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ABSTRACT 

Tomato is the model species of choice for fleshy fruit development and for the 

Solanaceae family. EMS mutants of tomato have recently proved their utility for 

discovering new functions in plants leading to improved breeding stock for superior 

tomato varieties. However, until recently, the identification of causal mutations 

underlying remarkable phenotypes has been a very lengthy task that many labs 

could not afford due to spatial and technical limitations. Here, we describe a simple 

protocol for mapping-by-sequencing causal mutations in tomato, in which the 

phenotypes of interest are first isolated by screening a mutant collection generated in 

the miniature cultivar Micro-Tom. A recombinant F2 population is then generated by 

crossing the mutant with a wild type (non-mutagenized) genotype and the F2 

segregants displaying the same phenotype are pooled. Finally, whole genome 

sequencing and analysis of allele distributions in the pools allows the identification of 

the causal mutation. The whole process takes 6 to 12 months, from the isolation of 

the tomato mutant to the identification of the causal mutation. This strategy 

overcomes many previous limitations, is of simple use and can be applied in most 

labs with limited facilities for plant culture and genotyping.  
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INTRODUCTION 

 

Tomato is the model species of choice both for fleshy fruits and Solanaceae, in 

general. Considerable genetic tools and resources have been developed in tomato, 

increasing its use as a translatable model among the plant-based scientific 

community. In recent years, a high quality tomato genome sequence has been 

obtained for the inbred tomato cultivar ‘Heinz 1706’ which serves as a reference 

genome. The 900 megabases (Mb) tomato genome includes ~35 000 predicted 

protein coding genes supported by RNA sequencing data. More recently, whole 

genome sequences of an increasing number of cultivated tomato genotypes and wild 

tomato relatives have been made available. To date, more than 300 tomato cultivars 

and most tomato wild species have been sequenced to variable depths (1-4). These 

include deep sequencing of the Micro-Tom (5) and M82 (3) cultivars supporting the 

considerable genetic resources generated, such as collections of S. pennellii 

Introgression Lines (Ils) in M82 (6) and/or of fast-neutron and EMS (ethyl 

methanesulfonate) mutant collections for the M82 (7) and Micro-Tom (8-13) cultivars.  

 

Tomato displays some specific features. For example, 727 gene groups found in 

tomato genome are limited to fleshy fruit species such as tomato, grape and potato 

and are not found in dry fruit species such as Arabidopsis (1). Conversely, most of the 

genes, pathways and other physiological processes are shared between tomato and 

other flowering plant species making Tomato can be an excellent model, for example 

for studying cuticle composition and properties (14-19) and carotenoid biosynthesis 

and regulation (20-25) because of the thick cuticle covering the fruit and of the large 

accumulation of carotenoids in the flower and in the ripening fruit. The successful use 

of tomato as a working model extends to other fields of plant biology, such as plant 

metabolism (26-31), plant architecture (32-37), leaf shape (38-40) and resistance to 

pathogens (41) and abiotic stress (42,3). In the post-genome era, the main bottleneck 

preventing the use of tomato as a more widespread model is the current paucity of 

tools available in tomato for linking genes to plant phenotypes. Two major 

approaches known as the reverse genetics and the forward genetics approaches are 

being used for linking gene to phenotype and assign a function to the genes in this 

species. 
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In the reverse genetics approach, a candidate gene possibly involved in the trait-of-

interest is first identified and its function and role in planta is then analyzed. With a 

high quality tomato genome sequence available, the function of a large number of 

tomato genes can be predicted by in silico annotation and further inferred by the 

information on when and where they are expressed. In classical forward genetics 

approaches, tomato genetic resources (wild species, mutant collections, heirloom 

varieties) are first screened for phenotypes-of-interest and the underlying genes are 

subsequently identified by map-based (positional) cloning. In this process, the 

chromosomal region responsible for the trait variation is identified by looking for 

linkage between the trait studied, which can be controlled by a mendelian mutation or 

Quantitative Trait Loci (QTLs), and markers with known physical location in the 

genome. Map-based cloning of the underlying genes usually involves crossing the 

genotype carrying the trait studied with a genotype that does not and for which 

markers allowing the discrimination between both genotypes are available. Though 

the toolbox necessary to perform positional cloning in tomato has considerably 

improved in the last years, identifying the allelic variant responsible for the trait of 

interest can be a lengthy task. In addition, outcrossing the genotype studied with a 

distant phenotype may produce in the segregating population used to map the allelic 

variant a large phenotypic diversity which, depending on the trait studied, may 

prevent its detection.  

 

In forward genetics screening, the large phenotypic diversity generated by 

mutagenesis is explored to identify mutants displaying the phenotypes of interest. 

Using the map-based cloning strategy to identify the causal mutations has the same 

limitations as those described above. The current advances in deep sequencing 

technologies provide one alternative strategy, which is to identify the allelic variant 

underlying the phenotype of interest by whole genome sequencing. The so-called 

mapping-by-sequencing strategy is very well adapted to tomato thanks to the genetic 

resources and tools already developed in this crop species. It considerably shortens 

the time necessary to identify a causal mutation, can be performed by most labs with 

limited expertise in tomato and in genotyping and, when the miniature tomato cultivar 

described in the protocol is used, requires a limited space for plant culture. The 

protocol described should therefore contribute much to the use of tomato as a plant 

model.  
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Using Artificially-induced genetic diversity  

Artificially-induced genetic variability has been used for decades to generate new 

valuable traits and alleles, resulting in the creation of commercial cultivated varieties 

in many crop species, including tomato (43). Several physical or chemical mutagenic 

agents can be used to generate genetic and phenotypic diversity in crop plants, the 

most commonly used being fast-neutron or gamma-ray bombardments or EMS. EMS 

mutagenesis creates point mutations evenly distributed with high density over the 

whole genome thus generating large genotypic and phenotypic diversity in relatively 

small populations. Technological advances in the last 20 years triggered a renewed 

interest for the generation of EMS mutant populations in crop species, mainly 

because of the development of the TILLING (Targeting Induced Local Lesions IN 

Genomes) strategy, whereby allelic series for a given gene can be found by 

screening EMS mutant collection (44). Many crop plants for which functional analysis 

of target genes was difficult until then became therefore amenable to studies 

involving reverse genetics approaches. At the same time, because of the large 

phenotypic diversity created by EMS mutagenesis, which usually is much beyond the 

natural genetic diversity found in cultivated species, many of the mutant collections 

were simultaneously screened for phenotypic alterations. In tomato, EMS mutant 

collections have been generated in several determinate and indeterminate cultivars 

(7,11,13,45-47), including the miniature cultivar Micro-Tom well suited for genomic studies 

(8,9). Databases describing tomato mutant phenotype have been made publicly 

available for the processing tomato M82 cultivar (7) and for the Micro-Tom cultivar 

(11). Mutants for specific traits in uniform genetic background can be ordered from 

these collections. In addition, single-gene mutations in various backgrounds affecting 

a wide range of plant and fruit characters are available at the Tomato Genetics 

Resource Center.  

 

Development of the protocol 

A forward genetics approach in tomato (Solanum lycopersicum), specifically focusing 

on the forward genetic screening of tomato EMS mutants was the approach used in 

the present studies. We recently showed how two successive rounds of EMS 

mutagenesis (Fig. 1) can produce very high mutation frequencies in tomato, up to 1 

mutation/125 Kb as demonstrated by TILLING experiments (13,46,48). The use of the 
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miniature cultivar Micro-Tom for mutagenesis further allows the screening of 

hundreds or thousands of M2 plants for major agronomic traits such as plant and 

flower truss architecture, yield and fruit characteristics (shape, weight, colour, 

ripening). Screening can be done in a limited space available in many plant labs. We 

successfully applied this strategy to the study of fruit cuticle mutants and showed that 

systematic visual screening of a fraction of the collection for fruit colour (pink fruits) 

and more subtle changes (glossy fruits) can readily lead to the identification of tens of 

mutants for cuticle traits (18,19). The genes underlying two cuticle mutants were further 

identified by mapping the mutant traits (18,19). 

Mapping the mutant trait with the help of markers is usually the first step after mutant 

isolation in forward genetics screening of tomato EMS mutants (16,18,19,24,33,37,49). The 

causal mutation is then identified through several approaches including literature 

mining for candidate genes and gene sequencing (16,18,19,24,37,49), RNA seq analysis 

(37) or whole genome sequencing (24). In this classical scenario, the genetic mapping 

of the mutation represents a major bottleneck since there is the necessity to outcross 

the mutant, usually with related wild species or at least with cultivated varieties for 

which genetic markers are available. Outcrossing tomato varieties well adapted to 

mutagenesis produces large phenotypic variability in the segregant population used 

for identifying the causal mutation. When taken together with the space required for 

growing the segregant population (fields, greenhouses etc.), this fact has prevented 

many in the plant science community from using tomato mutants.  

