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Abstract

A localised multisecret sharing scheme is a multisecret sharing scheme for an or-
dered set of players in which players in the smallest sets who are authorised to access
secrets are close together in the underlying ordering. We define threshold versions
of localised multisecret sharing schemes, we provide lower bounds on the share size
of perfect localised multisecret sharing schemes in an information theoretic setting,
and we give explicit constructions of schemes to show that these bounds are tight.
We then analyse a range of approaches to relaxing the model that provide trade-offs
between the share size and the level of security guarantees provided by the scheme,
in order to permit the construction of schemes with smaller shares. We show how
these techniques can be used in the context of an application to key distribution for
RFID-based supply-chain management motivated by the proposal of Juels, Pappu
and Parno from USENIX 2008.

1 Introduction

A secret sharing scheme is a means of distributing some information (shares) to a set
of players so that authorised subsets of players can recover a unique secret, whereas the
shares belonging to unauthorised subsets do not reveal any information about the secret.
For example, a (t;n)-threshold scheme involves a set of n players, with the authorised
subsets being all sets of t or more players and the unauthorised subsets being all sets of
t−1 or fewer players. Such schemes were proposed independently by Blakley and Shamir
in 1979 [2, 18]. More generally, given a set U of players we can define an access structure
Γ to be the collection of all authorised subsets of U , with all other subsets of U being
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unauthorised. We require Γ to be monotone, in the sense that for A,B ⊆ U with A ⊆ B
then if A ∈ Γ we have B ∈ Γ also. A multisecret sharing scheme is a generalisation of
secret sharing in which several secrets are shared according to different access structures
on the same set of participants [3, 4, 7, 9, 14]. In this paper we consider a specific class of
multisecret sharing schemes that are suited to an application in RFID security proposed
by Juels, Pappu and Parno in USENIX 2008 [10]. We motivate the definition of these
schemes initially through the following toy example:

Scenario 1. (Distributed signing key for a committee with changing member-
ship) A learned society is lead by a committee with seven members. The members each
serve a seven year term on the committee; each year one member leaves the committee
and a new member is elected to replace them. Every year the society holds a conference in
a different city and committee meetings occur at these conferences. A meeting is deemed
quorate as long as at least three committee members are present.

The society wishes to distribute a signing key among the committee members that
allows them to sign the reports of their meetings at which at least three members are
present. The key will need to change each year to reflect the changed membership of the
committee. However they wish to avoid the need to change the members’ shares, since
the shares are handed out at the committee meetings, but not every member attends each
meeting. Furthermore, the shares belonging to any members who have left the committee
should not reveal any information about the current value of the committee’s signing key.

The requirements of Scenario 1 lead us to the following definition:

Definition 1.1 (Localised threshold multisecret sharing scheme). Let U = u0, u1, u2, . . .
be an ordered set of players. A window of length n consists of a set of n consecutive
players, and we denote by Wi the window {ui, ui+1, . . . , ui+n−1}. To each window Wi we
assign a secret ki from some finite secret space K. Let S be a finite set of shares. A
scheme that associates a share si ∈ S to each player ui is a localised multisecret sharing
scheme with window length n and threshold t (denoted (t;n)-LMSS) if it satisfies the
following properties:

• for any i = 0, 1, 2, . . . the set of shares associated with the players in a set U ⊆ U
allow the secret ki to be recovered uniquely whenever |U ∩Wi| ≥ t;

• for any i = 0, 1, 2, . . . if U ⊆ U is a set of players with the property that |U∩Wi| < t
then the shares associated with the players in U reveal no information about ki.

Example 1.1. The use of a (3; 7)-LMSS to distribute their signing keys would allow the
committee in Scenario 1 to satisfy their requirements: the first seven committee members
are the players u0, u1, . . . , u6, and the remaining committee members are ordered by the
year in which they join the committee. Each player ui is given a share si. As illustrated
in Figure 1, window W2 contains players u2, u3, u4, u5, u6, u7 and u8, which correspond
to the members who are in the committee during year 2. Any three or more of these
members can combine their shares to recover the signing key k2 for year 2. For example,
the set of members {u3, u6, u8} is an authorised set for year 2, so shares s3, s6 and s8

can be used to reconstruct k2. On the other hand, the set {u7, u8, u9, u10} only contains
two members from within window W2 and hence the set of shares {s7, s8, s9, s10} do not
reveal any information about k2. (They would, however, allow k3, k4, k5, k6, k7 or k8 to
be recovered.)
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s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 . . .

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 · · ·
W2

Figure 1: Depiction of window W2 in a (3; 7)-LMSS.

The key feature of an LMSS is the fact that the set of players is ordered and every
minimal authorised set of players is contained within a window of n consecutive players
for some n. The aim of this paper is to analyse the security of such schemes and provide
efficient techniques for their construction. In Section 2 of this paper we provide some
necessary background details on secret sharing and multisecret sharing. In Section 3
we provide theoretical results on the security properties of LMSS including bounds on
the share sizes, and give constructions of schemes that meet these bounds. In Section 4
we explore how the definition of a LMSS can be relaxed in order to permit schemes
with smaller share sizes, and in Section 5 we show how these ideas can be applied in
a natural way in designing a scheme suitable for an application in RFID-based supply
chain management motivated by a proposal of Juels, Pappu and Parno [10].

