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Abstract 

Our interactions with other people - and our processing of their actions - are shaped by their 

reputation. Research has identified an Action Observation Network (AON) which is engaged 

when observing other people’s actions. Yet, little is known about how the processing of 

others’ actions is influenced by another’s reputation. Is the response of the AON modulated 

by the reputation of the actor? We developed a variant of the ultimatum game in which 

participants watched either the visible or occluded actions of two ‘proposers’. These actions 

were tied to decisions of how to split a pot of money although the proposers’ decisions on 

each trial were not known to participants when observing the actions. One proposer made fair 

offers on the majority of trials, establishing a positive reputation, while the other made 

predominantly, unfair offers resulting in a negative reputation. We found significant 

activations in two regions of the left dorsal premotor cortex (dPMC). The first of these 

showed a main effect of reputation with greater activation for the negative reputation 

proposer than the positive reputation proposer. Furthermore individual differences in trust 

ratings of the two proposers covaried with activation in the right primary motor cortex (M1).  

The second showed an interaction between visibility and reputation driven by a greater effect 

of reputation when participants were observing an occluded action. Our findings show that 

the processing of others’ actions in the AON is modulated by an actor’s reputation, and 

suggest a predictive role for the PMC during action observation. 
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1. Introduction  

The observation of the actions of others leads to the activation of a network of neural regions, 

centred on the premotor and inferior parietal cortices (for recent reviews see: (Bonini, Ferrari, 

& Fogassi, 2013; Molenberghs, Cunnington, & Mattingley, 2012). The existence of this 

Action Observation Network (AON) offers a link between perceiving other’s actions and the 

performing our own and has been hypothesised to be involved in a number of social cognitive 

processes including imitation, empathy and mind reading (Bonini, Ferrari, & Fogassi, 2013; 

Gallese, 2009; Hurley, 2008; Iacoboni, 2009; Oberman & Ramachandran, 2007). However, 

very little is known about how the reputation of the person performing an action, influences 

the processing of the action in the AON. 

Several recent studies have shown that the AON response is modulated by social context. 

EEG studies have shown that mu suppression, which has been linked to action observation 

(Cochin, Barthelemy, Lejeune, Roux, & Martineau, 1998; Lepage & Théoret, 2007; 

Muthukumaraswamy & Johnson, 2004), increases with the social relevance of the observed 

actions (Gutsell & Inzlicht, 2013; Kilner, Marchant, & Frith, 2006; Kourtis, Sebanz, & 

Knoblich, 2010; Meyer, Hunnius, van Elk, van Ede, & Bekkering, 2011; Oberman, 

McCleery, Ramachandran, & Pineda, 2007; Oberman, Pineda, & Ramachandran, 2007; 

Perry, Stein, & Bentin, 2011). In addition research measuring corticospinal (CS) excitability 

using transcranial magnetic stimulation (TMS) has demonstrated that the AON is sensitive to 

the communicative value of gestures (Möttönen, Farmer, & Watkins, 2010, 2016) and to the 
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amount of social interaction the participant has had prior to observing actions (Hogeveen & 

Obhi, 2012). 

Neuroimaging studies have also demonstrated that the social identity of an observed actor can 

modulate activation in the inferior parietal lobe (IPL) and premotor cortex (PMC). Gutsell 

and Inzlicht (2010) found greater mu suppression for a racial in-group compared to a racial 

out-group during the observation of simple actions. Similar results have also been found 

using TMS (Désy & Théoret, 2007; Molnar-Szakacs, Wu, Robles, & Iacoboni, 2007) and 

fMRI (Liew, Han, & Aziz-Zadeh, 2011). Two recent studies have demonstrated that the 

effects of such modulations are not merely due to the physical differences between the actor 

and observer. Molenberghs, Halász, Mattingley, Vanman, and Cunnington (2013) found that 

observing a stranger who had randomly been assigned to the same team as the participant led 

to a preferential activation of the IPL, compared to observing someone assigned to another 

team. Sobhani, Fox, Kaplan, and Aziz-Zadeh (2012) used an MVPA classifier to identify a 

region of the right ventral premotor cortex that distinguished between when Jewish 

participants were observing the actions of a likeable group (tolerant people) compared to a 

dislikeable group (neo-Nazis).  

While previous studies have investigated the effects of group membership on the response of 

the AON, they tell us little about how the reputation of an individual, as formed during real-

time social interaction, modulates AON response. We often observe the actions of another 

without knowing its consequences. Instead we must infer the intentions of another’s actions 

from their reputation established during our past interactions with them. Previous research 

has shown that the AON is sensitive to the reward value of observed actions (Brown, 
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Wiersema, Pourtois, & Brüne, 2013; Cheng, Meltzoff, & Decety, 2007) but how does the 

reputation of an actor influence the AON response? 

Another key factor of interest for the current is whether the visibility of an observed action 

interacts with the reputation of the actor. There is now considerable evidence that the AON is 

activated not only when the actual execution of an action is observed but also when an action 

is known to have been carried out but its visual properties are unobserved. Single-unit 

recordings in the Macaque dorsal premotor cortex (dPMC) have found neurons that 

preferentially respond when the goal of another’s action is known but the action it’s self is 

occluded (Umiltà et al., 2001).  

