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Abstract

A search for the Standard Model Higgs boson produced in association with a pair of top-quarks and

decaying to a pair of b-quarks (tt̄H(H→bb̄)) is presented. The analysis uses 20.3 fb−1 of data taken

from proton-proton collision at centre of mass energy
√

s = 8 TeV, collected using the ATLAS

detector. This thesis focuses on the search for dilepton events where the two leptons can be either

an electron or a muon.

A study is presented comparing different techniques (“pairing methods”) for correctly identi-

fying which two b-jets in an event come from the decay of the Higgs boson. The best alternative

to the default pairing method used in the Run I analysis, improves the matching efficiency by more

than 25%. Individual neural networks are then trained to separate signal from background using

input variables based on each pairing method.

No significant improvement on the separation obtained with the Run I neural network is

achieved when using an alternative pairing method. The neural network performances are then

compared with an alternative multi-variate classifier using the same pairing method, namely boosted

decision trees. Comparing the two classifiers shows the best performance of the neural network

is better than the best performance for the boosted decision tree. Similarly, for each individual

pairing method, the neural network outperforms the boosted decision tree trained using the same

input variables and pairing method.

The inclusion of additional input variables, which provide information on the topology of the

event, improves the performance of the alternative classifier (boosted decision tree) by on average

≈ 5%. The best performing BDT, goes from a separation power of 0.1915± 0.003 (stat.) to

0.2012± 0.003 (stat.). The best performing NN goes from a separation power of 0.1925± 0.002

(stat.) to 0.1946± 0.003 (stat.). For the best performing classifier, the alternative classifier is

seen to improve on the separation achieved by the neural network by 3.4% of the neural networks

separation (1.5% stat. error on neural network separation).

A calibration of the MV1 b-tagging algorithm using 14.34 fb−1of data collected at 8 TeV using

the ATLAS detector is also presented. It is performed on a sample of jets selected from tt̄ dilepton

events, which ensures a very high-purity, inclusive sample of b-jets. b-tagging scale factors are

then derived from two separate samples of jets: those which contain a muon and those which



do not. A ratio of the scale factors derived using each jet category is used as a measure of the

potential bias. No significant bias is seen in either of the jet pT bins, however due to the size of the

uncertainties, the measurement is not sensitive to a bias of less than ≈ 8%.
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Preface

“
Facts are meaningless. You can use facts to prove anything that’s even remotely

true!
”

Homer Simpson, The Simpsons

In July 2012, the ATLAS and CMS collaborations showed strong evidence supporting the dis-

covery of a new particle with mass 125 GeV in the search for the Standard Model Higgs boson.

This new particle is referred to throughout this thesis as the Higgs boson. All of the work I per-

formed and present in this thesis was carried out using data taken by the ATLAS detector at the

LHC.

In this thesis I present a measurement of a potential bias in b-tagging scale factors.These scale

factors are used to correct for the discrepancy in a b-tagging algorithms ability to b-tag b-jets in

data and simulation. The potential bias is thought to be introduced when a calibration is performed

on a sample of b-jets selected using the muon that comes from the decay of the b hadron. Several

calibration methods used by the ATLAS collaborations during Run I are performed on such a subset

of b-jets. The calibration analysis was performed on two separate categories of b-jets: b-jets where

the b hadron has decayed to a muon and a neutrino, and b-jets that have decayed another way.

These b-jets are selected from an enriched sample of b-jets originating from tt̄ events. b-tagging

scale factors are derived separately using each category of jet. They are then compared by taking

the ratio of the scale factor derived using b-jets in which the b hadron decayed to a muon, and the

scale factor derived using b-jets that decay another way. This work is presented in Chapter 4 which

is derived from an ATLAS internal note [1], written by myself. The work I performed on behalf of

the ATLAS b-tagging group also contributed to another ATLAS internal note [2].
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After the b-tagging bias measurement, I present the tt̄H(H→bb̄) analysis. The Higgs boson

is the most recent addition to the family of fundamental particles in the Standard Model of par-

ticle physics. However we still have a relatively limited understanding of many of the particle’s

attributes. One of the most important attributes is its coupling to fermions. For any given Higgs

boson mass, these can be predicted by the Standard Model. Values of the Higgs boson couplings

that deviate away from the values predicted by the Standard Model would suggest new physics.

A measurement of the coupling strength of the Higgs boson to fermions and vector bosons has

been performed by the ATLAS and CMS experiments separately by combining the results from

multiple search channels such as H→ ZZ→ 4l, H→WW→ lνlν and H→ γγ. However, to better

understand the nature of this particle we must also study the Higgs boson couplings to quarks. In

this thesis I also present a search for the Standard Model Higgs boson produced in association with

two top quarks and decaying to a pair of b-quarks, namely the tt̄H(H→bb̄) analysis. In particular,

searching for events in which both top-quarks decay to W bosons which each produce a lepton and

a neutrino. This channel is of particular importance as it enables the direct study of the top Yukawa

coupling along with the Higgs boson coupling to b-quarks.

Events in the tt̄H(H→bb̄) dilepton analysis are divided into analysis regions according to their

jet and b-jet multiplicity. In the three most signal significant regions, neural networks are trained to

separate signal and background. These neural networks use a set of input variables that have good

signal/background discrimination. Some of these variables require reconstructing a Higgs boson

candidate for the event. Reconstructing the Higgs boson candidate means assigning two b-jets to

the b hadrons that decayed from the Higgs boson. The method used in the analysis performed on

the data taken during the first data taking period at the LHC (Run I), correctly assigned the b-jets

in only 31% of the true tt̄H(H→bb̄) dilepton events. In this thesis I present a study of alternative

methods of assigning these b-jets which I have called “pairing methods”. The aim of this study is

to improve the efficiency of the pairing method used in the analysis in order to be able to construct

neural network input variables with better discrimination power.

I also present an in depth study of the multivariate techniques used in the Run I analysis. I com-

pared the performance of a boosted decision tree with the original neural network. Both classifiers

are trained on the same events, variables and pairing method so that a like-for-like comparison can

be made. I show the impact that alternative pairing methods have on the performance of each mul-

tivariate classifiers and how the performance of each classifier is affected by the use of additional
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input variables. This study is documented in Chapter 5.

Subsequently, an evaluation of the parton shower systematic uncertainty in the tt̄H(H→bb̄)

analysis is presented. This uncertainty is evaluated by rerunning the analysis using an alterna-

tive signal simulation parton shower model. The systematic sample was originally generated with

the HERWIG parton shower model, however this sample had particularly low statistics which

meant it could not be used to get a good estimate of the systematic uncertainty. Instead a kine-

matic reweighting is derived and used to reweight the high-statistics nominal signal sample. The

reweighted signal sample is then used in place of the systematic sample to evaluate the uncertainty.

The procedure for evaluating this uncertainty is documented in the ATLAS internal note [3]. It is

also included in the tt̄H paper published in the European Physics Journal C [4].

The structure of this thesis is as follows:

• In Chapter 1, a description of the Standard Model of particle physics is presented. A sum-

mary of its components is given along with an outline of its mathematical construction.

The Higgs field is described in terms of the mass mechanism and spontaneous symmetry

breaking. The Higgs boson is then associated with the relevant terms in the Standard Model

Lagrangian. This is followed by a description of the properties of the Higgs boson along

with some key measurements made and their consistency with theory.

• In Chapter 2, an overview of the LHC and a description of the relevant components of the

ATLAS detector are given. This includes a discussion of the basic principles in accelerator

physics and provides a description of the physical concepts behind the relevant components

of the detector.

• In Chapter 3, an overview of how the ATLAS collaboration simulates events is given along

with a description of how the physics objects are reconstructed. I make reference to the

object definitions in the two analyses presented, namely the tt̄H(H→bb̄) analysis and the

b-tagging analysis, highlighting any relevant differences between the two.

• In Chapter 4, the b-tagging calibration analysis is presented. In this chapter I provide an

introduction to b-tagging along with the motivation behind this calibration, the calibration

methods used and finally I summarise with the results and conclusions.

• In Chapter 5, I present the tt̄H(H→bb̄) analysis, with particular focus on the dilepton analy-

sis. I present the motivation for the analysis, along with the analysis methods followed by the



final results and conclusions. In Section 5.11.3 I present the motivation, method and results

of the study into possible event reconstruction methods and their efficiencies. In Section 5.13

I present the motivation, method and results of a study of the multivariate analysis methods.

The evaluation of the signal hadronisation model uncertainty is provided in Section 5.14.

In Chapters 4 and 5 I present my own work whereas Chapters 1, 2 and 3 are a literature review

of the information necessary to perform both of the analyses. Citations are provided for all of the

information that is not my own work.

Throughout this thesis, natural units are used as shown:

c = ~= 1. (1)

Energy, momentum and mass are therefore given in electron-volts (eV).



Chapter 1

Theory and Motivation

“
Light thinks it travels faster than anything but it is wrong. No matter how fast

light travels, it finds that darkness has always got there first and is waiting for

it.
”

Terry Pratchett, Reaper Man

1.1 The Standard Model of Particle Physics

1.1.1 The Components of the Standard Model

The Standard Model of Particle Physics (SM) describes the properties and interactions of the fun-

damental particles of nature in a single over-arching theory. The known elementary particles are

divided into two families according to the value of their spin quantum number. This is an intrin-

sic property of a particle and refers to the spin angular momentum of the particle. Particles with

half-integer spin are called fermions and particles with integer spin are called bosons. The fermion

family can be further subdivided into quarks and leptons. There are six types of quark that form

three ‘generations’ all of which posses colour charge. As one progresses from the first to the third

generation, quarks get progressively heavier as shown in Table 1.1. The six quarks in order of mass

from lightest to heaviest are up, down, strange, charm, bottom and top and have fractional electric

charges of either +2
3 or −1

3 . The lepton family is made up of electrons, muons, taus and their

associated neutrinos. The electron, muon and tau all have an electric charge of−1 and are massive
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particles whereas the neutrinos are electrically neutral and have an incredibly small mass relative

to all other particles. For every quark and lepton there also exists an anti-particle with equal and

opposite electric charge.

The SM also describes three fundamental forces: the strong force, the weak force and the

electromagnetic force. Each of these forces derives from a fundamental field whose quantisations

lead to the existence of spin-1 gauge bosons. These gauge bosons are the particles that mediate

the force in particle interactions. The photon is a massless and electrically neutral gauge boson

that is a quantisation of the electromagnetic field. Gluons are gauge bosons that mediate the strong

force; they are also massless and electrically neutral but carry colour charge. The weak force

is mediated by three gauge bosons, namely two electrically charged bosons called W+ and W−

and an electrically neutral Z boson. The fifth boson in the SM is the Higgs boson which is not

associated with any fundamental force but is associated with the Higgs field, the field that provides

the mechanism which gives particles mass.

The nature of the strong force coupling is such that it becomes asymptotically stronger at

smaller energy scales. This means that at high energy scales, quarks and gluons interact weakly

and therefore behave like quasi-free particles. Furthermore, at very low energies, the force between

quarks and gluons gets stronger. This effect is constantly seen in particle detectors. After a collision

the quarks involved separate, getting further and further apart. As they do so, the energy in the

gluon field increases until there is enough energy to create a quark anti-quark pair out of the

vacuum. These particles then also separate creating more particles and the process repeats. The

result is a ‘jet’ of particles travelling in a similar direction.

Eventually, the particles in these jets will not have enough energy to separate further and no

more particle pairs are created. At this point, the strong force holding the quarks together cannot

be overcome, and they are bound together inside what are known as mesons or baryons.

A meson is a particle made of one quark and one anti-quark bound together by the strong force.

mesons have integer spin and are relatively unstable particles so typically live O(10−8) s. baryons

are formed from 3 quarks bound together by the strong force. They have half integer spin and are

typically heavier than mesons. The lifetimes of baryons varies dramatically depending on the type

of baryon e.g. Λ baryon lifetime O(10−10)s, whereas proton decay has not been observed [5].
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Quarks

Up (u) Charm (c) Top (t) F
Mass: 2.3 MeV/c2 1.275 GeV/c2 173.07 GeV/c2

Charge: +2
3 e +2

3 e +2
3 e

Spin: 1
2

1
2

1
2 E

Down (d) Strange (s) Bottom (b)

Mass: 4.8 MeV/c2 95 MeV/c2 4.18 GeV/c2 R
Charge: −1

3 e −1
3 e −1

3 e

Spin: 1
2

1
2

1
2

M
Leptons

Electron (e) Muon (µ) Tau (τ) I
Mass: 0.51 MeV/c2 105.66 MeV/c2 1776.82 MeV/c2

Charge: ±1e ±1e ±1e

Spin: 1
2

1
2

1
2 O

Electron Neutrino (νe) Muon Neutrino (νµ) tau Neutrino (ντ)
Mass: <2 eV/c2 <0.19 MeV/c2 <18.2 MeV/c2 N

Charge: 0e 0e 0e

Spin: 1
2

1
2

1
2

S

Photon (γ) Gluon (g) B
Mass: 0 eV/c2 0 eV/c2

Charge: 0e 0e O
Spin: 1 1

W-Boson (W±) Z-Boson(Z0) S
Mass: 80.385 GeV/c2 91.1876 GeV/c2

Charge: ±1e 0e O
Spin: 1 1

Higgs boson (H) N
Mass: 125.9 GeV/c2

Charge: 0e S
Spin: 0

Table 1.1: Fundamental particles in the SM of particle physics. All quantities are quoted from the particle
data group 2014 review [5]. All particles in the SM are accompanied by an anti-particle (not shown in this
table) which possess equal and opposite charge to the particle. All other quantities are the same. e is the
absolute electric charge of the electron.

1.1.2 Constructing the Standard Model

All processes in the SM are described by a renormalisable quantum field theory in which the SM

Lagrangian is invariant under local gauge transformations. This invariance is required to make
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the theory renormalisable and is introduced to the SM through the local gauge symmetry U(1)Y×
SU(2) L× SU(3) c. Each of these terms represents a group of transformations acting on a set of

vectors or matrices and are associated with one or more fields. It is these symmetries that give rise

to the fundamental fields in the standard model that are associated with the spin-1 gauge bosons.

Weak hypercharge is the generator of the gauge group U(1)Y , a gauge symmetry of the SM.

In order to make the SM Lagrangian invariant under a local U(1)Y gauge transformation, an addi-

tional vector field Bµ is introduced to the SM Lagrangian along with a covariant derivative. The

U(1)Y gauge symmetry is a component of the electroweak gauge group SU(2)×U(1) and when its

associated fundamental field Bµ mixes with the fundamental electroweak fields, the Z boson and

photon are generated as quantisations of the resulting physical gauge fields as shown for the photon

in Equation 1.1 and the Z boson in Equation 1.3:

Aµ = sinθWW (3)
µ − cosθW Bµ (1.1)

In both equations θW is the Weinberg angle (weak mixing angle).

The Standard Electroweak Model is based on the more complex SU(2)×U(1) symmetry. This

symmetry introduces a singlet and a triplet with weak isospin as its generator. The triplet of

additional fundamental fields are labelled W(1)
µ , W(2)

µ and W(3)
µ and are associated with the SU(2)

symmetry whereas the singlet Bµ is associated with the U(1) symmetry. The combination of fields

W(1)
µ and W(2)

µ is interpreted as two W bosons as shown in Equation 1.2:

W± =
1√
2
(W (1)

µ ∓ iW (2)
µ ) (1.2)

The W(3)
µ field is associated with an electrically neutral boson which is part of the Z boson as

shown in Equation 1.3 and Bµ remains associated with weak hypercharge:

Zµ = cosθWW (3)
µ − sinθW Bµ (1.3)

The third field in the standard model is the colour field which is associated with the SU(3)c

group. Once again, by enforcing local gauge invariance the theory predicts the existence of a set

of associated gauge bosons called gluons.

The wave-function of a particle in the Standard Model is represented as a plane wave multiplied

by a four component spinor u(E,~p), where
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Ψ = u(E,~p)ei(~p~r·Et). (1.4)

The spinor u(E,~p) has both a left- and a right-handed chiral component. However, in Standard

Model charged-current weak interactions, the W bosons couple to matter in vector-axial interac-

tions. This means the associated coupling terms include the projection operators,

PL =
1
2
(1− γ

5)

PR =
1
2
(1+ γ

5)

(1.5)

where,

γ
5 =

 0 1

1 0

 (1.6)

and PL and PR are the chirality operators. PL and PR operate on particle and anti-particle spinors,

leaving just the left or right-handed components of the spinor respectively. Hence, only fermions

(anti-fermions) with a left-handed (right-handed) chirality interact via the charged weak interac-

tion.

In the Standard Model, all fermions form weak isospin doublets. Weak isospin is a quantum

number which is associated with the weak interaction and is typically denoted with the letter ‘T’.

The third component of weak isospin namely ‘T3’, is a conserved quantity and is used to group

left-handed fermions (with negative chirality) into doublets. These are called left-handed chiral

doublets and are formed from a pair of particles which have the same weak isospin value, T= 1
2 but

have equal and opposite values of the third component of weak isospin, T3 =±1
2 . The 6 left-handed

chiral doublets are shown in Equation 1.7. Similarly, the anti-fermions in the Standard Model form

their own doublets which have T= 1
2 but opposite T3 values to their fermion counterpart. Fermions

with positive chirality form right-handed chiral singlets. The particles in these singlets have values

of T= 0 and T3 = 0 and are shown in Equation 1.8. Similarly, anti-fermions with negative chirality

form right-handed chiral singlets.
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ψ
Leptons
L =

(
νe

e−

)
L
,

(
νµ

µ−

)
L
,

(
ντ

τ−

)
L

ψ
Quarks
L =

(
u
d′

)
L
,

(
c
s′

)
L
,

(
t
b′

)
L

(1.7)

ψ
Leptons
R = e−R , µ−R , τ

−
R

ψ
Quarks
R = uR, dR, cR, sR, tR, bR

(1.8)

The strength of flavour changing weak interactions between quarks is characterised in the SM

by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix is a unitary matrix in the

Standard Model that contains information on the strength of flavour-changing weak decays. Each

element of the matrix is proportional to the probability that a given quark of flavour i will decay

to another quark of flavour j and denoted |Vi, j|. The CKM matrix containing the current best

measurements of the couplings of each quark to another via the charge-current weak interaction is

shown in Equation 1.9 [5]:

MCKM =

( |Vu,d | |Vu,s| |Vu,b|
|Vc,d | |Vc,s| |Vc,b|
|Vt,d | |Vt,s| |Vt,b|

)

=
( 0.97425±0.00022 0.2253±0.0008 0.00413±0.00049

0.225±0.008 0.986±0.016 0.041±0.0013
0.0084±0.0006 0.04±0.0027 1.021±0.032

)
.

