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Summary 

Background Genetic determinants of stroke, the leading neurological cause of death and 

disability, are poorly understood and have seldom been explored in the general population. Our 

aim was to identify additional loci for stroke by conducting a meta-analysis of genome wide 

association studies. 

Methods We performed a genome-wide screen for common genetic variants associated with 

incident stroke risk in 18 prospective population-based cohorts comprising 84,961 participants, 

of whom 4,348 experienced stroke. Stroke (as per WHO definition) was ascertained and 

validated prospectively by study investigators. Mean age at stroke ranged between 45·8 and 

76·4 years in the cohorts, and data collection took place between 1948 and 2013. We followed-

up variants yielding an association at p<5×10-6 with all stroke, ischemic stroke, cardioembolic, 

or non-cardioembolic ischemic stroke in the largest available cross-sectional studies (70,804 

participants of whom 19,816 experienced stroke). Summary-level results of discovery and 

follow-up stages were combined using inverse variance-weighted fixed-effects meta-analysis 

and look-up was performed in stroke sub-types. For genome-wide significant findings (p<5×10-

8), we explored associations with additional cerebrovascular phenotypes and undertook 

functional analyses by conditional (inducible) deletion of the likely causal gene in mouse and 

also studied the expression of the latter and effects on cerebral vasculature in zebrafish mutants.  

Findings We replicated seven of eight known loci for ischemic stroke and identified a novel 

locus at chr6p25 (rs12204590, near FOXF2) associated with risk of all stroke (odds ratio [OR] 

= 1·08, 95% CI 1·05-1·12, p=1·48×10-8 [minor allele frequency 21%]). The rs12204590 stroke 

risk allele also increased MRI-defined white matter hyperintensity (WMH) burden, a marker of 

cerebral small artery disease, in stroke-free adults (N=21,079; p=0·0025). Consistently, young 

patients (age range 2-32 years) with segmental deletions of FOXF2 exhibited extensive WMH 

burden. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and 

microhemorrhage. The zebrafish equivalents of FOXF2 (orthologs) foxf2b/foxf2a were 

expressed in brain pericytes and mutant foxf2b-/- cerebral vessels showed decreased smooth 

muscle cell and pericyte coverage.  

Interpretation In our study of 155,765 persons in total (24,164 with stroke), we identified 

common variants near FOXF2 associated with increased stroke susceptibility. Extensive 

epidemiological and experimental data suggest that FOXF2 mediates this association, 

potentially via differentiation defects of cerebral vascular mural cells. Further expression 

studies in appropriate human (including fetal) tissues and further functional experiments with 

longer follow-up periods are required to fully understand the underlying mechanisms.  

Funding NIH, NHMRC, CIHR, European national research institutions, Fondation Leducq  
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Research in context 

Evidence before this study 

Stroke is the leading neurological cause of death and disability worldwide. A substantial 

proportion of stroke risk remains unexplained, and a contribution of genetic factors is supported 

by recent discoveries of common genetic variants associated with stroke risk, identified through 

large, collaborative, genome-wide association studies (GWAS). However, most of these 

showed association with cardioembolic and large artery ischemic stroke and no robust genetic 

association has been reported for other subtypes, especially the very common but poorly 

understood small artery ischemic stroke. Genetic associations with all stroke are also scarce, 

with only few genetic studies looking comprehensively at incident stroke in a population-based 

longitudinal setting.  

 

Added value of this study  

This study is novel by several aspects. First, leveraging on extensive phenotypic and genotypic 

information from very large population-based and hospital-based studies we identified a novel 

risk locus for stroke that appears to be mediated by small artery disease. Although small artery 

disease is one of the major subtypes of stroke, GWAS have failed so far to discover risk loci 

for small artery ischemic stroke (except for an association with the PRKCH locus identified in 

a Japanese study, which was not found in European populations). Second, while GWAS have 

successfully identified numerous genetic associations with complex diseases, including stroke, 

biological mechanisms underlying these associations still remain elusive for most of the 

variants, precluding any clinical applications beyond risk prediction. Here we provide important 

preliminary experimental evidence from zebrafish and mouse models that the observed 

statistical association reflects an effect of the nearby transcription factor FOXF2 (a gene 

predominantly expressed in fetal tissue), on the development of cerebral vasculature. 

Conditional deletion of Foxf2 in adult mice led to cerebral infarction, reactive gliosis and, to a 

lesser extent, microhemorrhage. In zebrafish foxf2b-/- zebrafish mutants showed decreased 

smooth muscle cell and pericyte coverage. Third, we show that patients with a rare monogenic 

ophthalmologic condition due to segmental deletions encompassing FOXF2 also exhibit 

features of cerebral small artery disease, providing an example of how monogenic conditions 

can inform the mechanisms of complex diseases.  

 

Implications of all the available evidence 

The present findings provide important novel insight into the genetic underpinnings of stroke, 

especially of the small artery subtype, with strong evidence from multiple approaches for a 

pivotal role of FOXF2, a neural crest expressed transcription factor involved in cerebral vessel 

development. Cerebral small artery disease is a major, but poorly understood, cause of stroke 

in all ethnic groups, and “subclinical” small artery disease (here also showing association with 

the stroke risk variants near FOXF2) has been associated with progressive functional and 

cognitive decline and increased risk of dementia. Currently no mechanism-based treatment is 

available for small artery disease, other than management of risk factors. The present findings 

provide promising grounds for follow-up, pointing to a possible novel mechanism of stroke and 

small artery disease. Further research is warranted to explore whether this can translate into 

clinical applications.  
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Introduction 

Stroke represents the leading neurological cause of death and disability worldwide.1 A 

substantial proportion of stroke risk remains unexplained, and a contribution of genetic factors 

is supported by recent discoveries of common genetic variation associated with stroke risk, 

identified through large, collaborative, genome-wide association studies (GWAS).2 These 

studies have estimated the proportion of phenotype variance explained by the genome-wide 

genotypes to range between 16-40% for ischemic stroke and between 34-73% for intracerebral 

hemorrhage.3 Most associations to date have been specific to certain ischemic or hemorrhagic 

stroke types, although a few risk loci for overall ischemic stroke (IS) have also been reported.2 

Overall, the search for stroke loci has been less successful than for other complex phenotypes.4 

Potential explanations include heterogeneity of stroke and also limited ability to detect genetic 

variants increasing both stroke risk and severity, due to the cross-sectional design of most 

studies, with hospital-based case ascertainment and non-inclusion of severe strokes with early 

mortality. Population-based cohort studies, with blood samples drawn at recruitment and 

prospective incident stroke ascertainment, offer the advantage of including severe strokes 

leading to early death.  

We performed a genome-wide screen for common genetic variants associated with an increased 

risk of incident stroke in prospective population-based cohort studies and followed up these 

results in the largest available cross-sectional studies. Detailed functional exploration of novel 

genome-wide significant association was conducted in zebrafish and mice. 

