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Abstract Diabetes is a disease that has to be managed
through appropriate lifestyle. Technology can help with
this, particularly when it is designed so that it does

not impose an additional burden on the patient. This
paper presents an approach that combines machine-
learning and symbolic reasoning to recognise high-level

lifestyle activities using sensor data obtained primarily
from the patient’s smartphone. We compare five meth-
ods for machine-learning which differ in the amount of

manually labelled data by the user, to investigate the
trade-off between the labelling effort and recognition
accuracy. In an evaluation on real-life data, the highest

accuracy of 83.4 % was achieved by the MCAT method,
which is capable of gradually adapting to each user.
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Introduction

Currently around 415 million people suffer from dia-
betes, and by 2040 their number is expected to in-

crease to 642 million [3]. Diabetes is a metabolic dis-
ease in which the body’s cells do not respond properly
to insulin or the insulin production is inadequate, so

glucose is not removed from the blood to be used for
energy. Since diabetes has no cure, it has to be man-
aged through medication and appropriate lifestyle. Key
lifestyle activities for diabetic patients are eating and

exercise – eating causes glucose in the blood to rise
while exercise speeds up its absorption.

Technology for activity monitoring can help the pa-
tients better manage their lifestyle, and provide their

physicians an insight into the patients’ life. In the COM-
MODITY12 project [2], we developed a personal health
system for diabetes intended both for the patients and

their physicians. In order not to burden the patients
with unnecessary devices, it primarily relies on a smart-
phone. The phone can be augmented with an ECG

monitor, which was introduced for the management of
cardiovascular co-morbidities [13] and diagnosis [15],
but is also used for activity recognition.

Activity recognition is a common task in telemoni-

toring, because physical activities characterise the pa-
tients’ lifestyle and provide the context for more direct
health-related observations. For example, in diabetes

blood glucose needs to be interpreted in the context
of the two most important activities which influence
the blood glucose level: eating and exercise. The recog-

nition of other activities gives an insight into the pa-
tients’ lifestyle which makes it possible to give more
appropriate lifestyle advice and monitor the progress of

the disease and its complications.
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Activity recognition is usually done by utilizing en-

vironmental or wearable sensors or even both [17]. This
paper focuses on wearable sensors. Most approaches
for activity recognition with smartphone sensors and

other wearable devices tackle low-level activities such
as Walking, Sitting and Lying. In contrast, this paper
describes the recognition of high-level activities such as

Work, Eating, and Home activities.

Low-level activities are commonly recognized with

machine learning from a sliding window passed over
a stream of acceleration data [4][5]. Dernbach et al. [8]
used the low-level approach for high-level activities and

reached the accuracy of barely 50 %. Lee & Cho [18] ap-
plied hierarchical hidden Markov models to accelerom-
eter data to first determine low-level activities, and
from those high-level activities (Shopping, Taking bus,
Walking). They reached the precision of around 80 %,
but their set of activities was very limited and the users
carried the phone in their hand.

Using other smartphone sensors, such as the GPS,
improves activity recognition. This way, Lin [19] clas-

sified Work, Sleep, Leisure, Visit, Driving and Other
with conditional random fields. He achieved the accu-
racy of 86 %. Wang et al. [21] additionally used the mi-

crophone and light sensor. They determined the users’
state (Working, Home talking, Place speech etc.) with
a rule-based system. They achieved the accuracy of

around 90 %, but the users’ home and office wi-fi names
were known to the system in advance, and some states
were defined expressly in terms of ambient sounds.

Helal et al. [11] developed a platform specifically for
monitoring diabetic patients. They used hidden Markov

models to recognize activities such as Washing hands,
Cooking and Eating oatmeal. They relied on ambient
sensors, restricting their platform to the patients’ homes.

Amft et al. [1] detected eating from video, and recog-
nised different types of eating by analysing body move-
ment while eating. However, this was done with fairly

intrusive inertial, EMG and other sensors.

Unlike in most related work, the system described

in this paper attempts to recognize all the users’ activ-
ities, including ambiguous ones (e.g., cycling can be ex-
ercise, transport or a part of shopping), and was tested

in a completely natural setting. The core methods are
based on machine learning. We investigated various op-
tions differing in the number of models used, and the

amount of data labelled by the person using the system.
The recognized activities are refined by rules encoded in
Event Calculus [16] and optimized for speed and real-

time purposes.

