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Abstract

A classic exercise in the topology of surfaces is to show that, using handle slides, every disc-band
surface, or 1-vertex ribbon graph, can be put in a canonical form consisting of the connected sum of
orientable loops, and either non-orientable loops or pairs of interlaced orientable loops. Motivated
by the principle that ribbon graph theory informs delta-matroid theory, we find the delta-matroid
analogue of this surface classification. We show that, using a delta-matroid analogue of handle
slides, every binary delta-matroid in which the empty set is feasible can be written in a canonical
form consisting of the direct sum of the delta-matroids of orientable loops, and either non-orientable
loops or pairs of interlaced orientable loops. Our delta-matroid results are compatible with the
surface results in the sense that they are their ribbon graphic delta-matroidal analogues.
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1. Overview and background

Matroid theory is often thought of as a generalisation of graph theory. W. Tutte famously
observed that, “If a theorem about graphs can be expressed in terms of edges and circuits alone it
probably exemplifies a more general theorem about matroids” (see [14]). The merit of this point
of view is that the more ‘tactile’ area of graph theory can serve as a guide for matroid theory,
in the sense that results and properties for graphs can indicate what results and properties about
matroids might hold. In [7] and [8], C. Chun et al. proposed that a similar relationship holds
between topological graph theory and delta-matroid theory, writing “If a theorem about embedded
graphs can be expressed in terms of its spanning quasi-trees then it probably exemplifies a more
general theorem about delta-matroids”. Taking advantage of this principle, here we use classical
results from surface topology to guide us to a classification of binary delta-matroids.

Informally, a ribbon graph is a “topological graph”, whose vertices are discs and edges are
ribbons, that arises from a regular neighbourhood of a graph in a surface. Formally, a ribbon graph
G = (V, E) consists of a set of discs V' whose elements are vertices, a set of discs F whose elements
are edges, and is such that (i) the vertices and edges intersect in disjoint line segments; (ii) each
such line segment lies on the boundary of precisely one vertex and precisely one edge; and (iii)
every edge contains exactly two such line segments. We note that ribbon graphs describe exactly
cellularly embedded graphs, and refer the reader to [10], or [12] where they are called reduced band
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(c) The bouquet B; ; k.

Figure 1: Handle slides.

decompositions, for further background on ribbon graphs. A ribbon graph is non-orientable if it
contains a ribbon subgraph that is homeomorphic to a Mobius band, and is orientable otherwise.
A ribbon graph with exactly one vertex is called a bouquet. An edge e of a ribbon graph is a loop if
it is incident with exactly one vertex. A loop is non-orientable if together with its incident vertex
it forms a M&bius band, and is orientable otherwise. Two loops e and f are interlaced if they are
met in the cyclic order efef when travelling round the boundary of a vertex. We let B; ; ;. denote
the bouquet shown in Figure 1(c) consisting of i orientable loops, j pairs of interlaced orientable
loops, and k non-orientable loops.

A handle slide is the move on ribbon graphs defined in Figures 1(a) and 1(b) which ‘slides’ the
end of one edge over an edge adjacent to it in the cyclic order at a vertex. (We make no assumptions
about the order that the points 1,...,6 in the figure appear on a vertex.) A standard exercise in
low-dimensional topology is to show that every bouquet can be put into the canonical form B; ;
using handle slides (see for example, [5, 9, 11], and note that in topology bouquets are often called
disc-band surfaces). In fact, we can always assume that in the canonical form B; jj, one of j or k
is zero. The following records the results of this exercise.

Proposition 1. For each bouquet B and for some i, j, k, there is a sequence of handle slides taking
B to B; ;o if B is orientable, or B, ., with k # 0, if B is non-orientable. Furthermore, if some
sequences of handle slides take B to B; ;1 and to By g, then i = p, and so B is taken to a unique
form B; jo or B by handle slides.

This result is essentially the classification surfaces with boundary up to homeomorphism re-
stricted to bouquets: j is the number of tori making up the surface, k the number of real projective
planes, and ¢ + 1 is the number of holes in the surface.

Following the principle of [7] that ribbon graphs serve as a guide for delta-matroids, we look for
the delta-matroid analogue of Proposition 1. Our aim is to find a classification of delta-matroids
up to “homeomorphism” that is consistent with this surface result.

