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Abstract 

Functional neuroimaging revolutionized the study of human language in the late 20th 

Century, allowing researchers to investigate its underlying cognitive processes in the intact 

brain. Here, we review how functional MRI (fMRI) in particular has contributed to our 

understanding of speech comprehension, with a focus on studies of intelligibility. We 

highlight the use of carefully controlled acoustic stimuli to reveal the underlying hierarchical 

organization of speech processing systems and cortical (a)symmetries, and discuss the 

contributions of novel design and analysis techniques to the contextualization of perisylvian 

regions within wider speech processing networks. Within this, we outline the 

methodological challenges of fMRI as a technique for investigating speech and describe the 

innovations that have overcome or mitigated these difficulties. Focussing on multivariate 

approaches to fMRI, we highlight how these techniques have allowed both local neural 

representations and broader scale brain systems to be described.  
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General Introduction 

The emergence of functional neuroimaging in the 1990s offered the unprecedented 

opportunity to examine the processing of spoken language in the intact, functioning human 

brain with a spatial resolution on the order of millimetres. Building upon the highly 

influential neuropsychological literature of the late 19th and 20th Centuries, a key aim of 

empirical study was uncovering the neural substrates for the comprehension of speech. Here, 

we offer a review and synthesis of the contributions of functional imaging –in particular, 

functional magnetic resonance imaging (fMRI) – to our understanding of the functional 

neuroanatomy of speech comprehension. We also offer an evaluation of the method and ask 

whether fMRI will continue to contribute substantially to our knowledge, or whether other 

modalities (or combinations of techniques) hold more promise for the future of the field.  

Other authors have offered excellent overviews of the state of the art in the functional 

imaging of language processes more generally (e.g. Price, 2012), and in the specific 

methodological challenges of examining auditory processing with fMRI (Peelle 2014). For 

this review, we felt that it was timely to limit our discussion to the use of fMRI in the 

investigation of speech comprehension. The study of speech comprehension has been at the 

centre of significant theoretical debate in the last decade, for example in addressing the role 

of hemispheric asymmetries and motor contributions to speech perception. Advances in 

experimental design and data analysis have played an important role in refining our 

understanding of these issues. Here, we highlight in particular the contributions and future 

opportunities afforded by multivariate analyses of the BOLD response in examining the 

nature and content of neural representations of the speech signal. Approaches such as 

Representational Similarity Analysis (Kriegeskorte et al., 2008), provide promise for 

integrating multiple imaging modalities, allowing examination of neural responses at high 

levels of spatial and temporal resolution (e.g. EEG and fMRI). Further, multivariate 

network-based analyses such as Independent Components Analysis allow for the 

disentangling of overlapping neural processes in speech comprehension, such that speech-
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specific processes can be dissociated from those associated with task difficulty and domain-

general functions (see Adank, 2012; Brownsett et al., 2014; Geranmayeh, Brownsett, & 

Wise, 2014).  

For the purposes of this short article, we define speech comprehension as the recognition of 

intelligible phonemes, syllables, words and sentences, where we are namely concerned with 

the processes supporting the mapping of auditory percepts onto stored linguistic 

representations. In reviewing the literature, we acknowledge the tension between the 

preferential study of naturalistic linguistic stimuli (i.e. sentences and passages, versus words 

and syllables) with the observation that such stimuli engage brain regions involved in higher 

level cognitive processes (both domain-general and domain-specific) beyond the basic 

extraction of an intelligible percept (reviewed in Price, 2012). We do not have the scope for 

an exhaustive overview of studies in the field and thus concentrate our focus on 

comprehension at the word and sentence level. However, we note that any complete account 

of speech comprehension must crucially be accompanied by a solid understanding of the 

earlier stages in the speech processing hierarchy (Obleser & Eisner, 2009) - in later sections 

of our discussion, we highlight how emerging multivariate approaches to functional MRI 

data will enhance descriptions of prelexical processing beyond the current state of the art.  

In the sections that immediately follow (and predominately for readers unfamiliar with the 

field), we offer a contextual introduction to the study of speech comprehension using 

functional imaging of the healthy brain, and a brief examination of the key methodological 

issues in fMRI (and how these have been addressed). The main thrust of our discussion then 

considers the theoretical developments in the field, and how these are being advanced 

through recent methodological innovations. We concentrate on three main theoretical issues 

through which fMRI of healthy young brains has provided key empirical advances: 

investigation of anterior versus posterior temporal lobe contributions to comprehension, 

hemispheric asymmetries, and the contribution of wider brain networks to comprehension 

processes. We add to these some additional consideration of how fMRI studies of other 
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populations – namely, healthy older listeners and those with acquired language impairments 

- have helped to inform our understanding from the perspective of cortical reorganization 

and compensation. Finally, we close our thoughts by considering how fMRI can continue to 

advance the field through continued refinement of the method and greater integration with 

other imaging and measurement modalities. 

 

Historical Context: The emergence of fMRI over PET in the study of speech. 

There was a period of time during the 1990s when PET (positron emission tomography) and 

fMRI co-existed as similarly popular methods for the investigation of speech comprehension, 

and several seminal studies emerged from studies employing these methods (Price, 2012). 

However, functional MRI offered several substantial methodological advantages over PET. 

First, and crucially, the non-invasive nature of fMRI (cf the injection of labelled tracers for 

PET) permitted scanning of a more representative section of the population (i.e. to include 

children, and women of child-bearing age), and more easily allowed for repeated scanning 

of the same subjects. Further, the ability to collect whole-brain functional images in just a 

few seconds allowed neuroimaging researchers to adopt behavioural paradigms with larger 

numbers of trials that were better aligned with the randomised, event-related designs used in 

experimental psychology. However, the production of intense noise due to gradient 

switching in the magnetic coils of MRI scanners (see “Challenges and Solutions” below) 

presented a particular challenge for the study of auditory perception that formed a distinct 

and limiting disadvantage compared with the relative quiet of PET scans.  

Our reading of the literature from the end of the 20th Century identifies the most significant 

advances in understanding as arising from the use of more sophisticated acoustic baseline 

conditions in subtraction analyses that compared the perception of speech with unintelligible 

sounds (for discussions of cognitive subtraction, see Caplan, 2009; Friston et al., 1996).  

Scott et al. (2000) reported a passive listening study in PET, employing two forms of 

intelligible speech (natural recordings and noise-vocoded transformations) and two 
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spectrally rotated unintelligible equivalents, matched in acoustic complexity. Regions in 

posterior superior temporal gyrus (STG) and superior temporal sulcus (STS) were sensitive 

to the presence of acoustic-phonetic content, while activation magnitude in the anterior STS 

was sensitive to stimulus intelligibility but not acoustic variation across the different forms 

of intelligible speech. With both activations expressed dominantly in the left hemisphere, 

these results were coherent with the existing aphasia literature. Further, the suggestion of an 

anterior-going hierarchy of speech processing in the human temporal lobe was consistent 

with work from non-human primates, which described a hierarchically organised ventral 

auditory object recognition pathway radiating from primary auditory cortex (Hackett, 2011; 

Kaas, Hackett, & Tramo, 1999; Kaas & Hackett, 2000; Rauschecker & Tian, 2000). 

