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“We both step and do not step in the same rivers. We are and are not.”

Heraclitus of Ephesus



ROYAL HOLLOWAY, UNIVERSITY OF LONDON, UK

Abstract
Department of Computer Science

Doctor of Philosophy

Reliable Confidence Measures and Well-Calibrated Probabilistic

Outputs in Classification Algorithms

by Antonis Lamprou

The Machine Learning research area is widely used in several predictive sys-

tems, where observations from the past can be used to create predictions about

future events. Machine Learning can be applied to any area where classifica-

tion or regression is used. Nonetheless, most Machine Learning algorithms

do not provide any measures of valid confidence. Conformal Prediction (CP)

is a framework which uses underlying Machine Learning algorithms, and can

provide valid measures of confidence for predictions. Additionally, the Venn

Prediction (VP) framework, which is an extension to the CP framework, pro-

vides well-calibrated probabilistic outputs. This thesis explores and provides

new methods for valid measures of confidence and probabilistic outputs, based

on the Conformal and Venn Prediction frameworks. We introduce a new Con-

formal Predictor based on Genetic Algorithms and compare our approach with

other methods. Additionally, the CP framework is extended for multi-label ap-

plications where predictions can contain more than one possible classifications.

Furthermore, a new Venn Predictor based on Inductive CP is introduced, which

greatly improves the computational efficiency of VP. We conduct experiments

on our methods and examine their performance and validity. Finally, we exam-

ine the applications of osteoporosis risk assessment, the diagnosis of childhood

abdominal pain, and the evaluation of the risk of stroke based on ultrasound

images of atherosclerotic carotid plaques. Our experimental results on all our

methods demonstrate the reliability and usefulness of our confindence and

probabilistic outputs.
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Chapter 1

Introduction

1.1 Machine Learning

Machine Learning is a research area in Computer Science and Artificial In-

telligence, where algorithms are developed to learn from past experience in

order to be able to predict future cases. Machine Learning is divided into two

main categories: supervised learning, and unsupervised learning. In supervised

learning, a data instance typically consists of an input vector and a desirable

output value. A supervised algorithm is trained on a training set of data and

creates a model that maps the input vectors to the output values of the data.

The algorithm can be assessed on how well it can predict the output values

of new data. In unsupervised learning, the output values of the data are un-

known, and the task is to divide the given data into clusters. In this thesis, we

are interested in supervised learning applications.

1
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Machine Learning is based on the statistical learning theory. This theory

assumes that for a vector space X of all possible inputs, and a vector space

Y of all possible output values there is some unknown probability distribution

over the product space Z = X × Y . The data are assumed to be identically

and independently distributed (i.i.d.). A learning algorithm is trained to find

a function f : X 7→ Y such that f(~x) ∼ y. For simplicity purposes, ~x will be

hereafter simplified to x.

Applications of statistical learning are either classification or regression prob-

lems. In classification, the output values of the data are discrete and are

usually mapped into classes, whereas in regression the output of each data

point is continuous. In any of these problems, a loss function (or error func-

tion) is defined which indicates how well an algorithm can predict the output

of the data. In regression, a common loss function is the square loss function

V (f(x, y) = (y − f(x))2. In classification, a natural loss function is the 0-1

loss function, where V = 1 if the predicted output is different from the actual

output, and V = 0 if the prediction is correct. When training an algorithm, the

main criteria is to minimise the loss function. In this thesis, we are interested

in classification applications. In Figure 1.1, we illustrate a two dimensional

linear classification task. The linear classifier is depicted as a dashed line, and

the task is to classify instances in the two-dimensional space as “squares” or

“circles”. A new instance with an unknown label to be predicted is shown as

x. According to the linear classifier, the given instance should be labelled as a

“circle”, since it falls in the class with the “circle” points.

A common problem in Machine Learning is overfitting. When a learning algo-

rithm creates a model that minimises the loss on the training data, but fails
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Figure 1.1: Classification task.

to generalise on new data, such that the loss increases, it is said that the al-

gorithm has overfitted. In order to avoid overfitting, algorithms are usually

constructed to generalise as much as possible. In statistical learning theory,

the Vapnik-Chervonenkis (VC) dimension of a classifier is utilised to find the

upper bound probability of test loss (i.e. loss on unseen test data), given the

training loss. The VC dimension is a measure of the capacity of a learning

classification algorithm. As it can be shown by the VC theory, it is not always

the case that the test loss would decrease while we increase the capacity of a

classifier. Therefore, one should control the capacity of a classifier, such that

the loss is minimised.

A practical approach for evaluating a classifier is through cross-validation ex-

periments. In cross-validation, the data is divided into training set and test

set several times, while for each time a different block of the data is used as
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the test set. Through cross-validation, one can assess on how well the classifier

generalises and avoids overfitting.

In the following subsections, we describe five popular Machine Learning al-

gorithms which can be used for classification. Namely, the algorithms are:

k-Nearest Neighbours (k-NN), Artificial Neural Networks (ANNs), Support

Vector Machines (SVMs), Naive Bayes (NB) and Genetic Algorithms (GAs).

A thorough description of the aforementioned algorithms can be found in [3].

1.1.1 k-Nearest Neighbours

The k-Nearest Neighbours algorithm is one of the simplest algorithms which

performs well in many classification applications. In k-NN classification, a

training set of the form (x1, y1), . . . , (xn, yn) is given, and the goal is to predict

the class of a new instance xn+1. The algorithm finds the k nearest neighbours

of the new instance in the training set, and assigns the class of the new instance

to the most common label found amongst the k neighbour training instances.

When k = 1, the new instance is simply assigned to the class of the single

nearest neighbour. The distance between two instances can be any distance

measure. Typically, the Euclidean distance can be used:

D =

√√√√ m∑
j=1

(qj − pj)2, (1.1)

where q and p are two instances of data with Cartesian coordinates j = 1, ...,m.

Once all distances are found between the new instance xn+1 and all other

instances, the k-NN algorithm sorts the distances from smaller to larger and
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outputs as a prediction the label which occurs the most amongst the first k

labels.

1.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) imitate the work of biological neural net-

works which are located in the brain of living organisms. ANNs consist of a

set of interconnected units, called neurons. Abstractly, each neuron has sev-

eral inputs and an output value, and the outputs can be connected to other

neurons in the network (i.e. an output becomes the input of other neurons). In

ANNs, there can be several layers of interconnected neurons. Typically there

is an input layer, one or more hidden layers, and an output layer. Networks

that only forward the output to a next layer are called feed forward neural

networks. Figure 1.2 depicts such a neural network. Other structures of ANNs

exists, such as recurrent networks where connections between the neurons form

a directed cycle.

Each neuron in the network accepts several input values and generates an

output based on its input weights wi, a transfer function net and an activation

function φ. A neuron representation is depicted in Figure 1.3. A common

transfer function is the sum of the weighted inputs:

net =
n∑
i=1

wixi, (1.2)

and a common activation function which produces the output o is the logistic

function

o = φ(net) = (1 + e−net)−1. (1.3)
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Figure 1.2: Feed Forward Neural Network.

Initially, all neuron weights in an ANN are assigned to random values. In

supervised learning, the input values are typically the attributes of an input

instance xi. The output value of the ANN can provide a classification Yi

for the given instance. In a binary classification problem, the output layer

consists of a single neuron, whereas in a multi-class problem each class can be

represented by an output layer neuron, where the neuron which outputs the

highest value is selected for classification. The classifications of the network are

evaluated, and the weights are re-calculated in order to minimise the training

loss. A common approach for minimising the loss function is the use of the

Backpropagation method with gradient descent optimisation. The main idea

behind Backpropagation is as follows: If the activation functions of a network

are differentiable, then the activations of its output units will be differentiable

functions of its inputs and weights. Accordingly, if the error function used
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Figure 1.3: Artificial Neuron

for its training is a differentiable function of its outputs, such as the sum of

squares-error, then the errors produced will be differentiable functions of the

weights. The Backpropagation method provides a computationally efficient

way for evaluating the derivatives of the error function with respect to the

weights. These derivatives can then be fed into an optimisation technique,

such as gradient descent, in order to produce weight values which minimise

the error. The process of Backpropagation is repeated until the training loss

(given a training set of instances) is minimised to a threshold value, or when

a terminating criterion has been met. Once the process is finished, the ANN

is said to have been trained and can therefore output classification predictions

for future instances.

1.1.3 Support Vector Machines

In supervised learning, a Support Vector Machine (SVM) is an algorithm which

tries to identify a hyperplane that gives the maximum margin between two

classes of data instances. In order to achieve this, SVMs find the boundary
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instances (called support vectors) of a class given a candidate hyperplane,

and calculate the margin between the boundary instances and the hyperplane.

The hyperplane that maximizes the margin between the classes is selected

for classification. Figure 1.4 shows a two dimensional separating hyperplane

with the boundary vectors being highlighted. The hyperplane is written as

w · x− b = 0, where w is the normal vector to the hyperplane. The margin is

the region between the two hyperplanes w·x−b = 1 and w·x−b = −1 as shown

in Figure 1.4. This margin is described as 2/||w||, where ||w|| is the normalised

normal vector w, and the goal is to minimise ||w||, subject to the constraint

yi(w · xi − b) ≥ 1,∀(1 ≤ i ≤ n). The constraint prevents data points from

falling into the margin. In order to solve the minimization task, the Lagrange

multipliers method can be used, which offers a strategy for finding the local

minima of a function subject to constraints. When the optimization goal is

reached it means that the SVM has found a hyperplane which maximizes the

margin from the support vectors.

In the case of multi-class tasks, several binary SVMs can be combined to form

a multi-class classifier. In other terms, the multi-class problem is reduced to

multiple binary tasks. Each binary SVM can then form a separating hyperplane

between one of the classes against the rest (one-against-all), or between every

pair of classes (one-against-one). The results of all binary SVMs are then

combined to produce a multi-class classifier.
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Figure 1.4: Support Vector Machines.

Figure 1.5: Kernel mapping.

For non-linear classification, the data are mapped into a higher dimensional

space where a linear separation can be made, using a nonlinear kernel map

φ : X → V . A depiction of a kernel mapping is shown in Figure 1.5. The SVM
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algorithm is not changed, except that every dot product in the maximization

task is replaced by a non-linear kernel map.

1.1.4 Naive Bayes Classifier

The Naive Bayes classifier is a probabilistic classifier which is based on Bayes’

theorem. The assumption to be made when using such a classifier is that

the attributes of the data instances are conditionally independent. Given a

training set of data, the classifier multiplies the probabilities of the attributes

given their class, and outputs the probability P (yi|xi) of label yi given instance

xi.

In Naive Bayes, the target function f : X 7→ Y is translated as P (Y |X). When

we apply Bayes rule, the representation is given as:

P (Y = yk|X = xi) =
P (X = xi|Y = yk)P (Y = yk)∑c
k=1 P (X = xi|Y = yk)P (Y = yk)

, (1.4)

where xi is an instance vector, and yk is a classification of all possible c classi-

fications. Assuming conditional independence, we have

P (X = xi|Y = yk) =
m∏
j=1

P (X = xji |Y = yk), (1.5)

where xji is the jth attribute of instance xi. Equation (1.4) is therefore re-

written as

P (Y = yk|X = xi) =

∏m
j=1 P (X = xji |Y = yk)P (Y = yk)∑c

k=1

∏m
j=1 P (X = xji |Y = yk)P (Y = yk)

. (1.6)
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Given a new instance xn+1, the Naive Bayes Classifier will output as prediction

the label yn+1 with the highest probability.

1.1.5 Genetic Algorithms for classification

Genetic Algorithms (GAs) are population based optimisation algorithms, which

mimic natural evolution mechanisms such as cross-over reproduction, muta-

tion, and selection. In Machine Learning classification, candidate solutions in

the population are parametric classifiers. Initially, a GA generates a random

population of possible solutions. Each solution is evaluated against a fitness

or objective function, and a selection process selects the fittest individuals in

order to create a successive population. Typically, the fittest individuals are

selected probabilistically using the following:

P (si) =
Fitness(si)∑L
l=1 Fitness(sl)

, (1.7)

where L is the number of individuals in the population. For classification,

the fitness score is generally defined as the accuracy of an individual over the

training set.

Individual solutions are represented as chromosomes. A chromosome can con-

sist of a sequence of binary digits. The candidate individuals are combined to

generate offspring through cross-over and mutation operations. In cross-over,

the bits of two individuals are mixed together to generate new individuals,

whereas in mutation the bits of a single individual are altered randomly. The
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entire process of a GA is repeated until a termination criteria is met. Ter-

mination conditions are either a predefined number of generations, or when a

solution is found that satisfies some minimum threshold.

Algorithm 1: Genetic Algorithm

Input: O, G, L, r, m
O: The objective (fitness) function;
G: The number of generations for termination;
L: The size of the population;
r: The cross-over rate;
m: The mutation rate;
Initialise random population Pop of size L;
for Individual si in Pop do

Find fitness score of individual: Fitness(si) = O(si);
end
while generations < G do

1. Selection: Select (1− r)S individuals using P (si) = Fitness(si)∑L
l=1 Fitness(sl)

;

2. Crossover: Probabilistically select rL
2

pairs from Pop according to
P (si), and produce offspring with cross-over operation. Add individuals
in Popnew;
3. Mutate: Choose m percent from Popnew randomly and alter randomly
selected bits;
4. Update Pop with Popnew;
5. for si in Pop do

Fitness(si) = O(si);
end

end
Output:
arg max si

O(si) from final Pop

In Algorithm 1, we formalise a prototype GA. The algorithm accepts as inputs

the objective function O, the number of maximum generations G, the popula-

tion size L, the cross-over rate r, and the mutation rate m. Initially, the GA

will generate a random population of chromosomes. The chromosomes will

be evaluated against the objective function, which will generate fitness scores
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for the chromosomes. The algorithm proceeds by selecting the fittest chromo-

somes and performs cross-over and mutation to generate new offspring. The

new offspring are added to the population and a percentage of non-selected in-

dividuals are removed in order to generate a successive population. The process

is repeated until the number of generations reaches G. The fittest chromosome

from the final population is then selected as the generated solution of the GA.

Later in Chapter 2, we provide a more detailed description of a particular GA,

where we define the chromosome’s representation and the objective function.

1.2 Motivation

A major problem in Machine Learning is the reliability of the predictive outputs

of learning algorithms. Although a loss function can indicate the general accu-

racy of a learning algorithm, the credibility (or reliability) of each individual

prediction is unknown. There exist only a few theories to alleviate the prob-

lem of reliability in the predictions. Most methods that use such theories are

categorised into probabilistic classification or provide some kind of confidence

in the predictions. There are currently two major approaches, the Bayesian

theory and the Probably Approximately Correct (PAC) theory. Nevertheless,

these approaches have some important drawbacks that can hinder application.

For Bayesian theory, a priori assumptions need to be made about the data. If

prior knowledge is not available, the Bayesian estimated confidence intervals

can be misleading. For example, at the 95% of confidence, the loss rate can

be much more than the expected 5%. In the case of applying PAC theory,
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the data used must be particularly clean, something that is not always true in

practical applications.

In this thesis, we investigate the Conformal Prediction (CP) framework [4]

which is a novel framework that can be used for obtaining reliable confidence

measures in predictive Machine Learning systems. Unlike other approaches to

confidence measures, a Conformal Predictor can guarantee that the confidence

measures will be valid, and thus the error can be controlled by setting a prior

confidence level such that the error rate of the predictions will be bounded by

the given level. For example, if the confidence level is pre-set to 95%, then the

predictor will output prediction regions to satisfy this level. The overall error

of the predictor, i.e. the percentage of times the true label is not included

in the output prediction region, will not exceed the 5% that is allowed due

to the pre-defined confidence level. In classification, a prediction region may

contain more than one label, and the number of labels in the region depends

on how certain the predictor is about the data, at the given confidence level.

If necessary, Conformal Predictors can be forced to output single predictions

instead of regions, and can complement such predictions with valid confidence

measures. Under the i.i.d. assumption, a CP is guaranteed to give valid

confidence values (i.e. the confidence values of the predictions will be bound

to the true classification loss, or regression loss). An elaborate comparison of

the Bayesian framework with CP is made in [5]. The weakness of the bounds

of PAC methods is presented in [6].

Furthermore, we examine the use of Venn Prediction (VP), which is an ex-

tension to the CP framework. Venn Predictors are algorithms that output

multi-probability values for each prediction. Similar to CP, the probabilistic
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outputs of Venn Predictors are guaranteed to be valid under the i.i.d. assump-

tion. In chapter 3, we compare VP with other probabilistic methods. Unlike

VP, the results of currently known probabilistic methods demonstrate that

their probabilistic outputs are not always well-calibrated.

1.2.1 Contribution

The contribution of the thesis is divided into three categories. First, we ex-

amine the CP framework, and we construct a new CP algorithm based on

Genetic Algorithms. Additionally, we extend the CP framework to multi-label

classification which is a new area of research in the field of Machine Learning.

In multi-label classification, an instance in the data can have multiple output

values (or labels). Current multi-label classification algorithms do not provide

valid confidence measures in their predictions.

Secondly, we investigate Venn Predictors and we extend the VP framework to

Inductive Venn Prediction. An important drawback of VPs is their computa-

tional inefficiency, especially in the case of large datasets. In this thesis, we

give a description of the Transductive Venn Prediction (TVP) framework, and

we introduce Inductive Venn Prediction (IVP) which is a novel approach for

improving the computational efficiency of VPs. Inductive CP methods have

been successfully used in the past in [7–9].

Thirdly, we conduct thorough experiments on all of our methods, and we ap-

ply our methods on three real-world applications: the assessment of the risk

of stroke based on ultrasound images of atherosclerotic carotid plaques, the
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diagnosis of childhood abdominal pain, and the assessment of the risk of Os-

teoporosis using data that have been collected from monitored patients.

1.2.2 Publications

Work presented in this thesis has been published by the author in several

conference proceedings and international journals. A list of publications is

given below.

1. “Inductive Venn Prediction”. Annals of Mathematics and Artificial In-

telligence, Springer, 2014.

2. “Evaluation of the risk of stroke with Confidence Predictions based on

ultrasound carotid image analysis”. International Journal on Artificial

Intelligence Tools, Vol. 21, World Scientific, 2012.

3. “Reliable Confidence Measures for Medical Diagnosis with Evolutionary

Algorithms”. IEEE Transactions on Information Technology in Biomedicine,

Vol. 15, No. 1, 93–99. IEEE, 2011.

4. “Osteoporosis Risk Assessment with Well-Calibrated Probabilistic Out-

puts”. Artificial Intelligence Applications and Innovations (AIAI 2013),

IFIP Advances in Information and Communication Technology Volume

412, 2013.

5. “Calibrated Probabilistic Predictions for Biomedical Applications”. In

Proceedings of the 12th IEEE International Conference on BioInformat-

ics and BioEngineering (BIBE 2012).
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6. “Reliable Probability Estimates Based on Support Vector Machines for

Large Multiclass Datasets”. In Proceedings of the 1st Workshop on Con-

formal Prediction and its Applications (COPA 2012), IFIP AICT 382,

182–191. Springer, 2012.

7. “Assessment of Stroke Risk Based on Morphological Ultrasound Image

Analysis with Conformal Prediction”. In Proceedings in Artificial Intel-

ligence Applications and Innovations, 2010. AIAI2010.

8. “Evolutionary Conformal Prediction for Breast Cancer Diagnosis”. In

Proceedings of the 9th International Conference on Information Technol-

ogy and Applications in Biomedicine, 2009. ITAB 2009.

1.3 Thesis Structure

In Chapter 2, we give a detailed description of the CP Framework, and we

introduce two new CP methods. In the first method, we propose the use of

Genetic Algorithms. In the second method, we introduce Multi-Label Confor-

mal Predictors (ML-CP), a setting which is currently attracting more research

interest. We provide experimental results of both introduced methods. The

results demonstrate the reliability and efficiency of our methods.

In Chapter 3, we describe the VP framework, and we introduce IVP, which

can greatly improve the computational efficiency of VPs in general. We pro-

vide experimental results, which demonstrate the reliability of the introduced

method, and we compare the efficiency of the results with TVPs and three

other probabilistic methods.
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In Chapter 4, we apply CP and VP on three medical-diagnostic problems.

The first medical problem is the assessment of the risk of stroke based on ul-

trasound images of atherosclerotic carotid plaques. We describe the problem,

and provide details of the dataset that we have used in our research. Fur-

ther, we provide experimental results of several CP algorithms on the specific

problem, and we discuss the importance of the CP framework to the area of

the assessment of the risk of stroke. The second medical problem that we in-

vestigate is Osteoporosis Risk Assessment based on well known risk factors of

Osteoporosis. We describe the problem in detail, and the data that we have

collected from actual Osteoporosis patients. We experiment on the collected

data with several VP algorithms, and provide results which demonstrate the

reliability and efficiency of our methods. Finally, we apply CP and VP on

childhood abdominal pain diagnosis. We conduct experiments on real world

data for childhood abdominal pain with collaboration with expert physicians,

and we discuss the importance of the confidence measures and probabilistic

outputs that we provide in our results.

In Chapter 5, we conclude and provide a summary of the thesis. In the con-

clusion, we also indicate possible work that can be conducted in the future,

following the work presented in this thesis.



