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Abstract

This thesis discusses the extension of the parton-level integrator and event generator

gg2VV to the semi-leptonic decays of the Standard Model Higgs boson and to the leptonic

decays of a heavy Higgs boson in the Higgs singlet model, as well as the redesign of the

phase space integration in the program to take advantage of the multi-channel method.

Interference effects are isolated and studied; such effects in both examples considered are

of particular interest because they contain more than one class of interfering backgrounds

– tree-level and continuum backgrounds in the semi-leptonic case, and light Higgs and

continuum backgrounds in the Higgs singlet case. The investigated effects and developed

tools are important for an accurate description of the high-mass signal of the discovered

Higgs boson and related constraints as well as searches for additional, heavier Higgs

bosons. All developed codes have been made publicly available.

All cross section contributions (i.e signal, background, signal-background interfer-

ence) are calculated separately. In the Higgs singlet model it is found that it is impor-

tant to include both types of interference, as they are individually non-negligible but of

similar size and opposite sign, so that the total effect of including such contributions is

small. For the semi-leptonic processes, one might assume that the tree-level interference,

being of lower order, is more important, but in fact the tree-level interference is found

to be generally very small, while continuum interference effects can in certain cases alter

the signal-only integrated cross section by more than 100%.

Results are also presented for interference effects in the fully leptonic decays of the

Standard Model Higgs boson, also calculated with gg2VV. Although such results have

already been presented in the literature, they are independently calculated here and

presented for comparison and validation of the code, and considered to be relevant since

they are of interest in discussions of off-shell effects in some of the leading Higgs decay

modes at the LHC, and will be included in the latest CERN Yellow Report of the LHC

Higgs Cross Section Working Group.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is under intense scrutiny at the Large

Hadron Collider (LHC), and it is more necessary than ever to fully understand all effects

that could lead to deviations from SM predictions. One part of this process is calculating

cross sections to higher orders – for example, the cross section for Higgs production via

gluon fusion, which is loop-induced at leading order, meaning that the leading order

process is more complex than the many processes that begin at tree-level, is now known

to an impressive N3LO [1].

Other avenues of progress involve reducing systematic errors such as those on PDFs;

for example, the new PDF4LHC15 PDF sets [2] take into account a huge amount of

data from the last decades of collider experiments, and combine information from several

different well-tested and well-used PDF fits. The current run of the LHC at 13/14 TeV

is expected to achieve a total integrated luminosity of about 300 fb−1, which will reduce

many statistical uncertainties.

The effect under consideration in this thesis is the interference between signal (sig)

and background (bkg) processes. Although often calculated and discussed separately,

‘signal’ and ‘background’ contributions alone are not valid observables. Even if it can

be understand probabilistically whether a process with a particular set of kinematic

features is more likely to belong to either class of process, the relevant quantity is the

total number of events, related to the combined signal and background cross sections.

The interference term then arises in a cross section calculation when the matrix element

squared is calculated by summing all Feynman diagrams connecting the considered initial

12



Introduction

state to the considered final state, up to a particular order; giving (where M denotes

the matrix element and σ the cross section, both described in Chapter 4):

σ ∼ |M|2 =
∣∣Msig +Mbkg

∣∣2 =
∣∣Msig

∣∣2 +
∣∣Mbkg

∣∣2 + 2Re(M∗sigMbkg) (1.1)

and it is the last term which is referred to as interference.

Although such effects were of course not unknown, they were until recent years

frequently considered to be unimportant, and if mentioned at all quoted as a source

of error. Until the last decade or so, the available cross section calculations of many

Higgs processes had errors at the 10% level or higher, due in particular to large scale

uncertainties in the hard scattering cross sections. Now, as has already been mentioned,

higher-order calculations have been performed, and such errors reduced to the level of

a few percent, meaning that once-neglected effects such as interference, which has been

shown in some cases to be of order 10% or higher, can dominate. The importance

of understanding them better is then clear. In fact, interference effects have recently

allowed a constraint on the total Higgs decay width to be calculated [3–6] which is much

better than was expected to be obtainable at the LHC.

This thesis is structured as follows: Chapter 2 gives an overview of the Standard

Model of particle physics, in particular a discussion of the Higgs mechanism. Chapter 3

describes the phenomenology of hadron colliders, the LHC, and the challenges in search-

ing for the Higgs boson. Chapter 4 discusses cross sections, observables and interference

in detail.

Chapter 5 describes the work I carried out to extend the parton-level integrator and

event generator, gg2VV [6], to new SM and beyond-SM processes, and the redesign of

the phase space integration to take advantage of multi-channel mappings. Chapter 6,

based on ref. [7], and Chapter 7, based on ref. [8], then discuss the results I obtained

with this code for interference effects in the SM semi-leptonic decays and selected Higgs

singlet model leptonic decays.

Chapter 8 describes results for Standard Model fully leptonic decay interference

effects and a comparison of PDF and QCD scale choices, calculated with gg2VV for the

latest yellow report of the Higgs Cross Section Working Group at the LHC [9]. Finally,

conclusions are given in Chapter 9.
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Chapter 2

The Standard Model

Modern physics is in many ways the study of forces. Gravity, although still perhaps the

least understood, was recognised and studied by Newton as far back as 1686. Elements

of the electromagnetic force were explained in the late 19th century by Faraday and

developed in the early 20th century. The theories of the final two known forces, the

so-called ‘weak’ and ‘strong’ forces, were developed alongside the many particle physics

discoveries derived from cosmic ray experiments and the earliest large scale particle col-

lider experiments in the second half of the twentieth century. One of the early theoretical

triumphs of particle physics was the unification of the electromagnetic and weak forces in

the electroweak theory of Glashow, Weinberg and Salam [10–12]. Later, the electroweak

and strong theories were combined to give what has become known as the Standard

Model (SM) of particle physics.

Symmetries play a fundamental role in our understanding of particle physics. In the

1950s and 60s, it seemed as though there were a huge number of seemingly unrelated

particles being discovered; this was known as the ‘particle zoo’. Gradually a structure

emerged – certain groups of particles displayed very similar masses for example. It was

realised that group theory could be used as a means of organising the observed particles.

Aside from giving a means of classification, group theory plays an important role

in restricting the interactions that are allowed and the limits that can be placed on

certain processes. The known fundamental particles can be classified according to their

possible interactions by fitting them into representations of particular Lie groups. Even

approximate symmetries are helpful, for example in explaining why certain parameters
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must be constrained to be small when an approximate symmetry is violated.1 The SM

strictly obeys global Poincaré symmetry (symmetry under Lorentz boosts, rotations and

space-time translations) and local (‘gauge’) symmetries SU(3)C , giving rise to the strong

force; SU(2)L, the left-handed weak force, and U(1)Y , the weak isospin. The last two

combine to give the electroweak force, as will be explained in more detail later.

The Standard Model has been remarkably successful in many ways. So far, no signif-

icant deviations have been observed from predictions for collider observables, although

in some cases the required precision in measurement is not yet attainable. The last

remaining piece of the puzzle, the Higgs boson which was predicted in refs. [13–17], was

discovered at CERN in 2012 [18,19]. However, the theory is far from perfect. The large

number of free parameters that can only be fixed by experiment seems inelegant. A

truly fundamental understanding of these forces should lead to predictions of many, if

not all, of these parameters. It also fails to describe, among other things, dark matter,

the matter-antimatter asymmetry in the Universe and neutrino masses. Furthermore,

in the absence of new physics at the TeV scale, one would expect the Higgs boson mass

to get significant corrections from self-energy loop diagrams, dragging it up to a larger

value than is observed. There are many extensions ‘beyond the Standard Model’ (BSM)

that attempt to remedy some or all of these problems, and hopefully the 13/14 TeV runs

of the LHC in the coming years will begin to shed light on the way forward.

2.1 Particle Content of the Standard Model

The fundamental particles of the Standard Model can be divided into two types. The

fermions carry half-integer spin and obey Fermi-Dirac statistics. These particles make

up the building blocks of matter. The bosons have integer spin and obey Bose-Einstein

statistics, and the spin-1 (‘gauge’) bosons carry the charges of the symmetries from which

they arise and mediate the interactions between fermions.

Fermions are further divided into leptons and quarks. The electron, the first dis-

covered fundamental particle, and its neutrino partner make up the first generation of

leptons. Heavier copies of these particles exist: the muon and tauon, with their respec-

1
e.g. custodial SU(2) symmetry ensures a relatively small mass difference between the Z and W

bosons.
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tive neutrinos make the second and third generations. In a collider environment, the

most important property that is useful in performing measurements, apart from mass,

is the electric charge, since the bending of a particle’s path in a magnetic field is pro-

portional to its charge. The electron, muon and tauon carry a whole unit of negative

charge. The neutrinos carry no charge and are practically massless (although the exis-

tence of neutrino flavour oscillations means that there must be mass differences and they

therefore cannot all be massless); they are therefore very long lived and interact very

rarely, and so are difficult to observe in particle detectors. In a particle collider such as

the LHC, their presence must usually be inferred from missing momentum and energy.

The quarks come in six flavours, divided into three generations. The ‘up-type’ quarks

of each generation (named up, charm and top, respectively) have electrical charge +2
3e

and the ‘down-type’ quarks (down, strange and bottom) have charge −1
3e. The first

two generations can nearly always be approximated as massless for the purposes of

collider experiments, but the top is the heaviest particle in the Standard Model at

around 173 GeV. The heaviness of the top quark means that it has important roles

to play in many ways. In processes with quark loops (for example gluon fusion Higgs

production), the first two generations of quarks are typically treated as massless without

inducing an appreciable effect on the final result, but the top mass is non-negligible. It

is also too heavy to hadronise, and decays quickly; although identification of processes

containing top quarks is challenging, studies of top processes have been performed at

the LHC [20, 21], giving a unique opportunity to explore the perturbative QCD sector.

The bottom-quark mass, although smaller at approximately 4.4 GeV, is increasingly

recognised as also being important in certain calculations, particularly in BSM processes.

Quarks are triplets of the SU(3) colour symmetry; the three possible states are

named red, blue and green. All observed hadrons are found to be ‘colour neutral’, i.e.

contain a red, a green and a blue quark or a colour/anti-colour pair. The idea of colour

was first postulated to explain the existence of the ∆++ particle; it is a ground state

(L=0, symmetric spatial wave function) resonance with spin-3
2 made up of three up

quarks. Fermi statistics require that the total wave function be antisymmetric under

the interchange of two quarks. The wave function is the product of the spatial, spin and

flavour wave functions; the spatial and flavour wave functions are symmetric, as is the
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only spin configuration that gives a total spin of 3
2 . Either the Pauli exclusion principle

must be abandoned or there is more to the story; the solution is the additional property

of colour.

The requirement of colour neutrality also explains why quarks are never observed

in isolation in nature. Their existence was first inferred from deep inelastic scattering

experiments, where scaling behaviour suggested that hadrons had point-like constituents.

The term ‘hadron’ collectively refers to particles made up of either a quark and anti-

quark (mesons) or three quarks/anti-quarks (baryons) with an overall integer unit of

charge. The property of asymptotic freedom means that the strong potential is very

large at large distances but almost negligible at short distances, so that quarks behave

like free particles at short distances (high energies). In any collider interaction, it is then

the individual quarks that participate, but after the reaction any quarks not confined in

a hadron will undergo a process called hadronisation, and instead of an isolated quark,

a ‘jet’ composed of multiple quarks and gluons (‘partons’) will be observed.

The fermions come in left-handed and right-handed versions (the inclusion of right-

handed neutrinos was not part of the original formulation of the Standard Model but is

now usually accepted in order to allow for neutrino masses); the right-handed fermions

are SU(2) singlets, and the left-handed fermions are SU(2) doublets, since only the

left-handed fermions feel the weak force. The five gauge bosons – the massive W+,W−

and Z and the massless photon γ and gluon g – arise as a consequence of the three

local symmetries respected by the SM and carry the currents of the symmetries which

generate them. This is explained in more detail in the following sections.

There is one final, crucial field that has not yet been mentioned – the Higgs boson.

Despite having integer spin it is not a force carrier but rather a consequence of the

mechanism required to give the weak vector bosons mass.

2.2 The Lagrangian Description

The probability of a particular initial state, such as two colliding particles, evolving to

a given final state can be derived from the action,

S =

∫
dtL (2.1)
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where L is the Lagrangian, the difference of the kinetic and potential energies.

In fact, it will be more useful to consider not the Lagrangian itself, but the Lagrangian

density L, related to L by:

L =

∫
d3xL. (2.2)

From this point forward, Lagrangian should be taken to mean L in accordance with

normal usage in a particle physics context.

The possible interactions of the fields described in the previous section are governed

by a Lorentz-symmetric Lagrangian density known as the Standard Model Lagrangian.

It is unchanged by the simultaneous application of charge conjugation, parity (mirror

reflection) and time reversal to all or any of its fields (‘CPT invariant’), and respects the

gauge symmetries of SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

The Standard Model is a renormalisable quantum field theory, meaning that its

Lagrangian contains at most first order derivatives and terms of dimension no higher

than 4. It is known that quantum field theories may contain divergences; this appeared

to be an early stumbling block for this formalism until the idea of renormalisation was

proposed. The requirement of renormalisability means that all of these divergences

can be absorbed into a finite number of parameters using a particular renormalisation

scheme. The final result of any calculable quantity must be independent of the scheme

used, but parameters (such as couplings and masses) are measured and specified in a

particular scheme and predictivity is restored.

Many theorists argue that renormalisability should not be a required condition for a

successful theory, once it is accepted that the theory is only valid to a certain energy scale.

Any infinities that occur beyond that scale are a result of a lack of understanding of new

physics that may exist. A very successful example of this viewpoint is Fermi’s predictions

for low energy electron-neutrino scattering before the W boson was discovered, where

its presence was encapsulated in the Fermi constant GF .

The effective field theory viewpoint also suggested that new physics was required at

the electroweak scale to preserve unitarity in longitudinal-W scattering. Without the

Higgs boson, the scattering amplitude for this process is proportional to
s

M2
W

, where s is

the centre-of-mass energy squared, and the cross section would grow like s for s�M2
W ,

leading to the total scattering probability becoming larger than one at approximately
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1.2 TeV, violating unitarity. Once the Higgs boson is introduced, the electroweak equiv-

alence theorem means that at high energies the amplitude dependence is proportional

to

−M
2
H

v2

(
s

s−M2
H

+
t

t−M2
H

)
, (2.3)

where v is the Higgs field vacuum expectation value and t the momentum transfer

squared. Inserting this amplitude into a partial wave expansion, it is found that the

optical theorem restricts the real coefficient of the expansion, leading to an upper bound

on the Higgs mass of 870 GeV.

Noether’s theorem relates global symmetries to the conservation of a particular

charge, and can be extended to local symmetries. In the SM, the relevant conserved

charges are the colour charge of SU(3)C which is carried by the quarks and gluons, the

third component of weak isospin of SU(2)L, T3, which is carried by the left handed

fermions, the four electroweak bosons and the Higgs particle, and weak hyper-charge, Y,

of U(1)Y . However, modern particle physics typically deals with energies below the elec-

troweak unification energy (around 1016 GeV), where the SU(2)L ⊗ U(1)Y symmetries

are broken to U(1)EM and T3 and Y are replaced by the more familiar electromagnetic

charge, Q = T3 + Y.

2.2.1 Quantum Electrodynamics

The fermions transform under a spinor representation of the Lorentz Group, denoted

Λ 1
2
, as

ψ (x)→ Λ 1
2
ψ
(

Λ−1x
)

(2.4)

and the kinetic and mass terms for a free fermion are given by the Dirac Lagrangian:

ψ̄
(
i/∂ −m

)
ψ. (2.5)

A global U(1) symmetry, that is, a transformation like ψ → eiαψ where α is the same

at every space-time point, is trivially respected since ψ only occurs in the combination

ψ̄ψ → eiαe−iαψ̄ψ = ψ̄ψ.2 However, if the symmetry is gauged, making it such that

α = α(xµ), then ψ transforms as ψ → eiα(x)ψ. The derivatives in the Lagrangian will

2
ψ̄ = iγ

0
ψ
†
, rather than simply ψ

†
, is necessary to keep the combination Lorentz invariant
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also act on the transformation parameter α (x) so that

∂µψ (x)→ eiα(x)∂µψ (x) + i∂µα (x)ψ (x) , (2.6)

which obviously will not keep the Lagrangian invariant. This can be remedied by adding

a spin-1 field Aµ that transforms in the adjoint representation as

Aµ → Aµ −
1

e
∂µα (x) , (2.7)

while simultaneously replacing the partial derivative in the Lagrangian with the gauge

covariant derivative:

∂µ → Dµ ≡ ∂µ + ieAµ (x) , (2.8)

which will transform like the field itself. The gauge invariance of the Lagrangian is

restored, and a new field has been introduced which interacts with the original field ψ

with a strength proportional to e.

The kinetic term for the vector field takes the form −1
4FµνF

µν where

Fµν = ∂µAν − ∂νAµ. (2.9)

The interaction term between the fermion field and vector field arises naturally through

the kinetic term from the modification of the partial derivative and respects renormalis-

ability and the local U(1) symmetry. However, if one further tries to add a mass for the

new field with a term of the form m2AµAµ, the U(1) symmetry is broken explicitly. For

now, it is sufficient to simply forbid terms of this form and leave the field massless: this

allows the identification of the Lagrangian composed of the components given above as

that of quantum electrodynamics (QED):

LQED = −1

4
FµνF

µν + ψ̄
(
i /D −m

)
ψ

= −1

4
FµνF

µν + ψ̄
(
i/∂ −m

)
ψ − eψ̄γµψAµ.

(2.10)

The spin-1 field is identified with a massless photon, just as is observed. Note that in

order to perform calculations, a gauge-fixing term must be added to remove ambiguity
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in the propagator, which is derived from the inverse of the quadratic terms.

As a general prescription, this formalism will become problematic when considering

other gauge symmetries, where it is found that the prediction of massless gauge bosons

contradicts experimental observations.

2.2.2 The Electroweak Sector

The previous section showed an example of enforcing a simple gauge symmetry on the

Lagrangian. In reality, a more careful treatment is required for several reasons. The SM

is a chiral theory: the spinor representation can be split into its left-handed and right-

handed components: ψ = ψL+ψR where each component can be projected out by using

the left- and right-handed projection operators, PL
R

= 1
2 (1∓ γ5). The full symmetry

group includes SU(2)L, which acts only on the left-handed components, meaning that

the simple fermion mass term given above cannot be used, as this mixes left- and right-

handed components. It will be seen that the Higgs mechanism allows a mass term to

arise for SM fermions in a different way.

The effect of the U (1) symmetry in the previous section was relatively simple to study

in that the group has a single generator and therefore a single possible transformation.

However, the vector bosons always lie in the adjoint representation of the gauge group,

which for SU(N) has N2−1 generators; here there are three generators and hence three

vector bosons. Furthermore, SU(2) is a non-abelian group,3 meaning that its generators

do not commute. This allows self interactions of the gauge bosons.

The combined SU (2)L×U (1)Y transformations acting on the (left-handed) fermion

fields give:

ψ → ei(gτ
ττ ·ω(x)+g

′
Y β(x))ψ. (2.11)

and the covariant derivative is now extended to (replacing the QED coupling constant

e with g′, and the field Aµ with Bµ so that the physical theory will arrive at the usual

notation)

Dµ = ∂µ + ig′Y Bµ + igτaW
a
µ (2.12)

where a = 1 . . . 3. Note that only the first two terms will apply to the covariant derivative

3
This is true for all SU(N), N> 1.
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for right-handed fermions.

Y denotes the weak hyper-charge quantum number, and the 2-dimensional generator

matrices of the adjoint representation of SU(2) are given by

τa =
1

2
σa (2.13)

where σa denote the Pauli matrices. Expanding the covariant derivative makes the field

content clearer: the multiplication of the Pauli matrices with the three W components

leads to

τaW
a
µ =

1

2

 W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ


=

1

2

 W 3
µ

√
2W+

µ
√

2W−µ −W 3
µ

 ,

(2.14)

where the linear combinations W±µ = 1√
2

(
W 1
µ ∓W 2

µ

)
have been used. The full covariant

derivative is then

Dµ =

∂µ + ig2W
3
µ + ig′Bµ

i√
2
gW+

µ

i√
2
gW−µ ∂µ − ig2W

3
µ + ig′Y Bµ

 (2.15)

There is a linear combination of fields in the diagonal terms; the system can then be

diagonalised, taking:

Aµ = sin θwW
3
µ + cos θwBµ

Zµ = cos θwW
3
µ − sin θwBµ

(2.16)

where tan θw = g
′

g . Taking Q = T3 + Y , where T3 is the eigenvalue of τ3
2 , gives:

Dµ = ∂µ +

ieQAµ + i
(

e
sin 2θw

− eQ sin θw
cosθw

)
Zµ

ig√
2
W+
µ

ig√
2
W−µ ieQAµ − i

(
e

sin 2θw
+ eQ sin θw

cosθw

)
Zµ


(2.17)

Assuming that Aµ will be the photon, its coupling has been identified with the
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electromagnetic coupling:
gg′√
g2 + g′2

= e.

It will become clear during the discussion of the Higgs mechanism that this is the correct

choice because A will remain massless when the Z,W+ and W− particles gain their

masses, in agreement with observation.

There are also kinetic terms for the gauge bosons (the fundamental bosons rather

than the linear combinations that have been chosen). They are more complicated than

those of QED because of the non-abelian nature of SU(2). For the three W bosons,

F aµν = ∂µW
a
ν − ∂νW a

µ + gεabcW b
µW

c
ν (2.18)

where εabc are the structure constants for the adjoint representation of SU(2). Interaction

terms with the fermions arise naturally from the action of the full covariant derivative

on their kinetic terms, but an explicit mass term is still forbidden for all four bosons if

the SU(2)L ⊗ U(1)Y symmetry is to be preserved.

With this grounding, predictions could be attempted for some scattering processes,

in the belief that the underlying interactions are well understood. At this stage, some

predictions will work very well, for processes involving only leptons and photons (i.e. the

QED sector). However, on attempting to include the SU(2) interactions in predictions,

theory and experiment immediately diverge: the SU(2) interactions are shown to be

short-range, implying that the vector bosons of this interaction have a finite mass. The

solution comes from spontaneous symmetry breaking.

2.2.3 The Higgs Mechanism

The mechanism by which the electroweak bosons and the fermions are allowed to gain a

mass was postulated in 1964 [13–17] , and its crucial prediction, the existence of a neutral,

spin-0, CP-even particle, confirmed in 2012 [18, 19]. It remains to be confirmed if the

minimal mechanism proposed by Higgs, Kibble, Hagen, Guralnik, Brout and Englert

to complete the SM is the full story or if a more elaborate extension is realised, but

hopefully the next decade of particle physics experiments at CERN will be able to bring

us closer to answering this question.
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The crucial idea of the mechanism is that while the Lagrangian respects the full

symmetry, the ground state does not; effectively, the vacuum expectation value (VEV)

of the Higgs field is non-zero. This is known as spontaneous symmetry breaking (SSB),

but this term may be a little misleading; the symmetry is still present in the Lagrangian,

although hidden in the physical ground state which is observed.

Symmetry breaking had been considered in other particle physics contexts, for ex-

ample in explaining the low and similar masses of the pions, but Goldstone’s Theorem

states that when a continuous symmetry is broken, massless (or nearly massless if the

symmetry is approximate) bosons must be present for each broken generator. No such

particles were observed, suggesting that this mechanism would not be useful here. Fur-

thermore, because the theory under consideration is local (other known examples were

all of global symmetry breaking), their presence would imply oscillations in the basin of

the potential, equivalent to changing gauge, and hence they cannot be physical.

The contribution of Higgs and others showed that in the case where the broken

symmetry is local and the model already contains particles with the same quantum

numbers as the would-be Goldstone bosons, the degrees of freedom of the Goldstone

bosons can be absorbed by the existing bosons in the model. In the case of the Standard

Model, this gives the extra degree of freedom necessary for massless bosons, with two

transverse polarisations, to become massive by adding the longitudinal polarisation.

Depending on the gauge that is chosen, the presence of the Goldstone boson degrees of

freedom can be made explicit or hidden.

The Higgs field is a complex scalar doublet, with weak isospin T = 1
2 and hyper-

charge Y = 1
2 :

φ =

φ+

φ0

 =

φ1 + iφ2

φ3 + iφ4

 (2.19)

where the + and 0 denote the positive and neutrally charged components with respect

to the electromagnetic charge Q = T3 +Y . The postulated Higgs potential is (again, the

form is dictated by the requirements of symmetry and renormalisability):

VHiggs = λ
(
φ†φ
)2
− µ2φ†φ (2.20)
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Note the negative sign of the mass-like term, meaning that the minimum of the potential

is reached for a non-zero value of φ – this is equivalent to saying that φ has a non-zero

vacuum expectation value. The VEV is assigned to the neutral component; this choice

ensures that one linear combination of generators will still annihilate the vacuum, which

means that one particle (the photon) will remain massless. This choice is the point

at the which the symmetry becomes broken, since choosing one of a degenerate set of

possibilities means that the potential no longer looks symmetric from the viewpoint of

this minimum. Note that switching between different choices of VEVs is equivalent to

transforming between gauges.

Expanding about the VEV, for now in the unitary gauge (in a different parametri-

sation to make the gauge transformation clearer), gives:

Φ =
1√
2
e
iτττ ·ω
v

 0

v +H(x)


' 1√

2

 −ω2(x)− iω1(x)

v +H(x) + iω3(x)

 (2.21)

(to first order in the fields ωi and H) where H is used to denote the degree of freedom

that represents the physical scalar particle that will be recognised as the Higgs boson.

Using the freedom of SU(2) rotations to hide the Goldstone bosons (i.e. a transfor-

mation by φ→ Uφ where U = e−
iτττ ·ω
v ) in the expression for Φ leaves

Φ =
1√
2

 0

v +H(x)

 (2.22)

but note that the gauge transformation also affects the W bosons, giving the transfor-

mation:

Wi →W phys
i = Wi −

1

gv
∂µωi (2.23)

reflecting the addition of a new degree of freedom; it is said that the vector bosons have

‘eaten’ the Goldstone bosons. From now on, W will be taken to mean W phys.

The kinetic term for a scalar field looks like
∣∣DµΦ

∣∣2 where D is the covariant deriva-
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tive. Inserting (2.15) and (2.21) then gives (neglecting constant terms)

DµΦ =
1√
2

(
∂µ + i

g

2
σaW

a
µ + i

g′

2
Bµ

)
Φ

= ∂µH +

 ig2W
+
µ (v +H)

i 1√
2

(
e

sin 2θw
Zµ

)
(v +H)

 ,

(2.24)

leading to

∣∣DµΦ
∣∣2 = ∂µH∂

µH +
g2v2

4
W+
µ W

−µ +
v2
(
g2 + g′2

)
8

ZµZ
µ +

vg2

2
W+
µ W

−µH

+
v
(
g2 + g′2

)
4

ZµZ
µH

(2.25)

This leads to a picture that agrees with experiment - two bosons with equal mass

gv
2 and opposite charge (W±), and another neutral massive boson (Z) that has a mass

of

√
g

2
+g
′2
v

2 . The contributions containing Aµ disappear from the symmetry breaking

terms since the symmetry breaking component has Q = 0, leaving one massless, neutral

boson.