(1.9)

One thing to note about this matrix, is that the off-diagonal elements which are proportional to

the probabilities of decays between quarks from different generations are smaller.

To describe the dynamics and processes associated with SM processes, it is convenient to use

a Lagrangian. The SM Lagrangian can be broken down into five parts [6]:

L = LFermions +LGauge + LInt. + LHiggs + LYukawa (1.10)

In Equation 1.10, LFermions represents all Fermion kinetic terms, LGauge represents all the gauge

field kinetic terms, LInt. represents the gauge couplings with the Higgs field, fermion fields and the

self-interaction terms, LHiggs represents the scalar Higgs field kinetic energies, LYukawa represents

the Yukawa interaction terms which mathematically represents the coupling between the Higgs
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field and massless fermion fields. The inclusion of the Higgs field terms will be discussed in the

next section.

1.2 The Higgs Boson and the Origins of Mass

Renormalisation ensures the cancellation of divergences in higher order Feynmann diagrams by

the explicit addition of counter-terms. Gauge invariance plays a key role in the renormalisation

especially in the unified electroweak theory. Requiring local gauge invariance results in the addi-

tion of gauge field terms to the SM Lagrangian which cancels out many divergent integrals and

renders the theory renormalisable. However, this gauge invariance also requires all gauge bosons

to be massless. This contradicts experimental evidence where both the W and Z bosons have been

found to be massive particles. Therefore, the SM requires a separate mechanism to provide W

and Z gauge bosons with mass. The introduction of the Higgs field provides the mechanism for

which the massive particles in the SM can acquire mass without breaking gauge symmetries, whilst

retaining the renormalisability of the theory. The addition of the Higgs field simultaneously intro-

duces an associated massive gauge boson called the Higgs boson.

1.2.1 Spontaneous Symmetry Breaking

Part of the mass mechanism through which massive fermions and bosons obtain mass in the SM

is called spontaneous symmetry breaking. When constructing the Lagrangian for a field, a pertur-

bation procedure can be applied which expresses the field in terms of fluctuations from the ground

state. This is done by finding the minima of the field potential and choosing a ground state.

Choosing an arbitrary ground state conceals the original symmetry of the Lagrangian in a

process known as spontaneous symmetry breaking. This happens because the vacuum state (the

field configuration that gives the chosen ground state) does not share the same symmetry as the

original Lagrangian. In general, the new non-symmetric Lagrangian yields one massive field and

at least one massless scalar field [7].

1.2.2 The Mass Mechanism

The Standard Electroweak Model is based on the SU(2)L× U(1)Y symmetry. Through the enforce-

ment of local gauge invariance, the Standard Electroweak Lagrangian yields 4 massless gauge
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bosons. In the Electroweak model, the mass mechanism is applied to the SU(2)×U(1) gauge sym-

metry of the Electroweak force to give mass to the W± and Z bosons. The simplest Higgs model

in this case forms the Higgs field out of complex scalar fields placed in the weak isospin doublet:

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(1.11)

The Lagrangian density for this doublet is defined in Equation 1.12:

L = (δµφ)†(δµ
φ)−V (φ) (1.12)

where V(φ) is the Higgs potential shown in Equation 1.13:

V (φ) = µ2
φ

†
φ+λ(φ†

φ)2. (1.13)

and δµφ as defined in Equation 1.14 is the derivative of φ with respect to each of the 4 space-time

coordinates.

δµφ =
δφ

δxµ (1.14)

Here, λ represents the Higgs self-coupling parameter which is a free parameter in the SM and

µ2 represents the minimum for the potential of the field φ.

The shape of the potential depends on the sign of µ2. If µ2 < 0, the potential has an infinite set

of minima, satisfying Equation 1.15:

φ
†
φ =

1
2
(φ2

1 +φ
2
2 +φ

2
3 +φ

2
4) =

v2

2
=− µ2

2λ
(1.15)

where ’v’ is the value if the field φ, when φ is in the physical vacuum state. The shape of the Higgs

field potential is shown in Figure 1.1.

These minima must correspond to the non-zero expectation value of a neutral field. This non-

zero expectation value results in a massive field which therefore cannot be associated with the

neutral photon field and must correspond to the neutral scalar field φ0:

〈0|φ |0〉= 1√
2

(
0
v

)
. (1.16)

Choosing the vacuum state to be in the real direction, the fields can then be expressed as an expan-
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sion about the minimum:

φ(x) =
1√
2

(
φ1(x)+ iφ2(x)

v+η(x)+ iφ4(x)

)
. (1.17)

After spontaneous symmetry breaking there is a massive scalar field ’η(x)’, and 3 massless scalar

fields (associated with the Goldstone bosons). By choosing the appropriate gauge, the massless

fields provide the longitudinal degrees of freedom for the W± and Z bosons and are thus eliminated

from the Lagrangian.

In this gauge φ(x) becomes:

φ(x) =
1√
2

(
0

v+h(x)

)
. (1.18)

Here h(x) (i.e. the Higgs field) represents η(x). The new Lagrangian written in terms of φ(x) is no

longer symmetric.
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Figure 1.1: Plot of the Higgs field potential V (φ) for µ2 < 0.

The SM requires this new Lagrangian to be locally gauge invariant under infinitesimal local

SU(2) gauge transformations. This is ensured by the introduction of a covariant derivative and

the appropriate transformations of all fields. Once local SU(2)L×U(1)Y gauge invariance is im-

plemented, mass terms can be identified through the quadratic terms in the new non-symmetric

Lagrangian.

The fundamental W1 and W2 fields combine to generate a physical gauge field. The mass of

this physical field (the W boson mass) is shown in Equation 1.19. It has dependencies on the weak

coupling constant ’gW ’ of the SU(2)L gauge interactions and the vacuum expectation value of the

Higgs field:

mW =
1
2

gW v. (1.19)

The Lagrangian terms that are quadratic in the neutral W3 and Aµ fields mix into two physical
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particles, with the masses shown in Equation 1.20:

mA = 0

mZ =
1
2

v
√

g2
W +g′2

(1.20)

where gW and g‘ are the couplings associated with the SU(2)L and U(1)γ gauge symmetries respec-

tively.

The Glashow-Salam-Weinberg model predicts that the mass of the W and Z bosons are related

by Equation 1.21:

mW

mZ
= cosθW . (1.21)

The physical fields are generated through the mixing of massless underlying fields associated

with the SU(2)L×U(1)Y local gauge symmetries. The Z boson which is associated with the neutral

Goldstone boson, acquires mass through the Higgs mechanism whereas the photon remains neutral.

The relationship between the physical and underlying fundamental fields is shown in Equation 1.22

where θW is the weak mixing angle:

Aµ = cosθW Bµ + sinθWW (3)
µ

Zµ =−sinθW Bµ + cosθWW (3)
µ .

(1.22)

The ratio of the couplings, g′
gW

, can also be related using the weak mixing angle:

g′

gW
= tanθW (1.23)

The electroweak symmetry breaking model is defined by 4 parameters; the couplings associ-

ated with the two local gauge symmetries, gW and g′, the vacuum expectation value ν and λ from

the Higgs potential. The Higgs potential parameter is related to the Higgs field vacuum expectation

value, ν, and boson mass, mH such that:
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v2 =−µ2

λ

m2
H = 2λv2

(1.24)

The values of gW (≈ 0.18), g′ (≈ 0.097) and ν can be extracted from three independent

physical measurements; the Z boson mass, sinθW and the Fermi constant GF are the most ac-

curately measured and are therefore used for this purpose. The measurements of the Z boson

mass and sinθW are determined from the Z line shape scan at LEP whereas the Fermi constant

GF (1.1663787× 10−5GeV−2) is defined using the muon lifetime formula and the fine structure

constant α (≈ 1/137), which is currently dominated by the e± anomalous magnetic moment mea-

surement. The value of λ depends on the Higgs boson mass and can be obtained from measure-

ments made at the LHC. The current best measurement of the Higgs vacuum expectation value ν

is 246 GeV [5].

1.2.3 The Higgs Yukawa Coupling

The Lagrangian LD, for a relativistic spin-half field (Dirac field) represented by a four-component

spinor Ψ, that satisfies the free-particle Dirac equation is:

LD = iΨ̄γ
µ
δµΨ−mΨ̄Ψ. (1.25)

Here, Ψ is composed of left and right-chiral components, Ψ = ΨL +ΨR. Due to the different

transformation properties of left- and right-handed-chirality states, the mass terms for fermions in

the Dirac Lagrangian are not gauge invariant under the SU(2)L×U(1)Y symmetry. In the SM, the

mass mechanism that generates the W and Z boson masses can also be relied upon to generate the

fermion masses. The Higgs fields coupling to fermions is:

g f =
√

2
m f

v
(1.26)

Couplings between a Dirac field and a scalar field are known as Yukawa couplings. As is shown in

Equation 1.26 the coupling of the Higgs field to fermions is proportional to the mass of the particle

it is coupling to (for bosons, the coupling is proportional to the square of the mass). For the top

quark with a mass of 173.21±0.51 GeV/c2 the Yukawa coupling is close to unity [8].
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1.2.4 Production Processes & Branching Ratios of the Higgs

The four main processes for Higgs boson production in proton-proton collisions at the LHC are:

gluon-gluon fusion (ggF), vector boson fusion (VBF), associated vector boson production (VH)

and associated top production (tt̄H). The cross-section for each of these processes at the LHC is

shown in a Table 1.2. The exact cross-section of each process for a Standard Model Higgs boson

of mass mH =125 GeV/c2 is shown in Table 1.2.
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Figure 1.2: Cross-sections [pb] for the main Higgs boson production processes at the Large Hadron Collider
for the Higgs boson mass range 100-500 GeV/c2 [9]

.

Due to the large centre of mass energy in proton-proton collisions at the LHC, gluon-gluon

fusion has the largest cross-section for producing Standard Model Higgs bosons [10]. This process

is a factor of ten larger than all other production cross sections [11]. Seeing as the Higgs boson

couples to mass, this process must be mediated by massive particles. Although the calculation

of the cross-section for a gg→ H process involves loops of all massive coloured fermions (quark

loops), it is dominated by the top-quark loop amplitude. The next-heaviest fermion loop contributes
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no more than 10% of the cross-section for this process at leading order calculations [12]. This

process is subject to extremely large QCD radiative corrections [13].

t̄
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q̄
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Figure 1.3: The four main Higgs boson production processes at the LHC: a) Gluon-gluon fusion (ggF) b)
Vector boson fusion (VBF) c) Associated top quark production (tt̄H) d) Associated vector boson production
(VH)

Another process by which the Higgs boson is produced is by VBF. This is the process by

whereby two vector bosons annihilate to form the Higgs boson (see Figure 1.3). The VBF cross-

section at the LHC is an order of magnitude lower than that of gluon-gluon fusion. In this process,

the Higgs boson is produced in association with two jets that are scattered in the forward direction

as a result of the recoiling quarks [14]. There is not a lot of hadronic activity in the rapidity region

between these jets because they are not colour connected. This makes them excellent signatures

when trying to identify VBF events. The Higgs boson decay products are much more central which

means they are separated from the forward part of the event and can be well reconstructed. Gluon-

gluon fusion events produced with two additional jets provide the dominant background to VBF

events.
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Higgs boson production cross-sections (pb)

ggF VBF WH ZH tt̄H Total

19.3+15%
−15% 1.58+3%

−2% 0.70+4%
−5% 0.41+6%

−6% 0.13+12%
−18% 22.1

Table 1.2: Higgs boson production cross-sections in proton-proton collisions with center of mass energy√
s = 8 TeVat the LHC for mH = 125 GeV/ c2 [5]

The VH processes have a smaller cross-section than ggF and VBF processes. However, it re-

mains an important production channel for observing the Higgs boson as the small cross-section is

compensated for by techniques that utilise easy-to-distinguish signatures such as b-jets and leptons

to minimise background processes [15].

The tt̄H channel is a particularly important production process as it offers the possibility of

measuring the top Yukawa coupling. It is difficult to observe the Higgs boson in this channel as

tt̄H final states will suffer from large tt̄ background. As a result, extremely accurate background

and detector descriptions are required for observations of and analysis of this process.

1.2.5 Higgs Boson Branching Ratios

The coupling between the Higgs field and any fermion (boson) is proportional to the particle mass

(square of the mass). This, among other factors, determines the frequency with which the Higgs

boson decays into a particle and is predicted by the Standard Model.

The largest branching ratio of the 125 GeV/c2 Standard Model Higgs boson is to a pair of b-

quarks which is BR(H→ bb̄)= 57.7%+3.3%
−3.2% [5]. The Higgs boson can also decay via gluon pairs

(gg) and photon pairs (γγ). This process is mediated by loops of massive particles as the Higgs

boson couples to mass. These loops provide additional indirect information on the Higgs boson

couplings to heavy particles such as WW and tt̄.
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Figure 1.4: The branching ratios for the main decays of the Standard Model Higgs boson with mass near
mH = 125 GeV/c2. The theoretical uncertainties indicated by the relative size of the bands [5].

1.2.6 Measurements of the Standard Model Higgs Boson

The search for the Higgs boson is performed by looking at the signature decay products of Higgs

boson candidate events and minimising the possibility that they could have come from any other

type of event through a series of experimental techniques. Significant evidence supporting the

existence of a SM-like Higgs boson was obtained by the ATLAS and CMS experiments in 2012.

The search for the Higgs boson was carried out by analysis teams from each collaboration per-

forming separate searches in individual decay channels before combining them to calculate a total

significance. The final states that contributed to the discovery of the Higgs boson were H→ γγ,

H→ ZZ→ 4l and H→WW→ lνlν where ‘l’ denotes a charged lepton. The signal strength in

each of the channels is shown in Figure 1.5. The two most sensitive searches are those for H→ γγ
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and H→ ZZ→ 4l. In both of these channels, the Higgs boson candidate is reconstructed on an

event-by-event basis from the invariant mass of the decay products. These two channels are partic-

ularly sensitive because, despite relatively small signals, the background processes can be reduced

significantly.
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Figure 1.5: Measurements of the signal strength parameter µ for mH= 125.5 GeV/c2 in individual channels
and their combination using the ATLAS detector [16]

.

The current best measurement of the Higgs boson mass performed by the ATLAS collabora-

tion [16] using 4.8 fb−1at
√

s = 7 TeVand 20.7 fb−1at
√

s = 8 TeV, and combining all five decay

channels is:

mH = 125.5±0.4(stat)±0.4(sys) GeV/c2 (1.27)

The best-fit signal strength for individual channels and all channels combined is also measured.

The signal strength parameter µ is measured and expressed in units of the SM Higgs boson cross-
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section. The ATLAS current best measurement for the combined signal strength for a Higgs boson

mass of 125.5 GeV/c2 is:

µ = 1.43±0.16(stat) ±0.14(sys). (1.28)

The same measurement performed by the CMS experiment with an integrated luminosity of

5.1 fb−1of 7 TeV data and 19.6 fb−1 of 8 TeV data taken from proton-proton collisions using the

LHC [17] also using all five decay channels is:

mH = 125.7±0.3(stat) ±0.3(sys) GeV/c2 (1.29)

The CMS current best measurement for the combined signal strength for a Higgs boson of

mass 125.7 GeV/c2 is:

µ = 0.8±0.14. (1.30)

The consistency of the measurement of the couplings of the observed resonance with respect to

those predicted by the SM for the Higgs boson was tested by both experiments and no significant

deviations from the SM Higgs boson couplings were found.

The observed mγγ spectrum from the di-photon analysis is shown in Figure 1.6. The solid red

curve show the fitted signal-plus-background model where the Higgs boson mass has been fixed at

125.4 GeV. The background component of the fit is shown by the blue dotted line. The solid black

curve close to the x-axis shows the signal component of the fit. The plot beneath the main figure

shows the ratio between the data and and the background component of the fitted model.
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Figure 1.6: The observed mγγ spectrum from the diphoton Higgs boson search [18].
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Chapter 2

The Large Hadron Collider and the
ATLAS Detector

“
Doomsday device? Ah, now the balls in Farnsworths court. I suppose I could

part with one and still be feared.
”

Professor Hubert J. Farnsworth, Futurama

2.1 The LHC

The Large Hadron Collider (LHC) is a high energy particle collider located in Geneva, Switzerland.

The main ring of the collider is 27 km in circumference located underground at the border between

France and Switzerland. The collider was designed with the intention of discovering new physics

at high energies using a range of experiments based on the CERN (Conseil Européen pour la

Recherche Nucléaire) main site.

One of the main functions of the LHC is to collide protons together. In order to create the pro-

tons, hydrogen atoms are stripped of their electrons readying the protons for injection into the first

stage of acceleration. This is a linear accelerator called Linac 2 which brings the protons energy

up to 50MeV. The protons are then passed into the Proton Synchrotron Booster which consists of

4 rings. Each ring is surrounded by powerful magnets to bend the protons trajectory round the

circle and a cyclical electromagnetic field accelerates the particles to 1.4GeV. Subsequently the

protons are accelerated by the Proton Synchrotron (PS) to 25GeV, and then by the Super-Proton
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Synchrotron (SPS) up to 450GeV. The protons are then injected into the LHC main ring where

they were accelerated to a maximum energy of 3.5 TeV in 2011, 4 TeV in 2012 and 6.5 TeV in

2015.