2 Background

Here we summarise some results and techniques from the literature that we use later in
this paper.

2.1 Secret Sharing

The earliest proposed examples of secret sharing schemes were for (t;n)-threshold schemes.
The following construction is due to Shamir and yields a (t;n)-threshold scheme for any
positive integers t, n with t ≤ n:

Construction 1 (Shamir’s Secret Sharing Scheme [18]). Let U be a set of n players, and
let p > n be a prime. For a given secret k ∈ Zp, select t− 1 further values r1, r2, . . . , rt−1

uniformly at random from Zp, and let f ∈ Zp[x] be the polynomial defined by

f(x) = rt−1x
t−1 + rt−2x

t−2 + · · ·+ r1x+ k.

We identify each player with a unique nonzero element of Zp, and to player i we assign
the share f(i).

Any set of t or more players can perform polynomial interpolation on their shares in
order to recover the polynomial f and hence determine the secret k. However, for any
set of t − 1 or fewer players, and for any element k′ ∈ Zp, there exists a polynomial of
degree at most t− 1 consistent with their shares and having constant term k′. Thus the
shares of an unauthorised set of players yield no information about the true value of k.
Note that it is possible to replace Zp by the finite field GF(q) for any prime power q > n,
and that a slight adjustment can make the scheme work for q ≥ n.
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The properties of secret sharing schemes are often described using information theo-
retic notation. Let K denote the discrete random variable corresponding to the choice of
secret, and let A denote the discrete random variable corresponding to the set of shares
given to the players in the set A ⊆ U . For a secret sharing scheme with access structure
Γ we require H(K | A) = 0 for any authorised set A ∈ Γ, and H(K | B) = H(K) for any
unauthorised set B /∈ Γ. A secret sharing scheme satisfying the second of these properties
is said to be perfect; Shamir’s secret sharing scheme is an example of a perfect scheme. It
is well known that for any perfect secret sharing scheme H(Si) ≥ H(K), where Si is the
discrete random variable corresponding to the share belonging to player ui. Informally
speaking, the size of each share is at least the size of the secret for any perfect scheme.

One way to allow the construction of schemes with smaller shares is to relax the
requirement for the scheme to be perfect. For example, a (t1, t2;n)-ramp scheme is a
secret sharing scheme in which any t2 players can use their shares to uniquely recover
the secret, whereas the set of shares belonging to any set of t1 or fewer players reveals
no information about the secret. Sets of players of sizes greater than t1 but smaller than
t2 may learn partial information about the secret, hence ramp schemes are not perfect.
The average entropy of a player’s share in a (t1, t2;n)-ramp scheme is known to be at

least log2 |K|
t2−t1 [12]. The following construction is based on Construction 1, and achieves

H(Si) = H(K)
t2−t1 for each player ui; it is due to McEliece and Sarwate [15].

Construction 2 ((t1, t2;n)-ramp scheme [15]). Set s = t2 − t1. Let U be a set of n −
s + 1 players, and let p > n be a prime. The secret for this scheme is an element
k = (k1, k2, . . . , ks) ∈ Zsp. It is shared by selecting a polynomial f uniformly from the
set of all polynomials in Zp[s] that satisfy f(0) = k1, f(1) = k2, . . . , f(s − 1) = ks. We
identify each player with a unique nonzero element of Zp \ {0, 1, . . . , s− 1}, and to player
i we assign the share f(i).

As before, any set of t2 players can perform interpolation to recover f , which enables
them to recover the entire secret. In addition, it can be shown that any set of t1 or fewer
players learns no information about the secret.

2.2 Multisecret Sharing

Many authors have studied a generalisation of secret sharing in which several secrets are
shared according to different access structures on the same set of participants [3, 4, 7, 9,
14]. There are various equivalent ways of defining security in such a setting; the following
is due to Herranz, Ruiz and Sáez [7]:

Definition 2.1. Let U be a set of players, and for j = 1, 2, . . . ,m let Γj be a monotone
access structure on U . Let Q be the set of possible secrets, and suppose that secrets
k1, k2, . . . , km are chosen from Q. A scheme that allocates to each player ui in U a share
si from some set S of potential shares is a weakly information-theoretic secure multi-secret
sharing scheme if it satisfies the following properties:

• (correctness) for i = 1, 2, . . . ,m and for any set A ⊂ U of players we have that if
A ∈ Γj then the shares of the players in A can be used to uniquely recover secret
kj. In terms of entropy, H(Kj | A) = 0 whenever A ∈ Γj.
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• (weak information-theoretic security) if A /∈ Γj then the shares of the players in A
reveal no information about kj. That is, H(Kj | A) = H(Kj).

If, in addition, any set A /∈ Γj together with a set T of secrets with kj /∈ T reveals no
information about kj that is not already revealed by T alone (i.e. if H(Kj | A,T) =
H(Kj | T)) then the scheme is said to have strong information-theoretic security.