In humans, studies using behavioural (Mattiassi, Mele, Ticini, & Urgesi, 2014; Orgs, 

Bestmann, Schuur, & Haggard, 2011; Springer et al., 2011; Tausche, Springer, & Prinz, 

2010) and neuroimaging methods (Cross, Stadler, Parkinson, Schütz-Bosbach, & Prinz, 2013; 

Jacquet & Avenanti, 2015; Ramnani & Miall, 2004; Stadler et al., 2011, 2012; Valchev et al., 

2015) have demonstrated that the human AON is also sensitive to occluded actions. Indeed 

Ramnani & Miall (2004) found that merely informing participants that another person was 

acting via the presentation of an abstract symbol was sufficient to activate the AON. These 

findings have helped to shed light on the possible functional role of the AON with a number 

of researchers positing that AON activation to unseen actions represents the motor system 

attempting to infer the action based on limited sensory information (Avenanti & Urgesi, 

2011; Friston, Mattout, & Kilner, 2011; Mattiassi et al., 2014; Orgs et al., 2011; Thioux & 

Keysers, 2015). In the current study we were particularly interested in how action visibility 

affected activations in AON regions modulated by reputation as this would allow for the 

distinction between different functional roles for this modulation with activation to occluded 
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actions, suggesting that these areas played a role in the prediction of the other’s actions rather 

than mere simulation of the observed action. 

In order to address these questions we developed a variant of the ultimatum game (UG) 

(Bolton & Zwick, 1995; Güth, Schimittberger, & Schwarze, 1982) which incorporated the 

lack of certain information about the outcome faced by trustors in the investment game (IG) 

(Berg, Dickhaut, & McCabe, 1995; Charness, Du, & Yang, 2011). During the experiment, 

one proposer made fair offers on the majority of trials, whilst the other made unfair offers, 

leading to either a positive or negative reputation being formed of each proposer. To examine 

the effects of reputation and action visibility on the AON, at the beginning of each trial, 

participants observed the proposer indicate their choice by making either a visible action, by 

grasping a light, or an occluded action, by pushing a button which turned on a light. We 

examined activity time-locked to these events and tested the hypothesis that activity in the 

AON would be modulated by both whether an action was covertly or overtly observed and 

the reputation of the proposer making the action. 

2. Methods 

2.1 Design 

In this study we used a 2x2 factorial design to examine activity in the AON when participants 

observed the actions of one of two players (‘proposers’) prior to each round of an economic 

game. The first factor was the visibility of the action. This could be either visible, where 

participants observed a reaching movement or occluded where they observed a light being 

switched on by the proposer pressing a button under the table. The second factor was the 
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reputation of the proposer. This could be either positive, when observing the actions of the 

proposer who made fair offers on 80% of the trials, or negative, when observing the actions 

of the proposer who made unfair offers on 80% of the trials. 

2. 2. Participants 

Twenty-one participants took part in this study that was approved by the Departmental Ethics 

Committee, Royal Holloway, University of London. All gave their informed consent to 

participate and were paid for their participation. All participants were right-handed and were 

screened for neurological disorders. Three participants were excluded from the analyses, two 

due to a high level of movement artefacts and one due to a technical problem that led to a loss 

of their data.  This left a total of eighteen participants (mean age ± SD: 21.1 ± 2.4, 4 male).  .  

2. 3. Procedure 

2. 3.1. Experimental Task 

The main task in this study was a variant of the UG but played under conditions of imperfect 

information (Weber, Camerer, & Knez, 2004).  As in the UG each trial involved a proposer 

who chose how to split a pot of £10 and a receiver who had the choice to either accept the 

amount offered in which case both the receiver and proposer were given their share of the pot 

or reject the offer in which case neither party would receive any money. Throughout this task 

participants took the role of a receiver while two different interaction partners took the role of 

the proposer. However, participants were ignorant of how their interaction partners had 

decided to split the pot on each trial until after they had made their decision. This setup meant 
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that participants had to base their decision on their past experience of how each proposer had 

split the pot i.e. their reputation. The current study used pre-recorded videos of the interaction 

partners but, to ensure that participants felt that their decisions mattered, they were informed 

that both they and each proposer would be paid based on the results of a randomly selected 

trial. Therefore participants believed they could still influence the reward each proposer 

received by either accepting or rejecting their offers, but were aware this was not a reciprocal 

interaction such as in the work of Xiang, Lohrenz and Montague (2013). To avoid any effects 

of gender, proposers were gender matched to the participant. 

2.3.2. Trial Structure 

Each trial was divided into four different periods (see Figure 1). In the observation period 

participants observed a 2 second video in which the proposer was seated behind a desk with 

their hands hidden from view and a lamp on either side of them. In each trial the proposer 

indicated their decision on how to split the pot by either using their right hand to grasp the 

left or right lamp with a power grip (visible condition) or by using a hidden remote to turn on 

the left or right lamp (occluded condition). Note that this meant that the proposer was always 

making some kind of motor action, but in one case the action was visible and in the other it 

was occluded. Participants were informed that the video in each trial depicted the proposer as 

they were making a choice on how to split the pot and that in each case the proposer was able 

to see, on an off-screen sign hidden to the participant, whether the action (or light) they were 

choosing corresponded to a fair or unfair decision. In addition videos were counterbalanced 

such that there was no relationship between the lamp chosen by the proposer and the fairness 

of the split, although this fact was not made explicit to our participants.  
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In fact the proposers were confederates and decisions attributed to them were manipulated by 

the experimenter to ensure that one of the proposers (positive) usually made a fair division, 

offering either 40%, 50% or 60% of the pot to the participant, while the other proposer 

(negative) usually made an unfair division, offering either 5%, 10% or 15% of the pot to the 

participant. To ensure that participants did not become too habituated to the correspondence 

between the fair and unfair splits and the identity of the proposers, there were also six catch 

trials in which the proposers made offers of the opposite fairness from the offer they usually 

made. This ensured that participants treated their decision on each trial as being of equal 

importance. To allow participants to fully learn the correspondence between the fairness of 

the split and the identity of the proposer, the catch trials only appeared after the first ten trials.   