Two separate beams of protons are injected into the LHC in opposite directions. Metallic

chambers containing electromagnetic fields oscillating at radio-frequency (400 MHz) are used to

accelerate the particles around the LHC main ring. These are called radio-frequency (RF) cavities.

A RF powered generator is used to set up a an resonant electromagnetic field inside the cavity. The

electromagnetic field transfers energy to the charged particles passing through the cavity push-

ing them forwards along the accelerator. An ideally timed particle (synchronised with the RF

frequency) will see no acceleration whereas particles arriving slightly later/earlier will see an ac-

celeration/deceleration respectively. This separates beams into swarms of protons called bunches

which contain roughly 1011 protons per bunch. There can be up to 1400 bunches present in each

beam.

When in circulation protons are travelling close to the speed of light. Dipole magnets are used

to steer the protons round the LHC main ring. Because protons are electrically charged, proton

beams diverge so quadrupole magnets are used to control the width and the height (focus) of the

beams. A very large electromagnetic force is required to steer the protons and maintain the focus

of the beam. This requires a large magnetic field and electric current which are achieved by using

superconducting magnets. These magnets need to be cooled to temperatures close to absolute zero

to obtain their superconducting state.

Protons are injected into the LHC main ring by the SPS and accelerated to the full potential en-

ergy. Once fully accelerated, the circulating beams begin colliding. There are four predetermined

collision points at each of the major experiments around the LHC ring. Multipole magnets are used

to focus the beams at the collision points producing around 27 collisions per bunch crossing. The

number of proton-proton collisions per bunch crossing is known as pileup. Not all of the collisions

in a bunch crossing will be kept for further analysis as they do not all contain the signatures of

an interesting physics collision. However, they can interfere with the recorded information from

events that do. The effect of pileup is taken into account when performing physics analyses.

Proton-proton collisions reduce the number of protons left in the circulating beams and causes

the instantaneous luminosity to decrease. When the instantaneous luminosity of the decreases be-

low a threshold value, the beams are rapidly extracted from their orbit and fired into large graphite
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absorbers to end their circulation.

Around the LHC main ring are 4 collision points at which the proton-proton beams are fo-

cused. At each of these collision points, a detector is located. The ATLAS detector is one of 4

main detectors around the main circuit at the LHC. It is a multi-purpose particle physics detector

designed to be able to measure all possible final states we expect to observe from proton-proton

(Pb ion) collisions.

2.2 The ATLAS Coordinate System

To describe the position of particles within the detector, ATLAS uses a cylindrical coordinate

system. All points are described relative the orthogonal x−, y−, and z−axes with the positive

z−direction pointing along the beam axis around the LHC circuit. The transverse plane is then

described by x− and y−coordinates. The x−axis points towards the centre of the LHC circuit,

whereas the y−axis points towards ground level. The azimuthal angle φ is in the transverse x− y

plane and is defined from the positive x−axis. The polar angle θ is defined from the positive z−axis

in the z− y plane.
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Figure 2.1: The ATLAS coordinate system with the x−axis pointing towards the centre of the LHC ring, the
y−axis pointing upwards toward ground level and the z−axis pointing along the beam direction.

As the protons involved in collisions at the LHC don’t have equal and opposite momentum,

their centre of mass frame can be boosted along the z-direction with respect to the lab frame.

Subsequently, the value of ∆θ between two particles changes depending on the size of this boost.

Lorentz invariant quantities are therefore used which enables the comparison of kinematic quanti-

ties without distorting results with these effect.

Rapidity is defined in the following way:

y = ln

√
E + pz

E− pz
. (2.1)

In this equation y represents rapidity, E represents the Energy of the particle and pz represents

the z−component of the momentum. This variable can be used in place of θ because it is Lorentz-

invariant and is dependant on pz, where the size of the z−component of the particles momentum

is proportional to the angle θ. For particles with most of their momentum down the beam line, and

therefore at low θ, the rapidity will tend to infinity. Particles with most of their momentum in the
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transverse plane and therefore large θ, rapidity will tend to 0.

Rapidity calculations require both the total energy and pz of the particle to be known. These

values are difficult to obtain for particles which take a trajectory close to the beam line due to

design limitations and so rapidity is not commonly used in hadron collider physics. Instead, An

approximation of the rapidity variable called pseudorapidity is used which is defined by equation

2.2. For highly relativistic particles, pseudorapidity and rapidity are approximately equal.

η =− ln tan
θ

2
(2.2)

2.3 The ATLAS Detector

The ATLAS detector has a cylindrical geometry consisting of several sub-detector systems which

are organised concentrically around the beam pipe. The inner most layer is called the ‘inner detec-

tor’. It is situated inside the central solenoid magnet, immersing it in a 2 Tesla axial magnetic field.

This causes the trajectories of charged particles traversing the inner detector to be curved leaving

an arced track. The track creates a segment of an incomplete circle in the detector, the radius of

which can be used in equation 2.3 to calculate the momentum/charge ratio of charged particles

(e.g. electrons, muons, hadrons).

mv2

r
= Bqv. (2.3)

In this equation m is the particles mass, v is its velocity, r is the radius of the circle, B is the

magnetic field strength and q is the charge of the particle.

Outside the inner detector are two calorimeters; the electromagnetic calorimeter (EM calorime-

ter) and the tile calorimeter (or hadronic calorimeter). Each designed to absorb the energy de-

posited by different types of particles, either via electromagnetic or hadronic interactions respec-

tively, which result from the proton-proton collision.

The muon spectrometer is located in the around the calorimeters. This is because the muons

are the only particle aside from the neutrinos that consistently reach the outermost part of the

detector. Like the inner detector, the muon spectrometer is kept inside a magnetic field to give

it tracking capabilities. The magnetic field in this case is created using toroidal magnets which

are described in more detail in section 2.3.8. The detector’s closed volume allows one to measure
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neutrino’s transverse momentum by calculating the missing transverse energy. The details of these

subsystems will be discussed further in this chapter.

2.3.1 The Inner Detector

The ATLAS inner detector (ID) is comprised of three subsystems. These are the pixel detector,

the silicon micro-strip semiconductor tracker (SCT) and the transition radiation tracker (TRT). The

three subsystems are used together to improve tracking measurements.

The innermost subsystem is the pixel detector, followed by the SCT and then the TRT. The

inner detector consists of three units, the barrel section and two end caps to complete the cylin-

drical geometry of the detector. In the barrel region, the sub-detectors are arranged in concentric

cylinders around the z-axis while the end caps are circular disks placed perpendicular to the z-axis

in the x-y plane allowing tracking coverage up to |η| ≤ 2.5. With an average of 36 hits per track,

the ATLAS inner detector provides continuous tracking and improved momentum resolution over

|η|< 2.0 along with an electron identification capability that is complementary to that provided by

the calorimeters.

Figure 2.2: Schematic of the ATLAS inner detector highlighting the separated subsections: transition radi-
ation tracker, semi-conductor tracker and pixel detector. [19]
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Both the pixel detector and the SCT use semiconductor tracking technology. An electric field

is induced across the semiconducting material in the trackers. As the charged particles traverse

the semiconductor, an electron-hole pair is created which, due to the electric field, drift towards

specially doped regions of the material where the charge builds up. This subsequently produces a

current that flows towards the electronic readout system. As the charge passes through the detector,

it creates these electron-hole pairs in multiple layers of detector (see Sections 2.3.2 and 2.3.3 for

more detail). These measurements are combined to make up a complete track tracing the particles

trajectory through the detector. This is what is then used to calculate the charge-momentum ratio

of the particle. The technology used in the TRT is described in detail in section 2.3.4.

2.3.2 The Pixel Detector

The Pixel detector consists of concentric layers of silicon pixels around the the beam axis. These

are inside the central solenoid which creates a nominal magnetic field of 2 T. The silicon layers

in the barrel are situated at radii of 50.5 mm, 88.5 mm and 122.5 mm from the z-axis. The end

caps are made up of 3 circular disks located at each end of the detector. The 3 layers are situated

at ±495mm, ±580mm and ±650 mm along the z-axis from the nominal interaction point. This

gives it a coverage of |η|< 2.5 for position measurements up to 11 cm from the nominal collision

point.

2.3.3 The Silicon Micro-strip Semiconductor Tracker (SCT)

The silicon micro-strip semiconductor tracker is composed of 4 layers of silicon wafers situated

around the pixel detector. The aim of the SCT is to provide a complementary measurement of a

charged particle’s trajectory, perpendicular to the beam axis. Its micro-strip technology allows for

a more practical coverage of a larger area when compared with the pixel detector. Each silicon

wafer is 6.3 by 6.4 cm2 with 768 active strips. Individual modules consist of four detectors, two on

each side back to back, at a 20 mrad angle. The nominal spatial resolution of the SCT is 17 µm in

r-φ and 580 µm in z-x. As with the pixel detector, the SCT is composed from three units, the barrel

and two end caps, with coverage up to |η| ≤ 2.5.

This tracker is used to take 4 high precision measurements per track in r-φ-z coordinates at

an intermediate radial range and uses small angled stereo to obtain a z measurement. The SCT

has reduced granularity when compared to the pixel detector but due to being positioned further
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away from the interaction point it has a lower occupancy rate. The SCT is used to contribute to-

wards transverse momentum calculations but also vertex locating and measurements of the impact

parameters from vertices of interest.

2.3.4 The Transition Radiation Tracker (TRT)

The transition radiation tracker is a straw detector located around the SCT at the radial range 554-

1082 mm. Each straw has a diameter of 4 mm. The straws contain a Xenon-based gas mixture as

the active material and a gold-plated Tungsten-Rhenium readout wire. When a particle traverses

the XeCO2 gas it ionises the Xenon atoms liberating electrons. The resulting free electrons drift

towards the anode wire where they are amplified and read out.

The straws are interleaved with layers of polypropylene fibres (barrel region) and foils (end

caps) which act as radiators [20]. The dielectric medium changes drastically between a radiator

and a straw which instigates the production of transition radiation photons by the highly relativistic

particles that traverse the medium. The resulting radiation (5-30 keV) is subsequently absorbed

by the Xe atoms, leading to the release of more electrons and significantly increasing the read

out signal. The amount of transition radiation is proportional to how relativistic the particle is

which means that typically, lighter particles produce more transition radiation than heavier par-

ticles. Subsequently, this information can be used to distinguish between electrons and charged

pions.

The TRT is used alongside the SCT and Pixel detector, helping with pattern recognition when

reconstructing the tracks, by adding around 36 additional hits per track. It also improves the

momentum measurement in the inner detector by contributing a precision that would correspond

to a single point measurement of 50 µm.

2.3.5 The Electromagnetic Calorimeter

The electromagnetic calorimeter is designed to make precision measurements of the energies of

electrons (positrons) and photons above a few MeV and also has the capability to measure the en-

ergy deposited in the calorimeter by jets via electromagnetic processes. It is a sampling calorime-

ter which consists of layers of material which force electromagnetically interacting particles form

electromagnetic showers.

The ATLAS electromagnetic calorimeter uses lead absorption layers to force the shower. When
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a particle interacts with the lead absorption layer they produce a shower of low energy electro-

magnetically interacting particles, for example electrons, positrons and photons (electromagnetic

shower). The main processes involved in creating this shower are pair production from photons

and Bremsstrahlung radiation by energetic electrons. Absorption layers are interleaved with layers

of liquid argon which is used as the active element to measure the energy deposits. Liquid argon

was chosen as it is a radiation hard noble gas with a high atomic number (Z) (and subsequently

a short radiation length). The charged component of the shower ionises the LAr in the gaps in-

ducing more negatively charged electrons and positively charged ions. The negative charge drifts

towards the copper electrodes where the signal is summed and read out. By measuring the charge

deposited on the electrode it is possible to calculate the original energy of particle when it entered

calorimeter.

The electromagnetic calorimeter is located around the inner detector in the radial range 1150-

2220 mm. It is divided along the z-axis into three sections: the barrel region and the two end

caps, one either side of the barrel region. Because all three regions use liquid argon as the active

material, they can share the same cryostat. Each section is a located inside an aluminium cryostat

which keeps the temperature of the liquid argon at a constant 87 K. The signal response depends

on the temperature of the liquid argon (varies 2%/K) so the uniformity of the temperature inside

the detector is of vital importance. The barrel covers the pseudorapidity range 0≤ |η| ≤ 1.52 and

the end caps cover the range 1.375≤ |η| ≤ 3.2. The barrel contains 16 3.2 m long modules which

stretch radially outward. They consist of 64 accordion-shaped absorbers interleaved with readout

electrodes immersed in liquid argon as shown in figure 2.3. The accordion structure minimises

dead-zones in the φ-direction.
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Figure 2.3: Schematic of the ATLAS electromagnetic calorimeter. Image shows the accordion structure of
the electrodes that run through the calorimeter and the interleaved layers of lead absorbers and electrode
read-out wires immersed in liquid argon [21],[22].

The calorimeter is composed of three concentric sampling layers, each with a different granu-

larity. At the innermost edge of the electromagnetic calorimeter is the pre-sampler which is used

to correct for the energy lost in the material between the beam axis and the calorimeter. Out-

side this there is the 1st sampling layer, as show in figure 2.4 which has the finest granularity of

∆η×∆Φ= 0.0031×0.098. Due to its ultra-fine strip cells, this layer is used to distinguish between

photons and π0 hadrons using shower-shape variables and looking for substructure. There are then

two more sampling layers with increasing cell sizes. The square cells in the second sampling layer

are ∆η×∆Φ = 0.025×0.0245 and in the third layer they are ∆η×∆Φ = 0.05×0.0245.
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Figure 2.4: Schematic of the ATLAS electromagnetic calorimeter. Image shows the layout of a the three
sampling layers in the calorimeter [23]

2.3.6 The Hadronic Tile Calorimeter

The Hadronic Tile Calorimeter (HCAL) is a large hadronic sampling calorimeter. It is used to

measure the energy of hadronic showers produced by the interactions of the mesons and baryons

from a collision with the atomic nuclei of the detector material. The tile calorimeter is composed of

steel sheets interleaved with layers of scintillating tiles. Along the edges of each scintillating sheet

are wavelength shifting (WLS) fibres which transport the photons generated in the scintillator to

the photomultiplier tubes (PMTs).

When a particle passes through the steel absorber, it creates a shower of lower momentum par-

ticles (hadronic shower). When these particles reach the scintillating material, they create many

electron-hole pairs. The scintillating material is doped with impurities. Points at which the impu-

rity atoms exist in the scintillators lattice are called activator sites. Electron-hole pairs drift to the

activator site as the ionisation energy is lower. The electron de-excites by transitioning through

energy levels emitting visible/UV light. The light produced in the scintillating material is collected

by WLS fibres which carry the photons to the PMT. These then convert the light into an electric

current. The size of the signals read out is then used to calculate the energy of the primary hadrons
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that entered the hadronic calorimeter. The nuclear interaction length (defined for a material as the

average distance a hadron has to travel inside that medium before a nuclear interaction occurs) for

hadronic showers is longer due to the smaller cross-section of the nuclear interactions and thus, the

tile calorimeter is radially larger than the EM calorimeter.

Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 2.5: Schematic of the ATLAS tile calorimeter. Image shows the interleaved layers of scintillator and
steel with WLS fibres running along sides of scintillator sheets toward PMTs [20].

This calorimeter comes in the form of a cylindrical shell, situated around the EM calorimeter

with an inner edge at a radial depth of 2280 mm and an outer radial depth of 4230 mm from the

beam axis. The calorimeter is divided into three regions: the barrel and two extended barrel regions

either side. The central barrel region covers |η|< 1 and the extended barrel covers 0.8 < |η|< 1.7.

It is also subdivided into three layers radially, each with a radiation depth (which describes the rate

of energy loss by a particle traversing the material) of 1.4, 3.9, 1.8 nuclear interaction lengths from

the innermost to the outermost layer, respectively.

2.3.7 Energy Resolution

Good calorimeter energy resolution is essential for many analyses. For example, good mass res-

olution is required from the EM calorimeter in search for the Higgs boson decaying to a pair of

photons as the analysis is designed to search for a narrow di-photon resonance above a large irre-

ducible γγ background. Furthermore, good jet energy resolution is required by many analyses such

as SUSY searches which often look for di-jet resonances and for example the b-tagging calibration
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presented where jet energy resolution is a large systematic uncertainty for low pT jets.

The energy resolution of calorimeters can be parametrised as [24],

σ

E
=

α√
E
⊕ β

E
⊕ γ (2.4)

where α is the sampling term coefficient which denotes the statistical shower developement, β

is the noise term (e.g. electronic noise) and γ is a constant with contributions from instrumental

effects such as leakage effects (both longitudinal and lateral) and loss of energy in dead (non-

detecting) material. To meet the mass resolution required for Higgs searches, the sampling term

is required to be 10% for the EM calorimeter, 50% for the hadronic calorimeter and 100% for the

forward calorimeters (EM end caps and extended barrel regions of the HCAL).

2.3.8 The Muon Spectrometer

The Muon Spectrometer (MS) is the largest sub-detector in ATLAS. It uses a strong magnetic field

to bend the trajectory of charged particles. The curvature of the trajectory is then used to derive

the momentum of the particle. The ATLAS MS is designed to measure this independently of the

inner detector and can therefore be used in a complementary way.

The MS barrel region is composed from three concentric layers around the beam pipe at radial

depths of 5, 7.5, 10 m from the beam axis. The layers are referred to as the inner, middle and

outer layers with the inner layer closest to the beam pipe located just outside the Hadronic Tile

Calorimeter. The MS also consists of 4 end-cap disks situated at ± 7, 10.8, 14, and 21.5 m along

the z-axis from the nominal interaction point. The MS is capable of momentum measurements

in the pseudorapidity range |η| < 2.7 and can trigger on particles in the region |η| < 2.4 using

resistive plate chambers (RPCs). The detector layout is shown in figure 2.6.
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Figure 2.6: Schematic of the ATLAS Muon Spectrometer [25]

A precision measurement of the track coordinates in the principal bending direction of the

magnetic field is provided by three layers of Monitored Drift Tube chambers (MDTs). In addition

to the MDTs, the forward region of 2.0 < |η|< 2.7 Cathode-Strip Chambers are used in the inner

layer to give a better time resolution and higher rate capability.