 

Methods 

Study population for discovery GWAS 

The GWAS of incident stroke comprised 84,961 participants of European origin from 18 

community-based prospective cohort studies participating in the Cohorts of Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortium. All participants were free of 

stroke at baseline and 4,348 developed incident stroke during 10 years of average follow-up 

(table 1, appendix). Some but not all of the cohorts included in the present analysis (representing 

<1,544 incident stroke cases) have participated in published HapMap-based stroke GWAS.5,6  

The study was approved by the ethics committee of the participating studies and written 

informed consent was obtained by all study participants.  

Stroke definition and classification of subtypes 

Stroke was defined as a focal neurologic deficit of presumed vascular origin with sudden onset 

and lasting for >24 hours, or until death if the participant died <24 hours after onset of 

symptoms. Strokes were classified as IS (N=3,028), intracerebral hemorrhage (ICH, N=277), 

or unknown type based on clinical and imaging criteria; for cohorts where IS subtypes were 

available (Table 1), IS was subdivided into cardioembolic (N=602) and non-cardioembolic 

(N=1,770) subtypes. Numbers were too small to analyze large artery IS (N=117) and small 

artery IS (N=87) separately in this discovery dataset. Subarachnoid hemorrhage was not 

considered due to distinct mechanisms and very small numbers. Detailed definitions of stroke 

types and subtypes are given in the appendix.  

Genotyping and imputation 
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Genotyping platforms and quality control filters are described in supplementary tables 1-2. All 

but one study used imputed genotypes based on the 1000GpIv3 “All” reference panel 

(supplementary tables 3-4).  

Genome-wide association analyses 

Using genome-wide multivariable Cox regression, we tested associations of genetic variants 

with incident stroke (all stroke, IS, cardioembolic IS, non-cardioembolic IS, and in secondary 

analyses ICH) under an additive genetic model, adjusting for sex, age, and when relevant 

principal components of population stratification, study site, or familial structure (appendix, 

supplementary table 5). Meta-analysis of study-specific association statistics was performed at 

two sites (G.C. and A.Y.C.) using inverse-variance weighted meta-analysis with METAL 

(http://csg.sph.umich.edu/abecasis/Metal/). The QQ plots and values of the genomic inflation 

factor lambda suggest no systematic inflation of test statistics due to population stratification, 

cryptic relatedness, or technical artefacts (supplementary table 6 and supplementary figure 1). 

Power of the discovery stage to detect association with various stroke subtypes is presented in 

supplementary figure 2. 

Follow-up of most significant genetic associations 

We selected variants with high imputation accuracy (mean R2>0·80) yielding an association 

p<5×10-6 with all stroke, IS, cardioembolic, or non-cardioembolic IS. In total 177 variants 

belonging to 21 loci (linkage disequilibrium [LD] r2>0·7 within each locus) were selected. In 

silico follow-up association analyses were performed in four independent cross-sectional 

studies, with mostly hospital-based stroke ascertainment, totaling 19,816 stroke patients (table 

1) and 50,988 controls, from the Stroke genetics network (SiGN),7,8 METASTROKE,6 Heart 

and Vascular Health 1 (HVH1),9 and Cervical Artery Dissections and IS Patients (CADISP) 

studies.10 Except for 4,963 African-American and 3,371 Hispanic participants (cases and 

controls) in SiGN, all follow-up samples were of European ancestry. Follow-up analyses were 

performed with the same, or most similar, phenotype as in discovery (table 1), using logistic 

regression under an additive genetic model, followed by inverse-variance weighted meta-

analysis of study-specific association statistics (appendix).  

After Bonferroni correction for the number of independent loci (r2<0.01 reflecting absence of 

linkage disequilibrium), p<2·38×10-3 was considered significant evidence of replication. We 

did not correct for the number of stroke phenotypes (all stroke, IS, cardioembolic, and non-

cardioembolic IS) as they are not independent (the latter being subtypes of the former). Only 

loci reaching genome-wide significance, at p<5×10-8, in the combined meta-analysis of 

discovery and follow-up samples were given further consideration.    

Secondary analyses 

We examined the association of novel genome-wide significant all-stroke risk variants with 

stroke subtypes in CHARGE and follow-up samples (using TOAST subtyping 11 and in 

sensitivity analyses the Causative Classification System (CCS) implemented in SiGN7,8). We 

examined whether the same variants were associated with white matter hyperintensity (WMH) 

burden, a quantitative MRI-marker of cerebral small artery disease, in 21,079 community-

dwelling participants,12 and with ICH in an independent study comprising 1,576 patients (682 

lobar, 894 deep ICH patients) and 1,303 controls of European ancestry.13 We tested whether 

risk variants with genome-wide or suggestive association for all-stroke or IS in the population-

based discovery stage were associated with incident fatal and non-fatal stroke. We also looked 

for a significant association of these risk variants comparing fatal and non-fatal stroke, which 
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would suggest different genetic influences in the two groups of cases, assuming systematic bias 

in follow-up does not influence the frequency of the candidate variant in either group.  

Functional exploration of novel stroke risk locus  

Based on in silico functional annotation (appendix) and literature review of the novel genome-

wide significant stroke risk locus identified by the aforementioned approach, we examined the 

effect of loss of function of the putative causal gene on brain vasculature and stroke-related 

phenotypes, in humans, mice, and zebrafish (appendix).  

To complement the genome wide analysis, we utilized a rare cohort of Axenfeld-Rieger 

syndrome patients with deletions of the novel stroke risk locus to directly determine if loss of 

this locus resulted in more severe cerebro-vascular MRI phenotypes. By extracting data from 

individual MRI slices, we calculated the volume of WMH in two patients with large segmental 

deletions encompassing the putative causal gene (aged 2 and 32 years) and two patients with 

smaller deletions in whom this gene was intact (aged 15 and 17 years).  

The putative causal gene was deleted in adult (12 weeks) conditional (floxed) mouse mutants 

by Cre-ERT2, an inducible Cre recombinase, as previously described,14 and sacrificed six 

weeks later. Brains of conditional knockouts and controls were examined by histology (using 

hematoxylin/eosin or Richardson’s methylene blue/Azure II) and glial fibrillary acidic protein 

(GFAP) immunofluorescence (DAKO Z0334), to search for features of vascular brain injury.  

Zebrafish permit live imaging of blood vessel and mural cell interactions with exceptional 

clarity, using transgenic lines which permit in vivo visualization of endothelium and smooth 

muscle. Expression of  the putative causal gene in the brain of zebrafish larvae was assessed by 

in situ hybridization, and compared to that of established pericyte markers, notch3, and 

pdgfrβ.15 Function of FoxF2 was assessed by knockout using transcription activator-like 

effector nucleases (TALENs) to create targeted nonsense mutations in the DNA binding domain 

(supplementary figure 3). Smooth muscle cell coverage of branches of brain vessels was 

examined in live transgenic mutant and wild type zebrafish embryos; these cells were modified 

to express green fluorescent protein using the α-smooth muscle actin promoter (acta2:GFP) at 

4-6 days post-fertilization. Pericyte density was assessed by pdgfrβ in situ hybridization.  