These relatively simple subtraction designs were elaborated upon by later work that took 

advantage of the possibility to run more complex, event-related designs in fMRI (Belin, 

Zatorre, Hoge, Evans, & Pike, 1999; Dale, 1999; Friston, Zarahn, Josephs, Henson, & Dale, 

1999). Thus, Davis & Johnsrude (2003) employed a correlational design in which they 

identified brain regions whose activation increased parametrically with the increasing 

intelligibility of sentences that had been degraded in different ways. They further 

differentiated between regions that were, and were not, additionally sensitive to the acoustic 

make-up of the stimulus, or whose responses were particularly enhanced for effortful 

listening conditions. This revealed, in line with the PET work, a hierarchical pathway of 

acoustic to intelligible speech processing with increasing distance from primary auditory 

cortex, in which both the anterior and posterior STS were sensitive to intelligibility but not 

to variation in acoustic form. Studies probing the abstraction of pre-lexical information in 

speech also showed evidence for a processing hierarchy, finding non-categorical acoustic 

responses to stop consonants and complex non-speech sounds in planum temporale 

(posterior to Heschl’s gyrus), with preferential responses to speech (compared with non-

speech control conditions) emerging and extending anteriorly on the STS (Obleser, 

Zimmermann, Van Meter, & Rauschecker, 2007; Obleser et al., 2006). However, in general 
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the understanding of prelexical processes and representations in speech was limited by the 

relatively coarse spatial resolution of fMRI, and the spatial averaging employed in 

univariate subtraction analyses (Obleser & Eisner, 2009). Hence, the evidence for 

categorical responses to phonemes in auditory cortex was limited (e.g. Obleser et al., 2006). 

Later in this paper, we shall return to this issue in our discussion of more recent multivariate 

techniques that have to some extent addressed these limitations.  

Importantly, in addition to peri-auditory activation, studies of speech comprehension 

reported relevant contributions from the left inferior frontal gyrus (IFG).  For example, 

Davis and Johnsrude (2003) found preferential responses to intelligible degraded speech 

within the IFG that were insensitive to the acoustic form of the degradation. Elucidating the 

role of the IFG, Binder, Liebenthal, Possing, Medler, & Ward (2004) associated insular and 

frontal opercular sites with response selection, while temporal lobe activations were linked 

more closely with perceptual processes. Similarly, a number of studies of prelexical 

processing associated the perception of across- versus within-category phonemic contrasts 

with sites in inferior parietal cortex, including the supramarginal gyrus (SMG; e.g. 

Jacquemot, Pallier, LeBihan, Dehaene, & Dupoux, 2003; Raizada & Poldrack, 2007). Later 

in our discussion, we address how the growing body of research pointed towards a wider 

speech comprehension network extending beyond the temporal lobes. We also examine 

more closely recent work on the elaboration of hierarchical pathways, reviewing how 

knowledge has progressed concerning the relative roles of posterior and anterior temporal 

sites, as well as the question of hemispheric dominance in the extraction of intelligible 

messages from spoken language.  

 

Overview of the method 

Functional magnetic resonance imaging, similarly to PET, operates on the principle that 

neural metabolism is supported by the delivery of oxygen in the bloodstream. It is 
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specifically based on the finding that deoxygenated and oxygenated haemoglobin have 

different properties in a magnetic field – the former paramagnetic, the latter diamagnetic 

(Bandettini, Wong, Hinks, Tikofsky, & Hyde, 1992; Kwong et al., 1992; Logothetis, Pauls, 

Augath, Trinath, & Oeltermann, 2001; Ogawa et al., 1993). A calculation of the ratio of 

deoxy- to oxyhaemoglobin within a given brain voxel (i.e. a 3-dimensional pixel, typically 

sized 2-3mm in each dimension and potentially containing up to 100,000 neurons) is then 

used as a proxy for neural activity within that portion of tissue. The haemodynamic response 

to an event, known as the BOLD (blood oxygenation level dependent) response, is 

characterized by a brief decrease in signal (reflecting a local increase in metabolism), 

followed by an increase, peaking at 4-6 seconds after the event (accompanying an increase 

in local blood flow) and a slower return to baseline levels (on the order of 10-30 seconds). 

The precise relationship between the BOLD response and the underlying neural physiology 

is not fully understood, but is believed to be more strongly related to more slowly 

fluctuating local field potentials than to neuronal spiking activity (Logothetis & Wandell, 

2004). Depending on the size and number of voxels collected, a whole-brain scan can now 

be acquired very quickly, typically in around 2 to 3 seconds.  In the future, the more 

widespread use of multiband acquisition sequences, in which multiple brain slices are 

acquired simultaneously, will dramatically reduce acquisition times (see Correia, Jansma, & 

Bonte, 2015; De Martino, Moerel, Ugurbil, Formisano, & Yacoub, 2015) allowing greater 

flexibility in experimental design and wider “whole brain” coverage. These increased 

acquisition speeds are likely to encourage the routine collection of larger brain volumes, 

with the effect that anatomical regions that are often ignored, but that may still play a role in 

perception, are captured in the field of view more frequently (e.g. the cerebellum, see 

Guediche, Holt, Laurent, Lim, & Fiez, 2015; see also Visser, Jefferies, & Lambon Ralph, 

2010, on the impact of field of view size on the ventral portions of the temporal lobe). In 

addition to faster acquisition sequences, we envisage more widespread use of higher field 

strength magnets; indeed, many centres have now replaced or supplemented their 1.5-Tesla 
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systems with 3-Tesla scanners.  These higher strength magnets provide improved spatial 

resolution, albeit at a risk of greater imaging artefact.  A new generation of 7-Tesla systems 

is now in active use in human research, affording even higher resolution (e.g.  <1 mm in-

plane; Pfeuffer et al., 2002; Yacoub et al., 2003), and work has begun in applying this 

greater resolution to the auditory system (Formisano et al., 2003). 

 

Challenges and Solutions  

In some ways, it seems unlikely that fMRI would have superseded PET as the imaging 

modality of choice for researchers interested in localising speech comprehension networks.  