Delta-matroids, introduced by A. Bouchet in [1], generalise matroids. Recall the symmetric
difference, XAY, of sets X and Y is (X UY)\(X NY). A set system is a pair (F,F) consisting
of a finite set £ and a collection F of subsets of E. A delta-matroid D is a set system (E,F) in



which F is non-empty and satisfies the Symmetric Exchange Aziom: for all X|Y € F, if there is
an element v € XAY, then there is an element v € XAY such that XA{u,v} € F. Elements of
F are called feasible sets and E is the ground set. We often use F(D) and E(D) to denote the set
of feasible sets and the ground set, respectively, of D. If its feasible sets are all of the same parity,
D is even, otherwise it is odd. It is not hard to see that if we impose the extra condition that the
feasible sets are equicardinal, the definition of a delta-matroid becomes a reformulation of the bases
definition of a matroid. Thus a matroid is exactly a delta-matroid whose feasible sets are all of the
same size (in which case the feasible sets are the bases of the matroid).

If D= (E,F)and D' = (E', F') are delta-matroids with ENE’ = (), the direct sum, D& D', of D
and D’ is the delta-matroid with ground set EUE’ and feasible sets {FUF' | F € F and F' € F'}.
We define D; j 1, to be the delta-matroid arising as the direct sum of i copies of ({e},{0}), j copies
of ({e, f},{0,{e, f}}), and k copies of ({e},{0,{e}}). (Strictly speaking we sum isomorphic copies
of these delta-matroids having mutually disjoint ground sets.)

Here we prove the analogue of Proposition 1 for binary delta-matroids. The terms handle slide
and binary delta-matroid in the theorem statement are defined in Sections 2 and 3, respectively.

Theorem 2. Let D = (E, F) be a binary delta-matroid in which the empty set is feasible. Then,
for some i, j, k, there is a sequence of handle slides taking D to D; ;o if D is even, or D; g, with
k #0, if D is odd. Furthermore, if some sequences of handle slides take D to D; ;. and to Dy g,
then i = p, and so D is taken to a unique form D; o or D, by handle slides.

This theorem is the analogue of Proposition 1 in the following sense. Every ribbon graph
gives rise to a delta-matroid, as described in Section 2. If we replace each ribbon graph term in
Proposition 1 with its delta-matroid analogue, a bouquet becomes a delta-matroid in which the
empty set is feasible, D; ;1 is the delta-matroid of B; ; i, we define a delta-matroid handle slide in
Section 2 as the analogue of a handle slide on a bouquet, being orientable becomes being even, and
non-orientable becomes odd. Thus Theorem 2 gives a classification of a class of delta-matroids up
to “homeomorphism”, showing how the interplay between ribbon graphs and delta-matroids can
be exploited to obtain structural results about delta-matroids.

Although it is an analogue, it is important to note that Theorem 2 is not a generalisation of
Proposition 1 since the latter can not be recovered from the former. (This is since, using terminology
we shortly introduce, a handle slide of a over b may be defined for a ribbon graphic delta-matroid
but not for the corresponding edges of a ribbon graph, see Remark 8.)

2. Defining handle slides for delta-matroids

In this section we determine the analogue of a handle slide for delta-matroids. We start by
recalling how a delta-matroid can be associated with a ribbon graph. A quasi-tree is a ribbon
graph with exactly one boundary component. A ribbon graph H is a spanning ribbon subgraph of a
ribbon graph G = (V, E) if H can be obtained from G by deleting some of its edges (in particular,
this means V(H) = V(G)). Abusing notation slightly, we say that a spanning ribbon subgraph @ of
G is a spanning quasi-tree of G if Q) restricts to a spanning quasi-tree of each connected component
of G. The delta-matroid of G, denoted D(G), is (E(G), F(G)) where E(G) is the edge set of G and

F(G) ={F C E(G) | F is the edge set of a spanning quasi-tree of G}.



It follows by results of Bouchet from [3] that D(G) is a delta-matroid. (Bouchet worked in the
language of transition systems and medial graphs. The framework used here is from [7].) A delta-
matroid is ribbon graphic if it is isomorphic to the delta-matroid of a ribbon graph.

Example 3. If G is a plane graph then the spanning quasi-trees of G are exactly the maximal
spanning forests of G. Since the latter form the collection of bases for the cycle matroid M (G) of
G we have that for plane graphs D(G) = M(G). Delta-matroids can therefore be viewed as the
analogue of matroids for topological graph theory (see [7, 8], where this point of view was proposed,
for further discussion on this). A consequence of this is that, for any ribbon graph G, the empty
set is feasible in D(G) if and only if G is a disjoint union of bouquets.

Example 4. For the ribbon graphs B ;. defined in Section 1 and illustrated in Figure 1(c), we
have D(B; ) = D; ji, where D; ;1 is also as in Section 1.

Definition 5. Let D = (E, F) be a set system, and a,b € E with a # b. We define D, to be the
set system (E, Fgp) where

Fap =FA{XUa|XUbec Fand X C E\ {a,b}}.

