-coloring of the overload (V1, V2) ∈ Oi,j .

Proposition 2. If G ∈ (c, k)-LC then G′ ∈ (c− i, k)-LC.

Proof. Whatever the (c, k)-coloring of G, any edge incident to V1 is colored
with a color used for V1 or is uncolored. Thus, there are at least c−|V1| colors
for which all edges of that color are in E(G − V1). But by definition of an
overload, any vertex in V2 is isolated in G− V1. So, these colored edges are in
E(G− (V1 ∪ V2)) = E(G′). We conclude that G′ ∈ (c− |V1|, k)-LC.

These two propositions imply that the reduction rules are safe.

Lemma 2. Let G′ be reduced from G using (V1, V2) ∈ Oi,j, i < c, j ≥ k. Then
G ∈ (c, k)-LC if and only if G′ ∈ (c− i, k)-LC.

We now describe our polynomial reduction algorithm.
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Theorem 1. Given two positive integers c, k > 1 and a graph G with n ≥ 2ck
vertices, there exists an algorithm running in time O((cn)2) which decides
G ∈ (c, k)-LC or outputs an instance (G′, c′) reduced from (G, c) using an
overload from Oc−c′,2k−1, where c′ ∈ [c− 1], |V (G′)| < 2c′k.

Proof. We first show that G has a star cover. Recall that we assume G has
no isolated vertex. By choosing a spanning tree of each component of G, we
obtain a forest F . If a tree in F is not a star, it has an edge between two
non-leaves. As long as F contains such an edge, delete it from F . Observe
that F becomes a star cover of G.

Let S be a star cover of G. If S ∈ (c, k)-LC, then G ∈ (c, k)-LC since S is

a subgraph of G. So, if |C(S≥)|+ |V (S<)|
2k ≥ c, then the algorithm may decide

G ∈ (c, k)-LC by Corollary 1. On the other hand, if S> is empty, G ∈ (c, k)-
LC by Lemma 1. We may assume these two properties do not hold and thus
|C(S≥)| ∈ [c− 1].

From star cover S, we will try to find some overload (V1, V2) such that
we can apply the reduction rule. Our main idea is to regard centers of “big”
stars as candidates for V1 and their leaves as candidates for V2, in the hope of
finding big stars whose leaves have no neighbors outside of V1. If, unfortunely,
the leaf has neighbor outside of V1, we will modify the star cover until we find
an overload or we can conclude that the graph is a Yes-instance.

We will now show that we may modify the star cover S until one of the
above properties holds or G contains an overload (V1, V2) ∈ Oc−c′,2k−1. In
particular, we will show that the modification can be done in time O(c2n)
and it strictly decreases |V (S>)|. Thus, the process may be applied at most
n times and the resulting algorithm’s running time is indeed O((cn)2).

We maintain a star graph S′: initially, let S′ = S> and while there is an
edge uv ∈ E(G) \ E(S) such that u ∈ L(S′) and v ∈ C(S= \ S′), add the star
centered at v to S′. Observe that this first construction runs in time O(c2n).
Indeed, since |C(S≥)| < c, such an edge can be found in time O(cn) and there
are at most c steps in this while loop. As S′ is a subgraph of the S, S′ is a
star graph.

Claim 1 At any step of the construction of S′ and for any leaf y ∈ L(S′),
there exists an alternating path P from x to y such that V (P ) ⊆ S′, x ∈ C(S>),
the odd edges are in E(S) and go from a center to a leaf, and the even edges
are in E(G) \ E(S) and go from a leaf to a center (see Fig. 2).

We prove this claim by induction on the number of steps in the while loop.
Initially, for any leaf y, the neighbor x of y is in C(S>), thus the desired path
is {xy}. At any step, we add a vertex v ∈ C(S=) to S′ because there exists an
edge uv ∈ E(G) \ E(S) such that u is a leaf introduced into S′ before v. By
induction hypothesis, there is a desired alternating path P from x to u such
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S<S=S>

x

y

x

⊆ S′

Figure 2: k = 2, the dashed edges are in S, and will be deleted from it; the
dotted edges are what we are looking for, and will be put into S.

that V (P )∩NS [v] = ∅. Thus the desired alternating path for any leaf-neighbor
y of v is P ∪ {uv, vy}.

We say that we reverse an alternating path from x to y in S if we remove
the odd edges from E(S) and add the even edges into E(S). This operation
decreases the size of the star centered at x by 1, does not change the size of
the transitional stars and isolates y. Since the length of a path is bounded
by 2|C(S′)| < 2c, we may save these paths during the construction of S′, and
thus a reversal costs constant time.

Now we show how to handle the remaining problematic edges, i.e. edges
uv ∈ E(G) \ E(S) such that u ∈ L(S′) and v ∈ V (G) \ C(S′) (see Fig. 2).
Recall that v 6∈ C(S≥) by the construction of S′ and there is an alternating
path P from a vertex x ∈ C(S>) to u by Claim 1. In any of the following
cases, we show how to modify S such that |V (S>)| decreases (by reversing a
path) and such that the resulting graph remains a star cover :

• v ∈ C(S<) or v is the leaf of a single-leaf star in S : we reverse P in S
and add uv to E(S). Despite the reversal, the vertex u is not isolated
in the resulting graph because of uv and v does not become the center
of a star of size greater than 2k − 1.

• v ∈ L(S) and v is not the leaf of a single-leaf star in S. Let y be the
neighbor of v in S.

