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Abstract

In this paper we show that sieve methods used previously to in-
vestigate primes in short intervals and corresponding Goldbach type
problems can be modified to obtain results on primes in Beatty se-
quences in short intervals.

1 Introduction

Let [·] denote the integer part function. The sequence [ξn + η] is called
a Beatty sequence. In some sense it is a generalisation of an arithmetic
progression, and for integer values of ξ that is precisely what it is. There has
been a flurry of interest shown recently in prime values of Beatty sequences,
for example see [6, 13, 16]. We write π(x; ξ, η) for the number of primes of
the form [ξn+ η] ≤ x. In [7] the following result is proved.

Theorem 1. Let an irrational ξ > 1 be given, and for x > 1 write y = xθ

with θ > 5/8. Then

π(x+ y; ξ, η)− π(x; ξ, η) =
y

ξ log x
(1 + o(1)) (1)

as x→∞.

The authors note that if ξ is rational the question collapses to the well-
known problem of primes in an arithmetic progression. To discuss this case,
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suppose that ξ = q/a as a reduced fraction and let N(ξ, η) be the number of
solutions in m to

0 < m+ a(1− η) ≤ a, (m, q) = 1. (2)

Write δ(ξ, η) = N(ξ, η)/φ(q). In the rational case it is necessary to have
δ(ξ, η) > 0 (see §2 below, the primes p counted satisfy pa ≡ m mod q). This
number effectively replaces the 1/ξ factor in (1) for the rational case. We
note that if a and q are both ‘large’ then δ(ξ, η) = (1+o(1))ξ−1. However, for
a ‘small’ in terms of q we can easily get δ(ξ, η) = 0 (the case a = 1, (q, [η]) > 1
is of course trivial). For example, if q = 15, a = 2, η = 3 then [ξn + η] is
alternately divisible by 3 and 5. More generally, by the Chinese Remainder
Theorem we can have δ(ξ, η) = 0 for any a by choosing q, η suitably. In
the rational case the work of Huxley and Iwaniec [11] establishes (1) (with
ξ−1 replaced by δ(ξ, η)) for θ > 7/12. The exponent 7/12 is the well-known
limit for currently known results on primes in short intervals when trying to
establish an asymptotic formula. In recent years the size of y required to
ensure that the interval [x, x + y) contains a prime has been reduced using
sieve methods, culminating in the result from [4] that y > x21/40 suffices. It
is the purpose of this paper to show that the techniques developed for this
and related results enable us to replace (1) by a lower bound of the correct
order of magnitude for smaller values of y. We here prove the following.

Theorem 2. If ξ > 1 is irrational and y = xθ with θ > 5/9 then

π(x+ y; ξ, η)− π(x; ξ, η) >
y

10ξ log x
(1 + o(1)) (3)

as x→∞. In the case ξ is the rational q
a

and δ(ξ, η) > 0 this becomes

π(x+ y; ξ, η)− π(x; ξ, η) >
99y

100 log x
(1 + o(1)) δ(ξ, η) . (4)

In the ξ rational case one can reduce y further to x21/40 with the constant
99/100 weakened to 1/100. The reader should note that our exponent 5/9
is smaller than the 7/12 ‘classical’ exponent for obtaining an asymptotic
formula for the number of primes in a short interval, but larger than the
exponents obtained for primes in short intervals since the work of Heath-
Brown and Iwaniec [10]. The reason for this will become clear when we see
how little Type I and Type II information is available for the exponential
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sums we need to use. The techniques we require to prove our new result
are essentially all contained in [2] and [3], although we will require some
adaptation especially in the final case of the proof (see Lemma 7, without
which our results would have been somewhat weaker). We shall set up the
proof in a simpler way than done in [7] (more like the earlier work of Banks
and Shparlinski [6]) to reduce our task to applying a sieve method in tandem
with estimates for double exponential sums over short intervals and Dirichlet
polynomial techniques.