 

In the recent years, taking advantage of the current possibilities offered by deep 

sequencing technologies, several forward genetics screening strategies based on 

whole genome sequencing have been designed in the model plant species 

Arabidopsis and rice (recently reviewed in (50). Among these are the SHOREmap (51), 

NGM (52) and MutMap (53-56) methods, which use very similar approaches and tools. 

These methods, termed here mapping-by-sequencing, are based on phenotypic 

screening of EMS mutant collections and subsequent bulked-segregant analysis of 

F2 progeny derived from a cross between a mutant-of-interest and a wild-type (non-

mutagenized) parental line. Whole genome sequencing of bulked F2 plants 

displaying the same phenotype and alignment to a reference genome allows the 

identification of single nucleotide polymorphism (SNP) variants. The SNP variants 

used as DNA markers are derived from the outcross of the mutant with a distantly 
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related genotype (51,52) or from the backcross of the mutant with the parental wild-

type line (53,55). In that later case, the DNA polymorphism observed is only due to 

mutagenesis. The analysis of SNP frequencies is then used to delineate the 

chromosomal region harboring the causal mutation (50-53).  

Following the recent publication of a high quality tomato genome sequence from 

Heinz 1706 (1), our early attempts to identify causal mutations in Micro-Tom by 

mapping-by-sequencing were unsuccessful. We used the published automated 

pipelines NGM (52) and MutMap (53), which require less than 100 F2 progeny for 

bulking. However, a very high background noise prevented the identification of the 

regions harboring the causal mutations. Several reasons likely explain this negative 

result. Analysis of the tomato reference genome (1) emphasized the importance of 

gene duplications in tomato. Therefore, to improve mapping of the reads to the 

reference sequence, whole-genome sequencing of the bulks is now done by 

producing Paired-End (PE) Illumina reads. In addition, genome sequencing of Micro-

Tom demonstrated the presence of as many as 1.23 million SNPs and 0.19 million 

indels between Micro-Tom and Heinz 1706 reference genome (5). The results were 

recently confirmed by the sequencing of several Micro-Tom wild-type and mutant 

lines. In addition, copy number variation, deletions and insertions of chromosomal 

segments were further detected in both the mutant and wild-type lines (57). To take 

into account that natural polymorphism, one way is to construct a Micro-Tom 

reference sequence by replacing nucleotides in the Heinz 1706 reference sequence 

with those polymorphic in the mutagenized cultivar, as was done in rice (53,56). 

Considering the lack of de novo Micro-Tom genome sequence assembly, the high 

natural polymorphism between Micro-Tom and Heinz 1706, and the variability of 

Micro-Tom WT lines (5,57,58), we preferred to use the Heinz 1706 sequence as the 

reference tomato sequence. Read mapping and variant calling could be performed 

using standard bioinformatics tools (BWA59 and SAMtools60). However, before 

filtering using allelic frequencies, we included in the procedure a step designed for 

identifying and removing natural polymorphism between Micro-Tom and Heinz 1706. 

 

The simple protocol described allowed identification of the causal mutations for 

several tomato mutants affected in ascorbate regulation, fruit size, cuticle formation 

and, provided here as an example, the carotenoid pathway gene PSY1 (Phytoene 

synthase 1) that controls fruit colour. One additional advantage of this approach over 
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fine-mapping strategies classically used is that it does not require outcrossing the 

mutant. It thereby avoids the large diversity in segregating F2 population associated 

with such crosses and considerably increases the precision of the phenotyping. 

 

Applications of the method 

Tomato EMS mutant collections have already demonstrated their utility in the 

TILLING identification of allelic series for genes involved in virus resistance, 

hormonal signaling, central and secondary metabolism and plant development 

(34,35,45,46,48,61,62). Recently, forward genetics screening of tomato mutant collections 

also proved extremely useful for discovering new functions, not yet known in plants, 

such as cutin synthase involvement in cutin polymerization in the cuticle (16,19) and 

the role of the phytyl ester synthase (PES1/PYP1) in carotenoid sequestration in the 

plastoglobules (24). Tomato mutants can also help shed new light on old questions in 

plant science such as the mechanisms of heterosis in the control of fruit yield (33). A 

remarkable paper recently published by (37) further showed how screening EMS 

mutants for suppression of bushy and determinate growth habits of tomato allowed 

the isolation of new alleles which, when combined, modified the architecture from the 

plant and considerably increased fruit yield. 

Protocols described in this manuscript for linking phenotype to genotype in Micro-

Tom tomato by using EMS mutagenesis and mapping-by-sequencing can be applied 

to other tomato cultivars with minor modifications (Box 3). Among these are the M82 

cultivar, for which both mutant resources (7) and high quality sequence (3) are 

available, but also several other processing tomato cultivars for which mutant 

resources but not genomic sequences are available (45,47,62). In addition, EMS 

mutagenesis is increasingly used to generate genetic diversity in fresh market tomato 

genotypes. One of the reasons is that these varieties are considerably different from 

processing tomatoes with respect to plant architecture (indeterminate growth), 

cultural practices (greenhouse-types) and fruit morphology and composition. The 

advantage of applying the forward genetics screening strategy directly to the elite 

lines is to reduce the complexity and time which would be necessary to introgress the 

allele of interest from distantly related genotypes. Although the procedure is 

described for the identification of a recessive causal mutation, it can also be used for 

dominant mutations. Specific applications to the identification of a dominant mutation 
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and the use of different tomato genetic backgrounds are further documented in Box 

3.  

 

Advantages and limitations 

The protocol described uses the miniature tomato cultivar Micro-Tom, which presents 

several advantages for EMS mutagenesis and forward genetics screening: (i) it can 

be grown at high density in greenhouse or growth chamber i.e. less than 4 square 

meters are necessary for the culture of a segregating population of 600 plants; (ii) 

short cycle of three months allows four generations per year; (iii) large phenotyped 

mutant collections are publicly available (11); (iv) deep whole genome sequencing of 

Micro-Tom has been done recently (5). The Micro-Tom/Heinz 1706 variants are listed 

(5) and their type and effect on protein function of EMS mutations have been 

analyzed (61,57,63). As a consequence, the mapping-by-sequencing approach using 

Micro-Tom considerably reduces the cost for identifying the causal mutation. For a 

crop species like tomato, plant culture can be a major limitation. Cultivating a 

population of 600 greenhouse-type tomatoes may require a whole greenhouse of up 

to 350 m2 during 6 months. The corresponding cost can be prohibitive when working 

on various mutants. 

One of the limitation of using Micro-Tom is that this cultivar is a miniature determinate 

mutant carrying a mutation in the brassinosteroid biosynthesis pathway (64). This may 

affect the plant architecture and several traits related to hormone regulation in the 

vegetative tissues. Note that such features are not specific to Micro-Tom and that all 

cultivated genotypes may carry deleterious mutations in several genes (65,63). If a 

strong interaction between the mutated allele and the genetic background is likely, it 

is advisable to cross the mutant with another tomato cultivar (e.g. an indeterminate 

tomato variety) and study the phenotype-of-interest and allele effect in the F1 and F2 

generations. It is also important to keep in mind that most phenotypic changes 

induced by EMS are due to loss-of-function mutations. Therefore, screening EMS 

mutant populations for identifying alleles responsible for gain-of-function mutations 

will probably remain unsuccessful. For example, extreme phenotypes such as the 

elongated fruit phenotype found in the sun mutant, which is due to a gene duplication 

event mediated by a retrotransposon (66) will likely never occur in tomato EMS 

mutant populations. 
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Overview of the procedure 

There are a number of studies and reviews already dealing with EMS mutagenesis 

and TILLING in tomato and in other plant species (11,44,45,46,48,61,62); hence, we will 

succinctly describe the steps necessary to obtain a highly EMS mutagenized tomato 

collection and mostly restrict the protocols to points that are essential for the 

completion of the procedure for mapping-by-sequencing a mutation, starting with the 

isolated mutant carrying the trait-of-interest to the successful identification of the 

causal mutation (see Overview of the Experimental Design in Fig. 1 and Box 1). 