During the decision period, participants had 3 seconds to decide whether they wanted to 

accept or reject the division of the pot that the proposer had made in the observation period, 

using one of the two direction buttons as detailed above. In this period of the trial participants 

saw a screen with either the word “same” or “different” on it, which indicated whether they 

had to press the button corresponding to the same side of the screen the proposer had 

indicated or to the opposite side in order to accept the offer. Participants were told to respond 

using an egocentric reference frame rather than the reference frame of the proposer. For 

example if in a “same” trial if the proposer chose the lamp on their left, the participant would 

have to press the right button to agree. Importantly, participants only discovered whether 

each trial required them to use the same or opposite button to indicate accept after they had 

finished observing the video for that trial. This ensured that on each trial, the subject could 

not prepare a motor response at the time of the actions of the proposer. Crucially, this meant 

that observed activation in the motor system was not due to motor preparation but must 
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instead have been due to action observation. In addition the fact that participant’s ability to 

make their desired response was dependent on their knowledge of the proposers’ previous 

action ensured that participants attended to the proposer’s actions throughout the study.    

During the outcome period, participants saw the face of the proposer and how they had 

decided to split the pot of money between themselves and the participant. The outcome 

screen was present for 3 seconds and ensured that participants had a chance to learn the 

difference between the positive and negative proposer in terms of how they split the pot of 

money.   

Finally, during the feedback period participants received feedback on what their decision had 

been in the form of either the word “accepted” or “rejected” or, in cases where participants 

failed to press either button before the end of the “decision” screen, the word “missed”. 

Feedback was displayed for 500ms. The purpose of the feedback period was to ensure that 

participants understood how to use the buttons to correctly express their decisions and also to 

provide them with an additional prompt to make sure they responded to the decision period 

within the 3 seconds.        

2.3. 3 Scanning Session 

Participants attended a training session in order to ensure to ensure that all scanned 

participants understood the nature of the task and were influenced by reputation when making 

their response judgments (see supplementary materials). Those who successfully learnt the 

reputations of the two proposers were then asked to return within 14 days for the main 

scanning session. In this session participants were reminded of the details of the game and 

were then positioned in the scanner. As our question in this experiment was not about how 
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people learn the reputation of other people, subjects first carried out a training block of ten 

trials of the game to give them time to learn the association between the two proposers and 

their likely responses (i.e. fair or unfair). In order to ensure that participants learnt the 

association there were no catch trials in this session (i.e. one proposer always made fair offer, 

and the other always made unfair offers). During this practice session a high resolution T1-

weighted structural image was acquired for the purposes of normalization (see below) and 

displaying results.  

FIGURE 1 TO GO AROUND HERE 

Following the completion of the practice block and anatomical scan participants then began 

the main experimental task. The game consisted of 140 trials, which were equally distributed 

between the four experimental conditions (35 positive visible, 35 negative visible, 35 positive 

occluded and 35 negative occluded). Events in each trial took place across five TRs 

(Temporal Resolutions) (0–15 s; TR=3s). The interval between scan onset and observation 

period onset was varied over the first TR from trial-to-trial and the interval between the 

observation period and the decision period was varied across the second and third TRs from 

trial-to-trial. This achieved an effective temporal sampling resolution much finer than one TR 

for the conditions of interest. These intervals were uniformly distributed for each condition, 

ensuring that Evoked Haemodynamic responses (EHRs) time-locked to the events were 

sampled evenly across the time period following each observation or decision period.  

Participants then rated the faces of the two proposers and 18 distractor faces for attractiveness 

and trustworthiness. They had previously rated the face during the training session prior to 

any interaction with them. During this phase and magnitude, maps were collected using a 
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GRE field map sequence. Finally participants were removed from the scanner and were 

debriefed as to the true nature of the study. Participants were informed that they would be 

paid £15 plus the money they had previously earned in the training session (see 

supplementary materials).  

2.4. Image Acquisition and Data Analysis 

Functional images were acquired using a Siemens 3.0 Tesla Trio scanner at Royal Holloway, 

University of London. Stimuli were projected onto a screen behind the participant and viewed 

in a mirror positioned over the participant’s head and participants responded using a 4 button 

response box. Presentation software (Neurobehavioral Systems, 2012) was used for the 

presentation of stimulus and the collection of participants’ responses. Behavioural data 

analysis was performed offline, and event timings were prepared for subsequent general 

linear model (GLM) analyses of fMRI data. Analyses of fMRI data were conducted in SPM8. 

720 EPI scans were acquired from each participant. In each scan 38 slices were acquired in 

an ascending manner, at an oblique angle (≈15˚) to the AC-PC line in order to decrease the 

impact of susceptibility artefacts in the orbitofrontal cortex (Deichmann et al., 2003).  A 

voxel size of 3×3×3 mm (20% slice gap, 0.6 mm) was used; TR=3 s, TE=32, flip angle=85°. 

Prior to the functional sequence high resolution T1-weighted structural images were acquired 

at a resolution of 1×1×1 mm using an MPRAGE sequence. Immediately following the 

functional sequence, phase and magnitude maps were collected using a GRE field map 

sequence (TE1 = 5.19ms, TE2 = 7.65ms). 

Data were processed and analysed using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images 

from each participant were corrected for distortions using the FieldMap toolbox (Andersson, 

http://www.fil.ion.ucl.ac.uk/spm


REPUTATION MODULATES PREMOTOR CORTEX 

 

13 

 

Hutton, Ashburner, Turner, & Friston, 2001). The B0 field map acquired after the EPI 

sequence was used to calculate static distortion and the EPI images were then realigned, and 

coregistered to the participant’s anatomical image. The structural image was processed using 

a unified segmentation procedure combining segmentation, bias correction, and spatial 

normalization to the MNI template (Ashburner & Friston, 2005).  The same normalization 

parameters were then used to normalize the EPI images. Finally, the images were spatially 

smoothed in order to conform to the assumptions of the GLM implemented in SPM8 by 

applying a Gaussian kernel of 8 mm FWHM. 