A (k;n)-LMSS is a special case of a multi-secret sharing scheme; the version presented
in Definition 1.1 corresponds to the case of a weakly information theoretically secure
scheme. Our analysis of these schemes in Section 3 will require the following theorem of
Herranz, Ruiz and Sáez:

Theorem 2.1 ([7]). Let Γ1, . . . ,Γ` be ` access structures on U and consider the player
ui ∈ U . Assume there exist subsets of players B1 ⊂ B2 ⊂ . . . ⊂ B` ⊂ U \ {ui} satisfying,
for all j = 1, 2, . . . , `, the following three conditions:

1. Bj ∈ Γj−1 whenever j > 1;

2. Bj /∈ Γj;

3. Bj ∪ {ui} ∈ Γj.

Then, for any weakly-information theoretic secure multi-secret sharing scheme for Γ1,Γ2, . . . ,Γ`,
it holds that H(Si) ≥

∑`
i=1 H(Ki).

3 Bounds and constructions for LMSSs

A (t;n)-LMSS can be regarded as a weakly information-theoretic secure multisecret shar-
ing scheme with access structures Γ0,Γ1,Γ2, . . . , where Γi is a (t;n)-threshold access
structure for the set of players within window Wi. We note that it is possible to con-
struct such a scheme by deploying a (t;n)-threshold scheme in each window, as observed
in [10] (the same approach has been mentioned previously in the literature as a way to
construct multisecret sharing schemes for various other combinations of threshold access
structures, e.g. [3]).

Construction 3 (Trivial (t;n)-LMSS [10]). Let U = u0, u1, u2, . . . be an ordered set
of players, and denote by Wi the window {ui, ui+1, . . . , ui+n−1}. Let p be a prime with
p > n. For each window Wi we share a secret ki ∈ Zp among the n players in Wi using
a (t;n)-threshold scheme (Construction 1). This is done independently for each window;
a player uj is thus assigned shares corresponding to each window that contains it, i.e.
windows Wj−n+1,Wj−n+2, . . . ,Wj. (The secrets may or may not be independent, but the
randomness used in each of the threshold schemes is chosen independently.))

It is straightforward to see that Construction 3 gives rise to a (t;n)-LMSS in which
the total share size for each player is n log p. In the case where k < n this turns out to
be optimal, as shown by the following theorem:
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Theorem 3.1. Let U = u0, u1, u2, . . . be an ordered set of players. Suppose t < n and let
Σ be a weakly secure (t;n)-LMSS that associates a share si ∈ Q to each player ui. Then
for any j ≥ n− 1 we have that

H(Si) ≥
j∑

i=j−n+1

H(Ki).

Proof. For ease of notation we prove the result for j = n − 1, but the proof applies
analogously to any j ≥ n − 1. Consider the sequence of players P = [u0, u1, . . . , u2n−2].
Restricting Σ to these players yields a weak information-theoretic secure multi-secret
sharing scheme on P , where for i = 0, . . . n − 1 the secret ki is shared according to the
access structure Γi = {S ⊂ Wi | |S| ≥ t}.

For r = 1, 2, . . . , n, let Br consist of the first t− 2 + r elements of P \ {un−1}. Then
the sets Bi satisfy the conditions for Theorem 2.1, and so we have that H(Sn−1) ≥∑n−1

i=0 H(Ki) as required.

If the secrets and shares are all uniformly distributed, we obtain the result that the
size of the secret given to player Pj with j ≥ n− 1 in a (t;n)-LMSS with t < n is at least
n log |K|, which implies that Construction 3 is optimal. (We address the case t = n in
Section 3.1.) The fact that there do not exist constructions for a (t;n)-LMSS with share
sizes shorter than those of Construction 3 means that these schemes are not suitable for
applications that require small shares. In Section 4 we consider various approaches to
relaxing the security definitions for these schemes in a controlled manner so as to allow
more efficient constructions. On the positive side, we observe that if the secrets are
generated independently of each other, then the optimal schemes of Construction 3 are
in fact strongly information-theoretic secure.

3.1 The case t = n

Interestingly, the restrictions of Theorem 3.1 do not apply in the case where t = n, as
the following construction demonstrates.

Construction 4. Let U = u0, u1, u2, . . . be an ordered set of players, and denote by
Wi the window {ui, ui+1, . . . , ui+n−1}. Suppose that for i ≥ 0 a secret ki is generated
uniformly at random from the set Zλ2 , and that this is done independently for each i. For
i = 0, 1, . . . , n− 2 we assign a share si to player ui by generating si uniformly at random
from Zλ2 . For i ≥ n− 1 we set si = ki−n+1 ⊕ si−n+1 ⊕ si−n+2 ⊕ · · · ⊕ si−1.

Theorem 3.2. Construction 4 results in an (n;n)-LMSS that has weak information-
theoretic security and optimal share size, but which does not possess strong information-
theoretic security.

Proof. In an (n;n)-LMSS, the access structure Γj has a single minimal authorised subset
A, which is the set consisting of all n players in the window Wj:

A = {uj, uj+1, ..., uj+n−1}.