Activity recognition approach

Our activity recognition approach is composed of three
main steps: feature extraction, core activity recognition,
and refinement of the recognized activities. Feature ex-

traction transforms raw sensor data into features that
can be used in the next two steps. The core activity
recognition mainly uses machine-learning to recognize

high-level lifestyle activities. Finally, we refine the rec-
ognized activities with symbolic reasoning.

Features for activity recognition

The features are extracted from smartphone sensors
and optionally from an accelerometer-equipped chest-
worn ECGmonitor. They are computed over one-minute

windows and belong to five groups: sound, location, ac-
celeration, heart-rate and respiration-rate.

Sound features are extracted from the ambient sound
recorded with the smartphone’s microphone using the

jAudio library [12]. We record 100 ms of sound out of
each second in a minute (to preserve the users’ privacy)
and further split it to 20 ms sub-windows. The com-

puted features are the average spectral-centroid, zero-
crossing, mel-frequency-cepstral-coefficient, method-of-
moments values and linear-predictive-coding for each

one-minute window [6].

Location features are extracted from two sources: (i)
the smartphone’s GPS receiver, from which we take the

geographical coordinates, and from (ii) the wi-fi mod-
ule, from which we take information about the visible
access points and signal strength. The features from

both sources are clustered into 20 clusters each with
the hierarchical clustering as implemented in the Weka
machine-learning suite [10]. The clusters are afterwards

assigned one of three semantic locations – residence,
work and elsewhere – with the following algorithm:

– The importance of each cluster is computed as the
fraction of time the user spends in the cluster in a
day (heatmap in Fig. 1).

– Clusters with the highest free-day importance, that
also have workday importance above 0, belong to
the location residence (blue semantic location in

Fig. 1).
– Clusters with highest workday importance above 0,

which are never visited on free days, and aggregate

into 50% of the time, belong to the location work.
– All other clusters belong to the location elsewhere.

Each wi-fi cluster is assigned the correct semantic
location with the accuracy of 84 % and each GPS clus-

ter with 81 %. In Fig. 2 we present a GPS plot (latitude,
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Fig. 1: Heatmap for wi-fi clusters and the transforma-
tion into semantic locations for an example user.

longitude) with GPS clusters (the size of the circle rep-
resents the size of the cluster) and their corresponding

semantic locations. Since GPS can only be used out-
doors due to its poor signal indoors, the wi-fi signal
clustering is needed for more fine-grained location in-

doors. Fig. 3 shows workplace clusters from Fig. 2 (GPS
clusters 1, 2 and 20) and Fig. 4 the residence cluster
from Fig. 2 (GPS cluster 18) as a composition of wi-fi

clusters, assigned semantic location and the distribu-
tion of activities per cluster. We can observe that wi-fi
clusters enable detection of more fine-grained semantic

locations (in brackets after each cluster number).

GPS work location (GPS cluster 1, 2 and 20) is com-
posed of five wi-fi clusters (Fig. 3): wi-fi-clusters 1 and 2
are clean work clusters, wi-fi cluster 2 is a mixed cluster

corresponding to a cafeteria close to the office, the wi-fi
cluster 4 is probably assigned to the parking lot close
to the office (Exercise activity represents the running to

the car), and wi-fi cluster 13 represents the restaurant
near the workplace.

GPS residence location (GPS cluster 18) is com-

posed of five wi-fi clusters (Fig. 4): wi-fi cluster 7 repre-
sents the outdoors of the residence, while the remaining
four may represent different parts of the house. Wi-fi
cluster 8 and 10 probably represent the dining room,

wi-fi cluster 9 the bedroom and wi-fi cluster 11 the liv-
ing room.

Additional location features are the wi-fi availabil-

ity determined by the strength of the wi-fi signal, GPS
availability determined by the visibility of satellites, ve-
locity, and location category according to the Foursquare

location API [9].

Acceleration features are extracted from the smart-
phone’s and/or ECG monitor’s accelerometer. They are
the user’s most common low-level activity, the percent-

age of each low-level activity within the one-minute
window, the user’s average estimated expended energy
and the percentage of the estimated low, medium and

vigorous intensity of the activity. They are computed

Fig. 2: All 20 GPS clusters and their corresponding se-
mantic locations for an example user.

Fig. 3: Wi-fi clusters composing GPS clusters 1, 2 and

20 (GPS work semantic location). Each wi-fi cluster is
labelled with the recognised wi-fi semantic location and
presented with the distribution of activities.