Chapter 2

Conformal Prediction

In this chapter, we explain in detail the CP framework and introduce a new

Conformal Predictor based on Genetic Algorithms. Additionally, we extend the

CP framework for multi-label classification. We provide experimental results

which demonstrate the reliability of the confidence measures and the efficiency

of our methods.

2.1 Introduction

The Conformal Prediction (CP) [4] framework can be used for obtaining re-

liable confidence measures in Machine Learning applications. The confidence

measures are valid under the assumption that the data used are identically

and independently distributed (i.i.d.). The CP framework was first proposed

in [10] and later improved in [11], [12], and more recently in [13]. CPs are built

using classical machine learning algorithms, called underlying algorithms, and

19
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complement the predictions of the underlying algorithms with measures of con-

fidence. Many CPs have been built to date, based on various algorithms such

as Support Vector Machines [11], k-Nearest Neighbours for classification [14]

and for regression [15], and Random Forests [16]. The computational efficiency

of CPs has also been greatly improved using Inductive Conformal Prediction

(ICP) [9], as demonstrated in applications to Ridge Regression [17], k-Nearest

Neighbours [9], and more recently in applications to Artificial Neural Net-

works [7, 18]. The CP framework has been successfully applied to medical

diagnostic problems, such as ovarian cancer diagnosis [19], breast cancer diag-

nosis [20], classification of leukaemia subtypes [21], and acute abdominal pain

diagnosis [22, 23]. Other applications of CPs include information fusion [24],

and feature selection [25].

2.2 Conformal Prediction Framework

Provided a training dataset, CPs output predictions for new instances together

with valid confidence measures, based on the assumption that the given data

are identically and independently distributed (i.i.d.). CPs generate prediction

regions (sets of possible labels for a new instance), such that the error rate of

the prediction regions is guaranteed to not exceed a given significance level in

the long run. Additionally, CPs can be configured to output single predictions

(instead of prediction regions), together with valid confidence measures. We

explain how this is done in the following paragraphs.

A training set is of the form {(x1, y1), . . . , (xn, yn)}, where xi is a vector of

real-valued attributes and yi ∈ {Y1, Y2, . . . , Yc} is a label given to the instance
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xi. Given a new instance xn+1 with unknown label, the target is to find the

likelihood of correctness for each possible label Yk ∈ {Y1, Y2, . . . , Yc} that can

be given to xn+1. A set of steps are performed for each assumed label, in order

to obtain the likelihood:

1. The new instance xn+1 is appended in the training set together with the

assumed label Yk.

2. An underlying machine learning algorithm is trained on the extended

training set

{(x1, y1), . . . , (xn+1, Yk)}. (2.1)

3. The underlying algorithm is transformed in order to generate a non-

conformity score for each of the instances in (2.1). A non-conformity

score indicates how different (or strange) an instance xi is for its given

label yi, compared to the other instances in (2.1). In subsection 2.2.1, we

explain how classical machine learning algorithms can be transformed in

order to generate non-conformity scores.

4. The following p-value function is used to calculate how likely the assumed

label is of being correct:

p(Yk) =
#{i = 1, . . . , n+ 1 : ai ≥ an+1}

n+ 1
, (2.2)

which compares the non-conformity score an+1 of (xn+1, Yk) with all the

other non-conformity scores of the rest of the instances in the extended

training set.
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Given the true label yn+1, the p-value function in (2.2) satisfies the following

property for all probability distributions P and for any significance level ε:

P (p(yn+1) ≤ ε) ≤ ε. (2.3)

In fact, the p-value function is a test function which measures how likely the

dataset is of being i.i.d. If the p-value is lower than a given ε, it is because

we either have non i.i.d. data, or because some event has happened with

probability less than or equal to ε. Based on the assumption that the data are

i.i.d., we realise that if we include in our predictions all assumed labels that

provide a p-value greater than a given significance level ε, then the probability

of missing the true label of an instance will be less than or equal ε. In the case

that all p-values are less than ε, the label with the highest p-value is included

to ensure that that the prediction regions will always contain at least one

prediction. This step does not increase the probability of error. The definition

of a prediction region is given as

R = {Yk : p(Yk) > ε} ∪
{
arg max

k=1,...,c
(p(Yk))

}
. (2.4)

Predictions are now called prediction regions, since they may contain more

than one possible labels. In the long run, these regions will make errors at a

rate of at most ε. Therefore, the confidence is calculated as 1− ε. The formal

definition of the CP algorithm is given in Algorithm 2.

By preference, we may output only single labels (forced predictions) instead of

prediction regions. In forced prediction, only the label with the highest p-value

is given as a prediction, together with a confidence measure which is 1 minus
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Algorithm 2: Conformal Predictor

Input: training set {(x1, y1), . . . , (xn, yn)}, new instance xn+1, possible labels
Yk ∈ {Y1, Y2, . . . , Yc}, significance level ε

for k = 1 to c do
Train the underlying algorithm on the extended set
{(x1, y1), . . . , (xn, yn), (xn+1, Yk)};
Supply the input patterns x1, . . . , xn+1 to the underlying algorithm to
obtain the respective non-conformity scores a1, . . . , an+1;

Calculate the p-value p(Yk) = #{i=1,...,n+1:ai≥an+1}
n+1

;

end
Output:

Prediction Region R = {Yk : p(Yk) > ε} ∪ {argmaxk=1,...,c(p(Yk))}

the second largest p-value. The confidence measure indicates how likely the

prediction is of being correct, with respect to the rest of the possible labels.

In Table 2.1, we give an example of a prediction region which contains a single

label and a prediction region which contains two labels for the 95% level of

confidence (ε = 0.05). A prediction region which contains only one label is

a certain prediction. The algorithm can be certain for its prediction at the

required level of confidence. For the instance x1, the second p-value is 0.0145,

which is less than the significance level 0.05. Therefore, the CP discards the

second label at 95% level of confidence and gives a certain prediction, which

is the label that obtains the highest p-value. In contrast, for instance x2, the

second largest p-value is 0.1920 and is greater than the significance level. In

this case, the second largest p-value cannot be discarded and thus the CP gives

an uncertain prediction region with both possible labels at the required level

of confidence. If we decrease the confidence level to 80.80% (or lower), we then

have a certain prediction (or forced prediction), but the lower confidence in this
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case indicates the inability of the algorithm to produce a certain prediction for

95% confidence.

Instance x1 x2

p(Y1) 0.8623 0.1920
p(Y2) 0.0145 0.3768
Actual label Y1 Y2
Prediction region for ε = 0.05 {Y1} {Y2, Y1}
Forced prediction {Y1} {Y2}
Confidence 98.55% 80.80%

Table 2.1: Example of prediction regions for 95% level of confidence (ε =
0.05) and forced predictions with confidence measures.

2.2.1 Non Conformity Measures

A non-conformity measure is a way of scoring how strange an instance is for its

label compared to the other instances that are given in a training set. Every

non-conformity measure that we derive defines a CP, and can be used in (2.2)

in order to calculate p-values.

Non-conformity measures should be designed in order to produce efficient pre-

diction regions. In general, any non-conformity measure can be used in the

p-value function defined in (2.2) without violating the validity property men-

tioned in inequality (2.3). Nonetheless, our goal is to generate small sized pre-

diction regions at high levels of confidence. For efficiency, our non-conformity

measures should have the following two properties:

• Ranking: The non-conformity scores should rank instances according to

typicalness w.r.t the training set.
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• Diversity: The non-conformity scores should be maximized in diversity

w.r.t. the training set.

By using Machine Learning algorithms, we intend to define non-conformity

measures that satisfy the aforementioned properties. In this section, we de-

scribe how we may derive non-conformity measures using Artificial Neural

Networks, Support Vector Machines, Naive Bayes Classification, and k-Nearest

Neighbours.

2.2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks of interconnected nodes. Each

connection is associated with a weight which determines the intensity of the

information travelling through that connection. These weights are adjusted

during training to reduce the output error of the network. The output layer

of an ANN has a neuron ok for each possible class, and given an instance xi

we predict the class Yk corresponding to the output neuron which gives the

highest value.

We expect that the more conforming an instance is for its given label, the

higher the corresponding ok value would be. As proposed in [18], we can build

a CP based on ANNs (ANN-CP) using the non-conformity measure

ai = 1/ot, (2.5)
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for any (xi, yi) where yi = Yt, and ot = [0, 1]. Alternatively, we can use the

following non-conformity measure which is again defined in [18]:

ai =
maxk=1,...,c:k 66=tok

otγ
. (2.6)

In this definition, we use as a numerator the maximum of the output units

which do not correspond to the label of the given instance, since a higher

value from such units indicate a more strange instance. The γ parameter is a

constant that is used to adjust the sensitivity of the output.

2.2.1.2 Support Vector Machines

Support Vector Machines (SVMs) identify boundary instances for each class,

and fix a separating hyperplane that maximises the margin between them.

In the case of a non-linear separation, SVMs use a kernel mapping function,

where the instances are mapped to a higher dimensional space such that a

linear separation can be made. For the purpose of building a CP using SVM

(SVM-CP), we use the distance of each instance from the separating hyperplane

together with the class that it belongs to, in order to produce non-conformity

scores. For Y = {−1, 1}, we use the non-conformity measure

ai = −yih(xi), (2.7)

where h(xi) is the output of the SVM for the given instance xi. The output

h(xi) is negative if the instance belongs to class −1, and positive if it belongs

to class 1. If the prediction is correct, then the further the instance is from

the hyperplane, the less the non-conformity score will be, since more typical
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instances should be further away from the hyperplane. In contrast, if the

prediction is incorrect, the non-conformity score will increase as the distance

from the hyperplane increases.

The original SVM works only for binary classification problems. We can use

a more general SVM-CP (defined in [4]), which can work for both binary and

multi-class problems. For a general approach, we can use the one-against-

the-rest procedure, which transforms a multi-class problem into several binary

sub-problems. A class is selected for each sub-problem, and the instances are

labelled with {-1,1} depending on whether they belong to the selected class. A

non-conformity score is generated for each instance in each sub-problem, using

(2.7). Finally, the average of the scores of each instance is calculated to get a

final non-conformity score.

2.2.1.3 Naive Bayes Classifier

The Naive Bayes Classifier (NBC) is named after Bayes’ Theorem, and the

“naive” assumption of attribute independence. The assumption that attributes

are independent is a simplistic one. Nevertheless, Naive Bayes works very well

on many real-world datasets, particularly when combined with attribute selec-

tion procedures that remove redundant, and hence nonindependent, attributes.

The classifier calculates and multiplies the probabilities of the attributes given

each class, and outputs the probability of label yi given instance xi. We can

use the output probability to define a non-conformity measure and build a CP

based on the NBC (NBC-CP):

ai = −P (yi|xi). (2.8)
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As P (yi|xi) increases, the instance is less strange (or more typical), since the

probability assigned by the NBC to the correct class is higher.

2.2.1.4 Nearest Neighbours

The k-Nearest Neighbours (k-NN) method computes the distance of a test

instance from the other instances that are provided in the training set, and

finds its k nearest instances. The prediction of the algorithm is the class of

the majority of the k instances. In the case of building a CP based on k-

NN (k-NN-CP), we use the distances of the k nearest instances to define a

non-conformity measure. The simplest approach is to calculate the total of

distances of the k instances that belong to the class of instance xi, since the

nearer the instance is to its class, the less strange it is. Nonetheless, for a more

efficient non-conformity measure we also take into consideration the distances

of the k nearest instances that belong to other classes, since the nearer the

instance xi is to the other classes the more strange it is. We build a k-NN-CP

using the non-conformity measure defined in [9, 14]:

ai =

∑
j=1,...,k sij∑
j=1,...,k oij

, (2.9)

where sij is the jth shortest distance of xi from the instances of the same class,

and oij is the jth shortest distance of xi from the instances of other classes.
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2.3 Genetic Algorithm approach

In this section, we propose a Genetic Algorithm which can be used to generate

non-conformity scores. A Genetic Algorithm (GA) is a search method for

optimization and search problems. GAs have been used widely for evolving

decision rules in order to make predictions for medical diagnosis and other

applications. Particularly, fuzzy systems have been used together with GAs in

[26] for breast cancer diagnosis, and in [27, 28] for more general applications.

We are interested in evolving fuzzy-systems for our GA approach, since we

wish to generate decision rules that can output degrees of membership, and

thus be able to produce non-conformity scores based on the typicalness (or

strangeness) of the instances.

GAs are inspired by natural evolution: a population of encoded candidate solu-

tions (called “chromosomes”) is evolved through generations using genetic-like

operations, such as crossover and mutation. At each generation, solutions are

selected probabilistically based on their fitness, in order to generate offspring

and create the next generation. The initial population is generated randomly,

and at each generation every candidate solution is evaluated against an objec-

tive function in order to gain a fitness score. In a learning system, the objective

function is typically the measure of the performance of a candidate solution

over a training set of instances.

In our work, we use the “Pittsburgh” approach [29], where each “chromosome”

in the population is a rule-set, and each rule-set is composed by a variable

number of rules. We evolve a population of rule-sets for each class of the data

for a given number of generations, and then we select the best rule-set from
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each of the final populations in order to form the final model. Next, we describe

how we have developed our GA, and later in this section we explain how we

have built a CP using our GA approach.

2.3.1 Chromosome representation

We use fuzzy rules for our GA implementation, since fuzzy rules can give de-

grees of membership and are useful for calculating non-conformity scores. The

rules are connected with the fuzzy-OR operator to form rule-sets. A “chromo-

some” represents a fuzzy rule-set of the form:

IF rule1 OR ... OR ruleR THEN consequent.

Each rule is composed by one or more simple fuzzy expressions connected by

fuzzy operators, and consequent is an expression that assigns a value to the

output of the rule-set. The way a fuzzy rule is determined, and the respective

fuzzy operators are explained later in this section. The output value denotes

the membership of a given instance to the class of the rule-set. Each rule tests

all J attributes of an instance, and each attribute is represented by L binary

bits in the “chromosome”. The number of bits for each attribute is defined by

the number of fuzzy-sets, which are described next. A complete “chromosome”

has size s = R× J × L bits, where R is the number of rules in the rule-set.
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2.3.1.1 Fuzzy sets

Fuzzy rules are determined by a fuzzy space. A fuzzy space is defined by

L fuzzy-set membership functions. Figure 2.1 depicts 5 triangular fuzzy-sets

with linguistic names: Small (“S”); Small-Medium (“SM”); Medium (“M”);

Medium-Large (“ML”); and Large (“L”). The input of the fuzzy space in Figure

2.1 is a real-valued attribute within the range [0, 1]. The output of the fuzzy

space is the set of the membership values of the fuzzy-sets for the given input

value. For example, given an input value of 0.2, the output of the fuzzy space

in Figure 2.1 will be {0.2, 0.8, 0, 0, 0}. In our GA implementation we use the

depicted fuzzy-space in Figure 2.1, which contains 5 triangular membership

functions. Other membership functions can be used, such as the Gaussian

membership function

µl(x) = exp

(
−(cl − x)2

2σ2
l

)
, (2.10)

where cl and σl are the centre and width of the lth fuzzy set respectively.

Nonetheless, the Gaussian membership function requires more processing to

be calculated. For simplicity purposes, we have excluded other membership

functions from our GA implementation.

2.3.1.2 Fuzzy rules

A fuzzy rule indicates the fuzzy-sets considered for some real-valued attributes

of an instance xi (each attribute denoted as xij). In our work, the considered

fuzzy-sets are connected with the union operator in order to have a single

output value instead of a set of membership values. Moreover, the resulting
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Figure 2.1: Triangular fuzzy-set membership functions within a fuzzy
space for real valued attributes of the range [0, 1].

outputs of all of the attributes in each rule are connected with the fuzzy-AND

operator, and the resulting outputs of several rules (which form a rule-set)

are connected with the fuzzy-OR operator. The fuzzy-AND operator can be

described as the minimum output, and the fuzzy-OR operator is the equivalent

maximum function. For the fuzzy space in Figure 2.1, a rule-set of two rules

with two attributes can be the statement in Figure 2.2.

IF [(xi1 ∈ “S” ∪ “SM”) AND (xi2 ∈ “ML” )] OR

[(xi1 ∈ “S”) AND (xi2 ∈ “L”)]

THEN

output = class [weight]

Figure 2.2: A rule-set of two fuzzy rules with two attributes in each one.

The first rule in the rule-set of Figure 2.2 takes into account the memberships

of attribute xi1 to the “S” or “SM” fuzzy-sets, and for attribute xi2 the mem-

bership to the “ML” fuzzy-set. The second rule requires the membership of
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attribute xi1 to the S fuzzy-set, and for attribute xi2 the membership to the “L”

fuzzy-set. The rule-set in Figure 2.2 can be represented as a “chromosome” of

binary bits:

11000︸ ︷︷ ︸
g1

00010︸ ︷︷ ︸
g2

10000︸ ︷︷ ︸
g1

00001︸ ︷︷ ︸
g2

,

where each gj is a “gene” of the “chromosome” requiring the fuzzy-set mem-

berships of attribute j. Each “gene” contains one bit for each fuzzy-set, and

the l-th bit in a “gene” represents the l-th fuzzy-set in the fuzzy space. If

the membership of a fuzzy-set is required, the corresponding bit is enabled by

setting it to 1, otherwise the bit is set to 0. The fuzzy logical operators of the

rule are not encoded in the “chromosomes”, since these are pre-defined. The

class of the rule-set is also not encoded in the “chromosomes”, since we evolve

a population of rule-sets for each class separately.

2.3.1.3 Output weight

Here, we formally define the output of a rule-set. The union membership β of a

real-valued attribute xij to “gene” gj is calculated as the sum of memberships

of the enabled fuzzy-sets:

βgj(xij) =
L∑
l=1

[µl(xij)× gjl] , (2.11)

where gjl = 1 for the enabled fuzzy-sets, and gjl = 0 for the disabled fuzzy-sets.

The µl(xij) function returns the membership degree of attribute xij to the lth

fuzzy-set, given a fixed fuzzy-space.
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Further, the membership degrees β of all attributes J of instance xi are com-

bined, to find the compatibility degree of the instance xi to the rule r:

λr(xi) = min
{
βgj(xij) : j = 1, ..., J

}
, (2.12)

where the minimum function is the equivalent fuzzy-AND operation. Finally,

the output of a rule-set containing R rules given instance xi is defined as the

weight:

w(xi) = max {λr(xi) : r = 1, ..., R} , (2.13)

where the maximum function is the equivalent fuzzy-OR operation.

2.3.2 Genetic Operations

Genetic Operations are carried out during the evolution process of the Ge-

netic Algorithm. Crossover and mutation are used for the generation of new

“chromosomes” and the objective function is used for evaluating each “chromo-

some”. Finally, the termination criteria are explained, which are responsible

for terminating the GA after a number of generations. The details of these

operations are explained in the following sections.

2.3.2.1 Crossover

We use two point variable size crossover between two “chromosomes” in order

to generate two offspring “chromosomes”. In two point crossover we randomly
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1st parent with one rule 10100 10111
2nd parent with two rules 11001 01101 10011 01010

1st offspring 10001 01101 10011 01111
2nd offspring 11100 10010

Table 2.2: Crossover between two parents with different number of rules

take two points, a and b which are used as follows: for generating the first

offspring, we accumulate the first bits from positions 1 to a of the first parent,

the bits from point a to point b of the second parent, and the bits of the

first parent from point b to the end of the “chromosome”. For generating the

second offspring, we apply the same operation with the only difference that

the positions of the parents are swapped.

When the two parents have different number of rules, we restrict the points

we can select in the “chromosomes” in a way that the resulting offspring will

always be valid “chromosomes”. The corresponding points have to be on the

same bits within each rule of the “chromosome”. In Table 2.2, we demonstrate

an example of crossover between two parents with different number of rules.

The underlined bits denote the bits that are selected for generating the first

offspring, whereas the rest of the bits will generate the second offspring. Notice

for the second parent, that the first swapping point is identical as the first

parent, and the second point is given to the second rule.

2.3.2.2 Mutation

We have additionally used a mutation operation in our GA. Mutation is a

simple flip operation of a random bit in a “chromosome”, and the probability

of the flip operation to happen is given by the mutation rate. The mutation
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operation is greatly important in GAs, since populations otherwise tend to

converge to local maxima due to the crossover operation.

2.3.2.3 Objective function

The objective function measures the accuracy of a rule-set based on a training

set of instances. To calculate the accuracy of a rule-set, we evaluate the rule-set

against all training instances and we find the weight value returned for each

instance. For the instances with the same class as the rule-set, such that yi = k

the following formulae are used to calculate the True Positives (TP) and False

Negatives (FN):

TP =
∑

i=1,..,n+1:yi=k

√
wk(xi) (2.14)

FN =
∑

i=1,..,n+1:yi=k

√
1− wk(xi). (2.15)

Regarding the examples which belong to a different class from the rule-set,

such that yi 6= k, we apply the same formulae, (2.14) and (2.15), for False

Positives (FP) and True Negatives (TN) respectively. The fitness score of the

rule-set after processing the training set is defined as

fitness =
TP

TP + FN
+

TN

FP + TN
. (2.16)
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2.3.2.4 Termination Criteria

The main termination criterion of a GA is the number of generations required

until a candidate decision rule can be chosen as a final decision rule. The

number of generations can be decided and pre-defined by the user. Another

approach is to let the algorithm decide when a good enough solution has been

found.