Using a standard notation we say ξ is of finite type if there is some A >
such that for all positive integers n we have

||nξ|| � n−A. (5)

Here ||x|| denotes the distance from x to a nearest integer. We remark that if
ξ is of finite type then the implied constant in (3) is effectively computable.
Otherwise there is an implicit appeal to Siegel’s theorem in the proof of our
result in the case q < (log x)40 later (this case does not arise when ξ is of
finite type). It is of some interest to consider if Theorem 1 can be improved
for certain ξ. We shall give in the final section a brief proof of the following
improvement of Theorem 1 when ξ is of finite type.

Theorem 3. If ξ > 1 and is irrational of finite type and y = xθ with θ > 3/5
then

π(x+ y; ξ, η)− π(x; ξ, η) =
y

ξ log x
(1 + o(1)) (6)

as x→∞.

We note further recent work on Beatty primes in short intervals, namely
that R.C. Baker and L. Zhao [5] have shown that there are infinitely many
bounded gaps between primes in Beatty sequences by adapting Maynard’s
method [14] to this situation. Also, the present author [9] has studied nec-
essary and sufficient conditions for the intersection of two Beatty sequences
to contain infinitely many primes. Combining the techniques in [9] with the
methods we shall explore here would give results on primes in short intervals
which lie simultaneously in two Beatty sequences satisfying certain necessary
compatibility conditions. The exponent 5

9
would have to be increased to 4

7

for certain cases, however.
The author thanks the referee for their careful reading of the paper and

subsequent comments.
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2 Method outline

As previous authors have observed, p = [nξ + η] is equivalent to

0 < {pα + β} ≤ α, (7)

where
α = 1/ξ, β = (1− η)/ξ,

and {x} represents the fractional part of x. We thus wish to count solutions to
(7) with x < p ≤ x+ y. We suppose that x is sufficiently large and the proof
takes three different directions depending on Diophantine approximations
to α. Henceforth we suppose that y = x

5
9
+ε with ε “small”. Write Ξ =

x0.551, ν = Ξ−1. The crucial point is that 11
20
< 0.551 < 5

9
. By Dirichlet’s

theorem in Diophantine approximation there is a reduced fraction a/q such
that α = a/q + γ with

q < y2x−1(log x)−40, |qγ| < xy−2(log x)40.

If
q < (log x)40 and |qγ| < ν (8)

(and this case includes the rational case for all sufficiently large x) we can
split the interval [x, x+ y] into yν +O(1) intervals Ij of length Ξ on each of
which the set Mj of integers m with

0 < pγq + βq +m ≤ αq, p ∈ Ij, (m, q) = 1,

is unchanged. We then need to solve pa ≡ m (mod q), p ∈ Ij,m ∈ Mj for
each j (in the rational case γ = 0 and the above is just (2) rewritten). For
each m coprime to q we obtain > 0.99Ξ/(φ(q) log x) solutions by [3, Theorem
3]. If α is irrational then q →∞ and |Mj| = (1 + o(1))αφ(q). This gives

|{p ∈ Ij : p = [nξ + η]}| ≥ 99αΞ

100 log x
(1 + o(1)) .

Hence (3) follows in this case. If ξ is rational then for all large x there is just
one set M1 with |M1| = N(ξ, η) and so we obtain (4) for this case.

Now suppose that (8) does not hold. Then solving (7) can be quickly
transformed into a problem of bounding exponential sums over primes in
short intervals by well-known methods. The method for bounding the sums
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will depend on whether q ≥ (log x)40 or q < (log x)40 and |γq| > ν. In the
former case we can use elementary methods to bound the sums (see Lemmas
2 and 3 below). These correspond to the minor arcs in the Circle Method. In
the latter case we use major arc techniques. The reader should note though
that we never deal with the two cases at once which was necessary in [2] and
also arises in [7].