Fig. 4: Wi-fi clusters composing the GPS cluster 18

(GPS residence semantic location). Each wi-fi cluster
is labelled with the recognised wi-fi semantic location
and presented with the distribution of activities.

with our recent method [5] that can seamlessly use the
phone, ECG monitor or both.

Heart-rate features and respiration-rate features are

extracted from the ECG monitor if present. The fea-
tures are the (i) minimum, (ii) maximum and (iii) av-
erage heart-rate or respiration-rate within each one-

minute window.



4 Božidara Cvetković et al.

Fig. 5: Correlation heatmap between groups of features
and activities.

The last three categories of features use the ECG

monitor. The quality of the acceleration features is not
much degraded without the ECG monitor [5], and ac-
cording to the heatmap presented in Fig. 5, the heart-

rate and respiration features are not very important, so
the ECG monitor is not essential.

Core methods for activity recognition

Since each person performs the daily activities differ-
ently, our activity-recognition system can benefit from
labelled activities of each user. However, since labelling

represents a burden for the user, our goal was to inves-
tigate the trade-off between the amount of labelled data
and the recognition accuracy. We developed five meth-

ods, some of which use a single model trained with ma-
chine learning (Fig. 6) and some multiple models (Fig.
7):

– Person-dependent method (PD, Fig. 6a) is a single-
model method, where the model (PD model) for
each user is trained on that user’s data only (PD

dataset). This requires the user to label all the ac-
tivities to be recognised during the training phase –
one week in our experiments. This can be fairly bur-

densome, and the quality of the recognition strongly
depends on the user’s conscientiousness.

– Person-independent method (PI, Fig. 6b) is a single-

model method, where the model (PI model) for each
user is trained on data of people other than the user
(PI dataset). This approach does not require any

labelling from the user.
– PI method with person-specific data (PIA, Fig. 6c)

is a single-model method, where the PI dataset is

augmented with user-specific data of Exercise and
Eating (these two activities are the most relevant
for diabetic patients, but any activities could be

included in principle). This approach requires the
user to label Eating and Exercise during the training
phase, after which an augmented model is trained

(PIA model).

Table 1: Comparison of the amount of manually labelled
data by the user in the core methods for activity recog-
nition.

Labelled data by the user
Method Activities Duration
PD All 1 week
PI None None
PIA Eating, Exercise 1 week
PIAH Eating, Exercise 1 week
MCAT Eating, Exercise, Home First occurrence

– PI and person-specific model combined with heuris-
tics method (PIAH, Fig. 7a) is a two-model method.

The PI model is trained on the PI dataset as in the
PI method. The user-specific model is trained on
data of Exercise and Eating labelled by the user,

requiring the same effort as the PIA method. The
outputs of the two models are merged with a heuris-
tic method into the final activity. The reader is re-

ferred to [6] for more details.
– Multi-Classifier Adaptive Training (MCAT, Fig. 7b)

is a semi-supervised learning method that can adapt

to a user while the system is in use. It is composed
of two domain-dependant models and two domain-
independent meta-models. The domain-dependant

models are the PI model and a small user-specific
model. The user-specific model is trained on only
the first occurrences of Eating, Exercise and Home

activity, requiring minimal labelling effort from the
user (again, any activities could be used in prin-
ciple). The outputs of the two models are merged

with a meta-model that selects which of them to
trust. The MCAT algorithm also utilises a meta-
model that decides whether each instance should be

included in the PI dataset or not. The PI model
is then periodically retrained, becoming ever more
personalised. While the MCAT method does not

need much user-labelled data, it does need a fairly
large amount of unlabelled data to gradually adapt
to the user. The reader is referred to our earlier work

on a different problem [7] for more details.

All five methods are summarised in Table 1 accord-
ing to the labelling effort needed from the user.

Refinement of recognised activities

Activity recognition using a mobile phone is error prone

because mobile sensors are noisy. Sensor noise fed in
classification algorithms propagate errors in predictions
and as a result an activity being recognised can be

incorrect. On top of this, classification algorithms are
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(a) Person dependent method
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(b) Person independent method
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(c) PI with person-specific data in-
cluded method

Fig. 6: Single-model methods.
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(a) PI and person-specific model combined with heuristics
method
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(b) Multi-Classifier Adaptive Training method

Fig. 7: Multi-model methods.

oblivious to common sense knowledge, thus it is possi-
ble for example to confuse that a person is eating while

the person is actually exercising, even if it is commonly
known that eating and exercising to be incompatible.