Using experimental values for MZ and e gives a value for v of approximately 246 GeV.

Substituting eq. (2.22) into eq. (2.20) gives quadratic, cubic and quartic terms for the

new H field, giving rise to cubic and quartic self-interactions and a mass of

MH =
√

2λv. (2.26)

The Higgs mass is taken to be another free parameter, and sets the Higgs coupling λ.

Renormalisation means that couplings become ‘running’ couplings that depend on

the energy scale. Extrapolating g and g′ gives a meeting point of O(1016) GeV, and

this can then be assumed to be the symmetry breaking scale, the centre-of-mass energy

at which the symmetry becomes hidden and instead of SU(2)L × U(1)Y , only U(1)EM

is observed. This means that below energies of O(1016) GeV instead of two distinct

couplings, g and g′, only the coupling constant of the U(1)EM symmetry is present, the

familiar electric charge e.

The inclusion of the new Higgs field also allows for new terms giving the leptons and

26



2.2 The Lagrangian Description The Standard Model

quark masses and allowing interactions with the Higgs, known collectively as Yukawa

terms. The term for leptons is:

− 1√
2
λeēL Φ eR + h.c. (2.27)

where the left handed leptons are in a doublet representation of SU(2) with Y = 1
2 and

the right-handed electron is a singlet with Y = −1, meaning that the term is neutral

with respect to both SU(2)L and U(1)Y . This leads to an electron mass term with a

mass of λev√
2

and also an interaction term between the Higgs and two electrons. The

electron Yukawa coupling is a free parameter to be set by experiment.

The form of these terms provides a crucial way to test the predictions of the mech-

anism experimentally - there is a clear dependence of the couplings of the Higgs to the

fermions on the mass of the relevant fermion, which should be measurable in the rates

of Higgs decays (for the heavier fermions). These may not be accessible at the LHC, at

least not soon, but future Higgs factories will hopefully remedy this.

Unitarity and triviality 4 limits suggest that the mass of the Higgs should be less than

1 TeV; the discovered resonance at 125 GeV, close to the electroweak scale, certainly

fits the brief, but its relative smallness creates other problems. Because the Higgs is

a scalar, it is subject to large mass corrections from integrals over momenta in loop

diagrams. Either there is some protection against this that is not yet understood – for

example a symmetry that would be violated by such corrections, or that would include

other particles whose Feynman diagrams cancel the problematic diagrams (this is a

4
The triviality limits arise from the running of the Higgs coupling, λ, related to the Higgs mass by

eq. (2.26). At lowest order, this is given by

λ(Q) =
λ(Q0)

1− 3λ(Q0)

4π
2 log

(
Q

2

Q
2
0

) , (2.28)

with the reference scale usually taken to be v in the SM. As Q → ∞, the denominator can go to 0, so
that λ(Q) becomes infinite and the theory is non-perturbative unless λ = 0, i.e. the theory is trivial. An
upper limit on the Higgs mass is then obtained by requiring that the coupling remain finite up to some
scale of new physics, Λ, typically a few TeV, which gives

M
2
H <

8π
2
v

2

3 log
(

Λ
2

v
2

) .
A lower limit is also obtained from the running of λ in conjunction with the requirement of vacuum
stability, i.e. the requirement that V (v) < V (0) (V from eq. (2.20)) is a local minimum, even with the
inclusion of one and two-loop corrections to the running coupling. This requires that λ(Λ) > 0.
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large reason why supersymmetry is considered so attractive), or there is an unexplained

cancellation (to at least 15 digits) between terms, known as fine-tuning. Many people

find this very aesthetically unpleasant, but others argue that it should not be considered

an issue if it is accepted that the Standard Model is only an effective theory.

2.2.4 The Colour Sector

The final sector of the Standard Model describes particles that feel the so-called ‘strong’

force, and are symmetric under SU(3)C . These are the fractionally charged quarks and

their boson, the gluon. The gluon is massless with spin 1.

The covariant derivative required for the kinetic terms of the quarks is

Dµ = ∂µ + ig′TaW
a
µ + igY Bµ + igs

λa
2
Gaµ (2.29)

The new field, Gµ is in the adjoint representation of SU(3) and therefore has eight

generators. The kinetic term takes the same form as eq. (2.18). The generator matrices,

λa, are known as the Gell-Mann matrices.

As with the leptons, the left-handed quarks fit into electroweak doublets and the

right-handed into singlets and there are three generations, with increasing masses.

The theory that describes the colour sector is known as Quantum Chromodynamics

(QCD). QCD is the most challenging part of the Standard Model to study, owing to the

fact that the coupling constant of the colour sector, gs, becomes non-perturbative at low

energies. However the underlying, parton-level process can be predicted well in the range

that the LHC looks at. The next chapter will discuss hadron collider phenomenology in

more detail, but here it is relevant to simply note that the success to-date shows how

successful modern methods have become at being able to extract reliable predictions

from previous experiments and Monte Carlo modelling.

The quark masses are generated in the same way as the lepton masses, as are their

interactions with the Higgs. The Yukawa terms are:

λdiQ̄L Φ dR + λuiQ̄L Φ̃uR + h.c.. (2.30)

Each term is neutral with respect to weak hyper-charge and SU(2)L. Note that the
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conjugate Higgs doublet has been introduced,

Φ̃ = iσ2Φ∗ =

 φ0∗

−φ+∗


with electroweak quantum numbers T = 1

2 and Y = −1
2 .

Since the quarks also carry weak quantum numbers, they interact with the W and Z

bosons. Naively, it might be expected that only members of the same quark generation

can interact – this makes sense if the covariant derivative acts on each QLi doublet

for each individual generation number i. This is in fact not the case; interactions are

observed between e.g. up and strange quarks where one might expect only up and down

quarks to interact. The quark states which are observed are mass eigenstates which are

superpositions of the flavour eigenstates, related by the CKM matrix, i.e.

QLim = V †CKMQLifVCKM . (2.31)

In the limit of VCKM = 1 the mass and flavour eigenstates are equal. In reality the

non-diagonal elements have been measured to be small but non-zero (see 2.32), allowing

interactions between generations i and j to take place with a small probability ∝ V 2
CKMij

.

|VCKM | =


vud vus vub

vcd vcs vcb

vtd vts vtb

 '


0.97427 0.22536 0.00355

0.22522 0.97343 0.0414

0.00886 0.0405 0.99914

 (2.32)

At tree level, this applies only to the interactions between up-type and down-type

quarks, i.e. those that proceed via the charged weak current interaction (via W bosons).

The ‘flavour changing neutral current’ (FCNC) interactions are loop-induced and ac-

counted for by diagrams such as those in figure 2.1 - again, in the limit of VCKM = 1

such processes are forbidden. A current area of interest in SM precision tests is whether

these diagrams entirely account for any FCNC effects observed, or whether there could

be more to the story.
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W+ W−

u, c, t

ū, c̄, t̄

s d

d̄ s̄

Figure 2.1: Example of flavour-changing neutral current process.

2.3 The Standard Model Lagrangian

In summary, the electroweak, strong and Higgs sectors are represented by a Poincaré in-

variant, renormalisable Lagrangian that respects the local symmetries SU(3)C⊗SU(2)L⊗
U(1)Y . The full Lagrangian, before spontaneous symmetry breaking, is given by:

LSM = −1

4
F aµνF

µν
a −

1

4
GaµνG

µν
a −

1

4
BµνB

µν

+
∣∣Dµφ

∣∣2 + λ
(
φ†φ
)2
− µ2φ†φ

+ iL̄i /DµLi −
1√
2
λLiL̄Li ΦLRi + h.c.

+ iQ̄i /DµQi + λdiQ̄L Φ dR + λuiQ̄L Φ̃uR + h.c..

+ Lgauge−fixing

(2.33)

with the field strengths defined by

F aµν = ∂µW
a
ν − ∂νW a

µ + gεabcW b
µW

c
ν

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν

Bµν = ∂µBν − ∂νBµ

(2.34)

and the covariant derivatives act as:

DµL = (∂µ + igτaW
a
µ + ig′Y Bµ)L (2.35)

for left-handed leptons,

DµQ = (∂µ + igτaW
a
µ + ig′Y Bµ + igs

λa
2
Gaµ)Q (2.36)
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for left-handed quarks, and the above without the igτaW
a
µ term for the right-handed

counterparts.

As mentioned in section 2.2.2 an overall gauge fixing term must be added in order

to define the photon propagator. This has the form

Lgauge−fixing = −1

2

(∂µA
µ)2

ξ
. (2.37)

A commonly used gauge is the ξ = 1 Feynman gauge, which is easy for performing

tree-level calculations but leads to unphysical ‘ghost’ particles in loops.

The discovery of the Higgs has completed the SM, although extensions may yet be

realised in the form of new symmetries or degrees of freedom. Indeed, it is hoped that

the LHC will give hints of some new effects that may help to solve some or all of the

current limitations of the model.
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Chapter 3

Higgs Phenomenology at the

Large Hadron Collider

3.1 Hadronic Collisions

The collision of two hard (high momentum) partons and production of intermediate

resonances and final state partons or leptons is called the hard process, and this is

generally well understood, as it occurs in an energy regime where QCD is perturbative

and the Feynman rules are applicable. The principles discussed in Chapter 2 then allow

reliable predictions to be made for hard process cross sections. However, it is important

to remember that the hard process is only an intermediate stage – it is this fact that

makes a hadron collider such a challenging environment for discoveries.

In a typical collision, the hard process happens at high centre-of-mass energies where

partons (quarks and gluons) are effectively free, so that individual partons, rather than a

hadron, form the initial and final states. Each colliding parton carries some fraction xi of

the total available centre-of-mass energy,
√
s.1 Given two colliding protons, it must then

be possible to predict the probability of a particular parton with a particular value of xi

taking part in a collision. This information is encoded in parton distribution functions

(PDFs), which must be determined from experimental data.

Two important facts allow reliable predications to be made for the cross sections of

1
The individual beam energy is up to 7 TeV for each beam at the LHC, giving a total centre-of-mass

energy of 14 TeV.
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hadronic processes. Firstly, the factorisation theorem [22] means that the PDF accounts

for all emissions and effects at energy scales below some sensibly chosen factorisation

scale µf , and above this the hard process calculation will be valid. The important

point is that these can be combined in a consistent way which includes all contributions

appropriately, and ideally has a low dependence on the choice of µf , although at leading

order this may not be the case.

Secondly, PDFs are, to an excellent approximation, universal for a particular hadron

– they have no dependence on the particular hard process which they are used to ini-

tialise. They can then be extracted from well-measured, simpler processes, e.g. in

electron-proton collisions at HERA, and applied to more complicated processes, such as

proton-proton collisions at the LHC.

At the other end of the collision, after the hard process, a certain number of final

state partons will have been produced; the probability for producing this particular

final state is fixed, but there is still more work required to predict what will be seen in

the detector. In the same way that final state leptons would undergo electromagnetic

showering, there is a finite probability for emitting more coloured particles; a final state

quark may emit a gluon, and a gluon may split into a quark or gluon pair.2 Formally

this is still a perturbative process, and these real emissions come under the remit of

higher order corrections, but they cannot be neglected even at leading order because

certain regions of the phase space give enhanced contributions at all orders, and without

their inclusion the perturbative series will not converge well. Fortunately, there is a

well-understood procedure to include these contributions. This part of the process is

known as parton showering, and is summarised in section 3.1.3.

Once the energy has reduced to a point where further splittings are unlikely, partons

undergo a non-perturbative3 process known as hadronisation, where free partons combine

with vacuum quark pairs. This preserves the requirement that any final states are colour

neutral, in practice meaning that collimated jets of hadrons are observed instead of

isolated final state partons.

The work in this thesis focuses on the hard processes, with no further discussion

2
This is due to the non-abelian nature of SU(3); the gluon carries colour charge so can split into a

gluon pair, unlike photons in the electromagnetic shower.
3
The strong coupling constant becomes large (non-perturbative) at approximately 2 GeV.
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after this chapter of PDFs or showering. The Les Houches format [23] for simulated

Monte Carlo events adopted by most modern particle physics groups in their software

allows compatibility between calculations of different stages of the process. This allows

different groups to focus on different parts of the calculation and combine them in a

modular and consistent way. However, since the work done here needs to be considered

in the full context of a hadronic collision in order to provide useful predictions for the

LHC, a brief summary of the challenges and tools available for different parts of the

calculation at the LHC follows.

3.1.1 Parton Branching

The formalism used to describe the probability of a coloured particle splitting into two

others can be applied both to initial state branching, which is included in the PDF, and

to final state branching in the parton shower. The equations governing the evolution of

an initial state, specified as a function of the energy scale Q2, are very similar for the

two cases, although for the initial state the splitting functions must also be averaged

over the azimuthal angle, since this is not measurable.

The two types of branching that yield important enhancements in the emission prob-

ability are for a very soft gluon emitted from a quark/anti-quark, and for a gluon splitting

into two nearly collinear partons. A full treatment of parton branching is given in [24],

the results are quoted here. The splitting kernels, also known as the Altarelli-Parisi

splitting functions, form the basis of the evolution equations used in both the PDF (sec-

tion 3.1.2) and parton shower (section 3.1.3). They are the first terms in a perturbative

expansion in αs. The notation convention is that Pab describes parton b splitting into a

and z = Eb/Ea. The relevant kernels are then:

Pgg(z) = 6

(
1− z
z

+
z

(1− z)+

+ z (1− z) +

(
11

12
− nf

18

)
δ(1− z)

)
, (3.1)

Pqg(z) =
1

2

(
z2 + (1− z)2

)
, (3.2)

Pgq(z) =
4

3

(
1 + (1− z)2

z

)
(3.3)
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and

Pqq(z) =
4

3

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
, (3.4)

where nf is the number of quark flavours and the + subscript denotes

1

(1− z)+
=

1

1− z for 0 ≤ z ≤ 1 (3.5)

and ∫ 1

0
dz

f(z)

(1− z)+
=

∫ 1

0
dz

f(z)− f(1)

1− z . (3.6)

3.1.2 Parton Distribution Functions

The quantities of interest for the probability of a particular initial state being produced

are the functions fh→a(x, µ
2
f ), for a parton of type a in a particular hadron h. These

functions describe the probability distribution of the parton’s momentum as a fraction

x of the momentum of the hadron, including all parton emissions with transverse mo-

mentum less than the factorisation scale µf . There are thirteen separate PDFs, one

for every quark and anti-quark and one for the gluon, for each hadron type. Note that

the probability of seeing a top or anti-top from an initial state hadron is negligible, and

generally published PDF data is for either a 4- or 5-flavour scheme, with the 5-flavour

scheme including the b and b̄ distributions. For a practical (Monte Carlo) calculation of

the cross section, such as will be discussed in Chapter 4, the full details of the evolution

from hadron to parton are not required, only the probability for a particular initial state

parton to be produced with momentum fraction x for the chosen value of µf .

The double differential cross section
d2σ

dQ2dx
, describing the probability of an event

occurring with particular values of virtuality Q2 and momentum fraction x, can be

parametrised in terms of structure functions Fi(x,Q
2). These functions can be measured

experimentally, for example the structure functions for the proton are measured in deep

inelastic scattering (DIS) experiments.4 The naive parton model initially proposed by

Feynman predicts ‘Bjorken scaling’: as Q→∞ with x fixed, Fi(x,Q
2) ' Fi(x), and this

behaviour is indeed observed, although the scaling is not exact. However, the breaking

4
A charged lepton (neutrino) scatters against a proton, with a t-channel photon (W boson) acting as

a probe.

35



3.1 Hadronic Collisions Higgs Phenomenology at the Large Hadron Collider

of Bjorken scaling is predicted by QCD corrections to the basic parametrisation due to

hard gluon emissions and the measured effect is in excellent agreement with predictions.

The individual structure functions can then be related to the parton distribution

functions fi(x,Q
2), where i denotes the parton flavour, by

Fi(x,Q
2) =

∑
a

∫ 1

x

dz

z
Cai fa

(x
z
,Q2

)
, (3.7)

where Ci are coefficients in a perturbation series, defined for a particular factorisation

scheme (which then must be used consistently in the rest of the cross section calculation).

The Q2 dependence of the parton distribution is then known from the DGLAP

renormalisation group equations [25–27], here using the notation t = Q2:

t
∂

∂t
fi(x, t) =

αs(t)

2π

∑
j

∫ 1

x

dz

z
Pij(z) fj

(x
z
, t
)

(3.8)

where Pij(z) is a perturbative expansion, with the first order term given by the splitting

kernels of eqs. (3.1) to (3.4). This then means that if a particular structure function can

be measured over as broad a range of x as possible for any value of Q2, its value at any

other Q2 (in particular µ2
f , the chosen factorisation scale) can be derived. In practice,

the region of very small x, of large importance for the gluon fusion Higgs production

channel, is very difficult to measure so some extrapolation is necessary.

The measured value of the total cross section is of course independent of the choice

of renormalisation and factorisation scales. Although the calculated PDF and hard-

scattering cross sections are separately dependent on these choices, their convolution

should not be (to a particular order). The residual scale dependence is usually estimated

by comparing the result for the total cross section calculated at double and half the

scale being used. This is used as a measure of whether it is necessary to calculate

to higher order or not; the solutions to the DGLAP equations are currently known to

NNLO [28,29].

The treatment of the initial state described here is somewhat simplistic – in this first

approximation the colliding partons will be moving in line with the beam, although in a

hadronic initial state further emissions from the partons before they participate in the

hard collision can result in them acquiring a transverse momentum. This is known as
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initial state radiation (ISR) and can be simulated in a similar way to the parton shower

described below using eq. (3.9), however it is often neglected, particularly in gluon-gluon

initial states, and so it will not be discussed further.

3.1.3 Parton Showering and Hadronisation

The non-perturbativity of low energy QCD means that the final state of every collision

requires the use of information that so far can only be calculated using Monte Carlo

simulations. Since these processes happen at such long distance scales, they occur too

late to affect the probability of the event occurring, but nonetheless modify the final

state that is observed in the detector, so a good understanding is important to correctly

reconstruct an event.

A very useful quantity in discussing parton branching is the Sudakov form factor:

∆i(t) = exp

−∑
j

∫ t

t0

dt′

t′

∫ 1−ε

0
dz
α(s)

2π
P̂ij(z)

 , (3.9)

which corresponds to the probability for a parton of flavour i to evolve from virtuality

t to t0 at a fixed momentum fraction without any resolvable branching. The fixed

value t0 is the virtuality threshold, beyond which no further branching will occur. The

splitting functions P̂ij are related to those in eqs. (3.1) to (3.4), but without the plus-

prescription defined in eq. (3.5), which enforces baryon number conservation. Note that

since unitarity demands that the total probability of branching and the probability of

not branching must sum to one, the probability of not branching, although derived from

the branching probabilities, therefore automatically includes the contribution from loop

corrections as well as real emissions.

The Sudakov form factor then allows us to incorporate the total probability (to all

orders) that a splitting will occur, which can be used in simulations. Given an initial

state parton of flavour i with momentum fraction x1 and virtuality t1, it should be

possible to generate the next step, (x2, t2). First t2 is generated by solving

∆i(t1)

∆i(t2)
= R (3.10)
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where R is a random number distributed uniformly between 0 and 1; then the momentum

fraction z = x2
x1

is generated similarly according to the splitting function function P (z).

Below the threshold scale t0, it is very unlikely that further splitting will occur.

Therefore the algorithm proceeds by starting with the outgoing partons from the final

state, and generating successive steps, with each new splitting starting its own evolution

branch, until a virtuality t < t0 is generated and no further splitting occurs. The shower

terminates when every branch has reached this threshold, which should also occur close

to the low-energy regime where QCD becomes non-perturbative, at which point the

hadronisation process will take over. The threshold virtuality, t0, is a free parameter,

determined by comparing the parton shower and hadronisation combination, and the

accepted best-fit value is approximately 1 GeV.

This procedure assumes the final state partons which initialise the shower have some

virtuality t, which contradicts the assumption made in the hard process calculation that

external momenta are on-shell; this is usually dealt with by rescaling the final state

momenta and boosting to a new frame at the end of the process.

Once the shower has terminated, the portion of the calculation in which perturbation

theory can be applied is finished. The final stage is hadronisation, which must be

modelled computationally – two leading models exist, the string model and the cluster

model, both based on the principle of parton-hadron duality, which postulates that

hadrons will preserve the momentum and quantum number flows of the original final

state parton, so for example one would expect to find a hadron near the centre of the jet

containing the flavour of parton that emerged from the hard process. A hadronisation

algorithm should reproduce several jet properties that are observed; for example a broad

pT distribution is not expected in a single jet, and fragmentation should be at low energies

and roughly collinear to the momentum direction of the original parton.

Commonly used parton shower and hadronisation event generators include HERWIG

[30], ARIADNE [31] and PYTHIA [32]. PYTHIA and ARIADNE are both based on a ‘colour

string’ model, they use the same JETSET [33] hadronisation algorithm but perform

the parton showers differently. The string model assumes that a quark and anti-quark

moving away from each other will deposit energy into the colour field between them,

which is thought of as a string with an energy density. Quark-antiquark pairs are created
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out of the vacuum in order to reduce the energy density, and combine with the original

quark and anti-quark as well as each other to create hadrons. Gluons are ‘kinks’ in the

string that contribute to the momentum distribution and energy density.

HERWIG uses the cluster hadronisation model. The basic idea of this is that final

state partons will cluster with vacuum pairs to form colour singlets, and these clusters

will split isotropically into two back-to-back hadrons. Both types of model agree well

with each other and with data.

The output should be a model of jets as they might appear in a collider, so certain

parameters to define a jet (as well as a choice of algorithm) must be specified, for example

the maximum pT at which a parton may be emitted in showering and still be considered

to be part of the same jet rather than initialising a new jet, the spatial extent of a

jet ∆R, and the scheme used to recombine momenta of individual partons. Typical

algorithms base their jet distinctions on a combination of the shape in the detector and

their separation.

The variation in jet definition obviously presents a difficulty in studying higher order

corrections, for example with one algorithm a process may be included as part of a

‘process + 1 extra jet’ correction, whereas another may assign it to the 2 extra jets

category. This is one of the reasons why observables should be as inclusive as possible,

covering for example all hadronic final states rather than specifying the number of extra

jets. However with careful study this ambiguity can be ironed out, and good algorithms

should give consistent and finite results for IR-safe observables, including jet multiplicity.

3.2 The LHC

The LHC is a proton-proton collider with a design centre-of-mass energy of 14 TeV,

built in a circular tunnel with a circumference of 27 km at CERN, 100 m underneath the

Swiss-French border region. Throughout Run I, during 2012-2014, it provided collision

data at the lower energies of 7 and 8 TeV; it has just been switched back on at 13 TeV

after a maintenance and upgrade period and it is envisioned that it will reach its design

energy sometime in 2017. It has four main experiments: ATLAS and CMS are multi-

purpose detectors, and it was these collaborations that announced the Higgs discovery.

LHCb looks at b-physics, and ALICE is a heavy-ion detector, studying the quark-gluon
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plasma and other large ion collision physics.

An important quantity in understanding the performance of the LHC is the inte-

grated luminosity,

Lint =

∫
Ldt =

∫
NaNbf

A
dt, (3.11)

where Ni is the number of particles in beam i, f is the frequency of bunch collisions and

A is the area of cross-sectional overlap between the two beams. The total number of

events is then given by

N = Lσ (3.12)

where σ is the cross section for an event to occur, which will be discussed in Chapter 4.

In practice, the number of events should also be multiplied by an efficiency factor to

account for experimental event selection, detector inefficiencies, etc.

The LHC is designed to achieve a bunch-separation time of 25 ns and a bunch-crossing

rate of 40 MHz; this corresponds to more than 600 million proton-proton collisions per

second.

While in principle it seems like high luminosities are desirable for collecting a lot of

data, this presents challenges in being able to distinguish important collisions in many

simultaneous events and resetting the trigger and data acquisition hardware quickly

enough to record as many interesting events as possible. Run I collected approximately

20 fb−1; the proposed high-luminosity upgrade of the LHC envisions a total integrated

luminosity of 3000 fb−1, a factor of 10 improvement on the value expected before the

upgrade.5

3.3 Searching for the Higgs Boson

The general challenges of a hadron collider, which apply to all hadronically induced pro-

cesses, heave been discussed. However, the LHC was designed with the Higgs discovery

in mind, and by the beginning of Run I had been left with a reasonably small search

window; LEP had excluded the mass range MH . 114.4 GeV and electroweak precision

tests gave an indirect bound of MH . 158 GeV [34]. On the 4th of July 2012, the

5
Runs II and III combined (before the high luminosity upgrade) are expected to produce approxi-

mately 300 fb
−1

of data.
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discovery was announced of a resonance with a mass of 125-126 GeV, observed by both

ATLAS and CMS [18,19].

The discovery required sophisticated statistical analysis of the available data in order

to be sure that statistical fluctuations were quantified and ruled out in the case of the

excess of events of interest. Hypothesis testing requires forming a null or background-

only hypothesis (making Monte Carlo based predictions based on a model with no Higgs

boson) and a signal-plus-background hypothesis, and testing the data against both op-

tions. The p-value measures the probability of a local excess or deficit in a test statistic

designed to measure the agreement with a particular hypothesis being due to a statis-

tical fluctuation in the null hypothesis; for a 5σ deviation, the threshold for discovery,

the p-value is about 1 in 3 × 106. The global p-value quantifies the probability that a

deviation seen in any region in the data is due to a statistical fluctuation. Taken over

a large range, the global p-value is higher than the local p-value – this is known as the

look-elsewhere effect.

A further quantity of interest is the signal strength, µ, given by the ratio of the cross

section observed to the cross section in the SM hypothesis. The discovered Higgs boson

gives a cross section consistent with µ = 1, i.e. is consistent with the SM-like Higgs

boson. This does not rule out an extended Higgs sector; it is perfectly possible that the

effects of additional Higgs-like particles at high masses on the low-mass Higgs would not

be large enough to be observable at current levels of precision.

Since LEP proved unable to reach the Higgs mass, the best choice for a discovery

machine was a hadron collider; although a lepton collider is a cleaner environment, syn-

chrotron radiation losses, proportional to
(
E
m

)4
, for an electron-positron collider mean

that reaching very high centre-of-mass energies is difficult (although more predictable,

since the full beam energy goes into every collision). The Tevatron, Fermilab’s proton-

antiproton collider, had a maximum centre-of-mass energy of 1.96 TeV and eventually

could have discovered the Higgs boson; its CDF and D0 collaborations announced ob-

servation of the 125 GeV resonance several months after the LHC [35,36].