The muon spectrometer momentum resolution is parameterised according to the following

equation:

σ(p)
p

=
pMS

0
pT
⊕ pMS

1 ⊕ pMS
2 · pT (2.5)

where pMS
0 , pMS

1 and pMS
2 are coefficients related to the energy loss in the calorimeter material,

multiple scattering and the intrinsic resolution terms respectively. The spectrometer is capable of

providing a momentum measurement with a resolution better than 3% over a wide pT range and

10% at pT = 1 TeV, where the pT is the momentum of the muon in the plane transverse to the beam

pipe [26].

The magnet system of the MS consists of 8 large air-core superconducting barrel toroids and

two end-cap air toroidal magnets. The magnetic field provides the deflection of the particle trajec-

tories which is orthogonal to the the trajectory itself and allows for a standalone measurement. The
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MS can provide a stand-alone muon momentum measurement with a momentum resolution of 10%

for a 1 TeV track. A 3-point measurement of a muon track is made in the r-z projection parallel to

the bending direction of the magnetic field, which is accurate to within 50µm. Muons traversing the

MDTs ionise the Ar/CO2 gas liberating electrons which then drift toward the Tungsten-Rhenium

wire to be read out.

2.3.9 The ATLAS Trigger System

The LHC design luminosity is around 1034 cm−2s−1. Bunch crossings occur at 50 ns intervals

which corresponds to a 20 MHz crossing rate with an average of 27 proton-proton interactions per

bunch crossing. The ATLAS experiment data output rate in 2012 was ≈ 400 MHz which is far too

many events to record. Hence, the number of events must be reduced and this must be done in a

way that we ensure we are not disregarding potentially interesting events. This is done is using

‘triggers’ which are a chain of algorithms that make a very fast decision as to whether the event

comes from an interesting physical process or not. If an event is interesting, the event information

is kept and if not, it is thrown away. These types of decisions are performed in three stages.

The Level-1 (L1) trigger is a hardware based trigger which makes the first decision using just

the muon spectrometer and the calorimeters. This trigger is capable of identifying ‘regions-of-

interest’ (ROI), which are cones in η-φ space that contain muon candidate tracks or clusters of

energy deposits in the calorimeter. Cones in η-φ space are identified as ROIs if the these objects

exceed a threshold value. The L1 trigger takes roughly 2.5 µs to make its decision. If no ROI

is found for a given collision, the event is disregarded, otherwise it will be buffered and the next

trigger in line (the Level-2 trigger) is required to make a decision. The L1 trigger reduces the data

rate to around 100 kHz.

The software-based Level-2 (L2) trigger looks at ROI’s in the detector that have been identified

by the L1 trigger. The L2 trigger utilises ID tracking information as well as input from the muon

spectrometer and calorimeters but only from the ROI. This is used to reduce the data output rate

to around 3 kHz. For each event, the L2 trigger makes a decision in 40 ms, after which the event

information is passed to the Event Filter.

The Event Filter (EF) is the final trigger level in the ATLAS triggering system. If an event

reaches the EF trigger and fulfils all the criteria warranted to keep an event, it will be kept in

permanent storage. The EF is a software based trigger which uses offline analysis procedures on
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fully built events to reduce the dataset to around 400 Hz, making its per event decision in a few

seconds. L2 and the EF form what is known as the High Level Trigger (HLT) and both use all of

the detector subsystems and their full granularity to make their decisions.

The data acquisition system is what steers the event information until the point where it is

placed in permanent storage. It receives event data at the L1 trigger rate which it transmits to the

L2 trigger upon the L2 triggers request. Events passing the L2 requirements are built and then

passed to the EF by the data acquisition system and moved to permanent storage.

Data can be streamed off into various output files based on the trigger decision made for an

event. Stream names represent the kind of trigger signatures the events will contain. For example

if an events passes the single-electron or photon trigger it will end up in the so-called “Egamma”

stream. ATLAS uses an inclusive streaming model which means that if an event activates more

than one trigger it can be stored in multiple streams.

2.3.10 Data Quality

Data collected and stored by the ATLAS is required to undergo a series of quality checks. To define

a good dataset, data quality information from a series of luminosity blocks (grouped into a “run”)

is analysed by a group dedicated to this task. A luminosity block is a unit of time for data taken

and they last typically around 2 minutes. Recommended good runs lists (GRLs) are compiled by

the data quality group. For both analyses the “AllGood” GRL was used which means all detector

components were functioning normally for the duration of each run in the list.
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Chapter 3

Event Simulation and Object
Reconstruction

“
Seeing, contrary to popular wisdom, isn’t believing. It’s where belief stops,

because it isn’t needed any more.
”

Terry Pratchett, Pyramids

3.1 Introduction

The studies presented make reference to two analyses, namely the ‘b-tagging calibration analysis’

referred to in Chapter 4 and the tt̄H(H→bb̄) analysis referred to in Chapter 5. A description of the

event simulation and object reconstruction used in each of the analyses is outlined in this chapter

along with any corrections that are applied. However, a discussion of the simulated signal and

background processes is saved until the relevant chapters.

The tt̄H(H→bb̄) analysis is concerned with the decay of the Higgs boson produced in associa-

tion with a pair of top-quarks and decaying to a pair of b-quarks. Three tt̄H(H→bb̄) analyses were

performed before the LHC shutdown in 2013. The analyses ensured orthogonality between their

signal events by targeting events according to the decay of the top quarks and rejecting events that

the other analyses selected as signal events. The dilepton analysis looks for events where both the

W bosons from the top quarks decay to a lepton and a neutrino, the single lepton looks for events

where one decays leptonically and the other hadronically and the all-hadronic analysis looks for
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events where both W bosons decay hadronically. This thesis focuses on the dilepton analysis. The

high jet (and b-jet) multiplicity final states of this analysis mean that the focus of this chapter is on

the reconstruction of jets (and b-jets). Furthermore, a description of how leptons are reconstructed

is necessary as the focus is on the dilepton analysis.

Particular attention is paid to muons due to their importance in the b-tagging calibration anal-

ysis. A comprehensive understanding of this analysis also means that the reconstruction of tracks

and vertices inside the ATLAS inner detector is necessary. However, an extensive discussion of

the b-tagging procedure is left until Chapter 4.

The b-tagging calibration analysis is performed using tt̄ dilepton events. This is the main back-

ground in the tt̄H(H→bb̄) analysis and so a repeated description of the reconstruction of many of

the same object types is unnecessary. However, any discrepancies in the way objects are recon-

structed have been highlighted, otherwise one should assume the same definition is used in both

analyses.

3.2 Event Simulation

Protons are composite particles consisting of a large number of quarks and gluons. The proton’s

total momentum is distributed amongst the constituent particles according to its parton distribution

function (PDF). When two protons collide it is the interaction of a gluon (or quark) in each proton

that determines the nature of the collision. Simulations of processes in proton-proton collisions at

the LHC are based on phenomenological models which use these PDFs.

Simulated collisions are described in two parts according to the energy scale the process occurs

on: the hard scatter and the underlying event. The hard scatter describes processes which occur

at an energy scale of more than a few GeV whereas the underlying event describes the softer

processes. Monte Carlo generators often use lowest order matrix element (ME) calculations to

simulate a given hard process. The particles generated in the matrix element calculation are not

stable particles.

Final state matrix element particles may not be stable particles, which either decay into or radi-

ate more particles. In the case of quarks or gluons (partons), subsequent partons also radiate further

partons developing into a parton shower. Partons produced at the end of the parton shower cannot

exist as free particles due to colour confinement and therefore need to be formed into hadrons;

this process is called hadronisation. A given energy scale, dictated by the parton shower program,
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is predefined as the point at which this happens. Parton shower evolution and hadronisation are

modelled with reference to experimental data.

The underlying event includes all partons not involved in the hard scattering process. This

includes particles that come from the break up of the protons after a parton is knocked out of each

of the two protons, initial and final state radiation (ISR/FSR) such as the addition of soft radiation

and loop processes to the final state matrix element particles and multiple parton interactions.

Event simulations also model how the generated particles in the parton shower interact with the

detector. This models both the particle trajectories and the detector’s response. A complete sim-

ulation of detector material and geometry is available for the ATLAS detector using the GEANT

program [27].

3.3 Object Reconstruction

The methods used to reconstruct physics objects in simulation and data are the same and are out-

lined in this section. The reconstruction methods used for most of the physics objects are the same

in both the b-tagging calibration and the tt̄H(H→bb̄) analysis presented. However, each analysis

presented in this thesis was performed at different points during Run I and suggestions for object

definitions from the ATLAS combined performance groups changed during this time. Any relevant

differences between object reconstruction methods for the two analyses are clearly highlighted in

this section.

3.3.1 Jets

High energy quarks and gluons are not observable as free particles. Instead, they create a highly

collimated shower of hadrons produced along a similar trajectory as the original parton. These

showers are produced by the Quantum Chromodynamics (QCD) phenomenon of fragmentation.

The shower of hadrons is observed as a group of topologically related energy deposits in the elec-

tromagnetic and hadronic calorimeters which are clustered together to create topological clusters

(clusters formed from neighbouring cells with significant signal compared to noise) [28]. These

are then used to create an object, called a jet, that is measurable in a detector. On average, roughly

60% of the energy in a jet is in the form of charged particles (π±), 30% is in the form of photons

(π0→ γγ) and 10% is in the form of neutral hadrons (e.g. neutrons).

The ATLAS calorimeter is non-compensating which means the detector response for electrons
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(EM scale) and hadrons (hadronic scale) is different. Corrections are derived at the EM scale

by looking a fully simulated sample of jets and comparing the reconstructed jets with the truth

information. These corrections are them applied to the reconstructed jets in data. The response of

the detector to jets at the EM scale is defined in Equation 3.1:

R jet
EM = E jet

EM/E jet
truth (3.1)

where E jet
EM is the energy of the jet at the EM scale. E jet

truth is the energy of the truth jet which has

been built from stable particles defined to have lifetimes longer than 10 ps excluding muons and

neutrinos. Reconstruction inefficiencies and energy deposits outside the calorimeters lower the

response of the detector to both EM and hadronic particles in different ways. Calibration schemes

based on cell energy density improve the jet energy resolution by weighting energy deposits from

EM and hadronic showers differently.

Local Cluster Weighting (LCW)

Local cluster weighting calibration is a jet energy scale correction that locally corrects the 3-

dimensional topological clusters (topo-clusters) in the calorimeter before any jets are formed. The

calibration procedure is determined by looking at fully simulated MC samples of jets and compar-

ing the reconstructed jets in this sample with the truth information. The corrections derived from

this comparison are applied to reconstructed data from collisions.

The first stage in the calibration uses cluster shape variables to characterise clusters of energy

deposits as electromagnetic or hadronic. The cluster properties used are the energy density in the

cells forming the cluster, the fraction of their energy deposited in the different calorimeter layers,

the cluster isolation and its depth in the calorimeter. A more detailed description of the procedure

can be found in Reference [29].

All corrections are derived from simulated samples of single charged and neutral pions. A flat

distribution in the logarithm of pion energies from 200 MeV up to 2 TeV is used. The corrections

are derived with respect to the true deposited energy in the calorimeter. True energy deposits are

classified into three categories:

1. Visible energy: For example, the energy deposited via ionisation;

2. Invisible energy: For example, the energy absorbed in nuclear reactions;
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3. Missing energy: Energy missing from the jet; for example, the energy carried away by

neutrinos.

The local cluster weighting calibration is performed in 4 steps:

1. Cluster classification: The expected population in logarithmic bins of topo-cluster energy,

the cluster depth in the calorimeter and the average energy density in the cells forming the

cluster are used to calculate classification weights. The weights are calculated for small |η|-
regions (|η| bins of width 0.2) on a sample created by mixing single neutral and charged

pions under the assumption that 2/3 of pions are charged. This is used to classify clusters

as mostly hadronic or mostly electromagnetic where the weight denotes the probability the

cluster originated from a hadronic interaction (phad).

2. Hadronic weighting: Topological clusters receive calorimeter cell correction weights de-

rived from detailed MC simulations of charged pions. Each cell is weighted according to the

topo-cluster energy and the calorimeter cell energy density. The hadronic energy correction

weights are calculated with respect to the true energy deposits in the MC simulation. This is

then multiplied by the probability phad that the cluster is hadronic. The applied weight is:

wHadronic · phad +wEM · (1− phad) (3.2)

where wHadronic is the hadronic energy correction weight and wEM = 1. The result is a

look-up-table for each calorimeter layer in bins of width 0.2 in |η|. Tables are binned in

logarithmically in topological cluster energy and cell energy density (E/V).

3. Dead material corrections: Corrects for energy deposits in materials in regions of the de-

tector outside the calorimeters (e.g. upstream materials like the inner wall of the cryostat).

These corrections are η-dependant.

4. Out-of-cluster corrections: Corrects for the signal losses from the calorimeter clustering

and jet reconstruction. This is for isolated energy deposits inside the calorimeter but outside

the topological clusters. These are energy deposits that do not pass the noise thresholds

applied during clustering. Out-of-cluster corrections are η-dependant.

Additional corrections are also applied to the LCW calibrated jets. These are derived in 3 steps:
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• Pileup correction: The average additional energy due to additional proton-proton collisions

is subtracted from the jet energy measured in the calorimeter. Correction constants are ob-

tained from in situ measurements [29].

• Vertex correction: The direction of each jet is corrected so that the pointing direction is

toward the primary interaction vertex (as defined in Section 3.3.6) and not the geometric

centre of the detector (as is the case when jets are reconstructed).

• Jet energy and direction correction: Restores the reconstructed jet energy (the partial

measurement of the energy deposited by hadrons due to calorimeter non-compensation to

the true energy of the corresponding jet of stable particles (MC truth jet) [29]). The LCW-

scale jet energy response is defined as in Equation 3.3:

R jet
LCW = E jet

LCW/E jet
truth. (3.3)

A jet response calibration function FLCW+JES is derived as a function of the detector pseudo-

rapidity and jet energy from a fit parametrised by the jet energy response and the measured

jet energy at the LCW scale after the pileup and vertex corrections, E jet
LCW . The final jet

energy scale correction is:

E jet
LCW+JES = E jet

LCW/FLCW+JES(E
jet
LCW ) (3.4)

After the jet origin and energy corrections, the origin-corrected jet η is further corrected for

a bias due to poorly instrumented regions of the calorimeter. This is needed as topologi-

cal clusters in poorly-instrumented regions of the calorimeter are reconstructed with lower

energies with respect to the better-instrument regions. Therefore jet directions are biased

towards the better instrumented regions of the detector.

The η-correction is derived from simulation as the average difference ∆η = ηtruth−ηorigin,

where ηorigin is the origin-corrected pseudorapidity and ηtruth is the true pseudorapidity of

the jet. An η-correction function is derived in bins of (Etruth,ηdetector). The corrections

described above are then be applied to reconstructed jets in data and MC. Jets that have been

corrected using the LCW correction along with the additional JES calibration described here

are referred to as LCW+JES jets or just LC jets.
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Recombination Scheme

A recombination scheme provides a meaningful single-jet mass using these calibrated topological

clusters [30]. These clusters can be considered as Lorentz four-momentum vectors that are summed

together to calculate the four-momentum of the final jet object.

Recombination schemes are used iteratively in cone algorithms such as the anti-kt jet algorithm

[31]. When a candidate cone is identified, its momentum vector is calculated using a recombination

scheme and the cone is re-defined around the new centre. This is then repeated until it converges

on a stable cone (adding soft radiation does not change the cone definition).

The jets used in the b-tagging calibration and the tt̄H(H→bb̄) analysis presented are built using

the anti-kt algorithm with a radius parameter R = 0.4. Jets reconstructed with the anti-kt algorithm

start from energy deposits in the EM and hadronic calorimeters. The anti-kt method clusters energy

deposits from soft particles last, favouring those from high-pT particles to seed jets, which leads to

a more regular cone-like geometry for jets. This is one of the main advantages of the anti-kt algo-

rithm as it make jet energy calibration and pileup/underlying event subtraction less complicated.

Algorithms such as the original kt [32] and Cambridge-Aachen methods [33] cluster soft collinear

energy deposits first and only at the end do they cluster the high-pTparticles which can lead to an

irregular shape. The response of the calibrated jets at the LCW scale is shown in Figure 3.1.
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Figure 3.1: Average response of simulated anti-kt jets formed from topological clusters with a cone of radius
0.4. The response is defined by R jet

LCW = E jet
LCW/E jet

truth. A response of 1 means the truth-jet energy is the same
as the energy of the jet after the LCW correction has been applied. Different calorimeter regions are shown,
indicated by the vertical lines [29].

Jet and electron candidates are both reconstructed from energy deposits in the calorimeters

and during jet reconstruction there is no distinction between the two. It is therefore possible to

double-count an energy deposit as both a jet and an electron. To remedy this, if there are any jets

that lie within a ∆R =
√

(∆φ)2 +(∆η)2 = 0.2 from an already identified electron the single closest

jet is discarded; after this, electrons that have a ∆R < 0.4 are removed. All jets are required to have

pT > 25 GeV and |η|< 2.5. Those which have pT < 50 GeV and |η|< 2.4 are required to have a

jet vertex fraction (JVF) of above 0.5. The JVF is the fraction of tracks associated with the jet that

originate from the primary vertex. If a jet has a JVF> 0.5 the jet is considered to have come from

the primary vertex and not generated by pileup interactions.
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Selection Jets

Type anti-kt LC Jets

pT > 25 GeV

|η| < 2.5

Isolation ∆R jet,e > 0.2

Specifics JVF > 0.5 if jet pT <

50 GeV and |η|< 2.4

Table 3.1: Standard selection cuts for signal jets used in both analyses.