 

Briefly, following the generation of the EMS mutant population and the selection of 

the mutant plant carrying the trait-of-interest, the genetic inheritance of the mutation 

is analysed. A homozygous mutant is selected and crossed with the wild-type Micro-

Tom line used for mutagenesis to produce a BC1F1 plant which is selfed. The 

phenotype of the BC1F2 population plants is then analysed. Two bulks displaying 

respectively the mutant-like phenotype and the wild-type like phenotype are 

constituted and sequenced (paired-end Illumina sequencing) to a read depth of ~20 

to 40X. Sequences are first trimmed on base quality criteria and subjected to 

bioinformatics analysis using the BWA alignment tool (59) for mapping the reads onto 

the tomato reference genome (Heinz 1706) and the SAMtools (60) for variant calling. 

The resulting variant files contain all variants (SNPs + indels) between the Micro-Tom 

mutant and the Heinz 1706 reference genome, including EMS-induced mutations and 

natural polymorphism. If not done previously, the sequencing of the wild type Micro-

Tom parental line allows the inventory of all natural Micro-Tom/Heinz polymorphisms. 

These are then subtracted to leave the EMS-induced polymorphisms mapped onto 

the reference genome. Analysis of allelic frequencies from SNP variants in the two 

bulks next allows the identification of a chromosomal region with higher than average 

SNP frequency in the mutant-like bulk (>0.5 and close to 1 in the vicinity of the causal 

mutation) and lower than average SNP frequency in the WT-like bulk (<0.5 and close 

to 0.33 in the vicinity of the causal mutation). Once the chromosomal region carrying 

the causal mutation has been precisely identified, the determination of variant types 

(including the indels) is done and false positives are excluded. If necessary, in 

genomic regions with high linkage disequilibrium (LD) or with high mutation density, a 

recombinant analysis is performed to identify unequivocally the causal mutation. 
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Towards this end, the EMS-induced SNPs are used as markers to detect 

recombination events in the BC1F2 segregating population previously generated. 

The protocol described does not require any specific expertise since it is simply 

based on mutation frequency analyses in mutant bulks and makes uses of tools 

available on the web and of simple scripts provided. It will thus likely contribute much 

to the use of tomato as a model plant species. 

 

Experimental design 

Backcrossing the mutant. We advise to use the mutant as male to control that the 

backcross was successful. Despite the precautions taken to insure that cross-

pollination is effective, the possibility of a self-pollination is not totally excluded. If the 

mutant is used as a female and that self-pollination occurred, all the BC1F1 plants 

would display the mutant trait when the mutation controlling the phenotype-of-interest 

is homozygous recessive in the mutant parent. The same result would be obtained 

when a homozygous dominant mutant is backcrossed with Micro-Tom line. 

Distinguishing both cases and determining if the backcross was successful would 

therefore require additional experiments. 

We prefer to use the cone of anthers for pollination because pollen can be 

difficult to collect in the high hygrometry conditions often prevalent in greenhouses. 

The cone of anthers further protects from undesirable pollen contamination. 

Alternatively, when hygrometry is low, pollen can be easily collected from the mutant 

and used to hand pollinate the Micro-Tom line. In that case, a paper bag covering the 

flower should be used to avoid any spurious pollination. However, due to the small 

size of plant and flower trusses from the Micro-Tom cultivar, this may be tricky and 

lead to flower abortion. 

 

Size of the segregant population and constitution of the bulks. In our design 

(step 3), only half of the BC1F2 individuals presenting the mutant-like phenotype are 

included in the mutant-like bulk. We take this precaution of analyzing a large 

segregating BC1F2 population for two reasons: (i), some problems may arise during 

the culture (low germination rate, fungal attacks…). Therefore, performing a clear cut 

phenotyping of the mutant trait can be difficult, e.g. in case of incomplete penetrance 

of the mutation; (ii), the number of pooled individuals chosen represents a good 

compromise between the minimum sequencing depth required (20-40X tomato 
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genome coverage) and the large number of individuals necessary to lower the 

incidence of phenotyping errors on subsequent mutation frequency analysis. 

Considerations on the incidence of misclassification of the phenotype on the 

detection of the causal mutation have been detailed for the MutMap method in rice 

(53). In addition, a large number of individuals in the BC1F2 population will 

considerably reduce the time necessary for subsequent recombinant analysis, if 

necessary, because the DNA can readily be extracted from the individual plants 

displaying the mutant phenotype.   

 

Recombinant analysis. Successful identification of the causal mutation through 

mapping-by-sequencing depends on the density of EMS mutations and on the extent 

of linkage disequilibrium (LD) in the region of interest. For tightly linked EMS 

mutations, similar allelic frequency patterns are expected, limiting the direct 

identification of the causal mutation in a single step through mapping-by-sequencing. 

In this case, further confirmations using recombinant analysis are required to identify 

the mutation at the origin of the phenotype of interest. For this purpose, fine linkage 

mapping using BC1F2 population is proposed as an alternative to identify 

recombination events without the need to increase the read depth (DP).  

The first step for recombinant analysis includes the production of a 

segregating population phenotyped for the trait of interest. The same BC1F2 

segregating population previously used for the mapping-by-sequencing procedure 

can be used if the population was maintained or if plant material for DNA extraction 

was already collected from each F2 individual. Otherwise a newly sown and 

phenotyped BC1F2 population or BC1F3 population produced from the selfed BC1F2 

individuals (if corresponding seeds were collected) needs to be developed. The 

production of a new population will require at least 4 months for a complete analysis.  

 The second step is plant material harvesting and DNA extraction from each 

BC1F2. DNA extraction in 96-well plates is recommended for large-scale analysis. 

The DNA extraction can be performed using the procedure described in the protocol 

for DNA extraction from bulks (steps 4 to 10). Mutant and WT Micro-Tom lines should 

be included in the analysis as controls of the homozygous mutant allele and wild type 

allele, respectively. 

 In the third step, the EMS mutations detected by the mapping-by-sequencing 

procedure are used as markers for genotyping the BC1F2 individuals. This can be 
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done by using the KASP assay, which is a cost effective, easy to implement and 

efficient method to genotype SNPs on a large scale (67). Specific primer design can 

be done using batchprimer3 software (68; http://probes.pw.usda.gov/batchprimer) and 

KASP genotyping procedures (LGC Genomics, Queens Road, Teddington, 

Middlesex, TW11 0LY, UK http://www.lgcgroup.com/our-science/genomics-

solutions/genotyping/). The recombinants are detected by a change in the genotypic 

state (homozygous WT, homozygous mutant or heterozygous) at the different EMS 

mutation loci (Fig. 2C). The causal mutation corresponds to the only one locus 

homozygous for the mutant allele in all the BC1F2 individuals displaying the mutant 

phenotype. Number of BC1F2 individuals analyzed needs to be increased if no 

recombination was detected between two linked candidate mutations. The size of the 

population required for this analysis should be adapted according to the physical 

distance between the linked EMS mutations and their chromosomal localization. 

Information on low- or high-recombination regions in tomato is available from the 

sequenced reference genome (1). 

 

BOX 1 | 

MATERIALS 

PLANT MATERIAL 

To avoid confusion we use a strict nomenclature for plants: 

Micro-Tom line: non-mutagenized Micro-Tom 

WT-like bulk: pooled BC1F2 individuals that exhibit the WT phenotype 

Mutant-like bulk: pooled BC1F2 individuals that exhibit the mutant phenotype 

 

REAGENTS 

• Liquid nitrogen for freezing samples.  

! CAUTION Liquid nitrogen is a low temperature refrigerant and should be handled 

with protective glasses and gloves. In addition, liquid nitrogen is not used in closed 

rooms for danger of suffocation.  

• Sorbitol (SIGMA, cat. no. S6021) 

• NaCl (Euromedex, cat. no. 1112) 

• Tris base (Sigma-Aldrich, cat. no. T1503) 

• EDTA Ethylenediaminetetraacetic acid (Eurobio, cat. no. GAUEDT0066) 
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• CTAB cetyl-trimethyl-ammonium bromide (SIGMA, cat. no. H6269) 

• Sarcosyl (Sigma-Aldrich, cat. no. 61743) 

• Sodium bisulfite (Sigma-Aldrich, cat. no. 243973) 

• Chloroform GPR Rectapur (VWR International, cat. no. 22706.292) 

! CAUTION Chloroform is toxic and should be handled under a fume hood. 

• Isoamyl alcohol (Sigma-Aldrich, cat. no. I9392) 

• 2-propanol (VWR International, cat. no. 20842.312) 

! CAUTION 2-propanol is inflammable and should be handled under a fume hood. 