We say that there is a sequence of handle slides taking D to D" if D' = (- ((Dayby)agbs) ** * Janbn
for some aq,b1,...,a,,b, € E, and we call the move taking D to Dy, a handle slide taking a over

b.
Note that (Dgp)ap = D and that handle slides define an equivalence relation on set systems.

Example 6. If D = (E,F) with E = {1,2,3} and F = {{1,2,3},{1,2},{1,3},{2,3},0}, then
]:12 - {{17273}7{172}7 {273}7®}

The following theorem shows that Definition 5 provides the delta-matroid analogue of a handle
slide.

Theorem 7. Let G = (V, E) be a ribbon graph, a and b be distinct edges of G with neighbouring
ends, and Ggp be the ribbon graph obtained from G by handle sliding a over b as in Figure 1(a)
to 1(b). Then

D(Gab) = D(G)ab'

Proof. Handle slides act disjointly on direct sums of delta-matroids and on connected components
of ribbon graphs. Furthermore, the delta-matroid of a disconnected ribbon graph is the direct sum
of the delta-matroids of its connected components. This means that, without loss of generality, we
can assume that G is connected.

Every feasible set in D(Ggp) and D(G)gp is of the form X, X Ua, X Ub or X U {a, b} for some
X C E\ {a,b}. Suppose 1,...,6 are the points on the boundary components of G and G, shown
in Figures 1(a) and 1(b). Each X C E'\ {a, b} defines spanning ribbon subgraphs of G and of G.
The boundary components of the spanning ribbon subgraphs (V, X) connect the points 1,...,6 in
some way. For each X C E'\ {a, b} such that at least one of X, X Ua, X Ub or X U{a,b} is feasible
(i.e., defines a spanning quasi-tree), Table 1 shows all of the ways that the points 1,...,6 can be
connected to each other in the boundary components of the corresponding ribbon subgraphs, and
whether X, X Ua, X Ub and X U {a,b} is feasible in D(Gyp) or D(G)q. For example, the entry
(13)(24)(56) indicates that there are arcs (13), (24), and (56) in the boundary components of the



’ Connection in (V, X) \ F(G) ‘ F(Gap) ‘

(12)(34)(56) X U{a,b} X U{a,b}
(12)(35)(46) X Ua, X U{a,b} X Ua, X U{a,b}
(12)(36)(45) XUa XUa
(13)(24)(56) XUb, X U{a,b} XUa, XUb, X U{a,b}
(13)(25)(46) X, XUa, XUb, X U{a,b} X, XUb, X U{a,b}
(13)(26)(45) X, XUa X, XUa
(14)(23)(56) XUb XUa, XUb
(14)(25)(36) X, X U{a,b} X, X U{a,b}
(14)(26)(35) X, X Ub, X U{a,b} X, XUa, XUb, X U{a,b}
(15)(23)(46) X, XUb X, XUa, XUb
(15)(24)(36) X, XUa, X U{a,b} X, XUa, X U{a,b}
(15)(26)(34) XUa, XUb, X U{a,b} XUb, X U{a,b}
(16)(23)(45) X X
(16)(24)(35) X, XUa, XUDb X, XUb
(16)(25)(34) XUa, XUb XUb

Table 1: A case analysis for the proof of Theorem 7.

spanning ribbon subgraphs defined by X. In this case, assuming at least one of X, X Ua, X Ub or
X U{a,b} is feasible, it must be that X Ub and X U {a, b} are feasible in D(G); and X Ua, X UD,
and X U {a, b} are feasible in D(G) (as all other sets will have too many boundary components).
It is then readily seen from the table that F(Ga) = F(G)ap, as required. O

Remark 8. A key difference between handle slides of ribbon graphs and of delta-matroids is that in
a ribbon graph G,; can be formed only if @ and b have adjacent ends, whereas in a delta-matroid
Dy, can be formed, without restriction, for all a,b € E. (A consequence of this is that Theorem 7
does not show that the set of ribbon graphic delta-matroids is closed under handle slides.) Since
Ggap can be formed with respect to only certain edges a and b, it is natural to ask if there is a
corresponding concept of “allowed handle slides” in a delta-matroid. The answer is no. To see
why consider the orientable bouquet B with cyclic order of edges around its vertex 1al2a23b34b4,
and the orientable bouquet B’ with cyclic order of edges around its vertex 21a12ab43b34. Then a
handle slide taking a over b is not possible in B but is possible in B’. However D(B) = D(B’).
Thus you cannot tell the “allowed” handle slides of a ribbon graph from its delta-matroid alone.

