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Abstract 

Transgenic Solanum lycopersicum plants expressing an additional copy of lycopene β–

cyclase (LCYB) from Nicotiana tabacum, under the control of the Arabidopsis polyubiquitin 

promoter (UBQ3), have been generated. Expression of LCYB was increased some 10-fold in 

ripening fruit compared to vegetative tissues. The ripe fruit showed an orange 

pigmentation, due to increased levels (up to 5-fold) of β–carotene, with negligible changes 

to other carotenoids, including lycopene.  Phenotypic changes in carotenoids were found in 

vegetative tissues, but levels of biosynthetically related isoprenoids such as tocopherols, 

ubiquinone and plastoquinone were barely altered. Transformants showed tolerance to the 

bleaching herbicide β–cyclase inhibitor, 2-(4-chlorophenylthio) triethylamine. The 

phenotype was inherited for at least 3 generations. 

Keywords: Solanum lycopersicum, lycopene β–cyclase, β-carotene, lycopene, genetic 

modification. 
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Introduction 

 Carotenoids are a major group of isoprenoids, widely distributed in nature [1]. 

Several of them are reported to have health benefits [2], most notably reduction in the 

incidence of prostate cancer from dietary lycopene [3] and alleviation of Vitamin A 

deficiency by β–carotene, which is pro-vitamin A [4]. Deficiency of Vitamin A causes 

xerophthalmia, blindness and premature death, especially in children aged 1-4 [5].  Since 

humans cannot synthesise carotenoids de novo, these health-promoting compounds must 

be taken in sufficient quantities in the diet. Consequently, increasing their levels in fruit and 

vegetables is beneficial to health. Tomato products are the most common source of dietary 

lycopene. Although ripe tomato fruit contain β-carotene, the amount is relatively low [1]. 

Therefore, approaches to elevate β–carotene levels, with no reduction in lycopene, are a 

goal of plant breeders. One strategy that has been employed to increase levels of health 

promoting carotenoids in fruits and vegetables for human and animal consumption is 

genetic modification [6]. 

 Lycopene, an acyclic carotenoid, and precursor of β–carotene, is formed from the 

sequential desaturation of phytoene. These reactions are catalysed by the enzymes 

phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS). The desaturase sequence 

occurs in the cis geometric isomer configuration and the action of a carotene isomerase 

(CRTISO) converts either cis-neurosporene or poly-cis lycopene to all-trans lycopene prior to 

cyclisation [7]. In green tissues the action of light and chlorophyll are believed to overcome 

the necessity for CRTISO activity [8].  Cyclisation of lycopene in tomato fruit yields β-

carotene, via the action of two β-cyclase enzymes. LCYB is believed to predominate in the 

formation of vegetative carotenoids, whilst the CYCB gene shows ripening specific 

expression and is thus associated with β-carotene production during ripening [9]. In 

vegetative tissues, ε-carotene is formed via the action of a ε-ring cyclase and β-ring cyclase, 

leading to the synthesis of lutein, via hydroxylation, which is the predominant vegetative 

carotenoid [10]. The complete pathway is shown in Fig. 1. 
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 Since the herbicide 2-(4-chlorophenylthio) triethylamine (CPTA) is known to inhibit 

β–carotene formation in tomato fruit [11], the transgenic lines have been grown in its 

presence to determine if overexpression of LCYB can overcome this inhibition. 

 

Materials and Methods 

Plant material  

Tomato (S. lycopersicum cv Ailsa Craig) plants were grown in the glasshouse with 

supplementary lighting. Three plants per genotype were grown in a randomized manner 

concurrently with their respective backgrounds and fruit harvested at mature red ripe (7 

days post breaker, dpb). Two or more fruits per plant were pooled to provide one replicate 

per plant and three per genotype. 

 
Construction of the pVBLCYB vector 

 Digestion of pUC19 with Sma1 released the LCYB cDNA as a 1.6 kb fragment, 

including the transit peptide, which was cloned into the Sma1 site of the pSP vector 

(Promega), containing the polyubiquitin promoter (UBQ3; At5g03240; UniProt KB-Q1EC66) 

from Arabidopsis thaliana, the nopaline synthase terminator, the nptII gene for kanamycin 

resistance, controlled by the AoPR1 promoter from Asparagus officianalis. The Age1 

fragment was sub-cloned into the pVB6 plant binary vector and designated pVBLCYB (Fig 2). 

The vector/insert was sequenced to confirm the manipulations. E .coli strain XL1-Blue 

(Promega) was used in these experiments. Sequences of the tobacco and tomato LCYB are 

shown in Supplementary Material, Fig 1. 