In order to achieve a termination decision automatically, we specify a conver-

gence criterion. In detail, the termination criterion method obtains the score

of the fittest decision rule at each generation, and if the score converges (i.e.

there is no major increase or decrease in the fitness score for some pre-defined

number of generations) then the algorithm terminates and the fittest rule is

selected as the final decision rule.

2.3.3 GA Classifier

The GA can predict the label of a given instance by selecting the class which

gives the highest weight (using the corresponding evolved rule-set of each class

of the data). In this case, we use a modified version of the weight function in

(2.13), which includes the quality of each rule in the evolved rule-set:

we(xi) = max {λr(xi)Q : r = 1, ..., R} (2.17)

We calculate the quality Q of each rule over the training set as the proportion

of the compatibility degrees of the instances that have the same label as the
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rule, over the sum of the compatibility degrees of all the instances. The defined

quality has allowed us to increase the accuracy of our GA classifier.

2.3.4 GA-CP

In order to build a CP using our GA method (GA-CP), we need to define non-

conformity measures. The fittest rule-sets evolved from the GA can generate

non-conformity scores for given instances. The most natural way to define a

non-conformity measure for a pair (xi, yi) is to reverse the weight function of

the rule-set, since the higher the weight the less strange (or more typical) the

instance would be for its given label. Therefore, we define:

ai = −wyie (xi), (2.18)

where wyie is the weight of the corresponding (evolved) rule-set of the class

given to instance xi. Other non-conformity measures can be defined with

slightly more sophisticated calculations. Generally, we would like to use as

much information we can derive from the rule-sets. Therefore, we may include

the weights returned by all of the rule-sets which are evolved for each class.

Our second definition of a non-conformity measure is:

ai =

∑
k=1,...,c:c 6=yi w

k
e (xi)

wyie (xi) + γ
, (2.19)

where wyie (xi) is the weight of the rule-set for the class yi of the given instance

xi, c is the number of all possible labels, and γ is a chosen constant which
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adjusts the level of sensitivity to changes of wyie (xi). We have also defined a non-

conformity measure based on the same information as above, using subtraction

instead of division, as it is a smoother function to changes of wyie (xi) :

ai =

[ ∑
k=1,...,c:c 6=yi

wke (xi)

]
− wyie (xi)γ. (2.20)

We can use non-conformity measures (2.18), (2.19), or (2.20) to provide predic-

tions with confidence levels, or provide sets of predictions (prediction regions)

for instances, given desirable error rates. The method is defined as follows:

the new instance to be predicted is appended in the training set, together with

an assumed label. The GA is applied on the extended training set and the

fittest rule-set for each class after a given number of generations is selected.

Then, based on the evolved rule-sets, a non-conformity score is calculated for

each instance using (2.18), (2.19) or (2.20). The p-value of the assumed la-

bel is generated. The same process is repeated for every possible label of the

new instance, and a set of p-values is generated. Finally, we may output a

prediction region for any level of confidence as described in section 2.2. The

implementation of our GA-CP is publicly available at [30].

2.4 Multi-label Conformal Prediction

In this section, we extend the CP framework for multi-label classification. In

multi-label classification an instance can belong to multiple classes in paral-

lel. Applications include image tagging, document classification, gene function
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categorization, and music classification. For example, in document classifica-

tion, a specific document which contains both religious and political issues can

have both labels: one label for class “politics”, and one for class “religion”.

Multi-label algorithms are generally categorized into two groups based on the

transformation method that is used. One group is using Pattern Transforma-

tion (PT), where the multi-labelled data are split into several single labelled

data, and then traditional machine learning algorithms can be applied for

classification. The second group is using Algorithmic Adaptation (AA), where

the underlying algorithm is transformed in order to construct a mutli-label

classifier. An overview of multi-label classification is provided in [31]. In a

related study, a CP was developed for multi-label classification using power-

sets [32]. The powerset method (which falls into the PT group) transforms

the multi-label classification task into single label classification by mapping

each combination of the available labels into single labelled classes. Another

study, which follows another PT approach, can be found in [33] and [34], where

the multi-labelled data are decomposed into multiple binary labelled datasets

(Binary Relevance approach), and a CP is applied on each subset.

Unlike the work found in the literature, we propose a confidence measure using

the Hamming loss metric, which is the most common evaluation measure in the

setting of multi-label classification. Our proposed confidence measure allows

us to produce multi-label prediction regions with at most ε chance of having a

Hamming loss more than some threshold h. In other words, we can guarantee

under i.i.d. assumption, that Hamming loss in our multi-label predictions will

not exceed h given some confidence 1− ε. In the next section, we describe the

developed Binary Relevance Multi-Label Conformal Predictor (BR-MLCP),
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and we provide an upper bound of Hamming loss using the CP framework and

Chebychev’s inequality.

2.4.1 Developed Algorithm

In multi-label classification, a training set of the formD = {(x1, ψ1), ..., (xn, ψn)}

is given, where xi is an input vector of real-valued attributes, and the instances

can be labelled as ψi ⊆ {Y 1 × Y 2 × ...× Y c}, where each Y k ∈ {y1k, y0k}. In-

stances that belong to class Y k are labelled y1k, and y0k otherwise. One possible

approach to solve a multi-label problem is to decompose it into c single-label

binary classification problems (Binary Relevance approach in [34]). The orig-

inal dataset D is copied into datasets D1, ..., Dc, and for each Dk we label

as y1k the instances that originally have label y1k in the multi-label ψi, and y0k

otherwise.

We use a CP on each dataset Dk separately, and given a new instance xn+1

and a desirable significance level εk, each CP provides a prediction region rk

for class Y k (as in usual single-label classification). The prediction region rk

states whether the new instance belongs to class Y k or not, or whether there is

uncertainty at the given significance level. We then combine all rk to provide

the prediction region for the multi-label classification task:

R = r1 × ...× rc. (2.21)

As shown in property (2.3), the probability of each rk missing the true binary

label for class Y k, given a significance level εk, is at most εk. According to the
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Bonferroni general inequality, which can be applied for multiple tests, we may

state that the probability of the true multi-label ψn+1 not being in R is at most

the sum of the upper bound probabilities of the individual rk sets missing the

true binary label:

P (ψn+1 6∈ R) ≤
c∑

k=1

εk. (2.22)

Therefore, we have multi-label prediction regions, for which the error rate is

ε ≤
c∑

k=1

εk. (2.23)

Consequently, for a confidence level 1− ε in R we set the significance level for

each rk, k = 1, . . . , c to

εk =
ε

c
. (2.24)

Alternatively, we may set each εk to the second largest p-value provided by each

CP, such that each rk contains a single prediction for the new instance. Thus,

the final prediction region R will also contain a single multi-label, which can be

considered as a forced prediction for the new instance. The prediction of the

multi-label can be complemented with confidence measure 1−ε. The algorithm

of the Binary Relevance Multi-Label Conformal Predictor (BR-MLCP) is given

in [34] and in Algorithm 3. Our implemented version is publicly available at

[35].

2.4.1.1 Prediction Regions with Hamming loss

In inequality (2.23), we consider the error rate with respect to each multi-label

prediction as a whole prediction. If the prediction contains even a single binary
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Algorithm 3: Binary Relevance Multi-Label Conformal Predictor (BR-
MLCP[34])

Input: training set D = {(x1, ψ1), ..., (xn, ψn)}, new instance xn+1, possible
labels {Y 1, Y 2, ..., Y c}, significance level ε

for k = 1 to c do
for b = 0 to 1 do

Dk =
{

(x1, Y
k
1 ), ..., (xn, Y

k
n ), (xn+1, y

b
k)
}

;
Train the underlying algorithm on the extended set Dk;
Supply the input patterns x1, . . . , xn+1 to the underlying algorithm to
obtain the respective non- conformity scores a1, . . . , an+1;

Calculate the p-value p(ybk) = #{i=1,...,n+1:ai≥an+1}
n+1

;

end

rk =
{
ybk : p(ybk) > ε/c

}
∪
{
argmaxk=1,...,c(p(y

b
k))
}

;

end
Output:

Prediction Region R = r1 × ...× rc.

miss-classification, then the whole multi-label prediction is considered wrong.

A more common evaluation metric is used for multi-label prediction, which

is the Hamming loss metric. Given two sets a and b their Hamming loss is

calculated as

H(a, b) = # {k : ak 6= bk} . (2.25)

Given the true multi-label ψi of an instance xi, and a prediction region Ri, the

Hamming loss of Ri is defined as

HL(ψi, Ri) = min
π∈Ri

H(ψi, π). (2.26)

We can state that an error occurs only when the Hamming loss of a prediction

region is above a pre-defined value. Let us denote for k = 1, ..., c, ek = 1 if
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there is a loss in the prediction of class Y k, and ek = 0 otherwise. By setting

the significance level of the kth CP to εk for k = 1, . . . , c, we have

P (e1 = 1) ≤ ε1; ...;P (ec = 1) ≤ εc. (2.27)

If we allow a Hamming loss level h, then the overall prediction is wrong when

e1 + ...+ ec ≥ h+ 1 by definition. As a result of (2.27), the expected value of

e1 + ... + ec is at most ε1 + ... + εc. Consequently, by Chebyshev’s inequality

we get:

P (e1 + ...+ ec ≥ h+ 1) ≤ ε1 + ...+ εc
h+ 1

. (2.28)

In order to show that the upper bound in (2.28) is optimal, let us assume the

case where ε1 = · · · = εc, and

P

(
c∑

k=1

ek = m

)
= 0, (2.29)

for m > 0 and m 6= h + 1. This means that the probability of each possible

combination of exactly h+ 1 losses becomes

εk
Ch
c−1

, (2.30)

since each ek has at most probability εk and this is divided between the Ch
c−1

possible combinations of other losses, which together with ek result in exactly

h + 1 losses. There are Ch+1
c possible combinations that give exactly h + 1

losses, therefore the total probability of having a Hamming loss of more than

h is
εk

(Ch
c−1)
· Ch+1

c =
cεk

(h+ 1)
. (2.31)
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This is equal to (2.28) when ε1 = · · · = εc.

As a result of (2.28) in order to produce multi-label prediction regions with at

most ε chance of having a Hamming loss more than h, the significance level of

the kth CP for k = 1, . . . , c should be set to

εk =
ε(h+ 1)

c
. (2.32)

An alternative measure of error could be set with Hamming loss. Let us define

Hamming loss HP as the percentage of errors amongst all predicted labels.

By property (2.3), the probability of each loss in H(ψi, Ri) is at most εk, and

using equation (2.22), the percentage of Hamming loss is

HP ≤
c∑

k=1

εk
c
. (2.33)

Therefore, we may set our multi-label CP to provide prediction regions such

that the percentage of Hamming loss will be at most HP , at a confidence level

1−HP .

2.5 Experiments

In this section, we evaluate the methods presented in sections 2.3 and 2.4, and

we provide experimental results. There are four sets of experiments, each done

on a different dataset. The first and second sets of experiments evaluate the

Genetic Algorithm Conformal Predictor (GA-CP), and the third and fourth

sets of experiments evaluate the Multi-Label Conformal Predictor (MLCP).
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# Attribute name Values

1 Clump Thickness 1-10
2 Uniformity of Cell Size 1-10
3 Uniformity of Cell Shape 1-10
4 Marginal Adhesion 1-10
5 Single Epithelial Cell Size 1-10
6 Bare Nuclei 1-10
7 Bland Chromatin 1-10
8 Normal Nucleoli 1-10
9 Mitoses 1-10
10 Class {1 (benign), 2 (malignant)}

Table 2.3: Attributes contained in the WBCD data

We have used four separate datasets: the Wisconsin Breast Cancer Diagnosis

(WBCD) dataset [36]; the Ovarian Cancer NCI PBSII dataset [37]; and two

multi-label datasets, one that can be used for classifying music into emotions

[38], and another for yeast (Saccharomyces cerevisiae) gene function classifica-

tion [39].

2.5.1 Experiments for breast cancer diagnosis

We have conducted experiments on the Wisconsin Breast Cancer Diagnosis

(WBCD) dataset [26, 36, 40], which is a popular dataset for the domain of

breast cancer diagnosis. The WBCD dataset was recorded at the University of

Wisconsin Hospital, and contains attributes which are computed from digitized

images of fine needle aspirate of breast mass. The instances in the dataset can

be classified as benign or malignant. The attributes of the instances in the

dataset are listed in Table 2.3.
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The WBCD dataset that we use here is the same version as in [26], which

contains 699 instances. From the 699 instances, we have discarded 16 cases

which contain unknown values, thus the results shown in this section are on the

remaining 683 instances. Moreover, we have applied a random permutation on

the dataset, and we have normalized the attributes to real values within the

range [0, 1].

2.5.1.1 Experimental settings and results

We apply ten-fold cross validation on the dataset. In cross validation, we split

the dataset into ten equally sized blocks, and repeat our experiments ten times,

where each time we leave out one block as the test-set. We evaluate our GA-CP

based on the accuracy and confidence of the predictions which were generated

using the test-set. In this section, we show the average results of the ten folds.

Our GA classifier (described in section 2.3.3) evolved variable sized rule-sets

with a maximum of 4 rules in each rule-set. From the study in [26], it seems

that 4 rules are sufficient for the WBCD dataset. Moreover, if we had al-

lowed a maximum of more rules the search space for the GA would increase

dramatically and would make the problem much more difficult. Additionally,

there is the danger of overfitting when using many rules on a limited training

set. The rest of the parameters that we have used for our GA are: popula-

tion size=100; generations=100; crossover rate=0.8; mutation rate=0.01; and

elitism rate=0.2. The elitism rate is the percentage of the population that is

copied to the next generation. The crossover rate is the probability that the

crossover operation will be applied on two selected “chromosomes”. We have

also increased the probability of the initial population to contain 1’s in the
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Method Accuracy %

Setiono[40] 97.21
Taha and Ghosh[41] 96.19

Pena Reyes and Sipper[26] 97.80
SVM 96.78

Our GA classifier 97.20

Table 2.4: Accuracy comparison with other methods on the WBCD data-
set.

“chromosomes” to p=0.9. We have identified from empirical results that our

GA converges sooner when the rate of 1’s is higher. In this case, the rule-sets

in the initial population have most of the fuzzy-sets enabled, giving higher

membership values in general (see (2.11)). As the GA evolves the population,

some fuzzy-sets are ruled out moving from general rule-sets towards specific

ones.

In Table 2.4, the accuracy of our GA classifier is compared with the best

results from other work which has been conducted on the WBCD dataset.

We also include the accuracy results of the Support Vector Machine (SVM)

classifier, which is a popular classifier. Our main goal is not to provide better

accuracy; instead, we aim to retain accuracy, while we provide some confidence

information in each prediction. From the results in Table 2.4, we can confirm

that our GA implementation is as accurate as the rest of the methods, giving

97.20% accuracy.

The experiments for the GA-CP (described in section 2.3.4) were done with

two slightly different versions of the algorithm. The two versions differ in their

termination criteria. We define GA-CP-T, which is the GA-CP algorithm

where the number of generations is specified by the user, and GA-CP-C where
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the termination of the algorithm is decided automatically upon convergence as

described in section 2.3.2.4. We have changed the population size of GA-CP-C

to 20, since a smaller population when converging to a solution tends to give

better results. The number of generations used by the convergence criterion

for comparing the fitness scores was set to 50.

In Table 2.5, we show the certainty and error rates given four confidence levels:

99%; 98%; 95%; and 90%. Here, we compare the confidence measures of

GA-CP-T, GA-CP-C and SVM-CP defined in 2.2. We use non-conformity

measure (2.20) for the two versions of GA-CP, and γ = 1.25 which was chosen

empirically. Regarding the SVM-CP, we used a Radial Basis Function (RBF)

kernel with spread parameter spread = 1, and complexity c = 1. The certainty

in the results is measured in terms of how many “prediction regions” contain

only a single prediction (i.e. only a single p-value is above a given significance

level for the new instance we wish to predict). Considering that the validity of

a CP is given, we are more interested about the certainty in the results, since

it is a way to calculate the quality of our confidence measures. Therefore, we

wish to have as many certain predictions as possible, given high confidence

levels.

The GA-CP-T gives 84.9% certainty rate in the predictions given the 99% con-

fidence level, which is a high rate, but slightly lower than the certainty rate

of the SVM-CP. This is still a satisfactory result, as the SVM is a well-known

strong classifier. Nevertheless, a GA can rapidly overfit the data depending on

the number of generations. Overfitting can greatly affect the certainty rates,

but not the validity of the confidence measures. The GA-CP-C which ter-

minates the algorithm automatically, gives a slightly better result of 86.2%
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Method Confidence Level Certainty Error

GA-CP-T

99%
98%
95%
90%

84.9%
95.7%
99.1%
99.5%

1.0%
2.2%
4.2%
9.5%

GA-CP-C

99%
98%
95%
90%

86.2%
96.3%
99.5%
99.1%

1.0%
2.2%
4.2%
9.5%

SVM-CP

99%
98%
95%
90%

91.9%
96.9%
100%
100%

0.8%
1.9%
4.5%
9.8%

Table 2.5: Certainty and error rates on the WBCD data-set using GA-
CP-T, GA-CP-C, and SVM-CP.

certainty rate and satisfactory results for the rest of the confidence levels. The

effect of overfitting is more evident in the results of the second set of exper-

iments presented in subsection 2.5.2, where GA-CP-T has performed poorly

and GA-CP-C has performed remarkably well.

There are two further observations. First, as the confidence level is increased

the certainty rate drops, since less error is allowed at the higher levels of con-

fidence. An uncertain prediction is an indication to the user that a particular

instance cannot be predicted with the desirable level of confidence. Secondly,

the error rates (which are for the prediction regions that did not contain a

correct prediction) confirm the validity of the CP, since for a given confidence

level 1− ε the error rate is near ε.

In Figure 2.3, we show the decoding of the final “chromosome” of one of the ten

folds, for class benign. The class benign seems to be easier for the GA to solve,

as the rule-set contains only a single rule, whereas for class malignant the final
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IF (xi1 ∈ “S” ∪ “SM” ∪ “M”) AND (xi2 ∈ “S” ∪ “SM” )
AND (xi4 ∈ “S” ∪ “SM” ∪ “M” ∪ “ML” )
AND (xi6 ∈ “S” ∪ “SM” ∪ “M” )
AND (xi7 ∈ “S” ∪ “SM” ∪ “M” ∪ “ML” )
THEN output = benign

Figure 2.3: Final rule-set of one of the ten folds for class benign.

Instance # 1 2 3 4

p-value for Y1 = benign 1.0000 0.0049 1.0000 0.0130

p-value for Y2 = malignant 0.0032 1.0000 0.0260 1.0000

Correct prediction benign malignant benign malignant

Confidence in prediction 99.68% 99.51% 97.40% 98.70%

Table 2.6: The p-values of 4 instances in the WBCD dataset, as generated
by the GA-CP.

rule-set contains 4 rules (not shown here). We would like to emphasize that the

rule does not include all attributes, as some attributes in the “chromosome”

have all fuzzy-sets enabled, and thus making such attributes irrelevant. In

this case, the attributes X3, X5, X8, and X9 are irrelevant for class benign

(the names of the attributes are given in Table 2.3). We also note that the

decoding of the rule can be read easier if we use the NOT operator. For an

expression like xi4 ∈ “S”∪“SM”∪“M”∪“ML”, we may use the transformation

xi4 /∈ “L”. The readability of the rules is an advantage of the GA-CP over the

SVM-CP, as it offers more information to the user about how the predictions

are obtained.

In Table 2.6, we list the results of 4 instances in the dataset generated by

our GA-CP, showing the p-value for each assumed label Yh and the resulting

confidence in each prediction. We have chosen 2 instances for each class with

different p-values, in order to be able to demonstrate the difference in the
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confidence of each prediction. The resulting confidence in each prediction is

1 minus the second largest p-value, as explained in section 2.2, and it is the

maximum confidence that can be achieved for giving a single prediction. For

example, if we pre-set the confidence level to 99%, both labels will be included

in the prediction regions for the predictions of instances 3 and 4 in Table 2.6,

and thus giving uncertain predictions for level 99%. Nevertheless, the two p-

values in the uncertain predictions can still give an indication (but with lower

confidence) of which of the two labels is more likely to be the correct one. In

contrast, for instances 1 and 2 we can set the confidence level to 99% and we

can reject the second label from the prediction regions, since the second p-value

is smaller than the significance level (for 99% confidence the significance level

is 0.01).

2.5.2 Experiments for ovarian cancer diagnosis

We have conducted experiments on the UKOPS dataset [37] for ovarian cancer

diagnosis, which contains proteomic patterns identified in serum that can dis-

tinguish ovarian cancer. The dataset contains 170 healthy and 67 malignant

instances, each of which consists of 109 attributes generated by mass spec-

troscopy. The data is normalised such that each attribute has a real value

within the range [0,1].

For the experiments, we have used an attribute selection method in order to

reduce the 109 attributes in the data. We have applied the Correlation-based

Feature Subset (CBFS) selection method [42], using best-first search. The

selection method reduced the data to 13 attributes that had low intercorrelation

and high correlation with the 2 classes of the data.
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We would like to note that one of the attributes identified in the data is the

well known biomarker for ovarian cancer CA-125 (Cancer Antigen). Elevated

levels of CA-125 in blood serum can indicate ovarian cancer. The CA-125

attribute was automatically selected by the CBFS algorithm together we the

rest of the 12 selected attributes. More studies on ovarian cancer diagnosis

have been conducted in [43, 44].