A first-level GLM was created for factorial analyses. The four conditions (positive visible, 

negative visible, positive occluded and negative occluded) were modelled as separate 

regressors and an additional regressor modelled activity during the decision period 

(regardless of the condition the period was in). Residual effects of head motion were 

modelled as covariates of no interest in the analysis by including the six head motion 

parameters estimated during realignment.  

Random effects analyses (Full-Factorial ANOVAs) was applied to determine voxels 

significantly different at the group level.  SPM{t} contrast images from all participants at the 

first-level were input into second-level full factorial design matrices. T-contrasts were 

conducted in the second-level random-effects analyses for visibility (visible vs occluded) and 

reputation (positive vs negative). An F-contrast was conducted in the second-level random-

effects analyses for the interaction of the first GLM. To give a complete picture of our data 

we present all results above a whole brain threshold of p < .001 with a cluster size threshold 

of 10.   
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To test the anatomically specific hypotheses we used a small volume correction approach that 

ensured were appropriately corrected for multiple comparisons and that any significant 

voxels were in the same region as those identified in the AON meta-analysis by 

Molenberghs, Cunnington and Mattingley (2012) Note that these findings would have been 

upheld had we used the most common cluster-wise corrections for multiple comparisons 

(Woo, Krishnan, & Wager, 2014), however, such an approach  does not provide the 

anatomical specificity to the results that was required to meet the aims of this study. As this 

study investigated action observation the three coordinates were taken from Molenberghs et 

al.’s analysis of a subset of studies that examined mirroring during action observation, rather 

than auditory, somatotopic or emotional mirroring. From those coordinates we restricted 

ourselves to activations in the left hemisphere because all of the observed actions were 

carried out with the right hand and previous research on the AON (Aziz-Zadeh, Maeda, 

Zaidel, Mazziotta, & Iacoboni, 2002) indicates that each hemisphere shows stronger 

activation when viewing actions conducted by the contralateral hand. We further restricted 

our coordinates to include only those areas that fall into the classical AON regions of the IPL 

and the premotor cortex. This left us with one coordinate centred on the left precentral gyrus 

(MNI: -51, 1, 46), one centred on the left middle frontal gyrus (MNI: -28, -11, 55) and one 

centred on the left IPL (MNI: -53, -32, 38). All coordinates from Molenberghs et al., (2012) 

were converted from Talairach to MNI using the MNI to Talairach Coordinate Converter 

(Lacadie, Fulbright, Constable, & Papademetris, 2008).  

3. Results 

3.1. Behavioural Results 
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3.1.1. Ratings of Proposers’ Faces  

Paired sample t-tests were carried out on the ratings given to the proposers faces in the 

training session.  There was no significant differences in ratings of attractiveness (t(17) = -

.62, p = .55) or trustworthiness (t(17) = -.69, p = .50). To examine whether the experimental 

manipulation of reputation had been successful, analyses of covariance were carried out on 

the attractiveness and trust ratings. In each, the dependent variable was the post-scanning 

ratings, the independent variable was the reputation of the proposer and the covariate was the 

pre-scanning ratings.  The ANCOVA for attractiveness revealed no significant effect of the 

experimental manipulation, F(1, 20.29) = 0.9, p > .05. However, the ANCOVA for 

trustworthiness found a significant effect, F(1, 16.4) = 5.183, p < .05, with participants 

judging the positive reputation proposer as being more trustworthy (M = 4.83, SD = 4.79) 

than the negative proposer (M = 1.5, SD = 5.94).        

3.1.2. Participants’ Choices in the Decision Period 

To investigate how well participants had learnt the proposers’ reputations we calculated the 

proportion of results accepted out of all decisions made (excluding missed trials) for each of 

the four conditions. A 2 x 2 repeated measures ANOVA was carried out on the number of 

decisions made with reputation (positive/negative) and visibility (visible/occluded) as the 

independent variables. A main effect of reputation was found F(1,17) = 123.7, p < .001 but 

there was no main effect of visibility and no significant interaction. This was due to the fact 

that participant accepted a more trails for the positive proposer (M = .895, SD =.128) than for 

the negative proposer (M =.193, SD = .22) (see Figure 2). 
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To further explore the question of whether participants were still learning or adapting 

behaviour based on the reputations of the proposers by start of the scanning sessions we split 

the trials for each proposer into seven blocks of ten trials each and calculated the proportions 

of responses accepted in each block. A 2 x 7 repeated measures ANOVA of block and 

reputation. This analysis revealed a main effect of reputation F(1,17) = 124.18, p < .001. 

However there was no significant effect of block, F(6, 102) = 0.45, p = .847 and no 

significant interaction between reputation and block, F(6,120) = 0.2, p = .993, suggesting that 

participants had indeed learnt the proposer’s reputations and the appropriate response prior to 

the start of the scanning task.          

FIGURE 2 TO GO AROUND HERE 

 

3.1.3. Participants’ Reaction Times in the Decision Period 

A 2 x 2 x 2 repeated measures Mixed Models analysis was conducted on participants reaction 

times (RTs), with RT as the dependent variable and response (accept, reject), visibility 

(visible/occluded) and reputation (positive/negative)  as fixed effects (see Figure 3). A mixed 

models approach was used due to the fact that 11 of our participants did not have any trials in 

at least one of the conditions. There were no significant main effects but there was a 

significant interaction between reputation and response, F(11.1,63.35) = 104.5, p = .001. 