• RNAse A (Macherey-Nagel cat. no. 740505) 

• Electran agarose DNA grade (VWR International, cat. no. 438794L) 

• 6X loading dye (Promega, cat. no. G190A) 

• Gelgreen nucleic acid gel stain (Interchim cat. no. CJ2730) 

• 2-Log DNA Ladder 0.1–10.0 kb (Ozyme, cat. no. N3200L) 

• Quant-iT™ dsDNA Assay Kit, broad range/high sensitivity (Invitrogen, cat. no. Q-

33130/ Q-33120) 

• Tube for Covaris focused-ultrasonicators: used for this study, microTUBE 6 x 

16mm Round Bottom glass tube, AFA fiber, and cap system, 100ul (Covaris, cat. 

no. 520045) 

• Illumina TruSeq DNA PCR-Free LT Sample Preparation Kit (Illumina, cat. no. FC-

121-3001/3002). 

• High Sensitivity DNA Kit/Reagents (Agilent Technologies, cat. no. 5067-

4626/5067-4627) 

 

EQUIPMENT 

• 15 ml tube 120/17 (Sarstedt cat. no. 62.554.502) 

• Pipets 2-10-20-200-1000 µl (Gilson, Inc) 

• Tips for pipet, fine quality.  

• Waterbath at 65°C 

• Centrifuge machine with swinging bucket rotor for 15 ml tubes (Sigma 

Laborzentrifugen cat. no. 2-16K) 

• Gel Doc EZ Imager (Bio-Rad laboratories) 

• NanoDrop ND-1000 UV-VIS spectrophotometer version 3.2.1 (NanoDrop 

Technologies) 



15 
 

• Fluorescence Microplate Reader Gemini (Molecular Devices) 

• A Covaris focused-ultrasonicator model E210 (Covaris)  

• 2100 Bioanalyzer (Agilent Technologies, cat. no. G2940CA) 

• A compatible Illumina DNA sequencing instrument and associated equipment. 

HiSeq2000 with cBot were used for this study (Illumina, cat.no SY-401-1001/ SY-

301-2002) 

• Computer operating systems: Windows XP, GNU Linux or Mac OS X   

• BWA v0.7.12 (http://bio-bwa.sourceforge.net/): software package for mapping 

low-divergent sequences against a large reference genome, such as the human 

genome90 

• SAMtools v1.2 (http://samtools.sourceforge.net/): provides various utilities for 

manipulating alignments in the SAM format, including sorting, merging, indexing 

and generating alignments in a per-position format91. 

 

REAGENT SETUP 

• CTAB extraction buffer 145 mM sorbitol, 850 mM NaCl, 125 mM Tris-HCl [pH 

8.0], 25 mM EDTA, 0.8% [w/v] Sarcosyl [n-lauroyl-sarcosine], 0.8% [w/v] CTAB.  

! CAUTION the solution should be prepared fresh. 

• Chloroform:isoamyl alcohol (24:1) made by mixing isoamyl alcohol in 

chloroform. Store at 4°C several months. 

! CAUTION Reagents are extremely toxic and should be handled under the fume 

hood. 

• 50X TAE buffer 2M Tris Acetate 500mM EDTA. Store at room temperature 

several months. 

• 1X TAE buffer solution made by diluting (1/50) 50X TAE buffer stock in H2O. 

Store at room temperature several months. 
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PROCEDURE 

 

Production of segregant BC1F2 population ● TIMING ~6 months 

1|  Backcross. Cross the Micro-Tom line (female) with the EMS mutant (male) 

displaying the phenotype-of-interest. For crossing, dissect unopened flower (stage 

16-1869) from female plant to remove immature anthers and prevent self-pollination 

without damaging the pistil. Cross-pollinate the female flower using flower at anthesis 

(freshly opened) from the male (mutant). The cone of anthers removed from the male 

flower is deposited over the style-stigma of the female. It will protect internal floral 

organs during pollination and fertilization. BC1F1 seeds are then collected on red ripe 

fruits. . ? TROUBLESHOOTING 

2|  Phenotyping of BC1F1 individuals and self-pollination. In order to 

determine whether the mutation is recessive or dominant, analyze 8 to 10 BC1F1 

individuals by segregation analysis. Analyze EMS mutant and Micro-Tom line in the 

same culture, as controls, to accurately phenotype the mutant trait. Segregation 

ratios are indicative of the genetic inheritance and of the state of the mutation in the 

parental EMS mutant:  

• Case 1: for a recessive mutation at homozygous state in the parental mutant, 

0% of mutant-like phenotypes would be observed in the BC1F1 individuals 

• Case 2: for a dominant mutation at homozygous state in the parental mutant, 

100% of mutant-like phenotypes would be observed in the BC1F1individuals 

• Case 3: for a dominant mutation at heterozygous state in the parental mutant, 

50% of mutant-like phenotypes would be observed in the BC1F1individuals 

As the following procedure is focused on the analysis of recessive mutations, collect 

only BC1F2 seeds from self-pollinated individuals corresponding to case 1. 

3|  BC1F2 segregant population and bulk constitution. Produce and phenotype 

segregant population of 500 BC1F2 individuals. Analyze EMS mutant and Micro-Tom 

parental lines in the same culture, as controls, to accurately phenotype the mutant 

character. Around 125 individuals (25%) are expected to present the mutant-like 

phenotype in agreement with Mendel’s laws involving a single locus. Pool 60 (+/-20) 

individuals presenting clear mutant-like and WT-like phenotypes to constitute the 

mutant-like bulk and the WT-like bulk, respectively.  

. ? TROUBLESHOOTING 
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Isolation and quantification of genomic DNA from the two bulks of BC1F2 plants 

● TIMING ~4 h 

4|  Harvest with a punch of 5 mm diameter 5 leaf disks from each BC1F2 plant 

(~600 mg Fresh Weight) included in the mutant-like bulk and the WT-like bulk, and 

from Micro-Tom line.  

5|  Pool it in 15 ml tube. Freeze immediately in liquid nitrogen. Transfer into a cold 

mortar, add liquid nitrogen and grind to a fine powder with a pestle. Transfer again 

in a 15 ml tube.  

6|  Extract genomic DNA by a cetyl-trimethyl-ammonium bromide (CTAB) method. 

Add 4 ml of CTAB extraction buffer with 2.2 mg of sodium metabisulfite and RNase 

A at 120µg/ml per sample. Incubate at 65°C for 90 min in a waterbath. 

7|  Add 3.6 ml of chloroform:isoamyl alcohol (24:1) to each sample, mix by 

inversion and centrifuge for 10 min at 4500g. Subsequently, pipet and transfer the 

supernatant to a fresh tube. <CRITICAL STEP> be careful to pipet only the 

supernatant. 

8|  Treat with 4 ml of cold 2-propanol. Dry DNA 15 min at 45°C under vacuum, 

suspend in 200 µl of distilled water and samples. <PAUSE POINT> Genomic DNA 

samples can be stored at -20 or -80°C for months to years.  

9|  To control the genomic DNA quality and integrity, add 5µl of the DNA solution 

to 1µl of 6X loading dye and load onto 1% (w/v) agarose TAE gel. Also load 5µl of 

2-log DNA ladder into a lateral well. 

10|  Quantify using a Nanodrop spectrophotometer, or equivalent.  

 

Libraries construction and Next-Generation Sequencing ● TIMING ~4 weeks 

11|  Prior to libraries construction, perform a quality control (QC) for all DNA 

samples e.g. by checking samples for concentration by fluorometric measurement 

with Quant-iT™ dsDNA assay kit and sample quality (absorbance, electrophoretic 

profil on agarose).  

12|  Prepare Illumina paired-end shotgun indexed libraries: by using the TruSeq 

DNA PCR-Free LT Sample Preparation Kit following the manufacturer 

recommendations. In order to shoot any trouble during the library construction, we 
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recommend to implement QC on Agilent HS DNA chip at each step i.e 

fragmentation, sizing, ligation and enrichment if performed, despite the increase of 

the total cost. 

13|  Conduct Illumina sequencing using an Illumina sequencer in PE (Paired-end) 

mode, with read length and lane number adapted to the expected depth: Process 

the raw data fasta Q files for data quality control: (traceability, cleaning (N, 

redundancy) and trimming on base quality criteria (Phred value=30). 

 

Bioinformatic analysis ● TIMING ~1 to 2 weeks 

Following Illumina HiSeq2000 sequencing, two sequence read files (R1 and R2 

corresponding to the paired-ends) are available for each bulk. R1 file is 

sample_R1.fastq.gz. R2 file is sample_R2.fastq.gz. Sample refers to the sample 

name. 

All scripts are provided as supplementary information (1 to 4). 

14|  Index the tomato reference genome Solanum lycopersicum v2.50. 

Genome index file allows simplifying and accelerating further genome 

mapping.  