Remark 9. Proposition 1 and Theorem 7 immediately give a version of Theorem 2 for ribbon
graphic delta-matroids. However, this version of the theorem is much weaker than might at first be
expected. If D is ribbon graphic then D = D(G) for some ribbon graph G. Applying Proposition 7
to G then taking the delta-matroid of each ribbon graph will give a proof of the first part of
Theorem 2 (that D can be put in the form D ;o or D; o1 depending on parity) for ribbon graphic
delta-matroids. However, the uniqueness results from the second part of Theorem 2 do not follow in
this way. This is because there may be sequences of handle slides that take you outside of the class
of ribbon graphic delta-matroids (c.f. Remark 8). However, we will see later that the uniqueness
part of the result does indeed hold for ribbon graphic delta-matroids (see Corollary 17).



We defined handle slides in terms of set systems. It is natural to ask if the set of delta-matroids
is closed under handle slides. Example 6 shows that in general this is not the case: although
D is a delta-matroid, D, is not. The delta-matroid from Example 6 is one of A. Bouchet and
A. Duchamp’s excluded minors for binary delta-matroids from [4]. We are thus led to the question
of whether the set of binary delta-matroids is closed under handle slides, and we turn our attention
to this.

3. Binary delta-matroids and the proof of Theorem 2

Let K be a field. For a finite set E, let M be a skew-symmetric |E| x |E| matrix over K with
rows and columns indexed by the elements of E. In all of our matrices, e € FE indexes the i-th row
if and only if it indexes the i-th column. Let M [A] be the principal submatrix of M induced by
the set A C E. By convention M|[()] is considered to be non-singular. Bouchet showed in [2] that a
delta-matroid D(M) can be obtained by taking E to be the ground set and A C F to be feasible
if and only if M[A] is non-singular over K.

The twist of a delta-matroid D = (E,F) with respect to A C E, is the delta-matroid D * A :=
(E,{AA X | X € F}). It was shown by Bouchet in [1] that D % A is indeed a delta-matroid. A
delta-matroid is representable over K if it has a twist that is isomorphic to D(M) for some skew-
symmetric matrix M over K. A delta-matroid representable over GF'(2) is called binary. We note
that ribbon graphic delta-matroids are binary (see [2]), and also record the following result.

Lemma 10 (Bouchet [2]). Let E be a finite set, A C E, and M be a skew-symmetric |E| x |E]
matriz over a field K with rows and columns indexed by E. Then if D = D(M) and ) € F(D x A),
we have D x A = D(N) for some skew-symmetric |E| x |E| matriz N over K.

‘We now describe handle slides in terms of matrices.

Definition 11. Let E be a finite set and M be a symmetric |F| X |E| matrix over GF(2) with
rows and columns indexed by the elements of F/, and let a,b € E with a # b. We define M, to be
the matrix obtained from M by adding the column of b to the column of a, then, in the resulting
matrix, adding the row of b to the row of a. We say that M, is obtained by a handle slide, or by
handle sliding a over b.

Note that in Definition 11 adding the row of b to the row of a then, in the resulting matrix, the
column of b to the column of a also results in the matrix M,;. Definition 11 by no means describes
a new operation on matrices. For example the operation was considered by R. Kirby in the context
of handle slides and 3-manifolds in [13].

The following theorem shows that all the concepts of handle slides defined here agree.

Theorem 12. Let M be a symmetric matriz over GF(2). Then
D(M_y,) = D(M)yp.

Proof. We need to show that D(My,) and D(M ), have the same feasible sets. In view of the
definition of handle slides, Definition 5, it suffices to prove that, for Y C E,

1. det (My[Y]) = det (M[Y]) ifa ¢ Y,

2. det (My[Y]) = det (M[Y]) if a,b €Y, and



3. det(Mgp[Y)) = det(M[Y]) 4+ det(M[Y A {a,b}])ifa €Y and b ¢ Y.

The first item is trivial since M[Y] = My,[Y] when a ¢ Y.

For the second item, suppose that a,b € Y. Observe that in this case applying the construction
in Definition 11 to M[Y] results in My[Y] (i.e., (M[Y])ap = Myp[Y]). Since adding one row or
column of a matrix to another row or column does not change the determinant, det(M[Y]) =
det(Myp[Y]).

For the third item, suppose that a € Y and b ¢ Y. Set X =Y \ a, so that Y = X Ua and
Y A {a,b} = X Ub. We then need to show

det(Mgp[X Ua]) = det(M[X Ua)) + det(M[X U b)). (1)

(We will work in terms of the set X, rather than Y, as it simplifies the exposition.) Suppose that
M[X U{a,b}] = [aijli<ij<n. Without loss of generality, we assume that a indexes the first row
and column of M[X U{a,b}|, and b indexes the second. Then M[X] = [a; j]3<i j<n; M[X Ua] is the
(n—1) x (n—1) matrix obtained from M[X U{a, b}] by deleting its second row and column; M [X U]
is the (n —1) x (n—1) matrix obtained from M[X U{a, b}] by deleting its first row and column; and
Mp[X Ua] is the (n—1) x (n—1) matrix whose first row is [a1,1 + a2 a13+a23 -+ a1+ azn),
first column is [a11 +az2 azi+ase -+ api+ amg]T
M[X].