 

Role of the funding source 

The funder was involved in the study design but had no role in data collection. 

 

Results 

In the population-based discovery stage (4,348 stroke cases versus 80,613 controls) 177 genetic 

variants in 21 independent loci reached p<5×10-6 in association with incident all-stroke, IS, 

cardioembolic, or non-cardioembolic IS (supplementary table 7). Eleven loci showed 

suggestive association at p<5×10-6 with incident all-stroke or IS. Ten additional loci showed 

association at p<5×10-6 with incident cardioembolic IS, one locus (lead-SNP rs72794386, in 

SLC12A2) showing genome-wide significance: HR=1·67 (95%CI:1·39-2·00), p=4·37×10-8 

(minor allele frequency [MAF]= 10%) (table 2, supplementary figure 4).  

In the cross-sectional follow-up samples (19,816 stroke cases versus 50,988 controls) two 

loci replicated at p<2·38×10-3 and reached genome-wide significance (p<5×10-8) in the 

combined analysis (table 3). The first one is a novel locus (chr6p25·3, lead SNP rs12204590), 
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lying between FOXQ1 and FOXF2, showing association with incident all-stroke: combined 

OR=1·08(1·05-1·12), p=1·48×10-8 (MAF=21%, figure 1). Associations in each study are 

shown in supplementary figure 5. The second (chr4q25, near PITX2) is a known risk locus for 

cardioembolic IS: combined OR=1·37(1·29-1·46), p=4·72×10-24 for incident cardioembolic IS 

(MAF=12%). The SLC12A2 locus (genome-wide significant in the small cardioembolic IS 

discovery sample) did not show evidence of replication (p=0·27).  

We also explored association of the chr6p25·3 locus with stroke subtypes. In the discovery 

sample, lead SNP rs12204590 was associated with incident IS: HR=1·13[1·06-1·20], 

p=1·64×10-4 (non-cardioembolic IS: HR=1·12[1·04-1·22], p=4·35×10-3; cardioembolic IS: 

HR=1·10[0·95-1·27], p=0·21). In follow-up samples, we observed association with small artery 

IS: OR=1·08[1·02-1·14], p=0·0094 for rs12200309 (in complete LD with rs12204590), using 

TOAST subtypes, while association with large artery and cardioembolic IS was non-significant 

(p>0·35). The association with small artery IS was even more marked when using CCS-

causative subtyping where available (SiGN): OR=1·11[1·05-1·18], p=0·00029 (supplementary 

table 8). We also observed significant association of chr6p25·3 with increasing WMH burden 

in the general population (lowest p=0·0025, supplementary table 9). The HR for association of 

rs12204590 with incident fatal IS (n=271, HR=1·21[0·99-1·50], p=0·0684) was higher than 

with non-fatal IS (n=2300, HR=1·14[1·06-1·22], p=4·93×10-4), but the difference was not 

statistically significant (supplementary tables 10-11). We did not observe any heterogeneity by 

ethnicity for associations between the chr6p25 locus and stroke risk (supplementary table 12).  

The genomic region where the variant associated with increased stroke risk and adjacent linked 

variants (linkage disequilibrium r2>0.50) are located, appears to include enhancers (regions of 

DNA that activate transcription of nearby genes). This genomic region also includes DNAaseI 

hypersensitive regions, a marker of open chromatin associated with active cis-regulatory 

elements important for transcription of nearby genes (figure 1, appendix, supplementary tables 

13-14). Two SNPs (rs7750826 and rs2006798, r2>0•75 with rs12204590) had RegulomeDB 

scores of “2b” suggesting a likely role in regulating gene expression (combination of 

transcription factor binding site, and DNAse peak and footprint, figure 1 and supplementary 

table 15). The genomic region that includes the lead variant and variants in LD with it includes 

two protein coding genes FOXQ1 and FOXF2. The same region also includes a microRNA 

(MIR6720). However if we expand the regional plot to a 1 MB region around the lead variant, 

the region also includes two other protein coding genes (FOXC1 and GMDS) and a long non-

coding RNA (LINC01622) (figure 1). We performed an extensive search of publically available 

eQTL16 and miRNA databases17, examined mRNA expression of FOXF2 and adjacent genes 

in dorsolateral prefrontal cortex of 508 persons enrolled in the Religious Orders Study and the 

Rush Memory and Aging Project,18 and mined large sets of epigenomic data from the 

International Human Epigenome Consortium (www.ihec.org) (supplementary tables 16-17). 

Expression quantitative trait loci or methylation QTLs in this region were lacking, the only 

eQTL observed was for a long non-coding RNA (LOC285768) in the human brain (p=5·25×10-

7 for rs7746700, average in ten brain regions, http://www.braineac.org/). However, the different 

distribution of histone modifications associated with active genes in cells expressing FOXF2 or 

FOXQ1 suggested that these variants are likely to lie within the regulatory region of FOXF2 

(supplementary figure 6). Moreover, we observed lowest CpG methylation levels (indicating 

highest activity) at this locus in fetal brain as compared to any other tissue.19 

We have previously described that patients with Axenfeld-Rieger syndrome, a rare 

heterogeneous condition with maldevelopment of the ocular anterior segment, attributable to 

mutation or copy number variation of FOXC1, adjacent to FOXF2 on chr6p25, have increased 

burden of MRI-markers of cerebral small artery disease.20 Within this cohort of FOXC1-
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attributable Axenfeld-Rieger syndrome we identified two patients with 300kb segmental 

deletions encompassing both FOXC1 and FOXF2 and found that they had extensive, confluent 

WMH, with more than ten-fold larger WMH volume than two patients with segmental deletions 

of FOXC1 only (30kb), although small numbers do not allow a formal statistical comparison. 

All patients were younger than 35 years (age range 2-32 years) and lacked vascular risk factors 

(figure 2A-E, supplementary table 18). White matter hyperintensities are normally absent or 

negligible in this age-range in the general population.17,21  

We next used mice and zebrafish, two common model organisms for brain and vascular 

development, to show that disturbances of FoxF2 expression are associated with neurovascular 

pathology and vascular mural cell defects. We recently showed that murine Foxf2 is expressed 

in vascular mural cells, specifically in the central nervous system, and is essential for pericyte 

differentiation, vascular maturation and formation  of the blood-brain barrier (BBB).14 

Moreover, we demonstrated that inactivation of Foxf2 in adult mice leads to gradual breakdown 

of the BBB and increased mortality.14  To understand the mechanism at the tissue level we used 

histology of the brains from six mice six weeks after Foxf2 inactivation and found areas of 

neurons with pyknotic nuclei and eosinophilic cytoplasm (figure 2F-F’’), suggestive of 

ischemic infarction, in five of the brains. Patches with elevated levels of glial fibrillary acidic 

protein (GFAP) in astrocytes (figure 2G) indicated reactive gliosis. Higher magnification 

revealed a few instances of microhemorrhage with extravascular ertythrocytes (figure 2I). In 

contrast, brains from control mice contained only occasional and scattered neurons that showed 

signs of apoptosis, or isolated astrocytes with increased GFAP immuonoreactivity, and no 

visible hemorrhagic lesions (figure 2H). Mice in which Foxf2 had been deleted had significantly 

higher mortality than control mice. Usually the animals were found dead, but some had to be 

euthanized after exhibiting behaviour indicative of brain damage, such as circling or lopsided 

gait. 