Indeed, fMRI scanners generate considerable acoustic noise, caused by switching of the 

gradient coils, which can generate levels upwards of 130 dB SPL (Foster, Hall, Summerfield, 

Palmer, & Bowtell, 2000). This noise is periodic, with harmonics in the range crucial for 

speech perception, and thus greatly reduces the audibility of speech signals (Edmister, 

Talavage, Ledden, & Weisskoff, 1999; Hall et al., 1999; Peelle, 2014).  The acoustic 

properties of the scanner noise can also interact with those of the auditory stimuli, causing 

some stimuli or experimental conditions to be more affected by scanner noise than others, 

thus distorting experimental outcomes.  At a neural level, listening to speech in the context 

of scanner noise engages compensatory neural activity associated with modulation of 

attention and cognitive control.  In addition, the response of the auditory cortex can become 

saturated, reducing the dynamic range of the response to auditory stimuli (Langers, Van 

Dijk, & Backes, 2005; Peelle, Eason, Schmitter, Schwarzbauer, & Davis, 2010; Peelle, 

2014).  The challenge of acoustic noise has been addressed through the development of 

“sparse sampling”, where a delay of ~6 to 18 seconds is introduced between successive 

acquisitions to allow for the presentation of auditory stimuli in relative quiet (Edmister et al., 

1999; Hall et al., 1999). This slow sparse sampling depends on the careful placement of 

auditory events such that the following brain volume captures the peak of the event-related 
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BOLD response. More recently, fast sparse acquisition sequences have been adopted that 

take advantage of shorter brain volume acquisition times. In this approach, the peak 

response is not captured in the immediately following acquisition, but rather in the 

subsequent one, with overlapping neural responses deconvolved using a canonical 

hemodynamic response function.  This requires stimuli to be presented in a much shorter 

silent interval between successive volumes (e.g. ~ every 2-3 seconds) facilitating more 

stimulus presentations and greater data acquisition per unit time (see Evans & Davis, 2015; 

Formisano, De Martino, Bonte, & Goebel, 2008).  Further developments include the 

Interleaved Silent Steady State (ISSS) approach (Schwarzbauer, Davis, Rodd, & Johnsrude, 

2006), which involves the sequential acquisition of several volumes with interleaved silence 

between clusters, permitting greater within-trial temporal resolution of the event-related 

BOLD response suitable for the examination of responses unfolding over time (e.g. during 

sentence comprehension). Others have endeavoured to reduce the magnitude or impact of 

the acoustic scanner noise itself by noise cancellation or manipulating the parameters of the 

acquisition sequence (Hall et al., 2009; Peelle et al., 2010; Schmitter et al., 2008). For a 

helpful and succinct description of these approaches, we highly recommend Peelle (2014). 

The degradation of the BOLD signal in regions of the brain that are located close to air-

tissue interfaces is an additional problem specific to fMRI data collection.  With 

conventional gradient echo planar imaging, “signal drop out" is generated by air-tissue 

interfaces that cause local differences in magnetic susceptibility, inducing geometric 

distortions and reducing BOLD sensitivity. Unfortunately the anterior and inferior temporal 

cortex are particularly affected by this issue, which is a problem as these regions have been 

shown to play important roles in semantic processing and operate as key nodes in the wider 

speech comprehension network (Devlin et al., 2000; Hickok & Poeppel, 2007; Patterson, 

Nestor, & Rogers, 2007; Rauschecker & Scott, 2009; Rodd, Davis, & Johnsrude, 2005). 

Recently, dual-echo gradient imaging has been applied to address this issue.  Dual echo 

imaging uses two echoes, rather than a single long echo time typically used in gradient echo 
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imaging: one echo is short, reducing the effect of field inhomogeneity in areas near bone-

tissue interfaces but with a reduced BOLD sensitivity in other regions, and the other is long, 

producing the converse sensitivity.  By combining echoes, either by averaging or taking a 

weighted sum, it is possible to balance sensitivities to gain acceptable signal quality across 

the whole brain (Poser, Versluis, Hoogduin, & Norris, 2006).  This method has recently 

been shown to out-perform single spin-echo imaging, and has also been shown to ameliorate 

“signal drop out”, in temporal lobe regions (Halai, Welbourne, Embleton, & Parkes, 2014).  

Indeed, using this approach a recent study revealed selective responses to intelligible speech 

in inferior regions of the anterior temporal lobe, as well as more superior regions typically 

identified in studies of speech intelligibility (Halai, Parkes, & Welbourne, 2015).   

An important distinction between auditory and visual processing in the human brain is the 

larger number of key relay nuclei in the ascending auditory pathway, including the cochlear 

nucleus, the superior olive, inferior colliculus and medial geniculate nucleus. Imaging these 

small structures presents challenges in functional imaging through the increased movement 

artefact associated with the proximity of these sites to pulsatile movement in blood vessels. 

In the past, this artefact may have acted to obscure subcortical contributions to speech 

comprehension.  One solution to this issue has been to employ cardiac “gating”, in which 

acquisition is synchronized to a point in the cardiac cycle to reduce the effect of 

physiological movement on the MR signal.  Indeed, using cardiac gating Erb, Henry, Eisner, 

& Obleser (2013) showed that during adaptation to noise vocoded speech, activity within the 

thalamus was down-regulated over time, suggestive that cortico-striato-thalamic loops act to 

sharpen representations of degraded speech during initial exposure.  

The timecourse of the development and widespread adoption of these compensatory 

methods for imaging speech comprehension is likely to have impacted on the field, because 

different authors’ accounts of the speech comprehension system have been based on varied 

methodological approaches. In a recent meta-analysis of methodological choices in the study 

of speech comprehension, Adank (2012) reports, for example, that studies employing sparse 
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sampling techniques have revealed more extensive activations in STS than those using 

continuous acquisition, while continuous protocols have more strongly engaged regions in 

the frontal-opercular control network such as the supplementary motor area (SMA) and the 

anterior cingulate gyrus. In related work on functional imaging studies of semantic 

comprehension, it was revealed that the likelihood of identifying anterior temporal lobe 

activation was negatively impacted by a number of factors, including the use of fMRI versus 

PET, and by the use of an insufficient field of view to capture tissue in the ATL region 

(Visser, Jefferies & Lambon Ralph, 2010). These factors bear implications for key questions 

in the literature, for example regarding the relative contributions of anterior versus posterior 

temporal lobe regions to speech comprehension (see “Key empirical contributions”). 

 

Key empirical contributions 

In reviewing the literature, and in particular the work of the last 10 years, we have identified 

several key empirical issues that have been addressed with fMRI in the study of speech 

comprehension. Below, we describe each in turn, and evaluate the extent to which the 

existing work has advanced our understanding: 

(a) Understanding the temporal hierarchy: anterior versus posterior responses to 

intelligible signals 

The seminal study by Scott, Blank, Rosen, & Wise (2000) presented a strong argument that 

the anterior STS formed the apex of the speech processing hierarchy in the superior 

temporal lobes. However, while other studies identified peak responses to intelligibility in 

anterior temporal sites, in many of these cases activations with similar profiles were also 

found in the posterior STS (Davis & Johnsrude, 2003; Narain et al., 2003). In some cases, 

intelligibility contrasts yielded only posterior activations within the STS (e.g. Eisner, 

McGettigan, Faulkner, Rosen, & Scott, 2010). Adank's (2012) meta-analysis indicated that 
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some of this variability may have been due to design and protocol choices across different 

studies. However, the development of newer methods for sensitive multivariate and 

connectivity analyses also allowed researchers to address this issue empirically.   