The Higgs production channels at the LHC are shown in figure 3.1. In hadron-

hadron collisions at typical LHC centre-of-mass energies, gluon fusion (figure 3.1(a)) is

the dominant Higgs production mechanism, even though it is of higher order since it
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Figure 3.1: The Higgs production mechanisms for a hadron collider. The rates of production are
given in figure 3.2.
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Figure 3.2: Higgs Production cross sections from the Higgs Cross Section Working Group [37]
for centre-of-mass energies of 8 TeV and 14 TeV.
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Figure 3.3: Higgs Decay Branching Ratios and Higgs to final state branching ratios from the
Higgs Cross Section Working Group [37] for a centre-of-mass energy of 8 TeV.

must be induced by a heavy quark loop. This is mostly due to the very large gluon

flux at the low momentum-fraction regions of the phase space that are common at

the LHC. The second most important production channel is qq → qqH (figure 3.1(b)),

where incoming quarks radiate vector bosons, which combine to give an s-channel Higgs,

giving a relatively clean signature of a Higgs decay plus two additional separated jets.

This channel is known as vector (or weak) boson fusion (VBF/WBF), and becomes more

important at higher energies so is of greater interest for Run II. Other channels of interest

are associated production, where a weak boson radiates a Higgs boson (figure 3.1(c)),

and ttH associated production (figure 3.1(d)). Figure 3.2 shows the production cross

sections at 8 and 14 TeV.

The gluon fusion [38,39], associated weak boson production [40–44] and vector boson
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fusion [45–48] production cross sections are known to at least next-to-next to leading

order (NNLO) in QCD corrections6 and NLO in EW corrections, and the ttH associ-

ated production channel to NLO in QCD [49, 50]. Figure 3.2 shows gluon fusion to

NNLO+NNLL (next-to-next-to-leading log) QCD and NLO EW; in fact N3LO (next-

to-NNLO) corrections have recently been made available [1]. Calculation to such high

orders, which has been a major technical challenge, is motivated by the large scale de-

pendence and bad convergence of the perturbative series at low orders; the NLO result

is approximately twice the LO result.

The branching fractions of the various relevant decays of the Higgs boson are shown

in figure 3.3, along with the branchings into the various observable final states. The

couplings of the Higgs boson to fermions and gauge bosons are proportional to the

masses of the particle; although formally it can therefore decay to e+e−, this decay is

not shown because the branching fraction is tiny; note that a log scale is used, and the

µ+µ− branching fraction, although shown, is O(10−4).

For the 125 GeV Higgs, the dominant decay channel is bb̄, but this channel suffers

from a very large irreducible hadronic background, so was not useful as a discovery

channel. The gg, τ+τ− and cc̄ channels suffer from the same problem; τ+τ− and cc̄

are included in combined analyses but were not used as discovery channels. The decay

channels used in the Higgs discovery were the ZZ decay, with a branching fraction of

2.8%, and perhaps surprisingly, the γγ channel, which has a branching fraction of only

0.23% and is formally of higher perturbative order than the usual decay mechanisms,

since it occurs via a top or weak boson loop (and is therefore a two loop process when

initiated by gluon-fusion). However, this channel provides one of the cleanest final

states, where the momenta and energy of the two photons are measurable with good

resolution in the electromagnetic calorimeters so that the invariant mass of the Higgs

can be reconstructed with good precision. This is also true for the H → ZZ → 4`

decay, although this has higher irreducible backgrounds. The dominant background

for γγ comes from pp → γγ, but this background varies smoothly with centre-of-mass

energy, so an excess of events close to the Higgs boson mass gives a clear peak above the

background, as shown in figure 3.4.

6
QCD corrections are dominant due to the running of αs.
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Figure 3.4: ATLAS plots from [19] and [51] showing the H → γγ and H → ZZ → 4` channels
respectively. In each case, an excess of events is clearly visible above the background in the signal
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The required discovery significance of 5σ was reached in 2012 in the combined anal-

yses of the ATLAS and CMS detectors in the channels gg → H → ZZ → ` ¯̀̀ ¯̀ and

gg → H → γγ and supported by evidence in the WW → `ν̄ ¯̀ν, bb̄ and τ+τ− channels.

Only the total (combined signal and background) number of events in any region

is observable; therefore some method must be used to quantify what is considered an

excess in the signal region. In addition to Monte Carlo modelling, comparisons are

performed by measuring the background in a region with a very low probability of a

signal event occurring, known as a control region, and comparing this to Monte Carlo

and theory predictions from which a relationship between the signal and control region

can be extrapolated, and the number of background events in the signal region estimated.

For the Higgs discovery, ATLAS predicted 4.9 background events in the signal region

and observed 13, and CMS predicted 3.8 events and observed 9.

The ATLAS best fit of signal strength was for a Higgs mass of 126.0 ± 0.4(stat) ±
0.5(sys) GeV and the corresponding value for CMS was 125.3 ± 0.4 ± 0.5 GeV; there

is some tension between these two results. This has largely been resolved, the current

values are 125.36 ± 0.36 ± 0.18 GeV for ATLAS [52], and 125.02 ± 0.27 ± 0.15 GeV for

CMS [53]. A combined analysis has been published [54], giving the currently accepted

value of 125.09± 0.21± 0.5 GeV. Two numbers are quoted for uncertainty in each case;

the first quantifies statistical error, due to for example random fluctuations in data and

fluctuations due to finite simulated sample sizes, and the second is the systematic error,
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covering effects including uncertainty in the underlying model and in the calibration of

measurement apparatus.

The success of Run I means that the Standard Model as we know it is complete. Run

II will gather more data on the decays of the Higgs boson into particular final states,

allowing most of the couplings to be constrained, although not directly measured. It

will also search for new physics beyond the Standard Model, and hopefully hints in the

next few years will give much-needed guidance on the goals of the next generation of

high energy collider experiments.
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Chapter 4

Theoretical Predictions for LHC

Cross Sections

4.1 Cross Sections, Decay Rates and Differential Distribu-

tions

Arguably the quantity of most interest both in new physics searches and in precision

measurements is the cross section, denoted σ, for a particular initial state to evolve

to a particular final state. This may be defined as a total cross section, measured

over the entire phase space, or as a fiducial cross section, where the phase space is

defined for a particular process in a particular detector, based on sensitive regions of the

detector and regions of the phase space where kinematics allow good signal to background

discrimination. The cross section can be interpreted physically as the number of events

(collisions) that occur, N , divided by the number of particles passing per unit time

through the overlapping beam area:

σ =
N

ρAlAρBlBA
=
N

L
(4.1)

where ρi is the density of particles in a bunch in beam i, li is the bunch length and A is

the area of overlap between the colliding beams. In fact the densities ρi and hence the

numbers of particles Ni are not constant within each beam and should be averaged over

time. The denominator is then recognisable as the integrated luminosity of eq. (3.11),
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which can be measured using Standard Model ‘candles’ such as the Drell-Yan process, so

assuming that the process and detector are sufficiently well understood and it is possible

to count the number of events of interest, the goal for theorists and phenomenologists is

to provide a value for the cross section, allowing a direct comparison. The cross section

has units of area, in SI units measured in m2, but more commonly quoted in barns:

1 b = 10−24cm2.

A related class of comparable quantities are differential cross sections, the rate of

change of the total cross section with respect to a particular observable O, defined by

σ =

∫ Omax

Omin

dσ

dO
dO. (4.2)

These can be visualised in differential distributions of observables measured event-by-

event in the detectors such as transverse momentum, invariant mass (or missing trans-

verse momentum if dealing with invisible particles), azimuthal opening angle between

particular particles, and many others. The y-axis value will be proportional to the

number of events observed with a value of O in the bin range dO.

It will be shown later in this chapter that the Monte Carlo integration performed

to obtain a cross section is very similar to simulating events such as might be observed

in a detector, so keeping track of the event-by-event values of observables required to

produce differential distributions for comparison is not difficult. In addition to providing

another comparison between data and the predictions of a particular theory, differential

distributions are helpful for example in deciding on selection cuts that enhance the signal

to background ratio, and also in the study of particle properties. Studying angular

distributions can also give information about the spin of a new particle, which is not

directly measurable.

The final related quantity of interest is the total decay rate, Γ, which describes the

probability per unit time of an unstable particle decaying. In the differential distributions

just described, an unstable particle of mass M that decays to other particles will be

visible as a Breit-Wigner peak in the invariant mass squared distribution, with the
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shape of the peak described by

f(q2) ∼ 1

(q2 −M2)2 +M2Γ2 . (4.3)

Γ then corresponds to the width of the Breit-Wigner resonance peak in the distribution.

For this reason, an unstable particle is often referred to as a ‘resonance’ and the total

decay rate of the unstable particle is equal to the width of the resonance. This is an

intrinsic property of any unstable particle, and is a quantity of great interest in the

discovery of new particles - if the total decay rate can be measured and matched to

predictions, this means that all allowed (non-negligible) decays have been accounted

for. Partial decay rates Γi to decay channel i are also useful since these depend on the

couplings in that channel, which must be measured as well as possible in order to fix

free parameters in the SM. In the case of the Higgs boson, the predicted total width is

extremely small, around 4 MeV, and it is unlikely that it will be possible to measure

the total decay rate at the LHC with sufficient accuracy to say whether there are any

decays unaccounted for or not.1 Branching fractions, the ratio of a partial decay rate

for a particular channel to the total decay rate, are also of interest.

The importance of being able to predict cross sections for comparison to experi-

mental results is clear. Theoretical calculations are possible to a particular order in

perturbation theory by calculating the matrix element, denoted M, also known as the

scattering amplitude, for a given initial state to evolve to a given final state. Formally,

the scattering amplitude describes the overlap of the initial and final state wave pack-

ets with a function governed by the interaction Hamiltonian. The cross section is then

calculated by integrating the squared matrix element over all external momenta and

enforcing conservation of four-momentum:

σA,B→f =

∫
1

2ŝ

∏
f

d3pf

(2π)3

1

2Ef
δ4
(
pA + pB −

∑
f

pf

)∣∣∣M(pA + pB → {pf}
)∣∣∣2 (4.4)

for an initial state of particles A and B colliding and producing an unspecified final state

1
It will certainly not be possible to perform a direct measurement, as the momentum resolution is

not good enough - a direct measurement would most likely require a muon collider, which is not on
the present horizon of future accelerators. Possibilities for an indirect measurement are discussed in
section 4.5.
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of two or more particles, denoted f . pi refers to the 4-momentum of particle i, Ei its

energy and ŝ the square of the total parton centre-of-mass energy (which will be some

fraction of the total available centre-of-mass energy).

In a hadron collider, the question of what constitutes the initial state must be treated

more carefully, as was discussed in Chapter 3. Including the parton distribution function

f(x, µ2
f ) and integration over the parton’s momentum xi as a fraction of the available

momentum for each beam then gives, for the total cross section at a hadron collider:

σhad =
∑
A,B

∫ 1

0
dx1

∫ 1

0
dx2 f1→A(x1, µ

2
f )f2→B(x2, µ

2
f )σA,B→f (4.5)

where µf is the factorisation scale.

Different techniques have been developed to perform such calculations efficiently. The

commonly used Feynman diagram approach is simple to understand, and straightforward

to implement in an algorithm, but a process with N diagrams at first glance requires

calculation of O(N2) individual terms. Processes with large numbers of external legs or

calculated to high orders may have huge numbers of diagrams and a brute-force approach

is therefore not suitable for modern applications where in some cases N3LO precision is

required. The memory and CPU time requirements are unreasonable, and alternatives

must be found.

Fortunately, a technique has been developed that allows a way around this by eval-

uating the scattering amplitude directly before squaring by representing all external

particles and intermediate resonances as two-component helicity spinors and dramati-

cally reducing the number of expressions by exploiting identities for spinor products and

introducing colour decomposition. This is known as a helicity amplitude approach, and

most modern algorithms take advantage of this method.

Even with these simplifications, there are still expressions to be integrated that may

include complicated tensor structures, and although tensor reduction methods combined

with helicity amplitudes allow the integrals to be grouped into combinations of lower

rank master integrals, many integrals considered in particle physics are generally not

analytically solvable. This is the limit of what analytic calculations alone can do - at

this point making a cross section prediction requires the use of numerical methods, in
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particular Monte Carlo integration, which is the subject of section 4.3.

Aside from the complexity in the number of expressions, there is the issue of perform-

ing the large-dimensional phase space integral. Including the initial state momentum

fraction integrations (only required for a hadron collider), a four-particle final state re-

quires a ten-dimensional integration.2 Again, Monte Carlo integration will provide an

efficient way to do this.

4.2 Hadron Collider Observables

In a hadron collider, the parton centre-of-mass frame does not coincide with the lab

frame (hadron centre-of-mass frame), since although the protons have equal and opposite

momenta, the individual partons which form the initial state of the hard process do not.

The lab frame and the centre-of-mass frame are related by a boost along the axis of the

beam line, usually chosen as the z-axis in the frame of reference - therefore any hadron

collider observable O should also be invariant under a z-boost. Care must be taken with

the definition of rapidity: the quantity

y = tanh−1
(pz
E

)
=

1

2
ln

(
E + pZ
E − pZ

)
, (4.6)

is not itself z-boost invariant but the difference of two rapidities is.

The other requirements for a good observable still apply; they should be measurable

for the process under consideration, for example invariant mass is a good observable in a

process where the final state particles are charged and energetic, so that they are visible

in detectors, but it is not a suitable observable for final states that contain neutrinos.

The more inclusive the cross section, considering for example final state with all

hadronic additions rather than just final state or final state with 1 additional jet, the

more reliable our predictions are, since exclusive cross sections may have unwanted de-

pendancies, for example on the jet definition algorithm. Also, the precision of observables

is ultimately limited by the precision of the PDFs, so errors on the PDF should be well

quantified.

2
For an n-particle final state there will be 3n-4 degrees of freedom, with an additional 2 added for

initial state momentum fractions in a 2-particle hadronic initial state.
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Typical hadron collider observables generic to many processes include transverse

momentum pT

(
=
√

(px)2 +
(
py
)2)

and azimuthal opening angle between two parti-

cles ∆φ. Secondary observables, i.e. those derived from primary observables rather than

measured directly, are also useful, such as transverse energy ET

(
=

√
p2
T +m2

)
,3 in-

variant mass for groups of massive particles, transverse mass,4 rapidity difference ∆y, or

∆R =

√
∆y2 + ∆φ2 which is a measure of separation and is useful in defining the point

at which a jet emission becomes a new jet.

4.3 Monte Carlo Integration

Monte Carlo integration is one of the most popular methods of numerical integration,

and there are well established algorithms to perform it efficiently. The basis of the

method is the fact that given an integrable5 function f(x) to be integrated over x, the

integral I can be approximated as:

I =

∫
dnxf (x) ≈ V · 〈f〉 = V · 1

N

N∑
i=1

f (xi) . (4.7)

where V =
∫
dnx. By sampling enough randomly distributed points, one hopes to build

up a good picture of the true function. The error of this method is related to the variance:

V ar(f) = 〈f2〉 − 〈f〉2 (4.8)

by

Err(I) =

√
V ar(f)

N
(4.9)

For a constant function the sample at every point will be equal and the average will

give exactly the correct answer. For a more complicated function, particularly those

of the type considered in particle physics that have strongly peaked resonances, the

precision relies on firstly having enough points that the resonance is not completely

3
A different definition of ET which is often used by experimentalists is ET = E sin θ = E pT

|~p| , but this
is not invariant under z-boosts.

4
For a single particle, transverse mass is defined as the boost-invariant ET above, but it has varying

definitions for groupings of particles. E.g. when studying a process containing a WW → 2`2ν decay,

ATLAS define MT,WW =
√

(
(
MT,`` +MT,miss

)2 − (~pT,`` + ~pT,miss
)2

where MT,`` =
√
p

2
T,`` +M

2
``

5
In fact, it should also be square integrable in order to calculate the error.
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missed, especially if it has a narrow width, and secondly having enough points in the

resonant region to build up a good picture of its contribution to the integration.

A Monte Carlo (MC) generator typically generates random numbers on a unit hy-

percube with dimension equal to the number of degrees of freedom. Any phase space

parametrisation will therefore contain a mapping of these random numbers,

f : r → PS. (4.10)

for an m-dimensional vector r, a 4-momentum configuration PS and a single mapping

f . This choice of mapping is not unique.

A common approach to improving convergence is to perform a mapping of the inte-

grand to a flatter function. Describing the total cross section as a product of all phase

space (including parton momentum fraction) contributions, called Φ(PS), and every-

thing else (the matrix element, parton distribution functions, any required spin sums

etc.), called h(PS), one can then write

σ =

∫
h(PS)dΦ(PS) =

∫
h
(
f(r)

)
g
(
f(r)

)
dr (4.11)

where the function g is simply the Jacobian of the transformation. The mapping f

will be well chosen such that g (f (r)) is similar to the inverse of h (f (r)), so that their

product leaves a considerably flatter integrand in the new variables.

A basic Monte Carlo generator simply generates points in the phase space and eval-

uates the function at each point. However, a more intelligent way to do this is to use

sampling: while by default a uniform distribution might be chosen, points in the phase

space where either the function is large or the variance is large (the choice of which

is more important varies in different implementations) deserve more investigation, so

the random number generation should be adapted on subsequent iterations to generate

more points in interesting regions. Note that the non-uniform distribution employed in

importance sampling necessitates a reweighting at each phase space ‘shot’.
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4.3.1 Multi-Channel Mappings

In particle physics applications, a more sophisticated approach is generally needed since

quantities of interest, like cross sections, require the integration of the squared sums of

diagrams with differing kinematic structures (containing different singular or strongly

peaked regions) that must be integrated over a large dimensional phase space. In simpler

processes, there may be few enough kinematic structures that it may be possible to

divide the phase space into different regions, assume a particular type of structure to be

dominant in each region so that one mapping is used for each region, and sum the results.

This was the approach taken in the fully leptonic implementations in gg2VV. However

for more complicated cases, such as the semi-leptonic decays described in Chapter 6,

this approach is not suitable.

The semi-leptonic decays (via two vector bosons) of the Higgs Boson differ funda-

mentally from the fully leptonic decays in that they have a tree-level background, which

is of lower order than the loop-induced signal process. If one wishes to consider the

background to the loop induced signal processes

gg → H → `ν̄qq̄′/`¯̀qq̄, (4.12)

there are then two types of contributions: tree-level diagrams, as shown in figure 4.1 with

a single vector boson, and loop continuum diagrams, as shown in figure 4.2, with two

vector bosons. The fully leptonic decays only have the latter background. For example,

the inclusion of tree level diagrams adds 8 possible kinematic ‘channels’ for the WW

case (3 unique types as shown, and 5 duplicates with certain permutations that alter

the kinematic structure) with overlapping regions of importance and the approach of

dividing up the phase space is no longer feasible.

In gg2VV, multi-channel6 mappings [55] have been chosen to deal with this problem.

In cases where the integrand under consideration is described by a sum of many Feynman

diagrams, each with their own phase space structure, it is appropriate to have a mapping

for each of N classes of diagrams (‘channels’). The overall weight for each phase space

6
The terminology ‘channel’ is confusing but common in the literature - it refers not to the usual

channel in the sense of a decay channel, where each channel would be a different process, but to the
different types of Feynman diagrams (kinematic structures/channels) in a single process.
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Figure 4.1: Representative tree-level background diagrams for the semi-leptonic processes con-
sidered in gg2VV.

point, which for a single mapping was simply the Jacobi determinant, is now obtained

from the weighted inverse sum of the Jacobi determinants from all channels:

g (f (r)) =

(
N∑
i=1

αi
1

gi (f (r))

)−1

. (4.13)

The αi are weights required to preserve unitarity; their only a priori requirement is that

they sum to 1, so it is reasonable to initially set them equal to the inverse of the number

of mappings, but a possible improvement to this will be discussed briefly below.

Each mapping is designed to deal with a particular structure, and it can be assumed

that typically one type of diagram will dominate at a particular point of phase space.

The idea now is that in a small enough sub-volume of the total phase space volume,

h (PS) gi (PS) ≈ 1 for some i. The integrand becomes:

∫
h (PS) dΦ (PS) =

∫
h (PS) g (PS)

dΦ (PS)

g (PS)

=
∑
i

αi

∫
h (PS) g (PS) dr

(4.14)

Note that in fact a separate mapping is not necessary for the third diagram of figure 4.1

and its duplicate, since the singularity in these diagrams coincides with the phase space

volume going to 0, and so the number of required WW tree-level background mappings

is reduced to 6.

Such an approach is ideal for algorithmic computation, as different kinematic chan-
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Figure 4.2: Representative one-loop background diagrams for the semi-leptonic processes con-
sidered in gg2VV.

nels have some common components. In section 4.3.2 all structures that are used in the

Feynman diagrams shown in figure 4.1 and figure 4.2 are described. For computation, it

is necessary to know the mappings between the random number variables distributed on

a unit hypercube and the phase space variables (usually final state momenta and initial

state momentum fractions), and the Jacobi determinants for these mappings.

As a full example, the channels implemented in the semi-leptonic process in gg2VV

are given below. Firstly, the components common to several mappings are described

in detail, followed by the random number transformations and Jacobi factor for each

separate mapping.

4.3.2 Mapping Components

Two-Body Decay

In the parton centre-of-mass frame, it is useful to consider the kinematics of an initial

state with momentum p = (E, ~p) (note that this can be a single particle initial state or a

configuration with total momentum p) decaying to two particles with momentum p1 and

p2; the phase space volume element is denoted by dφ2(p; p1, p2). It is relevant to note

that p2
i = M2

i , E = E1 + E2 by conservation of energy, M2
i = E2

i − |~p|2 and ~p1 = −~p2

in the centre-of-mass frame which is considered here. There is an additional kinematic

constraint, ECM =

√
p2 > M1 +M2. Combined, these identities lead to:

E1 =
E2 +M2

1 −M2
2

2E
E2 =

E2 +M2
2 −M2

1

2E
(4.15)

and

|p1| =
1

2E

√(
E2 − (M1 −M2)2

)(
E2 − (M1 +M2)2

)
(4.16)

56



4.3 Monte Carlo Integration Theoretical Predictions for LHC Cross Sections

The phase space element is

dφ2 =
1

16π2

|~p1|
E
dΩ1 =

1

16π2

|~p1|
E
dcos θ1dφ1. (4.17)

In this simple case, the decay can be taken to be isotropic with respect to the az-

imuthal and polar angles, and so random numbers can be assigned to the two angular

degrees of freedom according to

cos θ1 = 2r1 − 1→ d cos θ1 = 2dr1

φ1 = 2πr2 → dφ1 = 2πdr2

(4.18)

so that the total transformation is

dφ2 =

√(
E2 − (M1 −M2)2

)(
E2 − (M1 +M2)2

)
32π2E2 4πdr1dr2. (4.19)

This 2−body decay will appear in many other examples, so it is helpful to define the

notation

λ
(
E2
CM ,M

2
1 ,M

2
2

)
=
(
E2 − (M1 −M2)2

)(
E2 − (M1 +M2)2

)
(4.20)

Breit-Wigner Propagator

A Breit-Wigner propagator is a common component of the integrand for any process

containing a resonance, and is integrated over its virtuality q2. It has the general form

∫ q
2
max

q
2
min

dq2

2π

1

(q2 −M2)2 + (MΓ)2 (4.21)

and for small Γ
M has a strong peak in the region q2 ∼ M2. Performing a change of

variables,

z = arctan

(
q2 −M2

MΓ

)
→ dq2 =

(q2 −M2)2 + (MΓ)2

MΓ
dz, (4.22)
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the Jacobian factor perfectly compensates for the peaked structure. The integrand is

then: ∫ q
2
max

q
2
min

dq2

2π

1

(q2 −M2)2 + (MΓ)2 =

∫ zmax

zmin

1

2πMΓ
dz, (4.23)

which is constant and trivial to integrate.

The mapping to the random number is given by

z = zmin + (zmax − zmin) r → dz = (zmax − zmin) dr (4.24)

so that the full mapping from q2 to r will be

∫ q
2
max

q
2
min

dq2 =

∫ 1

0

(q2 −M2)2 + (MΓ)2

MΓ
(zmax − zmin) dr. (4.25)

Massless s-Channel Propagator

A massless s-channel propagator with virtuality q2 will appear in an amplitude calcula-

tion as ∫ q
2
max

q
2
min

dq2

2π

1(
q2
)n (4.26)

for an exponent n, which is chosen empirically to be equal to 3
2 . This expression is

singular in the q2 → 0 limit, so there is a kinematic constraint of q2 > 0. The mapping

is

x =
(q2)1−n

1− n → dx =
1

(q2)n
dq2 (4.27)

and the mapping to the random number is simply

x = xmin + (xmax − xmin)r → dx = (xmax − xmin)dr. (4.28)

The full mapping from q2 to r is then:

∫ q
2
max

q
2
min

dq2 =

∫ 1

0
dr (q2)n(xmax − xmin). (4.29)
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p1 → p2 →

k
↓

θ

Figure 4.3: Layout of notation for a mapping with a massless t-channel propagator

Massless t-Channel Propagator

A massless t-channel propagator, as shown in figure 4.3, appears in the amplitude as a

factor ∝ 1

(k
2
)
n where the exponent n is close to but not equal to 1 (in fact it is usual to

take n = 0.9). Then,

k2 = (p1 − p2)2 = p2
1 + p2

2 − 2p1 · p2 = M2
1 +M2

2 − 2E1E2 + 2 |~p1| |~p2| cos θ

= M2
1 +M2

2 − 2E1E2 + 2 |~p1| |~p2| cos θ
(4.30)

The integration variable is cos θ, restricted to the range −1 ≤ cos θmin < cos θmax ≤ 1.

This gives (for k2 < 0):

d cos θ

−k2 =
1

2 |~p1| |~p2|
.

d cos θ

2E1E2−M
2
1−M

2
2

2|~p1||~p2|
− cos θ

. (4.31)

Letting
2E1E2 −M2

1 −M2
2

2 |~p1| |~p2|
= a, (4.32)

and y = a − cos θ, as in the case of the massless s-channel propagator the mapping

eq. (4.27) can be used, and the random number mapping is eq. (4.28). The expression

in the amplitude will look like (discounting factors constant with respect to the cos θ

integration) ∫ cos θmax

cos θmin

d cos θ

(a− cos θ)n
=

∫ ymax

ymin

dy

yn
=

∫ xmax

xmin

yn

yn
dx (4.33)

In total, ∫ cos θmax

cos θmin

d cos θ =

∫ xmax

xmin

yndx =

∫ 1

0
yn (xmax − xmin) dr. (4.34)
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2→2 Decay

For a general hadronic two-particle to two-particle decay, there will be two extra degrees

of freedom compared to the simple two-body decay, arising from p = xApA+xBpB where

xi and pi denote the fraction of momentum carried by the parton originating in hadron

i and the momentum of hadron i respectively. The full phase space element becomes

dxA dxB dφ2. xA and xB are constrained to be between 0 and 1, so the trivial mapping

xA = r1 → dxA = dr1

xB = r2 → dxB = dr2,
(4.35)

can be used, giving the total phase space element (in the centre-of-mass frame):

dxAdxBdφ2 =

√(
E2 − (M1 −M2)2

)(
E2 − (M1 +M2)2

)
8πE2 dr1dr2dr3dr4. (4.36)

Special case: 2→2 with Intermediate Resonance

If there is an intermediate massive, s-channel propagator with mass M and decay width

Γ, for small Γ
M it will have a pronounced Breit-Wigner peak, contributing a factor to

the amplitude of the form shown in eq. (4.21). Some modifications are made to the

2→ 2 prescription above, since the resonance is greatly enhanced when the propagator

has a virtuality (corresponding to the parton centre-of-mass energy by conservation of

momentum) in a narrow region around the peak value of q2 = M2, so generating xA

and xB uniformly across the whole phase space will be inefficient and it is necessary to

compensate for the (difficult to integrate) Breit-Wigner peak in the squared amplitude.