 

Transformation of tomato plants 

 Agrobacterium tumifaciens LBA 4404 was transformed with pVBLCYB by triparental 

mating, using the helper plasmid pRK2103 [12]. Stem explants of tomato were transformed 

and regenerated as described previously [13]. Kanamycin (50 mg/ml) and carbenicillin (250 

mg/ml) were used to select resistant transformants. 
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DNA and RNA analyses 

 DNA was extracted for PCR analysis from leaf material (ca. 200 mg), as described 

previously [13]. The presence of the transgene in the primary transformants (T0) was 

confirmed by PCR using primers designed to amplify a 500 bp internal fragment of LCYB. 

Southern blot analysis of the T0 and 1st generation (T1) plants was carried out using the 

cetyltrimethylammonium bromide (CTAB) method [14]. DNA was digested with the 

appropriate restriction enzymes, fragments separated in 1% (w/v) agarose gels and 

transferred to Hybond N+ (Amersham) overnight in 20% saline sodium citrate (SSC) solution. 

32P-Labelled fragments (using the Stratagene Random primer labelling kit, Prime It II), 

corresponding to the LCYB and nptII regions of the transgene, were used to probe the filters. 

Hybridisation, washing and detection were performed as described in the Hybond N+ 

instructions. Northern blot analysis was carried out on tomato fruit of the To and T1 

generations, harvested at 7 dpb [15]. Total RNA (20 mg) from the fruit was electrophoresed 

on 1.4% agarose/formaldehyde gels and then transferred to Hybond-N+ in 20x SSC 

overnight. The 1.6 kb cDNA fragment was radiolabelled with 32P, as described above. 

Following pre-hybridisation, the filter was hybridised at 65oC in 7.5% SDDS, 100mM 

phosphate buffer, pH 7.5. Each filter was washed for 15 min in 2X SSC, 0.5% SDS and then 

twice for 15 min with 1xSSC, 0.5% SDS and finally monitored for radioactivity for 24 h with a 

phosphorimager (MAcBAS V2.2, Fuji Photoimage Co.). 

 

Treatment with CPTA 

 Sterilised seeds (ca. 30) from the homozygous T1 line C4S1-15 and azygous control 

were germinated on Murashige and Skoog (MS) agar containing the herbicide 2-(4-

chlorophenylthio) triethylamine (CPTA) at 30 and 40 μM. The seedlings were grown in a 

controlled environment with a 16 h photoperiod and day and night temperatures of 23 and 

19oC, respectively. They were assessed for germination and bleaching after 2 weeks and 

samples taken for isoprenoid analysis. 

 

Analysis of isoprenoids 

 The isoprenoids of T0, T1 and T2 progeny of leaf and 7 dpb fruit were extracted, 

separated, identified and quantified HPLC analyses, as described in [16].  
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Results 

 

Plants expressing the LCYB gene from tobacco showed increased levels of β–carotene in 

ripe fruit and changes to leaf carotenoids 

Following transformation, progeny were selected on the basis of kanamycin 

resistance (nptII) and PCR analysis. During regeneration, growth and development of 

vegetative tissues from all transgenic lines appeared phenotypically normal. However, as 

fruit ripening commenced, virtually all transgenic lines showed a greater degree of orange 

colouration in their fruit compared to the control. Analysis of the T0 generation showed that 

increases in -carotene content of the fruit were responsible for the altered colouration 

(Table 1). Of the To transformants, 85% exhibited a lycopene to -carotene ratio within a 

range of 2:1 to 6:1, due to increases in β–carotene, with the wild type (Ailsa Craig) ratio 

being 7.46:1. Analysis of the T1 and T2 generations established that the phenotype was 

inherited (Table 1).  

 Insertions at a single locus were determined by Southern blotting using a nptII probe. 

Of the 20 transformants, 5 lines were single copy, while the others had copy numbers 

ranging from 2-4 for the nptII gene (data not shown). Homozygous lines were generated 

from single copy primary transformants, showing a range of -carotene contents (603 C1S1, 