In the last fifteen years, multivariate pattern analysis (MVPA) techniques, adopted from the 

field of machine learning, have been increasingly applied to fMRI data (for tutorial reviews 

see Haynes & Rees, 2006; Kriegeskorte, Mur, & Bandettini, 2008; Mur, Bandettini, & 

Kriegeskorte, 2009; Norman, Polyn, Detre, & Haxby, 2006; O’Toole et al., 2007; Pereira, 

Mitchell, & Botvinick, 2009).  Traditional univariate approaches based on general linear 

modelling identify whether the average neural activation to one experimental condition is 

greater than to another, at each individual voxel.  By contrast, multivariate methods consider 

the spatial pattern of activation across multiple voxels. This allows weakly discriminative 

information that is distributed over multiple voxels to be pooled (Haynes & Rees, 2006); 

and the representational geometry of neural responses to be described (Kriegeskorte & 

Kievit, 2013; Kriegeskorte et al., 2008).  This can permit detection of subtle effects not 

observed when considering the averaged magnitude of response within isolated voxels 

(Bonte, Hausfeld, Scharke, Valente, & Formisano, 2014; Formisano et al., 2008; Staeren, 

Renvall, De Martino, Goebel, & Formisano, 2009).  However, whilst MVPA methods can 

sometimes afford greater sensitivity over univariate methods, this sensitivity can also lead to 

greater vulnerability to false positives if additional care is not taken in experimental design 

and analysis (see Mumford, Davis, & Poldrack, 2014; Pereira et al., 2009; Todd, Nystrom, 

& Cohen, 2013).   

Typically in MVPA, algorithms are used to learn a rule that correctly separates brain images 

belonging to different experimental conditions. Different algorithms apply different criteria 

for making this separation. Support Vector Machines (SVMs) have proved popular because 

they have high accuracy and perform well with large numbers of voxels (see Misaki, Kim, 

Bandettini, & Kriegeskorte (2010) for a comparison of algorithms).  An SVM is a 

discriminant classifier that learns a separating boundary that maximises the distance 
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between the most similar examples from each experimental condition within a 

multidimensional space with as many dimensions as voxels. The success of the boundary is 

tested by assessing how well it predicts category membership for independent test data, 

which are usually taken from a different acquisition run. If the boundary predicts category 

membership at a level greater than chance, this provides evidence that the brain images 

contain information capable of distinguishing between the conditions.  In addition to 

choosing an algorithm, researchers must also decide which voxels to include in 

classification, as classifiers can perform poorly with too many voxels.  Voxels can be 

selected using data driven approaches, such as recursive feature elimination that removes 

uninformative voxels (Formisano et al., 2008) or using functionally or anatomically defined 

regions (Evans & Davis, 2015).  Alternatively, local information can also be mapped across 

the whole brain by extracting patterns from small cortical patches iteratively, referred to as a 

searchlight procedure (Kriegeskorte, Goebel, & Bandettini, 2006).  Whole brain volumes 

can also be classified to understand how multivariate information is integrated at a larger 

scale, using dimension reduction techniques such as principal component analysis (Mourao-

Miranda, Bokde, Born, Hampel, & Stetter, 2005).  

In a functional MRI study of sentence comprehension using the same auditory conditions as 

Scott et al. (2000), Okada et al. (2010) used an SVM to measure the discriminability of 

multivoxel response patterns to pairs of conditions, in a set of regions of interest (ROIs) 

throughout the left and right superior temporal cortex. They used classification scores to 

calculate an “acoustic invariance index” that expressed intelligibility classifications (e.g. 

accuracy in discriminating responses to intelligible non-rotated sentences from unintelligible 

spectrally rotated versions) relative to spectral detail classifications (e.g. noise vocoded from 

non-vocoded sentences). Using this metric, they argued that posterior STS showed the 

greatest invariance to the acoustic properties of the stimuli. In another fMRI replication of 

this paradigm, Evans, Kyong et al. (2014) used both univariate and multivariate analyses, 

showing the strongest univariate intelligibility response in left anterior STS but the greatest 
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multivariate classification accuracy in local patches of cortex (searchlights) in the posterior 

STS. Yet, when exploring classifications in which information could be integrated across the 

whole temporal lobe, they found that the most informative voxels showing preferential 

responses to intelligible speech were located in anterior regions. Taken together, these 

findings suggest that both anterior and posterior STS occupy higher, more abstract levels of 

processing and that there might be multiple hierarchies within which information can be 

encoded at different spatial scales.  

By now, a number of studies have used pattern classification as a metric for quantifying the 

relative contribution of different regions to acoustic and linguistic processes in the case of 

connected speech signals (Abrams et al., 2012; Evans, Kyong et al., 2014; McGettigan, 

Evans et al., 2012; Okada et al., 2010).  Correia et al. (2014) extended this approach using 

an innovative cross decoding approach (see Kaplan, Man, & Greening, 2015 for a review of 

cross decoding) to demonstrate the encoding of abstract word representations independent of 

speech acoustics.  In the study, they presented single words in Dutch and English to Dutch-

English bilinguals. They trained an SVM to distinguish between neural patterns elicited by 

words presented in Dutch, and applied this learned boundary to predict the classification of 

the same words presented in English (and vice versa).  A number of regions showed 

accurate cross decoding, including the left anterior and right posterior temporal cortex, and 

regions of the parietal, frontal and occipital cortices, suggesting a common semantic 

representation for individual words in the absence of a shared acoustic signal. Successful 

classification in the anterior temporal lobe in this study, in the absence of the use of 

distortion-corrected EPI, also highlights the sensitivity of MVPA to detect effects in regions 

of low signal to noise ratio, such as those affected by susceptibility artefact (Kriegeskorte & 

Bandettini, 2007).      

Obleser and Eisner (2009) were amongst the first to highlight the opportunities afforded by 

MVPA to investigate how information is coded at finer, prelexical, levels of processing. 

This approach has indeed led to important insights concerning how speech sounds are 
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represented in the human brain (Arsenault & Buchsbaum, 2015; Du, Buchsbaum, Grady, & 

Alain, 2014; Formisano et al., 2008; Lee, Turkeltaub, Granger, & Raizada, 2012; Obleser, 

Leaver, Vanmeter, & Rauschecker, 2010; Raizada, Tsao, Liu, & Kuhl, 2010).  In the first 

study to apply MVPA techniques to speech perception data, Formisano et al. (2008) trained 

a classifier to discriminate between vowels from one speaker, and applied this learned 

boundary to discriminate between the same vowels spoken by another speaker. This 

provided evidence for the instantiation of speech sound categories invariant to speaker 

identity.  Using recursive feature elimination, they identified that decoding of vowels could 

be achieved using a distributed set of voxels spreading across the STG and into anterior 

lateral Heschl’s Gyrus.  A later study replicated and extended this finding, showing that task 

demands – that is, whether participants attended to the identity of the vowel rather than the 

speaker - selectively enhanced discriminability of the activity patterns in superior temporal 

cortex, which extended “backwards” into early auditory regions (Bonte et al., 2014). In 

agreement, Obleser et al. (2010) used an SVM to discriminate between a set of CV syllables 

spoken by multiple speakers that could be classified either by their vowel (front or back 

vowel) or consonant category (front or back stop consonant). They also found evidence for 

distributed neural patterns extending anteriorly and posteriorly within the superior temporal 

cortex for both the vowel and consonant discriminations, with only a sparse overlap of 

voxels that were capable of both classifications. As in the previously described studies, 

voxels in and around primary auditory cortex contributed to discriminations between speech 

sound categories.  Kilian-Hutten et al. (2011) presented physically identical ambiguous 

speech sounds in which perception could be recalibrated by previous visual speech exposure.  