3.3.2 B-jets

Jets are identified as coming from the hadronisation of a b-quark using the MV1 b-tagging algo-

rithm (see Section 4.1.2) which combines discriminating quantities such as the impact parameters

of displaced tracks and the topological properties of secondary and tertiary decay vertices within

a jet. The working point used for the analyses presented in this thesis corresponds to a 70% effi-

ciency of correctly tagging a jet that originated from a b-quark. However, the working point used

also has a ≈ 1% efficiency of incorrectly tagging a light-jet and a ≈ 20% efficiency of incorrectly

tagging a charm-jet, as determined for b-tagged jets with pT > 20 GeV and |η|< 2.5 in simulated

tt̄ events using the combinatorial likelihood calibration method [34]. In the tt̄H(H→bb̄)analysis,

b-tagging efficiencies in simulation samples are corrected for data by using scale factors derived

by the tt̄ based combinatorial likelihood calibration.

3.3.3 Muons

Muons can traverse the entire ATLAS detector without being stopped by any of the intermediate

material. For this reason the muon spectrometer is the outermost layer of the detector. Muons

are also charged particles and therefore leave a track in the inner detector. Hence, muons can be

precisely reconstructed from track segments in the muon spectrometer which are matched with

tracks found in the inner detector [35]. The final muon candidates are refitted using complete track

information from both parts of the detector. Muons reconstructed this way are know as combined

MUID muons.

Isolation requirements are used to separate prompt muons coming from the hard interaction,

from non-prompt muons or fake muons caused by e.g. a decaying heavy flavoured particle, charged
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hadrons penetrating the MS and from decay in flight of pions/kaons. This also serves to prevent any

overlap with the soft muons used in the semileptonic selection described later in Chapter 4. Muon

candidates are required to be in the range |η|< 2.5 and separated from selected jets by ∆R > 0.4.

They must also satisfy a pT-dependent track-based isolation requirement. This makes sure the

scalar sum (labelled pcone var
T ) of the pT of any tracks in a cone of variable ∆R = 10 GeV/pµ

T around

the muons axis, excluding the muon track itself, is less than 5% of the muon pT. The longitudinal

impact parameter (|z0|), which is the point along the beam axis at which the longitudinal distance

of the track of the particle from the primary vertex is smallest, is required to be less than 2 mm.

Muons are also required to have a hit pattern in the inner detector that is consistent with a well

constructed track [36].

Object Selection Muons

Type combined MUID muons

pT > 25 GeV

|η| < 2.5

Isolation pcone var
T /pµ

T < 5%

∆Rµ, jet > 0.4
Specifics |z0|< 2 mm

Table 3.2: Standard selection cuts for signal muons in both analyses.

3.3.4 Electrons

Electrons are reconstructed from energy clusters in the electromagnetic calorimeter which are

matched to reconstructed tracks in the inner detector. During jet reconstruction, no distinction

is made between identified electrons and jets. If any jets have a ∆R < 0.2 from an already iden-

tified electron, the single closest jet is discarded, after which electrons that have a ∆R < 0.4 are

removed.

Prompt electrons (the electron with the highest pT in the event) are required to have pT ≥
25GeV (where the trigger is fully efficient) however, in the tt̄H(H→bb̄) analysis the sub-leading

lepton is only required to have pT > 15 GeV. Electrons must also have pseudorapidity in the range

0 < |η|< 1.37 or 1.52 < |η|< 2.47. Electrons found in the region 1.37 < |η|< 1.52 are removed

as they fall into the calorimetry transition region.

Not all electrons built by the electron reconstruction algorithms are signal electrons. Many
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background sources such as jets, in-jet hadron decay and photon induced pair-production can also

produce electrons. To reject these while keeping as many signal electrons as possible, a list of

selection cuts on variables that discriminate signal electrons from background sources is applied.

In the b-tagging calibration analysis, the tight++ cut-based algorithm is used [37].

Further isolation requirements are used to reduce the number of electrons originating from

hadron decays. The sum pT of the tracks within a cone of ∆R = 0.3 (pcone30
T ), not including the

electron track itself, must satisfy pcone30
T /pe

T ≤ 4%. Furthermore, the sum of the energy that does

not come from the electron itself but is deposited inside the calorimeter within a cone of radius

∆R = 0.2 from the electron direction (Econe20
T ), must satisfy Econe20

T / Ee
T≤7%.

In the tt̄H(H→bb̄) analysis, the selection of electrons was optimised to increase the acceptance

since the fake rate is quite small. Instead of the tight++ cut based identification, the medium

working point of the likelihood-based identification is used. Relaxed isolation requirements mean

the ratio of the sum of the pT of the tracks excluding the electron track, with respect to the pT of

the electron track itself must satisfy pcone30
T /pe

T < 0.12.

An additional quality requirement applied in both analyses means that an electron’s longi-

tudinal impact parameter (z0) must be < 2 mm. This is used to help distinguish electrons from

converted photons.

Standard Electron Selections

Selection B-tagging Calibration Cuts tt̄H(H→bb̄) Analysis Cuts

Identification cut-based tight++ Likelihood-based medium

pT > 25 GeV > 25 GeV (subleading > 15 GeV)

|η| 0 < |η|< 1.37 or 1.52 < |η|< 2.47 0 < |η|< 1.37 or 1.52 < |η|< 2.47

Isolation pcone30
T Isolation efficiency = 90%

pcone30
T / pe

T≤ 4%

Econe30
T isolation efficiency = 90%

Econe20
T / Ee

T ≤ 7% ,

∆Re, jet > 0.4

pcone30
T /pe

T < 0.12

∆Re, jet > 0.4

Trigger pT threshold [GeV] 24 or 60 24 or 60

Impact Parameters z0 < 2 mm z0 < 2 mm

Table 3.3: Standard selection cuts for final state electrons used in calibration.
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3.3.5 Photons

Photons are neutral, electromagnetically-interacting particles. They leave no track in the inner

detector and create a shower of electromagnetic particles in the EM calorimeter. Clusters where

no track is matched are classified as unconverted photons. Photons can also convert to an electron-

positron pair before they reach the EM calorimeter through interactions with the nuclei in the

detector material. These are known as converted photons and are characterised by the presence of

at least one track matching an EM cluster originating from a conversion vertex inside the tracker.

This results in an ambiguity between electrons and converted photons as both candidates have a

track matched with an EM calorimeter cluster. However, if a cluster in the second sampling layer

of the EM calorimeter is matched to a track that does not originate from a vertex found in the beam

interaction region but originates from a photon conversion vertex, the candidate is reconstructed as

a converted photon, otherwise it is reconstructed as an electron.

In-jet processes such as π0→ γγ result in the deposition of a substantial fraction of their energy

in the EM calorimeter and can mimic the signature of a prompt photon. The key features used

for distinguishing between jets and prompt photons are: hadronic leakage, lateral showering and

shower sub-structure. Hadronic leakage is a measure of the fraction of energy deposited in the

hadronic calorimeter compared to the EM calorimeter. This fraction is higher for hadronic objects

such as jets when compared with electromagnetic objects such as prompt photons.

Lateral showering is a measure of the shower width in η-φ space. The reason for measuring this

is that a prompt photon should produce a narrower cluster compared to a jet. The calorimeter can

resolve the lateral showering differences between prompt photons and jets, providing a powerful

discriminating variable.

Substructure in showers is used to distinguish prompt photons from jets in which a neutral

meson has decayed to two photons. Because the meson decay produces two photons that are

highly collimated, the showers can appear to have originated from a single photon. However,

ultra-fine strips in the 1st layer of the EM calorimeter are used to obtain a finer granularity and thus

can resolve each photon individually.

3.3.6 Track and Vertex Reconstruction

Track reconstruction is the procedure in which the trajectory of a particle inside the detector is

reconstructed. It is based on several algorithms and uses measurements made by the inner detec-
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tor. Points in η− φ− z space are formed from clusters of neighbouring silicon pixels in the ID.

Seeds which make the track candidates are formed by combining three points. These seeds are

then extrapolated into tracks by including measurements from the subsequent layers of the ID and

refitting its trajectory. Track candidates are extended out to the TRT which reduces the error on the

trajectory. Tracks which don’t meet certain criteria (e.g. track candidates with pT < 400 MeV) are

rejected [38].

Various vertex topologies can be produced when colliding two bunches of protons in the LHC.

A typical bunch-crossing will result in several primary vertices along the beam axis each corre-

sponding to a separate proton-proton collision, vertices from the decay of heavy long lived par-

ticles, vertices in jets and vertices from photon conversions. Each type of vertex has its own

distinguishing features which can be used to aid their reconstruction.

Identifying the primary vertex created by the hard scattering process amongst many other

proton-proton collisions is particularly important in the environment created in collisions at the

LHC. Interaction vertices are reconstructed by first finding a selection of tracks that are likely to

come from the interaction region. A single primary vertex is then fitted combining all of the se-

lected tracks. Tracks that are considered to be outliers are disassociated from this vertex but are

used to seed a new competing vertex. As the number of candidates grows, candidates compete

with one another to gain more tracks and the method is iterated. At the end of the procedure, the

vertex with the highest summed track pT is considered to be the primary vertex corresponding to

the hard scatter.

The ATLAS detector can also distinguish b-jets from jets originating from the decays of light

and/or charm hadrons. This requires the reconstruction of the vertex where the b-hadron decayed

(the secondary vertex). The high track density in the detector means a dedicated vertex finding

algorithm is used to find secondary vertices. Typically, the decay vertex of a b-hadron is signifi-

cantly displaced from the primary vertex. Displaced tracks are selected and used to construct an

single inclusive secondary vertex much in the same way the primary vertex is reconstructed. A

similar procedure is used to remove outlier tracks and reconstruct the secondary vertex. Specific

b-tagging algorithms are discussed at greater length in Chapter 4.
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Chapter 4

A measurement of the performance of
the ATLAS multivariate b-tagging
algorithm on b-jets with muons using
top-quark pair events

“
Not everything that counts can be counted, and not everything that can be

counted counts.
”

Albert Einstein

The number of true b-jets an algorithm tags with respect to the total number of true b-jets in the

sample is know as the algorithms tagging efficiency. Similarly, the algorithms mistag efficiency

is the number of non b-jets that are tagged with respect to the total number of non b-jets in the

sample. The tagging efficiencies and mistag efficiencies for a given working point (see Section

4.1.2) of a b-tagging algorithm can be different in data and simulation.

Working points must be calibrated which means calculating a scale factor that corrects for a

possible discrepancy in efficiency between data and simulation. The calibration of any b-tagging

method can be performed in several ways. The calibration method presented here is the tt̄ dilepton

kinematic selection method (Section 4.7) which calibrates working points using an enriched b-jet

sample by selecting tt̄ dilepton events by their kinematic properties. The working point calibrated
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here corresponds to an efficiency of 70%.

The tt̄ dilepton kinematic selection method performs a calibration on a high purity, inclusive

sample of b-jets. However other calibration procedures such as pRel
T (see Section 4.5) use a sub-

set of b-jets, where the b-jet decays to a muon plus neutrino. Low momentum in-jet muons (soft

muons) are used in many b-tagging calibrations because they have a relatively high reconstruction

efficiency (compared to for instance, electrons) and provide a distinguishable signature. However,

muons deposit very little energy in the calorimeters and neutrinos traverse the detector without

depositing any energy. Unlike jets decaying semileptonically to an electron and neutrino and

hadronically decaying jets, where the electrons/hadrons will deposit most of their energy in the

calorimeters, jets which decay to a muon can have a largely different pT scale, which affects the

efficiency of b-tagging algorithms. Hence, it is possible that a calibration performed on b-jets

decaying to a muon plus neutrino could yield different results.

The aim of this analysis is to compare two identical calibrations on two orthogonal subsets

of b-jets to see if such a bias is introduced. The initial sample of b-jets is obtained using the tt̄

dilepton kinematic selection method. Subsequently, the initial sample is split into two subsamples.

A subsample of b-jets with an associated soft in-jet muon are selected using the pRel
T calibration

selection method (described in Section 4.5). These jets are labelled “SL jets”. The remaining jets

subsample is labelled “NSL jets”. B-jets that decay to an electron plus neutrino are included in the

NSL subset.

4.1 Introduction to b-tagging

The identification of b-jets (b-tagging) is essential to many physics analyses. It has proven to be

especially useful in the search for the Higgs boson and the top-quark sector as it provides a way

of selecting signal events containing b-jets and reducing background processes which often have

light and charm quarks in their final state.

Several properties distinguish b-jets from other jets. Firstly, when a b-quark fragments, the

b-jet retains a large fraction of the b-jets original momentum (on average ≈ 70%). This means

the transverse momentum of the b-jet can often be distinguished from those of lighter jets, which

create a softer pT spectrum. Secondly, the mass of the b-hadron is quite large (> 5 GeV) which

means its decay products tend to have a large transverse energy with respect to the jet axis.

Furthermore, the |Vc,b| and |Vu,b| vertices in the CKM matrix are off-diagonal elements. Their
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small values mean that these quark transitions are very suppressed. When a B meson decays, the

amplitude calculation for the process will include one of these vertex terms which prolongs the

average lifetime of b-mesons to around O(10−12) s [5]. This means they can travel a distance of

cτ = O(mm) from the point at which the protons in the beam collide (the primary vertex). This

results in a decay vertex (secondary vertex) inside the beam pipe, which can be reconstructed.

Special algorithms are used to reconstruct the secondary vertex and associate tracks with it. Many

variables used to distinguish b-jets use characteristics of the secondary vertex and the tracks it is

associated with. A schematic of a b-hadron decay is illustrated in Figure 4.1.

Figure 4.1: An example of the topology of a decay within a jet. In this figure primary and secondary vertices
are shown along with the impact parameter, jet axis and decay length. Two impact parameter variables can
be constructed: the transverse and the longitudinal parameters.

One can look for a lepton inside the jet which comes from the semileptonic decay of the b-

hadron. Due to the hard fragmentation and high mass of the b-hadron, these leptons have a large

transverse momentum in the detector and a large transverse momentum relative to the jet axis. The

B mesons exclusive semileptonic branching ratio to leptons (electrons and muons) is ≈ 10%. A

breakdown of the B meson branching fraction to each of the leptons is shown in Table 4.1. The

calibration method described in Section 4.5 only uses b-jets in which the B meson has decayed

muonically. b-jet in which the B mesons has decayed to a tau lepton or electron are not considered

in the semileptonic sample of jets.
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Branching ratios

B→ X + e+ ve 10.86 ±0.35%

B→ X +µ+ vµ 10.95+0.29%
−0.25%

B→ X + τ+ vτ 2.48 ±0.26%

Table 4.1: Semileptonic branching ratios of B-hadrons [5]

The two impact parameters including the one shown in Figure 4.1 are key in many b-tagging

algorithms. The transverse impact parameter, d0, is defined as the distance of closest approach

between the extrapolated track and the primary vertex in the x-y plane. This impact parameter is

signed according to the charge of the particle and its angular momentum about the beam line. The

longitudinal impact parameter, z0, is the longitudinal distance at the point on the extrapolated track

which defines the value of d0. The sign of this impact parameter depends on the direction of z0

relative to the primary vertex. Impact parameters tend to be relatively large for track stemming

from displaced vertices, whereas track that originate from the primary vertex have much smaller

impact parameters.

4.1.1 B-tagging Algorithms

In this section three algorithms with three different approaches to b-tagging are discussed: SV1,

IP3D and JetFitter. All three of these algorithms were calibrated on samples of di-jet events. There

are alternative algorithms used by the ATLAS collaboration but only these three are discussed here

as their outputs are used as inputs to the multivariate classifier MV1 which is used for this study

[39].

The SV1 algorithm reconstructs secondary vertices using the tracks left in the inner detector

by the decay products of the b-hadron and the subsequent c-hadron decay [40]. A common first

step for all b-tagging algorithms is to reject tracks associated with V0 decay vertices because they

mimic tracks formed by b-hadrons. V0 is the commonly used name for two-pronged vertices

coming from the decay of long-lived particles (which in this case does not include b-hadrons).

Some of the more common causes for V0 vertices are: Λ0→ p+π−, KS→ π+π−, KL→ π+π−π−.

Preselection cuts [40] (e.g. on impact parameter variables) are used to remove V0 vertices along

with vertices from other long-lived particles and secondary interactions from non b-hadrons. Once

all tracks from V0 candidates are removed, all two track pairs that form a good vertex are built,

using only tracks associated with the jet and are far enough away from the primary vertex. All
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tracks are then combined into an inclusive vertex as shown in Figure 4.2. The worst-matching

tracks are removed one-by-one until a good vertex fit is found.

Once the secondary vertex has been reconstructed, the SV1 algorithm uses many of its features

to obtain the likelihood the jet is a b-jet. The algorithm produces a likelihood distribution of jets.

The discriminating variables used by SV1 are:

1. the significance of the decay length projected onto the jet axis;

2. the invariant mass of all tracks associated with the secondary vertex;

3. the ratio sum of the energies of tracks associated to the vertex with respect to all tracks in

the jet;

4. the number of two-track vertices;

5. the ∆R between the jet axis and the line joining the secondary and primary vertices (see

Figure 4.1).

Figure 4.2: A schematic of the method used by the SV1 algorithm for reconstructing a secondary vertex. All
tracks from the b-hadron and (typically) c-hadron decay vertices are fit to a single inclusive vertex before
removing the outliers.
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The IP3D algorithm uses a likelihood ratio technique in which impact parameter variables from

candidate tracks are compared to pre-defined distributions for b- and light-jets. It then combines

the log-likelihood of the track impact parameters for a jet to obtain the likelihood that the jet is a

b-jet [41].

The JetFitter algorithm has an improved method of reconstructing the secondary vertex because

the underlying hypothesis of a single geometrical (inclusive) vertex used by the other algorithms is

flawed. When the distance between the b- and c-hadron decay vertices is significant compared to

the vertex resolution in the direction of flight, the tracks of one of the two vertices can be lost in the

fit. The JetFitter algorithm exploits the topology of weak decays of b- and c-hadrons inside jets.

