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Abstract. We show that for any ε > 0 and a sufficiently large
cube-free q, any reduced residue class modulo q can be represented

as a product of 14 integers from the interval [1, q1/4e
1/2+ε]. The

length of the interval is at the lower limit of what is possible be-
fore the Burgess bound on the smallest quadratic nonresidue is
improved. We also consider several variations of this result and
give applications to Fermat quotients.

1. Introduction

As usual, we say that an integer n is y-smooth if all prime divisors
p | n satisfy p ≤ y. We write

β =
1

4
e−1/2.

By a result of Harman [19, Theorem 3] for any ε > 0 and a sufficiently
large cube-free q, every reduced residue class modulo q contains a qβ+ε-
smooth positive integer s ≤ q9/4+ε. Clearly this result is the best
possible (in terms of β) until at least the Burgess bound [4, 5] on the
smallest quadratic nonresidue is improved. Harman [19, Theorem 3]
also gives similar, albeit weaker, results for non cube-free moduli q.

Here we are mostly interested in the number of small factors of n
rather than in its size. More precisely our goal is to minimize the
values of k such that for any ε > 0 and a sufficiently large cube-free q,
for any integer a with gcd(a, q) = 1, there is always a solution to the
congruence

(1) n1 . . . nk ≡ a (mod q), 1 ≤ n1, . . . , nk ≤ qβ+ε.

We remark that β = 0.1516 . . . and it is certainly the limit of what
one may hope to obtain without improving the Burgess bound [4] on
the smallest quadratic non-residue. For large intervals, several results
in this direction have been obtained by Garaev [14]. For example,
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Garaev [14] notices that for any ε > 0 and a sufficiently large cube-
free q every a with gcd(a, q) = 1 can be represented modulo q as a
product of k = 8 positive integers up to q1/4+ε (which is an immediate
consequence of [14, Theorem 2]). It is a feature of all current methods
that if our variables are of size qϑ then we require kϑ > 2. In that
sense both our result with k = 14 and that of Garaev [14] are best
possible at present (note that 13β < 2). Several related questions, also
involving multiplicative subgroups of the unit group Z∗q of the residue
ring modulo q, have been studied by Cilleruelo and Garaev [9].

Note that although formally [19, Theorem 3] does not give any upper
bound on the number of factors in a qβ+ε-smooth positive integer s ≤
q9/4+ε with s ≡ a (mod q) such a bound can easily be derived via simple
combinatorial arguments. More precisely, one combines together prime
divisors of n in a greedy way into factors of size at most qβ+ε. The
argument of [19] is flexible enough to impose additional restrictions on
the prime factors of the integers s to solve (1) with k = 18 and with
more work that can be reduced to k = 16. We can do a little better,
however, by combining this approach with the ideas of Balog [1] and
Garaev [14] to derive the following result.

Theorem 1. For any ε > 0 and a sufficiently large cube-free q, for
any integer a with gcd(a, q) = 1, there is always a solution to the
congruence (1) with k = 14.

Some of our motivation to investigate the solvability of (1) for small
values of k comes from studying the additive properties of the Fermat
quotient qp(u) modulo a prime p, which is defined as the unique integer
with

qp(u) ≡ up−1 − 1

p
(mod p), 0 ≤ qp(u) ≤ p− 1.

We also define
qp(kp) = 0, k ∈ Z.

Clearly the function qp(u) is periodic with period p2. For any integers
r, u and v with gcd(uv, p) = 1 we have

(2) qp(u) + qp(v) ≡ qp(uv) (mod p)

and

(3) qp(u+ rp) ≡ qp(u)− ru−1 (mod p),

see, for example, [11, Equations (2) and (3)].
Fermat quotients appear in various questions of computational and

algebraic number theory, see the survey [11] of classical results and
also [2, 21, 27, 32] for results about vanishing Fermat quotients, [7, 8,
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20, 26, 30, 31] for results about the distribution, fixed points and value
set and [6, 15, 28, 29, 30] for bounds of exponential and multiplicative
character sums.

Furthermore, Chen and Winterhof [8] have recently studied additive
properties of Fermat quotients and their generalisations. In particu-
lar, Chen and Winterhof [8] study the question of solvability of the
congruence

(4) qp(u1) + . . .+ qp(uk) ≡ a (mod p), 1 ≤ u1, . . . , uk ≤ U,

for some fixed integer k and a sufficiently large parameter U (and also
a congruence with a generalisation of Fermat quotients). Clearly the
method of [8], based on bounds of exponential sums has a natural
limit of U ≥ p1/2+ε for an arbitrary small ε > 0 coming from the
non-triviallity range of the Burgess bound, see [4, 5] and also [22,
Theorem 12.6] for a modern treatment. Here, we observe that The-
orem 1 applied with q = p2 and combined with (2) and (3) allows us
to study (4) for much smaller values of U . Indeed, it follows from (3)
that for any integer b with gcd(b, p) = 1, there exists an integer a
with gcd(a, p) = 1 such that qp(a) ≡ b (mod p). Hence, we derive
from Theorem 1 that for any ε > 0, a sufficiently large prime p and
U ≥ p1/2e

1/2+ε, for any integer a with gcd(a, p) = 1, there is always a
solution to the congruence (4) with k = 14.