2.5.2.1 Experimental settings and results

We have applied the same strategy for the evaluation of the GA-CP as in

section 2.5.1. Nevertheless, we have changed the parameters of the GA to

fit with the characteristics of the dataset. For the GA-CP-T, the number of

generations has been changed to 150. For both GA-CP-T and GA-CP-C, the

population size has been changed to 20, and the number of rules to 3. We have

found from empirical results that the GA would overfit when we increased the

number of rules or the population size. Moreover, the crossover probability

and the selection rate has been changed to 0.7, while the probability of 1s in

the initial population has also been changed to 0.7.

In Table 2.7, we compare the GA classifier accuracy with the accuracy of some

well known methods that we have applied on the same dataset. All meth-

ods achieved similar accuracy with our GA. We used a Radial Basis Function

(RBF) kernel with spread = 0.1 for the SVM, and for the k-NN we set k = 5.

These parameters were empirically chosen. The number of False Negatives

(FNs) predicted by our method is 10, giving a sensitivity rate of 85.1%, and

the number of False Positives (FPs) is 0, giving a specificity rate of 100%. The

UKOPS dataset seems to be more complex in relation to the WBCD dataset,
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Method Accuracy % False Negatives False Positives

SVM 95.43 11 0
Naive Bayes 95.43 4 7

C4.5 96.20 6 3
k-NN 94.09 13 1

Our GA 95.78 10 0

Table 2.7: Accuracy comparison between our method and other methods
on the UKOPS dataset with 13 selected attributes.

which can be seen from the accuracy difference between the two datasets. As

a result, the lower accuracy is reflected on the certainty rates achieved on this

dataset, which are listed in Table 2.8. At 99% confidence, the GA-CP-T has

only 52% certain predictions which is much lower than the 84.9% achieved on

the WBCD dataset. Nevertheless, if we lower our confidence to 98%, we see

an increase of the certainty rates to about 85%. GA-CP-T has not performed

as well as the SVM-CP for the 99% of confidence, but for the 95% level and

below the results are satisfactory. On the other hand, GA-CP-C has performed

extremely well, with a 77% certainty rate for the 99% confidence level. The

results show that automatic convergence can play an important role for avoid-

ing overfitting or underfitting in GAs, which highly affects the certainty rates

in the results. The validity of the confidence measures is not affected, as it is

demonstrated by the resulting error rates.

In Table 2.9, we list the results of 4 chosen instances giving their p-value for

each assumed label, together with the resulting confidence of each prediction.

For instance 4 in Table 2.9, we have a lower confidence in the prediction since

the p-value of the wrong label Y1 = healthy is higher than usual. Therefore, the

predictor is less confident for the first prediction, since the second prediction

gives a relatively higher p-value. Even if we set the confidence level to 97%,
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Method Confidence Level Certainty Error

GA-CP-T

99%
98%
95%
90%

52.3%
84.8%
96.9%
100%

0.8%
2.1%
5.0%
10.0%

GA-CP-C

99%
98%
95%
90%

77.0%
85.6%
96.2%
100.0%

0.4%
1.7%
4.6%
9.7%

SVM-CP

99%
98%
95%
90%

74.6%
89.8%
98.3%
99.1%

0.7%
1.9%
4.6%
9.2%

Table 2.8: Certainty and error rates on the UKOPS dataset using GA-
CP-T, GA-CP-C and SVM-CP.

Instance # 1 2 3 4

p-value for Y1 = healthy 1.0000 0.0655 1.0000 0.0337

p-value for Y2 = malignant 0.0047 0.0419 0.0192 1.0000

Actual class healthy malignant healthy malignant

Prediction healthy healthy healthy malignant

Confidence in prediction 99.53% 95.81% 98.08% 96.63%

Table 2.9: Listing the p-values of 4 instances in the UKOPS dataset, as
generated by our GA-CP.

we would still get an uncertain prediction for this instance. In fact, we cannot

get a certain prediction for this instance unless we set the confidence level

to at most 96.63%. In contrast, for instance 1 in Table 2.9, we have a high

confidence in the prediction, since the second p-value is very low. We have also

included instance 2 which is a false negative. We can see that both p-values

for this instance are very low, which is a rare event. Such a result may give

an indication to the user that such an instance requires further examination

before making a final diagnosis.
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2.5.3 Experiments on Multi-Label datasets

Here, we evaluate the BR-MLCP and the proposed confidence measure. In

our evaluation process, we copy the original datasets into binary class datasets

as explained in section 2.4.1, and for each subset we apply the Correlation-

Based Feature Selection (CBFS) method in [42], in order to reduce the number

of features. We then apply 10-fold cross validation on each of the reduced

datasets. The folds are identical for all datasets. Each test instance on each

dataset is given a possible label (y1k or y0k), and the test instance is added to

the training set. The underlying algorithm is trained on the extended training-

set and provides non-conformity scores. A p-value is then generated for each

possible binary label given to the test instance. Once we have p-values from

all CPs, we apply equation (2.21) to provide a prediction region for the test

instance, given a pre-defined confidence level, or a forced prediction.

2.5.3.1 Music into emotions dataset

We experiment on a multi-label dataset for classifying music into emotions

[38]. The Music Emotions dataset contains 593 songs with a total of 72 rhyth-

mic and timbre features in each song. There are 6 possible classes that each

song can belong to. The classes and the number of instances in each one are

listed in Table 2.10. As baseline, we provide the average Hamming loss of our

forced predictions which is 18.77%. This result is comparable with the results

provided in [38], which give an overall Hamming loss of 19.43% for the related

Binary Relevance algorithm.
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Label Class # of instances

1 amazed-surprised 173
2 happy-pleased 166
3 relaxing-calm 264
4 quiet-still 148
5 sad-lonely 168
6 angry-fearful 189

Table 2.10: Class distribution for the Emotions dataset.

Confidence level 95% 90% 80% 70%
Error rate 4.28% 8.50% 17.34% 26.16%

Figure 2.4: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective error rates on

the Emotions dataset.

In Figure 2.4, we provide the results of the BR-MLCP using (2.23). The figure

shows the distribution of the prediction regions according to the number of

uncertain labels, at four different levels of confidence (95%, 90%, 80%, and

70%). When a prediction region has 0 uncertain labels, the size of the pre-

diction region is 1 (contains a single multi-label prediction). When we have

1 uncertain label, the prediction region size is 2, since the region contains a

multi-label prediction for each of the 2 possible values of the uncertain binary
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label. Generally, for n uncertain binary labels, the prediction region size is

2n. The error rates presented in Figure 2.4 demonstrate the validity of the

BR-MLCP, since they are always below the rate given by the confidence level.

Thus, we demonstrate the ability to control the error rate of BR-MLCP. Nev-

ertheless, when we have a high confidence level, we lose some certainty in the

predictions. In the figure, we can see that for 95% level of confidence the

number of certain predictions is 0, and a significant percentage of predictions

contained all 6 labels as uncertain labels. The algorithm provides uncertain

results when there is not enough information to give a single result for a given

confidence level.

It is admitted that for a multi-label problem, the error measure that was defined

in (2.23) is strict. Nonetheless, if we lower the confidence level, we get more

certainty in the predictions. For example, at 80% and 70% levels of confidence,

we have a significant amount of prediction regions with less uncertain labels.

In Figure 2.5, we provide the results of the BR-MLCP using (2.33). Here

the error measure is less strict, and thus we get satisfactory certainty in our

prediction regions. The error is measured in terms of Hamming loss. As shown

in the figure, the Hamming loss in the prediction regions does not exceed the

allowed rate given by the confidence level. Therefore, we demonstrate that the

BR-MLCP can control the Hamming loss in the prediction regions and provide

useful prediction regions. Additionally, the Hamming loss at 70% confidence

does not exceed 18.77%. We also notice that at this confidence level, we have

100% certain predictions.

In Figure 2.6, we provide the results of the BR-MLCP using (2.28). Here, we

have an error when the Hamming loss h of a prediction region exceeds 1. The



Chapter 2. Conformal Prediction 59

Confidence level 95% 90% 80% 70%
HP 4.87% 9.91% 17.54% 18.77%

Figure 2.5: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective Hamming loss

on the Emotions dataset.

Confidence level 95% 90% 80% 70%
h > 1 0.49% 1.43% 5.53% 12.01%

Figure 2.6: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective error rates (using

(2.28) with h = 1) on the Emotions dataset.
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Confidence level 95% 90% 80% 70%
h > 2 0.02% 0.19% 1.45% 4.76%

Figure 2.7: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective error rates (using

(2.28) with h = 2) on the Emotions dataset.

results demonstrate the validity of the BR-MLCP using equation (2.28). We

consider a multi-label prediction as a correct classification when there is at

most 1 wrong label. Thus, we have better certainty in the results compared

with the results given in Figure 2.4. In Figure 2.7, we provide the results when

we set h > 2. As expected, this less strict metric allows for more certainty in

the results. At 70% confidence, we have near 50% certain predictions (with 0

uncertain labels), whereas in the previous case when h > 1, the certainty at

70% confidence was around 25%.

2.5.3.2 Gene Function Classification dataset

We have experimented on a relatively larger dataset in order to evaluate the

BR-MLCP method. We have used a dataset for yeast (Saccharomyces cere-

visiae) gene function classification [39]. The dataset contains 2417 genes with
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Confidence level 95% 90% 80% 70%
Error rate 3.41% 7.32% 14.72% 20.63%

Figure 2.8: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective error rates on

the Yeast dataset.

103 features in each gene. Each instance can be classified into 14 possible

functional groups. Since one gene can have many functional classes this is a

multi-label problem. We apply the same evaluation process on this dataset as

with the Emotions Dataset. The baseline Hamming loss with forced predic-

tions on this dataset was 19.32%, which is comparable with the best Hamming

loss of 19.5% reported in [39]

In Figure 2.8, we provide the results of the BR-MLCP using (2.23). As shown

in the figure, the percentage of prediction regions which contained a certain

multi-label prediction is near 5%. This is true for any given confidence level.

As explained previously, using (2.23) as an error measure can be very strict for

multi-label problems. This becomes more clear when the number of classes is

larger. Nevertheless, the BR-MLCP can still provide valid prediction regions,

as it is demonstrated by the error rates provided with the results.
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Confidence level 95% 90% 80% 70%
HP 4.71% 9.16% 16.22% 18.99%

Figure 2.9: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective Hamming loss

on the Yeast dataset.

Confidence level 95% 90% 80% 70%
h > 1 1.75% 3.90% 8.97% 14.97%

Figure 2.10: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective error rates (using

(2.28) with h = 1) on the Yeast dataset.
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Confidence level 95% 90% 80% 70%
h > 2 0.62% 1.41% 4.41% 8.52%

Figure 2.11: Percentages of prediction regions with number of uncertain
labels for different levels of confidence, and their respective error rates (using

(2.28) with h = 2) on the Yeast dataset.

In Figure 2.9, we use the Hamming loss measure defined in (2.33). Here, the

results are promising. For 70% confidence, we have around 90% of certain

multi-label predictions, and for 80% confidence, we have approximately 40%

certainty rates. This demonstrates that we can predict for a given number

of cases a multi-label classification with Hamming loss less than the given

confidence level. As it is expected, the Hamming loss for any given confidence

level is below the allowed rate, since we use the CP framework.

In Figure 2.10, we test the BR-MLCP with the Hamming loss measure defined

(2.28). As the number of classes is larger, the error measure for h > 1 can be

considered strict, and thus the results are similar to that of Figure 2.8. The

strictness of h > 1 loss is also reflected on the error rates which are shown in

Figure 2.10. The rates are much lower than the expected allowed rate given

by each confidence level. In Figure 2.11 where we set h > 2, the results have
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slightly improved, yet the number of certain predictions is very low.

2.6 Summary

The CP framework provides reliable measures of confidence to predictions of

Machine Learning algorithms. We gave an overview of the CP framework and

have given examples of non-conformity measures that can be constructed with

the use of conventional algorithms. We have developed and presented a CP

based on GAs, and we have applied our method on two medical diagnosis prob-

lems: breast cancer diagnosis, and ovarian cancer diagnosis. Our experimental

results demonstrate the efficiency of our GA-CP method on both problems.

Additionally, we explain the advantage of our GA-CP method over other CPs,

which is the easier readability of the generated rule-sets. We have extended

the CP framework for multi-label classification, and have applied the defined

BR-MLCP algorithm on two multi-label datasets: one for classifying music

into emotions, and another for Yeast gene function classification. We have ex-

perimented with three measures of error. Hamming loss, which is a widely used

measure of error for multi-label problems, was shown to be a more informative

measure of error. As it was demonstrated, our proposed confidence measure

allows us to reliably control the Hamming loss in our predictions.
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Venn Prediction

In this chapter, we explain in detail the Venn Prediction (VP) framework and

propose Inductive Venn Prediction (IVP) based on the idea of Inductive Con-

formal Prediction (ICP). We provide experimental results which demonstrate

the reliability of the probabilistic outputs and the efficiency of our the proposed

IVP. We compare the results of our proposed IVP with the results of Logistic

Regression (Platt’s method), Binning, and Isotonic Regression (IR) methods.

Furthermore, we compare and discuss the results of both VP and IVP.

3.1 Introduction

Venn Prediction is a novel machine learning framework that can be combined

with conventional classifiers for producing well calibrated multiprobability pre-

dictions under the assumption that the data used are identically and indepen-

dently distributed (i.i.d.). In particular, multiprobability predictions are a set

65
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of probability distributions for the true classification of a new instance (of un-

known classification). In effect this set defines lower and upper bounds for

the conditional probability of the new instance belonging to each one of the

possible classes. These bounds are guaranteed (up to statistical fluctuations)

to contain the corresponding true conditional probabilities.

A major drawback of VPs is their computational inefficiency, especially in the

case of large datasets. In this chapter, we give a description of the original VP

(or Transductive VP) framework, and we introduce Inductive Venn Prediction

(IVP) which is a novel approach for improving the computational efficiency of

VPs. Inductive methods have been successfully used in the past with CPs in

[7–9].

The Transductive VP (TVP) framework has been introduced in [45] where

the interested reader can find a detailed description of the framework. Since

then, VPs have been developed based on k-Nearest Neighbours [46], Nearest

Centroid [47] and Neural Networks [48, 49]. Furthermore, VPs based on SVMs

have been developed in [50, 51], and have been compared with three other

methods that produce probabilistic outputs. Namely, the three methods are

Platt’s method [52], Binning [53] and Isotonic Regression [54].

3.1.1 Related Work

Here, we describe Binning, Isotonic Regression, and Platt’s method, which are

three different methods found in the literature that can provide probabilistic

predictions. As it will be shown later in this chapter, these three methods
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do not guarantee that the probabilistic outputs will always be well-calibrated.

The three aforementioned methods use SVMs as their underlying algorithms.

3.1.1.1 Binning

The binning method [53] sorts the training instances according to their SVM

scores, and then divides them into b equal sized sets, or bins, each having

an upper and lower bound. Given a test instance xi, it is placed in a bin

according to its classifier score. The corresponding probability P (Yj = 1|xi) is

the fraction of positive training instances that fall within that bin. There is

no imposed lower or upper bound on SVM scores. Therefore, when using this

method it is possible for some scores from the test instances to fall below or

above the low and high scores, respectively, of the training instances. If this

happens the corresponding probability P (Yj = 1|xi) is that of the nearest bin

to the score of xi.

3.1.1.2 Isotonic Regression

Isotonic regression has been used in order to map the SVM scores into probabil-

ity estimates in [54]. An isotonic function g(i) has a monotonically increasing

trend, which means that for all i, j:

i > j =⇒ g(i) > g(j) and i < j =⇒ g(i) < g(j). (3.1)

If the scores of the SVM are ranked correctly, we can assume that the proba-

bility P (Yj = 1|xi) will be increasing as the SVM scores increase. Therefore,
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we can use isotonic regression to map SVM scores into probability estimates.

The most common algorithm used for isotonic regression is the Pair-Adjacent-

Violators (PAV) algorithm.

The PAV algorithm learns the probability estimate g(xi) for each ranked in-

stance xi. First, we set g(xi) = 1 if xi is a positive instance, and g(xi) = 0

otherwise. If g is already isotonic the function has been learned. Otherwise,

there must be an instance where g(xi−1) > g(xi). The two instances xi−1 and

xi are called pair-adjacent violators, because they violate the isotonic assump-

tion. The values of g(xi−1) and g(xi) are then replaced by their average, so

that their values no longer violate the isotonic assumption. This process is

repeated until an isotonic set of values is obtained. In the end, we have a list

of probability estimates together with the adjacent SVM scores of the training

instances. When a new instance arrives, we assign the mapped probability

estimate based on the score that xi has obtained from the SVM decision rule.

Normally, there will be intervals of scores with the same probability estimates.

Since there are no imposed boundaries on the SVM scores, the lowest interval

begins from −∞ and the highest interval ends at +∞.

3.1.1.3 Logistic Regression

Platt introduced a method in [52] to estimate posterior probabilities based on

the decision function f by fitting a sigmoid to the output value of f :

P (Yj = 1|f(xi)) =
1

1 + exp(Af(xi) +B)
, (3.2)
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where Yj ∈ {−1, 1}. The best parameters A and B are determined so that

they minimise the negative log-likelihood of the training data. Platt uses a

Levenberg-Marquardt (LM) optimisation algorithm to solve this. As indicated

in [52], any method for optimisation can be used.

3.2 Venn Prediction Framework

In this section, we describe the VP framework. Typically, we have a training

set 1 of the form {z1, . . . , zn}, where each zi ∈ Z is a pair (xi, yi) consisting

of the object xi and its classification yi. For a new object xn+1 we intend

to estimate the probability of yn+1 = Yj for all possible classifications Yj ∈

{Y1, . . . , Yc}. The main idea behind Venn prediction is to divide all instances

into a number of categories and calculate the probability of xn+1 belonging to

each class Yj ∈ {Y1, . . . , Yc} as the frequency of Yj in the category that contains

it. However, as we don’t know the true class of xn+1, we assign each one of

the possible classes to it in turn, and for each assigned classification Yk we

calculate an empirical probability distribution for the true class of xn+1 based

on the instances

{(x1, y1), . . . , (xn, yn), (xn+1, Yj)}. (3.3)

The VP framework assigns each one of the possible classifications Yj to xn+1

and divides all instances {(x1, y1), . . . , (xn+1, Yj)} into a number of categories

based on what is called a Venn taxonomy. For n ∈ N, an n-taxonomy is a

measurable function K : Zn×Z → K, where K is a measurable space, that is

1The training set is in fact a multiset, as it can contain some instances more than once.
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equivariant with respect to permutations in the sense of

i = π(i) =⇒ K((z1, . . . , zn), zi) = K((zπ(1), . . . , zπ(n)), zπ(i)), (3.4)

for all i = 1, . . . , n and any permutation π of (1, . . . , n). The set K is usually

finite; we will refer to its elements as categories. Every taxonomy defines

a different VP. Typically each taxonomy is based on a traditional machine

learning algorithm, called the underlying algorithm of the Venn predictor. The

output of this algorithm for each attribute vector xi, i = 1, . . . , n+1 after being

trained on the set (3.3), is used to assign (xi, yi) to one of a predefined set of

categories κi ∈ K. For example, a Venn taxonomy that can be used with every

traditional algorithm puts in the same category all instances that are assigned

the same classification by the underlying algorithm. In subsection 3.2.1.2, we

define a taxonomy based on the output of the Support Vector Machine (SVM)

classifier.

After assigning the category κ
Yj
i = K((z1, . . . , zn, (xn+1, Yj)), zi) to each in-

stance in the extended set (3.3), the empirical probability of each classification

Yk in κ
Yj
n+1 will be

pYj(Yk) =

∣∣∣{i = 1, . . . , n+ 1|κYji = κ
Yj
n+1 & yi = Yk}

∣∣∣∣∣∣{i = 1, . . . , n+ 1|κYji = κ
Yj
n+1}

∣∣∣ (3.5)

This is an empirical probability distribution for the true class of xn+1. After

assigning all possible classifications to xn+1 we get a set of probability distri-

butions Pn+1 = {pYj : Yj ∈ {Y1, . . . , Yc}} that compose the multi-probability

prediction of the VP. As proved in [4] the predictions produced by any Venn
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predictor are automatically valid multiprobability predictions. This is true re-

gardless of the taxonomy of the VP. Of course the taxonomy used is still very

important as it determines how efficient, or informative, the resulting predic-

tions are. We want the diameter of multiprobability predictions and therefore

their uncertainty to be small and we wish that the predictions are as close as

possible to zero or one.

The maximum and minimum probabilities obtained for each label Yk amongst

all distributions {pYj : Yj ∈ {Y1, . . . , Yc}}, define the interval for the probability

of the new instance belonging to Yk. We denote these probabilities as U(Yk)

and L(Yk), respectively. The VP outputs the prediction ŷn+1 = Ykbest , where

kbest = arg max
k=1,...,c

p(k), (3.6)

and p(k) is the mean of the probabilities obtained for label Yk amongst all prob-

ability distributions. The probability interval for this prediction is [L(Yk), U(Yk)].