Note that the secret kj can be recovered from the shares belonging to players in A by
calculating kj = sj ⊕ sj+1 ⊕ · · · ⊕ si+n−2 ⊕ sj+n−1.
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For the access structure Γj, the maximal unauthorised subsets have the form

Bî = {u0, u1, . . . , ui−1, ui+1, . . . , uj+n−1, . . . },

for some i with j ≤ i ≤ j + n− 1.
Suppose an attacker who wishes to determine kj possesses all the shares in Bî.
By definition of Construction 4,

sj+n−1 = kj ⊕ sj ⊕ sj+1 ⊕ · · · ⊕ si−1 ⊕ si ⊕ si+1 ⊕ · · · ⊕ sj+n−2,

hence

kj = sj ⊕ sj+1 ⊕ · · · ⊕ si−1 ⊕ si ⊕ si+1 ⊕ · · · ⊕ sj+n−2 ⊕ sj+n−1. (1)

The adversary knows all terms on the right hand side of (1) apart from the share si,
which we can express as

si = ki−n+1 ⊕ si−n+1 ⊕ si−n+2 ⊕ · · · ⊕ si−1. (2)

Strong security: We show the construction does not have strong information-theoretic
security. In the strong security setting, in addition to the shares possessed by the
players in Bî, we assume the adversary also knows all secrets other than kj. In the
case where i 6= j + n − 1, this includes the secret ki−n+1, and so the adversary is
able to determine si using (2), and hence recover kj using (1).

When i = j + n− 1 (that is, when the missing share is the last one in the window)
the adversary does not possess ki−n+1. However, we observe that:

sj+n = kj+1 ⊕ sj+1 ⊕ sj+1 ⊕ ...⊕ sj+n−2 ⊕ sj+n−1.

The adversary possesses all terms in this expression other than sj+n−1 = si, hence
they can use it to recover si and thence kj as before.

Weak security: In the weak information theoretic setting, the adversary does not know
any secrets other than those it is able to compute using the shares in its possession.
Consider the following system of equations:

ki−n+1 = si−n+1 ⊕ si−n+2 ⊕ · · · ⊕ si−1 ⊕ si,
ki−n+2 = si−n+2 ⊕ si−n+3 ⊕ · · · ⊕ si ⊕ si+1,

...

ki = si ⊕ si+1 ⊕ ...⊕ si+n−2 ⊕ si+n−1.

This is a system of n linear equations. The adversary knows all the values except for
the n+ 1 values in the set S = {si, ki−n+1, ki−n+2, . . . , ki}. For every possible choice
of kj ∈ Zλ2 there is a choice of the values in S \{kj} consistent with the set of shares
corresponding to players in B. Hence these shares reveal no new information about
the secret kj, meaning this construction has weak information theoretic security.
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Optimality: To see that this scheme is optimal with respect to share size, we note that
restricting this construction to any window gives an (n;n)-threshold scheme for that
window in which the size of each share is the same as the size of the corresponding
secret. Since for a perfect (n;n)-threshold scheme the size of the shares must be at
least as large as the size of the secrets, this is optimal.

The scheme of Construction 4 thus gives an example of a (k;n)-LMSS that is weakly
secure, but not strongly secure. We note that it has independently generated secrets,
thus demonstrating that having independently generated secrets is a necessary but not
sufficient condition to guarantee that a weakly secure scheme will also be strongly secure.

3.2 Time dependent schemes

In many applications such as that of Scenario 1, the secrets k0, k1, . . . of an LMSS have
a natural interpretation as a sequence of secrets that change over time. In such a setting
it makes sense to consider a security model that is intermediate between the strong and
weak models:

Definition 3.1. A (weakly information theoretically secure) (k;n)-LMSS is said to have
perfect backward secrecy if the shares possessed by any set A /∈ Γj together with the set
of the first j secrets Tj = {k0, k1, . . . , kj−1} reveals no information about the secret kj
other than that already revealed by Tj. In entropy terms, H(Kj | A,Tj) = H(Kj | Tj).

Perfect backward secrecy ensures that the exposure of past secrets does not affect
the security of future secrets. Note that, by definition, a (t;n)-LMSS with perfect back-
ward secrecy is also a weakly information-theoretic (t;n)-LMSS. Furthermore, a strongly
information-theoretic (t;n)-LMSS necessarily has perfect backward secrecy. Thus perfect
backward secrecy can be seen as an intermediate requirement between weak and strong
information-theoretic security. A strongly information-theoretic scheme in fact possesses
both perfect backward secrecy and perfect forward secrecy, where compromise of future
secrets does not affect the security of past secrets. This is interesting from the point of
view of motivating the strong security model, given that Scenario 1 seemed a priori only
to require weak security.

It is interesting to consider whether the scheme of Construction 4 has this property.
The following result shows that in fact it only has quite limited backward secrecy:

Theorem 3.3. Construction 4 does not have perfect backward secrecy: an adversary
possessing the secrets k0, k1 . . . kj−1 and who also has shares of a maximal set of players
Bî /∈ Γj can determine kj except in the case where i = j + n − 1, where no information
about kj is revealed.

Proof. Consider the proof of Theorem 3.2. In showing that an adversary who has access
to all secrets other than kj can recover kj in the case where i 6= j + n − 1 we in fact
only made use of secrets k` with ` < j. Hence the same argument demonstrates that this
construction does not give a backward secure scheme. Interestingly, when i = j + n− 1
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the adversary in fact learns nothing about kj in the backward secure setting. To see this,
we consider the following set of equations:

ki−n+1 = si−n+1 ⊕ si−n+2 ⊕ · · · ⊕ si−1 ⊕ si,
ki−n+2 = si−n+2 ⊕ si−n+3 ⊕ · · · ⊕ si ⊕ si+1,

...

ki = si ⊕ si+1 ⊕ · · · ⊕ si+n−2 ⊕ si+n−1.