– vy 6∈ E(P ): we reverse P in S, add uv to E(S) and remove vy
from it. Observe that the vertices u and v do not become isolated.
The vertex y is not isolated either. Indeed, if x 6= y, y loses only
one neighbor but it was not the center of a single-leaf star in S,
and otherwise, it loses two neighbors but since y = x ∈ C(S>) and
k > 1, dS(y)− 2 > 2k − 3 ≥ 1.

– P = P ′ ∪ {yv} ∪ P ′′: let w be the neighbor of u in S, we reverse
P ′ ∪ {yv} in S, add vu and remove uw from E(S). Again, u and v
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do not become isolated because of uv. Also, as w 6= x (since they
are different vertices of a path), w loses only one neighbor. We have
dS(w)− 1 = 2k − 2 ≥ 2 and w does not become isolated.

So, we may assume there is no edge uv ∈ E(G)\E(S) such that u ∈ L(S′)
and v ∈ V (G) \ C(S′). Then any vertex in L(S′) is isolated in G − C(S′).
Thus, for any u ∈ L(S′), we have N(u) ⊆ C(S′), and for each v ∈ C(S′),
we can define Vv to be the leaves of the star centered at v, for which we have
|Vv| ≥ 2k−1. These two observations imply (C(S′), L(S′)) is an overload from
O|C(S′)|,2k−1. Since the reductions are safe, the algorithm may output (G′, c′) =
(G − V (S′), c − |C(S′)|). Note that |V (G′)| = 2k|C(S= \ S′)| + |V (S<)| <
2k(c − |C(S′)|) = 2c′k by the first assumption of the second paragraph of
this proof. Since C(S>) ⊆ C(S′) ⊆ C(S≥), we have |C(S′)| ∈ [c − 1] (by
the second paragraph of this proof) and therefore c′ = c − |C(S′)| ∈ [c − 1].
Observe moreover that the reduced graph G′ contains the star cover S−V (S′)
and thus has no isolated vertices.

We finally discuss how to find such an edge in at most O(c2n) time if it
exists. We may assume we initially computed the degree of each vertex of
G once (in time O(n2)) and we can make copies of this information in time
O(n). Then, we may compute the degree of each vertex of the graph G−C(S′)
in O(cn) time since |C(S′)| < c. We only need to know if there is a vertex
u ∈ L(S′) such that dV \C(S′)(u) > 0. If so, u is not isolated in G−C(S′) and
it is incident to one of the desired edges that we may find in time O(n).

Theorem 2. For any fixed c ≥ 2 and for any positive integer k, c-Load
Coloring admits a kernel with less than 2ck vertices.

Proof. Observe first that G ∈ (c, 1)-LC if and only if G has a matching with
at least c edges. Since this property can be decided in polynomial time, we
just need to consider the case when k > 1 and the input G has at least
n ≥ 2ck vertices. Thus, the algorithm of Theorem 1 may decide whether
G ∈ (c, k)-LC or obtains an instance (G′, c′) reduced from (G, c) such that
|V (G′)| < 2c′k.

3 Bounding Number of Edges in Kernel

Let S(c) be the integer sequence defined by induction by S(1) = 1, S(2c) =
4S(c) and S(2c+ 1) = 2S(c) + 2S(c+ 1). This sequence is known as A073121
in the Online Encyclopedia of Integer Sequences [17] (see also [2]). We will
use the following technical result.

Proposition 3. If c is even, S(c) ≤ 9c2−4
8 , and for any c, S(c) ≤ 9c2−1

8 .
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Proof. It is easy to check the base cases: S(1) = 1 = 9(1)2−1
8 , S(2) = 4 =

9(2)2−4
8 and S(3) = 10 = 9(3)2−1

8 . We now assume the claim holds for every
c ≤ 2c′ − 1 and we will prove it for c = 2c′ and c = 2c′ + 1.
For even value, we have:

S(2c) = 4S(c) ≤ 4
9c2 − 1

8
=

9(2c)2 − 4

8
.

For odd value, we have:

S(2c+ 1) = 2(S(c) + S(c+ 1))

≤ 2
9c2 + 9(c+ 1)2 − 1− 4

8
=

9(2c+ 1)2 − 1

8
.

By using the kernel in the previous section, we show that c-Load Color-
ing admits a kernel with less than (2S(c) + 4c2 − 5c)k edges. Because of the
upper bound on S(c) given by Proposition 3, the number of edges in a kernel
may be bounded by 6.25c2k. We first prove a smaller bound for bipartite
graphs.

Lemma 3. Let b(c, k, n) = S(c)k + (c− 1)n. For every positive integer c and
bipartite graph G with n vertices, if m ≥ b(c, k, n) then G ∈ (c, k)-LC.

Proof. We prove the lemma by induction on c. For the base case, observe that
any graph with at least k = b(1, k, n) edges is in (1, k)-LC for every k and n.
We now assume the claim holds for every c ≤ 2c′ − 1 and we will prove it for
c = 2c′ and c = 2c′ + 1.