• bwa index S_lycopersicum_chromosomes.2.50.fasta 

15|  Map the reads on the tomato reference genome Solanum lycopersicum 

v2.50 

(ftp://ftp.solgenomics.net/tomato_genome/wgs/assembly/build_2.50/S_lycoper

sicum_chromosomes.2.50.fa.gz).  

• bwa aln S_lycopersicum_chromosomes.2.50.fasta sample_R1.fastq.gz -f 

sample_R1.sai 

• bwa aln S_lycopersicum_chromosomes.2.50.fasta sample_R2.fastq.gz -f 

sample_R2.sai 

• bwa sampe -a [INSERT_SIZE] S_lycopersicum_chromosomes.2.50.fasta 

sample_R1.sai sample_R2.sai sample_R1.fastq.gz sample_R2.fastq.gz | samtools 

view -Sb - | samtools sort – sample 

16|  Create a BAM index file (optional). Index file is usually needed when 

visualizing a BAM file in a genome browser/viewer (like IGV Integrative 

Genome Viewer70,71 http://www.broadinstitute.org/igv/home). It simplifies and 

accelerates search operation.  
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• samtools index sample.bam 

17|  Perform the variant calling using SAMtools. Variant calling is used to 

identify the polymorphisms (SNPs and indels) between the Micro-Tom 

genome and the reference genome Solanum lycopersicum v2.50. 

• samtools mpileup -B –t DP -u -f S_lycopersicum_chromosomes.2.50.fasta 

sample.bam | bcftools call –O v –v -c - > sample.vcf 

As the tomato reference genome (Heinz 1706 cultivar) used to map the reads is 

different from that of the Micro-Tom cultivar, the variants identified would include both 

Heinz 1706 /Micro-Tom natural polymorphisms and EMS mutations. In this context, 

additional sequencing to a minimum depth of 20X of the Micro-Tom line can be 

required to take into account and further remove all natural polymorphisms between 

Micro-Tom and Heinz 1706. Thus, steps 15 to 17 are to be applied to the Micro-Tom 

line, mutant-like bulk and WT-like bulk. The Micro-Tom line output file (.vcf) would 

include all variants (SNPs + indels) corresponding to natural polymorphisms between 

Micro-Tom and Heinz 1706 (reference genome used to map the reads). The two .vcf 

output files obtained for the mutant-like and WT-like bulks would include variants 

(SNPs + indels) corresponding to natural polymorphisms between Micro-Tom and 

Heinz 1706 and also to EMS mutations. The output VCF file includes various quality 

parameters relevant to sequencing and mapping that can be used to subsequently 

filter the variants. 

 

Note: alignment and variant calling using bwa and SAMtools can also be performed 

using Galaxy Web based platform (72-74). 

 

18|  Perform the variant analysis. This step includes the allelic frequency 

computation, variant type determination and exclusion of false positives  

The compare_WT_mutant_samtools_vcf_v5.py script computes the allelic 

frequency and compares the .vcf files of the mutant and WT-like bulks to produce 

two output files for variants between the both bulks. Only one variant type at a time 

would be considered at this step (SNPs or indels)  

• python compare_WT_mutant_samtools_vcf_v5.py mutant.vcf WT.vcf [snp] 

common_file.csv  

We recommend focusing the analysis on SNP variants which represent 98% of the 

EMS mutations (57). Most of indels identified through commonly used bioinformatic 
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pipelines correspond to false positive variants due to mapping error in low read 

coverage regions or to complex and repetitive genomic regions. We suggest 

analyzing indels only after the chromosomal region carrying the causal mutation 

has been identified, especially when no causal EMS mutation has been detected 

through the SNP variant analysis. In this last case, only indels identified in the 

genomic region carrying the mutation (previously defined through SNP variant 

analysis) should be analyzed. ? TROUBLESHOOTING 

19|  Annotate the variant positions according to the tomato reference 

genome annotation ITAG2.4_gene_models using the script 

annotate_csv_with_solyc.py and the GFF file downloadable here: 

ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/annotation/ITAG2.4

_release/ITAG2.4_gene_models.gff3. This step allows identifying the variants 

present in the annotated genes available in the .gff3 file.  

• python annotate_csv_with_solyc.py common_file.csv 

ITAG2.4_gene_models.gff3 common_file_annotated.csv 

20|  Implement the .csv files with the Micro-Tom line .vcf file using the script 

snp_present_in_other.py. This step allows discriminating natural 

polymorphisms between Micro-Tom and Heinz 1706 from specific EMS 

mutations. 

• python snp_present_in_other.py common_file_annotated.csv [FILE_LIST] 

common_file_enriched.csv 

FILE_LIST: must be a text file with one line per genotype line, each line should have 

2 columns (separated table) i.e. column 1 for the genotype line name and column 2 

for the path of the corresponding .vcf file.  

Example: microtom /path/to/microtom.vcf 

21|  Split the .CSV files by chromosome to facilitate file manipulation using 

the script split_csv_by_chr.py (optional). 

• python split_csv_by_chr.py common_file_enriched.csv output/dir 

22|  EMS candidate mutation identification. For recessive mutation, only 

variant file needs to be studied (allelic frequency tends to 1 for mutant-like bulk 

and tends to 0.33 for WT-like bulk). For dominant mutation, see Box 3. 
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• filter each .csv file on Depth_Mut column with "Depth_Mut is superior to 10 

and Depth_Mut is inferior to 100” to remove false positives SNPs due to 

mapping error.  

• filter “Freq_allele_alt_Mut” and “Freq_allele_alt_WT” columns with the 

expected frequencies ie 1.00 for the Freq_allele_alt_Mut and 0.33 for the 

Freq_allele_alt_WT, in case of a recessive mutation. For a dominant mutation, 

see Box 3. 

?TROUBLESHOOTING 

 

 

BOX 2 | 

 

BOX 3 | 

 

 

? TROUBLESHOOTING 

Troubleshooting advice for several steps can be found in the following section. 

 

Step Problem Possible reason Possible solution 

Step 1 Unsuccessful 

pollination/fertilization 

during BC1F1 

production 

Key flower stage and environmental 

conditions are not  adequate 

Successful conditions need to be adjusted  

EMS mutations alter reproductive organs 

(pollen quality from the mutant needs to 

be checked) 

If the mutant presents a male sterility, step 1 can be 

performed using the mutant as female. 

Step 3: No clear phenotype 

segregation in the 

BC1F2 population 

 

Absence of the mutant phenotype due to 

unsuccessful pollination with the mutant 

pollen at step 1 and selfing of the Micro-

Tom line 

Repeat step 1 

Deviation of the phenotypic segregation 

ratio from the expected Mendelian ratio 

1:3 due to the involvement of various 

EMS mutations in the phenotype of 

interest 

If segregation ratios correspond to the involvement of 2 

unlinked recessive loci (6% of mutant-like phenotypes 

expected) mapping-by-sequencing procedure can be 

developed using a larger population in step 3 (1000 

BC1F2) and bulking 30 individuals per bulks. Size of the 

populations would proportionally increase with number 

of loci involved, which can be a limit depending on 

greenhouse or field space available 

Absence or deviation of the phenotypic 

segregation ratio due to (i) incomplete or 

reduced penetrance or (ii) variation in 

expressivity resulting in a range of 

Both the penetrance and expressivity are in some cases 

explained by the action of gene modifiers and/or due to 

environmental interactions. For these particular cases, 

accurate phenotyping of the BC1F2 population would be 
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phenotypes limited and appears incompatible with this mapping-by-

sequencing approach 

Step 15 Accurate identification 

of indels 

False positive indels are suspected to be 

caused by mapping error, in regions of 

low read coverage as well as in highly 

repetitive regions 

Analysis of .vcf output files for indels variant type all 

along the genome would represent a time consuming 

task to discriminate false positives from true variants. 

Once a reasonable confidence interval region 

encompassing the causal mutation has been identified 

using SNPs variant type, then analysis and confirmation 

of the indels included in this associated region is 

conceivable using IGV 

Step 19 No mutation detected Filtering out allelic frequencies is too 

stringent 

Because of possible errors in the constitution of the 

bulks and in the phenotyping process, less stringent 

thresholds for the analysis of sequencing data should be 

tested as well as assaying different combinations of 

frequency filters for both bulks (see example in Table 3). 

The causal mutation is located in a 

region not represented in the genome of 

reference Heinz 1706. 

Map sequence reads against other available tomato 

genomes (1,3). 

Many candidate 

mutations detected 

Many mutations may present the same 

pattern of allelic frequency either due to 

close vicinity between the adjacent EMS 

mutations or to the high LD in the 

chromosomal region carrying the causal 

mutation e.g. regions next to the 

centromere (1). 