C1S2, C2S1 and C4S1, with lycopene: -carotene ratios of 1.5, 2.99, 2.05 and 3.24, 

respectively; Table 1). Zygosity was assigned by Southern analysis using the nptII probe, co-

segregation was assessed by expression of the transgene and inheritance of the phenotype 

by HPLC analysis. Co-segregation occurred in all cases and the high -carotene phenotype 

was retained in the third generation (T2). As shown in Supplementary Material, Fig. 2, the 

ratio of lycopene:β-carotene ratio differed between azygous, hemizygous and homozygous 

fruit. Although significant elevations in -carotene were found in fruit of the transgenic 

lines, the content of biosynthetically related carotenoids such as phytoene, -carotene, -

carotene, -carotene, lutein, zeaxanthin, violaxanthin and neoxanthin was not altered.  The 
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pattern of -carotene and lycopene geometric isomers found in the transgenic fruit were 

identical to the wild type (i.e. β-carotene 90-95% all-trans, 10-5% cis; all-trans lycopene 96-

98%, 15-cis- lycopene 1-4% and 9-cis lycopene 0.6%). Alterations in other fruit isoprenoids 

were minor, with increases of 0.35, 0.50 and 0.01-fold for tocopherols, plastoquinone and 

ubiquinone, respectively, in line 603 C4S1-15. 

 There were also changes to the carotenoid levels in transgenic leaves. For example, 

in the leaves of line 603 C4S1 all the carotenoids were increased, with lutein exhibiting the 

largest elevation (Table 2). 

 

LCYB gene expression correlated with increased β–carotene levels in fruit 

Northern blot analysis showed a positive correlation between the level of transgene 

expression and increased -carotene formation (Fig. 3). A comparison of expression 

between chloroplast-containing (leaf and green fruit) tissues and ripe fruit showed that 

although the UBQ3 promotor was constitutive in nature, expression was approximately 10-

fold greater in ripe fruit (data not shown). 

 

Transgenic lines showed tolerance to CPTA 

 A comparison of Ailsa Craig seedling and those of the transgenic line 603 C4S1-15, in 

the presence of CPTA, showed dramatic differences in plant vigour. The control seedlings 

showed significant chlorosis, whilst those of the transformed line remained green 

(Supplementary Fig. 3). Pigment analysis of the leaves revealed lower levels of carotenoids 

in the control (55% reduction at 40 μM CPTA), and qualitatively, β–carotene levels were 
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some 4.3–fold less in the control leaves (Table 3). Increases in lycopene in these leaves were 

also observed. There was also an increase in lutein levels in 603 C4S1-15 in comparison to 

Ailsa Craig at both CPTA concentrations.  

 

Discussion 

 There have been several reports of using genetic modification for targeted and 

untargeted increases in carotenoid levels in crop plants, albeit with varying degrees of 

success [17]. With respect to β-carotene, a modest, 1.5-fold, increase was achieved using 

the PSY-1 gene with a constitutive promoter (CaMV 35S) [18], whist transformation with the 

Arabidopsis LCYB and PDS promoter elevated β-carotene some 7-fold [19]. Alternatively, a 

bacterial phytoene desaturase, CrtI resulted in a 3-fold increase, but a decrease in lycopene 

content [20]. This was surprising, as CRTI catalyses lycopene, not β–carotene biosynthesis. A 

similar result was found using CrtI in Golden Rice [21] and may be caused by a feed-forward 

mechanism for the upregulation of LCY or CYC-B. Therefore, although increases in β-

carotene were found, unintended perturbations to other carotenoids and related 

isoprenoids occurred, or else the total carotenoid content was reduced. 

 In contrast, in the present study levels of β–carotene have been increased up to 6-

fold, without a decrease in lycopene, perturbations to other fruit carotenoids, nor to the 

detriment of plant vigour. The phenotype was stable for at least 3 generations (Table 1). 

Therefore, the transgenic fruit contain an improved carotenoid profile compared with non-

transgenic cultivars and introgression lines [22]. This is the first report of using the UBQ3 

promoter in tomato, although it has been used with other dicot plants [23]. Although 

constitutive, the UBQ promoter gave differential expression levels of the transgene in 

vegetative and fruit tissues, with lower expression found in chloroplast-containing tissues 

that probably prevented the occurrence of gene silencing and/or co-suppression of the 

endogenous gene [24], since the homology of the tobacco and tomato β–cyclases is 87.2% 

(Supplemental Material, Fig 1). Since the endogenous LCYB gene is down regulated during 

fruit ripening [9], co-suppression is not an issue. Despite the low expression in vegetative 
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tissue, changes to carotenoids do occur (Table 2), most specifically a 4.4-fold increase in 

lutein, suggesting that LCYB catalyses the rate limiting step in the formation of this 

xanthophyll. 