In actual fact it is more efficient to analyse the problem of Fermat
quotients more closely and establish a variant of Theorem 1 for the
congruence

(5) n1 . . . nk ≡ au (mod q), 1 ≤ n1, . . . , nk ≤ qβ, u ∈ G,

with a multiplicative subgroup G of Z∗q. This follows since qp(u) = 0 if
u = rp for some r with gcd(r, p) = 1. So instead of solving (1) we now
have much more flexibility and solve (5) with q = p2 and where G is the
group of p-th powers (mod q). We note that G has order p− 1� q1/2.
This motivates the following result.

Theorem 2. For any ε > 0 and a sufficiently large cube-free q, and
a multiplicative subgroup G of Z∗q of order t � q1/2 for any integer a
with gcd(a, q) = 1, there is always a solution to the congruence (5) with
k = 9.

In particular, Theorem 2 implies:

Corollary 3. Let ε > 0. Suppose p is a sufficiently large prime and
U ≥ p1/2e

1/2+ε. Then, for any integer a with gcd(a, p) = 1, there is
always a solution to the congruence (4) with k = 9.
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Our approach can also be used to study the solvability of (1) for al-
most all reduced residue classes a (mod q) and obtain several more re-
sults complementing those of Cilleruelo and Garaev [9] and Garaev [14].
We state one such result as follows.

Theorem 4. For any ε > 0 and a sufficiently large cube-free q, for all
but o(q) integers a ∈ {0, . . . , q − 1} with gcd(a, q) = 1, there is always
a solution to the congruence (1) with k = 7.

In particular, Theorem 4 implies:

Corollary 5. For any ε > 0, a sufficiently large prime p and U ≥
p1/2e

1/2+ε, for all but o(p) integers a ∈ {0, . . . , p−1} with gcd(a, p) = 1,
there is always a solution to the congruence (4) with k = 7.

2. Preparations

2.1. Notation. Throughout the paper, any implied constants in the
symbols O, � and � may depend on the real parameter ε > 0. We
recall that the notations U = O(V ), U � V and V � U are all
equivalent to the statement that the inequality |U | ≤ cV holds with
some constant c > 0.

We define the constants ψ = 21/36, ξ = ψ−1, and for a real A and an
integer a, write a ∼ A to indicate a ∈ [A,ψA]. We also write ρ = e−1/2.

We use Z∗q to denote the unit group of the residue ring modulo q.
As usual, we write ϕ(n) for the Euler function and τ(n) to represent

the number of positive integer divisors of an integer n ≥ 1 for which
we recall the following well-known estimates

(6) τ(q) = qo(1) and q ≥ ϕ(q)� q

log log q

as q →∞, see [18, Theorems 317 and 328].
In the following κ always denotes the ratio

κ =
ϕ(q)

q
.

2.2. Some basic results. The next result is a well-known elementary
consequence of the identity∑

d|gcd(n,q)

µ(d) =

{
1 if gcd(n, q) = 1

0 otherwise.

Lemma 6. For any M ≥ 1, q ≥ 2 we have∑
m∼M

gcd(m,q)=1

1 = ξMκ+O(τ(q)) .
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When M is small in relation to q it is useful to have the following
result.

Lemma 7. For q ≥ 2,M > log q we have∑
m∼M

gcd(m,q)=1

1 = O(Mκ) .

Here the implied constant is absolute.

Proof. This follows from [17, Theorem 2.2]. �

Combining the above results enables us to establish a result which
is needed in Subsection 2.3.

Lemma 8. For N ≥ q1/4 > 1, 0 < ζ < 1 we have∑
Nζ≤p≤N
gcd(p,q)=1

∑
m∼N/p

gcd(m,q)=1

1 = (ξ log(1/ζ) + o(1))κN .

Proof. From Lemmas 6 and 7 together with a trivial bound we have∑
m∼N/p

gcd(m,q)=1

1 = ξNκp−1 +O(ϑp)

where

(7) ϑp =


τ(q) if p < N/τ(q),

κN/p if N/τ(q) ≤ p ≤ N/ log q,

N/p if p > N/ log q.

(note the ranges may partially overlap and the second range may be
empty). By the Mertens formula, see [22, Equation (2.15)], for any real
Y > X ≥ 2 we have∑

X≤p≤Y

1

p
= log

log Y

logX
+O

(
1

logX

)
.

Hence ∑
Nζ≤p≤N
gcd(p,q)=1

ξNκp−1 = (ξ log(1/ζ) + o(1))κN

gives us the main term (where we have also noted that there are only
O(1) primes p | q with p > N ζ).

For the error term we consider the 3 possible ranges in (7) separately.
For the first range, by Prime Number Theorem and the bound

κ� 1

log log q
,
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see (6), we derive∑
p<N/τ(q)

ϑp �
∑

p<N/τ(q)

τ(q) = (1 + o(1))
N

logN
= o(κN).