Letting M|[X]; ; denote the matrix obtained by deleting the i-th row and j-th column of M[X],
using the Laplace (cofactor) expansion of the determinant, expanding down the first row and column
of M[X U{a,b}], gives

, with the rest of the matrix given by

det(M[X U{a,b}]) = a1 det(M[X]) + Z a1,ia;,1 det(M[X]m-)

3<i,5<n

+ | ag2 det(M[X]) + Z a2,;0j2 det(M[X]ivj)

3<i,j<n

+ Z a1,0;4,2 det(M[X]i,j) + Z a2,40;4,1 det(M[X]m-) . (2)
3<i,j<n 3<i,j<n

By expanding down the first row and column of M[X U a| and of M[X U b], we see the first and
second bracketed terms on the right-hand side of (2) equal det(M[X U a]) and det(M[X U b)),
respectively. The remaining two sums in (2) are also determinants. Let N be the (n —1) x (n —1)

matrix whose first row is [O a13 a4 - al’n], first column is [0 aza Ga2 - amg]T, with
the rest of the matrix given by M[X]. Let P be the (n — 1) x (n — 1) matrix whose first row is
[0 a3 a4 - ag’n], first column is [0 asi aq1 - an,l]T, with the rest of the matrix

given by M|[X]. By expanding down the first row and column of the N and P, we see the third
and fourth bracketed terms on the right-hand side of (2) equal det(N) and det(P), respectively.
However, since M[X U {a, b}] is symmetric, we see N = PT and so det(N) = det(P). Since we are
working over GF'(2), Equation (1), and so the theorem, holds. O

The following observation is an immediate consequence of Lemma 10 and Theorem 7. It should
be contrasted with the observations made in Remark 8. We note that Corollary 13 is generalised
by Theorem 19 where the assumption that the empty set is feasible is removed.



Corollary 13. The set of binary delta-matroids in which the empty set is feasible is closed under
handle slides.

Remark 14. A proof of Theorem 7 in the special case where G is a bouquet can be obtained
from Theorem 12. The interlacement between, and the orientability of, edges of a bouquet B can
be used to obtain a matrix M such that D(B) = D(M) (see [7] for a description of how). By
examining how interlacement and orientability changes under a handle slide, it can be shown that
D(By,) = D(Mg). Theorem 12 then gives D(Myy) = D(M ), = D(B)ap.

Our starting point was the observation that handle slides can be used to put any bouquet into
the form B; ;. The following says that this result holds on the level of binary delta-matroids.

Lemma 15. Let D be a binary delta-matroid such that the empty set is feasible. Then there is a
sequence of handle slides taking D to D; j, for some i,j,k.

Proof. Since the empty set is feasible, by Lemma 10, D = D(M) for some symmetric matrix M
over GF'(2). We need to use handle slides and reordering of rows and columns to put M in a block
01
10
of such a matrix equals D; ; 1., for some 4, j, k.) To do this first observe that once we have a block of
a matrix then a handle slide M, preserves that block as long as a does not index a row or column
of it. Thus, by induction, it is enough to show that we can always use handle slides to construct a
block of the required form in the matrix M.

If M has a diagonal entry me. = 1. Then for each f with my, = m, ; = 1 handle slide f over
e. In the resulting matrix, all other entries of the e-th row and e-th column are zero, giving a block
1].
[ } Now suppose all diagonal entries of M are zero. If there is some e such that all entries of
the e-th row and e-th column are zero, then we have a block [0] Otherwise there is some f
with mys, = m. s = 1. For convenience, and without loss of generality, we can reorder the rows
and columns so that e labels the first row and column, and f labels the second. So we have the

diagonal form in which each block is one of [0}, [1], or [ ] . (It is clear that the delta-matroid

submatrix [(1) (1)} in the top left corner of M. We need to use handle slides to make all other

entries in the first two rows and columns zero. This can be done as follows. If m;. = me; = 1
and m; y = my,; = 0 sliding i over f makes the (i,e) and (e, ?) entries zero. If m; . = me; = 0 and
mj s = my; = 1 sliding ¢ over e makes the (4, f) and (f,4) entries zero. If m;. = me; = 1 and
m; p = my,; = 1 sliding 7 over f, then i over e makes the four entries zero. Thus we can obtain a

block [[1) (1)] , as required. This completes the proof of the lemma. O

We can now prove Theorem 2.