The algorithm works on the assumption that the b- and c-hadron decay vertices lie on the same line

as the b-hadron flight path. This is a reasonable assumption as the hard fragmentation of the b-

hadron means the lateral displacement of the c-hadrons decay vertex from the b-hadron flight path

is small enough not to violate the basic assumption within the typical resolution of the tracking

detector. This information is used to approximate the decay length of the b-hadron. A Kalman

filter is used to find the line that intersects the primary, secondary and tertiary vertices, where the

tertiary vertex is from the subsequent decay of a c-hadron. The position of each vertex along this

line is also found. The discrimination between b-, c- and light-jets is then done by constructing a

combined likelihood from variables similar to those used by the SV1 algorithm, along with decay

length significances. A high-performance b-tagging algorithm JetFitterCombNN uses the output

from the JetFitter algorithm and combines it with the output from the IP3D algorithm by means

of a neural network [39, 41]. For a single jet, both JetFitter and JetFitterCombNN output the

probability of the a jet being a b-jet.
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Figure 4.3: A schematic of the JetFitter multi-vertex fit using the b-hadron flight direction constraint.

4.1.2 ATLAS MV1 b-tagging algorithm

The ATLAS MV1 b-tagging algorithm uses information from several other b-tagging algorithms

as inputs to a neural network (NN). In this case the inputs are the output values of the SV1, IP3D

and JetFitterCombNN algorithms. The NN is trained using simulated samples of b- and light-jets

from a mixture of tt̄ and dijet events. The network is trained using b-jets as signal and light-jets

as background. The algorithm can then be used to compute the likelihood (tag weight) any jet is a

b-jet. Once trained, the NN is used on simulation and data to produce two tag-weight distributions.

The MV1 tag weight distribution for simulated events is shown in Figure 4.4. A cut is then applied

to the tag weight distributions. This is the value that defines whether or not a jet is tagged as a

b-jet. Fixed cuts or ‘working points’, are tuned to yield a specified b-jet efficiency. The efficiency

is defined as the ratio of correctly b-tagged jets with respect to the total number of true b-jets in

the sample. A specific cut on the MV1 weight distribution will also incorrectly assign light- and

charm-jets as b-jets (mistag) with a particular efficiency. This mistag efficiency is calculated as the

number of true non b-jets tagged as b-jets, with respect to the total number of true non b-jets in the

sample.
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Figure 4.4: Distribution of MV1 weights for light jets, charm jets, b jets and all other jets (e.g. τ-jets) for an
inclusive collection of leading and subleading jets for events in all simulated samples before any selection
has been applied. The events selected are dilepton events where one lepton is a muon and the other is an
electron, namely eµ events.

4.2 Simulation Samples

The main backgrounds for the tt̄ dilepton process are Z+ jets, diboson, single top Wt-production

and fake dilepton events. Simulated samples have been generated for each of the major background

processes. The hard process for the tt̄ signal sample is generated using POWHEG [42] which

uses cross-sections calculated at next-to-leading-order (NLO) accuracy to normalise the number

of predicted events. A Feynman diagram for the tt̄ hard interaction is shown in Figure 4.5. For

these samples, the parton shower was modelled using PYTHIA [43] which evolves the simulation

from the NLO calculation of the hard process, to a complicated multi-hadronic final state.
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Figure 4.5: A Feynman diagram of a tt̄ dilepton event. As a fraction of the number of times a top-quark
decays via a Wq process, Wb decays make up 97% of the interactions

(
R=B(t→Wb)/B(t→Wq)= 0.97+

0.09−0.08 [44]
)
.

One of the most important background processes comes from Z+ jets events. For this process,

ALPGEN [45] was used to simulate the hard interaction in which the cross-sections are calculated

at leading order (LO) accuracy. A Feynman diagram of the Z+ jets process is shown in Figure 4.6.

The evolution and hadronisation of the parton shower is performed by the HERWIG package [46].
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Figure 4.6: Feynman diagram of the Z+ jets background process.

A smaller contribution to the background comes from diboson events which were generated

for ZZ, WZ and WW events separately. Feynman diagrams of the diboson processes simulated
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are shown in Figure 4.7. The ZZ samples simulate the inclusive decay of one of the Z bosons

with the other decaying to a pair of leptons (ZZ→ incl.+ ``). Similarly, the WZ samples were

generated with the W boson decaying inclusively and the Z boson decaying to a pair of lep-

tons (WZ→ incl.+ ``). The WW samples were generated for decays in which one W decays

semileptonically and the other decays hadronically (WW→ `ν+qq′) or both decay semilepton-

ically (WW→ `ν+ `ν). This is the dominant diboson process in the eµ channel and for these

events to be categorised as dilepton events, it requires two jets to be produced in the hadronisation

stage of the event generation. For this reason all diboson events were simulated using ALPGEN as

it is a multi-leg leading order generator which enables the calculation of the matrix element with

additional hard partons. HERWIG was used to model the parton shower in this sample.
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Figure 4.7: Feynman diagrams for the WW, WZ, and ZZ diboson background processes.

Single top events were generated in three channels separately: s-channel, t-channel and the Wt

process. All three channels are depicted in Figure 4.8. The t-channel has the largest cross-section

contributing around 75% of the inclusive LO cross-section, with Wt-channel representing the next

highest fraction and the s−channel representing the smallest fraction. However the Wt-channel is

the process that provides the largest background when selecting tt̄ events in this measurement.

The t-channel events were simulated using ACERMC [47] to calculate the matrix element of
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the hard interaction at NLO accuracy. PYTHIA was used to model the subsequent parton shower ap-

propriately. The s-channel and Wt process were generated using the POWHEG package to calculate

the matrix element at NLO accuracy using PYTHIA to model the parton shower. Nominal samples

were generated using the diagram removal technique (DR) [48] which removes tt̄ diagrams that

interfere with the calculation of the Wt cross-section above LO. An alternative technique called

diagram subtraction (DS) [48] was implemented when simulating additional single top samples.

These samples are not used in the nominal analysis but are used to estimate an additional system-

atic uncertainty associated with the chosen method for removal of interference diagrams.
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Figure 4.8: Feynman diagrams of the single top background processes: a) t-channel, b) s-channel and c)
Wt-channel.

Although the tt̄ dilepton signature is realtively clean, fake events still contaminate the channel.

Additional events that will be selected in data are found to come from events which contain either

an electron-like jet or a non-prompt lepton (decayed from a heavy-flavour hadron or pion/Kaon)

which are reconstructed as prompt electrons or muons (prompt meaning charged isolated leptons

coming from a W or Z boson decay). These are known as fake events and they primarily come
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from processes such as W+jets, single lepton tt̄ events or single top s- or t-channels.

The true prompt leptons from the W boson decays in a tt̄ event are oppositely charged, which

motivates the selection of events with two oppositely charged leptons. However, fake events that

have oppositely charged leptons can pass the calibration selection. Some of the processes volun-

teering such events can be diffcult or are inefficient to model with simulated data and so data-driven

techniques are used.

A same-sign fakes estimate was used in this calibration which works on the assumption that

events with oppositely charged fake leptons should have the same distributions as the events with

same charge fake leptons (same-sign events). These events are selected from data. Truth matching

of leptons is done in the simulated samples which ensures events are opposite sign and therefore

prevent any double-counting of fake events from simulation and data.

Simulated samples used in this study are generated using cross-sections calculated at LO or

NLO accuracy. The best available total cross-section calculations at the time of this analysis were

calculated at next-to-next-to-leading-order (NNLO) accuracy. A ratio of cross-sections (k-factor)

for NNLO with respect to NLO was used to scale the weight of the event. All simulated samples

are scaled using the best available theoretical cross-sections and k-factors accordingly. The cross-

sections and k-factors used in this analysis can be found in Tables A.1 and A.2. The simulated

samples were normalised to the integrated luminosity of the data used for this analysis.

4.3 Data Samples

This analysis was performed on 14.34 fb−1of data collected using the ATLAS detector from

proton-proton collisions at 8 TeV centre-of-mass energy. Data for this analysis was taken from

the “MuonsEgammaMerged” stream which means that the events have either passed the single

electron trigger, the single muon trigger chain or both requirements. Both of these trigger chains

are fully efficient for leptons with pT ≥ 25GeV. In the case where an event activates both triggers,

the analysis technique used is to take the event from the Egamma stream and disregard it from the

Muons stream to avoid double counting eµ events.
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4.4 Event Selection

The dilepton kinematic selection method obtains a sample of jets enriched in b-jets on which to

perform the calibration. The selection method used here provides an inclusive sample of b-jets

which is particularly important as this prevents any bias being introduced as a result of using

a subsample of b-jets, as is the case in some calibrations. The selection looks for dilepton tt̄

events as depicted in Figure 4.5 to enrich the jet sample with b-jets due to the top-quarks large b-

quark branching ratio, R = B(t→Wb)/B(t→Wq) = 0.97 [44]. To obtain the highest b-jet purity

possible, the event selection implements a series of cuts on all events which reduces the number

of events coming from background processes and therefore avoids contaminating the calibration

jets sample with large numbers of non b-jets. The event selection implemented in this analysis is

shown in Table 4.2.

The event level selection outlined in Table 4.2 ensures a high purity of good top-pair dilepton

events are selected. A truth record selection cut is applied to all simulated samples. Part of the truth

information stored is the type of particle that was simulated which can be used to ensure only true

dilepton events are used. This prevents double-counting fake events when using the data-driven

fake estimation.

Unbalanced energy deposits in the detector can be caused by cosmic ray events which occur

when extra-terrestrial high energy particles collide with nuclei in the upper atmosphere producing

pions. These decay to muons which pass through the detector and can be reconstructed as jets.

Such events are removed by the selection.

In real data, if an event passed both trigger chains it could theoretically exist as two identical

events in the “EgammaMuonsMerged” data stream. To avoid double counting these events, data is

taken from “Egamma” stream unless the single electron trigger was not fired. In this case, if the

muon trigger was fired, the event will be taken from the “Muons” stream or else it is discarded.

ATLAS triggers are not 100% efficient, so each event is reweighted to correct for the detectors

response. Weights are derived from data-driven techniques to correct for the trigger inefficiency.

Because leptonic triggers were used in this calibration, at least one lepton is required to be trigger-

matched. This means the lepton reconstructed offline and used in the calibration is the trigger

object that fired the leptonic trigger.

The HT variable is the scalar sum of the transverse momentum of all isolated leptons and jets

in the final state. Selecting eµ events with HT ≥ 130 GeV rejects Z→ ττ+jets background events
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which are expected to have a lower HT . In the ee and µµ channels the HT requirement is not

implemented but instead the missing energy is required to be greater than 60 GeV to reduce the

amount of Z+ jets background. Events are required to have at least 2 jets and exactly 2 oppositely

charged leptons, where the lepton requirement removes the contribution of same-sign fake events.

Requiring a dilepton invariant mass in excess of 15 GeV removes low dilepton invariant mass pro-

cesses such as J/Ψ→ ee/µµ . Furthermore, for ee or µµ dilepton events, the Z+ jets background

is suppressed by removing events where the dilepton invariant mass lies within ±10 GeV of the

mass of a Z-boson, Mz = 91 GeV.

Jet cleaning rejects events with jets that typically have a problem with the calorimeter measure-

ment, otherwise known as “bad jets”. This often manifests itself as a large EM energy fraction or

large energy deposit in a single calorimeter layer. Such behaviour is caused by large non-physical

energy spikes or cosmic muon interactions in the detector.

A clear discrepancy between data and simulation was seen in the dilepton invariant mass spec-

trum of the ee- and µµ-channels (see figures 4.9 and 4.12). An excess of predicted events is seen

in the Z-peak where the Z+ jets sample is dominant. The ee- and µµ-channels would also usually

require a cut on missing transverse energy (Emiss
T ≥ 60GeV), which introduces a non-zero slope in

the bin-by-bin data/MC ratio of the dilepton invariant mass distribution. A reweighting was derived

to correct the Z pT spectrum to data before the Emiss
T cut was implemented but this did not remove

the mismodelling of the Z+ jets Emiss
T spectrum. The dilepton invariant mass distributions after

applying the Emiss
T cut and the Z pT reweighting are shown in Figures 4.11 and 4.14. As a result,

the final calibration is performed using events only from the eµ-channel as the Z+ jets sample does

not have a large contribution in this channel (Z boson does not decay to eµ) and is therefore less

sensitive to any such mismodellings. This is shown by the distributions in Figure 4.15 and Figure

4.18. This does not have a large impact on the calibration as the eµ-channel has higher statistics

and a higher b-jet purity as there is less background contamination.
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Figure 4.9: The dilepton invariant mass distribution for the ee-channel before Emiss
T cut and before the Z pT

reweighting. All simulated samples are normalised to an integrated luminosity of 14.34fb−1.

Figure 4.10: The dilepton invariant mass distribution for the ee-channel after the Emiss
T cut and before the Z

pT reweighting. All simulated samples are normalised to an integrated luminosity of 14.34fb−1.
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Figure 4.11: The dilepton invariant mass distribution for the ee-channel after the Emiss
T cut and after the Z

pT reweighting. All simulated samples are normalised to an integrated luminosity of 14.34fb−1.

Figure 4.12: The dilepton invariant mass distribution for the µµ-channel before Emiss
T cut and before the Z

pT reweighting. All simulated samples are normalised to an integrated luminosity of 14.34fb−1.
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Figure 4.13: The dilepton invariant mass distribution for the µµ-channel after the Emiss
T cut and before the Z

pT reweighting. All simulated samples are normalised to an integrated luminosity of 14.34fb−1.

Figure 4.14: The dilepton invariant mass distribution for the µµ-channel after the Emiss
T cut and after the

Z pT reweighting have been applied. All simulated samples are normalised to an integrated luminosity of
14.34fb−1.
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(a)

(b)

Figure 4.15: The dilepton invariant mass distribution for the eµ-channel (a) before and (b) after the Z
pT reweighting have been applied. All simulated samples are normalised to an integrated luminosity of
14.34fb−1.
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Figure 4.16: The Emiss
T distribution for the ee-channel. No Emiss

T cut, no Z-mass veto and no Z pT reweighting
have been applied to these ditributions. All simulated samples are normalised to an integrated luminosity of
14.34fb−1.

Figure 4.17: The Emiss
T distribution for the µµ-channel. No Emiss

T cut, no Z-mass veto and no Z pT reweighting
have been applied to these ditributions. All simulated samples are normalised to an integrated luminosity of
14.34fb−1.
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Figure 4.18: The Emiss
T distribution for the eµ-channel. No Emiss

T cut, no Z-mass veto and no Z pT reweighting
have been applied to these ditributions. All simulated samples are normalised to an integrated luminosity of
14.34fb−1.
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Event Selection

Cut # Requirement Data tt̄ Single Top

0 Initial number of events 509436383 11587578 1776505

1 True dilepton event (simulation) or event in GRL (data) 478057981 1349946 1776505

2 Trigger 304840407 1045801 458782

3 No. of tracks associated with primary vertex > 4 300334438 1044862 458108

4 Cosmics 300334435 1044862 458108

5 ≥ 2 leptons (pT> 25 GeV) 7687469 296914 27869

6 Single electron or single muon trigger matched 7687356 296837 27859

7 No eµ overlap found in event 7687073 296781 27846

8 Reject event with bad jets 7679603 296356 27807

9 HT ≥ 130 GeV(eµ-channel) or MET ee/µµ-channels) 122997 225282 18977

10 ≥ 2 good jets (pT> 20 GeV) 39629 184346 8553

11 Exactly 2 good leptons (pT> 25 GeV) 39513 184329 8553

12 Two oppositely charged leptons 39010 183471 8496

13 Dilepton invariant mass ≥ 15 GeV 38922 183078 8480

14 Z-Veto 30735 172485 8053

15 Leptons found in truth record (simulation) 30735 171693 8021

16 Veto event with LAr error (remove corrupted events) 30735 171693 8021

Table 4.2: Number of events in the data, nominal simulated tt̄and single top samples passing each stage of
the tt̄ dilepton event selection. Here, “good jets” refers to jets that were not removed during jet cleaning
(removal of bad jets). Cosmic events are also removed. Such events are caused by high energy particles
originating mainly from outside the solar system which collide with atmospheric molecules. This results in
a shower of pions and leptons that can interact with the detector.

All object selection, calibration, background estimations and MC samples for 2012 data follow

the guidelines set out by the top analysis group [49].

4.5 pRel
T Calibration Method

One method of calibrating a b-tagging algorithm is to obtain the number of b-jets before and after

tagging. If one uses a subset of jets, namely those which decay semileptonically to a muon plus

a muon neutrino, it is possible to calculate the pRel
T variable for each jet. This is constructed from

the transverse momentum of an in-jet muon with respect to the combined muon plus jet axis (see

Figure 4.19).
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Figure 4.19: Schematic diagram of the pRel
T variable defined as the transverse momentum of the muon with

respect to the combined jet-muon direction.

Muons originating from b-hadron decays have a harder pRel
T spectrum than those coming from

c- and light-hadrons. By constructing pRel
T spectrum templates of muons from b-, c- and light-

hadrons and fitting them to the pRel
T spectrum of muons from jets in data, jet flavour fractions

before and after requiring a b-tag are obtained. The efficiency is then calculated using the fraction

of b-jets in the pre-tagged ( fb) and tagged ( f tagged
b ) samples of jets, the total number of jets in those

samples (N and Ntagged respectively), and the factor C which is a correction factor for biases intro-

duced through differences between the modelling of the b-hadron direction and the heavy flavour

contamination of the pRel
T templates for light flavour jets in data with respect to simulation [50].

The equation used to calculate the efficiency is shown in Equation 4.1.

ε
data
b =

f tagged
b Ntagged

fb N
·C. (4.1)

The ratio of the b-tagging efficiency on data with respect to simulation is used to calculate a

calibration scale factor. Because this method does not use an inclusive sample of b-jets to perform

the calibration, it could in principle be biased.