For the second range (provided it is not empty) using the above Mertens
formula and (6), we obtain∑

N/τ(q)≤p≤N/ log q

ϑp � κN
∑

N/τ(q)≤p≤N/ log q

1

p

= κN

(
log

logN − log log q

logN − log τ(q)
+O

(
1

logN

))
= κN

(
log

logN + o(logN)

logN + o(logN)
+O

(
1

logN

))
= κN

(
log(1 + o(1)) +O

(
1

logN

))
= o(κN).

Finally, for the third range, similarly, we have∑
N/ log q<p≤N

ϑp � N
∑

N/ log q<p≤N

1

p

= N

(
log

logN

logN − log log q
+O

(
1

logN

))
= N

(
log

logN

logN +O(log logN)
+O

(
1

logN

))
� N

log logN

logN
= o(κN).

The desired result now follows. �

2.3. Using a simple idea of Balog. Instead of establishing a variant
of [19, Lemma 1] which uses an idea of Friedlander [12] to obtain a
lower bound of the correct order of magnitude for the integers we wish
to count, we return to the original idea of Balog [1]. That is, we count
products of two numbers mn, and note, for any set A,∑

mn∈A
p|mn⇒p<xα

1 ≥
∑
mn∈A

p|m⇒p<xα

1 −
∑
mn∈A
∃p|n,p>xα

1.

We do this for simplicity as it would take considerable effort to obtain
the correct order lower bound in view of the complicated structure we
impose on the numbers we have eventually to count. We write for
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convenience B = {n : gcd(n, q) = 1}. Our main auxiliary result is
then as follows.

Lemma 9. Suppose R > N > q1/4. Let ε > 0 be given and a sequence
br supported on the interval [R,ψ34R]. Suppose that A ⊆ B is a set
such that for some λ > 0 and η = ε3,

(8)
∑

rnm∈A
m,n∼N

anbr = λ
∑
rnm∈B
m,n∼N

anbr +O(λx1−η)

for any sequence an = O(1). Write ζ = ρ(1 + ε). Let

cn =

{
1 if p | n⇒ p < N ζ

0 otherwise.

Then

(9)
∑

rmn∈A
m,n∼N

brcncm ≥ (2 + o(1))λ log(1 + ε)(κξN)2
∑
r∈B

br +O(λx1−η) .

Proof. Using the observation of Balog [1], we have∑
rmn∈A
m,n∼N

brcncm ≥ E − F

where
E =

∑
rmn∈A
m,n∼N

brcm , F =
∑

rmn∈A
m,n∼N

brhn ,

and hn = 1− cn. By (8)

E = λ
∑
rmn∈B
m,n∼N

brcm +O(λx1−η).

Now ∑
rmn∈B
m,n∼N

brcm =
∑
m∈B
m∼N

cm
∑
n∈B
n∼N

1
∑
r∈B

br .

Lemmas 6 and 8 then give∑
n∈B
n∼N

1 = (1 + o(1))κξN,
∑
m∈B
m∼N

cm = (1 + log ζ + o(1))κξN ,

where we have noted (since ρ > 1
2
) that∑

m∈B
m∼N

cm =
∑
m∈B
m∼N

1−
∑

Nζ<p≤N

∑
m∈B
m∼N/p

1 .
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Thus

E = λ(1 + log ζ + o(1))(κξN)2
∑
r∈B

br +O(λx1−η) .

Similarly

F = λ(− log ζ + o(1))(κξN)2
∑
r∈B

br +O(λx1−η) .

Since 1 + 2 log ζ = 2 log(1 + ε) we obtain (9). �

Now we define the multiset

(10) K = {k = mn : m,n ∼ N, p | mn⇒ p < N ζ} ,

where the integers k are counted with multiplicity. For a real x > 1
and integers a and q with gcd(a, q) = 1 and a subgroup G of Z∗q we
define by Aa,q(G;x) the set of integers s ∈ [x, 2x] with s ≡ au (mod q)
for some u ∈ G. We record a special case of Lemma 9 that applies to
the set A = Aa,q(G;x).

Corollary 10. Assume that the conditions of Lemma 9 holds with
x = N2R > x0(ε) for the set A = Aa,q(G;x) with λ = t/ϕ(q), where
t = #G and x0(ε) depends only on ε and is sufficiently large. Then∑

rk∈Aa,q(G;x)
k∈K

br ≥ ε
tκ2ξ2N2

ϕ(q)

∑
r∈B

br +O
(
tq−1x1−η

)
.

In particular, for the extreme case G = {1}, we write Aa,q(x) for
Aa,q({1}, x) and obtain:

Corollary 11. Assume that the conditions of Lemma 9 holds with
x = N2R > x0(ε) for the set A = Aa,q(x) with λ = 1/ϕ(q), where
x0(ε) depends only on ε and is sufficiently large. Then∑

rk∈Aa,q(x)
k∈K

br ≥ ε
κ2ξ2N2

ϕ(q)

∑
r∈B

br +O
(
q−1x1−η

)
.