Proof of Theorem 2. By Lemma 15, there is a sequence of handle slides taking D to D; j x, for some

i,j,k. We have that D; ;1 = D(M; ;) where M; ;. consist of i blocks of [O], j blocks of [2 (1)],

and k blocks of the matrix [1]

It is readily seen from Definition 5 that handle slides of delta-matroids preserve parity, so D is
odd if and only if D; j is. A delta-matroid D(M), where M is a symmetric matrix over GF(2), is
odd if and only if there is a 1 on the diagonal of M (this follows from the fact that a symmetric



matrix of odd size over GF'(2) with zeros on the diagonal must be singular). Thus D is even if and
only if D; ;x has k = 0, and the even case of the theorem follows.

Now suppose that D is odd. Then handle slides can be used to put it in the form D; ;; with
k > 0. It remains to put this D;;; in the form D;q, for some p € N. If j = 0 we are done,

010
otherwise, possibly after reordering rows and columns, there is a block {1 0 0| whose rows and
0 01

columns are labelled by a, b, ¢, say, in that order. The sequence of handle slides a over ¢, ¢ over b,
and b over a transforms this into the 3 x 3 identity matrix. It follows that if D; ; has k # 0, then
there is a sequence of handle slides taking M to D; g x42;, completing the proof of the first part of
the theorem.

For the second claim, suppose that there are sequences of handle slides take D to D; ;; and
to Dpqr- Then there is a sequence of handle slides taking D; ;5 to Dy 4. Since a determinant
of a block diagonal matrix is the product of the determinants of its blocks, the size of the largest
feasible set in D; ;1 is |E|—1, and in D), 4, is |E| —p. Upon observing from Definition 5 that handle
slides preserve the size of the largest feasible sets, we have that ¢ = p, as required. O

It is worth emphasising that we have shown that if D can be taken to Dj ;, then 2j + k is the
size of the largest feasible set in D, and 7 is the size of the ground set minus this number.

Corollary 16. Let D = (E,F) be a binary delta-matroid in which the empty set is feasible and
such that there is a sequence of handle slides taking D to D; ;.

1. Suppose D is even. There is a sequence of handle slides taking D to Dy 4, if and only if
p=i,q=7,andr =k=0.

2. Suppose D is odd. There is a sequence of handle slides taking D to Dy 4 if and only if p = 1,
g=1"L, andr = |E|—1— 2L, for some 0 <{ < LW%J

Proof. The first item follows from Theorem 2 upon noting that handle slides preserve parity. For
the second item, suppose D is odd. By Theorem 2, D; p|—;—2¢ can be taken to D; o |p—; using
handle slides, and D; ;5 can be taken to D; o g|—;, thus D can be taken to D;y g|_;_9¢ by handle
slides. Conversely, by Theorem 2, D; ;. and Dy, 4, can both be taken to D; g g—; by handle slides,
and so i = p and 2q + r = |E| — ¢, and result follows. O

Theorem 7 can be used to show that ribbon graphic delta-matroids are not closed under handle
slides. Choose a binary delta-matroid D with empty set feasible that is not ribbon graphic. There
is a sequence of handle slides taking D to a ribbon graphic delta matroid D; ;. Thus there must be
a handle slide between a graphic and non-graphic delta-matroid. Despite this, the following result
says that we can always work with handle slides within the class of ribbon graphic delta-matroids.

Corollary 17. Let D = (E, F) be a ribbon graphic delta-matroid in which the empty set is feasible.
If there is a sequence of handle slides taking D to D; ;, then there is a sequence of handle slides
in which every delta-matroid is ribbon graphic that takes D to D; .

Proof. First suppose that D is even. Then, by Theorem 2, D; ;. = D;;o. Since D is ribbon
graphic D = D(B) for some bouquet B. By Proposition 1 there is a sequence of (ribbon graph)
handle slides taking B to B, ;0. Taking the delta-matroids of the ribbon graphs that appear in this



sequence and applying Theorem 7 gives a sequence of (delta-matroid) handle slides, in which every
delta-matroid is ribbon graphic, that takes D to D, . The result then follows by Corollary 16.
Now suppose that D is odd. Then, by Corollary 16, D; jx = D; g p|—i—2¢ for some 0 < £ <