Planned comparisons revealed that this interaction was driven by the fact that participants 

were faster significantly to accept offers from the fair proposer (M = 1137.03, SD = 276.31), 

compared to the unfair proposer (M = 1239.69, SD = 300.55), t(17) = -5.07, p < .001, and 
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marginally significantly faster to reject offers from the unfair proposer (M = 1269.49, SD = 

261.53), than from the fair proposer (M = 1455.57, SD = 451.99) , t(14) = 1.93, p = .074.   

3.2. Functional Imaging Results 

3.2.1. Interaction between Action and Reputation in the Premotor Cortex 

The F contrast carried out on the interaction between visibility and reputation revealed a 

cluster centred on the left occipital gyrus and extending into the left lingual gyrus which was 

significant at p = .05 after false-discovery rate (FDR) correction for multiple comparisons 

(see Table 1). SVC revealed a significant activation in the left precentral gyrus (see Table 2 

and Figure 3). Analysis of the parameter estimates from the peak voxel found that this 

interaction was driven by significantly greater activation for: positive visible (M = 0.34, SD = 

0.51) than  positive occluded (M = 0.17, SD = 0.56), t(17) = 2.85, p < .05; negative occluded 

(M = 0.49, SD = 0.48) than negative visible (M = 0.31, SD = 0.43), t(17) = -2.53, p < .05; and 

negative occluded than positive occluded, t(17) = -4.18, p = .001. 

TABLE 1 TO GO AROUND HERE 

3.2.2. Main Effect of Reputation in a Separate Premotor Region 

Neither whole brain nor SVC corrected analysis revealed any significant clusters for the 

positive > negative t-contrast. For the negative > positive t-contrast there were no activations 

survived whole-brain cluster wide FDR correction. However, SVC revealed increased 

activity for the negative proposer in a separate region of the left precentral gyrus to that found 

in the interaction contrast (see Table 2 and Figure 3). 
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TABLE 2 TO GO AROUND HERE 

FIGURE 3 TO GO AROUND HERE 

3.2.3. Areas Showing a Main Effect of Visibility  

The visible>occluded t-contrast revealed significant FDR corrected activation in bilateral 

occipital and temporal regions extending across the middle temporal gyrus and middle 

occipital gyrus and encompassing the left STS (see Table 1). SVC did not reveal any 

significant activation for either contrast in the hypothesised regions. 

3.2.4. Areas showing Covariance with Individual Differences in 

Trustworthiness Ratings  

To analyse individual differences in the effect of reputation on BOLD response during action 

observation we first calculated the change between pre and post scan trust ratings for each 

proposer and then subtracted the change of the negative proposer from that of the positive 

proposer. This measure of distinction between the trustworthiness of two proposers was 

entered as a positive covariate into three analyses of covariance, one for the positive > 

negative t-contrast, one for the negative > positive t-contrast and one for the interaction F-

contrast. The positive > negative ANCOVA revealed significant FDR corrected bilateral 

activation of the thalamic nucleus, which the negative > positive ANCOVA revealed a 

significant FDR corrected activation centred on the right paracentral gyrus (primary motor 

cortex: M1). No FDR corrected clusters were found for the interaction ANCOVA (see Table 

3, Figure 4). 

TABLE 3 TO GO AROUND HERE 
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FIGURE 4 TO GO AROUND HERE 

4. Discussion 

The aim of this study was to investigate whether the AON was modulated by the reputation 

of an individual performing an act. In line with our hypothesis, we found significant 

activations in two regions of the left dorsal premotor cortex (dPMC). The first of these 

showed a main effect of reputation with greater activation for the negative reputation 

proposer than the positive reputation proposer. The second showed an interaction between 

visibility and reputation which was driven by a greater effect of reputation when participants 

were observing choices relayed by an occluded action. Furthermore individual differences in 

trust ratings of the two proposers covaried with activation in right M1, providing further 

evidence for the modulating effect of reputation on motor system activation during action 

observation. Since our motivation for conducting this study was to examine the effects of 

reputation on the AON we will focus our discussion on the activations we found within the 

AON. We discuss these findings in relation to recent accounts which suggest the AON 

processes predictive information about of others’ actions.  

4.1 Negative Reputation Leads to Greater AON Activity 

Broadly speaking this study supports recent evidence showing that activation in the AON, 

and particularly the dPMC, is modulated by the social context in which actions are observed. 

Activity in the AON has been found to differ depending on whether the action is performed 

by an in-group or out group member (Molenberghs et al., 2013), or whether the actions are by 

a member of a liked or disliked group (Sobhani et al., 2012). However, in both previous 
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studies the direction of the modulation was the reverse of that in the current study with 

greater activation for the actions of in-group members or liked others. In the current study the 

left dPMC showed greater activation for the proposer with a negative reputation and the 

increased right M1 activation for the negative compared to positive proposer positively 

covaried with how much more untrustworthy the negative reputation proposer was perceived 

compared to the positive reputation proposer. 

The difference between our study and previous ones may be due to the fact that in those 

studies the observed actions had no consequences for the observer and thus activity may have 

been driven by differences in the level of attention or personal relevance of the actor. In our 

study, the actions of both the positive and the negative proposer had consequences for the 

participants, who could potentially lose money, or treat the proposer unjustly, if they did not 

attend to both the identity of the proposer and the direction of the proposers’ actions. The 

actions of both proposers needed to be attended to in order that participants could optimise 

their decision-making on the task. Thus, our study provides evidence that the AON is 

engaged when observing the actions of others during strategic social interactions.  