2.4. Character sums. Let X be the set of all ϕ(q) multiplicative
characters modulo q and let X ∗ be the set of nonprincipal characters
χ 6= χ0. We now recall the Burgess bound for sums of multiplicative
characters modulo cube-free integers which we present in the following
simplified form, see [22, Theorems 12.5 and 12.6].

Lemma 12. There is an absolute constant c > 0 such that for any fixed
δ ∈ (0, 1/2), a cube-free integer q and an arbitrary integer M ≥ q1/4+δ,
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for any χ ∈ X ∗ we have∣∣∣∣∣∑
m≤M

χ(m)

∣∣∣∣∣�M1−cδ2 .

Finally, we need the following simple bound which follows from the
orthogonality of characters and which we refer to as the mean-value
estimate for character sums .

Lemma 13. For N ≥ 1 and any sequence of complex numbers an we
have ∑

χ∈X

∣∣∣∣∣∑
n≤N

anχ(n)

∣∣∣∣∣
2

≤ ϕ(q)(N/q + 1)
∑
n≤N

|an|2.

2.5. Products in arithmetic progressions. We now define

(11) δ = 1/200 and α =
(
1
4

+ ε
)

(2 + δ + 2ε)−1.

For a given q, we consider the set of integers r that are products of 33
primes of the form

(12) r = `1 . . . `21p1 . . . p8s1 . . . s4 and gcd(r, q) = 1,

where

(13) `1, . . . , `21 ∼ qδ, p1, . . . , p8 ∼ q3/20, s1, s2, s3, s4 ∼ q1/20,

and let br be the characteristic function of this set. We note that br is
supported on the interval [R,ψ33R] with R = q3/2+δ.

We now show that for any sufficiently small ε > 0 the conditions of
Lemma 9 are satisfied for this choice of br with N = q1/4+ε = xα upon
writing x = N2R.

Lemma 14. Let ε > 0 be sufficiently small, q > 1 and N = q1/4+ε.
Suppose that the sequence br is the characteristic function of the set
defined by (12) and (13). Then for integers a and q with gcd(a, q) = 1
and such that q is cube-free we have∑

rmn∈Aa,q(x)
m,n∼N

anbr =
1

ϕ(q)

∑
rmn∈B
m,n∼N

anbr +O
(
q−1x1−η

)
with η = ε3, R = q3/2+δ and x = N2R, and any sequence an satisfying
|an| ≤ no(1).

Proof. We start with the observation that if br 6= 0 and m,n ∼ N then
due to the choice of our parameters we always have

rmn ∈ [N2R,ψ33N2R] ⊂ [x, 2x].
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In particular, if br 6= 0 and m,n ∼ N then the condition rmn ∈ Aa,q(x)
is equivalent to the congruence rmn ≡ a (mod q) and the condition
rmn ∈ B is merely equivalent to gcd(mn, q) = 1.

Using the orthogonality of characters we write∑
rmn∈Aa,q(x)
m,n∼N

anbr =
∑
rmn∈B
m,n∼N

anbr
1

ϕ(q)

∑
χ∈X

χ(rmna−1).

Changing the order of summation, we obtain the asymptotic formula

(14)
∑

rmn∈Aa,q(x)
m,n∼N

anbr = M +O (E) ,

where the main term

(15) M =
1

ϕ(q)

∑
rmn∈B
m,n∼N

anbr

comes from the contribution of the principal character χ0 and the error
term is given by

E =
1

ϕ(q)

∑
χ∈X ∗

∣∣∣∣∣∣∣
∑
rmn∈B
m,n∼N

anbrχ(rmn)

∣∣∣∣∣∣∣ =
1

ϕ(q)

∑
χ∈X ∗

∣∣∣∣∣∣∣
∑
r∈R

m,n∼N

anbrχ(rmn)

∣∣∣∣∣∣∣ ,
where R is the set of r defined by (12) and (13) (note that due to the
presence of characters the condition rmn ∈ B can now be dropped).

Hence

(16) E =
1

ϕ(q)

∑
χ∈X ∗

∣∣∣∣∣∑
m∼N

χ(m)

∣∣∣∣∣
∣∣∣∣∣∑
r∈R

∑
n∼N

anbrχ(rn)

∣∣∣∣∣ .
We now use the argument deployed in [14], we however put it in a

different form which optimally extracts all available information about
the character sums involved (thus in case the bound on error terms is
important it leads to stronger estimates). This approach also seems
to be more direct and since it may have some other applications, we
present it in full detail.

For a real ω > 0 we consider the character sums over primes

Vω(χ) =
∑
`∼qω

χ(`).
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which we use with ω = 3/20 and ω = δ. We also consider the weighted
sums

W (χ) =
∑
m∼N

∑
n∼N

∑
v∈V

anχ(mnv),

where v runs through the set V of q1/2+o(1) products v = p7p8s1s2s3s4
over all p7, p8, s1.s2, s3, s4 as in (12). Recalling the definition of br, we
write (16) as

(17) E =
1

ϕ(q)

∑
χ∈X ∗

∣∣V3/20(χ)
∣∣6 |Vδ(χ)|21 |W (χ)| .