They showed that regions including the posterior bank of Heschl’s sulcus and gyrus 

contributed to discriminating the subjective identity of the syllables when the sounds 

themselves were physically identical, suggesting that early auditory cortex contributes to 

higher order constructive processes in perception.   
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Taken together, these results suggest that abstract speech sound categories are encoded in 

sparse, distributed activity patterns. These patterns span anterior and posterior temporal 

cortex and extend into early auditory regions, including Heschl's gyrus. This suggests that 

speech processing hierarchies may be instantiated in a less discrete and more graded manner 

than previously thought.  Indeed this work suggests that early auditory cortex contributes to 

higher order perceptual processes, rather than just passively responding to low level acoustic 

features. However, these data are not incompatible with a hierarchical account of perception.  

Indeed, a recent study by Evans and Davis (2015) demonstrated that the information 

contained within primary auditory cortex was not sufficient on its own to represent the 

categorical identity of speech syllables, suggesting that early auditory cortex contributes to 

perception, but only via its co-activation with downstream regions of the speech processing 

system.   

Important insights concerning the role of posterior and anterior temporal cortex have also 

come from functional connectivity analyses.  Early connectivity studies described co-

activation between regions using simple correlations (Eisner et al., 2010; Obleser, Wise, 

Dresner, & Scott, 2007).  More recently, effective connectivity techniques, such as Dynamic 

Causal Modelling (DCM) and Granger Causality, have been used to make stronger 

inferences about the directionality of influence between brain regions (for tutorial reviews 

see Stephan et al., (2010) and  Friston, Moran, & Seth (2013)). Using Granger Causality, 

Upadhyay et al., (2008) found that spoken sentences engaged two streams of processing 

emanating from primary auditory cortex - one to the anterior STG and the other to posterior 

STG - paralleling findings from studies of non-human primates indicating multiple 

processing streams.  Leff et al., (2008) identified preferential responses to intelligible 2-

word phrases in left posterior and anterior STS, and pars orbitalis of the left IFG.  In a DCM 

analysis, they found that the best model to explain the interactivity of these three sites 

involved auditory inputs driving posterior STS, with the intelligibility of speech modulating 

feed-forward connectivity from there to the other two sites. A more recent study has 
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replicated this evidence for feed-forward connectivity between posterior and anterior 

sections of the STS, for both tonal and non-tonal languages (Ge et al., 2015).  

In sum, the work of the last ten years, with support from emerging techniques including 

MVPA and DCM, indicates important contributions for both posterior and anterior temporal 

cortex in speech comprehension.  Evidence suggests that distributed, sparse neural codes 

support perception, and these patterns extend across anterior and posterior temporal cortex 

and into early auditory regions.  The anterior temporal cortex may play a later role in the 

speech processing hierarchy, with the possibility that information may be represented at 

different spatial scales in anterior as compared to posterior regions. 

 

(b) Cortical (a)symmetries: is speech comprehension left-dominant, or bilateral? 

Scott et al (2000) reported strongly left-dominant responses to acoustic-phonetic content and 

speech intelligibility in the temporal lobes, yet using PET were unable to provide any formal 

statistical comparison of the effects. Nonetheless, the body of work that followed tended to 

show larger effect sizes to intelligible speech than to complex acoustic baseline sounds in 

the left superior temporal cortex (Friederici, Kotz, Scott, & Obleser, 2010; Narain et al., 

2003; Obleser, Wise, Dresner, & Scott, 2007). The remaining problem, however, was how 

to quantify this: comparing the number of significant voxels across hemispheres is 

dependent on the choice of statistical threshold (although see Evans, McGettigan, Agnew, 

Rosen, & Scott, 2016; Kyong et al., 2014 for an alternative univariate approach), there are 

anatomical differences between left and right temporal lobes that limit direct comparability 

via subtraction analysis (though this may be addressed through normalization to a 

symmetrical template brain; e.g. Herrmann, Obleser, Kalberlah, Haynes, & Friederici, 2012; 

Watkins et al., 2001), and use of ROI approaches is limited by factors such as a lack of 

statistical independence or arbitrariness in the size and/or shape of analysis regions 

(McGettigan, Evans et al., 2012). Another challenge was how to tease apart acoustic from 

linguistic contributions to asymmetries. A large part of the literature had focused on 
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exploring hemispheric sensitivities to basic acoustic information in sounds and relating this 

to the properties of speech (e.g. fast vs. slow modulations / short vs. long time windows; see 

Boemio, Fromm, Braun, & Poeppel, 2005; Giraud & Poeppel, 2012; Hickok & Poeppel, 

2007; Poeppel, 2003), or spectral vs. temporal processing (e.g. Schonwiesner, Rubsamen, & 

von Cramon, 2005; Zatorre, Belin, & Penhune, 2002; Zatorre & Belin, 2001; Zatorre & 

Gandour, 2008). However, other authors chose to examine responses to acoustic 

modulations in the context of their impact on the intelligibility of connected speech signals 

(e.g. Obleser, Eisner, & Kotz, 2008; Rosen, Wise, Chadha, Conway, & Scott, 2011; 

McGettigan, Evans et al., 2012). Obleser et al. (2008) parametrically varied the number of 

spectro-temporal channels of information in noise-vocoded sentences, as well as the 

temporal smoothing of the amplitude envelope, in a fully-factorial design in fMRI. They 

found that both manipulations affected speech comprehension ratings, and both engaged 

BOLD responses in bilateral superior temporal cortex. However, they showed that the 

laterality of neural responses to the temporal smoothing factor was more left-dominant, 

whereas that for the spectro-temporal channels modulation was right-ward (though note that 

laterality was calculated using a method involving threshold dependent values). In a pair of 

studies – one in PET and one in fMRI – Rosen et al. (2011) and McGettigan, Evans et al. 

(2012) took the approach of focusing on the acoustic modulations known to be necessary 

and sufficient for intelligible percepts – these were variations in formant frequency and 

amplitude in a form of sinewave speech. In both studies, the authors showed that univariate 

responses to the two acoustic modulations were bilaterally expressed, when presented alone 

or in unintelligible combinations. However, the contrast of intelligible with unintelligible 

stimuli gave a left-dominant response in the univariate analysis, and McGettigan, Evans et al. 