Recombinant analysis is required to fine map the causal 

mutation (see Box 2). For causal mutations close to but 

not within the low recombinant regions, the 

recombination could be sufficient to break the LD and 

identify the causal mutation. However for causal 

mutation located in non- or low recombinant regions, 

recombinant analysis would require large segregant 

population. This therefore limits the benefit of this 

approach. We propose in this case to use SnpEff tool 

(87http://snpeff.sourceforge.net/SnpEff.html), which is 

compatible with the tomato genome, to predict the 

effects of variants on expressed genes and focus only 

on the mutations that possibly alter protein functions.  

 

BOX 3 No causal mutation 

identified after 

recombinant analysis 

of the associated 

region 

The causal mutation does not probably 

correspond to a SNPs variant type 

In this case proceed to indels analysis (step 18).  

 

 

ANTICIPATED RESULTS 

We have used the protocol with a mutant line called yellow previously identified in a 

Micro-Tom EMS mutant collection generated by two rounds of mutagenesis with 1% 

EMS as described in Fig. 1. Several mutations affecting various aspects of fruit 

development (fruit growth, fruit ripening, cuticle composition, vitamin C content) have 

been readily identified in this manner in our group. Many other causal mutations 

underlying a large range of phenotypic variations present in publicly available tomato 

EMS mutant collections (7-11) are prone to be identified using the same procedure. 
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Our mapping by sequencing approach was used prior any information on the nature 

of the mutation. The yellow fruit mutant was first checked for recessive genetic 

inheritance of the mutation that confers the yellow fruit phenotype, then crossed to a 

wild-type Micro-Tom line to produce BC1F1 plant. A segregating population of 600 

BC1F2 plants was then screened, from which a bulk of 150 plants displaying the 

yellow (mutant-like) fruit phenotype and a bulk of 150 plants displaying the red (WT-

like) fruit phenotype were sequenced (Step 1 to 9) to a read depth of ~43X (mutant-

like bulk) and ~26X (WT-like bulk) (Table 1). Sequences were analysed following the 

bioinformatics procedure (step 14 to 22; Fig. 2a). Since the de novo assembly of the 

Micro-Tom genome has not been performed yet, the reference genome used was 

Heinz 1706 (Solanum lycopersicum genome v2.5) and variability inherent to Micro-

Tom cultivar was accounted for by considering the Heinz 1706/Micro-Tom natural 

polymorphisms. A total of 4130 DNA polymorphisms due to mutagenesis were 

detected (Table 2), a value very close to those obtained for other mutants from the 

Micro-Tom EMS mutant collection generated according to Box 1. Distribution of the 

allelic frequencies over the whole genome was not even, as anticipated. In 

chromosome 3, allelic frequency was much higher than average in the mutant-like 

bulk (Fig. 2b). In particular, 4 mutations showed frequencies>0.98 in the mutant-like 

bulk and <0.40 in the WT-like bulk (Table 3). Two of these mutations affected genes 

predicted to encode proteins and were located at ~80 kb one from each other (Table 

4). Genotyping a subset of the recombinant BC1F2 population (150 plants with 

mutant-like phenotype) easily allowed us to unequivocally attribute the mutant yellow 

phenotype to a mutation in the phytoene synthase PSY1 gene (Table 4; Fig. 2c and 

3a). Carotenoid profiling of the WT (Micro-Tom line) and yellow fruit mutant confirmed 

that the mutation in the PSY1 gene was responsible for the block of carotenoid 

accumulation (Fig. 3b and Supplementary information 5), consistent with previous 

data obtained in the yellow flesh mutant lines carrying knockout alleles of PSY1 

(62Gady et al. 2012). Other approaches of reverse genetics described in Box 2 can 

be used to confirm the link between the mutation and the phenotype-of-interest (22). 

This includes the identification of allelic series by TILLING using the same mutant 

collection (46,13). Several large modifications in primary metabolites independent of 

the ripening stage of the yellow mutant fruit were evidenced using the method 

described by 75, in the heatmap of fruit primary metabolite composition in mutants 

displaying a WT-like (red) or a mutant-like (yellow) phenotype (Fig. 3c). Thus, our 
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mapping-by-sequencing analysis of a yellow-coloured tomato fruit mutant enabled 

the identification of a point mutation in the carotenoid pathway gene phytoene 

synthase PSY1. This mutation leads to alterations of both carotenoid and primary 

metabolite accumulations in the fruit, therefore providing tools to further explore the 

interplay between secondary and primary metabolism in the tomato fruit.  

 

Table 1 

  Mutant-like bulk WT-like bulk 

Scored phenotype yellow ripe fruit red ripe fruit 

Tomato reference genome Heinz 1706 (v2.50) Heinz 1706 (v2.50) 

Nb of BC1F2 plants per bulk 150 150 

Nb of paired reads 403 552 936 244 334 344 

% mapped reads  94.52% 95.11% 

Insert size 378 382 

Sequence length 101 101 

Read depth 43X 26X 

Nb of SNPs 2 273 267 2 232 386 
 

Table 2 

Chromosome Total variantsa EMS mutationsb 

1 75 143 572 

2 189 025 352 

3 107 225 303 

4 101 282 416 

5 499 401 371 

6 39 699 262 

7 46 148 318 

8 24 090 333 

9 36 718 315 

10 18 669 305 

11 209 195 253 

12 58 814 333 

all 1 405 409 4133 

a: total variants (natural polymorphisms and EMS mutations) obtained in the 
mutant and WT-like bulks (10<read depth<100) 
b: EMS mutations obtained after removing natural polymorphisms between Micro-
Tom and Heinz 1706 (10<read depth<100) 
 

Table 3 

Mutant-like bulk WT-like bulk No of EMS mutations
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AF>0.9 0.2<AF<0.4 30

AF>0.95 0.2<AF<0.4 11 

AF>0.98 0.2<AF<0.4   4 

AF is the allelic frequency 
 

Table 4 

EMS Position Mutation Read  
depth 

Gene 
position 

Mutation 
type 

Tomato gene id Gene annotation

4327086 G to A 26 exonic nonsense 
(W to stop) 

Solyc03g031860 PSY1 

4408241 C to T 53 exonic Missense 
(E to K) 

Solyc03g031940 Acyl-CoA synthetase 
/AMP-acid ligase II 

39268042 C to T 29 intergenic silent - - 

39467288 G to A 32 intergenic silent - - 
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BOX 1 | MUTAGENESIS AND PHENOTYPING ● TIMING ~6-12 months 

Forward genetics screens aims at identifying the causal mutation in a gene 

underlying a remarkable phenotypic alteration in a collection of mutants. EMS 

mutagenesis can produce a very large range of visible phenotypic alterations at 

whole plant level (7,11), the number of which will depend on the intensity of the 

mutagenesis. EMS mutants carrying the trait of interest can be obtained by mining 

various tomato mutant phenotypic databases publicly available for various tomato 

cultivars. Alternatively, a new mutant collection can be created. Generation of new 

mutant collection can be useful, especially if ones want to screen for traits not 

described in available public databases (e.g. the resistance to pathogens or the root 

development) or wants to use a specific tomato cultivar or a wild tomato species. 

Glossary 

Micro-Tom: Micro-Tom is a miniature tomato cultivar (76) highly suitable for large-

scale experiments because it can be grown at high density in greenhouse or growth 

chambers (e.g. 150 plants/m2 for fruit phenotyping and mapping-by-sequencing). It 

carries three recessive mutations affecting brassinosteroid synthesis in vegetative 

tissues (dwarf), determinate growth of the plant (sp) and unknown affecting internode 

length (77). 

EMS: ethyl methanesulfonate is a chemical mutagenic agent that produces random 

mutations in DNA by base-base substitution. Most mutations are point mutations, 

particularly transition mutations due to guanine alkylation (G/C to A/T). In tomato 

transversion mutations (~35%) and small insertion/deletions (indels 1.3%) can also 

be found (57). 

Mutagenesis: Untreated seeds are called M0 seeds. Treated seeds that carry 

heterozygous mutations are called M1 seeds. Following self-pollination, the seeds on 

the M1 plants, which segregate for the mutations, are called M2 seeds. 