We now note that the currently available information about the sums
V3/20(χ), Vδ(χ), and W (χ) consists of the inequality

(18) max
χ∈X ∗

|W (χ)| ≤ N1+o(1)q1/2 max
χ∈X ∗

∣∣∣∣∣∑
m∼N

χ(m)

∣∣∣∣∣� N2−c0ε2q1/2

with some absolute constant c0 > 0 for all sufficiently small ε > 0 that
follows from Lemma 12 and also the inequalities

(19)
∑
χ∈X

∣∣V3/20(χ)
∣∣12 |Vδ(χ)|40 � q2,

∑
χ∈X

|Vδ(χ)|400 � q2,

and ∑
χ∈X

∣∣∣∣∣∑
m∼N

∑
n∼N

an
∑
v∈V

χ(mnv)

∣∣∣∣∣
2

� N2q3/2+o(1)
(
1 +N2q−1/2

)
,

(20)

implied by Lemma 13. Since for the above choice of parameters we
have N2 > q1/2, the inequality (20) simplifies as

(21)
∑
χ∈X

∣∣∣∣∣∑
m∼N

∑
n∼N

an
∑
v∈V

χ(mnv)

∣∣∣∣∣
2

� N4q1+o(1).

We now write |W (χ)| = |W (χ)|199/200 |W (χ)|1/200 and apply (18),
deriving from (17)

E ≤ 1

ϕ(q)

(
N2−c0ε2q1/2

)1/200 ∑
χ∈X ∗

∣∣V3/20(χ)
∣∣6

|Vδ(χ)|21 |W (χ)|199/200 .
(22)

Finally, since
1

2
+

1

400
+

1

400/199
= 1
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by the Hölder inequality, applied to the sum in (22), and extending the
summation to all χ ∈ X , we obtain

E ≤ 1

ϕ(q)

(
N2−c0ε2q1/2

)1/200(∑
χ∈X

∣∣V3/20(χ)
∣∣12 |Vδ(χ)|40

)1/2

(∑
χ∈X

|Vδ(χ)|400
)1/400(∑

χ∈X

|W (χ)|2
)199/400

.

Recalling (19) and (21), we derive

E ≤ 1

ϕ(q)

(
N2−c0ε2q1/2

)1/200
q1+1/200

(
N4q1+o(1)

)199/400
≤ N2q1/2+δ+o(1)N−c0ε

2/200 = xq−1N−c0ε
2/200+o(1).

(23)

The proof is completed by combining (15) and (23) with (14). �

2.6. Products in subgroups. Before embarking on the proof of The-
orem 2 we also require one additional result, that gives an upper bound
on the number of solutions to the congruence

(24) xu ≡ y (mod q) 1 ≤ x, y ≤ X, u ∈ G,

with a multiplicative subgroup G of Z∗q, which is given in [23, Corol-
lary 7.9]. We note that in [23] only the case of a prime modulus q = p
is considered, but it is easy to check that the argument works for any
integer q ≥ 1.

Lemma 15. Given a multiplicative subgroup G of Z∗q with order t sat-

isfying t� q1/3 and an integer X ≥ q3/4t−1/4, the number of solutions
to the congruence (24) is at most X2tq−1+o(1).

We also recall that several more bounds on the number of solutions
to (24) are given in [3, Theorem 1].

We replace (11) to define δ and α now with

δ = 1/200 and α = (1
4

+ ε)(5
4

+ δ + 2ε)−1.

For a given q, we consider the set of integers r that are products of
28 primes of the form

(25) r = `1 . . . `21p1p2p3s1s2s3s4 and gcd(r, q) = 1,

where

(26) `1, . . . , `21 ∼ qδ, p1, p2, p3 ∼ q3/20, s1, s2, s3, s4 ∼ q1/20,
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and let br be the characteristic function of this set. We remark that
we need r to be expressible as two factors of size about q3/8 as well as
having the right combinatorial properties for our final argument.

Lemma 16. Let ε > 0 be sufficiently small, q > 1 and N = q1/4+ε.
Suppose that the sequence br is the characteristic function of the set
defined by (25) and (26). Then for integers a and q with gcd(a, q) = 1
and such that q is cube-free and a subgroup G ⊆ Z∗q of order t � q1/2

we have ∑
rmn∈Aa,q(G;x)

m,n∼N

anbr =
t

ϕ(q)

∑
rmn∈B
m,n∼N

anbr +O
(
tq−1x1−η

)
with η = ε3, R = q3/4+δ and x = N2R, and any sequence an satisfying
|an| ≤ no(1).

Proof. We proceed as in the proof of Lemma 14. We note that we count
each desired solution t times by considering

mnr ≡ auv (mod q),

where

r as in (26), m ∼ N, n ∼ N, u, v ∈ G .

As before in the proof of Lemma 14 we use multiplicative characters
to obtain a main term

(27) M =
t2

ϕ(q)

∑
rmn∈B
m,n∼N

anbr

for the corresponding sum, which we write as∑
mnr≡auv (mod q)

m,n∼N
u,v∈G

anbr = M +O(E).

