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comments and attach our point-by-point response to those comments as well as a version of the ms 
with tracked changes. 
 
All coauthors (Anja Tehel, Mark Brown and myself) have contributed to the ms. The work described in 
our ms has not been published previously, it is not under consideration for publication elsewhere, its 
publication is approved by all authors and, if accepted, it will not be published elsewhere in the same 
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June 10th, 2016 
 
Dear Editor, 
 
Thank you for the encouraging review of our ms: 
 
Impact of managed honey bee viruses on wild bees (manuscript number 
COVIRO-D-16-00038) 
 
We have attended to all of the points raised by yourself, both the specific 
points listed below and on the annotated ms, and upload a revised version of 
the ms which takes them all into consideration. Below we detail point-by-point 
our responses to the specific comments.  
 
Please consider the re-submitted, revised version of our manuscript for 
publication in Current Opinion in Virology. 
 
Yours sincerely, 
 
Robert Paxton 
(and on behalf of coauthors Anja Tehel and Mark Brown) 
 
 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
 
Editor's comments and our responses: 
 
Comment: 
Thank you for an interesting and well written paper on how domestic bee 
viruses may be impacting wild bees.  I just have a few editorial suggestions, 
some are listed below and some are marked directly on the manuscript. 
Response: 
Thank you for your supporting comments on the ms. 
 
Comment: 
Could you mention something in the introduction about the importance of wild 
bees in pollination of crops and wild plants? 
Response:  
We have now stated that wild bees make an important ocpntribution to crop 
pollination on lines 41-42: Wild bee species also make a major contribution to 
crop pollination [6]. 
The relationship between wild bee species and wild plant pollination has not 
been so clearly defined, though undoubtedly wild bee species are important 
for the pollination of wild plants. We now add at lines 44-46: Wild bee species 
are also in decline in northern temperate regions of the world concomitant 
with a decline in the wild flowers they visit and pollinate [10 
 
Comment: 
I found the bee nomenclature quite confusing.  Please choose a way to 
describe the bees and then use it throughout.  I think defining Apis mellifera 

Detailed Response to Reviewers
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as the Western honey bee is fine, but don't then switch back and forth, just 
use this designation. I corrected the first few, but please go through and 
correct the remainder. 
Response: 
We have gone through the entire ms and homogenized Apis mellifera to 
‘Western honey bee’, given specific names to other honey bees (e.g. Eastern 
honey bee’) and made consistent our naming of other bee species. Where we 
used ‘wild bees’, we now use ‘wild bee species’ to make is crystal clear that 
we do not mean ‘Apis mellifera’. We thought confusion might also arise 
because we sometimes used ‘domestic’ and sometimes ‘managed’ to 
describe the Western honey bee. There is some discussion over whether Apis 
mellifera is ‘domesticated’ or merely a wild species now kept in boxes i.e. 
managed. We therefore replaced ‘domesticated’ with ‘managed’ throughout, 
including in the title, so as to avoid confusion and so as to be consistent 
throughout the ms.  
 
Comment: 
Please use * for highlighting references, rather than * 
Response: 
We copied the style of other articles in Current Opinion in Virology and used a 
bold ‘*’. We suspect there may be formatting problems when sending text via 
the journal’s website because we could not differentiate between the two stars 
used above. 
 
Comment: 
We usually aim for around 50 references. Would it be possible to use a few 
reviews to replace some of the primary references, especially for areas that 
are indirectly related to the topic of the paper, like EIDs in other animals? 
Response: 
We have cut the number of references from 79 to 59 by removing many of the 
primary references, as you suggested, and we have reduced the number of 
highlighted references to 6.  
 
Comment: 
Please correct the table as noted on the manuscript. 
Response: 
We have given the table a short title and placed the explanation to it as a 
footnote. 
 
 
Additional comments scored directly on the pdf by the editor. 
 