We write, as is customary, e(x) = exp(2πix). Before proceeding further
we must introduce our sieve method. We wish to count primes by using
a function, say ρ(k), which takes the value 1 at primes and takes a non-
positive integer value at composite numbers. This function must satisfy
certain properties depending on which case we are considering. For example,
when q ≥ (log x)40, we must have

(i)
∑
ρ(k)e(γk) can be decomposed into multiple sums that can be esti-

mated by known techniques for exponential sums;

(ii)
∑
ρ(k) can be decomposed into multiple sums that can be estimated by

Dirichlet polynomial techniques leading to a positive lower bound for
the sum.

If we were content to settle for the larger exponent 4/7 the required
function is essentially given as A0(k) by the first display on [2, p.778] and
would lead to the 1/10 in the lower bound being increased to 1/4. The value
we obtain here improves on 4/7 for two reasons. One: we only need to sieve
one variable whereas in [2] two variables are sieved using a vector sieve. Two:
we do not have to have the same decomposition for both cases as was required
in [2]. If we were to combine our present techniques with the method in [9]
this second assertion might not always hold.

We quote [8, Chapter 3] to introduce the function

ρ(n, z) =

{
1 if n ∈ N, p|n⇒ p ≥ z,

0 otherwise.

As there, it will be important that ρ(n, z) = 0 if n /∈ N. We note that

ρ(n, z) =
∑
d|n

d|P (z)

µ(d), where P (z) =
∏
p<z

p ,
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and Buchstab’s identity gives, for 1 ≤ w < z,

ρ(n, z) = ρ(n,w)−
∑
w≤p<z

ρ(n/p, p). (9)

Also, ρ(n, z(n)) is the characteristic function of the set of primes if n1/2 <
z(n) ≤ n. It will be our goal to decompose ρ(n,X) where X =

√
2x into

multiple sums using Buchstab’s identity and discard certain non-negative
sums which cannot be evaluated with present knowledge in order to form
our desired lower bound function ρ(n).

3 Exponential sums

The following result converts the problem of counting fractional parts in an
interval to the estimation of sums of exponential sums.

Lemma 1. Suppose 0 < α < 1, Lα > 1. Let θn and an be sequences of real
numbers. Then ∑

n≤N
0<{θn}≤α

an = α
∑
n≤N

an +O(E) (10)

where

E =
1

L

∑
n≤N

|an|+O

( ∑
1≤`≤L

min(α, `−1)

∣∣∣∣∣∑
n≤N

ane(`θn)

∣∣∣∣∣
)
.

Proof. See [1, pp. 18-21]

We take α = ξ−1 as above and put L = (log x)10. Henceforth we write
I = [x, x + y]. Also, we use s ∼ S to denote S ≤ s < 2S. We then have
the following results on multiple sums over short intervals. These results
are given in [2] but with less precision for the log x terms and without the
additional summation over `.

Lemma 2 (Type I information). Suppose that

|qα− a| < q−1 with (a, q) = 1. (11)

Then, for any M ≥ 1, L ≥ 1, we have∑
`≤L

∑
s≤M

∣∣∣∣∣∑
st∈I

e(α`st)

∣∣∣∣∣� L(log x)

(
y

q
+ LM + q

)
. (12)

6



Proof. This follows from Lemma 2.2 of [15] with the trivial bound L for the
number of ways an integer h can be represented as `s, ` ≤ L.

Corollary. In the notation of Lemmas 1 and 2 we have

∑
1≤`≤L

min(α, `−1)
∑
s≤M

∣∣∣∣∣∑
st∈I

e(α`st)

∣∣∣∣∣� (log log x)(log x)

(
y

q
+ LM + q

)
.

(13)

Lemma 3 (Type II information). Suppose that (11) holds and as, bt are
sequences such that, for any M ,∑

s≤M

|as|2 �M(logM)A,
∑
t≤M

|bt|2 �M(logM)B. (14)

Then ∑
`≤L

∑
s∼M

∑
st∈I

asbte(α`st)� (log x)1+(A+B)/2yLθ, (15)

with

θ2 =
ML

y
+
L

q
+
Lx

yM
+
qx

y2
.