Denoting the centre-of-mass energy squared by s and the parton centre-of-mass en-

ergy squared by ŝ, note that the parton momentum fractions xA and xB from the

previous section satisfy ŝ = xAxBs. It is then useful to define τ = xAxB = ŝ
s .

In this case, the virtuality q2 of the Breit-Wigner propagator will coincide with the

total parton centre-of-mass energy, ŝ. Using eqs. (4.22) and (4.24) to assign ŝ between

0 and s (but overwhelmingly most probably close to M2) and eq. (4.22) to perform the
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mapping, the integration is transformed according to:

∫ 1

0
dτ =

1

s

∫
dŝ =

∫ zmax

zmin

1

s

(ŝ−M2)2 + (MΓ)2

MΓ
dz

=

∫ 1

0

1

s

(ŝ−M2)2 + (MΓ)2

MΓ
(zmax − zmin) dr.

(4.37)

The factor of (ŝ−M2
)
2
+(MΓ)

2

MΓ will cancel with the Breit-Wigner propagator in the ampli-

tude.

It is convenient to parametrise the other initial state degree of freedom as the boost

rapidity of the centre-of-mass frame:

y =
1

2
ln
x1

x2
(4.38)

which, knowing τ , can be assigned according to

y =
1

2
ln τ − ln τ r2 → dy = − ln τdr2. (4.39)

Combining this with the two body decay, the total transformation is then

∫ 1

0

1

s
dτ

∫ 1
2

ln τmax

1
2

ln τmin

dy dφ2 =

∫ 1

0
dr1dr2dr3dr4

1

s

(
arctan

s−M2

MΓ
− arctan

−M2

MΓ

)

ln τ
(ŝ−M2)2 + (MΓ)2

MΓ

√(
E2 − (M1 −M2)2

)(
E2 − (M1 +M2)2

)
8πE2

(4.40)

Special Case: 2→2 Decay with massless t-channel propagator

The 2 → 2 decay with an intermediate massless t-channel propagator does not place

restrictions on the initial state momentum fractions, so they can be generated them

uniformly according to eq. (4.35). Once these are assigned, assuming the colliding par-

ticles are massless and the parton centre-of-mass frame is used, a can be determined

from eq. (4.32). The 2 body decay can then be calculated as in eq. (4.17) with the

cos θ integration performed according to the massless t-channel propagator mapping,

eq. (4.34).
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p1 → k1 →

k2 →p2 →

θ

Figure 4.4: Layout of notation for 2→ 2 decay with a massless t-channel propagator

The phase space volume for the 2 → 2 decay with a massless t-channel propagator

as in figure 4.4 is then (assuming the colliding particles are also massless):

∫ 1

0
dxA

∫ 1

0
dxB

∫ cos θmax

cos θmin

d cos θ

k2 dφ2 =

∫ 1

0

λ
1
2

(
E2
CM , k

2
1, k

2
2

)
32π2E2

CM

4π (xmax − xmin) dr1dr2dr3dr4dr5.

(4.41)

where λ
1
2

(
E2
CM , k

2
1, k

2
2

)
is defined in eq. (4.20) and

xmax/min =
(y2
max/min)1−n

1− n

ymax/min =
ECMEk1 − k2

1

ECM

∣∣∣~k1

∣∣∣ − cos θmax/min

(4.42)

62



4.3 Monte Carlo Integration Theoretical Predictions for LHC Cross Sections

General Three-Body Decay

For a general three-body decay, where p is the incoming momentum:

dφ3(p; k1, k2, k3) = (2π)4 δ (p− k1 − k2 − k3)
d3k1

(2π)3 2E1

d3k2

(2π)3 2E2

d3k3

(2π)3 2E3

=
d3k1

(2π)3 2E1

(2π)4 δ ((p− k1)− k2 − k3)
d3k2

(2π)3 2E2

d3k3

(2π)3 2E3

=
d3k1

(2π)3 2E1

dφ2 (p− k1; k2, k3)

=

∣∣∣~k1

∣∣∣2 d ∣∣∣~k1

∣∣∣ dΩ1

(2π)3 2E1

1

16π2

∣∣∣~k CM23
2

∣∣∣
ECM23

dΩCM23
2

=
1

16 (2π)5

∣∣∣~k1

∣∣∣ dE1dΩ1 λ
1
2

(
1,
M2

2

s23
,
M2

3

s23

)
dΩCM23

2

(4.43)

where E1 =

√∣∣∣~k1

∣∣∣2 +M2
1 and so dE1

d|~k1| =
|~k1|
E1

. Also, dΩ1 = d cos θ1dφ1; dΩCM23
2 =

d cos θCM23
2 dφCM23

2 . All polar and azimuthal angles θi and φi refer to the angles between

outgoing particle i in the specified frame with the total incoming momentum.

The random numbers are assigned according to

cos θ1 = 2r1 − 1→ d cos θ1 = 2dr1

φ1 = 2πr2 → dφ1 = 2πdr2

(4.44)

and similarly for φCM23
2 and cos θCM23

2 with r2 and r3. A fifth degree of freedom is

assigned according to:

E1 = E1,min +
(
E1,max − E1,min

)
r5 → dE1 =

(
E1,max − E1,min

)
dr5. (4.45)

In the centre-of-mass frame, the kinematic limits for E1 are determined by

M1 ≤ ECM1,min < ECM1,max ≤
E2
CM +M2

1 − (M2 +M3)2

2ECM
(4.46)
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and also

∣∣∣~k CM
1

∣∣∣ =

((
ECM1

)2
−M2

1

) 1
2

s23 = E2
CM +M2

1 − 2ECME
CM
1∣∣∣~k CM23

2

∣∣∣ =
∣∣∣~k CM23

3

∣∣∣ =
λ

1
2

(
s23,M

2
2 ,M

2
3

)
2ECM23

23

=
λ

1
2

(
s23,M

2
2 ,M

2
3

)
2
√
s23

CM23
.

(4.47)

The general three-body phase space element can then be written as:

dφ3 =
1

4 (2π)3

∫ 1

0

(
E1,max − E1,min

) ∣∣∣~k1

∣∣∣λ 1
2

(
1,
M2

2

s23
,
M2

3

s23

)
dr1dr2dr3dr4dr5. (4.48)

Three-Body Tree-Level Decay with Two Massless t-Channel Propagators

p1 →

p2 →

k1 →

k2 →

k3 →

Figure 4.5: Layout of notation for a three body decay.

For the case under consideration, the layout is as given in figure 4.5, with the assump-

tion that p2
1 = p2

2 = 0. Then
√
ŝ = ECM = 2ECM1 = 2ECM2 ; ~p CM1 = −~p CM2 ,

∣∣∣~p CM1

∣∣∣ =∣∣∣~p CM2

∣∣∣. The simple mappings xA = r1 and xB = r2 can be used. This allows us to assign

p = p̂A + p̂B = xApA + xBpB. The goal is then to find an expression for dxAdxBdφ3.

Boosting p to the centre-of-mass frame gives p→ pCM , and a three-body decay can then

be performed as described above:

ECM1 = ECM1,min +
(
ECM1,max − ECM1,min

)
r1

ECM1,min = M1, ECM1,max =
ŝ+M2

1 − (M2 +M3)2

√
ŝ

φCM1 = 2πr3.

(4.49)

The kinematics described in the previous discussion of the general three-body decay lead
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to

∣∣∣~kCM1

∣∣∣ =

√(
ECM1

)2
−M2

1

s23 = E2
CM +M2

1 − 2ECME
CM
1 =

(
ECM23

)2

∣∣∣~k CM23
2

∣∣∣ =
∣∣∣~k CM23

3

∣∣∣ =
λ

1
2

(
s23,M

2
2 ,M

2
3

)
2ECM23

23

.

(4.50)

To define angles in the centre-of-mass frame of particles 2 and 3 (CM23), it is necessary

to boost p2 to CM23 to define the z-axis. In this frame, it is then possible to generate

cos θ, using the mapping defined in eq. (4.34) for a massless t-channel propagator:

cos θCM23
2 = a2 − y2

y2 = ((1− n)x2)
1

1−n

x2 =
y1−n

2

1− n = x2,min +
(
x2,max − x2,min

)
r4

(4.51)

giving

d cos θCM23
2 = −dy2 = −yn2

(
x2,max − x2,min

)
dr4

φCM23
2 = 2πr5.

(4.52)

Now that the required angles are assigned, ~k CM23
2 can be constructed by rotating ~p CM23

2

by (cos θCM23
2 , φCM23

2 ) and finally boosting it back to the centre-of-mass frame.

4.3.3 Mappings used in gg2VV

The mappings used in the multi-channel implementation for the semi-leptonic Higgs

decays in gg2VV are described here in detail, making use of the components given in the

previous section. It is important to emphasise that in many cases there are in fact two

(sequential) mappings of the same phase space variables; the first to deal with kinematic

structures that may be difficult to integrate (not required in every case), and the second

to map between the phase space variables (momenta and angles) to the random numbers;

this second mapping must always be present.
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Higgs Resonance Decaying to Two Massive Vector Bosons

H

Va

Vp

1

2

3

4

5

6

Figure 4.6: Feynman diagram showing layout of notation for the phase space mapping used for
the signal process with a resonant Higgs in gg2VV.

The relevant components are the 2→ 2 with resonance phase space (eq. (4.40)) with

two Breit-Wigner mappings (eq. (4.22)) and two body decays (eq. (4.17), one for each

vector boson). Care must be taken with the integration limits: the Higgs boson will have

a virtuality close to 125 GeV and so cannot produce two resonant W or Z bosons. Hence

two mappings are needed, one in which say Va (the notation and labelling is shown in

figure 4.6) is assigned its variables first and therefore will be close to on-shell, while

Vp receives its energy from the remaining parton centre-of-mass energy and will be far

off-shell, and a second mapping where this is switched so that Vp is in the on-shell region.

The ten random numbers then correspond to:

(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10)→(
ŝ, y, q2

34, q
2
56, cos θa, φa, cos θ3, φ3, cos θ5, φ5

) (4.53)

where θa and φa are the polar and azimuthal angles between the incoming parton and

Va in the centre-of-mass frame, θ3 and φ3 are the angles between outgoing parton 3 and

its parent vector boson, and θ5 and φ5 similarly for outgoing parton 5. ŝ and y are

mapped as in eq. (4.40).The two q2 variables are mapped by eqs. (4.22) and (4.24), and
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the angles by eq. (4.18). In total, this gives:

∫
dxadxbdφ =

∫ 1

0
dr1 · · · dr10

1

s
ln τ

(
ŝ−M2

H

)2
+ (MHΓH)2

MHΓH
(zŝ,H,max − zŝ,H,min)(

q2
34 −M2

V

)2
+ (MV ΓV )2

MV ΓV
(z
q
2
34,V,max

− z
q
2
34,V,min

)(
q2

56 −M2
V

)2
+ (MV ΓV )2

MV ΓV
(z
q
2
56,V,max

− z
q
2
56,V,min

)(
1

32π2

)3

(4π)3 λ
1
2

(
1,
q2

34

ŝ
,
q2

56

ŝ

)
(4.54)

where, by eq. (4.22),

z
q
2
,i,max/min

= arctan

(
q2
max/min −M2

i

)
MiΓi

. (4.55)

Eqn. (4.54) describes the mapping with the Va vector boson assigned first (and therefore

having a mass close to MV ); the mapping with Vp will then be identical but with q2
34

and q2
56 swapped in eq. (4.54) and eq. (4.53).

Continuum Production of Two Massive Vector Bosons

1

2

3

4

5

6

Va

Vp

Figure 4.7: Feynman diagram showing layout of notation for the phase space mapping used for
the continuum background process with two massive vector bosons in gg2VV.

This mapping is similar to the previous Higgs resonance mapping, except with simpler

mappings for the initial state variables (eq. (4.35)) and one less Breit-Wigner mapping.

The random numbers correspond to (with simply eq. (4.35) for the first two variables,
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and everything else as above):

(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10)→(
x1, x2, q

2
34, q

2
56, cos θa, φa, cos θ3, φ3, cos θ5, φ5

)
,

(4.56)

where θa and φa refer to the angle between incoming gluon 1 and Va in the centre-of-mass

frame. In total, this gives:

∫
dxadxbdφ =

∫ 1

0
dr1 · · · dr10

(
q2

34 −M2
V

)2
+ (MV ΓV )2

MV ΓV
(z
q
2
34,V,max

− z
q
2
34,V,min

)(
q2

56 −M2
V

)2
+ (MV ΓV )2

MV ΓV
(z
q
2
56,V,max

− z
q
2
56,V,min

)(
1

32π2

)3

(4π)3 λ
1
2

(
1,
q2

34

ŝ
,
q2

56

ŝ

)
.

(4.57)

Note that the limits are again asymmetric, as once the first vector boson virtual-

ity is assigned (say q2
34) it reduces the available energy left for the second, given by(

q2
56,max =

(
ECM −

√
q2

34

)2
)

. In most cases, the two vector bosons are on-shell so

this does not have an effect on the final result. However, to take account for situations

where cuts might be asymmetric, again a duplicate mapping with q2
34 and q2

56 reversed

should be included.

Continuum Production of One Z-Boson and One Photon

1

2

3

4

5

6

Za

Ap

Figure 4.8: Feynman diagram showing layout of notation for the phase space mapping used for
the continuum background process with one Z boson and one photon in gg2VV.

Again, this mapping uses many components of the previous, but one of the Breit-

Wigner mappings is replaced by the massless s-channel propagator mapping, eq. (4.27).
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The random numbers correspond to:

(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10)→(
x1, x2, q

2
34, q

2
56, cos θa, φa, cos θ3, φ3, cos θ5, φ5

) (4.58)

where the only difference from the previous case is that q2
56 is mapped to r4 using

eqs. (4.27) and (4.28).

The full mapping is:

∫
dxadxbdφ =

∫ 1

0
dr1 · · · dr10

(
q2

34 −M2
V

)2
+ (MV ΓV )2

MV ΓV
(z
q
2
34,V,max

− z
q
2
34,V,min

)(
q2

56

)n
(xmax − xmin)

(
1

32π2

)3

(4π)3 λ
1
2

(
1,
q2

34

ŝ
,
q2

56

ŝ

) (4.59)

where

xmax/min =
(q2

34,max/min)1−n

1− n . (4.60)

Again, a duplicate mapping is requiring to account for the leg 56 being the Z boson

and 34 the photon, swapping q2
34 and q2

56 in the above equation.

Continuum Production of Two Photons

1

2

3

4

5

6

Ap

Aa

Figure 4.9: Feynman diagram showing layout of notation for the phase space mapping used for
the continuum background process with two photons in gg2VV.

The mapping is again similar to the previous section but with the second Breit-

Wigner mapping replaced also by the massless s-channel propagator mapping. The

random numbers correspond as before (with both q2 variables now mapped by eqs. (4.27)
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and (4.28)) to:

(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10)→(
x1, x2, q

2
34, q

2
56, cos θa, φa, cos θ3, φ3, cos θ5, φ5

) (4.61)

The mapping is:

∫
dxadxbdφ =

∫ 1

0
dr1 · · · dr10

(
q2

34

)n
(x34,max − x34,min)

(
q2

56

)n
(x56,max − x56,min)(

1

32π2

)3

(4π)3 λ
1
2

(
1,
q2

34

ŝ
,
q2

56

ŝ

)
(4.62)

Tree-Level Production of Two Quarks and One Vector Boson (Massless s-

Channel and Massless t-Channel Propagators)

1

2

5
3

4

6
346

Va

Figure 4.10: Feynman diagram showing layout of notation for the phase space mapping used
for the tree-level background process with one massless s-channel propagator and one massless
t-channel propagator in gg2VV.

Here, the 2→ 2 with massless t-channel propagator phase space, described above, is

used, where one of the outgoing legs of the 2 → 2 decay becomes a massless s-channel

propagator and radiates an additional Breit-Wigner resonance and two-body decay. This

mapping in fact has 4 permutations: firstly, as before, the massive vector boson can be

radiated off either leg, and since the integration limits are asymmetric each mapping

should be repeated with the order of assignation of q2
34 and q2

56 reversed.

The random number assignation is

(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10)→(
xa, xb, q

2
34, s346, cos θ3, φ3, cos θ34, φ34, cos θ5, φ5

) (4.63)
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where the q2
34 mappings are those for a Breit-Wigner resonance, eqs. (4.22) and (4.24) and

the s346 mappings those for the massless s-channel propagator, eqs. (4.27) and (4.28).

The mapping for cos θ5 (between incoming particle 1 and outgoing particle 5) is no longer

the simple mapping from eq. (4.18) (still used for φ5 and the remaining angles), but the

mapping for a massless t-channel propagator of eq. (4.34). The full mapping is then:

∫
dxadxbdφ =

∫ 1

0
dr1 · · · dr10

((
q2

34 −M2
V

)2
+ (MV ΓV )2

)
(z
q
2
34,V,max

− z
q
2
34,V,min

)

(s346)n (x346,max − x346,min)
1

32π2 λ
1
2

(
1, 0,

s346

ŝ

)
(1− cos θ)n (cmax − cmin) · 2π 1

32π2 λ
1
2

(
1,
q2

34

s346
, 0

)
(4π)2 1

32π2 ,

(4.64)

where cmax/min are given by xmax/min in eq. (4.42).

Three-Body Decay: Production of Two Quarks and One Massive Vector

Boson

1

2

5
3

4

6

Va

Figure 4.11: Feynman diagram showing layout of notation for the phase space mapping used for
the tree-level background process with two massless t-channel propagators in gg2VV.

This mapping, with layout as in figure 4.11, uses the 2→ 3 body decay mapping given

in eqs. (4.51) and (4.52), combined with a Breit-Wigner propagator and 2-body decay.

Care must be taken with the frames that each factor is calculated in, as described in the

text surrounding the equations. The mapping assumes that p2
1 = p2

2 = M2
5 = M2

6 = 0.

The random number assignment is

(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10)→(
xa, xb, q

2
34, E

CM
5 , cos θ5, φ5, cos θCM346

6 , φCM346
6 , cos θCM34

3 , φCM34
3

)
.

(4.65)
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q2
34 is mapped by eq. (4.22); ECM5 by eq. (4.49), cos θ5 and cos θ6 by eq. (4.34), and the

remaining angles by the usual simple angular mapping in eq. (4.18).

The full mapping is:

∫
dxadxbdφ =

∫ 1

0
dr1 · · · dr10

((
q2

34 −M2
V

)2
+ (MV ΓV )2

)
(z
q
2
34,V,max

− z
q
2
34,V,min

)

1

16 (2π)5E
CM
5 (Emax − Emin)

(
1− cos θCM5

)n
(c5,max − c5,min) · 2π

λ
1
2

(
1, 0,

q2
34

s346

)(
1− cos θCM346

6

)n
(c6,max − c6,min) · 2π 1

32π2 4π

(4.66)

where Emin = 0, Emax = ŝ−M2
V

2
√
ŝ

and the relevant values of ci,max/min are derived from

eq. (4.42).

4.3.4 Implementation of Multi-Channel Mappings in gg2VV

From a computational point of view, there are two ways in which the mappings fi for

i = 1 · · ·N will be used. For every phase space point, a mapping will be chosen (either

sequentially or with uniform probability) as the ‘main’ mapping, with which the phase

space variables for this point, denoted PS, are calculated in a new basis. However,

even with this mapping chosen, the Jacobi determinants gj(PS) of every other mapping

will still need to be calculated for the chosen phase space point and summed to give

the overall weight for that phase space point; these give the total g (PS) factor in the

change of variables, but it is the additional Jacobi determinant from the main mapping

that will compensate the peak in the matrix element.

The code implementation consists of classes for the different kinematic components

(e.g. resonance, two body decay) and a class for each mapping, containing a ‘main

mapping’ method to take a vector of random numbers (and any other values that one

might wish to reuse in a different circumstance, and should therefore not be constants:

e.g. the mass and width of a vector boson, meaning that some of the same mappings can

be used for WW/ZZ diagrams) and assign values in the chosen phase space basis, and

a ‘jacobi’ method to calculate the Jacobi determinant for that mapping using the phase

space variables assigned by the main mapping. A further method sums the inverse
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Jacobi determinants and assigns the total weight g(PS) to every point. In the code

used throughout this thesis, gg2VV (written in C++), there is also an “enum” for each

mapping, allowing the appropriate mappings to be chosen automatically depending on

the amplitude contributions that are included (e.g. signal-only, background-only).

Note that the different mappings cover overlapping regions of phase space - any

mapping can be performed at any point, although it will automatically receive a large

(small) weighting if it is more (less) important. The different error contributions are

therefore not independent, hence are summed linearly rather than in quadrature.

An immediate advantage of the multi-channel approach is that the code is easily

generalisable, e.g. to cases with an additional heavy Higgs-like boson: the same mapping

used for the SM Higgs boson can be recycled, with the SM mass and width replaced

with the desired values. It will be seen in Chapter 7 how this can be neatly applied in

the Higgs singlet extension of the Standard Model, for example.

Improved error convergence on subsequent iterations can in principle be achieved

with adaptive αi weights [55]. Since the error is dependant on the variance, which

is calculated from the square of the integrand, (h (PS) gi (PS))2, the authors suggest

minimising

W =
〈

(h (PS) gi (PS))2
〉

(4.67)

with respect to the weights, and finding an optimal set of weights ᾱ such that the

derivative

W ′i = −1

2

∂W

∂αi
=

〈
h2(PS)g3(PS)

gi(PS)

〉
(4.68)

is independent of the channel i, which they argue is the condition for a minimum.

For the particular case of stratified sampling, a type of Monte Carlo integration

where the phase space is divided into bins of a predetermined size and a predetermined

number of points sampled in each bin, the authors have shown that the optimal set ᾱ is

achieved for

W ′i (α) = c ᾱ−2 (4.69)

where c is a constant with respect to the index i, the channel being considered. They
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then propose that the optimal set will therefore be immediately reached by setting

αi,new = αi,old

√
W ′i . (4.70)

This justification is based on the special case of stratified sampling, and no more general

result is given. Stratified sampling assumes that each channel is separate and indepen-

dent, i.e. that each channel covers a separate phase space region and so has a constant

finite probability density in the region and zero probability density outside. This is

not the case in the situations considered here - the entire reason that multi-channel

mappings are necessary is that the importance of different channels overlaps across the

entire phase space. Nonetheless, the authors have confirmed in private correspondence

that this general procedure works well in practice for more general situations than those

described, in particular for particle physics applications.

Since the procedure is not exact, an implementation requires a measure of the success

of the weight adaptation, and ideally several iterations will be performed and the best

set of weights chosen. The authors argue that, in special cases, the error is minimised

when all channels contribute equally to the variance, so the quantity

D = max
i,j

∣∣W ′i (α)−W ′j(α)
∣∣ (4.71)

is calculated for each iteration and the set of weights that minimise D chosen.

This method was implemented and tested in gg2VV, but the gain was found to be

minimal, particularly in combination with the competing adaptation of the importance

sampling weights used to optimise the individual channels, and so it was discarded, and

uniform αi weights are used.

4.4 Event Generation

In many cases, the desired output of a Monte Carlo integrator is not only a numerical

answer for a cross section or a set of differential distributions, but a set of simulated

events such as might be expected in an analysis of real detector data - a list of final

state particles and their measurable properties, in particular their energy and momenta.
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Code designed to perform Monte Carlo integration is easily adapted to output events,

since evaluating the integral at a phase space point effectively means generating values

for all the integration variables, i.e all external momenta and the initial state momentum

fractions, and can be considered an event.

Events generated in this way can be either weighted or unweighted. If events are

weighted, there can be as many events generated in unlikely regions of the phase space

as in likely regions, but with a lower weight (reflecting the probability) attached. Events

will therefore contribute more or less to the computation of observables depending on

their probability of occurring. Typically, experimentalists wish to compare unweighted

events to data, where every event has equal weighting and so the events are distributed

as in nature. The usual strategy for unweighting events, by default generated weighted

in a Monte Carlo integrator like gg2VV, is to find the maximum weight in the total

sample, and keep or reject each simulated event with a probability of P = fevent
fmax

where

f is the integrand dσ
dr evaluated at that point, here referred to as the weight. In practice

this means generating a random number r between 0 and 1 and keeping the event if

r < P .7

An advantage of generating a set of events in a standard format is that they can be

easily interfaced with other code, for example samples created in a parton-level genera-

tor, designed to simulate the hard process only, can be showered and hadronised using

different software.

4.5 Interference

The squared sum of Feynman diagrams used to calculated the matrix element requires

some clarification. Physicists typically talk of a ‘signal process’, referring to the process

of interest containing a particular resonance or feature of interest and the ‘background

processes’ which are non-signal processes that are formally indistinguishable from the

signal. However, signal and background in isolation are not observables; although it

may be possible to make inferences about the most likely intermediate state based on

kinematic distributions of observables, the quantum principle that any and all paths

7
This strategy is a general technique for generating distributions corresponding to an arbitrary prob-

ability distribution.
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between a given and initial final state occur with a finite probability applies. If only

subsets of all available paths are considered, there is no guarantee of unitarity or gauge

invariance.

Backgrounds can be further divided into reducible backgrounds, that have the same

initial and final state at detector level but typically look very different in their output,

for example they may have distinguishing kinematic features like back-to-back jets, and

irreducible backgrounds, i.e. those that look very similar to the signal process. All types

of backgrounds must be formally included, but with particular selection cuts reducible

backgrounds can be rendered less important. Further backgrounds come from ‘fakes’ -

events that in fact come from a different process, and would not formally be included

in a theoretical prediction, but are incorrectly identified by tracking and identification

procedures, for example due to a particle being deposited in a detector blindspot and

therefore registered as contributing missing energy and transverse momentum to the

process, incorrectly indicating an invisible particle such as a neutrino.

Typically the signal and background are discussed separately. However, it is not

correct to simply take the sum of these to calculate the observable number of events;

since the quantities under consideration are quantum fields and coherent processes, it

is important to consider a third type of contribution, the interference term. Formally,

denoting the matrix element as M,

σ ∼ |M|2 =
∣∣Msig +Mbg

∣∣2 =
∣∣Msig

∣∣2 +
∣∣Mbg

∣∣2 + 2Re(M∗sigMbg) (4.72)

and it is the last term which is described as interference.

It should be emphasised that although the quantity in eq. (4.72) is gauge indepen-

dent, as mentioned above, this is not guaranteed for individual components.8 Gauge

dependence in automatically generated amplitudes for unstable particle production and

decay is a long-standing unresolved problem and not specific to interference calculations.