In Algorithm 4 we define the Transductive Venn Predictor algorithm.

3.2.1 Inductive Venn Prediction

Here, we describe the proposed IVP method. The transductive nature of the

original VP framework is computationally inefficient, since it requires training

the underlying algorithm for every possible class of each new test instance. To

address this problem we follow the idea of the Inductive Conformal Predic-

tion, and propose an efficient IVP. Our approach splits the available training

instances into two parts, the proper training set with q instances and the cal-

ibration set with the remaining r = n − q instances. We then use the proper



Chapter 3. Venn Prediction 72

Algorithm 4: Transductive Venn Predictor.

Input: training set {(x1, y1), . . . , (xn, yn)}, new instance xn+1, possible
classes {Y1, . . . , Yc}.

for j = 1 to c do
Assume classification Yj for xn+1.
Train the multiclass underlying algorithm on the extended training set
{(x1, y1), . . . , (xn+1, yn+1)};
Supply the input patterns x1, . . . , xn+1 to the trained underlying
algorithm to obtain the outputs o1, . . . , on+1;
for i = 1 to n+ 1 do

Assign κi to (xi, yi) according to the underlying algorithm
classification output oi;

end
for k = 1 to c do

pYj(Yk) =

∣∣∣{i=1,...,n+1|κ
Yj
i =κ

Yj
n+1 & yi∈Yk}

∣∣∣∣∣∣{i=1,...,n+1|κ
Yj
i =κ

Yj
n+1}

∣∣∣ ;

end

end
for k = 1 to c do

p(Yk) := 1
c

∑c
j=1 p

Yj(Yk);

end

kbest = arg maxk=1,...,c p(Yk);
Output:

Prediction: Ŷ = Ykbest ;

The probability interval for Ŷ : [mink=1,...,c p
Yk(Ŷ ),maxk=1,...,c p

Yk(Ŷ )].

training set to train the underlying algorithm and the calibration set to cal-

culate the set of probability distributions for each new instance. The main

advantage of the IVP method is that the underlying algorithm is trained only

once on the training set, and the probability distributions are calculated from

the calibration set for every class of the test instance. There is no more the

requirement to re-train the algorithm for every possible class of the test in-

stance. The original taxonomy function K is transformed to another taxonomy
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K ′ : Zr+1 × Z → K such that

K ′r+1((zq+1, . . . , zn+1), zi) =

Kq((z1, . . . , zq), zi), i = q + 1, . . . , n+ 1.
(3.7)

In this definition we assume that the proper training set {z1, . . . , zq} is a fixed

part of K ′ and therefore K ′ is a valid Venn taxonomy.

After assigning the category κ
Yj
i = K ′((zq+1, . . . , zn, (xn+1, Yj)), zi) to each in-

stance in the calibration set i = q + 1, . . . , n + 1, the empirical probability of

each classification Yk in κ
Yj
n+1 will be

pYj(Yk) =

∣∣∣{i = q + 1, . . . , n+ 1|κYji = κ
Yj
n+1 & yi = Yk}

∣∣∣∣∣∣{i = q + 1, . . . , n+ 1|κYji = κ
Yj
n+1}

∣∣∣ (3.8)

3.2.1.1 Online mode

In the online mode there is no fixed training set. On each step of the algo-

rithm, a new instance is predicted and then it is added to the calibration set.

Therefore, as the IVP makes predictions, new instances are considered for cali-

brating the probabilistic outputs. After a number of m predictions, we remove

m−s of the instances from the calibration set and we add them to the training

set (where s is chosen such that both the training set and calibration set grow

with equal rate on each update step). The algorithm is then re-trained on the

training set and proceeds on predicting new instances. In contrast with the

TVP, the IVP is re-trained only once every m steps, while the TVP is retrained

on every step of the algorithm for every possible class of a new instance. In

the online mode, we are able to test the probabilistic outputs of the algorithm
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and examine whether the actual accuracy falls near the probability estimates.

We must mention here, that the independence of error across updates of the

training set is not entirely retained, an assumption that has to be made for

any VP (which falls under the i.i.d. assumption). Validity is retained within

in each update, since the training set is fixed, nonetheless the independence of

error is violated on each update of the training set. One should be careful when

deciding the size of m as to not affect the independence of error. Nonetheless,

the independence of error may be affected, but the expected results would be

well-calibrated in practice. This is demonstrated in section 3.3 and in Chapter

4, where we provide experimental results of the IVP.

3.2.1.2 Taxonomy

As explained in section 3.2, the validity of a TVP is guaranteed under the

i.i.d. assumption, regardless of the taxonomy used. For example, a taxonomy

that puts all instances in one large category would still give a valid predictor.

Nevertheless, the performance of each VP is highly affected by the information

provided from the categories defined in a taxonomy. A VP with a non efficient

taxonomy would give very wide probabilistic bounds, whereas the better the

taxonomy the narrower the probabilistic bounds will be.

In choosing the partitions that determine a taxonomy, we face a problem that

is often called the problem of the reference class. We want the categories into

which we divide the given instances to be large, in order to have a reasonable

sample size for estimating the probabilities. In parallel, we want the categories

to be small and homogeneous. In other words, we have two kinds of ineffi-

ciencies: too many categories in our taxonomy is a kind of overfitting, and



Chapter 3. Venn Prediction 75

it is punished by a large diameter for the multiprobability prediction. Too

few categories is a kind of underfitting, and it is punished by predictions that

are not close enough to zero or one. When defining a taxonomy, our goal is

to minimize the two inefficiencies in parallel, and find a taxonomy that gives

large enough categories, but not too large.

In this work, our taxonomy is based on the classification output oi of a conven-

tional classification algorithm. Therefore, κ
Yj
i = f(xi), where f(xi) is the clas-

sification output of the underlying algorithm after being trained on z1, . . . , zq

where each zi = (xi, yi). This taxonomy will give c categories. The reasoning

behind this definition of taxonomy matches our goal for finding an efficient tax-

onomy. If the classifier is fitted well on the training dataset then each category

should contain sufficient information for the VP to perform well, while keeping

the size of each category as small as possible, with respect to the number of

classes in the dataset. The IVP algorithm is presented in Algorithm 5. In our

implementation, we have used the SVM classifier with Sequential Minimal Op-

timisation (SMO) as our underlying algorithm [55]. The IVP was implemented

in JAVA using the WEKA data mining software [56]. Our implementation is

publicly available at [57].

3.2.1.3 Time efficiency

The nature of the TVP algorithm makes it inefficient in the case of large

datasets. The algorithm has a training phase (learning phase) for every new

instance and every possible class of the instance. This time inefficiency prob-

lem is removed from IVP algorithm, because of the use of the calibration set.

The training phase of the algorithm needs to be performed only once, and then
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Algorithm 5: Inductive Venn Predictor.

Input: proper training set {(x1, y1), . . . , (xq, yq)}, calibration set
{(xq+1, yq+1), . . . , (xn, yn)}, new instance xn+1, possible classes
{Y1, . . . , Yc}.

Train the multiclass underlying algorithm on the proper training set
{(x1, y1), . . . , (xq, yq)};
for j = 1 to c do

Assume classification Yj for xn+1.
Supply the input patterns xq+1, . . . , xn+1 to the trained underlying
algorithm to obtain the outputs oq+1, . . . , on+1;
for i = q + 1 to n+ 1 do

Assign κi to (xi, yi) according to the underlying algorithm
classification output oi;

end
for k = 1 to c do

pYj(Yk) =

∣∣∣{i=1,...,n+1|κ
Yj
i =κ

Yj
n+1 & yi∈Yk}

∣∣∣∣∣∣{i=1,...,n+1|κ
Yj
i =κ

Yj
n+1}

∣∣∣ ;

end
end
for k = 1 to c do

p(Yk) := 1
c

∑c
j=1 p

Yj(Yk);
end

kbest = arg maxk=1,...,c p(Yk);
Output:

Prediction: Ŷ = Ykbest ;

The probability interval for Ŷ : [mink=1,...,c p
Yk(Ŷ ),maxk=1,...,c p

Yk(Ŷ )].

for every new instance the calibration set is being used to calculate the prob-

abilistic outputs. This modification of the algorithm not only removes com-

putationally expensive calculations, but also maintains the property that the

probabilistic outputs will be well-calibrated, under the i.i.d. assumption. The

time efficiency of the IVP becomes prominent when the underlying algorithm is

expensive in terms of time efficiency. For example, if the underlying algorithm

requires O(n) time, the TVP method will reuse the underlying algorithm n ∗ c

times, which makes the time requirement of the TVP to O(n ∗ n ∗ c) = O(n2)

for small numbers of c. The IVP method, will only use the algorithm once,
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thus leaving the time requirements to O(n). As we will see in our experimental

results in section 3.3, the difference between TVP and IVP has great impact

in practice.

3.3 Experiments

We have conducted experiments with the proposed IVP algorithm in order

to compare the results with its transductive counterpart, and with the three

methods described in section 3.1.1. In the following subsections, we describe

the datasets used, the online mode experiments, and the offline mode (10-fold

cross validation) experiments.

3.3.1 Datasets

• Car Evaluation dataset

The Car Evaluation dataset was derived from hierarchical decision model

[58] and is available at [36]. The dataset contains 1728 instances with

6 features for each instance. There are 4 classes for this dataset which

describe the car acceptability based on features that represent the price,

technology, and comfort of a car.

• Red Wine quality dataset

The Red Wine quality dataset contains 1599 instances of physiochemical

features of red variants of the “Vinho Verde” wine [59]. Each instance

has a quality score from 1 to 10. In this work, we have used the scores

as 10 different classes from 1 to 10. This dataset is particularly difficult



Chapter 3. Venn Prediction 78

and requires some pre-processing to remove redundant features, or even

reduce the number of classes.

In our experiments, we have intentionally left the dataset to its original

state in order to demonstrate the reliability of our probability estimates

on difficult problems. The Red Wine quality dataset was used in the

online experiments for its complexity. Nevertheless, it was not used in

the offline experiments, since the large number of classes was prohibitive

(in terms of time efficiency) for the evaluation of the TVP method.

• Spambase dataset

The Spambase dataset which is available at [36], contains 4601 instances

of email messages. There are 57 attributes which describe the content

of each email. The emails can be classified into two classes: spam or

non-spam.

• MiniBooNE dataset

The MiniBooNE particle identification dataset (Booster Neutrino Ex-

periment) [36, 60] contains 130065 instances of electron neutrinos and

muon neutrinos. Each instance contains 50 real valued attributes which

describe signal events. This dataset was used only with the IVP online

method, in order to demonstrate its ability to handle large datasets.

3.3.2 Online experiments

In order to demonstrate the validity of the probabilistic outputs of our method,

we conduct experiments in the on-line mode. Initially all instances are test

instances and they are added to the training set after a prediction for each
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one is made. The online experiments are carried out as follows: First, we

compare the online results on the Car Evaluation dataset with the IVP and

the three algorithms that were described in section 3.1.1, namely SVM with

Logistic Regression (SVM-LR) which is Platt’s method, SVM with Binning,

and SVM with Isotonic Regression (SVM-IR). We also compare the IVP with

its counterpart TVP method. Secondly, we compare the results of all the

aforementioned methods on the Wine Quality dataset. Thirdly, we compare

the IVP method with TVP on the Spambase dataset, and finally we conduct

a large scale experiment on the MiniBooNE dataset to evaluate the scalability

of the proposed IVP.

For the VPs, we graph the Cumulative Lower Accuracy Probability (CLAP),

the Cumulative Upper Accuracy Probability (CUAP), and the Cumulative

Accuracy (CA) curves:

CLAP (t) =
1

t

t∑
i=1

Ui(Ykbest), (3.9)

CUAP (t) =
1

t

t∑
i=1

Li(Ykbest), (3.10)

CA(t) =
1

t

t∑
i=1

Acci, (3.11)

where t is the number of test instances that have been added to the training

set, and Acci = 1 when the prediction for instance xi is correct and 0 other-

wise. We also plot the Cumulative Mean Accuracy Probability (CMAP) curve,

which is the mean of the CLAP and CUAP curves. Since VPs provide well cal-

ibrated probabilistic outputs, it is expected that the CA curve will fall within
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or near the CLAP and CUAP curves. For classical probabilistic predictors (the

SVM-LR algorithm) we plot the CA and the Cumulative Accuracy Probability

(CAP) curves. The CAP curve is similarly calculated as the CA curve:

CAP (t) =
1

t

t∑
i=1

c
max
j=1

f(xij), (3.12)

where f(xij) is the probability estimate given for a prediction. The CA curve

should fall near the CAP curve, if the algorithm provides well-calibrated prob-

abilities.

In Figures 3.1 and 3.2, we show the online results of SVM with Logistic Re-

gression (SVM-LR), SVM with Binning, SVM with Isotonic Regression (IR),

and SVM-IVP on the Car Evaluation dataset. The underlying SVM algorithm

that we have used works with the RBF kernel. We experiment with each al-

gorithm two times, one with a RBF parameter set to an optimal value, and

another with a RBF parameter set to the optimal value divided by 10 (we do

this in order to test the difference in the results when the predictors do not

perform so well). The optimal value for each experiment was chosen based on

offline tests (10-fold cross validation) that have been conducted with a stan-

dard SVM predictor. The standard SVM predictor was tested with the RBF

parameter ranges of [0.1, 1] with steps of 0.1, and [1, 5] with steps of 1. The

number of bins for the SVM Binning method was set to b = 10. In our experi-

ments with the IVP we have set q = d0.7(n− 1)e. The RBF spread parameter

chosen for this dataset was 0.2. In the figures, we expect the curves in each

plot to be relatively near, if the probabilities produced by the corresponding

methods are well calibrated. As it is shown, this is true only for the IVP in
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Figure 3.1: Online experiments of SVM-LR and SVM Binning on the Car
evaluation dataset. RBF parameter is 0.02 on the left column and 0.2 on

the right column.

both experiments and for SVM-LR method only with the optimal RBF pa-

rameter. When the RBF parameter is 0.2 the accuracy is around 90% for all

methods, which is the expected accuracy on this dataset. In contrast, when we

set the RBF parameter to 0.02 the accuracy is reduced to around 70% (which

is near the percentage of the first class), while the probabilistic outputs are

near 100% for all methods except the IVP. As shown in Figure 3.2, the IVP

probabilistic outputs are automatically lowered to around 68%, which is near
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Figure 3.2: Online experiments of SVM with Isotonic Regression (SVM-
IR) and SVM-IVP on the Car evaluation dataset. RBF parameter is 0.02

on the left column and 0.2 on the right column.

the actual accuracy. This indicates that the Logistic Regression, Binning, and

Isotonic Regression methods cannot always guarantee that their probabilistic

outputs will be well calibrated, while the IVP method can always guarantee

this property under the i.i.d. assumption.
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Figure 3.3: Online experiments with TVP (top), and IVP (bottom) on
the Car evaluation dataset.
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Algorithm Accuracy Duration (hh:mm:ss) Probabilities
SVM-LR 90.63% 00:24:03 93.21%
TVP 93.11% 00:52:38 88.61% – 96.39%
IVP 89.70% 00:03:37 88.36% – 90.10%

Table 3.1: Comparison of online results on the Car evaluation dataset.

In Figure 3.3, we conduct more experiments and compare the probabilistic out-

puts of the Transductive VP and the proposed IVP method on the Car Evalu-

ation dataset. Both VPs provide well-calibrated probability bounds, while the

IVP method gives even more narrow results. In Table 3.1, we show the proba-

bilistic outputs and timing results that were recorded at the end of the online

experiments. We include the results of SVM-LR as the baseline algorithm. For

the SVM-LR algorithm there is about 3% difference for the estimated prob-

ability and accuracy, while the TVP provides well calibrated results with an

interval of about 8%. The IVP provides well calibrated results with a much

better interval of about 2–3%. The accuracy of the IVP remains at the same

level as with the SVM-LR method, although the TVP performs better in terms

of accuracy with 93.11%. The IVP accuracy is expected to be lower than the

TVP accuracy, since there is a number of instances removed from the training

set to be used as the calibration set. The great advantage of the IVP method

is the time efficiency, which is compared with the rest of the methods. As we

can see in Table 3.1, the SVM-LR algorithm required 24 minutes and the TVP

52 minutes to finish the experiment, while the IVP required only 3 minutes

to finish. The IVP method is much faster since the training of the underlying

algorithm is required once every m = 20 steps in this experiment. TVP uses

the training set on each update for retraining, while the IVP uses the calibra-

tion set without retraining. Moreover, the training set of the IVP method is
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Figure 3.4: Online experiments of SVM-LR and SVM Binning on the
Wine quality dataset. RBF parameter is 0.06 on the left column and 0.6 on

the right column.

slightly smaller, since there is a percentage used for the calibration set.

Figures 3.4 and 3.5 show the online results of the four algorithms on the Wine

Quality dataset. The optimal RBF parameter was set to 0.6. The lower and

upper probability interval is very tight in the case of the IVP, while the TVP

provides very wide probability bounds, as it is shown in Figure 3.6. The

SVM-LR, SVM Binning, and SVM-IR methods provide misleading probability

estimates, since there is a discrepancy of at least 10% between the average
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Figure 3.5: Online experiments of SVM with Isotonic Regression (SVM-
IR) and SVM-IVP on the Wine quality dataset. RBF parameter is 0.06 on

the left column and 0.6 on the right column.

probability and average accuracy. This is not the case for TVP, since the

probabilistic outputs are valid in the sense that they do not give any misleading

information. In Figure 3.6, we compare the results of the TVP with those of

the IVP method. It is surprising how the IVP provides such tight probabilistic

outputs, even when the TVP does not perform so well. A possible explanation

of this result is that the IVP method calculates the probabilities using only the

calibration set and the underlying algorithm is trained only once every m steps.
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Algorithm Accuracy Duration (hh:mm:ss) Probabilities
SVM-LR 51.84% 01:26:42 62.99%
TVP 47.78% 10:04:10 19.34% – 88.85%
IVP 48.59% 00:56:26 48.81% – 50.11%

Table 3.2: Comparison of online results on the Wine Quality dataset.

Algorithm Accuracy Duration (hh:mm:ss) Probabilities
SVM-LR 87.97% 04:22:43 89.99%
TVP 81.54% 07:53:20 80.00% – 81.44%
IVP 86.50% 00:26:57 86.75% – 87.22%

Table 3.3: Comparison of online results on the Spambase dataset.

The only thing that changes during each test is the assumed label of the test

instance. The change of the assumed label does not affect the outputs of the

algorithm on the training set, and the instances in the calibration set remain

in the same category. Therefore, we should not expect a lot of difference

in the probabilities calculated. In contrast, the TVP method re-trains the

training set for every assumed label of the test instance, and the categorization

for calculating the probabilities might change drastically. In Table 3.2 we

show the end results and durations of the SVM-LR, SVM-TVP, and SVM-IVP

algorithms. Again, the IVP is faster compared with SVM-LR and TVP.

We conduct further experiments using the Spambase dataset for comparing

the TVP and IVP methods. The online results are shown in Figure 3.7 and

Table 3.3. The IVP algorithm provides better accuracy than its transductive

counterpart. Since the dataset is larger here, we notice that when using the

calibration set for estimating probabilities, we get more accurate results. The

number of steps before a training update for the IVP on the Spambase dataset



Chapter 3. Venn Prediction 88

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

example #

 

 

CLAP

CUAP

CMAP

CA

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

example #

 

 

CLAP

CUAP

CMAP

CA

Figure 3.6: Online experiments with TVP (top), and IVP (bottom) on
the Wine Quality dataset.
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Figure 3.7: Online experiments with SVM-LR (1st), TVP (2nd), and IVP
(3rd) on the Spambase dataset.
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Figure 3.8: Online experiment with IVP on the MiniBooNE dataset.

was chosen to m = 100 because of the large size of the dataset. The IVP

method outperforms the TVP and SVM-LR methods in terms of time effi-

ciency. The total duration of the IVP experiment required 56 minutes, while

TVP required 10 hours, and SVM-LR required 1 hour and 26 minutes.

We have additionally performed an experiment on the IVP method on a larger

scale problem. We have used the MiniBooNE particle identification dataset,

which contains 130065 particle instances. The dataset was not possible to

be tested with the TVP method due to the time inefficiency problem of the

method. Since in this experiment we do not compare the IVP with other

methods, we have used the C4.5 decision tree classifier [61] as the underlying

algorithm of the IVP, which runs faster. As it is shown in Figure 3.8, the

IVP method has provided well-calibrated and accurate results. The number of

steps before each training update was chosen to m = 10000, which allowed us

to overcome the time inefficiency problem.
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3.3.3 Offline experiments

We have performed 10-fold cross validation experiments with the Car evalua-

tion and Spambase datasets in order to evaluate the results of the IVP method

and compare it with the TVP. Our intention here is to compare the proba-

bilistic intervals that the two algorithms give, based on the training set size.

Therefore, the SVM-LR, SVM-IR, and SVM-Binning algorithms have not been

used here. Moreover, we have not used the Wine Quality dataset in the offline

experiments, due to the large number of classes of the dataset, which made the

TVP method prohibitively slow. The Spambase dataset has only two classes,

which allowed us to evaluate the TVP and IVP methods together in the offline

mode.