Comment: 
Graphical Abstract: can you please define these families?  Most people will 
have no idea what they are. 
Response: 
We have added additional text to the graphical abstract to make clear the bee 
taxa and added names in common usage as well as genus and family names 
of the taxa. 
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Comment: 
Please add something here to define BEEHAVE. 
Response: 
On lines 158-9 we added the following text to define BEEHAVE: The 
BEEHAVE model, a software that simulates the development of a honey bee 
colony and its foraging for nectar and pollen in a realistic landscape, 
 
Comment: 
Figure 1 caption: Please define the other species here, most readers won't 
know what they are. 
Response: 
We updated the caption to Figure 1 to define the other species more 
thoroughly. 
 
Many additional, minor comments were added to the text 
Response: 
We incorporated all the suggested changes into the text. 
 
 



Graphical Abstract (for review)



Highlights 

- Over 24 viruses have been associated with managed honey bees 

- Many of these are also prevalent in wild bee species 

- Evidence suggests spill-over of viruses from honey bees to wild bee species 

- The impact of these viruses on wild bee species is poorly known 
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Abstract 20 

Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in 21 

other bee species, raising the possibility of spill-over from managed to wild bee species. 22 

Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore 23 

the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to 24 

deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far 25 

suggest that DWV spills over from managed to wild bee species and has the potential to cause 26 

population decline. That DWV and other viruses of A. mellifera are found in other bee species needs 27 

to be considered for the sustainable management of bee populations.  28 

 29 

Keywords:  30 

Hymenoptera, Apis mellifera, bumble bee, spill-over, Deformed wing virus 31 

32 
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Introduction: EIDs and viral pathogens of the Western honey bee (Apis mellifera) 33 

 34 

We, our domestic animals, and wildlife are increasing challenged by a range of emerging infectious 35 

diseases (EIDs [1, 2]) that threaten respectively our health, our farming and the ecosystem services 36 

we derive from the natural world. After cattle and pigs and before poultry, the Western honey bee 37 

(Apis mellifera) has been considered the third most important domestic animal [3, 4]; pollination by 38 

insects, including by the Western honey bee, is an important ecosystem service that contributes 39 

over US $ 200 billion to global agricultural output at today’s prices and, directly and indirectly, to 40 

one in every three mouthfuls of food [5]. Wild bee species also make a major contribution to crop 41 

pollination [6]. Elevated losses of Western honey bees have been reported across northern 42 

temperate regions of the world over the past decade [7], with EIDs considered a primary cause of 43 

mortality [8], possibly because of increased viral virulence [9]. Wild bee species are also in decline in 44 

northern temperate regions of the world concomitant with a decline in the wild flowers they visit 45 

and pollinate [10], though causes of population decline, range contraction and wild bee species loss 46 

are diverse [11, 12]. Given the importance of bees for pollination, these are serious concerns that 47 

could affect food security and the functioning of terrestrial ecosystems [13]. 48 

 49 

To date, 24 viruses have been associated with the Western honey bee [14], many of which are 50 

positive sense single strand (+) RNA viruses. One of these in particular, Deformed wing virus (DWV), 51 

has risen to prominence because of its association with the honey bee exotic ectoparasitic mite 52 

Varroa destructor [15*], a possibly synergistic association for virus and mite [16]. Varroa destructor 53 

(henceforth varroa mite) was originally an ectoparasite of the Asiatic Eastern honey bee 54 

(Apis cerana), but jumped to the Western honey bee and is nowadays widespread across most of the 55 

world with its new host, the Western honey bee, on which it vectors DWV and many other viruses 56 

[8, 14]. Introduction of varroa mites to a naïve population of Western honey bees leads to a 57 
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tremendous rise in DWV prevalence and titer per individual host [17, 18], and DWV is the leading 58 

contender as the causal agent of colony decline [14].  59 

 60 

Prominent among EIDs of a diverse range of animals are RNA viruses that exhibit high mutation (and 61 

substitution) rates [19] and cross species barriers to emerge (i.e. become more prevalent) in novel 62 

hosts, including humans [20] e.g. Ebola and Zika. DWV and other (+) RNA viruses of the Western 63 

honey bee have now been detected in wild bee species [21**], though knowledge of their impact on 64 