Suppose that G = (A ∪ B,E) is a bipartite graph with n vertices and at
least b(c, k, n) edges, but G 6∈ (c, k)-LC. Let B2 be a maximal subset of B such
that

|E(A,B2)| < b(c− c′, k, |A|+ |B2|) + b(c− c′, k, |B2|) (1)

So, for any vertex u ∈ B \ B2, the set B2 ∪ {u} does not satisfy (1). Such
a set B2 exists since the empty set satisfies (1). Moreover, for any partition
(A1, A2) of A, we know there exists i ∈ {1, 2} such that

|E(Ai, B2 ∪ {u})| ≥ b(c− c′, k, |Ai|+ |B2 ∪ {u}|) (2)

as otherwise, the linearity in n of b(c, k, n) implies a contradiction with the
maximality of B2:

|E(A,B2 ∪ {u})| = |E(A1, B2 ∪ {u})|+ |E(A2, B2 ∪ {u})|
< b(c− c′, k, |A1|+ |B2 ∪ {u}|) + b(c− c′, k, |A2|+ |B2 ∪ {u}|)
= b(c− c′, k, |A|+ |B2 ∪ {u}|) + b(c− c′, k, |B2 ∪ {u}|).

9



Let B1 = B \B2, A1 = A and A2 = ∅. We define the following inequalities.

|E(A1, B1)| < b(c′, k, |A1|+ |B1|) + |A1| (3)

|E(A2, B1)| < b(c′, k, |A2|+ |B1|) + |A2|. (4)

While (3) does not hold and (4) holds, we move an arbitrary vertex from
A1 to A2. Suppose eventually (3) and (4) are both false and let u be an
arbitrary vertex in B1. We deduce for both i = 1 and i = 2 that

|E(Ai, B1 \ {u})| ≥ b(c′, k, |Ai|+ |B1|).

Thus, there exist disjoint vertex setsX and Y such that |E(X)| ≥ b(c′, k, |X|)
and |E(Y )| ≥ b(c−c′, k, |Y |) (either X = A1∪B1 \{u} and Y = A2∪B2∪{u},
or X = A2∪B1 \ {u} and Y = A1∪B2∪{u}, depending on whether (2) holds
for i = 1 or i = 2). By taking a (c′, k)-coloring of X and a (c− c′, k)-coloring
of Y , we have that G ∈ (c, k)-LC, a contradiction.

So, we may assume (3) eventually holds. If A2 = ∅, then |E(A2, B1)| = 0.
Otherwise, let v be the last vertex moved from A1 to A2. Observe that

|E(A2, B1)| ≤ |E(A2 \ {v}, B1)|+ |B1|
< b(c′, k, |A2 \ {v}|+ |B1|) + |A2 \ {v}|+ |B1| (by (4)).

< b(c′, k, |A2|+ |B1|) + |A2|+ |B1|. (5)

In both cases, (5) holds and we can bound the number of edges in G:

|E(G)| = |E(A,B2)|+ |E(A1, B1)|+ |E(A2, B1)|
< b(c− c′, k, |A|+ |B2|) + b(c− c′, k, |B2|)
+ b(c′, k, |A1|+ |B1|) + |A1|
+ b(c′, k, |A2|+ |B1|) + |A2|+ |B1|

(by inequalities (1),(3),(5)).

If c = 2c′, we have c− c′ = c′ and it is not hard to check that

|E(G)| < 4S(c′)k + 2(c′ − 1)n+ n = b(c, k, n).

Otherwise, c = 2c′ + 1 and then c− c′ = c′ + 1. Thus,

|E(G)| < 2S(c′)k + 2S(c′ + 1)k + 2(c′ − 1)n

+|A|+ 2|B2|+ |A1|+ |A2|+ |B1|
≤ S(2c′ + 1)k + 2c′n = b(c, k, n).

Thus, for c = 2c′ and c = 2c′+ 1, we have |E(G)| < b(c, k, n), a contradiction.
So, there is no bipartite graph with n vertices and at least b(c, k, n) edges such
that G 6∈ (c, k)-LC.
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We now generalize this lemma for any graph. We would like to find a
partition (A,B) of V such that |E(A)| + |E(B)| is bounded, since |E(A,B)|
is bounded.

Lemma 4. Let f(c, k, n) = (2S(c)−c)k+2(c−1)n. For every positive integer
c and every graph G with n vertices, if m ≥ f(c, k, n) then G ∈ (c, k)-LC.

Proof. We prove the lemma by induction on c. For the base case, observe that
any graph with at least k = f(1, k, n) edges is in (1, k)-LC for every k and n.
We now assume the claim holds for every c ≤ 2c′ − 1 and we will prove it for
c = 2c′ and c = 2c′ + 1.

Consider a graph G with n vertices and at least f(c′, k, n) edges, such that
G 6∈ (c, k)-LC. We will first show that there exists a set A ⊆ V (G) such that
f(c′, k, |A|) ≤ |E(A)| ≤ f(c′, k, |A|)+|A| (and thus G[A] ∈ (c′, k)-LC). We may
construct the set A as follows: initially A = ∅ and while |E(A)| < f(c′, k, |A|),
add an arbitrary vertex of V (G) \ A to A. Let u be the last added vertex.
Then

|E(A)| ≤ |E(A\{u})|+|A\{u}| < f(c′, k, |A\{u}|)+|A\{u}| < f(c′, k, |A|)+|A|.

Let B = V (G)\A. If G[B] ∈ (c−c′, k)-LC, then G ∈ (c, k)-LC, a contradiction.
So |E(B)| < f(c − c′, k, |B|). Furthermore, |E(A,B)| < b(c, k, n) by Lemma
3. Finally, we may bound |E(G)|. If c = 2c′, we have c− c′ = c′

|E(G)| < f(c′, k, |A|) + f(c′, k, |B|) + b(2c′, k, n) + |A|
= (2S(c′)− c′)k + 2(c′ − 1)|A|+ (2S(c′)− c′)k + 2(c′ − 1)|B|

+S(2c′)k + (2c′ − 1)n+ |A|
≤ (2S(2c′)− 2c′)k + (4c′ − 2)n = f(c, k, n).