TILLING: Targeting Induced Local Lesions IN Genomes is a reverse genetics 

approach aiming at identifying allelic series for target genes by screening EMS 

mutant collection. Either one single M2 plant or a whole family (pool of 12 M2 plants) 

are usually selected for DNA extraction. Mutation detection can be done using a 

range of technologies including NGS sequencing. This approach can be very useful 

for the functional validation of causal mutations in candidate genes previously 

identified through mapping-by-sequencing (Box 2). 
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Phenotyping: a range of plant, root, leaf, or fruit phenotypic descriptors can be used 

for phenotyping the mutant collection. Phenotypic descriptions can then be stored in 

searchable databases. Phenotypic databases for publicly available tomato mutants 

are TGRC (http://tgrc.ucdavis.edu/); SGN (http://solgenomics.net/); TOMATOMA 

(http://tomatoma.nbrp.jp/); Genes That Make Tomato 

(http://zamir.sgn.cornell.edu/mutants/). 

 

Main steps (see Fig. 1) 

• Soak the M0 tomato seeds in water for 4 h, incubate them overnight (15 h) with 

1% EMS (Ethyl MethaneSulfonate SIGMA cat. no. M0880) under gentle stirring 

and rinse them 3 times for 3 h with water. <CRITICAL STEP> EMS is mutagen 

and carcinogenic for mammals. The use of gloves and hood is mandatory. All 

material in contact with EMS, including the water used for seed rinsing, must be 

treated with 1M NaOH (Euromedex cat. no. 2020A) solution during 15 h. ! 

CAUTION EMS and NaOH are toxic and should be handled under a fume hood. 

• Sow the M1 seeds in moist vermiculite. After germination, transplant the M1 

plantlets to a substrate (compost plus perlite) suitable for sub-irrigation and grow 

the plants till they carry red ripe fruits. For Micro-Tom, conditions and 

management of plant culture are described in (78). <CRITICAL STEP> Efficiency 

of EMS mutagenesis can be assessed in the M1 plants by the frequency of plants 

carrying white sectors. If less than 0.5% of the M1 plants display partial albinos or 

variegated phenotype, mutagenesis was likely poorly efficient. <CRITICAL 

STEP> Because EMS mutagenesis efficiency will depend on the physiological 

state of the seeds used, pilot experiments can be done previously by treating 

seeds with various concentrations of EMS (0.4 to 1.2%). 

• Collect the M2 seeds from M1 plants. To increase mutation frequency, steps [1 – 

2] can be repeated using M2 mutagenized seeds for EMS mutagenesis. This will 

typically increase the mutation frequency (up to 6000 mutations per plant in 

Micro-Tom) but will strongly increase the number of non-germinating seeds (up to 

50%) and the number of sterile M1 plants (up to 60%). 

• Sow M2 seeds for phenotyping M2 plants (12 plants / family) or store them until 

use. <CRITICAL STEP> To avoid contamination by pathogens, seeds are treated 

with sodium hypochlorite (2.5% of active chloride during 15 min), rinsed with 
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water (30 min) and air-dried under a hood for one day. Seeds can be stored at 

4°C in sealed boxes with desiccant (Silica Gel) for up to 10 years. 

• If M2 mutant plants are also to be used for TILLING, collect leaf materials from 12 

four-weeks old plants (two 5 mm diameter discs per plant) and pool them for DNA 

extraction. Store at -80°C until use. 

• Analysis of the phenotypic alterations of M2 plants is highly dependent on the 

focus of the mutant collection and the tomato cultivar. For a thorough description 

of the visual phenotype of the plants, phenotyping must be done at least at seven 

developmental stages: germination, seedling, plantlet, flowering plant, immature 

green fruit, ripening fruit, harvest. 

• Store M3 seeds until use. 

End of Box 1 
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BOX 2 | Functional validation TIMING ~6 to 12 months 

Once a causal mutation is identified, involvement of the locus/gene underlying the 

mutant phenotype needs to be confirmed. During the last few years, there have been 

impressive advances in tomato functional genomics and many tools have been 

developed or are under development (79-85,45,46,48). Two approaches of reverse 

genetics can be developed: (i) gene complementation in order to restore the WT 

phenotype in the mutant background or (ii) gene knockdown or knockout to copy the 

mutant phenotype in a WT background. Different strategies for functional genes 

validation in tomato are listed below: 

 

Methods Description Expected results Advantages Limits 

TILLING46 To identify allelic 
variants for a candidate 
gene in mutagenized 
populations 

Gene knockout or 
knockdown to 
copy the mutant 
phenotype 

Large scale 
screening 

New 
mutation/allele 
identification 

 

Wide variability in gene 
knockdown efficiency for the 
different allelic variants 

Needs to have a large 
population of mutagenized 
plant available 

Gene-
overexpression79 

Transgenic plants that 
overexpress a target 
gene 

Complement the 
mutant phenotype 

Efficient tomato 
transformation 

Availability of specific 
promoters to direct 
transgene expression in a 
spatial/time manner 

 

Gene suppression79 Transgenic plants that 
silence a target gene 
by RNAi or amiRNA 
strategies  

Gene knockdown 
to copy the 
mutant phenotype 

Efficient tomato 
transformation 

Specificity of gene 
silencing 

Gene expression not totally 
abolished and limited 
availability of specific 
promoters to direct 
transgene expression in a 
spatial/time manner 

VIGS (Virus-Induced 
Gene Silencing)83-85 

Transient system to 
silence target gene 
expression through a 
plant RNAi-mediated 
antiviral defense 
mechanism 

Transient 
knockdown to 
copy the mutant 
phenotype 

Rapid and 
effective 

Critical to choose the right 
developmental stage 

Mosaic phenotype because 
of non-homogeneous viral 
infection 

CRISPR/Cas9 
(Clustered Regularly 
Interspaced Short 
Palindromic 
Repeats)86 

RNA-Guided 
Endonuclease 
technology for targeted 
gene mutagenesis 

Gene knockout to 
copy the mutant 
phenotype or 
complement the 
mutant phenotype 

Easy design and 
high efficiency 

Possibility to 
remove the T-
DNA 

Possible 
introduction of 
specific nucleotide 
modifications at 
the target gene 

Possible off-targets 

End of Box 2 
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BOX 3 | Mapping-by-sequencing SETUP for analysis of dominant mutation and 

for other tomato genotypes 

Dominant and incomplete dominant mutations 

For EMS mutations, most of dominant phenotypes will result from loss of function 

mutations in haploinsufficient genes. In this case, the mutant allele is dominant over 

the WT allele as haploinsufficient genes require both alleles to be functional and 

therefore express the WT phenotype. For dominant mutation, the heterozygote 

displays the mutant phenotype. However it is also possible that the heterozygote 

display an intermediate, less severe phenotype in the case of incomplete dominant 

mutations. The following steps of the procedure need to be used in case of dominant 

or incomplete dominant mutations.  

Procedure step2:  
For case 2 and 3 select one BC1F1 individuals displaying the mutant-like phenotype 

to collect BC1F2 seeds.  

Procedure step3: 
For a dominant mutation. The mutant-like bulk displaying the mutant phenotype is 

composed in a 1:2 ratio of individuals that are homozygous for the mutant allele and 

of individuals that are heterozygous thus resulting in an allelic frequency (AF) of the 

mutant allele of 0.77. The WT-like bulk is expected to be free of the mutant allele. In 

view to facilitate the analysis of the sequencing data, 10% individuals presenting the 

mutant-like phenotype are introduced in the WT like bulk. For this purpose, combine 

50 individuals exhibiting the WT like phenotype with 6 individuals exhibiting the 

mutant–like phenotype in order to constitute the pool termed WT-like bulk. In this 

case, allelic frequency of the mutant allele in the WT-like bulk should be comprised 

between 0.05<AF<0.1.  

For an incomplete dominant mutation. To constitute the mutant-like bulk select the 

individuals displaying the most severe phenotype that would be mainly represented 

by individuals homozygous for the mutant allele. Allelic frequency should be close to 

1 in the mutant-like bulk. As for dominant mutation, combine 50 individuals exhibiting 

the WT-like phenotype with 10 individuals exhibiting the mutant-like phenotype to 

constitute the WT-like bulk. In this case, frequency of the mutant allele in the WT-like 

bulk should be comprised between 0.05<AF<0.1.  

Procedure step 22: 
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For an incomplete dominant mutation. Filter “Freq_allele_alt_Mut” and 

“Freq_allele_alt_WT” columns with the expected frequencies i.e. 

0.7<Freq_allele_alt_Mut<0.8 and 5<Freq_allele_alt_WT<10. 

For a dominant mutation. Filter “Freq_allele_alt_Mut” and “Freq_allele_alt_WT” 

columns with the expected frequencies i.e. 0.80<Freq_allele_alt_Mut<1 and 

5<Freq_allele_alt_WT<10. 