We compare TVP and IVP using different sizes of the datasets in order to

evaluate which method performs better on various data sizes. Since IVP uses

a percentage from the training set as the calibration set, we expect the IVP to

give lower accuracy when the dataset is small, and as the data size increases,

we expect the accuracy of the IVP to match the accuracy of the TVP. For the

IVP method, we have used 30% of the training set as calibration set.

In Table 3.4 and Figure 3.9 (top), we show the results of the IVP on the

Car Evaluation dataset. In each row of the table we show the results with

a different number of instances in the training set. The results in each row

are the averages of ten 10-fold cross validation runs. We have started the

experiments with only 100 instances and increased the number of instances in

each experiment by 100. As expected, the IVP always provides well calibrated

probabilistic outputs, regardless of the number of instances in the training set.
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Figure 3.9: IVP (top) and TVP (bottom) 10-fold cross validation results
on the Car evaluation dataset.
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Figure 3.10: IVP (top) and TVP (bottom) 10-fold cross validation results
on the Spambase dataset.
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# of instances Accuracy Lower Prob. Upper Prob. BS
100 81.10% 80.28% 88.98% 0.2805
200 87.10% 85.52% 91.04% 0.2055
300 87.87% 86.26% 90.58% 0.1964
400 89.80% 88.91% 91.99% 0.1595
500 90.88% 90.43% 92.80% 0.1524
600 91.52% 90.43% 92.57% 0.142
700 92.30% 91.20% 93.09% 0.1361
800 93.65% 92.27% 93.90% 0.1145
900 93.66% 93.50% 94.98% 0.1136
1000 94.52% 93.84% 95.15% 0.1002
1100 94.76% 93.97% 95.18% 0.0962
1200 93.66% 93.50% 94.98% 0.1136
1300 95.38% 94.39% 95.46% 0.0867
1400 95.55% 94.61% 95.59% 0.0824
1500 95.61% 94.95% 95.86% 0.0825
1600 95.91% 95.33% 96.17% 0.0775
1728 96.37% 95.69% 96.48% 0.0699

Table 3.4: IVP 10-fold cross validation results on the Car evaluation
dataset.

Nevertheless, as the training set grows, the accuracy increases and the interval

of the probabilities becomes smaller. We can also see clearly that the accuracy

always falls within the probability estimates. We have calculated the Brier

Score (BS) in each experiment, which indicates the quality of the probability

estimates. The BS is calculated as

BS =
1

N

N∑
i=1

c∑
j=1

(f(xij)− oij)2, (3.13)

where f(xij) is the mean of the probabilities obtained for class j. The value oij

is set to 1 if instance xi belongs to class j, and 0 otherwise. The constant c is the

number of classes and N is the number of instances. As shown in the results,
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# of instances Accuracy Lower Prob. Upper Prob. BS
100 84.90% 72.05% 94.88% 0.2243
200 88.15% 81.04% 94.62% 0.1743
300 90.00% 83.87% 95.70% 0.1500
400 91.25% 86.07% 96.04% 0.1327
500 92.30% 88.18% 96.71% 0.1139
600 92.73% 88.95% 96.57% 0.1103
700 93.62% 89.61% 96.89% 0.0989
800 94.37% 90.67% 97.08% 0.0887
900 94.57% 91.46% 97.35% 0.0846
1000 95.06% 91.81% 97.62% 0.0759
1100 95.50% 92.52% 97.64% 0.0724
1200 95.74% 93.06% 97.89% 0.0671
1300 96.10% 93.53% 97.98% 0.0629
1400 96.32% 93.85% 98.07% 0.0596
1500 96.53% 94.27% 98.21% 0.0571
1600 96.86% 94.64% 98.35% 0.0526
1728 97.23% 95.12% 98.45% 0.0468

Table 3.5: TVP 10-fold cross validation results on the Car evaluation
dataset.

the BS decreases as the training set grows. A smaller BS indicates better

quality of the probability estimates. In Table 3.5 and Figure 3.9 (bottom),

we show the results of the TVP method on the same dataset. Comparing the

results of the TVP with the IVP method, we can see that the TVP method

provides slightly higher accuracy whether the data size is small or large (about

1% difference) and slightly better BS. Nonetheless, although the TVP provides

well-calibrated probabilities, it gives intervals that are much wider than those

of the IVP method, especially when the training set is small. On the Car

Evaluation dataset with 100 instances, the IVP probability interval has 8.7%

width, while the TVP interval has 22.83% width. On the same dataset with all

instances (1728), the IVP probability interval has 0.79% width and the TVP
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# of instances Accuracy Lower Prob. Upper Prob. BS
100 71.70% 65.86% 71.62% 0.3867
200 73.45% 69.84% 72.89% 0.3667
300 76.80% 75.20% 77.42% 0.3249
400 79.60% 77.48% 79.10% 0.3018
500 81.58% 80.18% 81.49% 0.2822
600 83.02% 82.75% 83.84% 0.2554
700 84.83% 85.20% 86.14% 0.2327
800 85.57% 84.78% 85.60% 0.2310
900 85.52% 84.48% 85.21% 0.2315
1000 86.55% 85.46% 86.12% 0.2162
1500 89.47% 88.52% 88.96% 0.1864
2000 90.41% 89.56% 89.89% 0.1728
2500 90.72% 90.25% 90.52% 0.1675
3000 90.97% 90.56% 90.78% 0.1631
3500 91.29% 91.08% 91.27% 0.1579
4000 91.77% 91.75% 91.91% 0.1511
4601 92.16% 92.22% 92.36% 0.1455

Table 3.6: IVP 10-fold cross validation results on the Spambase dataset.

interval has 3.33% width. In Table 3.6 and Figure 3.10 (top) we show the

results of the IVP method on the Spambase dataset. Again, the probability

estimates interval of the IVP method is very tight regardless of the size of

the training set, while the probability estimates of the TVP method, shown

in Table 3.7 and Figure 3.10 (bottom), are generally wider. On the Spambase

dataset with 100 instances, the IVP diameter is 5.76% and the TVP diameter

is 56.39%. On the same dataset with all instances (4601), the IVP diameter

is 0.14% and the TVP diameter is 3.21%. From these results, we see how the

IVP outperforms the TVP method in terms of smaller probability intervals.

The accuracy of the IVP matches the accuracy of the TVP method (in fact, in

some cases the IVP provides slightly higher accuracy). Therefore, accuracy is
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# of instances Accuracy Lower Prob. Upper Prob. BS
100 66.60% 41.64% 98.03% 0.3820
200 69.00% 53.85% 96.22% 0.3389
300 74.87% 64.06% 95.26% 0.2888
400 78.75% 69.90% 94.92% 0.2525
500 79.78% 72.76% 94.83% 0.2392
600 80.55% 74.44% 94.45% 0.2353
700 82.96% 77.19% 94.43% 0.2087
800 85.58% 80.25% 94.00% 0.1885
900 87.23% 82.60% 93.81% 0.1792
1000 87.12% 83.34% 93.91% 0.1819
1500 89.00% 86.36% 93.48% 0.1644
2000 90.15% 88.35% 93.25% 0.1565
2500 90.19% 88.64% 93.24% 0.1540
3000 90.73% 89.24% 93.34% 0.1487
3500 90.86% 88.86% 93.61% 0.1444
4000 91.05% 90.01% 93.58% 0.1411
4601 91.46% 90.31% 93.52% 0.1395

Table 3.7: TVP 10-fold cross validation results on the Spambase dataset.

retained, while more effective probabilistic outputs are provided by the IVP.

In Tables 3.8 and 3.9, we present the final results of the 10-fold cross valida-

tion experiments of the TVP, and IVP algorithms on the Car evaluation and

Spambase datasets. Here, we also compare the time duration of each experi-

ment. We can see that the accuracy of the two methods on both datasets is

around the same level, while the probabilistic outputs of the IVP method are

narrower and well-calibrated. The time efficiency of IVP over TVP is once

again demonstrated in the results.
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Algorithm Accuracy Duration (hh:mm:ss) Probabilities
TVP 93.11% 02:17:47 88.61% – 96.39%
IVP 89.70% 00:05:49 88.36% – 90.10%

Table 3.8: Comparison of offline results on the Car evaluation dataset.

Algorithm Accuracy Duration (hh:mm:ss) Probabilities
TVP 91.46% 72h+ 90.31% – 93.52%
IVP 92.16% 04:50:22 92.22% – 92.36%

Table 3.9: Comparison of offline results on the Spambase dataset.

3.4 Summary

In this chapter, we gave a detailed description of the Transductive Venn Predic-

tion framework. We have developed the Inductive version of the Venn Predic-

tion framework which can provide well calibrated probabilistic outputs based

on the only assumption that the data used are identically and independently

distributed. We have performed extensive experiments with an SVM Inductive

Venn Predictor (IVP) on four datasets and we have compared its probabilistic

outputs and computational efficiency to those of the SVM with Logistic Regres-

sion (SVM-LR), SVM with Binning, SVM with Isotonic Regression (SVM-IR),

and SVM Transductive Venn Predictor (TVP) on three of the four datasets.

The fourth larger dataset was used to demonstrate the scalability of the IVP.

In the comparison, it is shown that our IVP outperforms SVM-LR, SVM Bin-

ning, and SVM-IR in terms of reliability. We have additionally compared the

results of IVP with TVP, and we have demonstrated that the proposed IVP

outperforms the corresponding TVP method in terms of time efficiency.



Chapter 4

Applications

In this chapter, we apply the Conformal and Venn Prediction frameworks on

real-life applications and we examine the practical aspects of the confidence

and probabilistic outputs of our algorithms. In particular, we examine three

applications:

1. Assessment of the risk of stroke, based on ultrasound images of atheroscle-

rotic carotid plaques.

2. Osteoporosis risk assessment, based on known factors.

3. Diagnosis of childhood abdominal pain.

4.1 Assessment of the risk of stroke

Visual classification of high-resolution ultrasound has made the non-invasive

visualisation of the carotid bifurcation possible, and has thus been used in the

99
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study of arterial wall changes. Clinical applications of carotid bifurcation ultra-

sound include: i) identification and grading of stenosis of extracranial carotid

artery disease often responsible for ischaemic strokes, Transient Ischaemic At-

tacks (TIAs) or Amaurosis Fugax (AF); ii) follow-up after carotid endarterec-

tomy; iii) evaluation of pulsatile neck mass; iv) investigation of asymptomatic

neck bruits where severe internal carotid artery stenosis is used as a predictive

factor for future stroke; v) cardiovascular risk assessment where the presence of

carotid bifurcation of atherosclerotic plaques is associated with increased car-

diovascular mortality. During the last 20 years, the introduction of computer

aided methods and image standardisation has improved the objective assess-

ment of carotid plaque echogenicity and heterogeneity[62], and has largely re-

placed subjective assessment that had been criticized for its poor reproducibil-

ity [63].

Until now several studies presenting classification models for carotid ultrasound

images have been presented, see for example [2, 64–66], but none of these

methods provide any valid confidence measures on this problem. In order to

address this, we propose the use of Conformal Prediction to assess the risk of

stroke based on morphological ultrasound images.

For classification, our system is based on a set of morphological features and a

set of classical image texture features, extracted from 274 ultrasound images of

carotid plaques. Images used are base-line images, which means that they were

collected before any event happened. From these images, 137 were classified

as asymptomatic, while 137 are symptomatic (an event of Stroke, TIA or AF

happened at some stage during a monitoring period of 8 years). We apply

the Conformal Prediction framework on both categories of features, using four
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different classifiers: Artificial Neural Network (ANN); Support Vector Machine

(SVM); Naive Bayes Classifier (NBC); and k-Nearest Neighbours (k-NN). We

compare the results and show the reliability and practicality of the confidence

measures obtained for the classification of atherosclerotic carotid plaques.

4.1.1 Atherosclerotic Carotid Plaque Data

A total of 274 carotid plaque ultrasound images associated with retinal or

hemispheric symptoms (33 stroke, 60 TIA, and 44 AF) were used in this

work. Patients with cardioembolic symptoms or distant symptoms (more than

6 months) were excluded from the study. Asymptomatic plaques were truly

asymptomatic if they had never been associated with symptoms in the past,

or symptomatic if they had been associated with retinal or hemispheric symp-

toms (Stroke, TIA or AF). The ultrasound images were collected in the Irvine

Laboratory for Cardiovascular Investigation and Research, Saint Mary’s Hos-

pital, UK, using an Advanced Technology Laboratories (ATL model HDI 3000

- Seattle, USA) duplex scanner with a linear broadband width 4-7 MHz (multi-

frequency) transducer, at a resolution of 20 pixels/mm. The gray scale images

(gray levels 0-255) were normalized manually by adjusting the image linearly.

The plaque identification and segmentation tasks are quite difficult and were

carried out manually by a physician or vascular ultrasonographer who are ex-

perienced in scanning, both actions are described in [67].
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4.1.1.1 Texture Features

Texture features, shape parameters, and morphological features were extracted

from the manually segmented ultrasound plaque images. Seven different tex-

ture features sets were extracted from the plaque segments using the algorithms

described in [2]. The algorithms used in these studies namely are 1) Statisti-

cal Features (SF), 2) Spatial Gray Level Dependence Matrices (SGLDM), 3)

Gray Level Difference Statistics (GLDS), 4) Neighbourhood Gray Tone Dif-

ference Matrix (NGTDM), 5) Statistical Feature Matrix (SFM) method, 6)

Laws Texture Energy Measures (TEM), 7) Fractal Dimension Texture Anal-

ysis (FDTA), 8) Fourier Power Spectrum (FPS) features, and 9) Run Length

Statistics (RUNL).

4.1.1.2 Morphological features

Morphological features are motivated from the need to study the basic struc-

ture of the plaque. We have used two morphological analysis methods in order

to quantify morphological features of the plaques. The first one was based

on a multilevel approach where the image intensity was thresholded at three

different levels, while the second one was based on gray scale morphological

analysis.

Morphological features of plaques are strongly associated with events. For

example black (echolucent) plaques with white big blobs are considered to be

very dangerous. From a structural perspective, morphological methods allow

us to provide size distributions for different components of the plaque. A

detailed analysis of morphological features extracted from the plaques can be
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found in [1]. In this work, we have used the group of L-images as described in

[1]. This group gave the best accuracy results.

4.1.2 Experiments and Results

We have experimented on both the morphological data and the texture data

described, and we have compared the results of the classical algorithms used

in this study with the corresponding CPs. Before conducting our experiments

we have applied Principal Component Analysis (PCA) on the datasets and

selected the features which accounted for 98% of each dataset’s variance. For

evaluating our algorithms, we have applied the Leave-One-Out Cross Valida-

tion (LOOCV) technique. Both of these choices were made in order to be

able to have similar results with [1] which have conducted research on the

morphological data. In LOOCV, a test instance is left out from the training

set and after training, a prediction is made for the left-out instance. This

experiment is repeated for every instance in the dataset, and the predictions

are then evaluated with the true labels of the instances. The ANN-CP was

structured with one hidden layer, and all units had sigmoid activation func-

tions. We have used 30% learning rate and a momentum rate of 20%. In each

experiment, the ANNs were trained for 500 epochs with 10% validation set,

which was used to stop training when the performance on the validation set

was deteriorating. For the SVM-CP, we have used a Radial Basis Function

(RBF) kernel mapping, and complexity c = 1. The complexity parameter c of

SVMs allows us to control the trade-off between errors on the training data

and the complexity or capacity of the model. When c is small, more errors

are allowed. The aforementioned parameters were chosen similarly with the
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work that was done in [1], in order to be able to perform a comparison. In

Table 4.1, we show the results of the four CPs described in section 2.2.1 on the

morphological data. We have conducted experiments with different parameter

values of the underlying algorithm of each CP. The parameter for the ANN-CP

is the number of neurons of the hidden layer, for the SVM-CP the spread of

the RBF kernel, and for the k-NN-CP we set the number of nearest neighbours

considered. We should note here that the NBC-CP (also included in Table 4.1)

has no parameters. We also report the certainty and error rates of each CP

for the confidence levels 95%, 85%, and 75%. The certainty rates correspond

to the prediction regions that contained only a single label, and the error rates

correspond to the prediction regions that did not contain the true label. The

certainty rates show the efficiency of each CP. High rates of certainty show a

better quality in our confidence measures. We highlight the results which give

the best average percentage of accuracy and certainty rates.

In Table 4.2, we compare the accuracy results of the four CPs with the results

of the corresponding classical algorithms. We have selected for each algorithm

the parameters which are highlighted in Table 4.1. We have also calculated

the True Positive Rates (TPR), and True Negative Rates (TNR). A TN in our

case is a plaque which has been correctly classified as asymptomatic, and a TP

a plaque which is correctly classified as symptomatic.

In Table 4.3, we give the results of the CPs on the texture data. The structure

of the results is identical to that of Table 4.1. In Table 4.4, we compare the

accuracy, TPR and TNR of the classical algorithms with the corresponding

CPs.
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Certainty Error

CP Acc. 95% 85% 75% 95% 85% 75%

ANN

neurons

0 73.36% 30.29% 67.15% 90.15% 4.74% 13.50% 22.26%

1 72.26% 35.04% 68.61% 89.42% 4.74% 14.23% 23.72%

2 70.80% 32.48% 64.96% 88.32% 4.74% 14.23% 22.26%

3 71.90% 31.02% 68.98% 90.15% 4.74% 14.60% 23.36%

4 71.90% 32.85% 66.42% 88.69% 4.74% 13.87% 22.63%

5 71.53% 33.21% 66.42% 89.05% 5.11% 14.23% 22.63%

6 71.53% 34.31% 65.69% 88.32% 5.11% 13.50% 22.26%

7 71.90% 33.21% 65.69% 88.69% 4.74% 13.87% 22.63%

8 70.80% 31.75% 63.87% 87.96% 4.74% 14.60% 22.26%

9 70.80% 32.48% 64.96% 88.32% 4.74% 13.87% 22.63%

10 70.80% 33.94% 64.60% 88.69% 5.47% 13.50% 22.26%

SVM

spread

0.10 73.72% 19.34% 54.74% 85.40% 4.74% 14.96% 24.82%

0.11 73.72% 17.52% 54.38% 85.04% 4.74% 14.96% 24.82%

0.12 72.99% 18.61% 54.01% 85.40% 4.74% 14.96% 24.82%

0.13 72.99% 19.34% 54.38% 85.04% 4.74% 14.96% 24.82%

0.14 72.26% 20.44% 54.38% 85.77% 4.38% 14.96% 24.82%

0.15 72.26% 21.53% 54.74% 84.67% 4.74% 14.96% 24.82%

0.16 71.17% 21.17% 54.01% 85.04% 4.74% 14.96% 24.82%

0.17 70.80% 20.44% 54.74% 83.94% 4.74% 14.96% 24.82%

0.18 70.07% 21.17% 55.47% 83.94% 4.74% 14.96% 24.82%

0.19 69.71% 22.26% 55.84% 82.85% 4.74% 14.96% 24.82%

0.20 69.71% 22.99% 55.84% 82.12% 4.74% 14.96% 25.18%

k-NN

k

5 67.88% 28.83% 57.30% 82.48% 4.74% 14.96% 24.82%

6 67.52% 28.83% 56.57% 86.13% 4.74% 14.96% 24.82%

7 68.25% 29.20% 58.03% 87.59% 4.74% 14.96% 24.82%

8 69.71% 29.93% 56.93% 87.96% 4.74% 14.96% 24.82%

9 71.53% 29.20% 56.93% 87.23% 4.74% 14.96% 24.82%

10 71.53% 29.20% 56.57% 87.96% 4.74% 14.96% 24.82%

11 71.17% 29.20% 58.76% 87.96% 4.74% 14.96% 24.82%

12 70.44% 29.56% 59.12% 88.32% 4.74% 14.96% 24.82%

13 70.07% 29.56% 62.41% 88.32% 4.74% 14.96% 24.82%

14 70.80% 29.56% 63.50% 89.05% 4.74% 14.96% 24.82%

15 70.07% 29.20% 63.14% 89.78% 4.74% 14.96% 24.82%

NBC

- 67.52% 21.90% 59.85% 81.75% 4.74% 14.96% 24.82%

Table 4.1: Results of four CPs on the morphological data. We show the
accuracy, and the certainty and error rates for three levels of confidence.
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Method Classifier CP
Accuracy TNR TPR Accuracy TNR TPR

ANN 71.16% 59.90% 82.50% 72.26% 60.06% 83.2%
SVM 73.72% 63.50% 83.94% 73.72% 63.50% 83.94%
NBC 68.24% 54.70% 81.80% 67.52% 63.64% 74.49%
k-NN 70.07% 59.10% 81.00% 70.80% 58.39% 83.21%

Table 4.2: Comparing Accuracy, True Negative Rate (TNR), and True
Positive Rate (TPR) of four classifier algorithms with the corresponding

CPs, on the morphological data.

4.1.3 Discussion

As expected, the error rates confirm the validity of the CPs as they are always

near the pre-set significance levels, regardless of the non-conformity measures

defined and parameters that have been chosen for each algorithm. On the

morphological data, the SVM-CP provides the best average of accuracy, while

the ANN-CP gives much higher certainty rates. The results of the ANN-CP

are improved even more when the size of the hidden layer is limited to a

single neuron. At 95% level of confidence the ANN-CP gives 35.04% of certain

prediction regions. This means that a significant amount of patients will get a

prediction in which the error will not exceed the 5% that is allowed. Given the

difficulty of the task, this is arguably a useful result. Moreover, as we decrease

the confidence level, the certainty rates increase dramatically.