 

In zebrafish we show that foxf2a and foxf2b (FOXF2 orthologs) are expressed in pericytes 

closely wrapping the cerebral endothelium, similar to mice (figure 2J-K). Expression occurs in 

a pattern similar to established pericyte markers, platelet derived growth factor receptor β 

(pdgfrβ), and notch3 (figure 2L-M). We made two zebrafish knockout lines  foxf2bca22 and 

foxf2bca23 with nonsense mutations in the first exon of foxf2b that would result in a translation 

block prior to the essential DNA binding domain (supplementary figure 3). Both alleles have 

identical phenotypes. foxf2b mutants had decreased expression of the brain pericyte 

marker pdgfrβ (Fig 2N-Q) suggesting pericyte maturation defects, and decreased acta2-positive 

smooth muscle cell coverage on large cerebral vessels suggestive of smooth muscle defects 

(figure 2R-U, supplementary figure 7). In homozygous mutants, acta2 was visible up to second 

order of cerebral vessel branching or less versus fourth or higher order branch in wildtype or 

heterozygous embryos.  

Seven of eight risk loci for IS2 identified in cross-sectional studies were associated with incident 

stroke in the population-based GWAS (discovery), predominantly in the same subtype as the 

original study (p-range=0·047-7·82×10-5, supplementary table 19). One risk locus for IS 

(PITX2) also showed association with incident ICH (p=0·0031), and one risk locus for ICH 

(PMF1-BGLAP), also a risk locus for increasing WMH burden,12 was associated with incident 

IS (p=0·00064), both in the same direction (please see appendix for more details).  

 

Discussion 
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In a large population-based GWAS meta-analysis of incident stroke, with follow-up in the 

largest available cross-sectional stroke GWAS, we identified a novel genome-wide significant 

association of common variants in the chr6p25·3 region, near FOXF2, with risk of stroke. 

Associations predominated with small artery IS, and significant association was observed with 

WMH burden; in addition, patients with rare segmental deletions of FOXF2 also showed 

extensive WMH burden. These findings suggest an effect of this locus on cerebral small artery 

disease, however the mechanism by which this transcription factor results in cerebral small 

artery disease and stroke is unclear. To support plausibility of FOXF2 we undertook 

experimental studies in two animal species to examine its role in cerebral vessel development 

and stability. We demonstrate areas of infarction and to a lesser extent microhemorrhages in 

brains of conditional Foxf2 mutant mice. We show in zebrafish that foxf2b is expressed in brain 

pericytes (as in mice14) and that reduction in foxf2b function leads to differentiation defects of 

both pericytes and smooth muscle cells in the developing cerebral vasculature.  

Converging evidence, both from the present work and previous publications, suggests an 

important role of Forkhead transcription factor 2 (FOXF2) in cerebrovascular disease. In mice, 

we recently showed that Foxf2 is required for brain pericyte differentiation and BBB 

development, with Foxf2-/- embryos exhibiting thickened endothelium, perivascular edema, 

thinning of the vascular basal lamina, and leaky BBB.14 We had also described that Foxf2 

inactivation in adult mice results in endothelial thickening and BBB breakdown,14 an important 

mediator of cerebral small artery disease, and increased mortality.22 In this conditional Foxf2 

mutant, we now analyzed mouse brains six weeks after Foxf2 inactivation and interestingly we 

observed signs of brain infarction, with reactive astrogliosis, and to a lesser extent 

microhemorrhages. Of note, in prior experiments Foxf2-/- mouse embryos were found to 

develop intracranial hemorrhage,14 while areas of microhemorrhage were scarce in conditional 

Foxf2 mutant brains. We were also not able to demonstrate an association of the chr6p25.3 

locus with intracerebral hemorrhage in the largest available collaborative genetic association 

study, although power may have been limited (supplementary table 20). In zebrafish, foxf2b 

knockout led to disruption of cerebral vasculature with decreased pericyte density and smooth 

muscle cell coverage (figure 2). Foxf2 is first expressed in the neural crest and in mice regulates 

pathways involved in mural cell (pericyte and vascular smooth muscle cell) differentiation 

including the pdgfβ and serum response factor pathways.14,23 We did not observe hemorrhage 

in the zebrafish foxf2 mutant model during embryonic stages. We note that we have knocked 

out only one of two foxf2 genes in fish and even though mural cell markers have changed 

expression in foxf2b mutants, there may be genetic compensation from the foxf2a gene that may 

make the phenotype less severe. However we have not found expression changes in foxf2a in 

foxf2b mutants. We cannot exclude haemorrhage occurring at juvenile or adult stages that we 

have not been able to examine. In summary our data suggest that association of FOXF2 and 

stroke may arise from differentiation defects of cerebral vascular mural cells. It is beyond the 

scope of this study, but demonstrating the cellular requirement for FoxF2 by expression under 

a vascular mural cell promoter for prevention of stroke and mural cell phenotypes in mutants is 

an important future experiment. No current promoters available in fish express in both smooth 

muscle and pericytes where we find foxf2 expression. 

Forkhead transcription factors are involved in various developmental and biological processes, 

and tend to be distributed in clusters on the genome.24,25 The evolutionarily conserved chr6p25 

cluster comprises FOXQ1, FOXF2, and FOXC1. Our lead stroke risk variants lie between 

FOXQ1 (22·4kb) and FOXF2 (52·7kb). In contrast with the compelling experimental evidence 

for a central role of FOXF2 in cerebrovascular disease, FOXQ1 has not been implicated in 

cerebrovascular phenotypes; mutant mice for this gene show mainly altered hair differentiation 

and gastric mucin secretion.26,27 The third gene in the cluster, FOXC1 (225kb downstream of 
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FOXF2 and 273.3kb downstream of stroke risk variants), was also recently shown to be 

expressed in the brain vasculature and influence vessel morphogenesis,28 and arteriovenous 

specification.29 MRI analysis of patients with FOXC1-attributable Axenfeld-Rieger syndrome 

revealed MRI-features of cerebral small artery disease (including increased WMH burden), and 

genetic variants downstream of FOXC1 were associated with WMH burden in the general 

population.20 These previously described variants are independent (r2<0·017) from the stroke 

risk variants near FOXF2 described here.20,30 This, together with the tenfold WMH burden in 

patients with segmental deletion of both FOXC1 and FOXF2 versus FOXC1 alone, suggests an 

independent role of FOXF2 in cerebral small artery disease. Differences in the roles of foxf2 

and foxc1a/b are also seen in the zebrafish model. Knockdown of zebrafish foxc1a/b leads to 

embryonic cerebral hemorrhage in embryos,31 while knockout of foxf2b at the same 

developmental stage, does not. foxc1a/b morphants showed unchanged pdgfrβ expression while 

foxf2b mutants show decreased pdgfrβ expression. We show that foxf2b mutants have cerebral 

smooth muscle defects while to date we have only examined ventral head smooth muscle 

defects in foxc1a/b morphants. Thus although the two genes are closely related, there are 

indications that their roles in vascular mural cells may be distinct.  