Otherwise, c = 2c′ + 1 and c− c′ = c′ + 1. Thus,

|E(G)| < f(c′, k, |A|) + f(c′ + 1, k, |B|) + b(2c′ + 1, k, n) + |A|
= (2S(c′)− c′)k + 2(c′ − 1)|A|+ (2S(c′ + 1)− (c′ + 1))k + 2c′|B|

+S(2c′ + 1)k + 2c′n+ |A|
≤ (2S(2c′ + 1)− (2c′ + 1))k + 4c′n = f(c, k, n).

Thus, in both cases |E(G)| < f(c, k, n), as required.

Recall that Proposition 3 implies f(c, k, 2ck) < 6.25c2k. Thus Lemma 4
implies the following

Corollary 2. For every graph G with less than 2ck vertices, if m ≥ 6.25c2k
then G ∈ (c, k)-LC.

11



Theorem 2 and Corollary 2 imply the following.

Theorem 3. The c-Load Coloring Problem admits a kernel with less than
f(c, k, 2ck) < 6.25c2k edges.

The size of this kernel may be optimal up to a constant factor. Indeed,
the complete bipartite graph Kc,ck−1 is an irreducible graph for (c, k)-LC with
c2k − c = O(c2k) edges, but Kc,ck−1 6∈ (c, k)-LC. We can increase this lower
bound by joining all c vertices on the smaller side of Kc,ck−1. The resulting

graph is not in (c, k)-LC either, and it has c2k + c(c−3)
2 edges.

4 Approximation Algorithm

We consider an approximation algorithm for the Max c-Load Coloring
problem. Given a graph G and integer c, we wish to determine kopt(G, c),
the maximum k for which G ∈ (c, k)-LC. Given an approximation algorithm,

we define the approximation ratio as
kopt(G,c)

k , where k is the output of the
approximation algorithm.

Note that kopt(G, c) ≤ b |E(G)|
c c by the pigeonhole principle. Let K(c)k be

an upper bound of the number of edges in a kernel for c-Load Coloring.
By Theorem 3, we may have K(c) = 6.25c2.

Theorem 4. Given a graph G and a positive integer c, there exists an algo-
rithm running in time O(c3n2) which outputs k such that G ∈ (c, k)-LC and
kopt(G,c)
k+1 < K(c)

c = 6.25c.

Proof. We prove the claim by induction on c. If c = 1, the algorithm trivially
outputs |E(G)|. We assume the claim holds for any i < c, and want to prove
it for c.

Let k = b |E(G)|
K(c) c. Note that k+1 > |E(G)|

K(c) ≥
ckopt(G,c)
K(c) , thus K(c)

c >
kopt(G,c)
k+1 .

We also have K(c)
c >

kopt(G,c)
2k−1 if k > 1.

If k ≤ 1, since G ∈ (c, 1)-LC if and only if G has a matching with at least c
edges, the algorithm may decide whether G ∈ (c, 1)-LC in time O(c2n) using
any matching algorithm. Depending on the answer, the algorithm outputs
kopt(G, c) = k = 0 or k = 1. Therefore we may assume k > 1.

If n < 2ck, and as we choose k such that m ≥ K(c)k, Corollary 2 implies
G ∈ (c, k)-LC. Thus, the algorithm may output k. Otherwise, we may give G
as input of Theorem 1’s algorithm for c-Load Coloring. Again, if the answer
is G ∈ (c, k)-LC, our approximation algorithm may output k. Otherwise the
algorithm of Theorem 1 returns a graph G′ reduced from G using an overload
from Oc−c′,2k−1, where c′ ∈ [c− 1].

So now assume we have such a G′. Since G ∈ (c, kopt(G, c))-LC, we have
G′ ∈ (c′, kopt(G, c))-LC by Proposition 2. Thus kopt(G, c) ≤ kopt(G′, c′) and by
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induction hypothesis, we may find an integer k′ such that G′ ∈ (c′, k′)-LC and

6.25c > 6.25c′ >
kopt(G′,c′)
k′+1 ≥ kopt(G,c)

k′+1 . As we also have G ∈ (c,min{2k−1, k′})-
LC by Proposition 1, let the algorithm output min{2k − 1, k′}.

The time complexity of the algorithm follows from the complexity of the
algorithm of Theorem 1 and the fact that any step of the induction needs to
use the reduction algorithm only once and this strictly decreases c.

Note that Theorem 4 does not technically give us a K(c)
c = 6.25c approx-

imation, as we only have
kopt
k+1 <

K(c)
c rather than

kopt
k < K(c)

c . However, the
following holds:

Corollary 3. There is a 12.5c approximation algorithm for Max c-Load
Coloring.

Proof. By construction, if the approximation algorithm outputs k = 0, then
kopt(G, c) = 0. Otherwise, k ≥ 1 and then

kopt
k ≤

2kopt
k+1 < 2K(c)

c = 12.5c.

5 Number of Edges in Kernel for c = 2

In this section, we look into the edge kernel problem for the special case when
c = 2. By doing a refined analysis, we will give a kernel with less than
6k + (3 +

√
2)
√
k+4 edges for 2-Load Coloring, which is a better bound

than the general one.

Lemma 5. If a graph G is irreducible for (2, k)-LC and ∆(G) ≥ 3k, then
G ∈ (2, k)-LC.