The pRel
T calibration method described in this section is not used in the analysis but a basic

knowledge of the technique and selection of semileptonic jets is required, as the same jet selection

is used in this study.
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4.6 Semileptonic and Non-Semileptonic Jets

Jets selected using the tt̄ dilepton kinematic selection procedure are divided up into two orthogonal

samples according to the decay of the b-hadron: semileptonic (SL) and nonsemileptonic (NSL).

SL-jets are labelled as such if the b-hadron inside the jet decays to a muon and a neutrino. Decays

to an electron and a neutrino are not considered SL jets for the sake of this calibration analysis but

are included in the NSL jet sample. The relative fraction of SL with respect to NSL jets as a subset

of inclusive jets are shown in Table 4.3.

Jet Subset # Jets

Inclusive 1798878

Semileptonic 145135

Non-semileptonic 1653743

Table 4.3: Total numbers of inclusive, semileptonic and non-semileptonic jets for complete set of simulation
samples.

To produce the independent subsets the first step is to select a collection of soft muons. After

the selection procedure described in section 3.3.3, the soft muon selection procedure shown in

Table 4.4 is implemented. Any possibility of overlap with muons from the hard interaction is

removed by inverting the isolation requirement.

Selection for soft in-jet muons

1 Combined “MUID” muon

2 ∆R≤ 0.3

Table 4.4: Selection criteria for soft muons. The selection criteria used in this analysis are the same as those
used for the pRel

T analysis. Here, ∆R is measured between the direction of the jet and the muon. Combined
“MUID” muons are the muons described in section 3.

If the muon passes the selection criteria, an attempt is made to match it with a b-jet. The

∆R between the soft muon and every selected jet is calculated. The soft muon must be within

∆R = 0.3 of a b-jet if it is to be considered to have originated from the decay of the b-hadron. Any

permutation that results in a ∆R greater than 0.3, is rejected. The soft muon is paired with the jet

with which it has the smallest ∆R.
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The energy of a jet in which the b-hadron decays semileptonically to a muon plus neutrino

is often underestimated because a large portion of the muon’s energy not being deposited in the

calorimeters and the neutrino escaping the detector without depositing any energy. The inclusive

rate at which a semileptonic b-decay produces a muon is large (≈ 20% which includes both direct

decay and indirect decay via charm/τ decays) so this can have a large effect. The correction is

performed in two stages reflecting the two sources of the energy underestimate. The jet energy is

first corrected to include the energy of any nearby muons
(
∆R( j,µ) < 0.3

)
. Then, a scaling from

a look-up-table is applied on a jet-by-jet basis to correct for the neutrino energy. The correction is

pT- and η-dependent and is applied to all SL jets. Corrections are applied to the jet energy which

brings it closer to the original b-quark momentum. The full jet momentum is changed so both

angles and pT change, which can cause jets to migrate between pT bins in the analysis.

If the jet is matched with a soft muon, a dynamic pT requirement must be fulfilled if the jet is

to be labelled an SL jet. This is used to enhance the b-jet purity of the semileptonic jet collection

as muons from b-hadrons have a harder pT spectrum than those from charm- or light-hadrons.

The cut enforces a minimum pT requirement for soft muons which increases with the pT of the

associated jet as seen in Table 4.5. Only jets with associated muons passing this requirement

are considered semileptonic jets. This is implemented using the corrected b-jet energy. NSL jets

within ∆R( j,µ) < 0.3 but whose muon does not exceed the dynamic pT threshold still have their

energy corrected but are not labelled SL for this calibration.

Dynamic pT-cut for Soft Muons in B-jets

Jet pT range (GeV) pµ
T cut (GeV)

20-60 pµ
T > 4

60-90 pµ
T > 6

90-300 pµ
T > 8

Table 4.5: Dynamic pT-cut imposed on in-jet muons for varying jet pT. If the muon passes the selection
cut, the jet is assigned to the SL jet sample, otherwise it is assigned to the NSL jet sample.

If all these requirements are met, the jet is labelled as an SL jet, otherwise it is labelled as an NSL

jet.
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4.7 tt̄ Dilepton Kinematic Selection Calibration Method

The efficiency of tagging a true b-jet (εb) is the number of correctly tagged true b-jets with respect

to the number of true b-jets in the sample. Non b-jets are separated into 4 categories: light, charm

(c), τ and fake. Here light jets refers to any jet stemming from a u-, d- or s- quark or a gluon. The

efficiency of incorrectly tagging light c- or τ-jets (εl , εc, ετ) is calculated as the ratio between the

number of true light, c- or τ-jets that have been incorrectly b-tagged (mistagged) with respect to

the total amount in the combined simulated samples. The mistag efficiencies (εc, εl and ετ) have

additional correction factors before they are applied data [41]. The efficiency with which jets from

fake dilepton events are incorrectly b-tagged (ε f ake) is taken directly from the data-driven same-

sign dilepton fakes sample as defined in Section 4.2. ε f ake is calculated as the number of jets from

events in the fake sample that are being tagged, divided by the total number of jets in these events.

The number of jets b-tagged in data (Ndata
tagged) by any b-tagging algorithm is equal to the sum

of the number of true b-jets that are correctly tagged multiplied by the tagging efficiency of that

algorithm, plus the number of non b-jets that are mistagged multiplied by the mistag efficiency of

that algorithm. The number of b-tagged jets in data is:

Ndata
tagged = Nbεb +Ncεc +Nlεl +Nτετ +N f akeε f ake (4.2)

where Nb, Nc, Nl and Nτ are the number of true b-, charm, light and τ-jets in the data sample,

estimated from simulation and N f ake is the number of fake jets in data.

This assumes the relative and total number of jets in each sample is modelled correctly in

simulation. Rearranging Equation 4.2 and replacing the absolute numbers of jets with relative

flavour fractions (by dividing by the total number of jets in the data/prediction), one obtains the

equation:

ε
data
b =

f data
tagged−

(
f MC
c εMC

c + f MC
l εMC

l + f MC
τ εMC

τ + f data
f akeεdata

f ake

)
f MC
b

(4.3)
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where f MC
b , f MC

c , f MC
l and f MC

τ are the flavour fraction of b-, charm, light and τ-jets taken

from simulation, f data
f ake is the flavour fraction of fake jets obtained from the data-driven sample (as

described in Section 4.2) and where we have additionally indicated with a superscript “MC”, that

the mistag efficiencies (εMC
l , εMC

c , εMC
τ ) are also obtained from MC. The values are shown in Figure

4.20.
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Figure 4.20: The tag/mistag efficiencies of the MV1 b-tagging algorithm for b-, c-, light, fake and τ-jets
as a function of jet pT for the 70% working point (i.e. εMC

l , εMC
c , εMC

τ and εdata
f ake ). The b-tag efficiency is

calculated as the number of b-tagged jets divided by the number of true b-jets in the tt̄ sample (εtt̄
b as used in

equation 4.4).

In this equation, εb is the b-tagging efficiency for b-jets in data - the parameter we wish to

measure. One of the benefits of the tt̄ dilepton kinematic selection method is that it derives the

efficiency from an enriched sample of b-jets without requiring any information about the decay of

the b-hadron, which means the sample of b-jets is inclusive. This helps prevent any calibration bias

that could be introduced due to the different kinematic properties of particular subsets of b-jets for

example, those which decay to a muon and neutrino.

The flavour of a jet is determined in simulation using information in the truth record which

signifies the flavour of the quark from which the jet originated. This procedure is common to most

flavour tagging analyses. The flavour fractions for an SL jet sample can be seen in Figure 4.21(a)
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and the same plots for NSL jets are shown in Figure 4.21(b). The calibration scale factor is the

ratio of the b-tagging efficiency in data with respect to the b-tagging efficiency in simulation:

κb =
εdata

b

εtt̄
b

(4.4)

where the b-tagging efficiency on MC, εtt̄
b , extracted from a sample of truth-tagged b-jets, is the

baseline efficiency. It is calculated as the fraction of true b-jets that are b-tagged using true b-jets

from the tt̄ sample. In principle, any sample of true b-jets can be used to calculate a baseline sim-

ulation efficiency, however tt̄ events are used given that the kinematic dilepton calibration method

targets tt̄ events in data. This ensures the kinematic properties of the b-jets in data and the baseline

sample are the same and no bias has been introduced into the scale factor, which is important as

we know efficiencies are affected by the kinematic properties of the jets.
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Figure 4.21: Flavour fractions for a (a) semileptonic sample of jets and (b) non-semileptonic sample of jets.
Plots include all simulation samples with data driven fake estimate.

4.8 Semileptonic Calibration Bias

The calibration procedure described in Section 4.7 is used to calculate b-tagging efficiencies (εb)

and scale factors (κb) for each subset of jets. Efficiencies and scale factors calculated using SL and

NSL jets are denoted εSL
b , κSL

b , εNSL
b and κNSL

b respectively. The final bias is defined as the ratio of

scale factors calculated using the two subsets:
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β
SL,NSL =

κSL
b

κNSL
b

. (4.5)

The inclusive jet sample is just the sum of the SL and NSL sub-sets and therefore the b-tagging

efficiency on an inclusive sample (εIncl
b ) is the sum of the efficiencies on the sub-samples multiplied

by their relevant fractions:

ε
Incl,data
b = f SL,data

b ε
SL,data
b + f NSL,data

b ε
NSL,data
b .

ε
Incl,MC
b = f SL,MC

b ε
SL,MC
b + f NSL,MC

b ε
NSL,MC
b .

(4.6)

4.9 Systematics

There are various sources of systematic uncertainty that must be considered in this calibration.

Most of these manifest themselves as changing event weights which are related to the efficien-

cies of identification and reconstruction or changes in object selection (which can come from e.g.

uncertainties in energy scales). There are also systematic uncertainties which represent the effect

of using different physics models (e.g. a different Monte Carlo generator), along with theoretical

errors such as imperfect cross-section calculations.

The effect of a systematic uncertainty is evaluated by implementing a systematic variation and

re-running the calibration. The systematic uncertainty on the b-tagging efficiency is calculated

from the difference between the value using the systematic variation and the nominal value:

∆εb = ε
data
b,syst − ε

data
b,nominal. (4.7)
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The systematic uncertainty is propagated to the scale factor:

∆κb = κb,syst −κb,nominal =
εdata

b,syst

εMC
b,syst

−
εdata

b,nominal

εMC
b,nominal

. (4.8)

The systematic uncertainties on b-tagging efficiencies and scale factors are evaluated for SL

and NSL jets separately. This is then propagated to the final bias of the SL calibration as follows:

∆β
SL,NSL = ∆

(
κSL

b

κNSL
b

)
=

κ
SL,syst
b

κ
NSL,syst
b

− κ
SL,nominal
b

κ
NSL,nominal
b

. (4.9)

Individual errors are symmetrised by taking the difference between the maximum (∆up
i ) and

minimum (∆down
i ) systematic variations and dividing by 2:

∆i =
∆

up
i −∆down

i
2

(4.10)

The total systematic error is calculated by summing the full set of independent symmetrised

errors in quadrature
(
∑
i

∆2
i
)
. Total uncertainties are calculated as the sum of the statistical and

systematic uncertainties. The systematic uncertainties on the final SL/NSL bias are shown in

Appendix B in Table B.1.

The most important systematic uncertainties are associated with the choice of MC genera-

tor, the parton shower model uncertainty, the uncertainty associated with the amount of initial

state/final state radiation and the statistical uncertainty from the number of semileptonic jets. The

meaning and importance of individual systematics are described in more detail beneath. A more

detailed description can be found in [51].
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tt̄ Monte Carlo Generator Uncertainty

This uncertainty quantifies the effect of flavour fraction variations between different tt̄ Monte Carlo

generators. The nominal tt̄ sample used in the calibration was generated using POWHEG+PYTHIA

which uses the full ATLAS detector simulation. The available systematic samples for Monte Carlo

generator comparison were ALPGEN+HERWIG and MC@NLO+HERWIG. To remove any hadroni-

sation effects the “nominal” sample used to evaluate this systematic uncertainty was POWHEG+HERWIG.

Both systematic samples were generated using a fast simulation of the ATLAS detector [52]

whereas the nominal sample used a full simulation. Comparing with a fast simulation sample

should not affect the b-tagging efficiencies as the inner detector simulation is the same as in the

full simulation. The uncertainty is then evaluated by comparing the b-tagging efficiency in each

jet pT bin using samples from each generator. The largest variation between nominal and any of

the systematic samples is used as the uncertainty.

tt̄ Parton Shower Modelling Uncertainty

Different parton shower models result in different event kinematics. When comparing parton

shower models it is important to use samples with the same Monte Carlo generator to ensure

systematic variations are independent of one another. The comparison performed for this cali-

bration is between the nominal POWHEG+PYTHIA sample and the systematic POWHEG+HERWIG

sample. Both samples were simulated using a fast detector simulation. The systematic uncertainty

is evaluated by comparing the b-tagging efficiency for each jet pT bin between the nominal and

systematic samples generated using the various parton shower models.

tt̄ Intial/Final State Radiation Modelling Uncertainty

To evaluate the uncertainty of the modelling of the initial and final state radiation, two simulation

samples were generated with increased and decreased amounts of initial and final state radiation.

The two samples are ACERMC POSITIVE and ACERMC NEGATIVE respectively and are both sim-

ulated using fast detector simulations. The samples are used independently to calculate a full set

of results. The systematic error is taken as half the difference between the results from the positive

and negative variations.
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Jet Energy Resolution (JER)

The JER was well measured using data from 2012 using the bisector technique in dijet events to

measure in situ, the fractional jet pT resolution σ(pT)/pT [53]. The JER in the MC is compara-

ble to the resolution observed in data but small differences are still observed in the pT dependant

distributions of JER. The procedure recommended at the time of this calibration was to not apply

any smearing on the nominal measurement and compare with a systematic result evaluated after a

smearing factor has been applied as a scale factor to MC jets which increases the JER to be consis-

tent with the JER measured in data plus its error. The difference between the nominal and smeared

MC taken as the JER systematic uncertainty which covers the uncertainty on the data measurement

and the small disagreement between data and simulation.

Jet Reconstruction Efficiency (JEff)

Calorimeter jets are reconstructed with an efficiency derived relative to jets built from charged

tracks reconstructed in the inner detector using a tag and probe technique. The reconstruction ef-

ficiency was defined as the ratio of probe track-jets matched to calorimeter jets with respect to the

number of probe track-jets. The observed difference between data and Monte Carlo was applied to

Monte Carlo by discarding a fraction of jets taken at random within the inefficiency range pT < 30

GeV to evaluate the systematic variation.

Jet Vertex Fraction (JVF)

The JVF variable exploits the fraction of tracks coming from the primary vertex that are associated

with the jet and estimates the contribution of multiple interactions. If the jet has a sufficient num-

ber of tracks coming from the primary vertex it is considered not to have been generated by pileup

interactions. A systematic uncertainty relating to the JVF is calculated by varying the value of this

cut depending on whether the jet originates from the hard interaction or a pile-up interaction. If

the jet is considered a pileup jet, the JVF cut is varied from the nominal value up to 1.1 (removing

all pileup jets) and down to 0.1. If the jet is not a pileup jet, the JVF cut value is varied up to

0.53 and down to 0.47 from its nominal value of 0.5. This can cause events to migrate between jet

multiplicities which varies the final results of the calibration.

Jet Energy Scale Uncertainty
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As described in Section 3.3, a series of corrections are used to correct the energies of simulated

jets. Similarly, corrections are derived to jet energies to account for the response of the detector

and in situ corrections are applied using Z+ jets and γ+ jets events where the pT of the system is

assumed to be balanced. All corrections have a systematic uncertainty which must be propagated

through to the calibration results.

1. Baseline in situ uncertainty:

The total jet energy scale calibration includes a combination of many insitu measurements,

therefore it is preferable to reduce the number of uncertainty components. This is done using

the total covariance matrix of the JES correction factors derived from the individual compo-

nents of the statistical and systematic uncertainties. This matrix is decomposed into a part

with strong correlations and a part with weak correlations. Diagonalising this matrix pro-

duces eigenvectors and eigenvalues which when multiplied together produce a reduced set

of effective uncertainties. The result is 5 effective systematics (a subset of the full set of ef-

fective uncertainties with the largest eigenvalues) which represent the terms that are strongly

correlated and a residual effective systematic to account for the remaining difference be-

tween the approximation and the total uncertainty. These are then propagated through to the

b-tagging efficiency and scale factor calculations.

2. η-intercalibration

The response of the ATLAS detector to a jet is dependent on the jet’s direction, due to

changing calorimeter technology and varying amounts of dead material. A calibration is

therefore needed to ensure uniform calorimeter response. This is done using correction fac-

tors derived from Monte Carlo simulation using the in situ techniques mentioned earlier.

The major sources of systematic uncertainty associated with this are due to the modelling of

jets in the forward regions of the detector and the statistical methods used. Seeing as these

correction factors are used for jets in this b-tagging calibration, the systematic uncertainty

associated must also be taken into consideration.

3. Flavour Composition uncertainty

108



The jet energy response is not the same for quark-initiated jets and gluon-initiated jets.

Gluon jets have a lower response than quark jets because they fragment into more and softer

particles than quark jets. This means they are less likely to reach the calorimeters or be

included in the topological clusters. The in situ jet energy scale calibrations are derived us-

ing samples with jet flavour fractions which might not reflect the composition of jets in the

physics analysis. Varying the fraction of gluon jets used in the in situ calibrations can cause

shifts in the JES and therefore a systematic uncertainty is assigned to compensate for these

possible variations of flavour compositions.

4. Flavour response

The LCW jet energy calibration scheme restores the average energy of the calorimeter jets

reconstructed at the LCW scale, to the jet energy scale of jets reconstructed from stable sim-

ulated particles (truth particles), for an inclusive sample of jets. However , sub-samples are

not perfectly calibrated. The flavour dependence of the calorimeters’ jet energy response is

typically larger in Monte Carlo simulation than in data. This occurs if the flavour content of

in the data sample is not well described by the MC. Scale factors are applied to jets in simu-

lation which resolve these differences. The derivation of these scale factors has a systematic

uncertainty which propagates through to the results of this calibration.