Proof. This follows from the Cauchy-Schwarz inequality together with [15,
Lemma 2.2]. See [2, p.767] for details.

Corollary. In the notation of Lemmas 1 and 3 we have

∑
1≤`≤L

min(α, `−1)

∣∣∣∣∣∑
s∼M

∑
st∈I

asbte(αst)

∣∣∣∣∣� (log log x)(log x)1+(A+B)/2yθ. (16)

Now to obtain our results we only need a small saving on the trivial bound
for the exponential sums, that is we require an upper bound � y(log x)−C

for a suitably large C. For Lemma 2 Corollary this reduces to

M � y(log x)−C−12, (log x)C+2 � q � y(log x)−C−2.

For Lemma 3 Corollary this reduces to

(x/y)(log x)D �M � y(log x)−D, (log x)D � q � y2x−1(log x)−D,
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where D = 23 + 2C + A + B. We should remark first that these results
are near to best possible since we cannot get cancellation in a sum with
� 1 terms on average. Second, we comment that the range for q is quite
restricted in Lemma 3. Third, we note that the Type I information is poorer
than usual in problems reducing sums over primes to double sums. This is
why Vaughan’s identity cannot give a value of y less than x2/3, and we run
into problems with sieve methods as y reduces below x5/9. The method of
Zhan [17] can work with y reduced to x3/5 for q in a certain range, and x5/8

in another by using Heath-Brown’s generalised Vaughan identity in tandem
with bounds for exponential sums with two Type I ranges whose product is
sufficiently large. Appropriate mean-value results for Dirichlet polynomials
are then needed to complete the proof. The results we have given above only
suffice to prove our main theorem in the case q ≥ (log x)40. This would suffice
to prove the theorem when ξ is of finite type. We too shall need estimates
that depend on bounds for Dirichlet polynomials. These are found in [3] and
we shall use them as in [2]. In the following χ(n) denotes a Dirichlet character
to the modulus q where q ≤ (log x)40. We also set T0 = exp((log x)1/3)).

Lemma 4 (Analytic information). Suppose that b(k) is a real sequence such
that for any A > 0∫ T ′+T

T ′

∣∣∣∣∣∑
k≤x

b(k)χ(k)

k1/2+it

∣∣∣∣∣ dt� Tyx−1/2(log x)−A (17)

whenever
T ∈ [xy−1, x], T0 ≤ T ′ � T 2, T ′ + T ≤ x.

Then if for some A > 0 we have

α =
a

q
+ γ, (a, q) = 1, |γ| < y−2x(log x)A, q ≤ (log x)A

we have∑
n∈I

b(n)e(nα) =
µ(q)

yφ(q)

∑
k∈I

e(kγ)
∑
m∈I

b(m)χ0(m) +O
(
y(log x)−A

)
.

In particular, if ∑
m∈I

b(m)� y

log x
,
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then ∣∣∣∣∣∑
n∈I

b(n)e(nα)

∣∣∣∣∣� |qγ|−1 + y(log x)−A . (18)

Proof. This is established in [2, pp. 767-771].

We note that in the case q < (log x)40, |qγ| > ν we can take A = 50 to
turn (18) into the bound

∑
1≤`≤L

min(α, `−1)

∣∣∣∣∣∑
n∈I

b(n)e(`nα)

∣∣∣∣∣� y(log x)−49 . (19)

Here we have applied (18) with α substituted with α` for each `, replacing
a, q, γ by b = b(`), r = r(`), γ′ = γ′(`) respectively, and so

`α =
b

r
+ γ′, r ≤ (log x)40 < (log x)50, νq−1 < |γ′| < y−2x(log x)50 .

4 The case q ≥ (log x)40

For convenience we work with the standard sifting function defined for any
set of integers E by

S(E , z) =
∑
n∈E

ρ(n, z) .

We also put
En = {m : mn ∈ E} .

With this notation, Buchstab’s identity becomes

S(E , z) = S(E , w)−
∑
w≤p<z

S(Ep, p) .