Intriguingly, PITX2 (chr4q25), a known risk locus for cardioembolic IS and atrial 

fibrillation,32,33 also genome-wide significant for cardioembolic IS in the present sample, 

encodes a neural crest–expressed transcription factor that physically interacts with FOXC1 and 

harbors causal mutations for Axenfeld-Rieger syndrome.20 Variants near PITX2 were 

associated with WMH burden.20,30 In the present study, common variants near PITX2 were also 

associated with ICH risk, of which the main mechanism in the general population is small artery 

disease.34 These observations suggest that FOXF2, FOXC1 and PITX2 could perhaps contribute 

to cerebrovascular disease via partly shared pathways, involving cerebral small arteries. 

The relatively limited number of incident strokes (N=4,300), particularly stroke subtypes 

(N=602 for cardioembolic IS while small artery occlusion, large artery IS and other stroke 

subtypes had to be merged into a single category) may have hampered our ability to detect 

additional associations. We were also underpowered (<80% power) to detect associations with 

smaller effect sizes and lower allele frequencies (supplementary figure 2). While there are 

strong arguments from the described animal experiments suggesting that FOXF2 is the causal 

gene underlying the observed genetic association with stroke and small artery disease at 

chr6p25, functional annotation of the identified risk variants is limited, with a lack of expression 

quantitative trait loci despite an extensive search of publicly available and other databases, 

possibly reflecting tissue specificity, or primarily developmental effects, as supported by higher 

expression of FOXF2 in fetal than adult brain (www.ihec.org) and lower methylation levels of 

the stroke risk locus in fetal versus adult tissues. Another limitation is that we only explored 

common variants and not rare variants in this region. In addition, we have used an additive 

genetic model only, the most powerful approach when the underlying genetic model is 

unknown, but we cannot exclude that associations with genetic risk loci following a recessive 

or dominant model may have been missed. Nevertheless, we confirmed and extended the range 

of associations for previously discovered stroke risk loci, in a population-based sample. For the 

first time we describe shared genetic variation underlying both IS and ICH (chr4q25, chr1q22), 

in agreement with some monogenic strokes having both ischemic and hemorrhagic phenotypes, 

mostly with underlying small artery disease.35-37 The association we previously described 

between chr12p13 and incident stroke in a smaller, overlapping sample was also the most 

significant association with IS in the present population-based GWAS,5 showing a stronger 

association with incident fatal versus non-fatal stroke, suggesting an effect on stroke survival 

(supplementary table 12).  
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In summary, we identified common variants near FOXF2 associated with increased stroke 

susceptibility, especially of the small artery subtype, and with extensive “subclinical” small 

artery disease. This is particularly interesting, as GWAS have failed so far in discovering risk 

loci for small artery IS (except for an association with the PRKCH locus identified in a Japanese 

study, which was not found in European populations).6,38 Brain imaging data from patients with 

rare segmental deletions encompassing FOXF2, and extensive functional experiments across 

evolutionarily separated species, suggest an important role of FOXF2 in cerebrovascular 

disease, especially cerebral small artery disease, possibly by affecting differentiation of cerebral 

vascular mural cells. Cerebral small artery disease is a major, but poorly understood, cause of 

stroke in all ethnic groups, and “subclinical” small artery disease has been associated with 

progressive functional and cognitive decline and increased risk of dementia. Currently no 

mechanism-based treatment is available, other than management of risk factors. The present 

findings provide promising grounds for follow-up, pointing to a possible novel mechanism of 

stroke and small artery disease. Further research is warranted to explore whether this can 

translate into clinical applications. 
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Tables and Figures 

Table 1: Population characteristics 

Studies Country 
Number of particpants Percentage 

of Women 

Mean age of 

controls 

(±SD) 

at stroke 

Mean age of 

stroke cases 

(±SD) 

at DNA draw 

Mean 

years of 

follow up 

(±SD) 

follow-up 

Total All stroke IS CE-IS Non-CE-IS 
† 

Discovery (prospective longitudinal population-based cohort studies) 

AGES USA 2,996 114 99 n.a. n.a. 58% 79·9 (5·5) 76·4 (5·5) 3·6 (1·1) 

ARIC USA 8,939 473 416 108 305 53% 69·3 (7·4) 54·2 (5·7) 19·1 (4·6) 

CHS USA 3,268 563 447 139 308 61% 82·7 (6·2) 72·3 (5·4) 13·5 (6·3) 

FHS USA 4,369 235 198 57 127 55% 73·4 (11·7) 65·5 (12·7) 8·0 (3·2) 

FINRISK CoreExome Finland 5,202 94 60 n.a. n.a. 55% 69·9 (9·4) 45·8 (12·8) 13·3 (2·7) 

FINRISK Corogene Finland 1,887 60 46 n.a. n.a. 49% 73·7 (9·5) 55·2 (12·2) 9·0 (4·0) 

FINRISK PredictCVD Finland 1,309 352 294 n.a. n.a. 53% 66·5 (9·8) 46·5 (13·3) 10·0 (5·2) 

Health-ABC USA 1,661 124 n.a. n.a. n.a. 47% 80·1 (4·2) 73·8 (2·8) 9·3 (2·9) 

MESA USA 2,364  49 43 n.a. 35 52% 75·1 (8·9) 62·7 (10·2) 7·2 (1·4) 

PROSPER Netherlands 4,658 193 n.a. n.a. n.a. 53% 77·8 (3·6) 75·2 (3·3) 3·1 (0·7) 

Rotterdam Study I Netherlands 6,066 821 448 95 353 60% 80·6 (8·1) 69·2 (9·0) 13·0 (6·2) 

Rotterdam Study II Netherlands 2,080  125 88 17 71 54% 75·9 (9·2) 64·6 (7·9) 9·7 (2·5) 

SHIP Germany 3,112 75 37 n.a. n.a. 52% 71·8 (10·6) 48·7 (15·2) 12·1 (2·5) 