wild bee hosts remains limited (Fig. 1; Table 1). That a virus is found across two or more host 65 

species, be they managed or wild bees, is important because it dictates the epidemiology and 66 

evolutionary trajectory of that pathogen [22, 23*]. Here we bring together recent literature to 67 

explore the hypothesis that viral spill-over from managed Western honey bees negatively impacts 68 

wild bee species. 69 

 70 

DWV prevalence and impact 71 

 72 

Before the introduction of the varroa mite to the Western honey bee in Europe ca. half a century 73 

ago, serological (antibody-based) detection of DWV suggested it was at extremely low prevalence 74 

[24]. Varroa mites are now found in most, if not all, Western honey bee colonies across all of Europe 75 

(except isolated offshore islands and in extreme northern latitudes) and, using PCR-based screening, 76 

DWV is the most commonly detected virus, often found at high titer [25]. Careful screening of 77 

Western honey bee colonies on the archipelagos of Hawaii and New Zealand has clearly 78 

demonstrated that DWV rose to 100% prevalence of colonies after the introduction of varroa mites 79 

[17, 18]. It is arguably present in all Western honey bee colonies that harbor varroa mites, and 80 

phylogenetic analysis of viral gene sequences suggest it has likely followed the introduction of varroa 81 

mites to North America and elsewhere to become an EID of Western honey bees worldwide [15*]. 82 
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Australia remains the only large land mass that, to date, has not reported varroa mites in its 83 

managed Western honey bee colonies.  84 

 85 

Concomitant with its rise in prevalence across Western honey bee colonies and in titer in individual 86 

honey bees, DWV is the most commonly reported virus detected by PCR in a range of other bee 87 

species (Fig. 2). It has been found in three Asiatic honey bee (Apis) species in Asia [25, 26]. Across 88 

Europe and North America, DWV has also been detected in bumble bees (Bombus spp.) [27**, 28, 89 

29, 30, 31**, 32, 33, 34], other wild bee species [27**, 29, 35, 36, 37] and even taxonomically more 90 

distant hosts such as ants, wasps and cockroaches [28, 29, 38]. These represent an eclectic mix of 91 

host species, and the field would benefit from more systematic surveying of the prevalence of DWV, 92 

both in terms of geographic and taxonomic (host species) coverage. 93 

 94 

Whether these increases in host range of DWV beyond Western honey bees are a consequence of 95 

pathogen spill-over of this EID of the Western honey bee are equivocal because most studies merely 96 

report PCR-based detection of DWV. For the Asiatic honey bees that also host varroa mites, 97 

phylogenetic analysis of DWV isolates from these different host species supports the suggestion of 98 

EID spill-over from introduced, managed Western honey bees harboring varroa mites and DWV [25]. 99 

Given the mechanistic link between varroa mites and DWV transmission, EID spill-over into Asiatic 100 

honey bee species is a plausible interpretation of the phylogenetic data. 101 

 102 

As only honey bees (Apis spp.) host varroa mites that can vector DWV, it is assumed that bumble 103 

bees and other wild bee species acquire DWV though robbing of DWV-infected colonies of Western 104 

honey bees for honey or, more likely, by collection and ingestion of DWV with pollen or nectar from 105 

flowers that are also visited by DWV-infected Western honey bee workers [27**, 39, 40]. Given this 106 

assumption, we highlight two issues that confound the interpretation of data on DWV prevalence in 107 

wild bee species in terms of impact on hosts.  108 
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 109 

Limitations to interpretation of data on DWV impact 110 

 111 

The first issue is that many studies of wild bee species merely report the detection (or not) of DWV, 112 

often from a single site [36], making inference of DWV spill-over from Western honey bees difficult 113 

at best. We know little of the parasite community of wild bee species [41], a research area that 114 

deserves greater attention. Therefore, DWV as a natural pathogen of any given wild bee species 115 

cannot in principle be ruled out; it is a plausible hypothesis that DWV is a generalist insect pathogen, 116 

or one originally associated with a species other than the Western honey bee.  117 