We also write

Vδ(χ) =
∑
`∼qδ

χ(`),

W1(χ) =
∑
m∼N

∑
p1,p2

∑
s1

∑
`1,...,`5

∑
u∈G

χ(mp1p2s1`1 . . . `5u),

W2(χ) =
∑
n∼N

∑
p3

∑
s2,s3,s4

∑
`6,...,`20

∑
v∈G

anχ(np3s2s3s4`6 . . . `20v) .
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So the expression for the error term E corresponding to (16) is now

E =
1

ϕ(q)

∑
χ∈X ∗

|Vδ(χ)| |W1(χ)| |W2(χ)| .

Working in a similar manner to previously we estimate this as

E ≤ max
χ∈X ∗

|W1(χ)|δ
(

1

ϕ(q)

∑
χ∈X

|Vδ(χ)|400
)1/400

S
199/400
1 S

1/2
2 ,

where

Sj =
1

ϕ(q)

∑
χ∈X

|Wj(χ)|2 .

From Lemma 12, we have, for χ ∈ X ∗,

|W1(χ)| ≤ N1−c0ε2tZ,

where Z is the maximum number of all admissible products of the form
p1p2s1`1 . . . `5 satisfying (26), so

(28) Z � q3/10+1/20+1/40 = q3/8.

This and (19) imply the bound

(29) E ≤
(
N1−c0ε2tq3/8

)δ
qδ/2S

199/400
1 S

1/2
2 .

Also, we can estimate S1 as S1 ≤ Rqo(1) where R is the number of
solutions to the congruence

m1p1p2s1`1 . . . `5u ≡ m2p3p4s2`6 . . . `10v (mod q),

where

pj, sj, `j are as in (26), m1,m2 ∼ N, u, v ∈ G .

Now R� tQ where Q is the number of solutions to (24) with

X � NZ � X,

where Z is given by (28). As t ≥ q1/2 and N > q1/4, we have

NZ � Nq3/8 ≥ q5/8 ≥ q3/4t−1/4.

Hence Lemma 15 applies and we obtain

Q ≤ (NZ)2tq−1+o(1) = N2tq−1/4+o(1).

We also proceed similarly for S2. Hence

(30) S1 ≤ N2t2q−1/4+o(1) and S2 ≤ N2t2q−1/4+o(1).
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We can now substitute the estimates (30) in (29), to deduce that

E ≤
(
N1−c0ε2tq3/8

)δ
qδ/2

(
N2t2q−1/4+o(1)

)(1−δ)/2 (
N2t2q−1/4+o(1)

)1/2
≤ N2t2q−1/4+δ+o(1)N−c0δε

2

.

Hence

(31) E ≤ xt2q−1M−c0ε2/200+o(1).

The proof is completed by combining (27) and (31) upon recalling that
we are counting each solution t times. �

3. Proofs of Main Results

3.1. Proof of Theorem 1. We fix some sufficiently small ε > 0. Let
α and δ be as in (11) and let η be as in Corollary 11. We also choose
x as in Lemma 14. We remark that N ζ < xβ+ε.

For integers a and q with gcd(a, q) = 1 and such that q is cube-free
we consider the number T of solutions to the congruence

(32) rk ≡ a (mod q)

where r is defined by (12) and (13) and k ∈ K, where the multiset K
is defined by (10).

Combining Corollary 11 and Lemma 14, we see that

(33) T =
∑

rk∈Aa,q(x)
k∈K

br ≥ ε
κ2ξ2N2

ϕ(q)

∑
r∈B

br +O
(
q−1x1−η

)
.

By the prime number theorem there are q3/2+δ+o(1) values of r given
by (12) and (13) and for each of them q3/2+δ � r � q3/2+δ. Hence, for
a sufficiently small ε > 0, after simple calculations, we obtain

T ≥ xq−1+o(1).

In particular, T > 0. Let (k, r) be one of the solutions to (32). Clearly
r has 8 prime factors of size q3/20 < qβ+ε. We return to the other 25
factors after an initial discussion of m and n showing that they are both
products of at most 3 integer factors of size at most u = qβ+ε. Indeed,
let p̃1 ≥ . . . ≥ p̃ν be prime divisors of m. Define h by the condition

p̃1 . . . p̃h ≤ u < p̃1 . . . p̃hp̃h+1.

Then for
v1 = p̃1 . . . p̃h, v2 = p̃h+1, v3 =

n

v1v2
we obviously have v1v2v3 = m and also

max{v1, v2, v3} ≤ max{u, u,m/u} ≤ u,
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provided that ε > 0 is sufficiently small. In particular, in what follows,
we always assume that

ε <
1

2
δ.