TWINGENE Sweden 6,702 116 95 n.a. n.a. 52% 75·6 (8·8) 64·9 (8·1) 3·2 (1·0) 

ULSAM Sweden 1,139 216 171 56 115 0% 79·9 (4·8) 71·0 (0·6) 12·8 (5·2) 

WGHS USA 23,294 499 402 82 320 100% 69·6 (9·3) 54·7 (7·1) 16·0 (3·2) 

3C-Dijon France 3,762 157 125 33 92 62% 81·5 (6·1) 72·4 (5·6) 8·7 (3·1) 

3C-Bordeaux-

Montpellier 

France 2,153 82 59 15 44 60% 81·7 (5·2) 73·9 (5·1) 7·8 (2·5) 

TOTAL  84,961 4,348 3,028 602 1,770 67% 75·8 (8·0) 63·7 (8·4) 10·0 (3·6) 

Follow-up (cross-sectional case-control studies) *  

SiGN USA + Europe 49,324 16,851 16,851 3,427 2,346 46% n.a.ǂ 66·5 (14·8) n.a. 

      3,150     

METASTROKE USA + Europe 9,654 1,729 1,729 276 206 36% 60.6 (11.9) 67.0 (10.1) n.a. 

      159     

HVH1 

CADIS 

USA 2,012 681 577 92 62 57% 66.7 (9.1) 68.8 (8.9) n.a. 

      175     

CADISP  Europe 9,814 555 555 211 67 61% n.a.ǂ 43·7 (9·9) n.a. 

      31     

TOTAL  70,804 19,816 19,712 4,006 2,681 47% n.a. n.a. n.a. 

      3,515     
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N= number of participants; n.a.= not available; IS= Ischemic stroke; CE-IS= Cardioembolic ischemic stroke; SD= standard deviation; * More 

detailed descriptions of the composition of replication studies can be found in the appendix; † follow-up samples are from large artery ischemic 

stroke (first line) and small artery ischemic stroke (second line) for SiGN, METASTROKE, HVH1, and CADISP (TOAST subtyping) ; ǂ mean 

age of controls in the SiGN and CADISP study is not available as they were obtained from anonymous genotype databases 
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Table 2: Main association results (p<5×10-6) for all stroke, ischemic stroke, cardioembolic ischemic stroke, and non cardioembolic 

ischemic stroke  

Marker Name chr:positionƚ Function Gene # varǂ MA MAF  HR P-value † Direction‡ HetISqǁ HetPVal§ 
Imputation 

quality* 

All stroke 

rs6433905 2:182138150 intergenic UBE2E3  2 C 0·08 1·21 (1·12-1·31) 2·54×10-6 +++++++++++++++ 
+++++++?+??+++++++ 

0 0·54 0·97 

rs12204590 6:1337393 intergenic FOXF2 6 A 0·21 1·14 (1·08-1·20) 2·17×10-6 ++++++++++++-+-++ 0 0·60 1·00 

rs790919 6:154298875 intergenic OPRM1 2 A 0·44 1·12 (1·07-1·17) 2·44×10-6 +++++++++++++--++ 
+++++++++?++++--++ 

16·2 0·26 0·96 

rs11788316 9:13445687 intergenic MPDZ 4 T 0·28 1·13 (1·07-1·19) 2·49×10-6 ++-++++--++++++--+ 0 0·84 0·96 

rs11627959 14:35160471 intergenic CFL2 4 A 0·44 0·89 (0·85-0·93) 2·23×10-6 --+------+--+---- 0 0·87 0·93 

rs4899120 14:64335447 intronic SYNE2 1 T 0·09 1·19 (1·11-1·29) 4·71×10-6 +++-++++++++--++ 24 0·18 0·98 

Ischemic stroke 

rs62262077 3:105014929 intergenic ALCAM 5 A 0·27 1·17 (1·10-1·24) 6·04×10-7 -+++++++++++-+++ 19·2 0·23 0·94 

rs10037362 5:31110857 intergenic CDH6 2 A 0·07 1·27 (1·15-1·40) 4·41×10-6 -+-++++++++ 25·7 0·20 0·97 

rs4448595 10:21666138 intergenic C10orf114 8 G 0·16 0·83 (0·77-0·90) 2·50×10-6 --------+------- 0 0·80 0·98 

rs11833579 12:775199 intergenic NINJ2  2 A 0·24 1·19 (1·12-1·27) 5·74×10-8 -+++-++++++-++++ 18·5 0·24 0·92 

rs77858481 13:81142325 intergenic SPRY2 1 G 0·06 1·38 (1·22-1·55) 2·32×10-7 ++++++++ 0 0·97 0·83 

Cardioembolic ischemic stroke 

rs4284256 1:157675273 intergenic FCRL3 1 T 0·18 1·41 (1·22-1·64) 3·13×10-6 -+++++ 66·5 0·01 0·96 

rs12646447 4:111699326 intergenic PITX2  102 C 0·12 1·53 (1·31-1·80) 1·92×10-7 ++++++ 0 0·44 0·99 

rs72184 5:123754837 intergenic ZNF608 1 G 0·43 1·30 (1·17-1·46) 2·29×10-6 +++++++++ 9·1 0·6 0·90 

rs72794386 5:127479278 intronic SLC12A2 22 T 0·10 1·67 (1·39-2·00) 4·37×10-8 +++++ 0 0·87 0·97 

rs1428155 5:151281633 intronic GLRA1 2 C 0·38 1·28 (1·161·43) 3·10×10-6 +++++++++ 36·2 0·13 1·00 

rs7771564 6:22504092 intergenic HDGFL1 4 G 0·10 1·53 (1·28-1·82) 2·10×10-6 ++++++ 0 0·67 0·99 

rs1495081 8:15314955 intergenic TUSC3 1 C 0·14 1·48 (1·25-1·74) 3·09×10-6 ++-+++ 49·9 0·08 0·88 

rs2393938 10:44063812 UTR5 ZNF239 1 C 0·12 1·45 (1·24-1·70) 3·47×10-6 ++++++ 0 0·51 0·99 

rs11021485 11:95968208 intronic MAML2 1 A 0·12 1·60 (1·32-1·94) 1·24×10-6 +++++ 30·5 0·22 0·82 

rs710009 14:59184500 intergenic DACT1  4 G 0·16 1·41 (1·22-1·64) 3·62×10-6 +++++++ 0 0·84 0·98 

Non-cardioembolic ischemic stroke 

rs77744591 13:81142325 intergenic SPRY2  1 T 0·08 1·34 (1·18-1·51) 3·44×10-6 +++++-+ 0 0·97 0·93 