  Growth of the transgenic lines with CPTA did not cause changes to plant vigour, 

unlike the chlorosis shown with the wild type (Supplementary Material, Fig. 3).  Lycopene 

did not accumulate in the LCYB line (Table 3), indicating that expression of the LCYB 

transgene had caused tolerance to CPTA due to increased activity of LCYB. Therefore, such 

an approach is feasible for the production of a crop resistant to this herbicide and for 

screening putative cyclase inhibitors that have different modes of action to CPTA [25]. The 

increase in total carotenoids in the transgenic line is consistent with the report that CPTA 

modulates mRNA levels of carotenoid genes [26].  

Nutritionally, an average ripe LCYB transgenic fruit contains virtually all the RDA for 

vitamin A compared to the wild type, which has about 39% of the RDA [27]. For comparison, 

the crtI transgenic tomato contains similar levels of β-carotene (ca. 70% RDA), but only 50% 

of the wild type lycopene content. Thus, this new genotype not only has a significantly 

elevated provitamin A content, but maintains its level of lycopene, compared to the wild 

type.  

In summary expression of LCYB under the control of the UBQ3 promotor has 

resulted in the specific elevation of β-carotene in ripe tomato fruit, but no changes to other 

fruit carotenoids. There is much current debate concerning the acceptance of genetically 

modified plants. The present study has produced a tomato with the potential to reduce 

vitamin A deficiency and contribute towards a high antioxidant diet. Such germplasm will 

provide a valuable resource for further detailed analysis [28] and add to the genetic 

resources for nutritional benefit. 
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Table 1. Carotenoid contents of transgenic plants expressing an additional -lycopene 

cyclase gene.  

 

Plant line Generation/ 

Zygosity 

Carotenoid content (g/g DW) 

  Lycopene β-Carotene Totala Ratio L:β-

C 

Wild type - 2133 ± 479 290 ± 29 2560 ± 508 7.46 

603 C4S1 T0 5546 ± 1397 1711± 103 7394 ± 

1490 

3.24 

603 C1S1 T0 1192 ± 370 783 ± 46 2112 ± 416 1.52 

603 C2S1 T0 2560 ± 297 1247 ± 37 3944 ± 334 2.05 

603 C1S2 T0 2773 ± 471 928 ± 81 3838 ± 552 2.99 

Azygous 

controlb 

T1 2009 ± 134 329 ± 53 2669 ± 204 6.11 

603 C4S1-1 T1, He 2240 ± 99 609 ± 82 2991 ± 181 3.68 

603 C4S1-15 T1, Ho 2069 ± 40 725 ± 28 2936 ± 32 2.85 

603 C4S1-5 T1, Ho 1493 ± 43 783 ± 53 2418 ± 96 1.91 

603 C1S1-4 T1, He 1493 ± 79 406 ± 6 2041 ± 85 3.68 

603 C1S1-18 T1, Ho 1770 ± 104 667 ± 59 2579 ± 163 2.65 

603 C1S1-19 T1, Ho 2560 ± 110 580 ± 16 3282 ± 126 4.41 

603 C2S1-1 T1, Ho 2133 ± 85 725 ± 36 3000 ± 122 2.94 

603 C4S1-15 T2, Ho 3250 ± 1455 623 ± 175 4034 ± 163 5.22 

 

Fruit were harvested at 7 dpb.  a Includes lutein, phytofluene, -carotene and phytoene at 

1.8, 0.3, 0.14 and 1.3 % of the total carotenoids, respectively. b represents the mean of 

azygous plants from 603 C4S1, C1S1 and C2S1 lines. He, hemizygous; Ho, homozygous; T0, 

primary transformants; T1, second generation; T2, third generation. All values are the means 

of 3 replicates ± s.e. 
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Table 2. Carotenoid content of leaves of Ailsa Craig and LCYB transgenic lines 

 Carotenoid (μg/g FW) 

Genotype Total β-Carotene Lutein Anthera Viola Neox 

Ailsa Craig 83.7 ± 1.5 22.0 ± 0.36 33.7 ± 4.1 6.3 ± 1.5 13.4 ± 1.5 8.3 ± 0.04 

% Total  26.3 40.3 7.53 16.0 9.90 

603 C4S1 275.6 ± 

0.73 

33.7 ± 1.7 147.3 ± 

0.40 

21.4 ± 

0.50 

42.2 ± 0.13 31.0 ± 1.5 

% Total  12.2 53.4 7.80 15.3 11.2 

 

Values are the means of 3 replicates ± s.e. Anthera, antheraxanthin; Viola, violaxanthin, 

Neox, neoxanthin 
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Table 3. Carotenoid content of leaves from plants treated with CPTA 

 

Plant id and 

treatment 

Carotenoid content (μg/g FW) 