LlE‘T_ZJ Since D is ribbon graphic D = D(B) for some bouquet B. By Proposition 1 there is
a sequence of (ribbon graph) handle slides taking B to Bpo,. For a bouquet H consisting of
three non-interlaced non-orientable loops a, b, and ¢ whose ends appear in the order aabbcc when
travelling round the vertex, observe that ((Hgp)pa)ac consists of a pair of interlaced orientable loops
b and ¢, and a non-interlace non-orientable loop a. It follows that there is a sequence of (ribbon
graph) handle slides taking By, o, and hence B, to By m r—2m for each 0 < m < Lm%pj Taking the
delta-matroids of the ribbon graphs that appear in this sequence from B, and applying Theorem 7,
gives a sequence of (delta-matroid) handle slides in which every delta-matroid is ribbon graphic
that takes D to Djm r—2m. By Corollary 16, for some m, Dy r—om = D; g p|—i—2¢ = Dijx, and
the result follows. O

Remark 18. Tt is natural to ask if the binary condition in Theorem 2 can be dropped. That is,
can every delta-matroid in which the empty set is feasible be taken to a canonical form D ; by a
sequence of handle slides? The answer is no. For example, the delta-matroid over ' = {1, 2, 3} with
feasible sets F = {{1,2,3},{1,2},{1,3},{2,3},0} cannot be. (Alternatively, that the answer is no
follows from Theorem 19 below since the D j; are binary.) However, there should be a version of
Theorem 2 that includes non-binary delta-matroids or set systems. The key problem is determining
the canonical forms (i.e., the analogues of the D; jj, which may not be delta-matroids) for other
classes of delta-matroids.

4. Closure under handle slides

Although handle slides are defined for all delta-matroids, because of our motivation from the
classification of bouquets we have so far focused on delta-matroids in which the empty set is feasible.
We now examine what happens when it is not.

Theorem 19. The set of binary delta-matroids is closed under handle slides.
Proof. For any delta-matroid D, A C E(D), and a,b € E(D) with a #b. If a,b ¢ A,
Dab*A: (D*A)ab, (3)

and if a,b € A,
Dab*A: (D*A)ba- (4)

Equation (3) follows easily from the observation that, since a,b ¢ A, for any F' C E(D), either of
a or b isin F if and only if it is in F' /A A. Equation (4) follows by direct computation. Start by
writing

F(DxA)={X;,Y;Ua,Z,UbW;Ua, W, UD, T, U{a, b}}iez,jej,keK,leﬁ,meM ,

where X;,Y;, Z,, W; C E \ {a, b}, none of the Y}, Zy, W, are equal, and where the Z, 7, K, £, and
M are indexing sets. From this it is easy to compute the feasible sets of (D * A)py, D, Dgyp, and
Dy * A, upon which it is seen that F(D x A) = F((D * A)y,), and Equation (4) follows.
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Now suppose that D = (E,F) is a binary delta-matroid and a,b € E with a # b. Then there
is some A C E and some symmetric matrix M over GF'(2) such that D x A = D(M). We need to
show that Dy, is binary. That is, we need to show that Dy, +* B = D(N) for some B C E and some
symmetric matrix N over GF'(2). We will consider four cases given by the membership of a and b
in A.

Case 1: Suppose that a,b ¢ A. Then, by Equation (3) and Theorem 12,

Doy x A= (D * A)gp = D(M)qp, = D(Mgyp), (5)

and so Dy is binary.
Case 2: Suppose that a € A and b € A. Then, by Equation (4) and Theorem 12,

Dgpx A = (D * A)ba = D(M)ba = D(Mba)a (6)

and so Dy is binary.

Case 3: Suppose that a € A and b ¢ A. If there is some F € F(D x A) with a € F and b ¢ F, then
by Lemma 10, we see that D x (A A F) = D(N), for some symmetric matrix N over GF'(2). Since
a,b¢ AN F, Case 1 applies and so Dy is binary.

Similarly, if there is some F' € F(DxA) with a ¢ F and b € F, then by Lemma 10, Dx(AAF) =
D(N), for some symmetric matrix N over GF(2). Since a,b € A A F, Case 2 now applies and so
D,y is binary.

Otherwise every feasible set of D * A contains both a and b, or neither of a or b. Suppose this
is the case. There is either some F' € F(D * A) containing both a and b or there is not.

First suppose that there is, and let F' € F(D x A) with a,b € F. Let X € F(D x A) be such
that a,b ¢ X (we know such a set exists, since the empty set is feasible). Then a € X A F, and
by the Symmetric Exchange Axiom, X A {a,u} € F for some u € X A F. Since, by hypothesis, a
or b cannot appear in a feasible set without the other, we must have u = b, and so X U {a,b} € F.
Similarly, the Symmetric Exchange Axiom gives that F' A {a,u} € F for some u € X A F. Again
we must have that b = v and so F'\ {a,b} € F. These two observations together give that we can
partition the feasible sets of D * A to get (D x A) = {X;, X; U {a,b}},c7, where X; C E'\ {a,b}
and Z is an indexing set. From this we see that F(D) = {XZ Ua, X; U b}iez’ where for each set X,
X; denotes X; A (A\ {a,b}), and that F(Dgp) = {XZ U b}A . We then see that Dy, = D\ a. Since
D is binary, and the set of binary delta-matroids is minorl-eclosed, it follows that D, is binary.