Only associations with the lead SNP in each locus are shown in this table, the full set of genetic associations at p < 5×10-6 is presented in 

supplementary table 7; All results are presented with respect to the minor allele as coded allele; MA= Minor allele; MAF= Minor allele 

frequency; HR= Hazards ratio; * mean value of imputation quality across studies; ƚ Chromosome positions with respect to NCBI built 37; ǂ 

number of variants reaching p < 5×10-6 in the locus; † p-value after genomic control; ‡ Direction refers to direction of effect size with respect to 

the minor allele; ǁ Heterogeneity I2, ranges between 0 to 100, higher values suggesting more heterogeneity; § P-value for heterogeneity, 

calculated using the Cochran’s Q test 
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Table 3: Follow-up of top loci in independent cross-sectional case-control association studies 

 

     
Discovery Follow-up Combined all 

CHARGE SiGN METASTROKE HVH1 CADISP Follow-up Meta-analysis Meta-analysis 

Marker Name Gene HR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P 

All stroke*            
rs6433905 UBE2E3 1·21 (1·12-1·31) 2·54×10-6 1·02 (0·97-1·08) 0·41 1·11 (0·98-1·27) 0·11 1·09 (0·83-1·44) 0·54 0·72 (0·54-0·95) 0·018 1·03 (0·98-1·07) 0·22 1·07 (1·03-1·12) 8·72×10-4 

rs12204590 FOXF2 1·14 (1·08-1·20) 2·17×10-6 1·07 (1·03-1·11) 1·02×10-3 1·07 (0·98-1·16) 0·13 1·03 (0·86-1·24) 0·73 1·08 (0·92-1·26) 0·36 1·06 (1·03-1·09) 2·15×10-4 1·08 (1·05-1·12) 1·48×10-8 

rs790919 OPRM1 1·12 (1·07-1·17) 2·44×10-6 1·00 (0·97-1·03) 0·88 1·01 (0·95-1·09) 0·70 0·88 (0·76-1·02) 0·10 1·06 (0·93-1·21) 0·37 1·00 (0·98-1·03) 0·80 1·03 (1·01-1·05) 0·013 

rs11788316 FLJ41200 1·13 (1·07-1·19) 2·49×10-6 0·99 (0·96-1·03) 0·73 1·07 (0·99-1·16) 0·074 1·01 (0·84-1·21) 0·93 0·99 (0·85-1·15) 0·89 1·01 (0·99-1·04) 0·38 1·03 (1·01-1·06) 7·53×10-3 

rs11627959 CFL2 0·89 (0·85-0·93) 2·23×10-6 0·99 (0·96-1·02) 0·70 1·00 (0·93-1·08) 0·93 1·00 (0·85-1·17) 0·96 1·03 (0·90-1·18) 0·62 1·01 (0·98-1·03) 0·53 0·97 (0·95-0·99) 0·011 

rs4899120 SYNE2 1·19 (1·11-1·29) 4·71×10-6 1·02 (0·97-1·07) 0·50 1·00 (0·88-1·14) 0·98 1·05 (0·80-1·37) 0·73 1·16 (0·92-1·46) 0·21 1·02 (0·99-1·07) 0·23 1·06 (1·02-1·10) 2·00×10-3 

Ischemic stroke†   
rs62262077 ALCAM 1·17 (1·10-1·24) 6·04×10-7 0·99 (0·96-1·02) 0·52 1·03 (0·95-1·12) 0·46 1·03 (0·84-1·26) 0·78 1·02 (0·88-1·18) 0·82 1·01 (0·98-1·03) 0·63 1·03 (1·01-1·06) 0·015 

rs10037362 CDH6 1·27 (1·15-1·40) 4·41×10-6 0·98 (0·93-1·03) 0·40 0·99 (0·87-1·12) 0·84 0·93 (0·69-1·26) 0·65 0·86 (0·66-1·13) 0·27 0·97 (0·93-1·02) 0·22 1·01 (0·97-1·05) 0·55 

rs4448595 NEBL-AS1 0·83 (0·77-0·90) 2·50×10-6 1·01 (0·97-1·05) 0·72 1·02 (0·93-1·12) 0·69 0·89 (0·72-1·10) 0·28 0·96 (0·81-1·14) 0·65 1·00 (0·97-1·03) 0·97 0·98 (0·95-1·00) 0·09 

rs11833579 NINJ2 1·19 (1·12-1·27) 5·74×10-8 0·98 (0·95-1·01) 0·21 0·96 (0·88-1·04) 0·28 1·04 (0·85-1·29) 0·69 0·96 (0·82-1·12) 0·57 0·98 (0·95-1·01) 0·14 1·01 (0·98-1·03) 0·47 

rs77858481 SPRY2 1·38 (1·22-1·55) 2·32×10-7 0·99 (0·93-1·06) 0·75 0·90 (0·77-1·05) 0·17 1·02 (0·72-1·44) 0·93 0·91 (0·69-1·20) 0·48 0·98 (0·93-1·03) 0·50 1·03 (0·99-1·08) 0·17 

Cardioembolic ischemic stroke‡             
rs4284256 FCRL3 1·41 (1·22-1·64) 3·13×10-6 0·96 (0·90-1·04) 0·31 0·93 (0·78-1·12) 0·45 1·03 (0·69-1·55) 0·88 0·98 (0·75-1·28) 0·90 0·96 (0·90-1·01) 0·13 1·02 (0·97-1·09) 0·41 

rs12646447 PITX2 1·53 (1·31-1·80) 1·92×10-7 1·39 (1·29-1·50) 3·15×10-18 1·17 (0·98-1·41) 0·083 1·62 (1·09-2·42) 0·018 1·04 (0·78-1·37) 0·80 1·36 (1·28-1·44) 1·89E-23 1·37 (1·29-1·46) 4·72×10-24 

rs72184 ZNF608 1·30 (1·17-1·46) 2·29×10-6 1·02 (0·96-1·08) 0·53 0·99 (0·87-1·13) 0·90 0·92 (0·67-1·28) 0·63 1·03 (0·85-1·26) 0·74 1·02 (0·97-1·06) 0·49 1·06 (1·01-1·10) 0·017 

rs72794386 SLC12A2 1·67 (1·39-2·00) 4·37×10-8 0·97 (0·89-1·06) 0·51 1·09 (0·87-1·37) 0·46 0·95 (0·56-1·62) 0·85 0·78 (0·54-1·14) 0·18 0·96 (0·90-1·03) 0·27 1·06 (0·99-1·14) 0·12 

rs1428155 GLRA1 1·28 (1·16-1·43) 3·10×10-6 0·97 (0·92-1·03) 0·33 0·95 (0·83-1·08) 0·44 0·90 (0·66-1·24) 0·51 0·99 (0·81-1·21) 0·94 0·99 (0·95-1·03) 0·64 1·02 (0·98-1·07) 0·38 

rs7771564 HDGFL1 1·53 (1·28-1·82) 2·10×10-6 1·01 (0·92-1·10) 0·87 0·88 (0·70-1·10) 0·25 1·23 (0·77-1·96) 0·39 1·20 (0·89-1·62) 0·24 1·00 (0·93-1·07) 0·97 1·08 (1·01-1·17) 0·031 