The finding in our study of greater activation in the AON when observing the actions of the 

proposer with a negative reputation ties into previous results suggesting that the AON shows 

a bias towards interpreting actions with a threatening or negative outcome. Lotze et al. (2006) 

found that activation in the right STS was positively correlated with the negative valence of 

observed expressive valence. Gutsell and Inzlicht (2013) showed that reduced mu-

suppression for the observation of out-group actions was abolished when those actions had a 

threatening component. Similarly Losin and colleagues (Losin et al., 2015; Losin, Cross, 

Iacoboni, & Dapretto, 2014; Losin, Iacoboni, Martin, Cross, & Dapretto, 2012) have shown 
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that actively imitating a member of a negatively perceived racial or political group leads to 

greater recruitment of the AON than does imitating members of a positively perceived group. 

Sinke, Sorger, Goebel, and de Gelder (2010) also reported greater activation in the left dPMC 

when participants observed another person making threatening, as opposed to teasing, 

gestures to a third party. Thus the current study’s finding of increased activation in the dPMC 

during the observation of a disreputable person’s actions adds to the evidence that this region 

is sensitive to the potentially negative consequences of others’ actions i.e. receiving an unfair 

offer.  

The increased AON activation for the negative reputation proposer also ties in with research 

showing a general processing bias towards those with poor reputations. Several EEG studies 

have found increased ERPs for untrustworthy faces in components related to face processing 

and attention (Dzhelyova, Perrett, & Jentzsch, 2012; Marzi, Righi, Ottonello, Cincotta, & 

Viggiano, 2014; Yang, Qi, Ding, & Song, 2011). In addition studies that manipulated 

trustworthiness with verbal descriptions (Rule, Slepian, & Ambady, 2012) or economic 

games (Vanneste, Verplaetse, Van Hiel, & Braeckman, 2007) have demonstrated biases 

towards disreputable others in memory (Rule et al., 2012) and attention (Vanneste et al., 

2007). Overall these findings indicate a rapid attentional bias towards those perceived as 

disreputable which might explain the increased AON activation seen in the current study. 

A key aspect of this study was that differentially attending to the actions of the two different 

proposers was orthogonal to any subsequent response of the participant. That is, there was no 

benefit to processing the actions of the two other proposers differently. So why did the 

premotor cortex respond differentially to the actions of the two different proposers? Notably, 

many have argued that the processing of others’ actions in the PMC is largely automatic 
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(Press, Bird, Walsh, & Heyes, 2008). We process actions and often imitate them even when 

there is no intention to do so. It is therefore clear that the goals of others’ actions could be 

processed automatically without the necessity of such processing to be either conscious or 

even beneficial. However, whilst PMC processing of others’ goals may be automatic, there is 

considerable evidence that processing others’ actions needs to differ depending on the 

context. For example, we may need to attend to others’ actions differently when learning 

through observation (Burke, Tobler, Baddeley, & Schultz, 2010; Cross, Kraemer, Hamilton, 

Kelley, & Grafton, 2009; Wade & Hammond, 2015), when tracking or learning about the 

motivational value of actions for another (Apps, Lesage, & Ramnani, 2015; Apps, 

Rushworth, & Chang, in press; Suzuki et al., 2012), and when processing the insufficiency of 

actions for meeting goals (Casile et al., 2010; Maffei, Giusti, Macaluso, Lacquaniti, & 

Viviani, 2015). Here, our results suggest that reputation may influence the automatic 

processing of others actions. This reputational effect may be driven by the fact that fairness is 

considered as a social norm (Rand, Tarnita, Ohtsuki, & Nowak, 2013; Tabibnia, Satpute, & 

Lieberman, 2008). Most participants expect other people to make fair rather than unfair offers 

in the ultimatum game. As a result, unfair offers are potentially more salient (Gabay, Radua, 

Kempton, & Mehta, 2014). Thus, it is plausible that the automatic processing of others’ 

actions is modulated when the other individual has a negative reputation formed by the 

consistent violation of social norms. Future research should examine whether such consistent 

violations lead to modulations of attention due to the potentially increased salience of actions 

of individuals with negative reputations. 

4.2 Interaction between Reputation and Visibility in the dPMC 
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In addition to the main effect of reputation another region of the left dPMC showed an 

interaction between action and reputation. Intriguingly this interaction was driven by a 

difference between the positive and negative proposers in the occluded action condition. 

Whilst the finding of greater AON activation for occluded compared to visible actions may 

initially seem counterintuitive as we outlined in the introduction there is considerable 

evidence that the AON, and specifically the dPMC, is activated when the goal of an action is 

known but the actual kinematics are unobservable. Notably neurons in the Maacque dPMC 

are known to fire preferentially  to occluded actions (Umiltà et al., 2001). In humans 

neuroimaging studies have shown that the dPMC is engaged when predicting the outcome of 

others actions (Cross et al., 2013; Ramnani & Miall, 2004; Stadler et al., 2011), when 

specifying the desired end state of an action (Majdandžić, Bekkering, van Schie, & Toni, 

2009), when detecting errors in the actions of others (Desmet, Deschrijver, & Brass, 2014) 

and when predicting the sensory consequences of an action (Kilner, 2011). Furthermore 

Stadler et al. (2012) demonstrated that TMS induced disruption of the dPMC led participants 

to make more errors when predicting the outcomes of occluded actions indicating that it plays 

a functional role in the prediction of occluded actions. 