Here, the fixed-width prescription for unstable particle propagators is adopted, because

no phenomenologically relevant example is known where it leads to significant deviations

compared to a gauge independent treatment of the amplitudes. This is generally true,

including for interference calculations.

8
All results calculated in this thesis are calculated in the Feynman gauge.
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Until the last decade or so, in many approximations this final interference term was

considered only as a correction,9 and if mentioned at all was quoted as a source of error.

However, in the processes considered at the LHC, other large sources of error, notably

PDF and scale errors, have gradually reduced to the percent level, meaning that treating

any effects that can be of similar or larger order more carefully is merited. Interference

effects in many cases are now known to be at the level of a 10% or higher correction to

the pure signal, and can be reduced or enhanced with selection cuts, therefore a more

careful study is required.

Interference effects are often related to (although not confined to) off-shell effects.

Typically, all intermediate resonances in a process are approximated as being ‘on-

shell’ since the Breit-Wigner resonance contribution to the squared amplitude shown

in eq. (4.3) is dramatically enhanced when the centre-of-mass energy is close to the

mass, tending to overshadow all other effects. However, it is increasingly recognised that

‘off-shell’ effects must be properly treated. In certain cases, other effects give enhance-

ments in the differential distribution away from the on-shell region. It is when these

enhancements overlap with important regions from other contributions in the sum that

significant interference can be observed.

A good example of the relevance of off-shell effects is the importance of the weak

boson decay channels of the light Higgs boson. The presence of these channels at all is an

off-shell effect, since for MH < 2MV , which 125 GeV certainly is, one of the vector bosons

to which the Higgs decays must be far off-shell. The narrow-width approximation, which

replaces the full resonance propagator with π
mΓδ(q

2 −M2) in the limit that M � Γ, is

naively expected to be excellent for a low mass (and therefore small width) Higgs boson,

since the error is expected to be O( ΓH
MH

). However, this error estimate assumes that the

strongest centre-of-mass energy dependence comes from the resonance; in the case of the

Higgs boson decaying to two vector bosons the matrix element is dramatically enhanced

when the second vector boson can go on-shell, above q2 ∼ (2MV )2. At this point, the

decay matrix element squared has an energy scale dependence ∼ (q2)2, and so the narrow

width approximation is no longer appropriate [6]. There is a distinct bump in the tail

of the distribution at ∼ 2MV , and a further bump in the gluon fusion case at 2Mt due

9
With a few notable exceptions, for example destructive interference arising from the Higgs-mediated

process in longitudinal WW scattering is crucial to unitarise the cross section.
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Figure 4.12: Invariant mass distribution comparing results with and without the narrow-width
approximation, and with and without interference (taken from [6]).

to two top quarks in the gluon-fusion-to-Higgs quark loop being allowed to be on-shell.

Without cuts excluding these off-shell regions, the inclusion of these effects enhances the

signal by about 10%. These effects are clearly visible in figure 4.12, reproduced from

ref. [6].

In recent times, the different off-shell dependence of cross sections has been exploited

in a very neat way to allow a much stronger limit to be set on the Higgs boson width

than was ever expected at this early stage of the LHC programme. It is arguable

[56] whether this limit is robust against new physics effects in loops in gluon fusion,10

but it is nonetheless promising. The idea is that while the on-shell cross section is

inversely proportional to the total width and so is sensitive only to ratios of couplings

(and therefore cannot distinguish between the SM case and a case where couplings are

uniformly scaled by an identical factor), the off-shell region has no width dependence.

Comparison of on- and off-shell event rates then allows a limit to be extracted on the

allowed scaling of the SM Higgs width [5]. ATLAS [3] and CMS [4] have performed

analyses bases on this method and published 95% confidence upper limits on the Higgs

width of 17.4 MeV and 22.7 MeV respectively, about 5 times the SM value.

Another use of interference to limit the Higgs width has been described in references

[57] and [58], where the interference effects between the very clean gg → H → γγ process

and the gg → γγ background, combined with the smearing effects of the detector, cause

the measured value of the mass peak of the Higgs boson to shift from its theoretical

10
So far, this method has been applied to gg → H → ZZ.
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prediction without interference (or its measured value in the gg → H → ZZ channel,

which is not affected by on-resonance interference) by a potentially measurable amount.

However with current precision and luminosities, this method is not precise enough to

compete with the on-shell/off-shell comparison method.

In addition to the references cited above, refs. [59, 60] gave an early study of the

interference between the Higgs signal and continuum background for gg → ZZ, which is

followed up in ref. [61]. Reference [62] considers this process in vector boson fusion, i.e.

with two extra final state jets. Reference [63] considers the Higgs production in gg →
WW , ref. [64] studies the same process beyond leading order and ref. [65] gives a study

for all fully leptonic final states, including interference between the gg → H → WW

and gg → H → WW signals in the case with a same flavour 2`2ν final state. Further

papers studying interference in the di-photon process to leading order and beyond are

refs. [66–68]. Studies of interference between SM and BSM processes have also been

carried out, for example in the SM+Higgs singlet model in refs. [7, 69,70].

The papers cited above consider a single initial state of gg or qq̄, however the distin-

guishable initial state is in fact pp rather than gg; beyond leading order, there is then

the possibility of interference between different Higgs production mechanisms that give

the same final state, for example the production of a Higgs boson with two jets arising

from NLO gluon fusion or LO vector boson fusion. It has been pointed out [71] that

this interference is not necessarily negligible. For Run I of the LHC, gluon fusion was by

far the dominant production mechanism, but VBF will become more important in Run

II and this may merit further study. The studies in this thesis are not affected by this,

since only the leading order gluon fusion case is considered.
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Chapter 5

gg → VV: A Parton-Level

Integrator and Event Generator

5.1 The Code

gg2VV [6] is a publicly available program to compute cross sections and generate parton-

level events at leading order for the gluon fusion Higgs decays via weak bosons. Previous

versions of the code covered all fully leptonic Standard Model final states. My work has

been to add the SM semi-leptonic decays and the BSM Higgs singlet model with the main

fully leptonic decays; both additions are publicly available as new versions, separate to

the main development line, gg2VV EWS [7] and gg2VV-3.1.2 semilept [8] respectively. I

have also implemented multi-channel mappings, as discussed in Chapter 4, in the phase

space integration part of the code, which is a significant redesign of how the phase space

integration is performed. This was necessary in order to accommodate the semi-leptonic

decays, due to the large number of different kinematic structures, and was useful in the

implementation of the BSM processes since it is easily extendable to additional Higgs-like

resonances.

The code is structured as follows:

• The main function begins by checking for external input of random number seed,

initialised phase space grid, or initialised event file. Monte Carlo integrator and

parallelisation objects (discussed further in section 5.1.1) are instantiated and ini-

tialised, and all relevant parameters are printed out for reference.
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• The phase space integration is set up by selecting the number of kinematic channels

based on the process and requested amplitude contributions, and Monte Carlo

objects created for each section/channel. The number of integrands to be kept

track of is selected and the integrator objects instantiated (integrands include the

main integrand at the chosen PDF and renormalisation scale, and the integrands

at the scales varied by a specified factor, usually two).

• At this point, the flow diverges depending on whether event generation is chosen or

not. If no event generation is required, an initial estimate of efficiency is performed,

and if necessary initial adaptation runs will be carried out in order to produce a

sample with the desired number of shots passing the selection cuts and consistency

tests. A single successful ‘shot’ consists of performing the phase space mapping to

get a valid phase space configuration, testing that this passes consistency checks like

conservation of 4-momentum and energy, and checking that it passes the selection

cuts. The amplitude is then calculated and combined with the phase space weight,

PDF probability, and additional factors excluded in the amplitude calculation like

αs (set to 1 initially) raised to the relevant power, and the conversion factor from

GeV−2 to fb.

The requested number of iterations are then run, with grid adaptation and Monte

Carlo weight adaptation (i.e related to importance sampling weights as in sec-

tion 4.3, not multi-channel weight as in section 4.3.1) after each section. Note

that in some cases with a large number of multi-channel sections, there may be

some tension in the importance sampling weight adaptation, especially if it is per-

formed based on early runs with low efficiency and high error. For this reason, it

is recommended that the number of initial shots is not too low (say & 105).

• If event generation is selected, the code runs several shorter cross section type runs

in order to adapt the grid, and then runs in event generation mode; the number

of events to be generated in each section1 is estimated and the phase space points

randomly generated; the produced phase space point is then passed to an event

generation module that undoes the approximation of massless leptons for µ and τ

and prints the output in a standardised form [23]. By default events are weighted,

1
In this context a section is defined as a set of phase space points which will be generated according

to a particular main multi-channel mapping.
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if necessary they can then be unweighted; the code keeps track of the maximum

weight and maximum cross section to perform this as described in section 4.4.

• On the final iteration in both event generation and integrated cross section mode,

all data is binned into histograms as requested and new adapted grid files are

printed for use in future runs.

5.1.1 External Packages

During runtime, gg2VV makes use of several external packages:

• LHAPDF [72] is the standard PDF library format and PDF reader used by many

HEP event generators; gg2VV calls functions for the value of the PDF at a particu-

lar value of the parton momentum fraction for each colliding beam and the specified

value of the factorisation scale µf . It also requests the value of the strong coupling

constant at the chosen scale. PDF errors, where available, can be requested.

• LoopTools [73] performs the evaluation of the one-loop integrals in the amplitude

expressions; it was designed in tandem with FormCalc (described in the same ref-

erence), the code used to generate the amplitude expressions used in gg2VV.

• OmniORB [74] is a distributed worker system based on CORBA,2 used in the par-

allelisation of the code. Each section of the phase space integration must select

phase space points and evaluate the amplitude N times (typically N ∼ 106) with

m worker nodes. The “omnicomp” module which takes advantage of omniORB

distributes roughly N/m points to each worker node in order to speed up the run-

time. Differing worker (CPU) speeds are taken into account and error treatment

is handled appropriately. At present the omnicomp module is not able to recom-

bine events generated by different workers so the parallelisation is only suitable

for cross section calculations, although a script is supplied that runs a separate

event generation process for each worker and combines the returned files. Another

disadvantage of this type of parallelisation is that if a single worker crashes, the

calculation must be killed and restarted.

2
A commonly used IDL interface for distributed broker/request management.
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5.1.2 Multi-channel Mappings Implementation

The multi-channel implementation is similar in overall structure to the older ‘phase

space’ class which divided up the phase space into separate integration regions. There

is a multi-channel namespace, with a class for each different mapping. Each mapping

class has a ‘mainMapping’ method that performs the phase space transformation and

assigns the required phase space variables according to the mapping, and also a Jacobi

function that returns the Jacobi determinant (taking an already-mapped phase space

point as input, and returning the Jacobi determinant that would have been calculated

if this mapping had been the main mapping). Two further methods in the namespace

deal with assigning the relevant mappings for each process and amplitude combination,

and calling the relevant “mainMapping” and “Jacobi” functions to assign all phase space

variables, including the overall weight.

Each channel is designed with a particular type of Feynman diagram in mind, in

order to compensate that diagram’s difficult or singular regions. Switches then allow

the selection of all continuum background diagram channels if one wishes to include the

continuum background and so on. Note that many of the diagrams in fact compensate

structures in the squared amplitude rather than the amplitude itself; this means that if

one chooses to separate the interference contribution and calculate this on its own3 the

mappings may not be ideal, however in practice it is found that they still work well.

Each channel has been tested separately to confirm that it succeeds in compensating

for the singular or strongly peaked structure for which it is designed, and also that it

satisfies the known analytic result for the phase space volume. With the amplitude and

PDF contributions simply set to one, a channel-by-channel test has been performed by

comparing the analytic result to the differential distribution obtained by integrating over

the phase space volume. For n massless final state particles,

∫
dΦn(PS) = (2π)(4−3n)

(π
2

)(n−1) p(2n−4)

Γ(n)Γ(n− 1)
. (5.1)

3
This is not strictly valid when event generation is desired and all results should be positive definite,

which the interference contribution alone is not. However in practice, if one wishes to get high precision
on interference in the cross section calculation, particularly in far off-shell regions of the phase space,
separating the interference contribution proves to be the best strategy.
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ŝ [GeV 2]

VaVp continuum bkg channel
fi→I(µf , xi), |M|2 = 1√

s = 8 TeV
d
σ̂
/d

ŝ
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Figure 5.1: Comparison between the analytic result given in eq. (5.4) and the gg2VV calculation
for phase space integration only, i.e. with the matrix element and PDF components set equal to
1. Examples are shown for a single channel (described in section 4.3.3) and for a summed group
of channels.

where p is the total momentum, given by the sum of the incoming momenta; then p2 = ŝ

and for n = 4 this gives

∫
dΦn(PS) =

π−52−11

12
ŝ2 = cŝ2 (5.2)

The more general cross section is given by:

σtot (a, b→ n)) =

∫ 1

0
dxA

∫ 1

0
dxBfA,a

(
xA, µf

)
fB,b

(
xB, µf

) 1

2ŝ

∫
dφn (PS)

∑
|M|2 .

(5.3)

Setting the matrix element and PDF contributions to 1, using dxAdxB =
1

xB
dτdxB

where τ =
ŝ

s
= xAxB, and combining this with eq. (5.2) then gives the comparison

formula for the differential cross section:

∂

∂τ
σPSonly =

c

2

∫ 1

τ
dxb

1

xb
τ =

c

2
(− log τ)τ. (5.4)

Every channel implemented in gg2VV has passed this test. Sample results for the con-

tinuum box (figure 5.2, described in section 4.3.3) channel alone and for all tree-level

background channels, summed as described in eq. (4.13), are given in figure 5.1.

84



5.1 The Code gg2VV
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Figure 5.2: Sample Feynman diagram of the type that causes problems for numerical stability
due to the Gram determinant approaching 0.

5.1.3 Errors and Precision

Regions of phase space where the vector bosons have very low pT suffer from sin-

gularities in the continuum diagrams of the type shown in figure 5.2. The helicity

amplitude for diagrams of this type contains a term proportional to the inverse of

detG = 2s (t · u− s3s4), the two-dimensional Gramm determinant, where s3 and s4

refer to the invariant mass of the vector bosons, and s, t, u are the Mandelstam variables

s = (p1 + p2)2, t = (p2 + p3)2and u = (p1 + p3)2. p1 and p2 refer to the initial state

gluons, and p3 to one of the W bosons. As the transverse momentum of the vector

boson approaches 0, the amplitude diverges while the cross section remains finite. A

more comprehensive discussion can be found in ref. [75], which uses the same LoopTools

external code as gg2VV for amplitude evaluation.

In gg2VV these issues are dealt with by evaluating points within a certain range of

the singularity in quadruple precision4 and cutting out any points with pT (V ) < 1 GeV;

this has less than a 1% effect on the final cross section. For consistency, this cut is then

generally applied (in the cut selection phase rather than inherently) to the signal cross

section, especially if signal-continuum interference is to be included in results. Note that

quadruple precision evaluation is significantly slower, so it is not feasible to evaluate the

whole phase space in quadruple precision.

Näıvely, one might assume that since the integration is performed in sections, the

error for each section should be summed in quadrature to produce an overall error esti-

mate. However, since the weight at every phase space point contains contributions from

every kinematic structure, the sections are not independent. Testing has revealed that

summing in quadrature underestimates the error, and hence errors are added linearly.

4
When much of the code was written this was only achievable with intel Fortran compilers; the gcc

Fortran compilers now also allow quadruple precision compilation.
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Cases where it is possible to isolate a contribution to the total cross section that

is not positive-definite are also considered. For example, it is possible to evaluate the

interference contribution only. There may be a large cancellation between positive and

negative contributions to the final result from each section, and to avoid underestimating

the error it is important to keep track of the variance for both types of contribution

separately and combine them in quadrature, before summing the contributions from

each channel linearly.

5.2 New Processes

The typical workflow of adding a new process is

• For a BSM Model, produce a FeynArts model file by implementing the model in

Feynrules (write the Lagrangian, specify output parameters and calculate derived

parameters such as widths as required). For a Standard Model process the default

‘SMQCD’ model in FeynArts is sufficient, so this step is unnecessary. If Feynrules

is used to generate the file, the external parameter defaults need to be changed to

match gg2VV; those used in the SMQCD model in FeynArts match gg2VV already.

• Using FeynArts and Formcalc [73,76] in Mathematica, produce the amplitude code

(in Fortran). FeynArts is only equipped to select contributions based on loop

order rather than coupling order; in cases with a loop-induced process and a tree-

level background such as the semi-leptonic processes considered in this thesis, this

then means that unwanted contributions such as the tree-level diagrams with elec-

troweak corrections must be excluded manually. The validity of this is discussed

further in Chapter 6.

• Adapt the Formcalc output for compatibility with gg2VV: where there are several

contributions to the interference that need to be separated, new variables need to

be added to keep track of the different components (by default all are included

but summed before the results are returned). The propagators for the vector

bosons and Higgs boson need to be adapted to include the partial widths, and

some formatting changes made to the default Fortran files for compatibility with

compilers.

• Add the adapted ‘squaredME’ folder generated in the previous step to the gg2VV
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amplitude/formcalc folder, and add a macro for the new process as a compilation

option. Any switches that depend on the process will need to be extended or

added as necessary, for example selection cuts optimised for a particular process,

event generation options, amplitude contribution options, and additional parame-

ters needed for a BSM process.

• If necessary, add new channels for the multi-channel integration. In many cases, it

will be possible to use existing channels. In all cases, it will be necessary to specify

which channels are to be included with which amplitude contributions.

For a new FeynArts model file, or one adapted from the SMQCD default (as was the case

for the Higgs singlet model discussed in Chapter 7), the model file should be validated

in some way, for example checking agreement with SM limits.

5.3 Comparison with Other Tools

The multi-channel mappings were a significant change in how gg2VV performed the

phase space integration. Validation against existing tools is therefore important, and

has shown good agreement. Although the point of implementing our chosen processes

was that no existing tools calculated all the contributions under consideration, certain

subsets of the contributions could be compared to other programs. SHERPA [77] was able

to calculate the tree-level contributions considered in Chapter 6, the comparisons are

shown in table 5.1. Comparisons for the loop-induced components were performed with

VBFNLO and MCFM; MCFM could only calculate the fully leptonic loop-induced WW

decays, but the only difference in this component with the WW semi-leptonic decays is a

factor of 3 due to the colour contribution for the hadronically decaying boson. Note that

although subsections of the calculation could be verified with different tools, no previous

implementation was capable of including all types of leading-order contributions (and

therefore including interference effects). Again, all comparisons showed good agreement.

These tests were performed during the initial implementation of the multi-channel

method; for the results given in [8], Eleni Vryonidou of the MG5 collaboration per-

formed a detailed comparison of our results using a custom implementation5 of Mad-

5
The public version of MadGraph5 aMC@NLO now allows automated calculation of loop-induced

processes but this was not complete at the time.
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Table 5.1: Early comparison of results for the integrated cross section of the tree-level background
with SHERPA, using identical cuts and PDF (CT10nnlo.LHGrid).

Process SHERPA gg2VV

gg → ¯̀νq′q̄ 5346(11) 5325(5)

gg → `ν̄qq̄′ 5332(11) 5324(7)
gg → `¯̀dd̄ 507(1) 505(1)
gg → `¯̀uū 470(1) 464(1)

Table 5.2: Comparison of cross sections for S = |MH |2, Itree = 2Re
∣∣MHM∗tree

∣∣ and Icont =

2Re
∣∣MHM∗cont

∣∣, calculated with gg2VV and MadGraph5 aMC@NLO for the process gg →
H →W−W+ → `ν̄` quq̄d. The gg2VV results are taken from table 6.1.

cuts S Itree Icont

min. (gg2VV) 67.28(9) -2.47(2) -4.99(1)

min. (MG5) 67.19(6) -2.49(2) -5.004(3)

LHC (gg2VV) 1.978(6) 0.266(4) -2.647(6)

LHC (MG5) 1.963(3) 0.264(4) -2.646(7)

bkg. (gg2VV) 13.30(2) -0.0054(2) -1.052(5)

bkg. (MG5) 13.30(2) -0.0057(5) -1.08(2)

Graph5 aMC@NLO [78], both at the matrix element squared level for a single point

and at the cross section level. No discrepancies between the two tools were found, and

the results are shown in table 5.2 and table 5.3 for a single sample process. The com-

parisons of S = |MH |2 (signal process occurring via an intermediate Higgs) and the two

interferences, Itree = 2Re
∣∣MHM∗tree

∣∣ and Icont = 2Re
∣∣MHM∗cont

∣∣ are shown.

No tools were available to perform a direct comparison of the Higgs singlet code;

however the channels used in the phase space integration were all used and validated for

the semi-leptonic code, and agreement with the SM limits of the processes considered

was verified.

Table 5.3: Comparison of matrix element squared calculated for two particular phase space points
labelled PS1 and PS2 with gg2VV and MadGraph5 aMC@NLO for the process gg → ¯̀ν`q̄uqd.
Detail as in 5.2, with Ifull = Itree + Icont

Contribution PS1 PS2
S(gg2VV) 2.733390391490007e–21 3.069651925020353e–05
S(MG5) 2.7335747944552452e–21 3.0691125525738243e–05
Itree(gg2VV) –3.235534490462558e–15 1.475452008046954e–06
Itree(MG5) –3.235675020969737e–15 1.475167900958353e–06
Icont(gg2VV) –1.768513287795656e–18 2.319939187335657e–09
Icont(MG5) –1.765899031616023e–18 2.319497322110389e–09
Ifull (gg2VV) –3.237303003750353e–15 1.477771947234289e–06
Ifull (MG5) –3.237440920001353e–15 1.477487398280464e–06
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Chapter 6

Interference Effects in

Semi-leptonic Higgs Decays

6.1 The Processes

The semi-leptonic decay channels of the Higgs boson are those where the Higgs boson

decays to two weak bosons, one of which decays leptonically and the other hadronically.

It can be seen in figure 3.3 that these channels in fact have higher branching ratios

than their fully leptonic counterparts, but the hadronic component means that these

processes have a very large QCD background, and so they were not included in the

Higgs discovery analyses. Nonetheless, their large rates mean that they merit further

study. It has already been pointed out in the discussion of multi-channel mappings that

in fact the dominant backgrounds are tree level, while the signal process is loop induced.

The following four parton-level processes are considered for single lepton and quark

flavours:

gg → H →W−W+ → `ν̄`qu q̄d (6.1)

gg → H →W+W− → ¯̀ν`qd q̄u (6.2)

gg → H → ZZ → `¯̀qu q̄u (6.3)

gg → H → ZZ → `¯̀qd q̄d (6.4)

Representative Feynman diagrams for the signal processes are shown in figure 6.1.
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Figure 6.1: Representative Feynman diagrams for the signal processes considered: (a) gg →
H → ZZ → ` ¯̀̄qq̄ (quq̄u and qdq̄d final states are calculated separately) and (b) gg → H →
WW → `ν̄`q̄dqu (the charge conjugated process is also calculated).
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Figure 6.2: Representative tree-level diagrams that contribute to gg → `ν̄`q̄uqd and gg → `¯̀qq̄.

Processes (6.1) and (6.2) are related by CP symmetry and so will be identical (the

selection cuts are also symmetric), so in general results are only shown for (6.2), although

they have both been calculated and verified to be identical. Processes (6.3) and (6.4)

differ (without cuts) by the ratio

(V 2
d +A2

d)

(V 2
u +A2

u)
=

(1
2 − 4

3 sin2 θW )2 + (1
2)2

(−1
2 + 2

3 sin2 θW )2 + (1
2)2 (6.5)

where Vf and Af are the vector and axial couplings for a quark of flavour f . This ratio

is approximately 1.28. Note that with selection cuts this will not necessarily hold in

all cases, but it is useful as a guide in verifying the results of the signal process with

minimal cuts (see for example tables 6.5 and 6.7).

Figures 6.1-6.4 show representative Feynman diagrams for the different components

of the amplitude. This study considers interference with the leading order background

diagrams with the same final states as the signal processes. These are O(g2
se

2) and tree
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Figure 6.3: Representative continuum diagrams that interfere with the signal diagrams above.
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Figure 6.4: Representative triangle diagrams that formally contribute to gg → `ν̄`q̄uqd, but do
not contribute in the case of vanishing final state lepton and quark masses.

level. Since continuum interference for gg → V V is known to be large, particularly

for MH > 2MV , the continuum interference diagrams (Figure 6.3) that are O(α2
se

4)

are also studied. These are of the same order as the O(e2) virtual electroweak (EW)

corrections to Mtree. The complete set of these virtual corrections (specifically, all self-

energy corrections and all diagrams with boson propagators in the loop) will not be

finite and is hence not taken into account. It can be argued that these are part of the

next-to-leading order (NLO) EW corrections to Itree and are genuinely suppressed by

O(α) relative to the included contributions, so given that Itree at LO yields a small (tiny)

correction to Iloop for integrated results when LHC (background suppression) cuts are

applied (see section 6.2), it can be concluded that this treatment is justified. It can be

similarly argued that neglecting the NLO QCD corrections to Itree in our calculation is

justified.

Formally, the background also includes quark triangle diagrams such as those in

figure 6.4, however these are identically zero for a photon and the vector coupling of the

Z boson as an intermediate resonance by Furry’s theorem. They have also been shown

analytically to be zero for the axial component of the Z boson with massless quarks in the

final state [79,80]. The arguments still apply to these semi-leptonic decays, however these

diagrams are nonetheless included for completeness and it has been verified numerically
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that their summed contributions are negligible.

In a collider, the relevant processes are in fact pp → ll̄jj and pp → lν̄jj; light jets

cannot be flavour tagged, so only the sum of the processes (6.3) and (6.4) (multiplied by

two since the second generation jets are indistinguishable) is observable. The first two

generations of quarks are assumed to be massless for the purposes of these calculations

so the cross section for the second generation will be equal to the first and a simple

scaling of the results is valid. For processes (6.1) and (6.2), the opposite signs of the

leptons make them distinguishable in a detector based on the direction of their paths

in a magnetic field, so the processes do not need to be summed, but for experimental

comparison they must still be multiplied by two to account for second generation jets.

The processes pp→ `¯̀jj and pp→ `ν̄jj also include t-channel Higgs diagrams from

the processes gq̄ → `¯̀gq̄ and gq̄ → `ν̄gq̄. It has been verified in MadGraph5 aMC@NLO

using the Higgs effective field theory model that their contributions are several orders

of magnitude smaller than the s-channel diagrams that are considered and so they are

neglected for this study.

Experimental analyses have been performed with the semi-leptonic channels for heavy

Higgs searches [81–84] and for the SM-like Higgs boson [85–88]. The processes have been

studied at the Tevatron [89, 90], a phenomenological study for the ZZ case is discussed

in ref. [91] and the WW decays have been considered in ref. [92] although without

interference effects. Reference [93] considers the processes with the as-yet unrealised

prospect of charm-tagging at the Tevatron.