(2012) were further able to demonstrate, using SVM classification, that the left STG and 

STS contained more information in this classification than the right-hemisphere homologue 

regions. 
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Peelle (2012) argues that hemispheric lateralization of speech processing depends on how 

speech is defined, making a distinction between “unconnected” (everything up to single 

words) and “connected” speech (phrases, sentences and narratives). In Peelle’s view, it is the 

syntactic and semantic aspects of connected speech that engage the left-dominant language 

system, but that word comprehension per se is a bilaterally mediated process. A number of 

studies have reported a left-dominant trend in the temporal lobe’s responses to intelligible 

speech at the level of words and sub-lexical units (e.g. syllables, phonemes; see McGettigan 

& Scott, 2012 for examples). However, the literature to date is missing an elaboration on the 

content of representations in the two hemispheres, and how these might differ with regard to 

"speech-specific" processing. This speaks to the difficulty of disentangling whether 

preferential responses to speech in temporal regions reflect specialized processing for 

linguistic inputs, or tuning to the inherent spectro-temporal properties of vocal stimuli (see 

e.g.  Santoro et al., 2014).  Indeed, it may prove misguided to assume a privileged status for 

speech, or for there to be a categorical distinction between speech and other sounds (Iverson 

et al., 2011; Iverson et al., 2016; Rosen & Iverson, 2007).  

In sum, the work of the last decade has suggested a clear left hemisphere dominance for the 

comprehension of connected speech (i.e. sentences), with additional evidence at lower levels 

of the linguistic hierarchy. A challenge for future work will be to demonstrate a distinction 

(or equivalence) in local representations and/or processing between the two hemispheres – 

this will allow exploration of whether observed asymmetries in the temporal lobes reflect 

interactions between auditory cortical fields with asymmetric higher-order language-

processes (e.g. syntactic processing in left IFG, see Bozic, Tyler, Ives, Randall, & Marslen-

Wilson, 2010). 

 

(c) Contextualising perisylvian responses to intelligible speech within, and alongside, wider 

neural networks 
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Early fMRI studies on speech comprehension showed engagement of regions outside of the 

temporal lobes, including the inferior frontal gyrus (e.g. Davis & Johnsrude, 2003; Binder et 

al., 2004). In a meta-analysis of the speech comprehension literature, Adank (2012) 

identified activation of clusters in SMA, precentral gyrus and the left fusiform gyrus by 

intelligible speech signals. In later work employing multivariate approaches, authors have 

reported significant classification of intelligible and unintelligible signals in left inferior 

frontal gyrus and the inferior parietal cortex (Abrams et al., 2012; Evans, Kyong et al., 

2014). Other recent work in which intelligibility and sentence predictability have been co-

varied has shown that the inferior frontal and parietal cortices play important roles in 

semantic facilitation, particularly when speech is moderately degraded (Davis, Ford, Kherif, 

& Johnsrude, 2011; Obleser & Kotz, 2010; Obleser et al., 2007). A crucial question is 

whether these regions, particularly those beyond perisylvian cortex, are involved in the core 

aspects of speech comprehension (i.e. direct mapping between auditory input and intelligible 

linguistic representations) or if they form more of a “supporting cast”, engaged in 

downstream computations (e.g. semantic prediction or response selection) under particular 

tasks or listening contexts. This question was brought to the fore during a resurgence of the 

Motor Theory of speech perception that was somewhat inspired by attempts to characterize 

mirror systems in the human brain (see Hickok, 2010; Lotto, Hickok, & Holt, 2009; 

Pulvermüller & Fadiga, 2010; Scott, McGettigan, & Eisner, 2009). Having observed 

premotor cortical responses to hearing speech, some speculated that motor representations in 

the brain play a functional role in speech perception (Pulvermüller et al., 2006; Wilson, 

Saygin, Sereno, & Iacoboni, 2004). Others suggested that such responses could rather be a 

result of general behavioural readiness to engage with sounds (e.g. in conversational turn-

taking), a consequence of specific task demands such as phonemic segmentation, or a 

compensation for challenging listening conditions (Scott, McGettigan, & Eisner, 2009), and 

thus that they could reflect a modulatory rather than essential role for motor representations 

in speech perception (Hickok, Houde, & Rong, 2011). 
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Several studies employed fMRI to advance the understanding of the role of motor 

representations, with notable empirical outcomes. Agnew et al. (2011)  carried out a passive 

listening study with carefully selected plosive sounds; these were all producible and familiar 

to the listeners, but were either native or non-native to their spoken language. Here, using a 

standard univariate subtraction approach, the authors showed a preferential left STS 

response to native sounds, but no overall difference in the response of motor cortices to the 

two categories of mouth sound, nor to a baseline condition of signal-correlated noise. Some 

MVPA studies have also failed to implicate motoric contributions to speech perception 

(Arsenault & Buchsbaum, 2015; Arsenault & Buchsbaum, 2015). Others identified a 

possible role for motoric representations in the processing of degraded speech stimuli, with 

the implication that articulatory strategies may help listeners to identify speech content when 

it is unclear or ambiguous (Du et al., 2014; Hervais-Adelman, Carlyon, Johnsrude, & Davis, 

2012; Lee et al., 2012).  Hervais-Adelman et al., (2012) showed increased activation of the 

left IFG and precentral gyrus when neural responses to degraded but intelligible six-band 

vocoded speech were compared with clear speech.  In an MVPA study, Lee et al. (2012) 

examined neural responses to sounds drawn from a continuum from /ba/ to /da/, showing 

that inferior frontal cortex and pre-SMA contributed to categorising these ambiguous sounds. 

In agreement, Du et al. (2014) showed highly discriminable neural responses for different 

spoken syllables in ventral premotor cortex and posterior STG for clear speech, but in the 

presence of higher levels of competing noise only inferior frontal regions maintained high 

discriminability. Using DCM, Osnes, Hugdahl, & Specht, (2011) found evidence for bi-

directional connections between premotor cortex and the STS, but only when listening to 

ambiguous speech (and not musical chords), suggestive of a possible mechanism by which 

motoric information might support perception.  

A very recent study employing multivariate Representational Similarity Analysis (for 

tutorial reviews see Kriegeskorte et al., 2008 and Nili et al., 2014)) offers a new perspective 

on the nature of the information represented within premotor cortex during speech 
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perception. RSA is a multivariate approach in which dissimilarity distances (typically 

correlations) are computed between the neural responses associated with each experimental 

condition.  This generates a representational dissimilarity matrix (RDM) that describes the 

relationship between each condition and every other.  The similarity between the RDM and 

hypothetical models expressing the relation between conditions is then tested to explore 

different hypotheses.  RSA can be thought of in some ways as a more generalised version of 

MVPA - it can detect binary discriminations between conditions, but in addition, because it 

uses continuous distances, can detect more nuanced relationships between experimental 

conditions (Kriegeskorte & Kievit, 2013), resulting in arguably greater reliability than 

pattern classification approaches (Walther et al., 2015).  Other advantages include the ability 

to test models derived from a wide variety of data sources, and the ability to conduct 

condition-rich experiments that allow a larger number of hypotheses to be tested 

(Kriegeskorte et al., 2008).  Using RSA, Evans and Davis (2015) showed that premotor 

cortex contained the most highly abstracted representations of heard syllables (i.e. 

sensitivity to syllable identity only, whereas the temporal lobes were additionally sensitive 

to variations in speaker and surface acoustic form). Nonetheless, these authors do not 

necessarily claim an essential perceptual role for motor representations in the 

comprehension of speech – rather, they argue for a top-down contribution, which may take a 

predictive form similar to an efference copy of articulatory information during speech 

production, and which is more pronounced under challenging listening conditions.   