This is a set of n linear equations with n+ 1 unknowns, namely ki−n+1, ki−n+2, . . . , ki, si.
For every possible secret ki−n+1 there exist a choice for the remaining elements of this set
that is consistent with the view of the adversary. Therefore, the construction does ensure
that an adversary lacking share si−n+1 learns no information about ki−n+1.

4 Relaxing security requirements in order to con-

struct more efficient schemes

The bounds on share sizes implied by Theorem 3.1 mean that, in order to construct a
more efficient (k;n)-LMSS, it is necessary to relax the security definition. There are
various ways in which this could be done. The SWISS schemes proposed by Juels et al.
[10] are one example; we discuss some limitations of these schemes in Section 5. In this
Section we consider systematically a range of techniques that can be applied while still
working in the setting of information-theoretic security. Recall that the essential aims of
a (k;n)-LMSS are to ensure that any k suitably close users are able to recover a secret,
and that each secret should only be accessible to players within a bounded window. The
techniques we consider here allow us to maintain these goals, while relaxing the strict
requirements of Definition 1.1 in ways that give us a well understood trade-off between
the security compromises and the resulting efficiency gains.

4.1 Shifting to a nonperfect model of secret sharing

Section 2.1 indicated that the shares of a perfect (t;n)-threshold scheme have to be
at least as large as the secret, but that share sizes could be reduced by the use of a
(t1, t2;n)-ramp scheme, with the increased efficiency being traded against the relaxation
of the security in that sets of players of sizes between t1 and t2 can now gain partial
information about the secret. The exact same technique can be applied in the context of
a (t;n)-LMSS, by replacing the use of Shamir’s secret sharing scheme in Construction 3
with the (t1, t2;n)-ramp scheme of Construction 2. Reducing the sizes of sets of players
that are excluded from learning any information about the secret from t2− 1 to t1 in this
manner allows us to decrease the size of the shares by a factor of t2 − t1.

4.2 Changing the access structures

One consequence of Definition 1.1 is that the functionality (in terms of which keys a given
player can contribute to recovering) is inextricably tied directly to the security (in terms
of the sizes of the windows of players that can contribute to recovering a particular key.)
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Specifically, if we wish to consider windows of length n, then according to this definition
each player is necessarily a participant in n distinct windows. As this connects directly to
the storage overheads for each player, this restriction limits the scope for improving the
efficiency of such schemes. It would be desirable to have greater flexibility in varying the
parameters of a scheme. One way to achieve this is to decouple the access structure (i.e.,
the definition of which sets of players are authorised to access keys) from the pattern of
key distribution (i.e., which keys are able to be accessed by particular authorised sets.)
In this section we will set up a framework for analysing this more general setting, and
explore the resulting consequences in terms of security and practicality. In Section 5 we
will see how these more general schemes can be deployed effectively in a practical setting.

The access structure in isolation: As previously, we consider an ordered set of play-
ers denoted by U = u0, u1, u2, . . . . We define an access structure Γ on U by speci-
fying that the authorised sets in Γ are all those subsets of U that contain a subset
of the form S = {ui1 , ui2 , . . . , uit} where i1 < i2 < · · · < it and it − i1 ≤ n − 1.
That is, any subset of U that contains t or more players from within a window of
n consecutive players is authorised. We think of the authorised sets in Γ as being
those that have the right to reconstruct at least one key.

Key windows: The defining property of a localised secret sharing scheme is that we
want any given key to be accessible by sufficiently large sets of players that are
suitably close. For a given key k we suppose there is a specific key window W k

consisting of the players ui, ui+1, . . . ui+`−1 that we think of as having the potential
to be involved in recovering k. Note that unlike in Section 3, we no longer require
` = n but we can also allow ` ≥ n.

The effect of Γ within a key window: We now consider the restriction of the access
structure Γ to the window W k. This gives us an access structure Γk on the players
in W k whose authorised sets are all those of the form A ∈ Γ with A ⊆ W k. This is
illustrated in Figure 2 for the case ` = 4 and n = k = 2.

k
si si+1 si+2 si+3

ui ui+1 ui+2 ui+3

W k

Figure 2: For ` = 4 and n = k = 2, any pair of adjacent players are authorised to recover
the secret.

For ` > n the access structure Γk is no longer a threshold access structure. It is
possible to construct a secret sharing scheme assigning shares to the players in W k that
enable authorised sets in Γk to recover k while preventing the shares belonging to any set
S /∈ Γk from gaining any information about k [8]. However, in general this may require
the share sizes to be larger than the size of k. For example, in the case where ` = 4 and
n = t = 2 (as depicted in Figure 2), Capocelli et al. show that it is necessary for the
largest share to be at least 50% larger than the size of the secret [5].
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One approach to avoiding this issue (as suggested in [10]) is simply to use a (t; `)-
threshold scheme to share k among the players in W k, since this allows shares that are no
larger than the size of the secret (and permits a straightforward trade-off between security
and share size through the use of a suitable ramp scheme if desired). However, in the
case where ` is significantly larger than n (the schemes proposed in [10] have ` ≥ 2n) this
results in many subsets of W k that are not authorised having shares that allow them to
recover the secret, namely any set of t shares {si1 , si−2, . . . , sit} with i1 < i2 < · · · < it
and it − i1 > n. This can be substantially mitigated at no extra cost by the use of the
following construction:

Construction 5. We generate shares in the secret k for the players in W k as follows:

• We share k using a (t;n)-threshold scheme and assign the resulting shares s1, s2, . . . , sn
to the first n players in the window.