Proof. Let u be one of the vertices with degree ∆ and N(u) its neighbors.
Since G is reduced by Reduction Rule R1,k, u has at least 2k neighbors which
are not leaves. Thus, these vertices are incident to at least k edges not incident
with u. Arbitrarily color k of them with color 1. By construction, there are at
most 2k colored vertices. So there are at least ∆− 2k ≥ k uncolored vertices
in N(u). We color them and u with 2. Thus, G ∈ (2, k)-LC.

We first establish a bound of the number of edges in a particular kind of
minimal vertex subsets.

Lemma 6. Let k be a positive integer. For any V ′ ⊆ V (G) such that |E(V ′)| =
k + d ≥ k and V ′ contains at most one vertex u with dV ′(u) ≤ d, we have
d <
√

2k.

Proof. Since |E(V ′)| ≥ k > 0, V ′ has at least two vertices, and thus there
exists a vertex v ∈ V ′ such that d < dV ′(v) ≤ |V ′| − 1. This implies

2(k + d) = 2|E(V ′)| =
∑
v∈V ′

dV ′(v) ≥ (d+ 1)(|V ′| − 1) ≥ (d+ 1)2.
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Thus, 2k ≥ d2 + 1 implying d <
√

2k.

The following lemmas and corollaries bound sizes of some sets of edges in
a partition of V (G) in three sets.

Lemma 7. Let G have a partition V (G) = A ∪B1 ∪B2 and let s = min
i∈[2]
|Bi|.

If |E(A,Bi)|+ 2|E(Bi)| ≥ 2k + s for i ∈ [2], then G ∈ (2, k)-LC.

Proof. For any 2-coloring of G, any i ∈ [2] and any disjoint vertex sets X,Y ,
we denote by Ei(X) (Ei(X,Y ), respectively) the set of edges colored i from
E(X) (E(X,Y), respectively). Throughout the proof, all vertices of Bi, i ∈ [2],
will be colored i, and therefore Ei(Bi) = E(Bi). Let B = B1 ∪ B2, and for
each B′ ⊆ B, let A[B′] = {u ∈ A : NB(u) = B′}. Also, let Ai[B

′] be the set of
vertices from A[B′] colored i.

Let us color vertices of A as follows.

If there is a set B′ = B′1 ∪ B′2, such that B′1 ⊆ B1, B
′
2 ⊆ B2, and |A[B′]|

is even, then we assign half of the vertices of A[B′] color 1, and the other half
color 2. We have

|Ei(A[B′], Bi)| = |Ai[B′]| |B′i| =
|A[B′]|

2
|B′i| for both i ∈ [2].

If there are two sets B′ = B′1 ∪ B′2 and B′′ = B′′1 ∪ B′′2 , such that |A[B′]|
and |A[B′′]| are odd, B′1, B

′′
1 ⊆ B1, B

′
2, B

′′
2 ⊆ B2, and |B′1| ≥ |B′′1 |, |B′2| ≤ |B′′2 |,

then assign |A[B
′]|+1
2 vertices of A[B′] and |A[B

′′]|−1
2 vertices of A[B′′] color 1,

and |A[B
′]|−1
2 vertices of A[B′] and |A[B

′′]|+1
2 vertices of A[B′′] color 2. We have

|E1(A[B′], B1)|+ |E1(A[B′′], B1)| =
(|A[B′]|+ 1)

2
|B′1|+

(|A[B′′]| − 1)

2
|B′′1 |

≥ |A[B′]|
2
|B′1|+

|A[B′′]|
2
|B′′1 |.

and, similarly, |E2(A[B′] ∪A[B′′], B2)| ≥ |A[B
′]|

2 |B′2|+
|A[B′′]|

2 |B′′2 |.

Let us denote by B1,B2,. . . ,Bt the remaining subsets for which A[Bj ] is
uncolored, and for i ∈ [2] and j ∈ [t], define Bj

i = Bj ∩Bi. Since for every pair

of uncolored sets Bj , Bh, we have that either |Bj
1| > |Bh

1 | and |Bj
2| > |Bh

2 |,
or |Bj

1| < |Bh
1 | and |Bj

2| < |Bh
2 |, we may order these sets such that for all

j, h, 0 < j < h ≤ t, we have |Bj
1| > |Bh

1 | and |Bj
2| > |Bh

2 |. Without loss of
generality, let us assume |B1| ≤ |B2|.

For each j ∈ [t], assign |A[Bj ]|+1
2 vertices of A[Bj ] color 1 if j is even,

and assign |A[B
j ]|−1
2 vertices of A[Bj ] color 1, otherwise. Assign the remaining
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vertices of A[Bj ] color 2. Then we have that

t∑
j=1

|E2(A[Bj ], B2)| =
t∑

j=1

(
|A[Bj ]|

2
|Bj

2|) +
∑
j odd

|Bj
2|

2
−

∑
j even

|Bj
2|

2

≥
t∑

j=1

(
|A[Bj ]|

2
|Bj

1|) +

bt/2c∑
j=1

|B2j−1
1 | − |B2j

1 |
2

≥
t∑

j=1

(
|A[Bj ]|

2
|Bj

1|)2.

We also have that
t∑

j=1

|E1(A[Bj ], B1)| =
t∑

j=1

(
|A[Bj ]|

2
|Bj

1|)−
∑
j odd

|Bj
1|

2
+

∑
j even

|Bj
1|

2

≥
t∑

j=1

(
|A[Bj ]|

2
|Bj

1|)−
|B1

1 |
2

+

b(t−1)/2c∑
j=1

|B2j
1 | − |B

2j+1
1 |

2

≥
t∑

j=1

(
|A[Bj ]|

2
|Bj

1|)−
s

2
.