The accuracy between the classifiers and their corresponding CPs have no

significant difference, as expected. We highlight here that our aim is not to

improve accuracy. We show that CPs can provide more information in each

prediction while accuracy is retained. As shown in Table 4.2, all algorithms

provide higher TPRs and lower TNRs on the morphological data. This means
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Certainty Error

CP Acc. 95% 85% 75% 95% 85% 75%

ANN

neurons

0 70.80% 34.67% 67.15% 88.69% 4.38% 12.77% 22.99%

1 69.34% 34.67% 67.15% 87.59% 4.74% 14.96% 24.09%

2 71.17% 32.12% 66.42% 86.50% 4.01% 14.23% 22.99%

3 70.07% 34.31% 66.79% 89.78% 4.38% 14.23% 24.82%

4 71.17% 33.21% 67.15% 90.15% 4.38% 13.50% 24.45%

5 70.07% 34.31% 66.42% 89.42% 4.74% 13.87% 24.45%

6 70.80% 32.85% 66.06% 89.05% 4.74% 13.50% 23.72%

7 71.17% 31.02% 67.15% 88.69% 4.01% 13.87% 22.99%

8 71.17% 33.94% 66.79% 89.78% 5.11% 13.50% 24.45%

9 71.53% 32.85% 67.52% 89.78% 4.74% 13.14% 24.09%

10 71.53% 34.31% 67.15% 90.15% 4.74% 13.50% 24.09%

SVM

spread

1 64.96% 17.88% 53.65% 77.74% 4.74% 14.96% 24.45%

2 68.25% 18.25% 55.84% 82.12% 4.74% 14.96% 24.45%

3 69.71% 25.55% 57.30% 81.02% 4.74% 14.96% 24.82%

4 69.71% 28.47% 55.47% 84.67% 4.74% 14.96% 24.82%

5 69.34% 28.83% 57.30% 84.67% 4.74% 14.96% 24.82%

6 69.71% 30.29% 59.85% 86.50% 4.74% 14.60% 24.82%

7 69.34% 31.39% 61.31% 86.86% 4.74% 15.33% 24.82%

8 69.34% 31.75% 61.68% 87.59% 4.74% 14.96% 24.82%

9 70.07% 31.75% 62.77% 87.96% 4.74% 14.96% 24.82%

10 69.34% 32.12% 63.87% 88.32% 4.74% 14.96% 24.82%

k-NN

k

20 70.07% 32.85% 68.98% 89.78% 4.74% 14.96% 24.82%

21 70.44% 33.21% 69.34% 89.05% 4.74% 14.96% 24.82%

22 70.07% 33.94% 69.34% 89.42% 4.74% 14.96% 24.82%

23 70.07% 33.94% 69.71% 89.42% 4.74% 14.96% 24.82%

24 70.80% 33.94% 69.71% 90.15% 4.74% 14.96% 24.82%

25 70.80% 33.94% 70.80% 90.15% 4.74% 14.96% 24.82%

26 70.80% 34.31% 70.44% 90.15% 4.74% 14.96% 24.82%

27 71.17% 33.94% 68.61% 90.15% 4.74% 14.96% 24.82%

28 71.53% 33.94% 68.61% 90.15% 4.74% 14.96% 24.82%

29 71.17% 33.58% 68.61% 90.15% 4.74% 14.96% 24.82%

30 71.53% 33.94% 68.61% 90.15% 4.74% 14.96% 24.82%

NBC

- 69.34% 27.01% 57.66% 83.94% 4.74% 14.96% 24.82%

Table 4.3: Results of four CPs on the texture data. We show the accuracy,
and the certainty and error rates for three levels of confidence.
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Method Classifier CP
Accuracy TNR TPR Accuracy TNR TPR

ANN 68.97% 66.40% 71.50% 71.53% 66.12% 82.42%
SVM 69.70% 64.23% 75.18% 69.34% 63.50% 76.64%
NBC 70.07% 80.30% 59.90% 69.34% 74.77% 65.87%
k-NN 70.43% 70.10% 70.80% 70.80% 65.69% 75.91%

Table 4.4: Comparing Accuracy, True Negative Rate (TNR), and True
Positive Rate (TPR) of four classifier algorithms with the corresponding

CPs, on the texture data.

that patients with symptomatic plaques will have more chance to be identi-

fied, whereas asymptomatic plaques could be miss-classified as symptomatic.

This kind of wrong predictions could yield unnecessary complications, such

as surgery, in which other risks may be introduced. For this reason, a valid

confidence measure in each prediction could play an important role for this

application.

The accuracy on the texture data is slightly lower than that of the morpholog-

ical data, but with no significant change in the certainty and error rates. As

shown in Table 4.3, the best average of accuracy and certainty rates is provided

by the ANN-CP, which gives 71.53% accuracy and 34.31% certainty at the 95%

level of confidence. The size of the hidden layer to achieve this result is set

to 10 neurons, which is contrary to the size of a single neuron that has been

set for the morphological data. This result suggests that the texture data is

more complex than the morphological data. In order to achieve good results,

the range of the parameters for the SVM-CP and k-NN-CP has been changed

to a RBF parameter of 1− 10, and k = 20, . . . , 30 respectively. The k-NN-CP

has also performed well in these experiments giving similar results with those

of the ANN-CP.
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On the texture data, the TNR has increased in most of the algorithms, while

the TPR has decreased (see Table 4.4). Therefore, more asymptomatic plaques

are identified with the texture data, rather than symptomatic plaques. The

miss-classification of a symptomatic plaque is critical for the patient, and thus

again, a confidence measure in this kind of predictions seems to be important.

It is remarkable that the NBC gives high TNR and low TPR, which is con-

tradictory to what the rest of the algorithms give. The k-NN method gives a

balanced result, where both TNR and TPR lie at about the same level. The

results of the CPs are satisfactory, as the accuracy is preserved while extra

information is provided.

In Table 4.5, we compare our accuracy on the morphological data with the

results of [1], which describes work on the same data using identical experi-

mental settings as ours. We also compare our accuracy results on the texture

data with the results of [2]. We would like to note that the dataset used in [2]

is an older version of our dataset, which contains only 230 instances. Moreover,

the experimental settings in [2] are slightly different than ours. Nevertheless,

we are still able to show that the accuracy obtained here is very close to the

best accuracy obtained in [2]. We show the best accuracies achieved by the

SVM and the Probabilistic Neural Network (PNN) classifiers used in [1], on the

L-image group of the morphological data. We also include the results of our

SVM and ANN CPs which are highlighted in Table 4.1. For the texture data,

we show the results of the 10 combined SVM classifiers and the 10 combined

k-NN classifiers used in [2]. We compare these with our results of the k-NN-CP

and ANN-CP as highlighted in Table 4.3. From the comparison, we are able to

see that the accuracies on the morphological data and the texture data remain

at about the same level with the accuracies of the two previous studies. Thus,
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Accuracy TNR TPR
74.09% 67.55% 88.37%

Certainty
95% 85% 75%
40.88% 68.98% 86.50%

Error
95% 85% 75%
5.47% 14.23% 24.45%

Table 4.6: Results of ANN-CP using both morphological and texture data.

we show that our CPs preserve accuracy while they provide important extra

information (the confidence measures) for the expert physicians.

Method Accuracy Method Accuracy

on morphological data on texture data

SVM[1] 73.72% Comb. k-NN[2] 68.8%

PNN[1] 70.44% Comb. SVM[2] 73.1%

SVM-CP 73.72% k-NN-CP 70.80%

ANN-CP 72.26% ANN-CP 71.53%

Table 4.5: Comparing accuracy of the classifiers in [1] and [2] with the
accuracy of our CPs on the morphological and texture data.

4.1.4 Combined data

Based on the results in Tables 4.1 and 4.3, we have built a combined CP

which works on both morphological and texture data in parallel. An ANN-

CP is trained on the morphological data with 1 hidden neuron, and another

ANN-CP is trained on the texture data with 10 neurons. We have chosen
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the ANN-CPs, since they provide the best results of accuracy and certainty

rates. Given that the TPR of the ANN-CP is higher on the morphological

data (see Table 4.2), when the assumed label of a test instance is symptomatic

(positive), we use the ANN-CP which was trained on the morphological data

to get a p-value. Otherwise, we get a p-value from the ANN-CP of the texture

data which gives a better TNR. As shown in Table 4.6, the accuracy rates have

improved. Moreover, the certainty rates have increased, while the error rates

remain near the predefined significance levels.

4.1.5 Output for selected images

One of the problems with current methods is the low percentage of correct

classification results (around 70-75%). This is because of the nature of the

problem. We are working on base line images, events recorded are for a period

of eight years after images were captured. Thus, even though some of the

plaques can be characterized by the experts as dangerous, we may have events

that did not occur during the monitoring period. Instead, events may have

occurred later or not at-all.

Figure 4.1 shows four plaques that were used in our experiments. Figure 4.1(a)

shows a plaque that was classified as symptomatic by the ANN-CP, but with

low confidence (70.80%). In this example, if we raise the required classification

confidence above 70.80%, then the plaque classification changes to uncertain.

The expert physician assessed this plaque as average risk. Thus, the CP clas-

sification, although wrong, shows low confidence in the prediction. A more

accurate prediction is given in Figure 4.1(b). In this case, the plaque was

classified as asymptomatic with very high confidence (99.64%), in agreement
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(a) (b)

(c) (d)

Figure 4.1: (a) Plaque that was classified as low confidence (70.8%) symp-
tomatic. The subject was asymptomatic but was classified as an average
risk image by the expert physician. (b) Plaque that was classified as high
confidence (99.64%) asymptomatic. This subject was asymptomatic and
classified as low risk for symptoms by the expert physician. (c) Plaque that
was classified as low confidence (69.34%) symptomatic. This subject had
an AF event and was classified as low risk for stroke but high risk for AF
by the expert physician. (d) Plaque that was classified as high confidence
(99.64%) symptomatic. This subject had a stroke event and was classified

as high risk for symptoms by the expert physician.

with the expert physician. A symptomatic example is given in Figure 4.1(c). In

this example, the plaque was classified as symptomatic but with low confidence

(69.34%). If we raise the confidence requirement to above 69.34%, then the

plaque classification changes to uncertain. However, this is one of the plaques

that resulted in AF and was classified as low risk for stroke but high risk for AF

by the expert physician. A more accurate symptomatic classification is given

in Figure 4.1(d). In this example, the plaque was classified as symptomatic

with high confidence (99.64%). Furthermore, this is a plaque associated with a

stroke event and was identified as a dangerous plaque by the expert physician.
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4.1.6 Summary

The classification of symptomatic and asymptomatic atherosclerotic plaques

is a crucial task as it can be used to predict the risk of stroke. In this work,

we have applied the Conformal Prediction framework on four machine learning

algorithms in order to assign reliable confidence measures to the recognition

of symptomatic or asymptomatic plaques; thus assess the risk of stroke. Our

results demonstrate the validity of the produced confidence measures and their

importance in the application of stroke prediction.

The proposed methods provide the expert physicians with a reliable confidence

measure for each prediction, which can be trusted based only on the i.i.d.

assumption. As the confidence measures that we provide are valid (in the

sense that they are proven to be correct), the expert physician needs to have no

further knowledge about the methods in order to be able to trust the confidence

measure in each prediction.

4.2 Osteoporosis risk assessment

Osteoporosis is a systemic skeletal disease characterized by low bone density

and microarchitectural deterioration of bone tissue with a consequent increase

in bone fragility. Early osteoporosis is not usually diagnosed and remains

asymptomatic; it does not become clinically evident until fractures occur.

Loss of bone density occurs with advancing age and rates of fracture increase

markedly with age, giving rise to significant morbidity and some mortality.



Chapter 4. Applications 114

Osteoporosis is three times more common in women than in men, partly be-

cause women have a lower peak bone mass and partly because of the hormonal

changes that occur at the menopause. Estrogens have an important function in

preserving bone mass during adulthood, and bone loss occurs as levels decline,

usually from around the age of 50 years [68].

4.2.1 Osteoporosis data

The World Health Organisation (WHO) has defined the disease of Osteoporo-

sis as a Bone Mineral Density (BMD) which is lower than 2.5 standard de-

viations from the average of young healthy adults. Furthermore, BMD that

is 1 standard deviation lower is defined as Osteopenia, which is a precursor

to Osteoporosis [68]. DEXA stands for Dual Energy X-ray Absorptiometry,

and is a standard test for BMD. DEXA scanners throw an X-ray beam at the

lumbar vertebrae and measure the shadow cast by the bones. In Figure 4.2 we

include a sample image of the lumbar spine of a DEXA scan. Software in the

machine estimates the amount of calcium in the bone based on the darkness

of the shadow. The result is expressed as a number of grams per square cen-

timeter, which is defined as the Bone Mineral Density (BMD). In Table 4.7, we

show how the BMD is mapped to a t-score value compared against the average

of young healthy adults.

We have collected data from various clinics in Cyprus. The data were col-

lected during the research project named “Development of New Venn Predic-

tion Methods for Osteoporosis Risk Assessment” (research contract TPE/ORI-

ZO/0609(BIE)/24), which was funded by the Research Promotion Foundation

of Cyprus (and co-funded by the Structural Funds of the European Union).
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BMD 1.44 1.32 1.20 1.08 0.96 0.84 0.72 0.60
YA T-Score 2 1 0 -1 -2 -3 -4 -5

Table 4.7: Young Adult (YA) T-score based on the Bone Mineral Density
(BMD) according to the Wolrd Health Organisation (WHO).

The project started on the 1st of September 2011 and its duration was 24

months. We have gathered data using a questionnaire that was given to pa-

tients to complete after at least one DEXA scan. The patients may have

previous history of osteoporosis and may already follow therapy. The question-

naire was constructed by physicians and contains questions that are relevant

to Osteoporosis risk factors. Each case is classified as “Normal” or “Risk of

Osteoporosis” based on the patient’s spine t-score that was given by the DEXA

scan. According to the WHO, patients with a t-score above -1 are diagnosed

as healthy, therefore we have classified patients into two classes: “Normal” for

patients with t-score above -1, and “Risk of Osteoporosis” otherwise. In Table

4.8, we give the list of attributes of this dataset.

4.2.2 Data Preprocessing

We have performed an initial analysis of the data collected in order to find

which attributes contain the necessary information for correct classification.

Specifically, we have tried various Feature Selection methods that exist in the

literature, such as Correlation Based Feature Selection (CBFS) [42], Principal

Component Analysis (PCA) [69], Chi-Squared Feature Selection (CSFS), In-

formation Gain Feature Selection (IGFS) [70], and Feature Selection with SVM

(SVMFS) [71]. For each feature selection method, we have experimented with
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# Attribute name Type # Attribute name Type

1 Gender Binary 35 Receive Thyroxine Binary

2 Age Numeric 36 Receive Estrogens Binary

3 Weight Numeric 37 Neurogenic Anorexia Binary

4 Height Numeric 38 Malabsorption syndrome Binary

5 Start of Menstruation Numeric 39 Chronic liver diseases Binary

6 End of Menstruation Numeric 40 Inflammatory bowel diseases Binary

7 Pregnacies Numeric 41 Transplantation Binary

8 Smoking now Binary 42 Chronic renal failure Binary

9 Smoking in the past Binary 43 Prolonged immobilization Binary

10 No smoking Binary 44 Cushing’s syndrome Binary

11 Years of past smoking Numeric 45 Epilepsy Binary

12 Years of current smoking Numeric 46 Insulin Dependent Binary

13 Cigarettes per day Numeric 47 Ovariectomy before menopause Binary

14 Alchohol intake per day Numeric 48 Chronic gastrointestinal disorders Binary

15 Caffeine intake per day Numeric 49 Paget’s Disease Binary

16 History of fracture Binary 50 Hyperthyroidism Binary

17 Hip fracture Binary 51 Parathyroid gland disease Binary

18 Spine fracture Binary 52 Receive Steroids Binary

19 Wrist fracture Binary 53 Receive Thyroxine Binary

20 Low energy Binary 54 Anticonvulsants (for seizures) Binary

21 High energy Binary 55 Diuretics Binary

22 Sports Binary 56 Heparin Binary

23 History of osteoporosis Binary 57 Chemotherapy Binary

24 Osteoporosis in family Binary 58 Treatment of osteoporosis Binary

25 Loss of height Binary 59 Alendronati Binary

26 Kyphosis Binary 60 Risedronati Binary

27 End of menstrual bleeding Binary 61 Zoledronati Binary

28 Arthritis Binary 62 Raloxifeni Binary

29 Secondary Osteporosis Binary 63 Strontio Binary

30 Breast feeding Binary 64 Parathormoni Binary

31 Avoidance of milk Binary 65 Denosoymapi Binary

32 Avoidance of sex Binary 66 Kalsitonini Binary

33 Diarrhea Binary 67 Calcium + Bitamin D Binary

34 Receive Cortisone Binary 68 Calcium Binary

Table 4.8: Table of attributes in the Osteoporosis dataset.
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Figure 4.2: Image of the Lumbar Spine AP (Anterior Posterior) from a
DEXA Scan.

the data using SVM with Sequential Minimal Optimisation (SMO) and RBF

kernel [55] in order to compare the results. For each method we performed a

10-fold cross validation experiment. In 10-fold cross validation, we repeat 10

experiments. In each experiment, we remove 10% of the data and we train the

underlying algorithm on the remaining 90% of the data. We then evaluate the

method on the 10% data which have been removed from the training phase.

We repeat the same process for each fold, by removing non-overlapping blocks

of the data in each experiment.

In Table 4.9, we compare the results of the five methods. The results show the
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FS method Accuracy TP FP
SVMFS 72.23% 61.00% 18.00%

PCA 68.12% 60.00% 25.00%
IGFS 69.92% 62.00% 24.00%
CSFS 70.17% 55.00% 18.00%
CBFS 69.66% 51.00% 15.00%

Table 4.9: Results of the 5 feature selection methods.

RANK CBFS CSFS
1 Cortizone Previous therapy
2 Heparine Weight
3 Previous therapy End of menstruation cycle
4 Alendronati Calcium
5 Zoledronati Age
6 Calcium Alendronati
7 Weight Cortizone
8 End of menstruation cycle Heparine
9 Smoking
10 Smoked in the past

Table 4.10: Features selected by the CBFS and CSFS methods.

accuracy of the classifier, the True Positive (TP) rates and False Positive (FP),

rates. In Tables 4.10 and 4.11, we show the selected attributes for each of the

methods. For CBFS, we show the best subset of attributes, while for the rest

of the methods, we rank the top 10 attributes based on their score that they

gained from the feature selection methods.

4.2.3 Experiments

In this section we describe and analyse the results of four algorithms, the

ANN-TVP, ANN-IVP, SVM-TVP and SVM-IVP. We experiment with both
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RANK IGFS PCA SVMFS
1 Previous therapy Previous therapy End of menstruation
2 Weight Weight Heparine
3 End menstruation End menstruation Cortizone
4 Calcium Calcium Weight
5 Heparine Age Calcium
6 Alendronati Alendronati Smoking
7 Age Cortizone Previous therapy
8 Cortizone Heparine Age
9 Smoking Smoking Smoked in the past
10 Smoked in the past Smoked in the past Alendronati

Table 4.11: Features selected by the IGFS, PCA, and SVMFS methods.

the online and offline settings. In the online setting, we are able to evaluate

the validity of the probabilistic outputs of the algorithms. First, we conduct

experiments on the whole set of attributes, and later we compare the results

with several feature selection methods.

4.2.3.1 Artificial Neural Network Venn Predictor

We evaluate ANN-TVP and ANN-IVP on 10-fold cross validation experiments.

In the results, we show the average accuracy, and the average lower and upper

probability bounds. Since VPs provide well-calibrated probabilistic outputs,

the accuracy of the VPs is expected to fall within the lower and upper probabil-

ity bounds. Moreover, we show the BS of the experiments, which is calculated

on the mean of the lower and upper probability bounds. As we can see in Table

4.12, the accuracy of the ANN-TVP is 67.23%, which is within the bounds of

65.97% - 70.19%.
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Method Accuracy Low bound Upper bound Brier Score
ANN-TVP 67.23% 65.97% 70.19% 0.4314

Table 4.12: Offline results of the ANN-TVP on the Osteoporosis dataset.

Method Accuracy Low bound Upper bound Brier Score
ANN-IVP 62.47% 57.17% 58.61% 0.4715

Table 4.13: Offline results of the ANN-IVP on the Osteoporosis dataset.
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Figure 4.3: Online experiments with ANN-TVP on the Osteoporosis
dataset.

In Table 4.13, we show the average accuracy, and the average lower and upper

probabilities given by the ANN-IVP in the offline setting (10-fold cross vali-

dation). The actual accuracy is within the lower and upper bounds provided,

but the results are less accurate than those of the ANN-TVP method.
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Figure 4.4: Online experiments with ANN-IVP on the Osteoporosis
dataset.