 Total Lycopene β-

Carotene 

α-

Carotene 

Lutein Neox Viola 

       

AC + 30 μM 

CPTA 

62.1 2.9 ± 0.1 

(4.6) 

4.7 ± 0.99 

(7.5) 

7.1 ± 0.5 

(11.3) 

44.7 ± 7.6 

(72.0) 

1.8 ± 0.3 

(2.4) 

0.9 ± 0.4 

(1.4) 

AC + 40 μM 

CPTA 

47.4 1.4 ± 0.1 

(3.0) 

1.8 ± 0.2 

(3.8) 

7.3 ± 0.7 

(15.6) 

34.7 ± 0.1 

(73.0) 

0.4 ± 0.04 

(2.1) 

1.8 ± 0.2 

(3.8) 

603 C4S1-

15 + 30 μM 

CPTA 

76.9 0.6 ± 0.13 

(0.8) 

7.2 ± 1.5 

(9.5) 

6.1 ± 1.2 

(8.0) 

58.0 ± 6.1 

(76.2) 

2.2 ± 0.2 

(2.8) 

2.8 ± 0.2 

(3.6) 

603 C4S1-

15 + 40 μM 

CPTA 

106.2 0.6 ± 0.07 

(0.6) 

7.8 ± 0.7 

(7.5) 

3.3 ± 0.73 

(3.1) 

90.6 ± 6.9 

(85) 

0.6 ± 0.06 

(0.6) 

3.3 ± 0.13 

(3.1) 

 

Percentage of total carotenoids shown in brackets. Values are the means of 3 replicates ± 

s.e. Viola, violaxanthin, Neox, neoxanthin. 
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Figure legends 

Fig1. Carotenoid biosynthesis in higher plants.  

Abbreviations: GGPP, geranylgeranyl diphosphate; PSY-1 and -2, phytoene synthase 1 and 2; 

PDS, phytoene desaturase; ZDS, ζ-carotene desaturase; CRTISO, carotene isomerase; LCYE, 

lycopene ε-cyclase; LCYB, lycopene β–cyclase; CYC-B, fruit specific lycopene β–cyclase; CRTR-

B1, β-carotene hydroxylase; CYP97A, P450 carotenoid β–ring hydroxylase; CYP97C, P450 

carotenoid ε-hydroxylase; VDE-1, violaxanthin de-epoxidase; ZEP-1, zeaxanthin epoxidase; 

NXS, neoxanthin synthase. 

 

Fig 2. Schematic diagram of the LCYB construct pVBLCY. 

Abbreviations: UBQ3, ubiquitin 3 promotor; LCYB, N. tabacum lycopene -cyclase; nptII, 

nopaline synthase terminator; ASe1, BamH1, Age1 restriction sites; LB, left border; RB, right 

border . 

Fig 3. Northern blot analysis showing expression of the tobacco LCYB gene in transgenic 

lines. 

A, primary (T0) transformants: 1, control Ailsa Craig (1:7); 2, C1S1 (1:1.5); 3 C1S2 (1:3.0), 4,t 

C3S1 (not determined); 5, C4S1 (1:3.2); 6, C4S2 (1:5), 7, C5S1 (1:6.5).  

B, T1 progeny: 1, Ailsa Craig control (1:7); 2 C4S1-1, hemizygous (1:3.7); 3 C4S1-5, 

homozygous (1:1.9); 4, C4S1-8, homozygous (1:2); 5, C4S1-12, azygous (1:6); 6, C4S1-15, T2 

homozygous (1:5.2), 7, C4S1-18, azygous (1:8); 8, Control Ailsa Craig (1:7). The lycopene to 

β–carotene ratios are provided in parenthesis. Uniform RNA loading was verified by probing 

with actin. 

Supplementary material 

Fig. 1. Alignment of tobacco and tomato lycopene LCYB. 

Aligned using EMBOSS WATER at 

http://www.ebi.ac.uk/Tools/psa/emboss_water/index.html  

http://www.ebi.ac.uk/Tools/psa/emboss_water/index.html
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Fig. 2. HPLC analysis of carotenoids present in ripe fruit from azygous, hemizygous and 

homozygous lines. 

A, Homozygous LCYBtransgenic line C4S1-5; B, hemizygous transgenic line C4S1-1, and C, 

azygous line C4S1-18. Illustrated are chromatograms recorded at 460nm. 

Fig. 3. Ailsa Craig and transgenic plants grown with 30 μM CPTA 

A, Ailsa Craig; B, T1 homozygous line C4S1-15, both grown for 14 days 