We shall take E = A,B or C where

B = {n : x ≤ n ≤ x+ y}, A = {n ∈ B : 0 < {nα + β} ≤ α},

C = {n : x ≤ n ≤ x+ xδ},

with
δ = exp

(
−(log x)

1
3

)
.
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We note that by the Prime Number Theorem we have

S
(
C, x1/u

)
=
ω(u)δx

log x
(1 + o(1)) ,

where ω(u) is Buchstab’s function (see [8, pp 339-342]). We require the
following result which can be found as [8, Theorem 3.1].

Lemma 5. Suppose that for any sequences of complex numbers am, bn that
satisfy |am| ≤ 1, |bn| ≤ 1 we have, for some λ > 0, µ > 0, κ ≤ 1

2
, M ≥ 1,

that ∑
mn∈A
m≤M

am = λ
∑
mn∈B
m≤M

am +O(Y ) (20)

and ∑
mn∈A

xµ≤m≤xµ+κ

ambn = λ
∑
mn∈B

xµ≤m≤xµ+κ

ambn +O(Y ). (21)

Let cr be a sequence of complex numbers such that

|cr| ≤ 1, and if cr 6= 0, then p|r ⇒ p > xε, (22)

for some ε > 0. Then, if xµ < M, 2R < min(x1−µ,M), and M > x1−µ if
2R > xµ+κ, we have∑

r∼R

crS(Ar, xκ) = λ
∑
r∼R

crS(Br, xκ) +O(Y log3 x). (23)

Now by (13) and (16) we can apply Lemma 5 with µ = 4
9
, κ = 1

9
,M =

x
5
9 , λ = α. Let z = x1/9, z′ = x5/36, z∗(P ) = x5/9/P for x

1
3 ≤ P < x4/9. We

can thus obtain formulae for∑
r∼R

arS(Ar, z), R < x
5
9 , and for S(A, z) ,

immediately from Lemma 5. For example, we have

S(A, z) = αS(B, z)(1 + o(1)) +O
(
y(log x)−7

)
.

We can extend this to give a formula for S(A, z′) using Buchstab’s identity
applied four times as this will lead to sums

S(A, z),
∑
p1

S(Ap1 , z), . . . ,
∑

p1,p2,p3,p4

S(Ap1p2p3p4 , p4).
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The first terms can all be evaluated by Lemma 5, while the final sum can be
estimated immediately from (16) since

x4/9 ≤ p1p2p3p4 ≤ z′
4

= x5/9.

We can also evaluate, for x
1
3 ≤ P ≤ x

4
9 ,∑

p∼P

S(Ap, z∗(P )) =
∑
p∼P

S(A, z)−
∑
p∼P

z≤q<z∗(P )

S(Apq, q),

as the final sum has x
4
9 ≤ pq ≤ x

5
9 . Similarly we can deal with∑

p∼P

S(Ap, z∗(P )) where z∗(P ) =

{
(x5/9/P )

1
2 if x2/9 < P < x1/3

(x5/9/P )
1
3 if x1/9 < P < x2/9.

Henceforth we take P = 2k, k ∈ N so that in an expression involving p we
define P by P ≤ p < 2P . We also put z∗(P ) = P for P > x

4
9 . We can thus

apply Buchstab’s identity twice to obtain

S(A, X) = S(A, z′)−
∑

z′≤p<X

S(Ap, z∗(P ))+
∑

z′≤p<x
4
9

z∗(P )≤q≤min(p,(x/p)
1
2 )

S(Apq, q) . (24)

In the final sum above we can decompose twice more if pq2 < x5/9. Also we
can give a formula immediately from (16) when x4/9 ≤ pq ≤ x5/9.

Now we must pause and take stock at this point for we have only given a
formula for sums involvingA in terms of sums involving B. Since y < x7/12 we
may not have an asymptotic formula for all the sums involving B. Certainly
we do not have such a formula for S(B, X). However, we can use the detailed
analysis given in [3] to produce asymptotic formulae for most of the resulting
sums and we now show that this suffices. For example, we immediately have
by the method expounded there that

S(B, z) = y(xδ)−1S(C, z)(1 + o(1)) .