rs1495081 TUSC3 1·48 (1·25-1·74) 3·09×10-6 1·05 (0·98-1·14) 0·18 0·89 (0·72-1·09) 0·25 1·35 (0·84-2·16) 0·21 1·05 (0·79-1·40) 0·73 1·04 (0·98-1·10) 0·24 1·10 (1·03-1·17) 5·07×10-3 

rs2393938 ZNF239 1·45 (1·24-1·70) 3·47×10-6 1·02 (0·94-1·10) 0·68 1·01 (0·84-1·22) 0·88 0·95 (0·60-1·52) 0·84 0·96 (0·71-1·29) 0·76 1·00 (0·94-1·07) 0·95 1·07 (1·01-1·15) 0·029 

rs11021485 MAML2 1·60 (1·32-1·94) 1·24×10-6 0·94 (0·86-1·03) 0·17 0·77 (0·63-0·95) 0·015 0·51 (0·25-1·04) 0·063 1·06 (0·78-1·43) 0·73 0·92 (0·86-0·99) 0·017 0·99 (0·92-1·07) 0·82 

rs710009 DACT1 1·41 (1·22-1·64) 3·62×10-6 1·00 (0·92-1·07) 0·93 0·96 (0·80-1·15) 0·68 1·21 (0·80-1·83) 0·37 1·10 (0·84-1·43) 0·50 1·00 (0·94-1·06) 0·96 1·06 (1·00-1·13) 0·048 

Non-cardioembolic ischemic stroke§ 

rs77744591 SPRY2 1·34 (1·18-1·51) 3·44×10-6 1·08 (0·96-1·21) 0·19 1·08 (0·84-1·40) 0·53 1·39 (0·74-2·59) 0·30 0·91 (0·47-1·77) 0·78 1·08 (0·99-1·18) 0·80 1·18 (1·09-1·28) 3·22×10-5 

rs77744591 SPRY2 1·34 (1·18-1·51) 3·44×10-6 1·12 (1·02-1·24) 0·023 1·06 (0·80-1·40) 0·68 0·83 (0·52-1·31) 0·42 0·73 (0·24-2·22) 0·56 1·11 (1·02-1·20) 0·16 1·18 (1·10-1·27) 1·08×10-5 

In bold are loci which reach genome wide significance (P<5×10-8) in the combined meta-analysis; HR= Hazards ratio; OR= Odds ratio; CI= 

Confidence interval; *Follow-up results are from association analyses of ischemic stroke for SiGN, METASTROKE, and CADISP, and of all 

stroke for HVH1; †follow-up results are from association analyses of ischemic stroke for SiGN, METASTROKE, HVH1, and CADISP; ‡follow-

up results are from association analyses of cardioembolic ischemic stroke for SiGN, METASTROKE, HVH1, and CADISP (TOAST subtyping); 
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§follow-up results are from association analyses of large artery ischemic stroke (first line) and small artery ischemic stroke (second line) for SiGN, 

METASTROKE, HVH1, and CADISP (TOAST subtyping) 
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Figure 1: Regional association plot centered around rs12204590 in association with 

incident all stroke in the population-based discovery GWAS 

All SNPs in the discovery stage (circles) are plotted with the negative log of their p-values 

against their genomic positions. The final meta-analysis P-value of rs12204590 is also plotted. 

The color of the circles represents the linkage disequilibrium between SNPs. The blue peaks 

represent estimated recombination rates. Genes are shown as green arrows with direction of 

arrow representing direction of transcription. Tracks in the bottom were added using UCSC 

genome browser and the RegulomeDB database:  “SNP”: SNP track showing the SNPs 

encompassing the selected region, red dotted line in the SNP track shows the position of top 

SNP (rs12204590); “Regulome”: shows RegulomeDB scores, variants with lower scores 

having higher probability to act as regulatory variants (http://regulomedb.org/); “DNase”: 

shows DNase hypersensitive regions assayed in a large collection of cell types (125 cell types), 

ENCODE project, Release 3 (2014); “TFbs”: shows regions where transcription factors, 

proteins responsible for modulating gene transcription, bind to DNA as assayed by ChIP-seq 

assay, ENCODE project Release 3 (August 2013)  https://www.encodeproject.org/ 
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Figure 2: Cerebrovascular phenotype of FOXF2 deletions in humans, foxf2 expression in 

brain pericytes in zebrafish and loss of Foxf2 leading to hallmarks of cerebrovascular 

disease in zebrafish and mice 

(A-D) In patients with a segmental deletion encompassing FOXC1 (n=2), white matter 

hyperintensities (WMHs) are observed in the periventricular region (A-B) and subcortical 

regions (B). In patients with a segmental deletion of both FOXC1 and FOXF2 (C,D; n=2), the 

mean WMH volume is increased, by more than tenfold (E), in both the subcortical and 

periventricular regions (see Supplementary table 18 for WMH volumes in each of the four 

patients). (F-I) Cerebral cortex of conditional Foxf2 knockout mouse showing ischemic 
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infarction and hemorrhagic tissue. (F) An area with condensed eosinophilic cytoplasm and 

pyknotic nuclei (to the right of the dashed line) which indicates a recent ischemic infarction. 

(F’) normal tissue and (F’’) tissue with ischemic infarction  at higher magnification. (G) GFAP 

immunofluorescence of an area with reactive astrogliosis in the cerebral cortex of Foxf2 

conditional knockout mouse. (H) Cerebral cortex from control mouse showing normal neuronal 

tissue and intact capillaries. (I) A hemorrhagic area of the cerebral cortex from a Foxf2 

conditional knockout mouse. Extravascular erythrocytes are seen both as intact cells 

(homogenous greenish blue) and lysed cells (black). (J-M) RNA in situ hybridization (purple) 

of larval zebrafish brains shows expression of foxf2a (J) and foxf2b (K) with identical 

morphology and perivascular location as pericyte markers pdgfrβ (L) and notch3 (M) (purple) 

around capillaries in 1 month old larval zebrafish (brown). (N-Q) foxf2-/- mutants have reduced 

expression of the pericyte marker pdgfrβ in 4 day postfertilization embryonic cerebral 

vasculature.  (R-U) Loss of foxf2b results in a reduction of the smooth muscle 

marker acta2:GFP coverage of blood vessels in wildtype (n=11), foxf2+/- (n=31) and FoxF2-

/- (n=20) embryonic cerebral vasculature. (R-T) show examples of high, medium, and low 

branch order coverage that were scored from 0 to the 4th order branch in vessel coverage 

presented as percentages of total embryo counts (U). Scale bars: A-D, G, P-T=50µm; F = 200 

µm; F’, F’’, H and I = 20 µm; J-M = 10µm 