To refine confused predictions we study how sym-
bolic rules can be used with classification algorithms.

The idea is to refine the classification models and to
act as interfaces with techniques used to monitor a di-
abetic patient and reason about his condition as in the

agent-oriented system discussed in [13]. More specifi-
cally, Kafalı et al [14] show how activity recognition
from sensors can be reasoned upon with symbolic rules

to arrive at more complex conclusions, for example, that
while a person was walking home from work has fallen
because he had a hypoglycemic attack. This framework

is based on a specific representation of activities where
events (or observations) that happen at different times
start, suspend, resume and achieve activities according

to a user’s goals specified at the mobile phone’s settings.

We combine the Kafalı et al framework together
with predictions provided by a classifier to eliminate
misclassified activities using symbolic rules of the form:

Conclusion ← Conditions where the Conclusion is a
predicate that holds to be true if the set of predicates in
the Conditions hold to be true. A predicate name must

be a constant, while each argument within a predicate
can either be a constant or a variable. Constants are
represented by identifiers starting with a lower-case let-

ter and variables by identifiers starting with an upper-
case letter. A constant stands for a specific entity, and
different constants stand for different entities. A vari-

able can stand for any entity, and different variables

can stand for the same entity. A single underscore ‘ ’
denotes an anonymous variable and means ‘any term’.

Removal of orphan activities (R1). If the classifier

predicts an activity A at a stage identified by time T+1,
an activity B at the previous stage identified by time
T, and the activity A at a previous stage identified by

T-1, then the activity B is replaced with activity A at
the stage identified by T. Such a generic rule eliminates
predictions such as a person being at home, then being

at work, then being back at home in three consecutive
and very close to each other times, and replaces them
with the person being at home throughout these times.� �
possible_at(activity(A, P)=active , T) ←

predicted(A, _, T+1),

predicted(B, _, T),

A ̸= B,

predicted(A, _, T-1).� �
As an example of how this rule can be applied, we

show the following set of predicted activities taking
from the dataset: (12:01:48, Eating), (12:03:00, Trans-

port), (12:04:12, Transport). In that case, the second
prediction will be changed into Eating, as it seems un-
likely that there is one minute of Transport.

Learning person-dependent activity intervals (R2)

captures whether an activity is valid at a given time.
For instance, we know that an average person usually
eats at least three times a day. If we know that a person

eats at specific times, we validate the predicted eating
activity. Moreover, we learn such valid activity intervals
for each activity using the training datasets available for

each individual person.



6 Božidara Cvetković et al.� �
possible_at(activity(A, P)=active , T) ←

member(A, [sleep , work , eating]),

valid_interval(P, A, Interval),

member(Ts-Te , Interval),

Te ≥ T, T ≥ Ts.

valid_interval(p1, sleep , [30 -730]).

valid_interval(p1, work ,

[915 -1200 ,1300 -1730]).

valid_interval(p1, eating ,

[845 -900 ,1200 -1230 ,1800 -1830]).� �
For a certain person of the dataset, for example,

the maximal sleep interval across all the training data
is [00:16:12, 10:12:12]. A prediction of Sleep found at

20:40:48 will be changed into the second more likely
prediction (Home, in this case).

We apply the rules in the following order: R1 then

R2. R1 applies to all activities, and R2 applies to Sleep,
Work and Eating.

Experiments

The activity-recognition approach was evaluated on the
recordings of nine volunteers who wore the smartphone

and the ECG monitor for two weeks each. All the meth-
ods used the first week of recordings for training and
the second week for testing. Person-independent meth-

ods (PI, PIA, PIAH and MCAT) were evaluated with
the leave-one-person-out approach, meaning that mod-
els were trained on the data of eight people (first week)

and tested on the ninth (second week), repeated once
for each person. The first week of each test person was
used to determine the semantic locations (residence,

work and elsewhere), and to train user-specific classi-
fiers where applicable (see Table 1).

The models in the core activity-recognition are en-

sembles of base models trained with SVM, J48, Ran-
dom Forest, JRip, AdaBoost and Bagging algorithms
with default parameters as implemented in the Weka

machine-learning suite [10]. The exception are the user-
specific and two meta-classifiers in the MCAT method,
the former of which is trained with the Random Forest

algorithm and the latter two with the J48 algorithm.