Rather than going through the working in [3] de nouveau, we shall take it as
it stands (it is valid for y > x11/20 and we have y > x5/9). To illustrate what
happens, we have so far shown that∑
z′≤p<X

S(Ap, z∗(P )) = α(1 + o(1))
∑

z′≤p<X

S(Bp, z∗(P )) +O
(
y(log x)−7

)
.
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We can write, with z0 = x
1
10 ,∑

z′≤p<X

S(Bp, z∗(P )) =
∑

z′≤p<X

S(Bp, z0)−
∑

z′≤p<X
z0≤q<min(z∗(P ),(x/p)

1
2 )

S(Bpq, q)

= S1 − S2 say.

We then have
S1 = y(xδ)−1(1 + o(1))

∑
z′≤p<X

S(Cp, z0) .

We can then read off [3, Diagram 1] those values of p, q for which we are
unable to give the required asymptotic formula for the corresponding parts
of S2. We can do the same immediately for the final sum on the right hand
side of (24). We thus arrive at

S(A, X) ≥ αy(xδ)−1
(
S(C, X)(1 + o(1))− Exδ(log x)−1

)
,

where E corresponds to the expected size of the sums we have had to discard
because we either could not obtain the required formula forA in terms of B or
of B in terms of C. By standard methods we can turn the sums into integrals
involving Buchtab’s function ω(u) (see [8, pp 15-16]). We give a couple of
examples of the components of E by way of illustration before stating the
contributions from each region. The numerical calculations performed here
were done twice: once using BASIC on a modern 64-bit personal computer
and once using Mathematica on a Raspberry Pi. The calculations agreed to
more decimal places than we shall quote here.

We consider the part of the double sum with pq2 < x5/9 where it is
possible to decompose twice more. This contributes to E∫

w

∫
x

∫
y

∫
z

ω((1− w − x− y − z)/z)

wxyz2
dz dy dx dw .

Here the region of integration is defined by

5

36
≤ w ≤ 2

9
,

1

3

(
5

9
− w

)
≤ x ≤ min

(
w,

1

2

(
5

9
− w

))
,

1

9
≤ z ≤ y ≤ x ,

excluding the region with

w + 4x ≥ 0.82, w + x ≤ 0.36

12



(for this corresponds to the region ∆2 on [3, Diagram 1]) and it is assumed
that no combination of the variables lies between 4

9
and 5

9
. Thus this is quite

a small region of integration resulting in a contribution to E not exceeding
0.0019. Here and henceforth we replace ω(u) by an upper bound approxima-
tion given by

ω(u)


= 1/u if 1 ≤ u ≤ 2,

= (1 + log(u− 1))/u if 2 ≤ u ≤ 3,

≤ 1
3
(1 + log 2) if u ≥ 3.

(25)

Now consider the contribution from the part with x
2
9 ≤ p ≤ x

1
3 , pq < x

4
9

or pq > x
5
9 . For the part of the sum with pq3 < x we may use the Buchstab

identity to write∑
p,q

S(Apq, q) =
∑
p,q

S(Apq, (x/pq)
1
2 ) +

∑
p,q

q≤r<(x/pq)
1
2

S(Apqr, r) .

Although we cannot evaluate the first sum on the right hand side above,
we are be able to deal with part of the second sum. In fact this leads to a
contribution < 0.249 in place of < 0.34.

The region with x5/27 ≤ p ≤ x2/9, pq2 > x5/9 contributes < 0.077. The
region with x1/3 ≤ p ≤ x4/9 contributes < 0.522. The regions for which we
cannot evaluate terms like S(Bpq, q) contribute < 0.01 from the working in
[3]. We thus conclude that E < 0.86 which more than suffices to establish
(3) in this case.