The above findings have motivated several predictive accounts of the AON (Avenanti & 

Urgesi, 2011; Friston et al., 2011; Keysers & Gazzola, 2009; Kilner, Friston, & Frith, 2007; 

Schippers & Keysers, 2011; Schütz-Bosbach & Prinz, 2007). On such accounts the role of the 

premotor cortex during action observation is to solve that computational challenges that result 

from ambiguous perceptual information about an action (Avenanti, Annella, Candidi, Urgesi, 

& Aglioti, 2013; Avenanti & Urgesi, 2011). These accounts predict that decreasing the 

amount of sensory information regarding the trajectory of an action will lead to an increase in 
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the amount of activity in the AON. In support of this claim Avenanti et al. (2013) showed 

that disrupting areas involved in the visual processing of action with TMS led to greater CS 

excitability suggesting greater neural activity within the motor system. Another recent study 

revealed greater BOLD activation the dPMC when participants observed hand movements 

towards an occluded object compared to a visible object (Thioux & Keysers, 2015). .  

In our study participants were aware that in the light condition the proposer was performing 

an occluded action. Thus predictive accounts of the AON would expect an increase in activity 

in the motor regions due to the greater need to generate an internal rather than perceptually 

driven model of the other’s action. We therefore suggest that the interaction found in the 

current study can best be explained as a result of this greater computational burden on the 

premotor cortex, combined with a greater motivation to predict the outcome of actions 

performed by the negative proposer compared to those performed by the positive proposer. 

4.3 Role of dPMC Activation in Action Inference 

One important question for the predictive account of the dPMC activations found in the 

current study is the issue of exactly what feature of the proposers’ action is being predicted 

within the dPMC in this situation. Research in action processing has suggested the existence 

of a network of hierarchically organised action representations within the brain (Badre & 

D’Esposito, 2009; Cross, Hamilton, Kraemer, Kelley, & Grafton, 2009; Grafton & Hamilton, 

2007; Hamilton & Grafton, 2007; Kilner, 2011; Wolpert & Kawato, 1998). This hierarchy is 

formed of several distinct levels. The lowest is the kinematic level which represents features 

such as reach trajectory and grip type. Next is the motor level which represents the sequences 

of muscle activity needed to bring about particular kinematics. These sequences are 
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determined by the action goal level which represents the immediate purpose of an action, 

such as the location of a object to be interacted with. Finally there is the to level of the distal 

intention behind that action (Kilner, 2011). Several researchers (Grafton & Hamilton, 2007; 

Hamilton & Grafton, 2007; Kilner, 2011) have suggested that action observation utilises the 

same hierarchical network.  

Within such a framework, the PMC is believed to process more abstract information about 

the goals of another’s actions. Research on action execution has implicated the dPMC in the 

motor planning (Badre & D’Esposito, 2009; Hartwigsen & Siebner, 2015; Nakayama, 

Yamagata, & Hoshi, 2016; Pearce & Moran, 2012). Research in macaques using single cell 

recordings has demonstrated that neurons in the dPMC are active both when specifying the 

action required to meet a behavioural goal and when executing that action (Nakayama et al., 

2016). It has also been shown that neural populations in the dPMC represent information 

about the spatial goal of an action as action planning becomes more complex (Pearce & 

Moran, 2012). In humans the left dPMC has been implicated in the transformation of object-

related information into motor programs (Gallivan & Culham, 2015; Gallivan, Mclean, 

Valyear, Pettypiece, & Culham, 2011; Monaco et al., 2011) and in the rapid switching 

between motor plans (Hartwigsen & Siebner, 2015). In the domain of action observation, 

Majdandžić et al. (2009) used a repetition suppression paradigm while participants observed 

actions that could differ in either their grip type, trajectory or final placement. They found 

that the dPMC showed adaptation effects for repetition of final placement but not grip type or 

trajectory. Given these findings we tentatively suggest that the dPMC activation in the current 

study is likely to reflect predictive processing of the action-goal (i.e.  which light participants 



REPUTATION MODULATES PREMOTOR CORTEX 

 

26 

 

were reaching to\turning on) rather than lower level detail of the kinematics used to achieve 

that goal.       

4. 4 Conclusion 

In conclusion the current experiment sought to investigate the ability of reputation to 

modulate activity in the human AON. We show that two separate regions of the dPMC – a 

key region of the AON – are sensitive to the reputation of the person performing an actor 

with the activation in one of these areas being modulated by the visibility of the action 

performed. Additionally the difference in BOLD response between the positive and negative 

proposers in right M1 correlated with participant’s difference in their ratings of 

trustworthiness for the proposers showing some further evidence that the motor system is 

sensitive to the effects of reputation when observing others actions.  We suggest these 

findings can be interpreted within predictive accounts of the AON, in which the dPMC is 

engaged when making inferences about the other’s action. This study shows for the first time 

the influence of reputation, formed during an economic game, on the neural systems involved 

in perceiving another’s actions. Such findings pave the way for understanding more about 

how social factors influence the processing of others’ actions. Future research should 

examine the extent to which reputation modulates the AON interact with other personality 

traits, racial effects and gender.  
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Tables 

Table 1. Whole-brain peak voxel coordinates in MNI space and z-values for data time locked 

to indicator period. Activations thresholded at p > .001 uncorrected and k = 10 voxels. †, *, 

** and *** indicate activations significant at FDR cluster corrected p > .1, .05, .01 and .001 

respectively. H = hemisphere, k = cluster size. Concurrent shading indicates distinct regions 

in the same cluster. 