Observe that we have colored all the vertices. Since all the sets A[B′] are
disjoint, we may sum up all the inequalities we have so far for both i ∈ [2] to
obtain:

2|Ei(V (G))| ≥ 2|Ei(Bi)|+ 2|Ei(A,Bi)|

= 2|E(Bi)|+ 2
∑
B′⊆B

|Ei(A[B′], Bi)|

≥ 2|E(Bi)|+
∑
B′⊆B

|A[B′]| |B′i| − s

= 2|E(Bi)|+ |E(A,Bi)| − s ≥ 2k,

which means |Ei(V (G))| ≥ k for both i ∈ [2], and so G ∈ (2, k)-LC.

Corollary 4. Let k and s be two positive integers and V> = {u ∈ V (G) :
d(u) ≥ 2k

s + s+ 1}. If |V>| ≥ 2s then G ∈ (2, k)-LC.

Proof. Let B1 and B2 two disjoint arbitrary subsets of V> such that |B1| =
|B2| = s and let A = V (G) \ (B1 ∪ B2). Observe that for both i ∈ [2], every
vertex u ∈ Bi has at most |B3−i| = s neighbors in |B3−i|, thus dA∪Bi(u) =
dV (G)\B3−i

(u) ≥ 2k
s + 1. We deduce

|E(A,Bi)|+ 2|E(Bi)| =
∑
u∈Bi

dA∪Bi(u) ≥ |Bi|(
2k

s
+ 1) = 2k + s.
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So, by Lemma 7, G ∈ (2, k)-LC.

Corollary 5. Let k be a positive integer and V> = {u ∈ V (G) : d(u) ≥
3
√
k + 4}. If |V>| ≥ 2b

√
kc then G ∈ (2, k)-LC.

Proof. Let s = b
√
kc ≥ 1 and e =

√
k − s < 1. Corollary 4 applies since

2k

s
+s+1 =

2(s+ e)2

s
+s+1 = 3s+4e+

2e2

s
+1 = 3

√
k+e+

2e2

s
+1 < 3

√
k+4.

If |B1| = 1, we may obtain a better result than Lemma 7.

Lemma 8. Let G have a partition V (G) = A∪{u}∪B2 such that dA(u) ≥ 2k.
If |E(A,B2)|+ |E(B2)| ≥ k, then G ∈ (2, k)-LC.

Proof. Choose a minimal set A′ ⊆ A, such that |E(A′, B2)| + |E(B2)| ≥ k.
Observe that for all v ∈ A′, dB2(v) ≥ 1, as otherwise, such a vertex would
not contribute to |E(A′, B2)|+ |E(B2)| and we may delete it, a contradiction
with the minimality of A′. Then we have |A′| ≤ k, and thus dA\A′(u) ≥
dA(u)−|A′| ≥ k. We may color A′∪B2 with one color and (A\A′)∪{u} with
another, which implies that G ∈ (2, k)-LC.

Corollary 6. Let G 6∈ (2, k)-LC. Then there exists at most one vertex such
that d(v) > 2k.

Proof. Suppose there are at least two vertices u and v with degree greater
than 2k and let A = V (G)\{u, v}. We have dA(u) ≥ 2k and dA(v) ≥ 2k, then
Lemma 8 applies and G ∈ (2, k)-LC, a contradiction.

With these observations, we may prove the main lemma of this section.

Lemma 9. Let ∆(G) < 3k and |E(G)| ≥ 6k+(3+
√

2)
√
k+4. Then G ∈ (2, k)-

LC.

Proof. Let G be a graph with at least 6k + (3 +
√

2)
√
k + 4 edges and ∆ =

∆(G) < 3k, but G 6∈ (2, k)-LC. Let t = 3
√
k+ 4, V> = {x ∈ V (G) : d(x) ≥ t}

and A = V (G) \ V>. Let u be a vertex of degree ∆. By Corollary 5, for every
v ∈ V (G) \ {u}, d(v) ≤ 2k.

As t = 2k√
k

+
√
k, we have |V>| < 2

√
k, as otherwise, G ∈ (2, k)-LCP by

Corollary 4, a contradiction. Thus, for any partition X, Y of V> we have

|E(X,Y )| ≤ |X||Y | < |X|(2
√
k − |X|) ≤ k (6)

We will now show that there exists a partition V (G) = A′ ∪B1 ∪B2 such
that |E(A′)| = k + d < k +

√
2k, |E(B1 ∪ B2)| < k and |E(A′, Bi)| ≥ 2k, for
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both i ∈ [2]. Let us consider the following two cases.

Case 1: dA(u) ≥ 2k. Let B1 = {u} and B2 = V> \B1. By Lemma 8, we have
|E(A,B2)|+ |E(B2)| < k. If |E(A)| < k then |E(G)| = |E(A)|+ |E(A,B2)|+
|E(B2)| + d(u) < k + k + ∆ < 5k, a contradiction. Thus, we may assume
|E(A)| ≥ k. We take a minimal set A′ ⊆ A, such that k ≤ |E(A′)| = k + d.
Observe that if there is any vertex v ∈ A′ with |N ′A(v)| ≤ d, then A′′ = A′\{v}
is a smaller vertex set such that |E(A′′)| ≥ k, a contradiction to the minimality
of A′. Thus, by Lemma 6 we have d <

√
2k. Let B′ = A \ A′. Note that we

have |E(B1 ∪B2 ∪B′)| < k as otherwise G ∈ (2, k)-LC since |E(A′)| ≥ k.
Suppose |E(A′, {u})| ≥ 2k. Then |E(A′, B2∪B′)|+|E(B2∪B′)| ≥ k implies

G ∈ (2, k)-LC by Lemma 8. So we have |E(G)| = |E(A′)|+ |E(A′, B2 ∪B′)|+
|E(B2 ∪B′)|+ d(u) < k + d+ k + ∆ < 5k + d, a contradiction.