6.2 Results

6.2.1 Parameters and Cuts

To obtain numerical results, the renormalisation and factorisation scales are set to

M`ν̄qq̄/2 for V = W and M`¯̀qq̄/2 for V = Z. The MSTW2008LO [94] PDF set is

used with default αs. The CKM matrix is approximated by the unit matrix, which

causes a negligible error [65]. As input parameters, the recommendation of the LHC

Higgs Cross Section Working Group in App. A of ref. [37] are followed, with Gµ scheme

and LO weak boson widths for consistency. More specifically, MW = 80.398 GeV, MZ =
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91.1876 GeV, ΓW = 2.141 GeV, ΓZ = 2.4952 GeV, Mt = 172.5 GeV, Mb = 4.75 GeV,

GF = 1.16637 · 10−5GeV−2 are used. The Higgs width ΓH is set to 4.098973 MeV

and 26.59768 GeV for a Higgs mass of 125.5 and 400 GeV, respectively. Finite top and

bottom quark mass effects are included. Lepton and light quark masses are neglected.

Proton-proton collision energies of 8, 13 and 14 TeV are considered.

The narrow-width approximation is not suitable for the Higgs propagator, as was

discussed in section 4.5, and so an alternative must be specified. A common choice is to

use the fixed-width Breit-Wigner propagator,

i

q2 −M2
H + iMHΓH

(6.6)

and it is this choice that is adopted here. Other schemes exist; the difference is most

noticeable for heavy Higgs studies (where the width is significantly broader); differences

in schemes are discussed and quantified for example in refs. [95–97]

The phase space integration was performed with multi-channel mappings, imple-

mented as discussed in section 4.3.1. There are two channels for each signal process (one

for each weak boson close to on-shell), two for the WW continuum background, four for

the ZZ continuum background (two similar to the WW channels, and two with inter-

mediate photons instead of Z bosons). The tree-level contributions require six mappings

for the WW case (12 for ZZ), dealing with diagrams of the type displayed in figure 6.2

(a) and (b), with permutations on the incoming legs for both and with the W boson

emitted from the other leg (again with a second permutation for the incoming legs).

The singularities in these diagrams arise in the t-channel quark propagator when the

scattering angle between incoming and outgoing massless particles is small.

Originally, mappings were included for diagrams with an s-channel gluon propagator

as in figure 6.2 (c), but when checking that all singularities were compensated by their

relevant mapping it was realised that the singularity as the s-channel gluon virtuality

goes to zero coincided with a vanishing phase space volume and so these mappings could

be eliminated.

Results for all processes are computed for the following three sets of cuts:1

1
No jet clustering algorithm is applied.
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• minimal cuts: pTj > 4 GeV, and M`` > 4 GeV for the ZZ processes to eliminate soft

photon singularities

• LHC cuts (mainly detector resolution): minimal cuts and pT` > 20 GeV, |η`| < 2.5,

pTj > 25 GeV, |ηj | < 4.5, and for H →WW in addition: p/T > 20 GeV

• background suppression cuts for a 400 GeV SM Higgs boson [88]: LHC cuts and

|Mjj −MV | < 5 ΓV , pTj,1st > 60 GeV, pTj,2nd > 40 GeV, |ηj | < 2.8, ∆Rjj < 1.3

For the processes with intermediate W -boson pairs, results are also calculated using

the background suppression cuts proposed in ref. [92] for a 125.5 GeV Higgs boson at
√
s = 14 TeV:

• pTj,1st > 30 GeV, pTj,2nd > 20 GeV, 65 GeV < Mjj < 95 GeV, pT` < 30 GeV, p/T <

40 GeV, |ηj | < 5, |η`| < 2.5, M`ν < 45 GeV, Mjj`ν < 130 GeV, ∆Rj` > 0.2

Requiring the hadronically decaying vector boson to be close to on-shell gives a dramatic

improvement in the signal-to-tree-background ratio for the 125 GeV Higgs boson, since

it only reduces the signal by approximately half (one of the two vector bosons will be

on-shell in the signal process, with equal probability) but greatly restricts the tree-level

processes since the two jets do not come from a weak boson, so have no a priori reason

to have a combined invariant mass close to that of a weak boson.

Results are also given for the minimal and LHC cuts confined to a region around the

Higgs Breit-Wigner peak, referred to as the ‘on-shell’ region:

• 110 GeV < MV V < 140 GeV

and the ‘off-shell’ region:

• MV V > 140 GeV

in order to separate interference effects related to the Higgs off-shell tail and on-shell

peak regions.

6.2.2 Cross sections and Differential Distributions

In this section, results are presented for integrated cross sections and differential distri-

butions for the considered Higgs signal processes, taking into account the interference
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with the tree- and loop-level background contributions.2 The following notation is used:

S ∼ |MH |2 (6.7)

Btree ∼ |Mtree|2 (6.8)

Bloop ∼
∣∣Mloop

∣∣2 (6.9)

Bfull ∼
∣∣Mtree +Mloop

∣∣2 (6.10)

Itree ∼ 2 Re(M∗HMtree) (6.11)

Iloop ∼ 2 Re(M∗HMloop) (6.12)

Ifull = Itree + Iloop (6.13)

Ri =
S + Ii
S

(6.14)

R2i =
S +Bi + Ii
S +Bi

. (6.15)

where in the final two measures the subscript i refers to the interfering background.

The measure R2i, although having the advantage of being positive definite and related

to the change in the observable total number of events rather than signal alone, is

only suitable when the size of the two interfering contributions are of the same order,

which is not the case when the tree-level backgrounds are included, unless they are

greatly suppressed; it is therefore only included when it is relevant, i.e in the two sets of

background suppression cuts, in table 6.4. More generally, Ri gives the relative change

in the signal-only contribution, and in the case of very large destructive interference can

be negative.

In tables 6.1 to 6.4, integrated cross sections are given for the WW process for the

cuts specified above at 8, 13 and 14 TeV. Tables 6.5 and 6.6 give the results for ZZ

decaying to the `¯̀quq̄u final state, and tables 6.7 and 6.8 show the corresponding results

for the `¯̀qdq̄d final state.

The corresponding differential distributions for the invariant mass of theWW system,

denoted MWW , are given in figures 6.5 to 6.8, and the equivalent distributions for both

ZZ processes are shown in figures 6.9 to 6.14.

The results presented in the tables and plots have been obtained with gg2VV and

2
The interference between the tree-level and loop background contributions is at the 1% level or less.

This was verified for the ZZ channels and all cut sets using gg2VV.
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Table 6.1: Cross sections for the signal process gg → H → W−W+ → `ν̄`quq̄d (S) and its
interference with the tree-level (Itree) and quark-loop (Iloop) gg background contributions as
well as Ifull = Itree + Iloop in pp collisions at

√
s = 8 TeV; minimal and LHC cuts for a 125.5

GeV SM Higgs boson and background suppression cuts for a 400 GeV SM Higgs boson are
applied (see main text). To illustrate the relative effect of the signal-background interference,
the ratios Ri = (S+ Ii)/S are given. Cross sections are given for single lepton and quark flavour
combinations. The integration error is displayed in brackets.

gg → H →W
−
W

+ → `ν̄`quq̄d
σ [fb], pp,

√
s = 8 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 67.28(9) -2.47(2) -4.99(1) -7.48(9) 0.963(2) 0.926(2) 0.889(3)

125.5 LHC 1.978(6) 0.266(4) -2.647(6) -2.38(3) 1.135(5) -0.338(4) -0.20(2)

400 bkg. 13.30(2) -0.0054(2) -1.052(5) -1.058(4) 1.000(2) 0.921(2) 0.920(2)

Table 6.2: Cross sections for the signal process gg → H →W−W+ → `ν̄`quq̄d and its interference
with the tree-level and quark-loop gg background contributions in pp collisions at

√
s = 13 TeV.

Other details as in table 6.1.

gg → H →W
−
W

+ → `ν̄`quq̄d
σ [fb], pp,

√
s = 13 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 162.1(3) -5.9(1) -15.36(4) -21.2(4) 0.964(3) 0.905(2) 0.869(3)

125.5 LHC 5.56(2) 0.83(3) -8.34(3) -7.51(7) 1.15(2) -0.500(5) -0.35(2)

400 bkg. 43.10(4) -0.018(2) -4.29(2) -4.30(4) 1.000(2) 0.901(2) 0.900(2)

cross checked with MadGraph5 aMC@NLO [78].

Table 6.3: Cross sections for the signal process gg → H →W−W+ → `ν̄`quq̄d and its interference
with the tree-level and quark-loop gg background contributions in pp collisions at 13 and 14 TeV
with background suppression cuts for a 125.5 GeV SM Higgs boson at

√
s ≈ 14 TeV (see main

text). Other details as in table 6.1.

gg → H →W
−
W

+ → `ν̄`quq̄d
σ [fb], pp, MH = 125.5 GeV

background suppression cuts interference ratio
√
s [TeV] S Itree Iloop Ifull Rtree Rloop Rfull

13 42.16(5) -0.0148(5) 0.0264(2) 0.0118(6) 1.000(2) 1.001(2) 1.000(2)

14 47.44(5) -0.0164(5) 0.029(1) 0.0131(6) 1.000(2) 1.001(2) 1.000(2)
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Table 6.4: Cross sections for the signal process gg → H →W−W+ → `ν̄`quq̄d and its interference
with the tree-level and quark-loop gg background contributions in pp collisions at 8, 13 and 14
TeV with background suppression cuts (different for each mass) for a 125.5 GeV or 400 GeV
SM Higgs boson as described in the text. The R2 results show the relative change in signal
+ indicated background when interference is included. The subscript “full” indicates tree and
continuum background contributions combined.

gg → H →W
−
W

+ → `ν̄`quq̄d
σ [fb], pp, MH = 125.5 GeV

background suppression cuts
√
s [TeV] MH [GeV] S S +Bfull S +Bfull + Ifull R2tree R2loop R2full

8 400 13.30(2) 23.88(3) 22.82(3) 1.000(2) 0.928(2) 0.956(2)

13 400 43.10(4) 76.0(2) 71.7(2) 1.000(2) 0.911(2) 0.943(2)

13 125.5 42.16(5) 47.5(2) 47.5(2) 1.000(4) 1.001(2) 1.000(4)

14 125.5 47.44(5) 53.5(3) 53.5(3) 1.000(6) 1.001(2) 1.000(6)

Table 6.5: Cross sections for the signal process gg → H → ZZ → `¯̀quq̄u and its interference
with the tree-level and quark-loop gg background contributions. γ∗ background contributions
are included. Other details as in table 6.1.

gg → H → ZZ → `¯̀quq̄u
σ [fb], pp,

√
s = 8 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 1.954(2) -0.19(2) -0.3442(6) -0.535(9) 0.902(7) 0.824(2) 0.726(5)

125.5 LHC 0.1164(7) 0.0173(9) -0.1940(4) -0.177(2) 1.15(2) -0.667(7) -0.52(2)

400 bkg. 1.256(2) -0.00082(4) -0.0908(3) -0.0917(3) 0.999(2) 0.928(2) 0.927(2)

Table 6.6: Cross sections for the signal process gg → H → ZZ → `¯̀quq̄u and its interference
with the tree-level and quark-loop gg background contributions in pp collisions at

√
s = 13 TeV.

Other details as in table 6.5.

gg → H → ZZ → `¯̀quq̄u
σ [fb], pp,

√
s = 13 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 4.79(4) -0.45(3) -1.088(2) -1.54(3) 0.91(2) 0.773(9) 0.68(1)

125.5 LHC 0.375(2) 0.063(7) -0.612(1) -0.552(6) 1.17(2) -0.633(6) -0.47(2)

400 bkg. 4.043(4) -0.0027(3) -0.3569(9) -0.359(3) 0.999(2) 0.912(2) 0.911(2)

Table 6.7: Cross sections for the signal process gg → H → ZZ → `¯̀qdq̄d and its interference
with the tree-level and quark-loop gg background contributions. Other details as in table 6.5.

gg → H → ZZ → `¯̀qdq̄d
σ [fb], pp,

√
s = 8 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 2.505(4) -0.244(3) -0.443(1) -0.686(6) 0.903(2) 0.823(2) 0.726(3)

125.5 LHC 0.1498(4) 0.022(2) -0.2493(5) -0.227(2) 1.146(9) -0.664(5) -0.52(2)

400 bkg. 1.611(2) -0.00110(4) -0.1167(3) -0.1176(4) 0.999(2) 0.928(2) 0.927(2)
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Table 6.8: Cross sections for the signal process gg → H → ZZ → `¯̀qdq̄d and its interference
with the tree-level and quark-loop gg background contributions in pp collisions at

√
s = 13 TeV.

Other details as in table 6.5.

gg → H → ZZ → `¯̀qdq̄d
σ [fb], pp,

√
s = 13 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 6.16(2) -0.57(3) -1.396(3) -1.97(2) 0.907(5) 0.773(3) 0.680(4)

125.5 LHC 0.4809(9) 0.077(8) -0.786(2) -0.708(5) 1.16(2) -0.635(4) -0.47(2)

400 bkg. 5.185(5) -0.0038(4) -0.457(1) -0.461(2) 0.999(2) 0.912(2) 0.911(2)
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Figure 6.5: Invariant WW mass distributions for the signal process gg → H → W−W+ →
`ν̄`quq̄d (S) and including its interference with the tree-level (S + Ibkg,tree) and in addition
quark-loop (S + Ibkg,full) gg background contributions in pp collisions at

√
s = 8 TeV (left) and

13 TeV (right) for a 125.5 GeV SM Higgs boson. Minimal cuts are applied (see main text). Other
details as in table 6.1.
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Figure 6.6: Invariant WW mass distributions for the signal process gg → H → W−W+ →
`ν̄`quq̄d and including its interference with the background. LHC cuts are applied (see main
text). Other details as in figure 6.5.
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Figure 6.7: Invariant WW mass distributions for the signal process gg → H → W−W+ →
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a 400 GeV SM Higgs boson (see main text). The gg background is also displayed. Other details
as in figure 6.5.
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Figure 6.8: Invariant WW mass distributions for the signal process gg → H → W−W+ →
`ν̄`quq̄d and including its interference with the background with background suppression cuts for
a 125.5 GeV Higgs boson at

√
s = 14 TeV (see main text). Other details as in figure 6.7.

The LHC cuts result in a dramatic suppression of the signal cross section for all

processes; this is somewhat surprising since they are not particularly stringent cuts. In

fact, most of the reduction comes from the pT > 20 GeV cut on all final state particles (or

final state observable particles and missing transverse momentum for theWW case). The

WW case is considered to illustrate the effect: if the two W bosons are approximately

at rest in the parton centre-of-mass frame, it is expected that the sum of their invariant

masses should be very close to the Higgs boson mass, by conservation of energy:

EH = E
W
− + E

W
+ =

√(
~p 2
W
− +M2

W
−

)
+

√(
~p 2
W

+ +M2
W

+

)
. (6.16)

99



6.2 Results Interference Effects in Semi-leptonic Higgs Decays

-0.02

-0.01

0

0.01

0.02

0.03

0 100 200 300 400 500 600 700 800 900

MZZ [GeV]

gg → H → ZZ → ℓℓ̄q̄uqu
MH = 125.5 GeV
pp,

√
s = 8 TeV

min. cuts

d
σ
/d

M
Z
Z

[f
b
/
G
eV

]

S + Ibkg,tree
S + Ibkg,full
S

-0.02

-0.01

0

0.01

0.02

0.03

0 100 200 300 400 500 600 700 800 900

MZZ [GeV]

d
σ
/d

M
Z
Z

[f
b
/
G
eV

]

gg → H → ZZ → ℓℓ̄q̄uqu
MH = 125.5 GeV
pp,

√
s = 13 TeV

min. cuts
S + Ibkg,tree
S + Ibkg,full
S

Figure 6.9: Invariant ZZ mass distributions for the signal process gg → H → ZZ → `¯̀quq̄u
and including its interference with the tree-level (S + Ibkg,tree) and in addition quark-loop (S +
Ibkg,full) gg background contributions in pp collisions at

√
s = 8 TeV (left) and 13 TeV (right)

for a 125.5 GeV SM Higgs boson. Minimal cuts are applied (see main text).
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Figure 6.10: Invariant ZZ mass distributions for the signal process gg → H → ZZ → `¯̀qdq̄d
and including its interference with the background. Minimal cuts are applied (see main text).
Other details as in figure 6.9.
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Figure 6.11: Invariant ZZ mass distributions for the signal process gg → H → ZZ → `¯̀quq̄u
and including its interference with the background. LHC cuts are applied (see main text). Other
details as in figure 6.9.
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Figure 6.12: Invariant ZZ mass distributions for the signal process gg → H → ZZ → `¯̀qdq̄d
and including its interference with the background. LHC cuts are applied (see main text). Other
details as in figure 6.9.

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900

MZZ [GeV]

gg → H → ZZ → ℓℓ̄q̄uqu
MH = 400 GeV
pp,

√
s = 8 TeV

bkg. cuts

d
σ
/d

M
Z
Z

[f
b
/
G
eV

] S + Itree
S + Ifull
gg bkg.
S

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900

MZZ [GeV]

d
σ
/d

M
Z
Z

[f
b
/
G
eV

]
gg → H → ZZ → ℓℓ̄q̄uqu
MH = 400 GeV
pp,

√
s = 13 TeV

bkg. cuts S + Itree
S + Ifull
gg bkg.
S

Figure 6.13: Invariant ZZ mass distributions for the signal process gg → H → ZZ → `¯̀quq̄u
and including its interference with the background with background suppression cuts for a 400
GeV SM Higgs boson (see main text). The gg background is also displayed. Other details as in
figure 6.9.
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Figure 6.14: Invariant ZZ mass distributions for the signal process gg → H → ZZ → `¯̀qdq̄d
and including its interference with the background with background suppression cuts for a 400
GeV SM Higgs boson (see main text). The gg background is also displayed. Other details as in
figure 6.9.
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Figure 6.15: Distributions of pT for final state charged lepton (left) and ū (right) for the signal
process gg → H →W+W− → ¯̀ν`qd q̄u. A pT > 4 GeV is applied to both jets. The d quark and
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Figure 6.16: Invariant mass (left) and longitudinal momentum (right) of the W+ in the process
gg → H →W+W− → ¯̀ν`qd q̄u with minimal cuts only. The W− plots are identical.

If this were the case, one vector boson (resonant) would typically have an invariant

mass very close to MW and the other an invariant mass close to MH −MW ∼ 44 GeV.

Assuming both W bosons decay roughly isotropically to massless final state particles, one

would expect that the final state particles have typical values of pT ∼ MH−MW
2 ∼ 22 GeV

for the non-resonant boson products, and pT ∼ MW
2 for the resonant boson products. A

pT > 20 GeV cut would therefore preserve the majority of the signal if both W bosons

were approximately at rest in the parton-center-of-mass frame.

In fact, figure 6.15 shows that with minimal cuts the final state pT distributions peak

at between 18 and 19 GeV. This is a consequence of the fact that the W bosons are not

approximately at rest in the parton centre-of-mass frame: figure 6.16 (right) shows that

approximately 55% of the W bosons have a longitudinal momentum of 10 GeV or greater,
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Table 6.9: Cross sections for the signal process gg → H →W−W+ → `ν̄`quq̄d (S) as in table 6.1
but with an additional ‘on-shell’ cut 110 GeV < MV V < 140 GeV to illustrate the effect close to
the on-shell region.

gg → H →W
−
W

+ → `ν̄`quq̄d
σ [fb], pp,

√
s = 8 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 65.69(8) −1.06(2) 0.0235(2) −1.04(2) 0.984(2) 1.000(2) 0.984(2)

125.5 LHC 0.933(2) −0.0196(6) −0.00040(2) −0.0200(6) 0.979(3) 1.000(3) 0.979(3)

Table 6.10: Cross sections for the signal process gg → H → W−W+ → `ν̄`quq̄d (S) as in
table 6.1 but with an additional ‘off-shell’ cut MV V > 140 GeV to illustrate the effect in the
off-shell region.

gg → H →W
−
W

+ → `ν̄`quq̄d
σ [fb], pp,

√
s = 8 TeV interference ratio

MH [GeV] cuts S Itree Iloop Ifull Rtree Rloop Rfull

125.5 min. 1.64(4) −1.46(5) −5.01(2) −6.47(5) 0.11(4) −2.06(5) −2.95(7)

125.5 LHC 1.042(2) 0.29(1) −2.650(7) −2.36(2) 1.28(1) −1.543(8) −1.27(2)

indicating a non-negligible boost along this axis. This is evident in the W invariant-

mass plot, figure 6.16 (left), where the secondary peak is just below 40 GeV, and nearly

80% of the off-shell vector bosons have an invariant mass of less than 40 GeV. Each

final state pT cut (i.e. pT,j for two jets, pT,miss and pT,`) then individually gives a large

reduction, although there will be correlations between the cuts so it is not straightforward

to estimate the exact value of the total effect. This leads to the very large signal reduction

observed in the results.

6.3 Discussion

The impact of the full signal-background interference on integrated signal cross sections

over the entire phase space can range fromO(1) for typical LHC selection cuts toO(0.1%)

with appropriate background suppression cuts. The relative importance in the integrated

cross section of the different types of interference in the on-shell and off-shell regions is

shown in tables 6.9 and 6.10 respectively, for the minimal and LHC cuts.

Aside from the effect on the integrated cross section, it is useful to consider the

MV V invariant mass distributions to understand the behaviour of the different types of

interferences. With minimal cuts, the tree-level interference is large close to the Higgs

on-shell region, but changes sign at ŝ = M2
H so that the effect on the total cross section

is largely cancelled out. However, any cuts that suppress the tree-level background
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dampen this interference, and in all cases it is sub-leading to the destructive continuum

interference which dominates away from the peak, and indeed overtakes the signal in

size in this region.

For the light SM Higgs with background suppression cuts such as those suggested

in ref. [92], the total effect of the signal-background interference on the integrated cross

section can be reduced to the per mille level in the WW channel as the invariant mass

is forced to remain very close to the mass of the Higgs, removing both the tree- and

loop-level backgrounds. In this case the tree-level interference is completely negligible,

and the continuum interference tiny. Similar behaviour is expected for the ZZ processes

with an appropriate set of cuts. Similarly, background suppression cuts for a heavy

SM-like Higgs boson can lower the interference to below the 10% level for the WW and

ZZ channel.

The tree and continuum interference-only invariant mass distributions are shown for

minimal and LHC cuts in figure 6.17. To better understand the behaviour of the two

kinds of interference, it is useful to consider the structure of the amplitudes involved.

For two interfering amplitudes, say Asig = Agg→H→f.s. and Abkg = Agg→f.s., where Asig
includes an s-channel Breit-Wigner resonance which can be factored out, the amplitude

has the structure:

σ ∼
∣∣∣∣Agg→f.s. +

1

ŝ−M2
H + iMHΓH

Agg→HAH→fs
∣∣∣∣2

=
∣∣Agg→f.s.∣∣2 +

∣∣Asig∣∣2 + 2
(
ŝ−M2

H

) Re(Agg→HAH→fsA∗gg→f.s.)
(ŝ−M2

H)2 + (MHΓH)2

− 2MHΓH
Im(Agg→HAH→fsA∗gg→f.s.)

(ŝ−M2
H)2 + (MHΓH)2 .

(6.17)

It can be seen that there are two types of possible contribution to the interference: the

first, proportional to the real part of the amplitude products, changes sign at ŝ = M2
H ,

and is relevant only close to the peak region. The second part requires a relative phase

difference between the two types of amplitude, which can arise (apart from Breit-Wigner

propagators, which contribute a small imaginary component) in CP-violating effects,

which are not considered here, or in loops when particles in the loop can go on-shell (by

the optical theorem). It can then be guessed that the real portion gives the dominant

104



6.3 Discussion Interference Effects in Semi-leptonic Higgs Decays

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400 500 600 700 800

MWW [GeV]

d
σ
/d

M
W

W
[f
b
/
G
eV

]
gg → H → W−W+ → ℓν̄ℓq̄dqu
MH = 125.5 GeV
pp,

√
s = 13 TeV

min. cuts
Ibkg,tree
Ibkg,cont

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 100 200 300 400 500 600 700 800

MWW [GeV]

d
σ
/d

M
W

W
[f
b
/
G
eV

]

gg → H → W−W+ → ℓν̄ℓq̄dqu
MH = 125.5 GeV
pp,

√
s = 13 TeV

LHC cuts
Ibkg,tree
Ibkg,cont

Figure 6.17: As figures 6.5 and 6.6, but with the interference contributions only.

contribution to the tree-level interference, and indeed it can be seen (in the minimal

cuts case) that the red line is only significant in a region around the resonance peak and

switches sign as it goes through it. There is a bump at approximately 2MW , where the

signal amplitude is enhanced since the two W bosons can go on-shell. The effect of the

real contribution on the total cross section is sub-leading compared to the continuum

interference. Any cuts which suppress the tree-level background in the signal region will

dampen this interference, as can be seen in the LHC cuts plot.

By contrast, the continuum interference is relevant away from the peak - entirely

above it in fact - and has features at the points where it is known that there are en-

hancements in the imaginary components of the continuum and signal amplitudes. In

the Feynman diagrams considered in this study, there are enhancements in the imag-

inary components both the signal and continuum amplitudes at 2MV and 2Mt. This

interference survives detector selection cuts and gives the dominant effects on the total

cross section.

It is noted that the behaviour of the differential distributions is similar for the WW

and ZZ cases, and that the two ZZ subprocesses also display the same features.

It should be pointed out that, although large interference in the off-shell region is

unsurprising, it emphasises that interference effects must be (and are) included in studies

of similar processes that depend on the different amplitude dependence of the on/off-

shell regions, notably the limit given on the Higgs width which relies on the ratio of the

two regions. Although typical background suppression cuts are effective at suppressing
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interference, they are not suitable for such studies which require a reasonable number

of events away from the signal region, and it is therefore crucial to take the continuum

interference effects into account in such a measurement.

In summary, the semi-leptonic processes experience significant destructive continuum

interference effects away from the on-peak region, in common with the fully leptonic

processes. Although arising from the dominant background, tree-level interference effects

are sub-leading and mitigated by cuts. It can then be concluded that higher-order

background contributions can induce leading interference effects. Consequently, precision

calculations of interference effects are well motivated.
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Chapter 7

Interference Effects in Fully

Leptonic Decays in the Higgs

Singlet Model

The Higgs singlet model (1HSM), also known as the electroweak singlet model, is of great

interest as a beyond the Standard Model (BSM) benchmark since it is the minimal SM

extension that contains an additional Higgs boson. It adds a real singlet field, neutral

under all the SM gauge groups, and therefore its effects are only felt through mixing

with the SM Higgs boson. The 1-Higgs-singlet extension of the SM has been extensively

explored in the literature [70,98–121]. Higgs singlet models with an additional Z2 sym-

metry, included in the above references, have generated some interest recently because

of the possibility of the additional Higgs boson being a dark matter candidate, but here

the most general extension is considered. In particular, references [122,123] describe the

model in detail. A summary is given here.