 118 

To infer spill-over, studies need to examine the prevalence of DWV in managed Western honey bees 119 

and wild bee species across multiple sites, and couple this with proof that the pathogen in managed 120 

Western honey bees and wild bee species is the same, e.g., by analysis of genetic variants of DWV 121 

[27**, 29]. The only study of which we are aware that currently fulfills both criteria has 122 

demonstrated (i) a clear correlation between DWV prevalence in Western honey bees and in wild 123 

bumble bees across multiple sites and (ii) sharing of the identical viral variant by Western honey 124 

bees and wild bees (Bombus spp.) within a site [31**].  125 

 126 

These data speak strongly for pathogen sharing between Western honey bees and wild bee species 127 

but still leave open the question of directionality of pathogen transmission. DWV prevalence in 128 

Western honey bees collected from flowers was approximately double that of DWV prevalence in 129 

bumble bees, strongly suggesting spill-over from Western honey bees to wild bee species [31**]. Yet 130 

interpretation of pathogen prevalence data is potentially conflated with virulence of that pathogen 131 

in a host; for insect populations, mathematical models suggest that highly virulent pathogens exhibit 132 

low prevalence and vice versa [42]. There is a clear need for additional research focused on 133 

understanding the directionality of transmission of DWV (and other pathogens) among host species, 134 
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especially research integrating phylogenetic methods that infer transmission over long time scales 135 

[15*] with experimental approaches that can test for on-going transmission [27**]. 136 

 137 

The second issue concerning PCR-based detection of DWV in wild bee species and other insects is 138 

that it may merely reflect contamination of the exterior of a wild bee by DWV or, in the case of 139 

wasps, ants and cockroaches, consumption of DWV-infected Western honey bees or hive products. 140 

Though such contamination might also facilitate the dispersal of DWV [28, 43], it does not 141 

necessarily represent a threat to the host, either the individual host insect, or the host colony (for 142 

social species such as bumble bees) or the host population. Amplification of the negative (-) viral 143 

strand of (+) RNA viruses like DWV can be used as an indicator of active infection [31**], though we 144 

note that in principle it demonstrates viral replication and not host pathology. Similarly, the 145 

detection of DWV-infected carpenter bees (Xylocopa augusti) with deformed wings suggests that 146 

DWV can be infective and pathogenic for wild bee species [35], although other parasites can cause 147 

similar pathologies [44]. The most direct means to determine virulence is through experimental 148 

inoculation of a host species. Though laboratory experimentation is an abstraction of the real world, 149 

it controls for conflating factors when testing for virulence. In experimental inoculation assays, DWV 150 

has been shown to be a pathogen of the widespread European bumble bee Bombus terrestris [31**, 151 

33]. 152 

 153 

We have little idea of how virulent DWV is in the other wild bee species in which it has been 154 

detected. This is clearly an important area for future research if we are to understand the impact of 155 

DWV spill-over from managed Western honey bees to wild bee species. For social wild bee species, 156 

there is also a need to scale up from virulence at the level of the individual insect to virulence at the 157 

level of the colony [45] and the population. The BEEHAVE model, a software that simulates the 158 

development of a honey bee colony and its foraging for nectar and pollen in a realistic landscape, 159 
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can fulfill this propose for the Western honey bee [46], but there is a need for mathematical models 160 

incorporating other forms of social organization, such as that of the bumble bee [47].  161 

 162 

Other viruses, their prevalence and impact 163 

 164 

Ten other viruses originally isolated from the Western honey bee, mostly (+) RNA viruses, have been 165 

detected in wild bee species (Table 1). After DWV, the next most commonly reported virus in wild 166 

bee species is Black queen cell virus (BQCV), followed by Israeli acute paralysis virus (IAPV) (Fig. 2), 167 

both (+) RNA viruses.  168 

 169 

BQCV is prevalent and widespread across managed Western honey bee populations in Europe [9, 48] 170 

and North America [49]. A structured survey of 26 sites in Great Britain showed BQCV to be more 171 

common in the Western honey bee than in bumble bee species, and prevalence of all viruses in 172 