5 The case q < (log x)40

As we remarked in [2] it is the possibility that T ′ could be as large as T 2 that
causes problems in using Lemma 4. If T ′ � T then we could use the same
type of working that leads to y = x21/40 in [4]. Instead we must adapt the
working in [2, 3] to intervals of length [x, x + x5/9+ε] to obtain the required
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arithmetical information. We must assume that we have either a

Type I sum: b(k) =
∑
mn=k
m∼M

am

Type I/II sum: b(k) =
∑
mnr=k

m∼M,n∼N

ambn ,

or Type II* sum: b(k) =
∑
mnr=k

m∼M,n∼N

ambncr .

In the final sum the coefficient cr is a convolution of the characteristic
functions of primes on certain intervals. In all the sums we assume that
an, bm � 1.

Lemma 6. We obtain (17) for a Type I sum with M ≤ x5/9.

Proof. This corresponds to [2, Lemma 3.6].

Lemma 7. We obtain (17) for a Type I/II sum if

M ≤ x13/27, N ≤ x7/27, MN ≤ x19/27. (26)

Proof. There is no corresponding result in [2]. Instead we must adapt [8,
Lemma 7.4] or equivalently [4, Lemma 10]. Now we cannot use the reflection
principle or the fourth power moment of an L-function as there. Instead we
must use Jutila’s result [12] that, for any ε > 0,

∑
χ mod q

∫ T ′+T

T ′

∣∣L (1
2

+ it, χ
)∣∣4 dt� (

qT + qT ′
2
3

)
(qT ′)ε .

Using this, Hölder’s inequality, and the mean-value theorem for Dirichlet
polynomials we quickly obtain that the left hand side of (17) is

� (M + T )
1
2 (N2 + T )

1
4T

1
3
+ 1

4
ε � Tyx−

1
2 (log x)−A

as required from (26).

Lemma 8. We obtain (17) for a Type II* sum if

x−
1
9 ≤M/N ≤ x

1
9 , MN ≥ x

7
9 . (27)
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Proof. This corresponds to [2, Lemma 3.1] and [8, Lemma 7.3] with g =
2.

Lemma 9. We obtain (17) for a Type II* sum if

max(M,N) ≤ x
7
15 , MN ≥ x

16
21 , min(M,N) ≥ x

8
27 . (28)

Proof. This corresponds to [2, Lemma 3.2] after replacing T = x9/20 by x4/9

in [3, Lemma 4].

We note that the above lemmas supply us with the required bounds on
exponential sums when their hypotheses are satisfied via Lemma 4 and (19).
We now use the above information to provide useful asymptotic formulae.

Lemma 10. Suppose that either (27) or (28) holds. Then we have∑
m∼M
n∼N

ambnS(Amn, f(m,n)) = α
y(1 + o(1))

xδ

∑
m∼M
n∼N

ambnS(Cmn, f(m,n)) .

Here f(m,n) is a smooth function (possibly constant) of m and/or n such as

f(m,n) = n or f(m,n) = (x/mn)
1
2 .

Proof. This follows on combining Lemmas 1, 4, (19) and whichever of Lem-
mas 8 or 9 is appropriate.

Lemma 11. Suppose M ≤ x
1
2 . Then∑

m∼M

S(Am, z) = α
y(1 + o(1))

xδ

∑
m∼M

S(Cm, z) .

Proof. This can be established by converting the problem to exponential
sums as in the last section then working in the same way as [2, Lemma
3.8]. The reader should note that we do not need to go via S(Bm, z) (as in
the last section) because the arithmetical information required to establish
asymptotic formulae for S(Bm, z) includes that for obtaining S(Am, z) (as
we only need T = T ′ for the B case).

Lemma 12. Suppose that M ≤ x13/27, x
1
9 ≤ R ≤ x

2
9 . Then∑

m∼M
r∼R

amcrS(Amr, z) = α
y(1 + o(1))

xδ

∑
m∼M
r∼r

amcrS(Cmr, z) .
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Proof. We work in a similar way to Lemma 11. First suppose that M ≥ x
4
9 .