• We then assign s1, s2, . . . , sn in turn to the next n players in turn and so on, cycling
through the shares as necessary throughout the rest of the window.

This construction ensures that the shares possessed by any n consecutive players are
precisely those of a (t;n)-threshold scheme, and so the shares of any subset of t or more of
those n consecutive players can recover the secret, as required by Γk. There is potential
for a small saving in the size of the shares relative to using a (t; `)-threshold scheme
since it is possible to use a field of size n rather than `. However the main advantage
of this construction is in reducing the number of sets S /∈ Γk that can recover k. For a
(t; `)-threshold scheme, there are

(
`
t

)
subsets of size t that can recover the secret, whereas

Γk contains only (` − n)
(
n−1
t−1

)
+
(
n
t

)
authorised subsets of size t (there are

(
n
t

)
ways of

choosing such a subset from among the last n players in the window; for subsets not
wholly contained within the last n players there are ` − n possible choices for the first
player in the subset and

(
n−1
t−1

)
ways to choose the rest of the subset from the n − 1

subsequent players.). For example, if ` = 4 and n = t = 2 then the threshold scheme has(
4
2

)
= 6 pairs of shares that can recover the secret, whereas Γk only has 2

(
1
1

)
+
(

2
2

)
= 3

authorised pairs. This implies that half of the pairs of players enabled by the threshold
scheme to access the secret are not in Γk. For the scheme given in Construction 5, on the
other hand, in the case where ` = λn there are λt

(
n
t

)
subsets of size t that can recover

the secret. For ` = 4 and n = t = 2 this gives 22
(

2
2

)
= 4 pairs that can recover the secret,

so only a quarter of these are not in Γk.
We note that Construction 5 can also be instantiated with a ramp scheme in place of

the threshold scheme if desired.

4.3 Staggering key windows

If we were to fix ` = n and require a new key window of length n starting with player
ui for every i = 1, 2, . . . then we would recover Definition 1.1. However, by allowing
distinct values of ` and n, and allowing more flexibility in the distribution of the key
windows we can obtain a family of schemes that have the potential for much greater
flexibility in tailoring their properties to suit our application requirements. One way to
do this is to introduce a parameter d that describes the offset between consecutive key
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windows, so that key k0 is associated with the window W k0 = {u0, u1, u2, . . . , u`−1}, key
k1 is associated with the window W k1 = {ud, ud+1, . . . , ud+`−1}, and so on. In general,
key ki is associated with the window W ki = {uid, uid+1, . . . , uid+`−1}.

The following lemmas describe basic properties of the scheme that arises from stag-
gering the key windows in this fashion.

Lemma 4.0.1. An authorised set A = {ui1 , ui2 , . . . , uit} with it−i1 = c for some c ≤ n−1
can reconstruct b `−c

d
c or d `−c

d
e secrets.

Proof. The shares corresponding to the players in set A allow them to recover the secret
for any window W with A ⊆ W . A window of length ` contains A if it starts with a
player between uit−`

and ui1 . This is a range of ui−1 − uit−` = ` − (uit − ui1) = ` − c
possible starting points. If the windows have offset d then for any value of it at least
b `−c

d
c windows, and up to d `−c

d
e windows will start in this range.

The share storage requirements for any individual player are given by the following
lemma:

Lemma 4.0.2. Any single player is associated with either b `
d
c or d `

d
e shares.

The proof is a direct analogue of that of Lemma 4.0.1.

Example 4.1. Suppose we take ` = 2n and d = n. Then every player is associated with
shares from two distinct key windows, and any authorised set is able to recover either
one or two distinct window keys.

4.4 Combining techniques

Combining all the techniques discussed in this section gives us the following construction:

Construction 6. (Flexible Localised Multisecret Sharing Scheme, ((t1, t2;n, `, d)-fLMSS))
Let U = u0, u1, u2, . . . be an ordered set of players, and denote by Wi the window
{ui, ui+1, . . . , ui+`−1}. Let p be a prime with p > n. For each window Wi for i =
0, d, 2d, 3d, . . . we share a secret σi ∈ Zp among the ` players in Wi using Construc-
tion 5 implemented with a (t, k, n)-ramp scheme.

The following properties of this construction follow directly from the earlier results in
this section.

Theorem 4.1. A (t1, t2;n, `, d)-fLMSS has the following properties:

• (storage) If the secrets are all independent and identically distributed according to

the uniform random variable K then the size of the shares of each tag are d `
d
e log2 |K|
t2−t1

bits.

• (key recovery) Any set of players {ui1 , ui2 . . . , uim} ⊆ Wi for i = 0, d, 2d, . . . with
m ≥ t2 and im − i1 ≤ n is able to recover the secret ki.
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Figure 3: Illustration of properties of the (30, 50; 100, 150, 40)-fLMSS of Example 4.2.