Other tomato genotypes 

EMS tomato mutant collections have been produced in other tomato cultivars than 

Micro-Tom, such as M82. The mapping-by-sequencing procedure described can also 

be used to identify key mutations in these mutant collections. All steps are similar to 

the ones described for Micro-Tom. If the tomato line is already sequenced, 

sequencing of the mutant-like and WT-like bulks are sufficient for the identification of 

natural polymorphisms between the line considered and Heinz 1706. In this case, 

begin at step 4 for the non-mutagenized line. ?TROUBLESHOOTING 

End of Box 3 
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FIGURE LEGENDS 

Fig 1 | An overview of the experimental design of forward genetics screening 

and detection of causal mutation by mapping-by-sequencing in tomato. Most 

such experiments start with the generation of a highly mutagenized EMS mutant 

collection. Alternatively, publicly available mutant collections can be screened in silico 

for mutants displaying the phenotype-of-interest. (a) EMS mutagenesis and 

phenotyping. Untreated seeds (M0) are treated with EMS to give M1 (EMS-treated) 

seeds. M1 plants are grown, producing M2 seeds which are either stored, treated 

again with EMS to increase mutation frequencies (2nd round of mutagenesis) or sown 

to give M2 plants. At this step, DNA can be collected for TILLING. M2 plants are 

further screened using various phenotypic descriptors and the phenome data are 

stored in a database to allow in silico mining of the mutant collection for phenotype-

of-interest. At each generation, seeds are collected and stored. (b) Detection of the 

causal mutation by mapping-by-sequencing. The experimental design is shown 

for a recessive mutation, the most commonly found in EMS mutants. Once a 

homozygous mutant carrying a recessive mutation responsible for the phenotype-of-

interest (e.g. yellow for yellow-colored fruit) has been selected, the mutant is 

backcrossed (BC1) with the WT genotype used for generating the EMS mutant 

collection. The BC1F1 plant displays a WT-like phenotype (red fruit) because the 

yellow mutation is recessive. A BC1F2 population (usually 500 plants) obtained by 

selfing the BC1F1 plants is screened for mutant-like phenotype and WT-like 

phenotype. Two bulks of pooled plants are set-up: one displaying the mutant-like 

phenotype (yellow fruit) and one displaying the WT-like phenotype (red fruit). Each 

bulk is sequenced to a depth of 20 to 40X the tomato genome, trimmed sequences 

are mapped onto the tomato reference genome and EMS mutation variants are 

filtered. Analysis of the allelic variant frequencies in the two bulks (usually ~60 plants) 

leads to the identification of the causal mutation which displays very high frequency 

in the mutant-like bulk (ideally 100% of variant allele) and lower than average 

frequency in the WT-like bulk (ideally 33% of variant allele). 

 

Fig 2 | Mapping-by-sequencing of Micro-Tom EMS mutants. (a) Two-step 

bioinformatic pipeline for analysis of whole genome sequencing data. First, raw 

reads are mapped to the SL2.50 Heinz 1706 tomato genome sequence using BWA 

v0.7.12 aligner. Variant calling is performed using SAMtools v1.2 and output VCF 
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files of total variants are generated for the mutant and WT-like bulks as well as for the 

Micro-Tom line. As the reference genome from Heinz 1706 used to map the reads is 

different from that of the Micro-Tom line, the variants identified include Heinz 1706 

/Micro-Tom natural polymorphisms and EMS mutations. At this step, an additional 

Micro-Tom sequencing is required as a control to further remove natural 

polymorphisms. In-house python script for the analysis of variants includes the (i) 

comparison of variants obtained in each bulk to generate SNPs files, (ii) computation  

of variant allelic frequencies for each bulk, (iii) indication about the presence of the 

variants in the Micro-Tom line, and (iv) indication of variants located in tomato genes 

according to the Heinz 1706 genome annotation. Natural polymorphisms between 

Micro-Tom and Heinz can be excluded by analyzing the variants present in the Micro-

Tom line (control). Only EMS mutations are further considered to specifically identify 

the causal mutation using two filtering parameters: read depth (10<DP<100) to 

exclude false positive variants, and the allelic frequency expected for a recessive 

mutation (allelic frequency tends to 1 for mutant-like bulk and tends to 0.33 for WT-

like bulk). All the workflow is available in supplementary information 1-4. (b) 

Identification of the chromosome associated with the yellow-fruit phenotype. 

Pattern of the mutation allelic frequencies obtained in the mutant and WT-like bulks 

are represented along tomato chromosomes by yellow and red lines, respectively. 

Chromosome 3 exhibits a dramatic increase in the mutation allelic frequency for the 

mutant-like bulk compared to the WT-like bulk, and therefore likely corresponds to 

the chromosome carrying the causal mutation. For an optimal representation, sliding 

windows of 20 positions are used that average the allelic frequency for 20 successive 

EMS mutations (c) Fine mapping of the causal mutation using BC1F2 population. 

Recombinant analysis of BC1F2 individuals displaying the yellow fruit phenotype 

allowed us to define more precisely the chromosomal region associated with the 

mutant phenotype. Recombination events between linked mutations are used to 

discriminate the causal mutation from the adjacent ones. Only mutant alleles are 

represented for the mutation at position 4 327 086 (yellow mutant lines) while WT 

alleles (red lines) are identified for the adjacent mutations. Recombinant scoring of 

150 BC1F2 individual plants allows the accurate identification of the causal mutation 

at position 4 327 086 on chromosome 3. 
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Fig 3 | Mutation in the phytoene synthase gene PSY1 affects fruit metabolism. 

(a) PSY1 gene (above) consists in 6 exons. Trans-isoprenyl diphosphate synthase 

domain is indicated in grey. Mutation in PSY1 in the coding region (below) results in a 

premature stop codon at position 152. (b) Scheme showing block tomato fruit 

carotenoid pathway resulting from yellow mutation. Red keys indicate the degree of 

reduction in amounts, green represents accumulation in red ripe (Breaker+7) fruit. (c) 

Metabolite profiling by GC-MS further revealed differences in primary metabolite 

content in the WT (Micro-Tom line) and psy1 mutant lines. Heat map showing the 

fruit metabolic profiling of yellow mutant (psy1) and WT, harvested during fruit 

ripening at Breaker+5 stage (yellow Br+5) and at red ripe Breaker+7 stage (WT-Br+7, 

WT-Br+7, yellow-Br+7), respectively. Red and blue rectangles depict increases and 

decreases with respect to average of all lines. Hierarchical clustering of samples and 

metabolites is shown in the dendrogram. 

 

Table 1 | Illumina sequencing of BC1F2 bulked individuals displaying a mutant 

yellow fruit color or a WT red fruit color. Sequence of the reference genome is the 

tomato whole genome shotgun chromosomes from version 2.50 of the Wageningen 

University and Research center (WUR) assembly, available on the SGN website 

(http://solgenomics.net).  

 

Table 2 | Number of SNPs in the mutant and the WT-like bulks for the yellow 

fruit mutant. Only variants with a read depth between 10<DP<100 were considered 

to remove false positive variants due to erratic read mapping. Number of total 

variants (natural polymorphisms between Heinz 1706 and Micro-Tom and EMS 

mutations) and only EMS mutations per chromosome are reported in the second and 

third column, respectively.  

 

Table 3 | Identification of the putative causal mutations associated with the 

yellow fruit phenotype based on allelic frequency analysis in the mutant and 

WT-like bulks. In case of a recessive mutation (ie most of EMS mutation), all BC1F2 

individuals that exhibit the mutant phenotype are homozygous for the causal 

mutation (frequency =1 in the mutant-like bulk). On the contrary, in the WT-like bulk, 

the EMS mutation segregates as a mendelian locus (frequency ~0.33 in the WT-like 

bulk) The table reports the number of putative causal mutations corresponding to 
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three different allelic frequency filters applied to detect the recessive causal mutation. 

The number of candidate causal mutations decrease with stringency of allelic 

frequency cut-offs. Four mutations on chromosome 3 appear as likely causal 

mutation candidates. AF= Allelic Frequency. 

 

Table 4 |Annotation of the high scoring causal mutations identified on 

chromosome 3 for the yellow fruit mutant. Two silent EMS mutations (mutations 

at positions 39268042 and 39467288 on chromosome 3) are located in intergenic 

regions and are supposed to have no effect on protein structure. Two other ones 

located in coding regions cause non-synonymous changes. The mutation 4408241 

corresponds to a missense mutation and the mutation 4327086 corresponds to a 

nonsense mutation involving a premature codon STOP that probably unable the 

protein function. In addition, this mutation is located in the PSY1 gene, coding for an 

enzyme of the carotenoid biosynthesis pathway. The mutation 4408241 is likely the 

causal mutation at the origin of the yellow-fruit phenotype. 
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