Region (BA) H X Y Z Z-Score k 

Reputation X Visibility 

Lateral Occipital Gyrus (18)* L -18 -92 -10 4.43 153 

Precuneus Gyrus (7) R 6 -62 46 4.14 47 
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Posterior Thalamic Radiation R 34 -54 10 3.92 69 

Fusiform Gyrus (20) L -40 -12 -24 3.91 11 

Lateral Occipital Gyrus (18) R 30 -86 -20 3.85 43 

Orbital Sulcus (11) R 18 36 -14 3.79 12 

Precentral Sulcus (6) L -54 8 38 3.76 43 

Inferior Frontal Sulcus (6) L -48 2 38 3.24  

Inferior Frontal Sulcus (44) R 44 6 32 3.67 19 

Inferior Temporal Gyrus (20) R 56 -14 -30 3.57 12 

Posterior Thalamic Radiation L -32 -56 12 3.56 10 

Unfair > Fair 

Precentral Sulcus (6) † L -26 -4 66 4.65 133 

Intraparietal Sulcus (7) R 30 -48 52 3.77 17 

Precuneus Gyrus (7) L -8 -62 54 3.64 27 

Superior Temporal Sulcus (41) L -42 -46 12 3.54 24 

Precuneus Gyrus (5) R 12 -58 52 3.44 22 

Precentral Sulcus (6) R 30 -4 58 3.27 12 

Visible > Occluded 

Inferior Temporal Gyrus (37)*** R 48 -60 0 5.44 1597 

Lateral Occipital Gyrus (19) R 38 -80 6 4.47  

Lateral Occipital Gyrus (19)*** L -50 -78 4 5.40 1445 
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Middle Temporal Gyrus (37) L -46 -60 10 4.88  

Inferior Temporal Gyrus (37) L -42 -64 4 4.70  

Superior Frontal Gyrus  (10) L -12 66 10 3.89 124 

Medial Orbitofrontal Gyrus  (10) L -10 62 0 3.49  

Medial Superior Frontal Gyrus  (10) R 6 56 24 3.47  

Superior Frontal Sulcus (9) L -18 32 44 3.54 10 

Occluded > Visible 

Cingulate Sulcus (32) L -10 10 46 3.66 40 

Precentral Sulcus (6) R 54 6 40 3.35 20 

 

Table 2.  Small volume corrected peak voxel coordinates in MNI space and z-values for data  

time locked to indicator period. H = hemisphere, k = cluster size. 

Region (BA) H X Y Z Z-Score k 

Reputation X Visibility 

Precentral Sulcus (6) L -54 6 40 3.37 7 

Unfair > Fair 

Precentral Sulcus (6) L -30 -6 62 3.70 16 

 

Table 3. Whole-brain peak voxel coordinates in MNI space and z-values for areas with 

activation showing positive covariance with trust ratings. Activations thresholded at p > .001 



REPUTATION MODULATES PREMOTOR CORTEX 

 

41 

 

uncorrected and k = 10. †, *, ** and *** indicate activations significant at FDR cluster 

corrected p > .1, .05, .01 and .001 respectively. H = hemisphere, k = cluster size. Concurrent 

shading indicates distinct regions in the same cluster. 

Region (BA) H X Y Z Z-Score k 

Reputation X Visibility 

Anterior Corona Radiata L -22 42 8 4.08 33 

Paracentral Gyrus (4) R 4 -32 70 3.73 15 

Paracentral Gyrus (4) L -4 -36 72 3.66  

Frontal Inferior Gyrus Pars Triangularis (44) R 60 22 24 3.53 30 

Frontal Inferior Gyrus Pars Triangularis (45) R 60 28 18 3.48  

Cerebellum 7b R 44 -60 -50 3.36 20 

Nucleus Putamen (48) L -22 4 -4 3.34 13 

Fair  > Unfair 

Thalamic Nucleus*** L -6 -28 16 4.45 160 

Thalamic Nucleus R 6 -30 16 3.98  

Cerebellar Crus1 (19) L -36 -74 -24 3.83 26 

Precuneus gyrus (7) L -8 -68 46 3.47 19 

Cerebelum_6 (37) L -36 -58 -22 3.35 10 

Unfair > Fair 

Paracentral Gyrus (4)*** R 6 -20 56 4.59 1260 

Cingulate Sulcus R 8 -36 56 4.35  
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Anterior Cingulate Gyrus (11) L -4 30 -4 3.81 11 

Rolandic Sulcus (4) L -18 -32 70 3.64 25 

Paracentral Gyrus (4) L -14 -24 70 3.35  

Anterior Rostral Sulcus  (10) R 8 58 4 3.39 18 

Anterior Cingulate Gyrus (32) R 8 38 12 3.30 10 

 

 

 

 

Figures 
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Figure 1. Structure of experimental trials (dotted lines indicate varied onsets for observation 

and decision periods. In the observation period (onset varied across the 1st temporal 

resolution (TR) participants saw the proposer either gasp one of the lights (visible) or turn on 

one of the lights by pressing a hidden button (occluded). We examined activity time-locked to 

these videos. In the decision period (onset varied across the 2nd and 3rd TRs) participants 

decided whether to accept or reject the proposers offer. In the outcome period they 

discovered what offer the proposer had made and in the feedback period they were informed 

of their choice for that trial.      
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Figure 2. Proportion of trials accepted by reputation of proposer and visibility of action. 

Error bars represent SEM.   

 

Figure 3. A) Brain areas showing a main effect of reputation. B) Brain areas showing an 

interaction between action and reputation. Threshold set at p <.001 uncorrected. k = 10 

voxels. Beta coefficients averaged across whole cluster using MarsBar (Brett, Anton, 

Valabregue, & Poline, 2002). Error bars represent SEM. Circles indicate regions significant 

after small volume correction. 
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Figure 4. Brain Areas showing covariance with individual differences in trustworthiness 

ratings. Red indicates positive correlation with positive > negative contrast. Blue indicates 

positive correlation with negative > positive contrast. Beta coefficients averaged across 

whole cluster using MarsBar (Brett et al., 2002). Circles indicate regions significant after 

FDR correction. 
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