So, we may assume |E(A′, B1)| < 2k. While this inequality holds, push
a vertex from B′ to B1. Observe that after any move |E(A′, B1)| < 2k + t
since max{d(v) : v ∈ B′} ≤ t. Suppose that B′ is empty but |E(A′, B1)| < 2k.
Then |E(A′, B2)| ≤ |E(A,B2)| + |E(B2)| < k by Lemma 8, and |E(G)| =
|E(A′)|+ |E(A′, B1)|+ |E(A′, B2)|+ |E(B1∪B2)| < k+d+2k+k+k = 5k+d,
a contradiction. Thus, |E(A′, B1)| ≥ 2k and we will put the remaining ver-
tices of B′ to B2. We also have |E(A′, B2)| ≥ 2k as otherwise |E(G)| =
|E(A′)|+ |E(A′, B1 ∪B2)|+ |E(B1 ∪B2)| < (k+ d) + (4k+ t) + k = 6k+ d+ t,
a contradiction. So, we have the desired partition.

Case 2: dA(u) < 2k. Recall that |V>| ≤ 2
√
k. Choose first a maximal set

B1 ⊆ V>, such that u ∈ B1, |E(A,B1)|+ 2|E(B1)| < 2k+
√
k. Then choose a

maximal set B2 ⊆ V> \ B1, such that |E(A,B2)| + 2|E(B2)| < 2k +
√
k. Let

R = V> \ (B1 ∪B2). If |R| ≥ 2, put one vertex in B1 and one in B2, and then
for both i ∈ [2], the maximality of Bi implies |E(A,Bi)|+2|E(Bi)| ≥ 2k+

√
k,

and so G ∈ (2, k)-LC by Lemma 7, a contradiction.
Thus, we may assume that R is empty or has one vertex. If R is not

empty, let R = {r} and recall that d(r) ≤ 2k. Suppose that |E(A ∪ R)| < k.
By (6), |E(B1, B2)| < k. Thus, |E(G)| = |E(A∪R)|+ |E(A,B1)|+ |E(B1)|+
|E(A,B2)| + |E(B2)| + |E(B1, B2)| + |E(R,B1 ∪ B2)| < k + 4k + 2

√
k + k +

|B1 ∪B2| < 6k + 4
√
k, a contradiction.

Thus, we may assume that |E(A ∪ R)| ≥ k. Let A′ be a minimal subset
of A ∪ R such that R ⊆ A′ and k ≤ |E(A′)| = k + d. There is no v ∈ A′ \ R
with |N ′A(v)| ≤ d, and so by Lemma 6 we have d <

√
2k. Let B′ = A \ A′

and observe that |E(B1 ∪ B2 ∪ B′)| < k as otherwise G ∈ (2, k)-LC since
|E(A′)| ≥ k.

If |E(A′, B1)| ≥ 2k, we still have |E(A′, B1)| ≤ |E(A,B1)| < 2k +
√
k <

2k+ t. Otherwise, while |E(A′, B1)| < 2k holds, push a vertex from B′ to B1.
Observe that after any move |E(A′, B1)| < 2k + t. In any case, |E(A′, B1)| <
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2k + t. Suppose that B′ becomes empty while |E(A′, B1)| < 2k. Then
|E(A′, B2)| ≤ |E(A,B2)|+2|E(B2)|+|E(R,B2)| < 2k+

√
k+2
√
k = 2k+t and

we have the bound |E(G)| = |E(A′)|+|E(A′, B1)|+|E(A′, B2)|+|E(B1∪B2)| <
(k + d) + 2k + (2k + t) + k = 6k + t+ d, a contradiction. So |E(A′, B1)| ≥ 2k
and we move the remaining vertices of B′ to B2. Suppose |E(A′, B2)| < 2k,
we also have the bound |E(G)| < 6k + t+ d, a contradiction. Thus, for both
i ∈ [2], we have |E(A′, Bi)| ≥ 2k. So, we have the desired partition.

Let us consider such a partition. If there is a set T ⊆ A′, such that
|E(T,B1)| > k and |E(T,B2)| ≤ k (thus |E(A′ \ T,B2)| ≥ k) or symmet-
rically, |E(T,B1)| ≤ k (thus E(A′ \ T,B1) ≥ k) and |E(T,B2)| > k, then
G ∈ (2, k)-LC, a contradiction. So, for any set T ⊆ A′, we have either
max{|E(T,B1)|, |E(T,B2)|} ≤ k or min{|E(T,B1)|, |E(T,B2)|} > k. Select
a maximal subset A1 of A′ such that |E(A1, Bi)| ≤ k for i ∈ [2]. Observe
that by construction in the two cases, A′ contains at most one vertex r
such that d(r) > t, and such a vertex has d(r) ≤ 2k. In the construction
of A1, we may assume that r is the first element added to A1 (note that
|E({r}, Bi)| ≤ k for i ∈ [2], as otherwise |E({r}, Bi)| > k for i ∈ [2] and
d(r) > 2k, a contradiction). Thus, we may assume that d(v) ≤ t for every
v ∈ A′ \ A1. Let A2 = A′ \ (A1 ∪ {v}), where v is an arbitrary vertex in
A′ \ A1, and observe that |E(A2, Bi)| < k for i ∈ [2] or G ∈ (2, k)-LC. The
partition A′ = A1 ∪A2 ∪ {v} satisfies max{|E(Ai, Bj)| : i, j ∈ [2]} ≤ k. Thus,
|E(A′, B1 ∪ B2)| < 4k + dB1∪B2(v) ≤ 4k + t, and so |E(G)| < 6k + t + d, a
contradiction.