In Figure 4.3, we show the online results of the ANN-TVP on the Osteoporosis

dataset. The online experimental results match the offline results. As expected

the actual accuracy of the Venn Predictor falls within the lower and upper

bounds. In Figure 4.4, we show the online results of the ANN-IVP. Here,

the accuracy is slightly lower than the low probability bound provided, but

the results are still well-calibrated and even more narrower than those of the

ANN-TVP method. The reason that accuracy might fall slightly outside the

lower and upper bounds could be explained by the nature of the IVP method.

The experiments start with an empty training set and an empty calibration

set. This might deviate the cumulative results from the starting point.
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Method Accuracy Low bound Upper bound Brier Score
SVM-TVP 65.71% 64.21% 71.83% 0.4434

Table 4.14: Offline results of the SVM-TVP on the Osteoporosis dataset.

Method Accuracy Low bound Upper bound Brier Score
SVM-IVP 64.78% 62.98% 65.09% 0.4616

Table 4.15: Offline results of the SVM-IVP on the Osteoporosis dataset.

4.2.3.2 Support Vector Machine Venn Predictor

We perform 10-fold cross validation experiments on our Osteoporosis dataset

with the SVM-TVP and SVM-IVP methods. In the results (Table 4.14), we

show the average accuracy, and the average lower probabilities and upper prob-

abilities of the SVM-TVP method. The results of the SVM-TVP are similar

to those of the ANN-TVP.

In Table 4.15, we show the offline results of the SVM-IVP. The results of

the SVM-IVP compared with the results of the SVM-TVP method are similar,

although the probabilistic bounds given by the SVM-IVP seem to be narrower.

In Figure 4.5, we show the online results of the SVM-TVP on the Osteoporosis

dataset. As with the online results of the ANN-TVP, the results demonstrate

the validity of the Venn Predictor, regardless of the underlying algorithm used.

In Figure 4.6, we show the online results of the SVM-IVP algorithm. The ac-

curacy is within the bounds of the Venn Predictor and the width of the bounds

is much narrower than the width of the bounds provided by the counterpart

SVM-TVP algorithm.



Chapter 4. Applications 123

0 500 1000 1500 2000 2500 3000 3050
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

example #

lower bound
upper bound
accuracy

Figure 4.5: Online experiments with SVM-TVP on the Osteoporosis
dataset.

4.2.3.3 Comparison of Feature Selection Methods

We compare the results of the four methods ANN-TVP, SVM-TVP, ANN-IVP,

and SVM-IVP on the five Feature Selection Methods that we have used in our

data pre-processing. Specifically, we have tried the following Feature Selection

methods: Correlation Based Feature Selection (CBFS) [42], Principal Compo-

nent Analysis (PCA) [69], Chi-Squared Feature Selection (CSFS), Information

Gain Feature Selection (IGFS) [70], and Feature Selection with SVM (SVMFS)

[71]. For each feature selection method and for each VP we perform a 10-fold

cross validation experiment.

In Tables 4.16, 4.17, 4.18, 4.19, and 4.20, we show the results for each feature
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Figure 4.6: Online experiments with SVM-IVP on the Osteoporosis
dataset.

selection method. In each table, we show the average accuracy, the average

lower probability, the average upper probability and the Brier Score for each

10-fold cross validation experiment.

From the results, we can see that the IGFS and SVMFS methods have given

the best results, while the SVM-IVP method with SVMFS has the best results

amongst all Venn Predictors with a 72.49% accuracy.

After discussions with the medical doctors who were involved in the project, we

have conducted further experiments by manually removing specific attributes

of the dataset. We have removed attributes which describe previous therapy of

Osteoporosis, in order to evaluate the accuracy of our methods, without such
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Method ANN-TVP SVM-TVP ANN-IVP SVM-IVP
Accuracy 66.58% 69.41% 68.89% 72.49%

Lower Probability 64.44% 69.84% 65.62% 67.41%
Upper Probability 69.20% 75.04% 67.53% 69.30%

BS 42.56% 41.82% 43.44% 41.14%

Table 4.16: Comparison of the VPs on the Osteoporosis dataset with
SVMFS data preprocessing.

Method ANN-TVP SVM-TVP ANN-IVP SVM-IVP
Accuracy 62.72% 58.35% 61.70% 59.64%

Lower Probability 60.72% 23.13% 63.51% 59.66%
Upper Probability 73.22% 96.71% 65.41% 61.59%

BS 46.50% 48.33% 46.34% 48.25%

Table 4.17: Comparison of the VPs on the Osteoporosis dataset with
PCA.

Method ANN-TVP SVM-TVP ANN-IVP SVM-IVP
Accuracy 69.92% 69.92% 68.12% 68.89%

Lower Probability 66.51% 67.01% 65.80% 66.69%
Upper Probability 72.07% 75.13% 67.68% 68.61%

BS 42.21% 40.86% 43.44% 42.66%

Table 4.18: Comparison of the VPs on the Osteoporosis dataset with
IGFS.

information. Specifically, we have removed the attributes with the related med-

ical therapy information such as “Alendronati”, “Zoledronati”, “Risedronati”,

“Raloxifeni”, “Strontio”, “Parathormoni”, “Denosoumapi”, and “Kalsitonini”

(see Table 4.8). In Table 4.21, we show the results of our VPs, ANN-TVP,

SVM-TVP, ANN-IVP, and SVM-IVP.
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Method ANN-TVP SVM-TVP ANN-IVP SVM-IVP
Accuracy 61.95% 59.38% 65.30% 58.87%

Lower Probability 53.14% 25.98% 66.42% 63.96%
Upper Probability 83.36% 97.68% 68.31% 65.80%

BS 46.26% 45.12% 45.91% 48.95%

Table 4.19: Comparison of the VPs on the Osteoporosis dataset with
CSFS.

Method ANN-TVP SVM-TVP ANN-IVP SVM-IVP
Accuracy 68.89% 66.32% 66.84% 68.64%

Lower Probability 69.06% 67.99% 65.27% 65.44%
Upper Probability 71.81% 71.07% 67.15% 67.35%

BS 43.40% 43.95% 44.62% 43.33%

Table 4.20: Comparison of the Venn Predictors on the Osteoporosis
dataset with CBFS data preprocessing.

Method ANN-TVP SVM-TVP ANN-IVP SVM-IVP
Accuracy 61.58% 60.05% 56.58% 64.20%

Lower Probability 48.62% 29.62% 59.04% 60.00%
Upper Probability 82.21% 96.21% 60.51% 61.71%

BS 46.56% 44.74% 47.84% 45.84%

Table 4.21: Comparison of the Venn Predictors on the Osteoporosis
dataset with manually removed attributes.

4.2.4 Summary

We have applied Venn Prediction to the problem of Osteoporosis Risk Assess-

ment. We have evaluated our method on real-world data that we have collected

from various clinics in Cyprus. Our results demonstrate that our method pro-

vides well-calibrated probabilistic outputs in the predictions that can be useful
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in practice. Precisely, patients may get a prognosis based on Osteoporosis risk

factors before the performance of a DEXA scan.

4.3 Childhood Abdominal Pain Diagnosis

Acute abdominal pain diagnosis in children can be characterized as a classi-

fication problem. Although many cases of acute abdominal pain are benign,

some can lead to further complications and morbidity. There are many dis-

orders that can cause abdominal pain. The most common medical cause is

gastroenteritis, and the most common surgical cause is appendicitis. In most

instances, abdominal pain can be diagnosed through the medical history and

physical examination. In the acute surgical abdomen, pain generally precedes

vomiting, while the reverse is true in medical conditions. Diarrhoea is often

associated with gastroenteritis or food poisoning. Appendicitis should be sus-

pected in any child with pain in the right lower quadrant. Signs that suggest

an acute surgical abdomen include involuntary guarding or rigidity, marked

abdominal distension, marked abdominal tenderness, and rebound abdominal

tenderness. If the diagnosis is not clear after the initial evaluation, repeated

physical examination is required, and surgical consultation is necessary if a

surgical cause is suspected [72].

The application of machine learning methods to the problem of acute abdom-

inal pain (AAP) diagnosis has been the subject of quite a few studies. In [73]

two Bayesian methods (Naive and Proper Bayes) were applied to a relatively

large dataset consisting of 6387 adult patients. The results of the two Bayesian

methods were compared with those of the decision tree algorithm CART and
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the preliminary diagnoses of hospital physicians. The Naive Bayes classifier

gave 74% correct diagnoses outperforming all other techniques and coming

relatively close to the 76% correct diagnoses of the hospital physicians.

Mantzaris et al. [74] studied the application of backpropagation and proba-

bilistic neural networks to a dataset of children with AAP. The experimental

results showed that the backpropagation neural networks had a very satis-

factory performance which was better than that of the probabilistic neural

networks. The same dataset was also used by Anastassopoulos and Iliadis [75]

who evaluated the performance of various neural network architectures using

different learning rules, transfer functions and optimisation algorithms.

We have applied the Conformal Prediction framework to the problem of Child-

hood Abdominal Pain Diagnosis, and have created a prototype decision sup-

port tool for paediatricians. We provide experimental results on collected data

that we have gathered during examination by 10 paediatricians and 4 pae-

diatric surgeons. The data gathering was conducted during research project

PLHRO/0506/22: “Development of New Conformal Prediction Methods with

Applications in Medical Diagnosis”, which was funded by the Research Pro-

motion Foundation of Cyprus.

4.3.1 Dataset

The data were created by questionnaire forms that the physicians were filling

for each of their patients during examination. We have collected 804 instances

of recorded information, symptoms, and final diagnoses.
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We have applied a Feature Selection method to identify which patient infor-

mation contribute to the classification task. The method used is Correlation-

Based Feature Selection (CBFS), which identifies subsets of features that have

low intercorrelation, and high correlation with the classes. A list of the data

attributes used is presented in Table 4.22.

Name Type Name Type
Gender Binary History of jaundice Binary
Age Numeric Similar Pain before Binary
Pain-site Onset Binary Drugs being taken Binary
Pain-site Present Binary Previous Surgery Binary
Site of Tenderness Numeric Rebound Binary
Aggravating Factors Numeric Guarding Binary
Relieving Factors Numeric Rigidity Binary
Duration of Pain Numeric Vomiting Binary
Progress of Pain Numeric Type of Vomitus Numeric
Type of Pain Numeric Bowel Habit Numeric
Radiation of Pain Numeric Bowel Sounds Binary
Severity of Pain Numeric Abdominal Movements Binary
Nausea Binary Murphy’s Test Binary
Anorexia Binary Rectal Examination Numeric
Abdominal Distension Binary
Abdominal Masses Binary
Abdominal Scar Binary
Lapparoscopy Scar Binary

Table 4.22: List of attributes of the Childhood Abdominal Pain dataset.

Data instances can be classified into one of five predefined categories. The

categories are listed in Table 4.23.
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Classes
Appendicitis
Gastroenteritis
Urinary Tract Infection
Infantile Colic
Non Specific Abdominal pain
(“A mixed bag” including Mesenteric adenitis,
Referred pain, Constipation, Intestinal obstruction)

Table 4.23: List of classes of the Childhood Abdominal Pain dataset.

4.3.2 Experiments

We conduct offline (cross-validation) and online experiments on the data col-

lected. We apply four CP algorithms and evaluate the results. Moreover, we

conduct experiments with TVP and IVP and provide experimental results.

4.3.2.1 CP experiments

We apply ten-fold cross validation on the dataset in order to evaluate our CPs.

In these experiments, we have used four CPs, one based on the NB classifier,

one on ANNs, another based on k-NN, and the fourth one using our Genetic

Algorithm approach. A comparison of the accuracy provided by the CPs is

given in Table 4.24. The parameters of the algorithms were chosen according

to empirical results. We compare the accuracy results of the four CPs together

with the accuracy provided by the classical algorithm counterparts (the original

NB classifier, ANN, k-NN, and GA). The results show that the NB classifier

provides the best accuracy at 80.35%.
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Method Accuracy (%)
Naive Bayes 80.35
Naive Bayes CP 79.73
Neural Network 76.74
Neural Network CP 77.24
k-Nearest Neighbours 74.74
k-Nearest Neighbours CP 74.62
Genetic Algorithm 68.36
Genetic Algorithm CP 65.14

Table 4.24: Accuracy results on the Childhood Abdominal Pain dataset.

Method Confidence Certainty Error

Naive Bayes CP

99% 2.49% 1.12%

95% 29.73% 4.85%

90% 58.21% 10.32%

80% 98.26% 20.40%

Neural Network CP

99% 2.49% 0.75%

95% 37.69% 4.23%

90% 57.96% 8.33%

80% 86.82% 18.28%

k-Nearest Neighbours CP

99% 16.60% 1.00%

95% 41.02% 4.60%

90% 62.12% 9.55%

80% 85.79% 18.95%

Genetic Algorithm CP (2.18)

99% 0.38% 0.74%

95% 29.87% 4.18%

90% 45.31% 8.53%

80% 49.36% 9.41%

Genetic Algorithm CP (2.19)

99% 0.16% 0.73%

95% 27.58% 4.12%

90% 44.13% 8.41%

80% 49.36% 9.41%

Table 4.25: Certainty and error results on the Childhood Abdominal Pain
dataset.
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Method NB-TVP NB-IVP
Accuracy 79.85% 79.85%

Lower Probability 78.96% 77.51%
Upper Probability 81.19% 80.33%

BS 0.3329 0.3352

Table 4.26: Comparison of the TVP and IVP on the Abdominal Pain
Diagnosis dataset.

In Table 4.25, we present the results of the CP methods. Although the NB

CP provided the best accuracy, the k-NN CP provides better certainty results

at high levels of confidence. The certainty rates are the prediction regions

which contained a single prediction. The k-NN CP gives 16.60% certain pre-

dictions for 99% level of confidence, whereas the NB and ANN-CP give 2.49%

of certainty at the same level of confidence. The GA-CP has given the worst

certainty rates, as the fuzzy space provided to the GA may not be representa-

tive for the Childhood Abdominal Pain dataset. All CPs give valid error rates

which are always below or near the allowed significance level.

4.3.2.2 VP experiments

We have applied our VP and IVP algorithms to the Abdominal Pain Diag-

nosis dataset. In Table 4.26, we show the average offline results of the two

algorithms after 2 separate 10-fold cross validation experiments. We have used

the NB classifier as the underlying algorithm for both VPs, since NB is one

of the fastest methods for classification. The results of the two algorithms are

similar. Both NB-TVP and NB-IVP give an accuracy rate of 79.85%, while

the lower and upper probabilities are 78.96% – 81.19% for the NB-TVP and

77.51% – 80.33% for the NB-IVP. The Brier Score (BS) is 33.29% and 33.52%
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Figure 4.7: Online experiments with NB-TVP (left), and NB-IVP (right)
on the Abdominal Pain Diagnosis dataset.

respectively. In Figure 4.7, we show the online results of the NB-TVP and

NB-IVP. Both algorithms have performed similarly in the online setting. The

probabilistic outputs of two VPs become narrower as the training set grows

during the online experiments, while the accuracy is within the given bounds.

4.3.3 Summary

The use of CPs and VPs in the case of Childhood Abdominal Pain has shown to

be of great importance. The certainty rates and the validity of our methods can

provide a decision support tool for the problem of the diagnosis of childhood

abdominal pain. A classical ANN or k-NN classifier would not be able to

provide certainty in the predictions, whereas a CP can provide certainty and

confidence, even with a 77.24% accuracy rate, and a VP can give well-calibrated

probabilistic outputs. A physician can rely on the certain predictions of a CP

with predefined confidence, whereas for the uncertain predictions the expert

physician may take appropriate actions, such as further examinations for the

possible diagnoses.
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Conclusion

In this chapter, we make our concluding remarks about the Conformal and

Venn Prediction frameworks, the methods that we have developed, and our

experimental results. We also provide a list of possible future directions of our

research.

5.1 Concluding Remarks

Machine Learning algorithms are incorporated into a wide range of applica-

tions, including medical diagnostic systems, robotics, data mining, character

and object recognition, and anomaly detection. Many of these applications

rely on Machine Learning for providing critical decision support. Nonetheless,

Machine Learning algorithms alone, do not guarantee that the correctness of

their outputs will always be as expected. In such cases, reliable confidence mea-

sures are required to support the decision making process. Even in the case

134



Chapter 5. Conclusion 135

where algorithms provide some kind of confidence in their outputs, in most of

the work found in the literature there is no theory that can support or guar-

antee that such confidence measures will be well-calibrated. In contrast, the

Conformal Prediction (CP) framework, is a novel technique that can provide

reliable confidence measures for Machine Learning algorithms, that can guar-

antee under the i.i.d. assumption, that its confidence measures will be valid

(well-calibrated). Additionally, the Venn Prediction (VP) framework, which

is an extension of the CP framework, can provide reliable multi-probabilistic

outputs for Machine Learning algorithms, which are subsequently guaranteed

to be well-calibrated. Probabilistic outputs are not found to be well-calibrated

in other Machine Learning methods in the literature.

In this thesis, we have explored and developed new Conformal and Venn Pre-

dictors based on Machine Learning algorithms, and we have extensively ex-

perimented with our methods. We have provided results for comparison with

other learning methods that provide confidence or probabilistic outputs, and

we have demonstrated in our experiments, that other methods found in the

literature do not always provide reliable or well calibrated results. In contrast,

as our experiments show, our CP and VP methods can always provide reliable

measures of confidence and well calibrated probabilities.

We have developed a new CP method, based on Genetic Algorithms and Fuzzy-

Set theory. Our method was extensively tested and the results of our exper-

iments were presented in this thesis. The results demonstrate the validity

of the developed Genetic Algorithm Conformal Predictor (GA-CP). Further-

more, we have extended the CP framework for multi-label classification tasks.
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Multi-label classification include applications such as image recognition or doc-

ument classification, where each instance xi of such applications may belong

into multiple classes, such that the labels of a given instance are more than

one. Likewise to traditional learning algorithms, multi-label classifiers found

in the literature were not able to guarantee that the confidence in their predic-

tions would be reliable. We have developed a Multi-Label Conformal Predictor

(ML-CP), and we have introduced a new confidence measure. We have exper-

imented on two multi-label datasets, and the results have shown that in the

same manner to the original CP framework, the extended ML-CP could provide

reliable measures of confidence in its outputs.

We have investigated VP and introduced Inductive Venn Prediction (IVP),

which greatly improves the computational efficiency of the VP framework. In

our experiments, we have thoroughly compared the original Transductive Venn

Prediction (TVP) with our IVP method. The results demonstrate the ability

of the IVPs to produce well calibrated probabilistic outputs for large datasets,

where the original TVP may suffer due to its computational inefficiency prob-

lem.

Finally, we have applied our methods on three real-world datasets and we

provide experimental results. We have investigated the use of CP for the as-

sessment of the risk of stroke using ultrasound images of atherosclerotic carotid

plaques, and we have demonstrated the ability of our methods to provide prac-

tical results in difficult cases. We have conducted research on another medical

diagnostic problem, which is that of the Osteoporosis Risk Assessment. The

dataset that was gathered throughout our research was examined by physicians

and then analysed using feature selection algorithms for dimension reduction



Chapter 5. Conclusion 137

of the data. The selected features in our data indicate risk factors of Osteo-

porosis. In the results, we demonstrate the ability of VPs to provide reliable

probabilistic outputs that can indicate risk of Osteoporosis. We have addi-

tionally investigated the use of CPs and VPs for the diagnosis of childhood

abdominal pain, and have provided experimental results.

5.2 Future work

Our future work may take many possible paths. In this section, we give an

outline of three possible directions that our further research may take.

• Genetic Algorithm Approach: We would like to examine the possibili-

ties of improving the confidence values of our GA-CP, using other fuzzy

systems. In our implementation we have used standard triangular mem-

bership fuzzy-sets for demonstration purposes. We would like to examine

other kind of membership functions, such as the trapezoid-fuzzy and the

Gaussian membership functions. Moreover, we would like to improve the

computational efficiency of our GA-CP, by using Inductive Conformal

Prediction. Further, we wish to investigate how the GA algorithm can

be incorporated into the VP framework. One possible approach is to

define a taxonomy based on the membership output of the fuzzy-space

defined in the algorithm. For example, the membership output value

that is given by the GA for a given instance can be considered as an

input to an identical fuzzy-space, where the fuzzy-space will represent

the taxonomy of the data.
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• Multi-label Approach: The approach we have taken to build a multi-

label CP is one of many possible ones. The decomposition of a multi-

label problem into multiple single-label binary classification problems has

limitations. This approach does not consider the intercorrelation of the

labels or the class imbalance of the datasets. Other approaches may be

considered in the future, in order to build reliable CPs for multi-label

classification. Furthermore, we would like to examine the extension of

the VP framework to multi-label classification. The same approach that

we have used to build a ML-CP can be considered for the implementation

of a multi-label VP.

• Inductive VP Approach: The probabilistic outputs of the IVP are well-

calibrated as expected. In the future, we wish to experiment with more

datasets, and use different values of steps m for each re-training of the

IVP algorithm, in order to understand how the IVP performs when the

assumption of independence of error is violated. Moreover, we aim to

try several taxonomies for the developed IVP, and further we wish to

investigate other algorithms that can be used to build effective IVPs. The

particular IVP proposed in this thesis is based on the SVM classifier, but

we expect that our conclusions will be true regardless of which underlying

algorithm will be in use.
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