Now, clearly min{v1, v2, v3} ≤ m1/3 < q(1+δ)/12. For convenience,
suppose that v1 ≥ v2 ≥ v3. So, if v2 > q1/10 then v3 < q1/20+δ/4. Hence
we can combine s1 and s2 with v2 and v3 to produce new variables not
exceeding q3/20+δ/4. So we have written ms1s2 = g1g2g3 say with each
positive integer gj ≤ qβ+ε. However,

g1g2g3`1 . . . `11 ≤ q2/5+5δ/4,

So, suppose gj ≤ q3/20−δ. We can include variables `1, . . . `h so that

q3/20−δ ≤ gj`1 . . . `h ≤ q3/20.

We can do this for each gj ≤ q3/20−δ and since, for a sufficiently large
q, we have

g1g2g3`1 . . . `11 ≤ q2/5+5δ/4 < ψ−3q3×3/20−3δ

≤ q3×3/20
(
max{` ∼ qδ}

)−3
we use up all `1, . . . , `11. In this way ms1s2`1 . . . `11 has been expressed
as the product of three variables not exceeding qβ+ε.

The same argument also applies to n, although in this case we need
only use 10 of the `j variables. We have thus reduced our product to
14 variables as desired.

3.2. Proof of Theorem 2. We now proceed as in the proof of The-
orem 1 by using Lemma 16 instead of Lemma 14 and applying Corol-
lary 10. We have 3 variables of the correct shape immediately in
p1, p2, p3. We can use the same argument as before to reduce `1 . . . `21s1 . . . s4mn
to a product of 6 variables not exceeding qβ+ε. This gives the 9 vari-
ables as required.

3.3. Proof of Theorem 4. Suppose thatR is the set of multiplicative
inverses (mod q) of the exceptional set of a. All we need do is prove
that for any set R with |R| = q1+o(1) there is a solution to

rn1 . . . n7 ≡ 1 (mod q), 1 ≤ n1, . . . , n7 ≤ qβ+ε, r ∈ R.
To modify the proof of Theorem 1 we keep the definiton of α, δ from (11)
and we initially solve

rmnps1s2s3s4`1 . . . `31 ≡ 1 (mod q),

`1, . . . , `31 ∼ qδ p ∼ q3/20, s1, s2, s3, s4 ∼ q1/20.
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As before mns1s2s3s4 = g1 . . . g6 with each gj ≤ qβ+ε. Now

g1 . . . g6`1 . . . `31 ≤ q17/20+5δ/4 < ψ−6q6×3/20−6δ

≤ q6×3/20
(
max{` ∼ qδ}

)−6
.

We can therefore combine some of the `j variables with each gk in turn
to obtain 6 new variables not exceeding gj ≤ qβ+ε. We thus end up
with 7 variables of the required form as desired.

4. Additional Results

A natural question is to see how far short our results fall from what
would be known assuming the Generalised Riemann Hypothesis. Under
that assumption we quickly obtain the well-known conditional bound
for a short sum over a non-principal multiplicative character χ modulo
q:

(34)
∑
m≤M

χ(m)�M1/2qo(1),

as q → ∞, see [25, Section 1]; it can also be derived from [16, Theo-
rem 2].

We also obtain the following conditional extension of Theorem 2
without any need to use Lemma 9, where as usual we use bxc to denote
the integer part of real x.

Theorem 17. Assume the Generalised Riemann Hypothesis. For any
β ∈ (0, 1) and a sufficiently large q, a multiplicative subgroup G of Z∗q
of order t = qϑ, for any integer a with gcd(a, q) = 1, there is always a
solution to the congruence (5) with k = b2(1− ϑ)/βc+ 1.

Proof. Since G is a group, for fixed u the number of solutions to vw = u
with v, w ∈ G is t. Hence the number of solutions to (5) is t−1S where
S is the number of solutions to

n1 . . . nk ≡ avw (mod q), 1 ≤ n1, . . . , nk ≤ qβ, v, w ∈ G.
Using character sums we obtain S = M +O(E) where

M

t2
=

1

ϕ(q)

∑
n≤qβ

χ0(n)

k

= qkβ−kϕ(q)k−1 +O
(
q(k−1)β−1+o(1)

)
,

and

E =
1

ϕ(q)

∑
χ 6=χ0

∣∣∣∣∣∣
∑
n≤qβ

χ(n)

∣∣∣∣∣∣
k ∣∣∣∣∣∑

u∈G

χ(u)

∣∣∣∣∣
2

.
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Using (34) applied to the sum over n and the mean value theorem for
character sums for the sum of the sums over u gives

E ≤ qkβ/2+o(1)t.

We thus obtain that the number of solutions to (5) is

S/t = tqkβ−kϕ(q)k−1 +O
(
tq(k−1)β−1+o(1) + qkβ/2+o(1)

)
.

Hence S > 0 for q sufficiently large when

kβ − 1 > (k − 1)β − 1 and ϑ+ kβ − 1 > kβ/2.

The first inequality is always satisfied as β > 0, analysing the second
inequality we obtain the result. �

Comparing this (taking G to be the trivial subgroup) with our un-
conditional result we see that for β = 1/4e1/2 we make no saving on
the number of variables. However, we can reduce β to 1/7 + ε and still
only require 14 variables. The real benefit, of course, is that we can
take any β > 0 to obtain factors essentially as small as we wish. The
major constraint imposed by this approach is that the product of the
variables must be of size at least q2+ε.