Lemmas 5 and 9 imply the following:

Theorem 5. If G is irreducible for (2, k)-LC and has at least 6k+(3+
√

2)
√
k+

4 edges, then G ∈ (2, k)-LC. Thus, 2-Load Coloring admits a kernel with
less than 6k + (3 +

√
2)
√
k + 4 edges.

6 Discussions

1. We believe that our bound on the number of vertices in a kernel is optimal,
but the bound on the number of edges may not be optimal even for c = 2. We
conjecture that the optimal bound is c2k+O(1). Here is an example showing
tightness. Consider the complete bipartite graph Kc,ck−1 and add all possible
edges between vertices of the partite set of size c. The resulting digraph is a
reduced No-instance with c2k + c(c− 3)/2 edges.

2. Our linear-vertex kernel result implies an O∗(c2ck)-time algorithm for c-
Load Coloring, which simply tests all the c-colorings of the kernel. It is
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however possible that the problem admits much better FPT algorithms, since
the complement of c-Load Coloring, No c-Load Coloring, has small,
but not constant, forbidden minors and is minor-bidimensional (see [5, 6] for
more information on forbidden minors and bidimensionality).

Let pw(G) and tw(G) denote the pathwidth and the treewidth of G. Since
the path Pc(k+1) is one of the forbidden minors for No c-Load Coloring,
it is easy to decide whether G ∈ (c, k)-LC or G has a path-decomposition of
size bounded by c(k+ 1). Indeed, if G 6∈ (c, k)-LC, any DFS on the connected
components of G gives a Tremaux tree with depth bounded by c(k+1) that we
may transform into path decomposition of size bounded by c(k+1) in polyno-
mial time. Since the O∗(2tw(G))-time algorithm for 2-Load Coloring from
[9] can be generalized to an O∗(ctw(G))-time algorithm for c-Load Coloring,
there exists a O∗(cck)-time algorithm for this problem.

For c = 2, the running time O∗(4k) (first obtained in [9]) can be improved
using the result by Kneis et al. [13] that a graph with m edges and n vertices
has treewidth at most m/5.769+O(log n). Thus, by Theorem 3 in polynomial
time we can reduce a graph G to a graph G′ with tw(G′) ≤ 1.0401k+O(

√
k).

Therefore, the O∗(2tw(G)) algorithm for 2-Load Coloring has running time
O∗(2.0564k).

If we require that the input G is H-minor-free for some fixed graph H, then

tw(G) = O(
√
n) by [5, 6], and our linear-vertex kernel leads to an O∗(cO(

√
ck))-

time algorithm. Unfortunately, there is no constant forbidden minor for No
c-Load Coloring as membership in (c, k)-LC requires at least ck edges.

Nevertheless, by Theorem 4.12 of [5], and since branchwidth is linked to

the treewidth up to a constant factor, any graph G contains an (Ω( tw(G)
gen(G))×

Ω( tw(G)
gen(G)))-grid as a minor, where gen(G) is the genus of G. Since the (r× r)-

grid is a forbidden minor for No c-Load Coloring when r ≥ d
√

(c+ 1)k e,
we have tw(G) = O(

√
ck gen(G)). Thus, we obtain an O∗(cO(

√
ck gen(G)))-time

algorithm to solve c-Load Coloring, which is subexponential for graphs of
bounded genus. Note also that the complete graph Kcd

√
2k+1e is also one of

the forbidden minors. Thus, the Hadwiger number h(G) of G is bounded by
cd
√

2k + 1e. For any family with treewidth bounded by o(h(G)2), there is a

subexponential algorithm. For instance, there is an O∗(c
√
ck)-time algorithm

for chordal graphs.

3. Let us discuss extensions of our results to pseudographs, which may have
loops and multiple edges. Let us start with isolated vertices and loops. Since
the isolated vertices do not involve any edges, it is safe to delete them. Observe
that loops are always colored with the color of their vertex. But a leaf has
also to be colored with the color of its neighbor, as otherwise the edge between
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them is uncolored. Thus, any loop can be replaced by a pendant edge.
It remains to consider the multiple edges. Since multiple edges can be

colored with at most one color, it is safe to reduce any multigraph with mul-
tiplicity greater than k to its maximal induced subgraph with multiplicity k.
It is not hard to show that the overloads from Definition 3 can be generalized
just by requiring that for all u ∈ V1, |E({u}, Vu)| ≥ k. Thus, the reductions
are also safe for multigraphs. As the maximal induced (simple) graph of any
multigraph has the same number of vertices and the same connectivity, our
bound on the number of vertices in a kernel holds for multigraphs, too. The
bounds on the number of edges in a kernel has to be slightly changed. Let t
be the maximal multiplicity of an edge in the multigraph under consideration.
Then the bound of the number of edges in a kernel (for any c) will be 6.25c2tk
and thus we will have an approximation algorithm of ratio 12.5ct.
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