We can then write, with w = exp((log x)
9
10 )),∑

m∼M
r∼R

amcrS(Amr, z) =
∑
m∼M
r∼R

amcrS(Amr, w)−
∑

m∼M,r∼R
w≤p<z

amcrS(Amrp, p) . (29)

The first sum on the right hand side above can be estimated using Lemma 7
using [8, Theorem 4.3] as for the similar term in [8, Lemma 7.5]. The second
sum can be handled via Lemma 8 (with p here taking the role of r in that
result).

Now define ρ by R = xρ. To apply Lemma 8, with r here now having the
same meaning as in that lemma, we need a variable m′ = xa with a in the
range

1− ρ− 1
9

2
≤ a ≤

1− ρ+ 1
9

2
.

This is an interval of length 1
9

whose left hand end-point is between 1
3

and 7
18

.
We can proceed using the basic idea of the author’s sieve method to take out
the prime factors of the implicit variable counted in the S(·, ·) notation by
repeated use of Buchstab’s identity; that is, we iterate the step (29). We can
keep iterating so long as Lemma 7 is applicable to estimate

∑
S(Amrs, w)

and we can stop when combining m with the new prime variables gives
the variable m′ required. Since each new prime variable is ≤ x

1
9 we must

eventually succeed (compare [2, Lemma 3.8]).

We are now in a position to perform our decomposition of S(A, X) into
sums which we can either evaluate or discard. We write

S(A, X) = S(A, z)−
∑

z≤p<X

S(Ap, z) +
∑

z≤q≤min(p,(x/p)
1
2 )

z≤p<X

S(Apq, q) .

We can evaluate the first two terms on the right hand side above using Lemma
11. Some parts of the final term above can be evaluated immediately from
Lemma 10. If pq2 ≤ x

1
2 we can apply Buchstab twice more using Lemma

11. In the remaining sum we can decompose twice more using Lemma 12 if
pq ≤ x13/27, q ≤ x

2
9 . Large sections of the resulting quadruple sums can be

evaluated using Lemma 10 since there are so many possible combinations of
variables. Even for the parts of the final double sum for which we have not
been able to apply Buchstab again, we can use the device from the previous
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section and consider which almost-primes counted are amenable to detection
by Lemma 10. Some calculations then give the following results for the
proportion of the expected value we must discard:

Double sum discarded < 0.78,

Quadruple sum discarded < 0.005.

We thus conclude that

S(A, X) > α
y(1 + o(1))

5xδ
S(C, X) ,

which more than suffices to complete the proof.

6 Proof of Theorem 3

We note the following result proved by Zhan as [17, Theorem 2].

Lemma 13. Assume that

α =
a

q
+ λ, (a, q) = 1, |λ| ≤ 1

qτ
, 1 ≤ q ≤ τ.

Write L = log x. Then, for any B > 0, there exists cj > 0, 1 ≤ j ≤ 3 such
that if

τ = A2N−1L−c1 , q ≥ Lc2 , and N
3
5Lc3 ≤ A ≤ N,

then we have ∑
N−A<n≤N

Λ(n)e(nα)� AL−B .

We apply the above with B = 20, A = y,N = x + y. It quickly follows
from this that for all large x we have∑

`≤L10

∣∣∣∣∣ ∑
x≤p<x+y

e(`pα)

∣∣∣∣∣� yL−10,

which establishes Theorem 3 by Lemma 1. To see this, we use Dirichlet’s
theorem in Diophantine Approximation to find a q` for each 1 ≤ ` ≤ L10

with an associated a` such that

q` ≤ y2x−1L−c1 , `α =
a`
q`

+ λ`, |λ`| ≤
xLc1

q`y2
.

17



Since α is of finite type we have, for some A ≥ 1,

xLc1

y2
≥ q`|λ`| = ||`q`α|| � (`q`)

−A,

and so

`q` �
(

y2

xLc1

) 1
A

� Lc2+10

as required to give q` > Lc2 .
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