Example 4.2. Consider key windows of length ` = 150, with an offset of d = 40 be-
tween consecutive window keys. Let n = 100, t2 = 50 and t1 = 30, so any 50 players
ui1 , ui2 , . . . , ui50 with i50 − i1 ≤ 99 are able to fully construct a common secret, whereas
sets of 30 or fewer players learn no information about the secret. Using Lemma 4.0.1,
an authorised set A = {ui1 , ui2 , . . . , ii50} with i50 − i1 = c for some c ≤ 99 is able to
reconstruct b150−c

40
c or d150−c

40
e secrets. For example, when c = 50 we have

`− c
d

=
150− 50

40
= 2.5,

so each authorised subset is always able to construct at least two, and potentially up to
three, window secrets. To illustrate this, consider the authorised setA = {u120, u121, . . . , u169},
which is depicted in Figure 3. The shares in A are capable of reconstructing the secrets
W40,W80 and W120. This is the maximum possible. Consider a different authorised set
Y = {u119, u120, . . . , u168}. The players in Y can reconstruct the secrets W40 and W80,
but no longer has sufficient shares to compute W120.

Lemma 4.0.2 implies that any single player is associated with either b150
40
c or d150

40
e

shares. In this example,

`

d
=

150

40
= 3.75,

so each individual player is associated with either 3 or 4 shares. For example, consider
the player u210. This player must hold shares for the windows W80,W120,W160 and W200

and hence is an example of a player who holds four shares. On the other hand, player
u235 must hold a secret for W120.W160 and W200 and thus holds three shares. Both players
are illustrated in Figure 3.

Theorem 4.1 states that the total size of the shares of each player in a (t1, t2;n, `, d)-
fLMSS is ⌈

`

d

⌉
log2 |K|
k − t
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bits. Here, we have a (30, 50; 100, 150, 40)-fLMSS, so if we are wishing to have a uniformly
generated 32 bit secret (for example), we obtain⌈

`

d

⌉
log2(p)

k − t
=

⌈
150

40

⌉
32

50− 30
= 4× 32

20
< 7,

so we would require each player to store at most 7 bits. For a secret of 64 bits, we would
require at most 13 bits of storage. In comparison, were we to use Construction 3 each
player would be required to store 100 shares each of size 32 bits, leading to a total storage
of 3200 bits, or 6400 bits in the case of 64 bit secrets.

5 Application to key distribution for RFID-enabled

supply chains

In this section we consider the application of fLMSS to the distribution of keys for RFID
tags used in supply-chain management. Radio Frequency Identification (RFID) is a
technology that uses radio signals to identify objects [1]. An RFID system consists of a
tag, a reader and a back-end server [1]. The devices are used in transportation, logistics,
manufacturing and processing. Typical applications include inventory control, animal
tagging, postal tracking, airline baggage management, access control, and manufacturing
processes [17].

RFID tags enable the identification, tracking and verification of products in a supply
chain both automatically and in real time [1], hence their use is becoming more prevalent
in manufacturing. They have the potential to store information such as batch numbers,
date of manufacture, and so on. In supply chains, the predominant RFID standard is
known as the Electronic Product Code (EPC) [6]. EPC tags can be regarded as new
generation bar-codes that emit a code containing four elements [10]: a header, which
denotes the EPC version number; a domain manager that details the manufacturer;
an object class that specifies the item type; and a serial number, which is a universal
identifier for the item. The unique serial number enables the tag to be linked to a
database containing other vital information related to the product. Storing the EPC
rather than all the information relevant to the product requires less memory on the tag,
which is ideal as tags have a limited memory of up to 2KB of data [10].

However, the use of these tags creates new security and privacy challenges: for in-
stance, a consumer who is in possession of a tagged product runs the risk that a passerby
could scan the tag and thereby determine that they are carrying the product. There are
many items such as medications for which this is potentially undesirable. One further
complication is that there may not exist any prior secure channels (in the form of shared
secret keys or similar) between the manufacturer and agents, such as merchants, who
legitimately require access to the tags’ contents. One way to address this is to exploit
differences in the way in which a legitimate user is able to access the data on a tag or
tags, as opposed to the potentially more restricted access available to a casual adversary.
Juels, Pappu and Parno consider the following scenario [10]:

Scenario 2. (Distributing a key over the RFID tags on all the items in a case)
Suppose a manufacturer places tags on items that are shipped in bulk to a merchant who
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then sells them individually to customers. The merchant (who has a legitimate need to
read the tag identities) has access to many tags. On the other hand, after the items are
sold, an adversary (who should be prevented from recovering the tag identities) is expected
to only have access to a small number of tags.

In this scenario, the items are assumed to be shipped by the case-load to the merchant,
and Juels et al. [10] suggest the use of a secret sharing scheme to distribute a key across
all the tags in a case of items, with each tag receiving a single share. This ensures that the
merchant who possesses the entire case can gather enough shares to recover the identity,
but once the items have been sold they are sufficiently dispersed that the identity can no
longer be recovered. This is an example of a situation where a threshold (or ramp) secret
sharing scheme gives a natural solution to the problem of securing identities of RFID tags
from adversaries with access to a small number of tags, while allowing merchants who
possess entire cases of tags to access the relevant information.