There is a large neuropsychological literature on the importance of the ATL in semantic 

comprehension, yet functional imaging studies have reported few activations in this region 

(Visser et al., 2010). Since the establishment of fMRI over PET as the neuroimaging method 

of choice for studies of healthy brain function, this trend is strongly apparent in studies of 

speech comprehension.  In general, the inferior temporal lobe has received relatively little 

attention in studies of speech, yet there are clues to its involvement in studies contrasting the 

perception of auditory speech at varying levels of intelligibility – for example, Adank’s 
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(2012) meta-analysis, which implicates a node in left fusiform gyrus, and Halai et al.’s 

(2015) finding of left inferior temporal and fusiform gyrus activation when employing dual-

echo acquisition to reduce signal drop-out artefact. Beyond the issue of whether 

methodological limitations of fMRI have obscured the true apex of the temporal speech 

processing hierarchy in the ATL, the question arises as to whether this region reflects a 

language-specific response, or a domain-general semantic “hub” (Patterson et al., 2007). 

Very recent analysis of resting state connectivity from the left and right ATLs supports the 

former claim; this showed that the left ATL engages with ipsilateral perisylvian language 

regions in frontal and parietal cortex, while the right ATL demonstrates no such connections 

(Hurley, Bonakdarpour, Wang, & Mesulam, 2015). 

In sum, recent work in functional MRI has gone beyond a narrow focus upon Broca’s and 

Wernicke’s areas to explore the involvement of other structures in supporting speech 

comprehension. While the premotor cortex may have received somewhat disproportionate 

attention in the wake of a surging interest in mirror neurons, we describe how the claims 

from early studies have been addressed and refined through improved experimental designs 

and the increased sensitivity of multivariate analyses. When considering comprehension, the 

inferior and most anterior parts of the temporal lobes have been relatively overlooked 

despite their key associations with semantic processing – improvements to fMRI acquisition 

protocols, such as dual-echo imaging, should yield improved insights in future work.  

 

(d) Speech comprehension in the reorganizing/compensating brain: Insights from 

neuropsychology and healthy ageing populations 

Work in neuropsychology has the potential to shine light on our understanding of the neural 

substrates of speech and language comprehension, for example through the study of 

functional reorganization and responses to therapy after stroke. The degree of preservation 

of ability, or recovery of behaviour, in aphasic patients can inform on issues of hemispheric 
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asymmetries in speech comprehension – for example, in the absence of left perisylvian 

cortex following stroke, can right-hemisphere homologues assume the functions once 

performed in the left side of the brain? A number of competing views have been presented, 

suggesting that residual abilities in aphasia might be positively influenced by greater 

activation of the right hemisphere (Mohr, Difrancesco, Harrington, Evans, & Pulvermüller, 

2014) or by the retained function of surviving tissue in the left hemisphere (Crinion & Leff, 

2015). However, the role of right-hemisphere structures in this is unclear - a number of 

studies have found that the degree of right IFG activation is not correlated with behavioural 

performance in aphasia, and that right-hemisphere activations suggestive of reorganisation 

may in fact reflect the recruitment of domain general systems associated with executive 

control during the performance of difficult tasks (e.g. the right IFG in the cingulo-opercular 

network, and the right posterior STS / temporoparietal junction in attentional processing; see 

Geranmayeh et al., 2014). Evidence for the engagement of such non-speech-specific 

compensatory responses to support speech comprehension has been seen in elevated 

responses within regions including the anterior cingulate and medial frontal cortex, in both 

aphasic (Brownsett et al., 2014) and ageing listeners (Erb & Obleser, 2013). With relevance 

to the role of compensatory right-hemisphere mechanisms, a study of syntactic processing 

after aphasia found that left-hemisphere stroke patients showed upregulation of activation in 

right IFG (and MTG) relative to controls during passive speech comprehension, but it was 

the amount of activation and tissue preservation in the left IFG that were associated with 

performance in syntactic processing tasks (Tyler, Wright, Randall, Marslen-Wilson, & 

Stamatakis, 2010). This supported an earlier study by the same group on syntactic 

processing in healthy ageing (Tyler, Shafto, et al., 2010).  

Thus, the use of clinical and ageing populations has been informative in addressing key 

empirical issues such as hemispheric asymmetries, namely the capacity for regions in the 

right hemisphere to perform the same computations as the core left-hemisphere perisylvian 

language network in speech comprehension.  
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Future Directions: 

Will fMRI continue to be the imaging technique of choice for localisation of speech 

networks?  In recent years, electrocorticography (iEEG), in which electrical signals are 

measured directly from the cortical surface, has provided unique insights into the neural 

basis of speech perception at a level of temporal and spatial precision that far exceeds fMRI 

(see Nourski et al., 2013, 2014 for auditory applications, and for speech see Chang et al., 

2010; Leonard & Chang, 2014; Mesgarani & Chang, 2012; Mesgarani, Cheung, Johnson, & 

Chang, 2014; Pasley et al., 2012). These studies have made important contributions to 

improving our understanding of neural coding within peri-auditory regions, for example in 

showing neural tuning to phonetic features rather than to specific phonemes (Mesgarani et 

al., 2014) and distributed patterns of activity that are strongly associated with 

representations of speech derived from speech spectrograms (Pasley et al., 2012).  Whilst 

these studies provide a more direct window upon neural processes, we anticipate that the 

availability of fMRI and the advantages in whole brain non-invasive acquisition will ensure 

that it continues to play an important role in research into the near future.  

Rather than being superseded by other techniques, we envisage that fMRI will be combined 

more readily with other neural measures.  In the last ten years, studies with M/EEG 

(magneto/electro-encephalography) have shown the importance of neural oscillations to 

brain function, providing an alternative and often convergent perspective upon the neural 

processes involved in speech comprehension. For example, Peelle, Gross, & Davis (2013) 

showed in MEG that neural oscillations tracking the envelope of speech (between 4 and 7 

Hz) were bilateral in response to unintelligible speech, but showed greater phase locking and 

left lateralization in the case of intelligible signals (though see Millman, Johnson, & 

Prendergast (2014) for contradictory evidence).  Other studies have shown evidence for 

hierarchical organization of oscillatory activity across frequency bands (Lakatos et al., 2005) 
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and the importance of alpha oscillations (8-13 Hz), localized to temporal as well as parietal 

and prefrontal cortex, in predicting comprehension ratings of degraded speech (Obleser & 

Weisz, 2012), strongly paralleling findings from fMRI.  