Now let G be the group of pth powers modulo p2 as in the proof of
Theorem 2. We immediately deduce the following result which saves 2
variables on Theorem 2 for β = 1/4e1/2 .

Corollary 18. Assume the Generalised Riemann Hypothesis. For any
β ∈ (0, 1/2) and a sufficiently large prime p for any integer a with
gcd(a, p) = 1 and U ≥ p2β, there is always a solution to the congru-
ence (4) with k = b1/βc+ 1.

The next natural question is: what happens for almost all moduli?
The auxiliary results used in proving the Bombieri-Vinogradov Theo-
rem (see [10, Chapter 28]) immediately show that Theorem 17 is true
for G = {1} unconditionally for all q ∈ [Q, 2Q] with o(Q) exceptions
as well as for almost all prime p = q ∈ [Q, 2Q] with o(Q/ logQ) excep-
tions. One can obtain results for non-trivial G, but the results become
complicated and do not have the full strength of Theorem 17.

An alternative approach to results for almost all q is via a bound of
Garaev [13] of character sums for almost all moduli (which can be used
in place of Lemma 12). This approach may lead to stronger results for
some group sizes.

Next, we would like a result for almost all p2 in order to obtain the
appropriate version of Corollary 3 for almost all prime squares. This is
possible since Matomäki [24] has obtained an analogous version of the
Bombieri-Vinogradov theorem for prime-squared moduli. Using the
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Type II sum estimates in [24, Section 3], we are able quickly to deduce
the following.

Theorem 19. For any β ∈ (0, 1/2) and a sufficiently large Q, for
all but o(Q1/2/ logQ) exceptional prime squares p2 ∈ [Q, 2Q], for any
integer a with gcd(a, p) = 1, there is a solution to the congruence

n1 . . . nk ≡ a (mod p2), 1 ≤ n1, . . . , nk ≤ Qβ,

with k = b2/βc+ 1.

Corollary 20. For any β ∈ (0, 1/2) and a sufficiently large T , for all
but o(T/ log T ) exceptional primes p ∈ [T, 2T ], and U ≥ p2β, for any
integer b with gcd(b, p) = 1, there is always a solution to the congru-
ence (4) with k = b2/βc+ 1.

Of course, for β = 1/4e1/2 this is worse than our Theorem 2 which
is true for all p, but Corollary 20 does hold for all β > 0.

Finally, we mention that a version of Theorem 2, which involves mul-
tiplicative subgroups G of Z∗p2 of certain sizes is possible via a version

of a result of Garaev [13] for almost all prime squares, of the type given
in [30, Theorem 8].

5. Comments

We note that the choice of parameters (25) and (26) is optimised
for subgroups of order t = q1/2+o(1). The chief reason for this is that
our main application to Fermat quotients corresponds to subgroups of
this size. However, one can easily obtain a series of other results of the
type of Theorem 2 for subgroups of other sizes. Furthermore, for other
choices of parameters several other versions of Lemma 15 may be of
use. For example, one can use [3, Theorem 1] with other values of ν
and also a similar estimate from [9]. Furthermore, for some ranges of q,
t and X, one can obtain better estimates via bounds of multiplicative
character sums.
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[24] K. Matomäki, ‘A note on primes of the form ap2+1’, Acta Arith. 137 (2009),
133–137.

[25] H. L. Montgomery and R. C. Vaughan, ‘Exponential sums with multiplica-
tive coefficients’, Invent. Math., 43 (1977), 69–82.

[26] A. Ostafe and I. E. Shparlinski, ‘Pseudorandomness and dynamics of Fermat
quotients’, SIAM J. Discr. Math., 25 (2011), 50–71.

[27] I. D. Shkredov, ‘On Heilbronn’s exponential sum’, Quart. J. Math., 64
(2013), 1221–1230.

[28] I. E. Shparlinski, ‘Character sums with Fermat quotients’, Quart. J. Math.,
62 (2011), 1031–1043.

[29] I. E. Shparlinski, ‘Bounds of multiplicative character sums with Fermat quo-
tients of primes’, Bull. Aust. Math. Soc., 83 (2011), 456–462.

[30] I. E. Shparlinski, ‘Fermat quotients: Exponential sums, value set and prim-
itive roots’, Bull. Lond. Math. Soc., 43 (2011), 1228–1238.

[31] I. E. Shparlinski, ‘On the value set of Fermat quotients’, Proc. Amer. Math.
Soc., 140 (2012), 1199–1206.

[32] I. E. Shparlinski, ‘On vanishing Fermat quotients and a bound of the Ihara
sum’, Kodai Math. J., 36 (2013), 99–108.

Department of Mathematics, Royal Holloway, University of Lon-
don, Egham, Surrey TW20 0EX, UK

E-mail address: g.harman@rhul.ac.uk

Department of Pure Mathematics, University of New South Wales,
Sydney, NSW 2052, Australia

E-mail address: igor.shparlinski@unsw.edu.au