Western honey bees was a significant predictor of viral prevalence in bumble bees [21**]. These 173 

data again suggest spill-over from domestic Western honey bees to wild bee species (but see 174 

caveats above). Though BQCV is pathogenic for Western honey bee larvae following experimental 175 

inoculation [50], its impact on wild bee species is unknown, but warrants investigation.  176 

 177 

IAPV has been rarely reported from Europe, but in North America it is prevalent in managed 178 

Western honey bees and was initially associated with so-called colony collapse disorder [51]. Like 179 

the closely related Kashmir bee virus (KBV) and Acute bee paralysis virus (ABPV), IAPV is highly 180 

pathogenic for Western honey bees [52]. It has been detected in wild bee species near IAPV-infected 181 

managed Western honey bee colonies, but not in the same wild bee species near a non-IAPV-182 

infected apiary [27**]. Furthermore, greenhouse experiments [27**] have shown successful 183 

transmission of IAPV between Western honey bees and wild bee species. Spill-over of IAPV from 184 

Western honey bees to wild bee species in the field through shared use of flowers is therefore likely. 185 
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We note, though, that the related ABPV, also highly pathogenic for Western honey bees [53], has a 186 

higher prevalence in wild bee species than Western honey bees [21**], suggesting spill-over from 187 

wild bee species to domestic Western honey bees (but see caveats above). 188 

 189 

Though studies on BQCV and IAPV in wild bee species are few (Fig. 2), they highlight the potentially 190 

wide distribution of viruses across multiple bee species, likely promoted by shared use of flowers. 191 

Experimental demonstration of IAPV cross-species transmission [27**] is exemplary. Similar 192 

experiments with other viruses would help our understanding of the threat posed to wild bee 193 

species by viruses of managed Western honey bees. 194 

 195 

Future directions 196 

 197 

Evidence is mounting that viruses originally detected in the managed Western honey bee are widely 198 

distributed across wild bee species. For DWV, data support the idea that virus spills over from 199 

Western honey bees to wild bee species, where it potentially reduces individual wild bee host fitness 200 

[31**]. Yet viral prevalence varies considerably across wild bee species [21**], and some viruses 201 

have higher prevalence in wild bees, suggesting spill-over to managed Western honey bees. A key 202 

future aim is to determine the epidemiology and transmission dynamics of these viruses in the field. 203 

Do they show source-sink dynamics, or active back-and-forth transmission? Understanding this will 204 

give us tools to manipulate transmission in the field, for the benefit of both wild bee species and 205 

managed Western honey bees. From the direct perspective of impact, an interesting question is 206 

whether some wild bee species, particularly those that are rare or declining, are less tolerant of viral 207 

pathogens than others; analysis of their anti-viral innate immune defence mechanisms [54], whose 208 

complements vary among Dipteran species [55*], may be one productive means of investigation. 209 

Similarly, genetic analyses of population size and bottlenecks in coupled wild bee-virus systems 210 

might elucidate past impacts. Whether viral emergence in managed Western honey bees leads to 211 
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host switching through the mass action principle [56, 57], i.e. through increasing density of infective 212 

virions in the environment, versus viral adaptation is another question that would benefit from 213 

greater attention, not only in understanding the threat posed to wild bee species by managed 214 

Western honey bee viruses but also as a model of EID impacts on wildlife. The impact of viruses may 215 

also vary with co-infection by two or more viruses [58] and through interactions with other so-called 216 

‘stressors’ of wild bee species such as pesticide exposure [8], as has been demonstrated at the 217 

molecular level for the Western honey bee [59]. With such information to hand, we may be able to 218 

understand how pathogen spill-over from Western honey bees impacts communities of wild bee 219 

species, their populations, and the ecosystem service of pollination, from which terrestrial life and 220 

human well-being benefit.  221 
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Table 1: Reported taxonomic distribution in wild bee species of viruses initially detected in managed Western honey bees (Apis mellifera)  398 