Dataset

The nine healthy volunteers (eight male, one female,
aged from 24 to 36) were asked to carry the smartphone
with the data-collection application as much as possible

for two weeks, in any pocket they wanted (or in a bag),
and to wear the ECGmonitor each day until the battery
ran out. They were asked to lead their life as usual.

While some of them had fairly regular daily routines,

others had unusual eating patterns, were staying at a

different place during the week and weekend, took trips
etc., so the resulting dataset is quite challenging for
activity recognition. On average, we collected 7.5 hours

of recordings per day with the ECG monitor and 11
hours with the phone.

The smartphone application was collecting the sen-

sor data and was used for labelling the activities: Home-
chores, Home-leisure, Food preparation, Eating, Exer-
cise, Work, Out-errands, Out-leisure, Sleep and Trans-

port. We later merged Home-chores, Home-leisure and
Food preparation into Home, and Out-Errands and Out-
leisure into Out, since these activities proved impossible

to distinguish.

Results

Table 2 shows the results of all the evaluated methods
in terms of micro-averaged classification accuracy and

f-score, both before and after the refinement with sym-
bolic reasoning. In Table 3 we present the f-scores per
activity after the refinement. The default model, which

serves as a baseline for comparison, always outputs the
most common class, which is the work activity.

We first evaluated the two simplest methods: PD,

which requires the user to label all the activities during
the training week, and PI, which requires no user la-
belling. The advantage of the PD method is that it can

adapt to the user, but it has less training data avail-
able. The advantage of the PI method is more training
data (from eight people vs. one), but it is not adapted

to the user. The results of both methods proved simi-
lar, so apparently their advantages and disadvantages
balanced out. The PI method was more successful at

recognising the Transport and Out activities, which re-
flects their generality, while the PD method was more
successful at other activities, particularly Eating and

Exercise, which suggests they are more user-specific.
We continued with the evaluation of methods com-

bining user-independent and user-specific data and mod-

els. The PIA method, which simply adds user-specific
Exercise and Eating data to its model, significantly im-
proved the recognition of Exercise, but had less success

with Eating and was the least accurate overall. The
PIAH method, which heuristically merges a person-
independent and person-specific model, proved almost

identical to the PI method overall. It did yield a higher
accuracy for four people (81 % – 85 %), but a lower
one for the rest (50 % – 76 %). This indicates that some

recorded people had substantially different training and
test weeks.

At the end we evaluated the MCAT method [7], for

which the user was required to label a single Eating, Ex-
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Table 2: Average classification accuracy (%) and micro-
averaged f-score for the evaluated core methods and
after correction with symbolic reasoning.

Core methods Refining method
Methods Accuracy F-score Accuracy F-score
Default 35.9 0.35 35.9 0.35
PD 72.9 0.73 74.3 0.73
PI 71.3 0.71 73.7 0.72
PIA 66.4 0.66 69.9 0.67
PIAH 72.0 0.72 73.7 0.72
MCAT 81.8 0.82 83.4 0.82

Table 3: Average f-score for the activities after machine-
learning + symbolic approach approach.

Methods
Activity PD PI PIA PIAH MCAT
Sleep 0.80 0.72 0.71 0.72 0.80
Exercise 0.62 0.40 0.58 0.40 0.91
Work 0.88 0.85 0.81 0.85 0.90
Transport 0.58 0.69 0.71 0.69 0.78
Eating 0.34 0.22 0.24 0.22 0.68
Home 0.81 0.75 0.70 0.75 0.83
Out 0.35 0.51 0.51 0.51 0.69

ercise and Home activity. The MCAT method gradually
adapts the PI model to a current user by retraining it
on automatically labelled and selected data. It was re-

trained three times in our experiments. The adaptation
improved the recognition of all the activities, not only
those for which it had user-specific data. The confu-

sion matrix of the MCAT method with the symbolic
refinement is presented in Table 4. Most of the activi-
ties were miss-classified as the Home because they oc-

curred at the residence location (the location being the
most important feature for activity recognition). For
example, most of the recorded people exercised at their

residence, and all of them ate and slept there. The miss-
classification of Transport occurred during transitions
from/to Home, Out and Work. Eating was confused not
only with Home, but also Work, Out and even Trans-

port. This happened because people were eating in the
same locations and postures as doing home activities
(e.g., eating at the kitchen table or on the sofa where

they also read and watch TV), working (e.g., eating at
their office desk), eating while shopping or commuting.