In recent years, researchers have attempted to combine electrophysiological and BOLD 

measures to understand how phenomena described in one modality translate to the other 

(Becker, Reinacher, Freyer, Villringer, & Ritter, 2011; Hanslmayr et al., 2011). In the future, 

we suggest that this multimodal approach may be best facilitated by RSA (see Cichy, 

Pantazis, & Oliva, 2016, for a recent example of this approach in synthesising MEG and 

fMRI findings).  As correlation distances are inherently abstracted from the original signal, 

different modalities can be related to one another easily without needing to directly 

understand the mapping between them - the so called "dissimilarity trick" (Kriegeskorte & 

Kievit, 2013).  This allows neural representations across imaging modalities to be easily 

compared without requiring data in the two modalities to be collected at the same time, thus 

offering a flexible means by which to combine electrophysiological responses with fMRI 

measurements as well as other kinds of physiological measures. For example, one could 

relate physiological measures of speech production, e.g. sonography or real time MRI, with 

fMRI measures of speech perception, to gain a more direct understanding of the relation 

between production and perception (Carey & McGettigan, 2016).  In addition, we anticipate 

that RSA will contribute to advances in the sensitivity with which behavioural data can be 

related to neuroscientific measures.  Indeed, there is a rich history of behavioural research 

using similarity distances to quantify perceptual relationships among speech sounds (Iverson 

& Kuhl, 1995, 1996; Iverson et al., 2003; Miller & Nicely, 1955) in ways that more closely 

capture the multidimensional nature of the speech signal (Kluender & Alexander, 2010; 

Scott & Evans, 2010). A similarly large literature has applied computational modelling to 

"lower order" auditory and "higher order" speech comprehension processes (Jepsen, Ewert, 

& Dau, 2008; Marslen-Wilson, 1987; McClelland & Elman, 1986; Norris & Mcqueen, 

2008; Patterson, Allerhand, & Giguere, 1995).  RSA allows an intuitive method for linking 
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between these data and neurometric measures (cf. Arsenault & Buchsbaum (2015)). We 

anticipate that this synthesis might help to better integrate cognitive models and 

neuroscientific data, for example in developing models that incorporate neurobiological 

constraints, and neural accounts that draw more closely from computational models (Fitch, 

2014; Gagnepain, Henson, & Davis, 2012).  The integration of computational models with 

fMRI data in particular may help the field to move beyond black-box descriptions of the 

phenomena of hierarchical processing, toward specifying mechanistic descriptions of the 

transformations that occur as information proceeds through the dorsal and ventral processing 

streams. 

 Whilst RSA may provide further insights into the nature of "local" representational 

structure, other techniques may be better suited to describing large scale, network-based 

activity. Existing studies have often used Dynamic Causal Modeling (DCM) to assess 

network connectivity.  The advantage of this approach is that it allows the researcher to 

assess how activity in one area causally modulates activity in another, however DCM 

requires strong researcher-led assumptions about the architecture of the system under 

investigation, and analysis can become computationally expensive with increasing numbers 

of network nodes.  An alternative approach is Independent Component Analysis (ICA), 

which takes advantage of fluctuations in the data to separate the neural signal into 

maximally independent spatial maps, or functional networks, in which neural activity is 

coherently modulated.  These components are extracted in a data driven manner, with the 

timecourse of each component regressed against the experimental design to establish the 

component’s task relatedness (Calhoun, Adali, Pearlson, & Pekar, 2001; see examples from 

Braga, Wilson, Sharp, Wise, & Leech, 2013; Kamourieh et al., 2015).  Whilst ICA is unable 

to assess causal relations in the functional connectivity between regions, it does have the 

advantage that it can be conducted on the whole brain without prior assumptions about the 

underlying structure of functional networks.  Using ICA as an initial step to identify the 

nodes in a functional network, effective connectivity methods such as DCM and Granger 
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Causality can be employed as a secondary step to test for causal modulations of activity 

within the network, gaining maximal benefit from both methods. ICA often identifies 

additional neural activity not evident in univariate analyses (Geranmayeh, Wise, Mehta, & 

Leech, 2014; Simmonds, Leech, Collins, Redjep, & Wise, 2014). This likely reflects the fact 

that the same voxel can contribute to multiple overlapping functional networks: task-related 

activity within these overlapping networks can be modulated in opposite directions, hence 

differential responses can sometimes be obscured in univariate analyses that effectively 

average over these independent networks (Xu et al., 2013).  By fractionating neural activity 

into multiple statistically independent components, ICA allows network activity associated 

with cognitive control and attention networks to be cleanly separated from lower level 

sensory processing. This may be a useful approach for studying effortful listening, which 

has previously been shown to engage both domain-general attentional and domain-specific 

sensory systems (Binder et al., 2004; Evans et al., 2016; Vaden et al., 2013; Wild et al., 

2012). Furthermore, the ability to de-mix neural signals into functionally independent 

networks may be of particular benefit in complex experimental designs in which multiple 

events occur simultaneously within a trial, for example in "cocktail party listening" or 

speaking in noise (Braga et al., 2013; Evans et al., 2016; Kamourieh et al., 2015; Meekings 

et al., 2016).  Finally, an additional advantage of ICA is that components from a particular 

study can be compared to those extracted from large scale studies of resting state networks 

by correlating the spatial maps (Smith et al., 2009). We anticipate that, in future years, ICA 

will make interesting contributions to reinterpreting dual stream models of speech 

perception by redefining the boundaries between linguistic and attentional processes in 

speech perception (cf. Brownsett et al., (2014)) and establishing a more exact role for the 

multiple attentional networks engaged during speech comprehension (Corbetta & Shulman, 

2011; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Evans et al., 2016; Petersen & 

Posner, 2012). Further advances are also likely to come from approaches that constrain the 

definition of functional networks dependent on the underlying anatomy - studies using 
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diffusion weighted imaging have identified patterns of structural connectivity supportive of 

prior evidence for functional segregation within regions such as the insula and rostral 

temporal lobe (Binney, Parker, & Lambon Ralph, 2012; Cloutman, Binney, Drakesmith, 

Parker, & Lambon Ralph, 2012), and described subdivisions of the dorsal route for language 

processing (Cloutman, Binney, Morris, Parker, & Lambon Ralph, 2013).  RSA may again 

prove a useful approach to synthesise this kind of structural and functional data (Lima, 

Lavan et al., 2015). 

 

Conclusion 

We have offered a relatively brief overview of what we consider to be the key developments 

in the last 10 years of speech comprehension research using functional neuroimaging. A 

large volume of work from the past decade has provided substantial gains in understanding, 

notably in elaborating on processing hierarchies in perisylvian cortex, characterising 

hemispheric asymmetries in the temporal lobes and describing the roles of structures in a 

wider speech comprehension network. Looking forward, we propose that the examination of 

representational similarities will produce more comprehensive accounts that bring together 

data on functional neuroanatomy with neurocomputational primitives (e.g. cortical 

oscillations), acoustics and behaviour - these approaches will be particularly crucial in 

delineating pre-lexical stages in comprehension. Alongside advances in describing local 

representations, techniques such as ICA and DCM will be essential in disentangling the 

varied and several processes engaged by spoken language processing to identify and 

characterise the core mechanisms underlying the recognition of intelligible speech signals. 
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