Juels et al. [10] propose keeping the share sizes small by using a variation of a scheme
due to Krawczyk that provides computational (rather than information-theoretic) security
[11]. In Krawczyk’s original scheme a large secret is encrypted with a (relatively) short
key and the resulting ciphertext is shared using a (0, k;n)-ramp scheme, while the key
is shared using a (k;n)-threshold scheme. Juels et al. [10] suggest sharing both the key
and the ciphertext with a secret sharing scheme based on an error-correcting code, and
claim that this enables them to ‘make the size of our shares independent of the secret’.
In fact this is not correct, nor is their assertion that Krawczyk’s scheme has ‘shares with
lengths independent of the secret’s size’. Rather, as Krawczyk states in his abstract [11],
his scheme is ‘an m-threshold scheme... in which shares corresponding to a secret S are
of size |S|

m
plus a short piece of information whose length does not depend on the secret

size but just in the security parameter. (The bound of |S|
m

is clearly optimal if the secret
is to be recovered from m shares.)’.

The use of error-correcting codes for secret sharing has been long studied [15, 13]; in
particular it is known that a length n code with distance d and dual distance d∗ gives
a (t1, t2;n − 1)-ramp scheme with t1 = d∗ − 2 and t2 = n − d + 1 (see, for example,
[16] for details). Thus if the dual distance of the code is small, then t1 is also small
and the resulting scheme only guarantees protection of the secret against small coalitions
of players. In Krawczyk’s scheme the computational security is ensured by the fact
that a threshold scheme is used to share the key. Replacing the threshold scheme in
this construction by one based on an error-correcting code leads to a similar reduction
in security as would be caused by simply using a ramp scheme to share the message
directly; it does not reduce the storage relative to this more straightforward approach,
and it offers only computational rather than information-theoretic security guarantees.
As such, this error-correcting code approach does not appear to offer any clear advantages
in this context.

5.1 Instantiating a solution for Scenario 2

In order to use a secret-sharing based scheme for Scenario 2, it is necessary to preload
the appropriate data on all the tags. Once a case has been ordered, the supplier can set
up the appropriate tags and attach them to all the items in the case. However, this may
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be time consuming and inconvenient. Instead, it would be more convenient to be able
to attach the tags to the products as they come off the production line prior to packing.
This leads to the following scenario, which is essentially that considered by Juels et al.
in their Example 2 [10].

Scenario 3. (Setting up a sequence of RFID tags for items coming off a pro-
duction line) Suppose a manufacturer attaches RFID tags to items as they come off the
production line. The items are then packed and shipped to meet orders coming in from
wholesale customers. The manufacturer wishes to distribute keys across items in an order
using a (t;n)-threshold secret sharing scheme, as in Scenario 2. However, the customers
may order differing numbers of items, and at the time when the data is being placed on
the tags the manufacturer does not yet know what these orders are going to be (either in
terms of their sizes or to which customer they will be shipped). The shares on the tags
in a single order must enable the wholesaler to recover a suitable key, yet adversaries
who obtain fewer than t shares from a given order should learn no information about the
key. (In particular, this means that the tags from a certain wholesaler’s orders should
not allow that wholesaler to learn the key corresponding to another wholesale customer’s
order.)

Juels et al. propose the use of a Sliding-Window-Information-Secret-Sharing (SWISS)
scheme for this purpose. Their basic SWISS scheme uses a (k;n)-threshold scheme with
key window length ` = 2n and offset d = n. They observe that this can be generalised to
` = (Ψ+1)n

Ψ
with d = n

Ψ
for Ψ < n. They further note that in place of a threshold scheme

they could use the secret sharing scheme they developed for Scenario 2.
The fact that the choice of Ψ completely determines ` and d once n is known is

unnecessarily restrictive here. We observe that the requirements of Scenario 3 are in fact
essentially the same as those of Scenario 1; hence, a (t1, t2;n, `, d)-fLMSS is an appropriate
solution for the manufacturer’s needs in this situation.

Example 5.1. In Example 4.2, we saw that the use of a (30, 50; 100, 150, 40)-fLMSS
allowed a 64 bit secret to be distributed while only requiring each player to store a 13 bit
share. This is well within the capacity of an EPC Gen2 RFID tag, and would be suitable,
for example, in a situation where merchants order shipments of at least 100 items at a
time.

Advantages of using a fLMSS for this application include the following:

• The direct use of a ramp scheme rather than an arbitrary error-correcting code ex-
plicitly gives the values of the important parameters, so that the resulting trade-off
between security and efficiency is entirely clear. Furthermore, the use of Construc-
tion 2 in the fLMSS gives the essential property that both the sharing and the
secret recovery can be efficiently performed.

• The fLMSS provides information-theoretic security rather than relying on compu-
tational assumptions.

• The use of Construction 5 reduces the number of unauthorised sets who can access
a given secret relative to a SWISS scheme of analogous parameters.
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• By separating the window length ` from the offset d, we have enabled a more flexible
choice of parameters that allows for the appropriate security/efficiency trade-off to
be chosen to directly suit application requirements.

The systematic analysis of the various components of the fLMSS in Section 4 ensures that
the trade-offs inherent in the selection of parameters are explicit and well-understood,
making the fLMSS a widely applicable tool for applications of this nature.

6 Conclusion

Localised multisecret sharing is a natural concept with a range of potential applications.
We have showed that a fLMSS scheme provides a flexible and lightweight tool for ap-
proximating the ideal behaviour of a (t;n)-LMSS in a restricted environment such as that
provided by the use of RFID tags. Interesting open problems would be to find further
applications for these schemes, and to determine whether their security can be further
enhanced through improvements to Construction 5.
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