Conclusion

In this paper we presented an approach that combines
machine learning and symbolic reasoning to recognise
high-level lifestyle activities of diabetic patients using

sensor data obtained primarily from the patients’ smart-

phones. Our motivation was that diabetes has to be

managed through appropriate lifestyle – particularly
eating and exercise, which directly affect blood glu-
cose. Lifestyle is important for other diseases as well, so

our work has applications beyond diabetes. The main
challenge was that patients’ lifestyles and consequently
ways they perform activities are very diverse, so activ-

ity recognition should be adapted to each individual.
But since labelling represents a burden for the user,
we focused on investigating the trade-offs between the

amount of labelled data and the recognition accuracy.

Our first results showed that the two extreme cases
– relying only on user-labelled data and completely
eschewing user-labelled data – are comparable. This
suggested that the strengths of both methods should

be combined. We did this in increasingly sophisticated
fashion: by simply merging general and user-specific
training data (PIA method), by heuristically merging

the outputs of general and user-specific classifiers (PIAH
method), and by utilising semi-supervised learning ap-
proach (MCAT method). The last method required the

least labelled user-specific data, but nevertheless pro-
duced the best results. This is because it could take
advantage of unlabelled data, which is easily obtained

in large quantities, since it requires no effort from the
user other then carrying a smartphone with an activity-
monitoring application. Since not all knowledge about

activities is captured by phone sensors, the machine-
learning methods benefited from symbolic refinement
based on human understanding of the problem, albeit

the benefit was not very large.

We believe that the accuracy of the MCAT method
is sufficient to be of real benefit for diabetic patients.
The overall accuracy of 83.4 % and f-score of 0.82 are

comparable to related work, even to examples that tackle
easier problems. The recognition of Exercise with the
f-score of 0.91 is even better. Only the recognition of

Eating with the f-score of 0.68 is somewhat lacking.
Since unobtrusive monitoring with smartphone sensors
cannot possibly recognise the quantity of food eaten, it

can only prompt the user to input the quantity or act
(e.g., inject insulin) according to his/her own judge-
ment anyway. In this capacity, even a somewhat lower

accuracy is useful. The detection of Sleep can be used
to recognise sleep problems, which are common in di-
abetes. The overall activity recognition can be used to

recognise diabetes fatigue and depression by monitor-
ing deviations from the daily routine and the degree of
activity. The recognition of Home, Work and Transport

activities enables quality advice about exercise (e.g., re-
mind the users of their daily exercise during Home ac-
tivity rather than work or suggest commuting on foot

or by bicycle).
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Table 4: Confusion matrix of the MCAT method refined with the symbolic reasoning. The brackets contain the
contribution of the refining method (green is increase in accuracy, pink is decrease and no colour is no change).

PREDICTED
TRUE Sleep Exercise Work Transport Eating Home Out
Sleep 661 (-2) 0 (0) 0 (0) 0 (0) 0 (0) 292 (2) 0 (0)
Exercise 0 (0) 859 (11) 3 (-1) 5 (-3) 8 (-5) 53 (-1) 2 (-1)
Work 31 (0) 18 (0) 11322 (68) 173 (-4) 110 (-6) 922(-59) 49 (1)
Transport 9 (-2) 13 (-1) 244 (6) 2927 (11) 18 (-3) 235 (-2) 142 (-9)
Eating 1 (0) 1 (0) 50 (-3) 10 (-2) 1329 (15) 497 (-11) 200 (1)
Home 164 (-67) 42 (2) 495 (-11) 71 (0) 138 (-18) 9377 (115) 60 (-21)
Out 0 (0) 20 (-2) 390 (-1) 757 (-5) 197 (-12) 822 (-10) 2884 (30)

In the future, we plan to use the activity recognition
methods described in this paper for just such lifestyle
advice, as well as advanced diseases monitoring. We will

also improve the recognition of Eating by replacing the
ECG monitor with a wrist-worn device. Such devices
are also preferable because they are more comfortable

and can be worn at all times. Another area for future
work is sound processing, since the sound is a general
feature with the potential to improve the recognition of

eating as well as other activities.
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Activity recognition and human energy expenditure esti-
mation with a smartphone. In PerCom 2015, 23–27 March
2015, St. Louis, USA, 2015.
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