 DWV BQCV IAPV SBPV ABPV SBV KBV LSV CBPV AmFV VdMLV 

Andrena vaga a 
 

17 20 
    

17 
 

17 
 

Andrena ventralis a 
       

17 
 

17 
 

Augochlora pura b 20 
          

Bombus agrorum c 
    

1 
      

Bombus atratus c 4, 18 4, 18 
 

4 4 4, 18 
     

Bombus hortorum c 
 

12 
 

12 1, 12 
      

Bombus huntii c 9 15 
         

Bombus impatiens c 9, 19, 20 8, 20 8, 19 8 19 
 

19 
 

19 
  

Bombus lapidarius c 3 12 
 

12, 14 12 
  

14 
  

14 

Bombus lucorum c 3 12 
 

12 1, 12 
      

Bombus monticola c 3           

Bombus pascuorum c 2, 5 12 
 

12 12 
  

14 
  

14 

Bombus pratorum c  
       

14 
   

Bombus ruderarius c 
    

1 
      

Bombus ternarius c 20 20 20 
        

Bombus terrestris c  2, 3, 5, 6 12 13, 16 12 1, 12 12, 20 13 
    

Bombus vagans c 8, 20 8, 20 20 8 
 

20 
     

Ceratina dupla d 20 
          

Heriades truncorum e 
 

17 
         

Osmia bicornis e 17 
      

17 
 

17 17 

Osmia cornuta e 11 17 
     

17 
 

17 17 

Scaptotrigona mexicana f 7 7 
         

Xylocopa latreille d 10 
          

Xylocopa virginica d 20 8, 20 
 

8 
       

 399 
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For numbered references, see supplementary material Appendix A; cell shading in yellow: detection of a virus in a host species; in orange: detection of (-) 400 
strand of virus in a host species, indicative of RNA replication; in red: demonstration of pathogenicity in a host species; DWV (Deformed wing virus), BQCV 401 
(Black queen cell virus), IAPV (Israeli acute paralysis virus), SBPV (Slow bee paralysis virus), ABPV (Acute bee paralysis virus), SBV (Sacbrood virus), KBV 402 
(Kashmir bee virus), LSV (Lake Sinai virus), CBPV (Chronic bee paralysis virus), AmFV (Apis mellifera filamentous virus), VdMLV (Varroa destructor macula-403 
like virus); a mining bees (family Andrenidae); b sweat bees (family Halictidae); c bumble bees (genus Bombus, family Apidae); d carpenter bees (members of 404 
the family Apidae); e leafcutter and mason bees (family Megachilidae); f stingless bees (members of the family Apidae) 405 
 406 



Figure captions:  440 

 441 

Figure 1: Increase in the number of publications on viruses across bee species over the past 70 442 

years, showing that most relate to managed honey bees (the Western honey bee, Apis mellifera, 443 

or other Asiatic honey bee species that all belong to the genus Apis), and relatively few to 444 

bumble bees (genus Bombus) or other wild bees (species in the family Apidae other than honey 445 

bees and bumble bees, plus all species in the families: Halictidae, Megachilidae, Andrenidae, 446 

Colletidae, Melittidae and Stenotritidae); Web of Science search (accessed on March 18th, 2016) 447 

using terms in the box 448 

 449 

Figure 2: The frequency with which putative honey bee (the Western honey bee, Apis mellifera, 450 

or other Asiatic honey bee species that all belong to the genus Apis) viruses have been reported 451 

in other bee species, both in terms of the total number of papers per virus and the number of 452 

host species (excluding Apis spp.) per virus; DWV (Deformed wing virus), BQCV (Black queen cell 453 

virus), IAPV (Israeli acute paralysis virus), SBPV (Slow bee paralysis virus), ABPV (Acute bee 454 

paralysis virus), SBV (Sacbrood virus), KBV (Kashmir bee virus), LSV (Lake Sinai virus), CBPV 455 

(Chronic bee paralysis virus), AmFV (Apis mellifera filamentous virus), VdMLV (Varroa destructor 456 

macula-like virus) 457 

 458 
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