7.1 Model Description

The SM Higgs sector is extended by the addition of a new real scalar field, S, which is a

singlet under all the gauge groups of the SM and which also gets a vacuum expectation

value (VEV) under electroweak symmetry breaking. The most general gauge-invariant
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potential can be written as [122,124]

V (S,Φ) = λ

(
Φ†Φ− v2

EW

2

)2

− µ2

(
Φ†Φ− v2

EW

2

)
+

1

2
M2S2 + λ1S

4

+ λ2S
2

(
Φ†Φ− v2

EW

2

)
+ µ1S

3 + µ2S

(
Φ†Φ− v2

EW

2

)
+ µ3S.

(7.1)

A vacuum expectation value can be assigned to the Φ doublet as usual, and also to the

singlet scalar field s:

Φ =

 0

(φ+ v)/
√

2

 S = s+ x (7.2)

and, as in the SM, the minima of V (S,Φ) are found by solving:

∂V (S,Φ)

∂Φ

∣∣∣∣
S=x,Φ= v√

2

= v
(
−µ2 + 2λv2 + µ2x+ λ2x

2
)

= 0

∂V (S,Φ)

∂S

∣∣∣∣
S=x,Φ= v√

2

= x(M2 + 4λ1x
2 + λ2v

2 + 3µ1x) + µ3 = 0

(7.3)

It is possible to choose x = 0, since a universal shift in the singlet field simply

corresponds to a redefinition of the coefficients in eq. (7.1), leaving the usual electroweak

symmetry breaking solution of v2 = µ
2

2λ and giving µ3 = 0. Other minima of course exist;

a detailed treatment is given in ref. [125] but here it is simply noted that in order to

guarantee that the electroweak vacuum solution is still a local minimum and prevent the

potential from becoming unbounded from below (i.e. avoiding vacuum instability), the

quadratic part of the potential must be positive definite.1 This gives the restrictions

λ > 0, λ1 > 0, λ2 > −2
√
λλ1. (7.4)

The trilinear couplings µ1 and µ2 can have positive or negative sign.

As an aside, it is noted that the mentioned Z2 symmetry would exclude λ1, µ1 and

µ3 and would also prohibit the shifting of the singlet field to set x = 0. The ratio of

VEVs, tanβ = v
x is then a useful parameter of that model.

1
In the limit of very large field values the quadratic terms will always dominate and so only the λi

terms are relevant.
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Expanding about the electroweak minimum and substituting eq. (7.2) into eq. (7.1)

gives the potential

V =
λ

4
φ4 + λv2φ2 + λvφ3 +

1

2
M2s2 + λ1s

4 +
λ2

2
φ2s2 + λ2vφs

2

+ µ1s
3 +

µ2

2
φ2s+ µ2vφs.

(7.5)

The mass eigenstates can be parametrised in terms of a mixing angle θ as

h1 = φ cos θ − s sin θ , (7.6)

h2 = φ sin θ + s cos θ , (7.7)

where h1 is assumed to be the lighter Higgs boson with a mass of 125 GeV, and

tan 2θ =
−µ2v

λv2 − 1
2M

2 (7.8)

with

−π
4
< θ <

π

4
(7.9)

under the condition M2 > 2λv2. The model has six independent parameters, which we

choose to be Mh1,Mh2, θ, µ1, λ1 and λ2. The dependent model parameters are:

λ =
cos (2θ)

(
M2
h1 −M2

h2

)
+M2

h1 +M2
h2

4v2 , (7.10)

M2 =
M2
h2 −M2

h1 + sec (2θ)
(
M2
h1 +M2

h2

)
2 sec (2θ)

, (7.11)

µ2 = − tan (2θ)
λv2 − 1

2M
2

v
. (7.12)

The full list of vertices for the new trilinear and quartic h2 − h1 interactions is not

given here, see for example ref. [123], but it is instructive to show the only new coupling

directly relevant to the study performed in this chapter; the Feynman rule for the h2h1h1

vertex is:

−2i
(

3λv sin θ cos θ − λ2v sin θ
(

3 cos2 θ − 1
)

+ 3µ1 cos θ sin2 θ +
µ2

2
cos θ

(
3 cos2 θ − 1

))
,

(7.13)
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and is relevant to the leptonic SM-like decays only in the calculation of the width of h2,

which is performed using FeynRules [126].

7.2 Experimental Limits and Phenomenology

If an extended portal-like Higgs sector is realised in nature, it would be expected that

evidence could be seen in the coming runs of the LHC. There are two main signatures:

the suppression of the cross sections of the SM processes of the lighter particle 2 by a

factor of (in the 1HSM) cos4 θ, and the presence of a new heavy resonance which would

have the same SM decays as the light resonance and (assuming Mh2 > 250 GeV) induce

the new h2 → h1h1 decay. These features are common to any extended Higgs sector

model where the couplings of the Higgs to bosons and fermions are scaled by a universal

factor, and many of their constraints can be formulated in a model independent way

with the ‘kappa formalism’ in section 13.3 of reference [123].

This means that studies of the limits on the Z2 model are broadly applicable, in

particular that of [121], on which the following discussion is based. The authors take

into account the latest LHC results and perform a comprehensive study of the constraints

from electroweak precision tests, Higgs data from the LHC and many other sources, and

give limits from the combined ATLAS and CMS Run I data; the observed signal strength

for the Higgs boson with a mass of 125.09 GeV of µ = 1.09± 0.11 gives a constraint over

the whole range of heavy Higgs masses of:

| sin θ| ≤ 0.36 (7.14)

Furthermore, for specific masses above approximately 300 GeV tighter constraints arise

from NLO calculations of the W-boson mass. For example for the values chosen in the

study presented below, Mh2 = 300(600)[900] GeV, the maximal value of sin θ is reduced

to approximately 0.3(0.2)[0.2].

Searches for high mass Higgs-like resonances have been performed by ATLAS and

CMS [127–134]. The only significant excess that has been seen so far, in the di-photon

2
In this discussion, h1 is always assumed to be the lighter Higgs-like resonance, consistent with the

125 GeV particle observed at CERN.
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channel at 750 GeV [127,135], has not been observed in any other Higgs-decay-like chan-

nel and so is not relevant to our discussions. The h2 → h1h1 channel may be visible as

an excess in di-Higgs events at high mass, but in this model is an order of magnitude

smaller than the h2 → SM decays, and at present the LHC is not very sensitive to such

processes and therefore it is difficult to place limits on this channel. There is an over-

whelming QCD background for the dominant 4b decay; the bb̄γγ channel is considered

the most sensitive and so far has seen no excess but more data is required in order to

expect a useful number of excess events.

In general, the strongest constraints on high mass decays come from consistency with

the Higgs signal strength; for MH . 400 GeV there are some competing constraints from

CMS direct searches [134, 136] on the maximal branching of h2 → SM, scaled by the

maximal value of sin θ at that mass point (i.e. giving then a constraint on the branching

fraction with respect to an unscaled SM-like heavy Higgs boson).

Out of the six free parameters then – reduced to five when Mh1 = 125 GeV is fixed –

the only one that realistic constraints can currently be applied to is sin θ; µ1, λ1 and λ2

are inaccessible for the foreseeable future but if the h2 → h1h1 decay were observed µ1

and λ2 could be constrained. Some limits may be placed on Mh2, but only in a restricted

region of the phase space.

It should be pointed out that all such studies are based on a simple rescaling of the

SM cross sections, neglecting the h2 − h1 interference effects that will be considered in

this chapter, however it is unlikely that these could be large enough to significantly affect

limits.

In the study described here, model benchmark points with vanishing coupling pa-

rameters µ1, λ1 and λ2 are considered. (λ1 > 0 is treated as approximately zero.)

Reference [122] gives bounds on the λ1 and µ1 parameters for Mh2 . 500 GeV and a

similar θ, which are in agreement with the choice of zero for these parameters. It should

be emphasised that the implementation in gg2VV is not restricted to benchmark points

with vanishing µ1, λ1 and λ2. Nonzero values of µ1, λ1 and λ2 affect the calculation

of the signal-background interference in the vector boson decays only via a change of

the heavy Higgs width. In combination with FeynRules, the implementation in gg2VV

therefore allows calculation of full signal-background interference effects for arbitrary
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Figure 7.1: Representative Feynman diagrams for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ and gg (→
{h1, h2}) → WW → ¯̀ν``

′ν̄`′ . The heavy Higgs (h2) diagrams define the signal process, which
interferes with the light Higgs (h1) diagrams (a,b). They also interfere with the gluon-induced
continuum background diagrams (c,d).

benchmark points of the general 1-Higgs-singlet extension of the SM, provided the user

provides their own appropriate values of the h1 and h2 widths. It is noted that there

is some tension between limits and the choice of the mixing angle θ = π/8 giving a

value of sin θ ∼ 0.38, which is used for our three chosen mass points, but results are also

given for the more realistic value of θ = π/15 and it is illustrative to include the former

benchmark mixing angle in order to compare the dependence of h2 − h1 interference

effects on the mixing angle.

7.3 The Processes

Integrated and differential cross-section-level results are presented for the h2 signal (S)

and its interference (I) at the LHC for the processes

gg (→ {h1, h2})→ Z(γ∗)Z(γ∗)→ ` ¯̀̀ ′ ¯̀′ (7.15)

gg (→ {h1, h2})→W−W+ → `ν̄ ¯̀′ν ′ (7.16)

Representative Feynman diagrams for the light and heavy Higgs and interfering con-

tinuum background processes are shown in figure 7.1. The heavy Higgs (h2) diagrams

define the signal process. They interfere with the light Higgs (h1) diagrams and with

the gluon-induced continuum background diagrams.
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Table 7.1: Widths of the physical Higgs bosons h1 and h2 in the 1-Higgs-singlet extension of the
SM with mixing angles θ = π/15 and θ = π/8 as well as µ1 = λ1 = λ2 = 0.

h1 h2

M [GeV] 125 300 600 900

θ = π/15 Γ [GeV] 4.77358× 10
−3

0.5383 6.42445 21.4215

θ = π/8 Γ [GeV] 4.2577× 10
−3

1.70204 20.7236 69.1805

A potential limitation of this study is that only leading order effects are considered.

For a heavy Higgs boson, NLO corrections are expected to be large as suggested by

[137], and it is conceivable that features in the higher order lineshapes will alter the

total interference. However considering NLO calculations is beyond the capabilities of

gg2VV, and in fact beyond the scope of all current tools, since an exact amplitude level

background calculation is not yet available.

The study is presented from the point of view of considering the heavy Higgs-like

resonance to be the signal, and deals with interference with the light Higgs and continuum

backgrounds. A natural question is whether the existence of the heavier Higgs would

cause notable effects on the lineshape or cross section of the light Higgs resonance, which

may be seen in current studies of the newly discovered particle. However, there is no

convincing reason to suppose that this may be the case; the SM predicts extremely

large widths for the heavy resonance, which may extend its influence, but in general

any extensions reduce this width, and in the case considered here the width even for

the 900 GeV resonance is only 26 GeV, compared to the SM-only value of 320 GeV (from

private FORTRAN code, HTO [138]). Furthermore, the light Higgs has features in its off-

shell tail that lead to interference with overlapping backgrounds, but the cross sections

for a high-mass Higgs are tiny in low-mass regions, so there is no real reason for there

to be features of interest. Nonetheless some tests were performed in the early stages of

this project with gg2VV, and unsurprisingly no deviations from the SM predictions were

observed in the low mass region.

The Higgs boson widths are calculated using FeynRules for consistency. The used

width values are given in table 7.1. All SM input parameters, PDF and settings choices

are the same as those listed in section 6.2.1. A fixed-width Breit-Wigner propagator is

employed for the weak bosons and the Higgs boson.
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Minimal selection cuts are applied: M`¯̀> 4 GeV and M`
′ ¯̀′ > 4 GeV cuts are applied

for the gg → Z(γ∗)Z(γ∗)→ ` ¯̀̀ ′ ¯̀′ process to eliminate the soft photon singularities. The

renormalisation and factorisation scales are set to MV V /2 and the pp collision energy is
√
s = 8 TeV.

Cross sections for the continuum background and h1-only contributions (without

mixing, i.e. θ = 0) to the processes considered here were found to be in agreement with

the results of ref. [139], which were calculated using a previous version of gg2VV with a

different phase space implementation based on a decomposition into sections. Further-

more, as discussed in Chapter 5, results for similar processes calculated using the same

phase space code show excellent agreement with a fully independent implementation [8].

7.4 Results

Mh1 is set to 125 GeV in accordance with the mass of the observed resonance and

three values are studied for the mass of the heavy Higgs resonance: Mh2 = 300 GeV,

Mh2 = 600 GeV and Mh2 = 900 GeV. The mixing angle θ is chosen so as not to alter

the predicted light Higgs cross section too much.3 To illustrate how interference effects

change with the mixing angle, two values of θ are considered: θ = π/15 and θ = π/8.

The following notation is used:

S ∼ |Mh2|2 (7.17)

Ih1 ∼ 2 Re(M∗h2Mh1) (7.18)

Ibkg ∼ 2 Re(M∗h2Mbkg) (7.19)

Ifull = Ih1 + Ibkg (7.20)

Ri =
S + Ii
S

. (7.21)

The interference of the heavy Higgs signal with the light Higgs and continuum back-

ground is given separately. The combined interference is also shown in order to illustrate

the overall effect. The ratios Rh1, Rbkg and Rfull illustrate the relative change of the

heavy Higgs signal due to interference with the light Higgs and continuum background

3
In fact the choice θ = π/8 reduces the light Higgs cross section by approximately 30%, but it has

already been noted that this shows some tension with limits.

114



7.4 Results The Higgs Singlet Model

Table 7.2: Cross sections for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions at
√
s = 8 TeV

at loop-induced leading order in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV,
Mh2 = 300, 600, 900 GeV and mixing angle θ = π/15. Results for the heavy Higgs (h2) signal
(S) and its interference with the light Higgs (Ih1) and the continuum background (Ibkg) and
the full interference (Ifull) are given. The ratio Ri = (S + Ii)/S illustrates the relative change
of the heavy Higgs signal due to interference with the light Higgs and continuum background
amplitude contributions. Minimal cuts are applied (see main text). Cross sections are given for
a single lepton flavour combination. The integration error is displayed in brackets.

gg → h2 → ZZ → ` ¯̀̀
′ ¯̀′

σ [fb], pp,
√
s = 8 TeV

min. cuts, θ = π/15 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.033453(7) 0.00392(2) 0.00105(2) 0.00499(2) 1.1171(6) 1.0315(7) 1.1492(6)

600 0.005223(4) -0.001738(8) 0.001730(9) -9(4)e-06 0.667(2) 1.331(2) 0.998(2)

900 0.0005088(4) -0.001151(2) 0.001043(3) -0.0001092(9) -1.263(5) 3.049(5) 0.785(2)

Table 7.3: Cross sections for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions in the 1-Higgs-
singlet extension of the SM with mixing angle θ = π/8. Other details as in table 7.2.

gg → h2 → ZZ → ` ¯̀̀
′ ¯̀′

σ [fb], pp,
√
s = 8 TeV

min. cuts, θ = π/8 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.12209(9) 0.0119(1) 0.00358(5) 0.01545(4) 1.097(2) 1.029(2) 1.127(2)

600 0.01821(2) -0.00498(2) 0.00568(2) 0.000694(8) 0.727(2) 1.312(2) 1.038(2)

900 0.001781(2) -0.003277(5) 0.003396(5) 0.000118(3) -0.840(3) 2.906(4) 1.066(2)

amplitude contributions.

Integrated results for process (7.15) with minimal cuts are shown in tables 7.2 and 7.3

for mixing angles of θ = π
15 and π

8 respectively and similarly those for process (7.16) are

given in tables 7.4 and 7.5. As illustrated by the differential distributions shown below,

a |MV V −Mh2| < Γh2 window cut is an effective means to eliminate or mitigate the

interference.4 Therefore, integrated results with window cut are presented in tables 7.6

and 7.7 for process (7.15) and tables 7.8 and 7.9 for process (7.16). Figures 7.2 to 7.6

show the corresponding invariant mass distributions. Where appropriate, vertical dashed

lines at MV V = Mh2 ± Γh2 are used to visualise the effect of the |MV V −Mh2| < Γh2

window cut. For invariant V V masses with negative signal plus interference, the linear

distributions are shown in figures 7.4 and 7.8 for comparison to the log scale version.

Finally, results are shown for the 4` final state at 13 TeV, calculated for ref. [9]. All

input parameters and settings are given at the beginning of Chapter 8; the mixing angle

4
For process (7.16), an invariant MWW cut cannot be applied experimentally. However, a transverse

mass cut is feasible.
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Table 7.4: Cross sections for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp collisions at
√
s = 8

TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV, Mh2 = 300, 600, 900 GeV
and mixing angle θ = π/15. Other details as in table 7.2.

gg → h2 →W
−
W

+ → `ν̄ ¯̀′ν′

σ [fb], pp,
√
s = 8 TeV

min. cuts, θ = π/15 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.3752(3) 0.0391(9) -0.0132(7) 0.0254(5) 1.104(3) 0.965(3) 1.068(2)

600 0.05380(4) -0.0191(2) 0.0289(2) 0.00957(8) 0.645(3) 1.536(4) 1.178(2)

900 0.005149(4) -0.01217(6) 0.01519(4) 0.00300(3) -1.36(2) 3.950(9) 1.582(5)

Table 7.5: Cross sections for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp collisions in the
1-Higgs-singlet extension of the SM with mixing angle θ = π/8. Other details as in table 7.4.

gg → h2 →W
−
W

+ → `ν̄ ¯̀′ν′

σ [fb], pp,
√
s = 8 TeV

min. cuts, θ = π/8 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 1.368(2) 0.118(2) -0.045(2) 0.0712(9) 1.086(2) 0.967(2) 1.052(2)

600 0.1875(2) -0.0548(3) 0.0940(4) 0.0389(3) 0.708(2) 1.501(3) 1.207(2)

900 0.01806(2) -0.03467(8) 0.0495(2) 0.01478(7) -0.920(5) 3.742(7) 1.818(5)

Table 7.6: Cross sections for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions at
√
s = 8 TeV

in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV, Mh2 = 300, 600, 900 GeV and
mixing angle θ = π/15. An additional window cut |MZZ −Mh2| < Γh2 is applied. Other details
as in table 7.2.

gg → h2 → ZZ → ` ¯̀̀
′ ¯̀′

σ [fb], pp,
√
s = 8 TeV

min. cuts & |MV V −Mh2| < Γh2

θ = π/15 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.02352(2) 3.8(4)e-06 0.001583(3) 0.001586(3) 1.000(2) 1.067(2) 1.067(2)

600 0.003719(4) -1.7(2)e-05 0.000288(2) 0.000271(2) 0.995(2) 1.077(2) 1.073(2)

900 0.0003606(3) -1.35(2)e-05 8.56(3)e-05 7.21(4)e-05 0.963(2) 1.237(2) 1.200(2)

Table 7.7: Cross sections for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions in the 1-Higgs-
singlet extension of the SM with mixing angle θ = π/8. Other details as in table 7.6.

gg → h2 → ZZ → ` ¯̀̀
′ ¯̀′

σ [fb], pp,
√
s = 8 TeV

min. cuts & |MV V −Mh2| < Γh2

θ = π/8 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.08537(8) 3.6(4)e-05 0.005371(9) 0.00541(1) 1.000(2) 1.063(2) 1.063(2)

600 0.01323(2) -0.000174(4) 0.001058(4) 0.000884(6) 0.987(2) 1.080(2) 1.067(2)

900 0.001283(1) -0.0001316(9) 0.000373(1) 0.000241(2) 0.897(2) 1.290(2) 1.188(2)
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Table 7.8: Cross sections for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp collisions at
√
s = 8

TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV, Mh2 = 300, 600, 900 GeV
and mixing angle θ = π/15. An additional window cut |MWW −Mh2| < Γh2 is applied. Other
details as in table 7.4.

gg → h2 →W
−
W

+ → `ν̄ ¯̀′ν′

σ [fb], pp,
√
s = 8 TeV

min. cuts & |MV V −Mh2| < Γh2

θ = π/15 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.3352(3) 3.8(6)e-05 0.00959(6) 0.00963(7) 1.000(2) 1.029(2) 1.029(2)

600 0.04859(5) -0.000188(4) 0.00419(3) 0.00401(3) 0.996(2) 1.086(2) 1.082(2)

900 0.004635(5) -0.000137(3) 0.000929(5) 0.000792(5) 0.970(2) 1.200(2) 1.171(2)

Table 7.9: Cross sections for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp collisions in the
1-Higgs-singlet extension of the SM with mixing angle θ = π/8. Other details as in table 7.8.

gg → h2 →W
−
W

+ → `ν̄ ¯̀′ν′

σ [fb], pp,
√
s = 8 TeV

min. cuts & |MV V −Mh2| < Γh2

θ = π/8 interference ratio

Mh2 [GeV] S Ih1 Ibkg Ifull Rh1 Rbkg Rfull

300 0.9578(9) 0.00034(2) 0.0324(2) 0.0329(2) 1.000(2) 1.034(2) 1.034(2)

600 0.1361(2) -0.00184(2) 0.01578(6) 0.01394(3) 0.987(2) 1.116(2) 1.102(2)

900 0.01298(1) -0.001340(7) 0.00429(2) 0.002952(7) 0.897(2) 1.331(2) 1.227(2)
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Figure 7.2: Invariant ZZ mass distributions for gg (→ {h1, h2})→ ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions
at
√
s = 8 TeV at loop-induced leading order in the 1-Higgs-singlet extension of the SM with

Mh1 = 125 GeV, Mh2 = 300 GeV and mixing angles θ = π/15 and π/8. Results for the heavy
Higgs (h2) signal (S) and including interference with the light Higgs (S+Ih1) and the continuum
background (S + Ih1 + Ibkg) are shown. Minimal cuts are applied (see main text). Other details
as in table 7.2.
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Figure 7.3: Invariant ZZ mass distributions for gg (→ {h1, h2})→ ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions
at
√
s = 8 TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV, Mh2 = 600

GeV and mixing angles θ = π/15 and π/8. Other details as in figure 7.2.
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Figure 7.4: Invariant ZZ mass distributions for gg(→ {h1, h2})→ ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions
in the 1-Higgs-singlet extension of the SM with mixing angle θ = π/8. As in figure 7.3, but with
linear dσ/dMZZ scale, to illustrate negative S + Ih1 and S + Ih1 + Ibkg.
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Figure 7.5: Invariant ZZ mass distributions for gg (→ {h1, h2})→ ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions
at
√
s = 8 TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV, Mh2 = 900

GeV and mixing angles θ = π/15 and θ = π/8. Other details as in figure 7.2.
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Figure 7.6: Invariant WW mass distributions for gg(→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp
collisions at

√
s = 8 TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV,

Mh2 = 300 GeV and mixing angles θ = π/15 and π/15. Other details as in table 7.4.
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Figure 7.7: Invariant WW mass distributions for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp
collisions at

√
s = 8 TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV,

Mh2 = 600 GeV and mixing angles θ = π/15 and π/8. Other details as in figure 7.6.
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Figure 7.8: Invariant WW mass distributions for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp
collisions in the 1-Higgs-singlet extension of the SM with mixing angle θ = π/8. As in figure 7.7,
but with linear dσ/dMWW scale, to illustrate negative S + Ih1.
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Figure 7.9: Invariant WW mass distributions for gg (→ {h1, h2}) → W−W+ → `ν̄ ¯̀′ν′ in pp
collisions at

√
s = 8 TeV in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV,

Mh2 = 900 GeV and mixing angle θ = π/15 and π/8. Other details as in figure 7.6.

Table 7.10: Widths of the physical Higgs bosons h1 and h2 in the 1-Higgs-singlet extension of
the SM with mixing angles sin θ = 0.2 and sin θ = 0.4 as well as µ1 = λ1 = λ2 = 0.

h1 h2

sin θ M [GeV] 125 400 600 900

0.2 Γ [GeV] 4.34901× 10−3 1.52206 5.95419 19.8529

0.4 Γ [GeV] 3.80539× 10−3 22.5016

is chosen so that sin(θ) = 0.2 for the majority of results but results are additionally

provided for sin(θ) = 0.4 and MH = 600 GeV in order to quantify the mixing angle

dependence. In this case, the minimal cuts are MZZ > 10 GeV, and no cut for MWW .

The recalculated widths are given in table 7.10. In addition to table 7.11, which displays

results in the same format as those above, results including the full gg background are

shown in table 7.12. The corresponding invariant mass plots are shown in figure 7.10

and figure 7.11.

7.5 Discussion

As seen in the tables and figures, interference effects increase significantly with increas-

ing heavy Higgs mass. They can range from O(1) to O(10%) effects for integrated cross

sections. With the window cut, it can be seen that interference effects are mitigated to

O(10%) or less. It is also noticeable that the heavy Higgs-continuum background inter-

ference is negative above Mh2 and positive below Mh2, while the heavy Higgs-light Higgs
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Table 7.11: Cross sections for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions at
√
s = 13 TeV

at loop-induced leading order in the 1-Higgs-singlet extension of the SM with Mh1 = 125GeV,
Mh2 = 400, 600, 900 GeV and mixing angle sin θ = 0.2 or 0.4 as indicated. The ratio Ri =
(S + Ii)/S illustrates the relative change of the heavy Higgs signal due to interference with the
light Higgs and continuum background amplitude contributions. Cross sections are given for a
single lepton flavour combination. The integration error is displayed in brackets.

gg(→ {h1, h2})→ ZZ → ` ¯̀̀
′ ¯̀′

σ [fb], pp,
√
s = 13 TeV

min. cuts interference ratio

sin θ Mh2 [GeV] S(h2) Ih1 Ibkg Ifull Rh1 Rbkg Rfull

0.2 400 0.07412(6) 0.00682(6) -0.00171(2) 0.00511(6) 1.092(2) 0.977(1) 1.069(2)

0.2 600 0.01710(2) -0.00369(3) 0.00384(3) 0.00015(4) 0.784(2) 1.225(2) 1.009(3)

0.2 900 0.002219(2) -0.003369(9) 0.003058(8) -0.00031(2) -0.518(4) 2.378(4) 0.860(6)

0.4 600 0.07065(6) -0.01191(6) 0.01465(6) -0.00274(9) 0.831(2) 1.207(2) 1.039(2)

Table 7.12: Cross sections for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′ in pp collisions at
√
s = 13 TeV

at loop-induced leading order in the 1-Higgs-singlet extension of the SM with Mh1 = 125 GeV,
Mh2 = 400, 600, 900 GeV and mixing angle sin θ = 0.2 or 0.4 as indicated. Results for the heavy
Higgs (h2) signal (S), light Higgs background (h1) and continuum background (gg bkg). Where
more than one contribution is indicated, all interferences are taken into account. Other details
are as in Table 7.11.

gg → h2 → ZZ → ` ¯̀̀
′ ¯̀′

σ [fb], LHC,
√
s = 13 TeV

min. cuts

sin θ Mh2 [GeV] S(h2) h1 gg bkg. S(h2) + h1 + Ih1 all

0.2 400 0.07412(6) 0.854(2) 21.18(7) 0.934(2) 21.86(7)

0.2 600 0.01710(2) 0.854(2) 21.18(7) 0.867(2) 21.80(7)

0.2 900 0.002219(2) 0.854(2) 21.18(7) 0.852(2) 21.79(7)

0.4 600 0.07065(6) 0.734(2) 21.18(7) 0.793(2) 21.77(7)
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Figure 7.10: Invariant mass distributions for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′′, other details as
in Table 7.11.
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Figure 7.11: Invariant mass distributions for gg (→ {h1, h2}) → ZZ → ` ¯̀̀ ′ ¯̀′, other details as
in Table 7.12. Where more than one contribution is included, all interferences are taken into
account.
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Figure 7.12: As figures 7.7 and 7.9 (left-hand plots), with the interference contributions only on
a linear scale.

interference has the opposite behaviour. Consequently, in the heavy Higgs resonance re-

gion a strong cancellation occurs when both interference contributions are added. It

is therefore essential to take both contributions into account in phenomenological and

experimental studies.