All that remains is the case where no feasible set of D * A contains a or b (so a and b are loops).
In this case each feasible set of D contains a but not b, and it follows that D = Dg,. Since D is
binary, so is Dgp.

Case 4: Suppose that a ¢ A and b € A. If there is some F' € F(D A) with a ¢ F and b € F, then,
by Lemma 10, D+ (AA F) = D(N), for some symmetric matrix N over GF'(2). Since a,b ¢ AAF,
Case 1 now applies and so D is binary.

If there is some F' € F(D x A) with a € F and b ¢ F, then D x (A A F) = D(N). Since
a,be AN F, Case 2 now applies and so Dy is binary.

If there is some F' € F(D x A) with a € F and b € F, then D x (A A F) = D(N). Since
ac€ AN F and b¢ AA F, Case 3 now applies and so Dy, is binary.

All that remains is the case in which no feasible set of D x A contains a or b (so a and b are
loops). In this case we can write 7 (D x A) = {X;},.7, where X; C E'\ {a,b} and 7 is an indexing
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set. From this we see that F(Dgpx A) = {Xl U {a,b}, XZ} i and that Dgyx A = (D * A) @ Dy 1.
1€
Since both D * A and Dy 1, are binary, it follows that Dg, is. This completes the proof of the

theorem. O

Since handle slides preserve the maximum (and minimum) sizes of a feasible set in a delta-
matroid, we have the following.

Corollary 20. The set of binary matroids is closed under slides.

The problem of extending Theorem 2 to all binary delta-matroids now arises. One way to try
to extend the Theorem is to augment the set of canonical forms to include delta-matroids D; ;1
consisting of the direct sum of D; ;i with [ copies of delta-matroids isomorphic to ({e}, {{e}}).
We conjecture that a version of Theorem 2 holds for all binary delta-matroids with these terminal
forms.

Conjecture 21. For each binary delta-matroid D, there is a sequence of handle slides taking D

to some D; ;1 where ¢ is the size of the ground set minus the size of a largest feasible set, [ is the

size of a smallest feasible set, 2j 4+ k is difference in the sizes of a largest and a smallest feasible
w

set. Moreover, k = 0 if and only if D is even, and if D is odd then every value of j from 0 to [ ¥ ],

where w is the difference between the sizes of a largest and a smallest feasible set, can be attained.

Conjecture 21 is true for ribbon graphic delta-matroids. This can be proven by induction on
the size of a smallest feasible set. The base case is Theorem 2. For the inductive step take a ribbon
graph G such that D = D(G); choose any non-loop edge e = (u,v) of G; handle slide each edge,
other than e, that is incident with u over e so that u becomes a degree 1 vertex; the corresponding
handle slides in D(G) transform it into a ribbon graphic delta-matroid with a direct summand
({e},{{e}}). The main step in this argument is that any non-loop element e of a ribbon graphic
delta-matroid can be transformed into a coloop using only handle slides over e. This result does not
hold for delta-matroids in general. For example, it is readily checked that in the uniform matroid
Us.4 no element e can be transformed into a coloop using only handle slides over e. In fact, with
a little more work, it can be checked that no sequence of handle slides applied to Us 4 will create
a coloop. Of course the (delta-)matroid Us 4 is not binary and so this example says nothing about
the validity of Conjecture 21. However it does indicate that any approach to isolating ({e}, {{e}})
for the conjecture will be intimately tied to the binary structure of the delta-matroid.

It is perhaps also worth commenting on the alternative approach of considering sequences of
twists, and handle slides that can only act on delta-matroids in which the empty set is feasible,
rather than just sequences of handle slides. Such an extension results in non-unique terminal forms.
For example if D = ({e, f},{0,{e},{e, f}}) then there is a sequence of handle slides taking D to
Dy .2, but also there is a sequence of handle slides taking D x e to D1 1. In fact, ribbon graph
theory indicates that this approach should fail. The ribbon graph analogue is to consider ribbon
graphs up to partial duals (see [6, 7]), and handle slides that can only act on bouquets. But partial
duality changes the topology of a surface, and so our choice of terminal form will need to reflect
this. Nevertheless, this relation on binary delta-matroids will result in some set of terminal forms.
What are they?

We conclude with one final open question. We have seen that binary delta-matroids are closed
under handle slides, but that delta-matroids, in general, are not. What classes of delta-matroids
are closed under handle slides?
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