Despite the occurring cancellation, the full interference is clearly non-negligible and

modifies the heavy Higgs lineshape. Overall effects of O(10%) are found for integrated

cross sections, even if a window cut is applied. The results for θ = π/15 and θ = π/8

are in qualitative agreement. Relative interference effects show a mild quantitative

dependence on the mixing angle.
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The interference contributions for the 600 and 900 GeV Higgs in the WW case

are separated in figure 7.12. It is striking that the differing contributions are roughly

symmetric in size and shape, so that, as can in the tables, the total effect on the cross

section is small. The same features that were visible in the semi-leptonic cases discussed

in Chapter 6, enhancements in interference at 2Mt and 2MV (although the numerical

values at these points are still very small), are again visible here, and above the heavy

Higgs peak there are no striking features. The sign flip in both contributions as the

interference goes through the peak suggests that the real part of the product (as in

eq. (6.17)) dominates in this region. The imaginary component is enhanced by direct

proportionality to the larger width of the heavy resonances, and therefore has an impact

even so far from the peak. The continuum interference is destructive above the mass

peak.

The results presented for heavy Higgs-light Higgs interference are qualitatively in

agreement with those given in ref. [69], where this interference is considered for gg →
{h1, h2} → ZZ → 4`, but in the 1HSM with an extra Z2 symmetry.

From a phenomenological perspective, it is also useful to study figure 7.11, in order

to see the change in combined signal and background when interference is or is not

included. It was seen when studying interference alone that the combined light and

continuum interferences cancel each other out to an extent, so that the overall effect

is small: when one includes the full gg background, the effect is rendered even less

important since the signal is only distinguishable above the background close to the

peak, and it is in this region that the cancellation is strongest. Note also that away from

the heavy peak, the h1 only line is indistinguishable form the S+h1 + Ih1 line, verifying

the earlier assertion that the presence of the heavy resonance has a negligible effect on

the lineshape of the light resonance.
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Chapter 8

Off-shell Comparisons in Leptonic

Higgs Decays

Throughout this chapter, all parameters are chosen according to the recommendations

of the LHC Higgs Cross Section Working Group for the fourth yellow report [9]: MW =

80.35797 GeV, MZ = 91.15348 GeV, ΓW = 2.08430 GeV, ΓZ = 2.49427 GeV, Mt =

172.5 GeV, Mb(Mb) = 4.18 GeV, GF = 1.1663787 . 10−5GeV−2, VCKM = 1. Unless

otherwise indicated, µR = µF = MV V
2 and the PDF set is PDF4LHC15 nlo 100 with the

default αs.

8.1 Interference Effects in Fully Leptonic Vector Boson

Decays of the Higgs Boson

The five fully leptonic decays of the SM Higgs boson produced from gluon fusion are:

gg → H →W−W+ → ¯`ν`ν̄
′
``
′ (8.1)

gg → H → ZZ → ` ¯̀̀ ′ ¯̀′ (8.2)

gg → H → ZZ → ` ¯̀̀ ¯̀ (8.3)

gg → H → ZZ → ¯̀̀ ν̄ ′`ν
′
` (8.4)

gg → H →W+W−/ZZ → ¯̀νν̄` (8.5)
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Table 8.1: Integrated cross section results for gluon fusion leptonic processes. Results are given
for signal + interference with gg background, and gg background only.

gg → H → V V → final states

σ [fb], LHC,
√
s = 13 TeV

min. cuts

Final State S S+Iggbkg gg bkg.

`ν`ν̄`
′
`
′

37.95(4) 33.60(4) 45.31(4)

` ¯̀̀
′ ¯̀′ 0.9284(7) 0.6707(8) 4.264(2)

` ¯̀̀ ¯̀ 0.4739(8) 0.3467(8) 1.723(3)
¯̀̀ ν̄
′
ν
′

1.896(2) 1.386(2) 5.730(5)
¯̀νν̄` 36.01(3) 31.19(3) 50.52(4)
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Figure 8.1: Invariant mass distributions for gg (→ H) → W+W− → ¯̀ν`ν̄
′
``
′ and gg (→ H) →

ZZ → ¯̀̀ ν̄′`ν
′
`

A BSM extension of processes (8.1) and (8.2) was studied in Chapter 7.

These processes are well-studied in the literature, as are their interference effects,

particularly in refs. [59, 60, 63, 65, 79, 139]. Experimental analyses at the LHC have

been performed by ATLAS [140, 141] and CMS [142, 143]. The results included here

were calculated using gg2VV for the yellow report that is currently in preparation [9].

Results were compared with VBFNLO and MadGraph5 aMC@NLO. Table 8.1 shows

the integrated cross sections for the five processes with parameters as given above and

minimal cuts (M`¯̀ > 10 GeV for all same flavour lepton combinations). Figures 8.1

to 8.3 show the corresponding MV V differential distributions.

While calculating these results, the importance of exactly how the interference re-

sults are calculated became apparent. The default set-up of the main gg2VV code is

to calculate signal only, background only or signal + background including interference,
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Figure 8.2: Invariant mass distributions for gg (→ H) → ZZ → ` ¯̀̀ ¯̀ and gg (→ H) → ZZ →
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Figure 8.3: Invariant mass distribution for gg (→ H)→W+W−/ZZ → ¯̀ν`ν̄``.

126



8.2 Comparisons of PDF and Scale Choices Off-shell Comparisons

so the only way to separate the interference contribution is to subtract the signal-only

and background-only results from the signal + background + interference result. Al-

ternatively, one can calculate the interference contribution alone. It is to be expected

that the second method (which will be referred to as the direct calculation, and the

subtraction method as the indirect calculation) will be more accurate, since if the inter-

ference contribution is isolated, the grid adaptation focuses on regions of the phase space

most relevant to the interference, which is not necessarily the case when the squared sig-

nal/background contributions (which will typically be much larger than the interference

and therefore drive the adaptation) are included.

In fact, although four out of the five cases showed the expected agreement, with

better precision on the direct interference calculation, in one case, process (8.5), it proved

difficult to get a sufficiently precise result using the indirect calculation, and comparison

of the invariant mass differential distributions (figure 8.4) showed that this method

missed a crucial cancellation in the on-peak region in one particular bin, where although

the two results to be subtracted individually had a precision of better than 1%, this was

not precise enough to include the required cancellation. Error propagation showed that

the error on the indirect calculation was greater than 100%, so this issue could not go

un-noticed, but it is interesting to note. If higher precision was required on the indirect

calculation in this case, it would be necessary to perform runs with a cut around the

problematic region to ensure that a large number of phase space points are sampled in

that region.

The conclusions to be drawn from these results are those of ref. [139] and the other

references cited above: interference effects in the SM fully-leptonic decays are of or-

der 10% and are more important in the off-peak regions. The total signal-background

interference with minimal cuts is destructive in all cases.

8.2 Comparisons of PDF and Scale Choices

A relevant topic is the optimal renormalisation and factorisation scales, and the choice

of PDF. Ideally, the dependence of the cross section on the scale choices should be as

small as possible, and it is sensible to choose scales of the order of the energy scale of the

127



8.2 Comparisons of PDF/Scale Choices Off-shell Comparisons

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 100 200 300 400 500 600 700 800 900 1000

MZZ [GeV]

g
g
2
V
V

d
σ
/d

M
Z
Z

[f
b
/
G
eV

] Full − S − C
IS/C(direct)

Figure 8.4: Invariant mass distribution for gg (→ H)→W+W−/ZZ → ¯̀ν`ν̄`` comparing signal
+ interference calculated directly and indirectly.

process under consideration in order to minimise logarithms of the form ln Q
2

µ
2
f

and ln µ
2
r

Q
2

in the structure functions in the DGLAP evolution of the PDF and QCD corrections

to the cross section. If these logarithms were allowed to be large, the convergence of

the power series would be spoilt. Then, for example, for the gg → 4` process M4` is a

reasonable choice, although in fact better convergence of the QCD perturbative series is

found for µ = M4`/2.

A further question is the order of PDF set to use. As discussed in Chapter 3, the

DGLAP equations are known to NNLO, and so in principle the evolution used to obtain

the requested probability value can be LO, NLO, or NNLO. It is reasonable to ask

whether, if the hard process can only be calculated to say leading order, as is the case

with many gluon fusion processes, one should convolute this with the best available

NNLO PDF or use the lower order set for consistency. If one takes the recommended

value of αs (µ) at the requested factorisation scale, there is further variation in whether αs

is calculated using the best available (NNLO) renormalisation group equation prediction,

or whether the order matches that of the DGLAP equation.

Brief investigations into scale dependence (tables 8.4 and 8.5) and PDF set depen-

dence (tables 8.2 and 8.3) are presented for the gg → H → 2`2`′ process, consider-

ing the effect on signal, signal-plus-interference and background-only in the resonant

(110 GeV < MV V < 140 GeV, denoted “RES”) and off-shell (MV V > 140 GeV) regions,
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Table 8.2: PDF dependence of off-shell gg (→ H) → e+e−µ+µ− cross sections at LO in fb.
Minimal cuts, described in the text, are applied. R is the ratio of the NNLO or LO result to
NLO result. The bottom rows show the ratio of OFS, HM1, HM2 to RES result for S and S+ I.
The MC error is given in brackets. See main text for other details.

PDF set order

Region Amp. NLO NNLO R LO(0.118) R LO(0.130) R

S 0.1266(1) 0.1255(1) 0.991(2) 0.1255(1) 0.992(2) 0.1414(2) 1.116(2)
OFS S + I −0.1313(2) −0.1298(2) 0.988(2) −0.1307(2) 0.995(2) −0.149(1) 1.138(8)

B 2.988(4) 2.945(5) 0.986(2) 2.960(4) 0.991(2) 3.448(5) 1.154(3)

S 0.01933(4) 0.01906(4) 0.986(3) 0.01899(4) 0.982(3) 0.02210(5) 1.143(4)
HM1 S + I −0.04550(8) −0.04475(8) 0.984(3) −0.04486(7) 0.986(3) −0.0516(6) 1.13(2)

B 1.182(3) 1.165(3) 0.985(3) 1.166(3) 0.986(3) 1.354(3) 1.145(4)

S 0.0981(1) 0.0974(1) 0.993(2) 0.0973(1) 0.992(2) 0.1084(2) 1.105(2)
HM2 S + I −0.0465(1) −0.04622(9) 0.994(3) −0.04637(9) 0.997(3) −0.0522(6) 1.12(2)

B 0.611(2) 0.605(2) 0.990(4) 0.598(2) 0.980(4) 0.676(2) 1.107(5)

S 0.800(1) 0.780(1) 0.976(2) 0.843(1) 1.054(2) 1.021(2) 1.276(3)
RES S + I 0.803(2) 0.784(2) 0.976(4) 0.845(4) 1.052(6) 1.023(3) 1.274(5)

B 0.1092(2) 0.1063(2) 0.974(2) 0.1150(2) 1.053(3) 0.1389(2) 1.272(3)

OFS/ S 0.1583(3) 0.1609(3) 0.1490(3) 0.1385(3)
RES S + I −0.1635(4) −0.1655(5) −0.1547(7) −0.146(2)
HM1/ S 0.02418(6) 0.02443(6) 0.02253(6) 0.02165(5)
RES S + I −0.0566(2) −0.0571(2) −0.0531(3) −0.0504(6)
HM2/ S 0.1227(2) 0.1249(3) 0.1155(2) 0.1062(2)
RES S + I −0.0579(2) −0.0589(2) −0.0549(3) −0.0510(6)

with the off-shell region (OFS) further divided into the region with known enhancements

such as on-shell top effects (HM1, 140 GeV < MV V < 300 GeV), and the remaining high

mass region (HM2, MV V > 300 GeV). Two sets of cuts are considered: minimal cuts

(M`¯̀> 4 GeV to avoid the photon singularity in the background) and typical CMS cuts

for this process: pT1 > 20 GeV, pT2 > 10 GeV, pT3,4 > 5 GeV, MZ1, MZ2 > 4 GeV,

|ηe| < 2.5,
∣∣ηµ∣∣ < 2.4. Results are compared for the recommended NLO PDF set [9] to

results for the PDF4LHC15 NNLO [2] set and CT14 LO set (included in the PDF4LHC

combinations), all with the same recommended value of αs = 0.118, and the CT14 LLO

set with αs = 0.130 in tables 8.2 and 8.3.
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Table 8.3: PDF dependence of off-shell gg (→ H)→ e+e−µ+µ− cross sections at LO in fb. CMS
cuts are applied. Other details as in table 8.2.

PDF set order

Region Amp. NLO NNLO R LO(0.118) R LO(0.130) R

S 0.0952(3) 0.09396(8) 0.986(3) 0.09034(7) 0.949(3) 0.10191(8) 1.070(3)
OFS S + I −0.0893(3) −0.0883(1) 0.989(3) −0.08436(9) 0.944(3) −0.0973(1) 1.089(4)

B 1.869(3) 1.841(3) 0.985(2) 1.736(2) 0.928(2) 2.033(3) 1.088(2)

S 0.01303(9) 0.01278(3) 0.981(7) 0.01200(3) 0.921(7) 0.01402(3) 1.076(8)
HM1 S + I −0.0298(2) −0.02942(6) 0.986(6) −0.02759(5) 0.925(5) −0.03227(6) 1.082(6)

B 0.738(2) 0.727(2) 0.986(3) 0.679(2) 0.920(3) 0.795(2) 1.079(4)

S 0.0761(3) 0.07531(8) 0.990(4) 0.07271(7) 0.956(3) 0.08123(8) 1.067(4)
HM2 S + I −0.0349(2) −0.03471(7) 0.994(6) −0.03376(6) 0.967(6) −0.03757(7) 1.076(7)

B 0.382(2) 0.377(2) 0.987(5) 0.353(1) 0.925(5) 0.403(2) 1.055(5)

S 0.4392(7) 0.4284(7) 0.975(3) 0.4343(7) 0.989(3) 0.5267(8) 1.199(3)
RES S + I 0.439(2) 0.428(2) 0.975(4) 0.433(2) 0.988(4) 0.527(2) 1.200(5)

B 0.06294(8) 0.06155(8) 0.978(2) 0.06243(9) 0.992(2) 0.0755(1) 1.200(3)

OFS/ S 0.2169(7) 0.2193(4) 0.2080(4) 0.1935(4)
RES S + I −0.2036(8) −0.2065(6) −0.1946(6) −0.1847(6)
HM1/ S 0.0297(2) 0.02984(8) 0.02762(8) 0.02662(7)
RES S + I −0.0680(4) −0.0688(3) −0.0637(3) −0.0613(2)
HM2/ S 0.1733(6) 0.1758(4) 0.1674(4) 0.1542(3)
RES S + I −0.0796(5) −0.0811(3) −0.0779(3) −0.0714(3)

The differences observed between different sets in tables 8.2 and 8.3 are in line with

expectations - the largest variation from the recommended set is for the LO set with

αs = 0.130, where the deviation can be up to 28% with minimal cuts. The NNLO and

LO with αs = 0.118 sets generally show quite good agreement in all regions of the phase

space and with both sets of cuts; some variation is expected and observed.

Tables 8.4 and 8.5 consider the variation of the recommended PDF set with different

scale choices. With the recommended scale, variations of double and half the scale typ-

ically alter the signal by up to ±25%, dropping to approximately ±15% in the resonant

region.
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Table 8.4: QCD scale µ = µR = µF dependence and symmetric scale uncertainty of off-shell
gg (→ H)→ e+e−µ+µ− cross sections at LO in fb for one lepton-flavour combination. Minimal
cuts are applied as described in the text. R is the ratio of the result to the cross section with
the recommended scale choice µ = MV V /2. As recommended, the NLO PDF set is used. Other
details as in table 8.2.

Dynamic scale Fixed scales

∆(MV V ) R
Region Amp. MV V /2 ∆(MV V /4) R MH/2 R MZ R

symmetr. ∆ R

S −0.0258(2) −0.204(2)
S 0.1266(1) 0.0349(2) 0.276(2) 0.2038(2) 1.610(2) 0.1760(2) 1.390(2)
S 0.0303(2) 0.240(1)
S + I 0.0251(2) 0.182(2)

OFS S + I −0.1313(2) −0.0328(2) −0.250(2) −0.1831(2) 1.394(2) −0.1604(2) 1.221(2)
S + I ±0.0290(2) ±0.221(1)
B −0.545(5) −0.182(2)
B 2.988(4) 0.699(7) 0.234(3) 3.751(4) 1.255(3) 3.327(4) 1.114(2)
B 0.6225(4) 0.209(2)

S −0.00355(4) −0.184(3)
S 0.01928(3) 0.00455(6) 0.236(3) 0.02406(6) 1.248(4) 0.02150(5) 1.115(3)
S 0.00405(4) 0.210(2)
S + I 0.0085(1) 0.187(3)

HM1 S + I −0.04553(8) −0.0106(2) −0.233(3) −0.0561(1) 1.233(3) −0.05002(9) 1.099(3)
S + I ±0.0096(1) ±0.2095(2)
B −0.223(4) −0.188(3)
B 1.186(3) 0.273(5) 0.230(4) 1.462(3) 1.232(4) 1.302(3) 1.098(4)
B 0.248(2) 0.209(3)

S −0.0207(2) −0.211(2)
S 0.0982(2) 0.0284(2) 0.289(2) 0.1693(2) 1.724(3) 0.1451(2) 1.478(3)
S 0.0246(2) 0.250(2)
S + I 0.0099(2) 0.212(3)

HM2 S + I −0.04651(8) −0.0136(2) −0.293(3) −0.0818(2) 1.760(5) −0.0700(2) 1.505(4)
S + I ±0.0118(1) ±0.253(2)
B −0.123(2) −0.201(3)
B 0.610(1) 0.167(3) 0.275(5) 0.929(3) 1.524(5) 0.807(2) 1.323(4)
B 0.145(2) 0.238(3)

S −0.115(2) −0.143(2)
S 0.800(1) 0.131(2) 0.164(2) 0.801(2) 1.001(2) 0.737(1) 0.921(2)
S 0.123(2) 0.154(2)
S + I −0.116(3) −0.145(2)

RES S + I 0.803(2) 0.130(3) 0.162(3) 0.803(2) 1.000(3) 0.739(2) 0.920(3)
S + I ±0.123(2) ±0.153(2)
B −0.0158(3) −0.145(3)
B 0.1092(2) 0.0176(3) 0.162(3) 0.1089(2) 0.998(2) 0.1002(2) 0.917(2)
B 0.0167(2) 0.153(2)

OFS/ S 0.1583(3) 0.2545(5) 0.2389(4)
RES S + I −0.1635(4) −0.2279(5) −0.2172(5)

HM1/ S 0.02411(5) 0.03005(8) 0.02918(8)
RES S + I −0.0567(2) −0.0699(2) −0.0677(2)

HM2/ S 0.1228(3) 0.2114(4) 0.1970(4)
RES S + I −0.0579(2) −0.1019(3) −0.0948(3)
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Table 8.5: QCD scale µ = µR = µF dependence and symmetric scale uncertainty of off-shell
gg (→ H)→ ` ¯̀̀ ′ ¯̀′ cross sections at LO in fb for one lepton-flavour combination. CMS cuts are
applied. Other details as in table 8.4.

Dynamic scale Fixed scales

∆(MV V ) R
Region Amp. MV V /2 ∆(MV V /4) R MH/2 R MZ R

symmetr. ∆ R

S −0.0196(3) −0.206(4)
S 0.0952(3) 0.0257(4) 0.270(4) 0.1545(4) 1.622(6) 0.1338(4) 1.405(5)
S ±0.0227(3) ±0.238(3)
S + I 0.0164(4) 0.184(4)

OFS S + I −0.0893(3) −0.0223(4) −0.250(5) −0.1282(4) 1.435(6) −0.1119(3) 1.253(5)
S + I ±0.0194(3) ±0.217(3)
B −0.331(4) −0.177(2)
B 1.869(3) 0.430(4) 0.230(2) 2.341(3) 1.252(3) 2.084(3) 1.115(2)
B ±0.381(3) ±0.204(2)

S −0.00235(3) −0.181(2)
S 0.01302(2) 0.00303(3) 0.233(3) 0.0163(2) 1.25(1) 0.0145(1) 1.115(8)
S ±0.00269(2) ±0.207(2)
S + I 0.00536(6) 0.179(2)

HM1 S + I −0.02986(5) −0.00682(7) −0.228(3) −0.0370(2) 1.241(7) −0.0326(2) 1.092(6)
S + I ±0.00609(5) ±0.204(2)
B −0.132(2) −0.178(2)
B 0.739(1) 0.168(2) 0.227(3) 0.908(2) 1.229(3) 0.811(2) 1.097(3)
B ±0.150(1) ±0.203(2)

S −0.0160(2) −0.210(2)
S 0.0761(1) 0.0218(2) 0.286(3) 0.1315(4) 1.727(6) 0.1131(4) 1.485(5)
S ±0.0189(1) ±0.248(2)
S + I 0.00740(7) 0.211(2)

HM2 S + I −0.03505(6) −0.01006(9) −0.287(3) −0.0630(3) 1.798(9) −0.0537(3) 1.533(8)
S + I ±0.0088(1) ±0.249(2)
B −0.0768(8) −0.201(2)
B 0.3822(6) 0.1019(9) 0.267(3) 0.582(2) 1.522(5) 0.506(2) 1.324(4)
B ±0.090(1) ±0.234(2)

S −0.0603(9) −0.137(2)
S 0.4392(7) 0.066(1) 0.151(3) 0.4389(7) 0.999(3) 0.4044(6) 0.921(2)
S ±0.064(2) ±0.145(2)
S + I −0.060(2) −0.136(4)

RES S + I 0.439(2) 0.067(2) 0.154(5) 0.438(2) 0.999(4) 0.406(2) 0.925(4)
S + I ±0.064(2) ±0.145(3)
B −0.0086(2) −0.136(2)
B 0.06294(8) 0.0097(2) 0.155(2) 0.06302(9) 1.001(2) 0.05816(8) 0.924(2)
B ±0.0092(1) ±0.146(2)

OFS/ S 0.2169(7) 0.352(1) 0.331(1)
RES S + I −0.2036(8) −0.292(2) −0.276(2)

HM1/ S 0.02964(6) 0.0371(3) 0.0359(3)
RES S + I −0.0681(3) −0.0845(5) −0.0804(5)

HM2/ S 0.1734(4) 0.300(1) 0.280(1)
RES S + I −0.0799(3) −0.1437(8) −0.1325(7)
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Chapter 9

Conclusions

In this thesis, interference effects have been investigated for several classes of Higgs de-

cays in gluon fusion at the LHC. Firstly, the semi-leptonic H → WW and H → ZZ

channels provide important additional information in SM Higgs measurements and heavy

Higgs searches, and it is important to investigate whether the tree-level background

could induce significant interference effects with the loop-induced signal process. Sec-

ondly, the Higgs singlet model is the minimal SM Higgs-sector extension containing an

additional Higgs-like particle, and is therefore an important benchmark model in heavy

Higgs searches. Calculations have been presented for the interference in the fully leptonic

decays in this model, namely the ` ¯̀̀ ′ ¯̀′ and `ν̄`
¯̀′ν`′ final states. Finally, a summary has

been given of the SM fully leptonic decays, alongside an investigation of the dependence

of the cross section on PDF and renormalisation and factorisation scale choices.

With regard to the semi-leptonic processes, both the tree-level and quark-loop gg

background contributions to the interference have been computed. The former is en-

hanced at the amplitude level by 1/e2 relative to the latter. The results have been

obtained using two independent implementations in the public codes gg2VV and Mad-

Graph5 aMC@NLO, which show excellent agreement. Light and heavy Higgs masses

have been considered with minimal and realistic experimental selection cuts. It was

found that the interference of the Higgs signal with the tree-level background is sup-

pressed compared to its interference with the loop-induced V V background. This holds

for light and heavy Higgs masses as well as minimal, LHC and Higgs search cuts. It can

therefore be concluded that higher-order background contributions can induce leading
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interference effects. With appropriate background suppression cuts, the interference can

be reduced to the 10% level for heavy SM Higgs masses, and to the per mille level for the

light SM Higgs. Furthermore, it is seen that with the background cuts, the total effect

of signal-background interference on the integrated cross section is negligibly small, but

important differences are clearly visible in the differential distributions, particularly in

the far off-shell region. The dominant interference contribution comes from the contin-

uum background, particularly when selection cuts are implemented. In these off-shell

regions interference effects dominate over the signal and therefore should be taken into

account for more exclusive selection cuts or analysis methods.

In the Higgs singlet model, the interference of the heavy Higgs signal process with the

light Higgs and continuum backgrounds was investigated. It was found that it is crucial

to include both types of interference in phenomenological and experimental studies,

as with minimal selection cuts both contributions induce relatively strong interference

effects close to the heavy Higgs peak, but they are of similar size and opposite sign

so that a strong cancellation occurs and the total effect on the cross section is small.

Both contributions change sign as they pass through the heavy peak. Three values of

heavy Higgs mass and two mixing angles were considered, and this conclusion was found

to apply in all cases. It is found that interference effects increase significantly with

increasing heavy Higgs mass, ranging from O(10%) to O(1) effects for integrated cross

sections. With a |MV V −Mh2| < Γh2 window cut, it can be seen that overall interference

effects are mitigated to O(10%). Despite the occurring cancellation, the full interference

is clearly non-negligible and modifies the heavy Higgs lineshape.

The final study expands on known results for the fully leptonic decays; in agreement

with existing literature, interference effects are found to be of order 10% and have more

importance in the off-peak regions. The total signal-background interference with min-

imal cuts is destructive in all cases. The dependence of the cross section on PDF and

scale choice for this class of decays is found to be in line with theoretical expectations,

for both minimal and typical experimental cuts. Scale dependence (comparing various

fixed scales to the dynamical choice of MV V /2) is smallest in the resonant region.

In conclusion, it is evident that interference effects merit careful treatment in preci-

sion studies of Higgs boson decays. Even in cases where selection cuts may render the
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total effect on the integrated cross section small or negligible, effects on the lineshape in

differential distributions can be large, particularly in the off-shell region.

All calculations presented in this thesis have been carried out with a parton-level

integrator and event generator, gg2VV. The modifications to the phase space portion of

the code that were necessary for the results of Chapters 6 and 7 were described in detail

in this thesis, and the relevant versions have been made publicly available.
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