5. B-Jet JES uncertainty

The detector response for b-jets is different from that for the light- and gluon-jets. A sep-

arate in situ JES calibration is derived which has its own systematic uncertainty. The b-jet

energy scale uncertainty is only applied to true b-jets instead of the flavour composition and

response uncertainty.

6. Pileup corrections

The number of reconstructed primary vertices can affect the measurement of jet energies.

A number of corrections are applied which are dependent on the number of reconstructed

primary vertices. These corrections also consider the active area of jets in calorimeter. Pileup

corrections have a systematic uncertainty which is evaluated in any analysis by varying the
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parameters of these corrections and re-evaluating the results.

7. High pT single particle

A high pT hadron in a high pT jet can potentially be mismodelled which can affect the JES

measurement. A correction is introduced to account for this mismodelling. The derivation

of this correction has a systematic uncertainty which affects the overall JES corrections for

this b-tagging calibration and can cause a change in jet acceptances.

Luminosity

The luminosity calculation for the datasets in the “AllGood” good runs list described in section 4.3

has an estimated uncertainty of 2.8%. This is propagated to the final results by varying the lumi-

nosity up and down by this percentage and is performed consistently for all simulations. Seeing as

Equation 4.3 uses relative flavour fractions instead of absolute numbers this uncertainty does not

have an effect.

Mistag Rate

In the derivation of the b-tagging scale factors in this analysis, mistag rates for non b-jets are taken

from simulation and multiplied by a scale factor before they can be applied to data. The mistag

rates on data have an additional systematic uncertainty that comes from the methods used to derive

the scale factors applied to the MC mistag rates. To evaluate this systematic uncertainty, the mistag

efficiencies are shifted by 12-50% [50] when deriving the b-tagging scale factors.

Lepton Systematic Uncertainties

Electrons and muons both require scale factors to correct for specific aspects of data /MC agree-

ment. In particular weights are provided to correct for trigger, reconstruction, isolation and iden-

tification efficiencies which are applied multiplicatively to events. Each and every scale factor

applied has an uncertainty which must be propagated to the final result.

Electron reconstruction and isolation efficiencies from Z→ ee and W→ eν events in data and

simulation are used to derive scale factors. Energy scale and resolution are compared between data

and simulation using Z→ ee and J/ψ→ ee. The values of these scale factors and their uncertainty

which is propagated through this calibration can be found in Reference [37].
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Measurements of the muon reconstruction efficiencies, momentum scale and resolution based

on Z→ µµ, J/ψ and ϒ→ µµ decays in data are compared to MC simulations. Derived corrections

to the simulation, are used in physics analyses which are applied to both the inner detector and

muon spectrometer tracks. This introduces additional systematic uncertainties resulting from the

methods used to derive these corrections. The uncertainty on the efficiency is 0.001%, whereas

the uncertainty on the resolution ranges from 1.7-4% and the momentum scale is known to an un-

certainty between 0.05-0.2% depending on the muons rapidity. The uncertainty on the momentum

scale and resolution are used to smear the pT of the reconstructed muons in the analysis which

affects object reconstruction and subsequently the derivation of calibration scale factors. No mea-

surements of isolation scale factors were available at the time of this calibration. The values for all

scale factors and uncertainties can be found in Reference [36].

Semileptonic Correction Uncertainty

The energy of a jet in which the b-hadron decays semileptonically can be underestimated. Cor-

rections are applied to the jet energy that bring it closer to the original b-quark momentum. The

uncertainty on this correction is close to 2% and affect the acceptance of semileptonic b-jets.

Theoretical Cross Section Uncertainty

Theoretical cross-sections of simulated backgrounds are subject to the uncertainties shown in Table

A.1. The overall normalisation of individual simulated background samples are scaled up and

down using the upper and lower limits of the uncertainty on a cross-section which models the

different possible sample contributions. The uncertainty on this calibration is then evaluated by

comparing the results acquired using the samples with systematic variations of cross-sections and

the nominal samples.
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Theoretical Cross-Section Uncertainties (%)

tt̄ cross-section +9.34%, - 10.17%

Single Top (Wt) ±6.85%

Diboson cross-section ± 5% (inclusive normalisation) and 24% additional uncertainty per ad-

ditional jet to be added in quadrature for the WW samples [54]
Z+ jets cross-section ± 4% (inclusive normalisation) and 24% additional uncertainty per ad-

ditional jet to be added in quadrature [55]
Fakes cross-section ± 50%

Table 4.6: The theoretical uncertainties of signal and background processes. The upper and lower limits
are used to scale the theoretical cross-sections and thus the normalisations. The inclusive normalisation
uncertainty for both Diboson and Z+ jets samples is the default baseline uncertainty. The 24% uncertainty
per additional jet is needed for samples where the additional jet required by the selection has had to come
from some softer process. The extra jet comes from the additional matrix element parton simulated by
ALPGEN which has a 24% uncertainty associated with it (see Table A.2 for all cross-sections).

4.10 Statistical Uncertainties

The statistical uncertainty is evaluated on the efficiency and scale factor histograms in individual

jet pT bins. A histogram can be interpreted as a series of independent Poisson distributions for

the number of entries in each bin. For given values of some random variable n, one can calculate

the Poisson probability distribution about the mean value µ of a discrete random variable N being

equal to any value of n:

f (n;µ) = Pr(N = n) =
µn

n!
e−µ n = 0,1,2 etc. (4.11)

Where N follows a Poisson distribution with parameter µ. Here µ is the parameter of the

distribution which represents the mean number of events in a given interval. The standard deviation

of a probability distribution is defined as the square root of the variance (
√

σ2 =
√

µ), which for

one bin in a histogram, is the square root of the summed entries. Errors along the x-axis are equal

to the bin width.
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4.11 Results

In this section results from the calibration of the ATLAS MV1 b-tagging algorithm using the tt̄

dilepton kinematic selection method are shown for the 70% efficiency working point. The effi-

ciencies obtained from the calibrations using a semileptonic jet sample and non-semileptonic jet

sample are shown in 4.22.
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Figure 4.22: The efficiency of the MV1 b-tagging algorithm using (a) semileptonic jets and (b) non-
semileptonic jets from data using the 70% MV1 working point.

The individual pT bin efficiencies for semileptonic jets are in agreement with the relevant pT

bin efficiencies for non-semileptonic jets within uncertainties.

Jet pT bin SL Nominal Efficiency NSL Nominal Efficiency

0-90 GeV 0.72 +5%
−5% (stat+syst)±2% (stat) 0.67 +2%

−2% (stat+syst) ±1% (stat)

90-300 GeV 0.78 +6%
−6% (stat+syst)±2% (stat) 0.74 +3%

−3% (stat+syst) ±1%(stat)

Table 4.7: Table of the final efficiencies in each jet pT bin for the nominal calibrations.

The data/simulation scale factors for the 70% working point are shown in Figure 4.23(a) for

semileptonic jets and Figure 4.23(b) for non-semileptonic jets.
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Figure 4.23: The pT dependent data/simulation scale factor as evaluated using (a) semileptonic jets and (b)
non-semileptonic jets from data and simulation using the 70% MV1 working point.

Jet pT bin SL Nominal Scale Factor NSL Nominal Scale Factor

0-90 GeV 0.97 +5%
−6%(stat+syst) ±3% (stat) 0.97 +6%

−7% (stat+syst) ±1% (stat)

90-300 GeV 1.01 +9%
−8% (stat+syst) ±4% (stat) 0.98 +6%

−7% (stat+syst) ±1% (stat)

Table 4.8: The final efficiency scale factors in each jet pT bin for the nominal calibrations.

To evaluate any potential bias in a calibration using semileptonic b-jets, the ratio of the semilep-

tonic scale factor divided by the non-semileptonic scale factor is presented in Figure 4.24.

114



[MeV]
T

p
0 50 100 150 200 250 300

R
at

io
(S

L/
N

S
L)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
ATLAS

-1L = 14 pb
= 8 TeVs

preliminary

MV1@70%

SF Ratio SL/NSL

Syst+Stat Uncert

Stat Uncertfbfb

Figure 4.24: The bias, as defined in Equation 4.5 binned in jet pT. The bias is defined as the scale factor
derived using semileptonic jets divided by the scale factor derived using non-semileptonic jets.

A full breakdown of the systematic uncertainties is shown in Table B.1. Table 4.9 shows a

summary of the full systematic and statistical uncertainty along with the nominal values for the

bias. The small amount of data in the semileptonic jet sub-sample contributes approximately 3-4%

of the statistical uncertainty to the final bias value in both pT bins. Other large contributions to the

overall uncertainty come from uncertainties such as those due to the choice of monte carlo genera-

tor, parton shower and Initial/Final state radiation to which the bias evaluation is more sensitive to

in the 90-300 GeV jet pT bin.

Semileptonic Bias (SL/NSL) and Associated Uncertainties

Jet pT bin Nominal Bias Total Uncertainty

0-90 GeV 1.00 6.75%

90-300 GeV 1.04 9.86%

Table 4.9: Table of the final bias (κSL
b /κNSL

b ) in each jet pT bin for the nominal calibrations along with their
respective total uncertainties.

4.12 Conclusions

The tt̄ dilepton kinematic selection method was used to select an enriched inclusive sample of b-

jets in data exclusively from the eµ-channel. These were then further divided into two sub-samples:

115



semileptonic b-jets with a soft muon and non-semileptonic b-jets. The efficiency of the MV1 b-

tagging algorithm was calibrated for each of these subsets of jets using the 70% working point.

This was done using data and simulation alike and a b-tagging scale factor was calculated as the

ratio of the efficiency on data with respect to simulation. This was done for both semiletponic and

non-semileptonic b-jets. These two scale factors were then compared in a ratio (semileptonic/non-

semileptonic) to evaluated whether or not a bias is caused when performing b-tagging calibrations

on semileptonic b-jets.

The ratio of scale factors evaluated using jets with pT in the range 0-90 GeV was found to

be 1.00± 3.18% (Stat)±3.5%(Syst) and the ratio evaluated using jets with pT in the range 90-

300 GeV was calculated to be 1.04± 3.84% (Stat)±6.01%(Syst). These results show that the

ratios of scale factors (the biases) are consistent with unity within uncertainties, therefore no bias

is seen. If a bias exists, it must be less than a few percent. Improving the precision of the analysis

could rule such a bias out.
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Chapter 5

A search for the Standard Model Higgs
boson produced in association with top
quarks and decaying to a bb̄ pair

“
Have you ever heard about the Higgs Boson Blues?

Im going down to Geneva baby,

Gonna teach it to you
”

Nick Cave and the Bad Seeds, Higgs Boson Blues

5.1 Introduction

The discovery of a new particle in the search for the Standard Model Higgs boson was reported

by the ATLAS [56] and CMS [57] collaborations in 2012. Both collaborations showed clear ev-

idence for a particle with a mass of 125 GeV in the decay channels H→ γγ, H→ ZZ→ 4l and

H→WW→ lνlν. Within the framework of the SM, the Higgs boson couplings are predicted for

any hypothesised mass. Thus, in order to understand if the observed resonance with a mass of 125

GeV is the SM Higgs boson, its couplings must be measured and compared to those predicted for

a SM Higgs boson with that mass. The largest Higgs boson coupling is the so-called top Yukawa

coupling which is the coupling between the top quark and the Higgs boson. As the Higgs boson

cannot decay to top quarks, this coupling must be measured via a Higgs boson production process.
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Figure 5.1: Tree-level Feynman diagrams for the production of a Higgs boson in association with a pair of
top quarks and decaying to a pair of b-quarks.

The analysis presented here is a search for the Higgs boson produced in association with a pair

of top quarks (tt̄H), which aims to measure the top Yukawa coupling. The analysis targets tt̄H

events where the Higgs boson decays to a pair of b-quarks because the H→ bb̄ branching ratio

is the largest of the 125 GeV Higgs boson. However, other decays are accepted as signal (such as

H→WW→ lνlν). Figure 5.1 shows the two tree-level Feynman diagrams for the tt̄H(H→bb̄) sig-

nal process. An added bonus to searching for this Higgs boson decay signature is that it contributes

to the measurement of the H→ bb̄ coupling.

5.2 Analysis Strategy

The tt̄H(H→bb̄) channel benefits from a high jet/b-jet multiplicity and additional leptons in its final

state signature, which are used to reduce many background processes making it a favourable search

channel. However, it comes with some very challenging backgrounds. The main background in

this analysis comes from tt̄ events which have at least two additional jets (tt̄+ jets). These jets most

commonly come from a gluon that originated from the initial/final state. The tt̄+ jets background

is categorised according to the flavour of the additional jets produced. Events with additional b-jets

(tt̄+bb̄) make up an irreducible background as in Figure 5.2, which means they have the same final

state signature as the signal. The rest of the tt̄+ jets category is composed of events where the

additional jets are light jets (u,d,s), gluon jets or c-jets (tt̄+ light and tt̄+ cc̄ ). These events can

also produce the same final state signature as signal if the jets are misidentified as b-jets and thus

this analysis is very dependent on the performance of the b-tagging algorithm.
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Figure 5.2: Tree-level Feynman diagram of the dominant tt̄+bb̄ background process for the production of
the Higgs boson in association with a top pair and subsequent decay to a pair of b-quarks. The diagram
shown is for the single lepton and the dilepton channels.

Separate analyses are performed according to the number of leptons found to have come from

the decay of the tt̄ system. The two analyses that are combined in Reference [58] are the so-

called single lepton (or lepton+jets) and dilepton analyses. A Feynman diagram for the signal

process in each analysis is shown in Figure 5.1. Using a carefully designed selection, the single

lepton analysis targets events where one W boson coming from the decay of the top/anti-top quark

has decayed leptonically and the other W boson has decayed hadronically. The dilepton analysis

targets events where both of the W bosons have decayed leptonically.

Each analysis has its own advantages and disadvantages. The single lepton analysis has higher

statistics than the dilepton analysis due to the high branching fraction of the W bosons into a

charged leptons and jets, as is demonstrated in Figure 5.3. However, given that the final state

signature contains more jets, the single lepton channel suffers from a larger background. The

dilepton signature on the other hand has two high-pT leptons which makes the signature much

clearer and allows for good signal-to-background separation but suffers from a smaller branching

ratio.

The two analyses are designed to be orthogonal to one another, thus allowing them to be

combined. It can be seen from Figures 5.1 and 5.2 that the single lepton analysis has a larger

expected significance (S/
√

B) than the dilepton analysis. Here ‘S’ is used to denote the expected

number of signal events in that region for a SM Higgs boson of mass 125 GeV and ‘B’ denotes

the expected number of background events. However, it can also be seen that the dilepton analysis

is generally purer in signal, averaging a higher S/B across analysis regions (a concept described

in more detail in in more detail later in this section) and thus contributes significant additional
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Figure 5.3: Branching fractions of the top pair system [59].

sensitivity to the search.

Moreover, combining the two channels can reduce the size of the systematic uncertainties

compared to any one channel alone. For example, the (≥ 4j, ≥ 4b) dilepton analysis region is

much more pure in tt̄+bb̄ than any of the single lepton analysis regions (as shown in Figures 5.4

and 5.5). It can therefore be used to provide improved shape and normalisation information on

the tt̄+bb̄ background in the single lepton analysis regions via the likelihood fit (described in more

detail in Section 5.15).

The work presented in this chapter focuses on the dilepton analysis which targets events with

exactly 2 high-pT isolated leptons (either of which can be an electron or a muon) and at least 2 jets

of which at least 2 are b-tagged. Channels that include τ-particles are targeted in another analysis.

The full event selection is given in Section 5.8.

Events passing the analysis selection are divided amongst analysis regions according to their

jet and b-tag multiplicity. In the dilepton analysis, 6 analysis regions are used: 4 “signal-depleted”

control regions and 2 “signal-rich” regions. The signal-rich regions are defined as such because

they have an S/B > 1% and S/
√

B > 0.3. All analysis regions that do not pass these requirements

are said to be signal-depleted. Signal-rich regions provide most of the signal sensitivity whereas

the control regions are used to model the background contributions and constrain systematic un-
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Table 5.1: Pre-fit event yields in each of the single lepton analysis regions for signal, background and data.
The quoted uncertainties are the sum in quadrature of the statistical and systematic uncertainties on the
yields.

121



Table 5.2: Pre-fit event yields in each of the dilepton analysis regions for signal, background and data. The
quoted uncertainties are the sum in quadrature of the statistical and systematic uncertainties on the yields.

(a) (b)

Figure 5.4: Distributions of (a) the S/
√

B ratio for each of the dilepton analysis regions and (b) the relative
background contributions in each dilepton analysis region [58]. Each row represents a jet multiplicity while
each column represents a b-jet multiplicity. The red regions in (a) represent the signal regions while the blue
regions represent the background regions.
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(a) (b)

Figure 5.5: Distributions of (a) the S/
√

B ratio for each of the single lepton analysis regions and (b) the
relative background contributions in each single lepton region [58]. Each row represents a jet multiplicity
while each column represents a b-jet multiplicity. The red regions in (a) represent the signal regions while
the blue regions represent the background regions.

certainties.

A discriminant distribution is taken from each analysis region and used in the combined fit to

test for the presence of a signal assuming a Higgs boson mass of 125 GeV. In the (= 2j = 2b),

(= 3j = 2b) and (≥ 4j = 2b) regions the HT distribution (see Section 4.4) is used whereas in the

(= 3j = 3b), (≥ 4j = 3b) and (≥ 4j≥ 4b) regions neural network (NN) distributions are used (see

Section 5.9). The neural network output distribution is used as an input to the fit. Each of these

distributions has a well separated signal and background and therefore contributes to improving

the sensitivity of the analysis. The 6 dilepton analysis regions and the distribution used in the

likelihood fit are shown in Figure 5.6.

One of the main focuses of this chapter is a study of possible methods (pairing methods) that

can be used to correctly assign which b-jets came from the Higgs boson and which came from

the top quarks. This is important as the pairing can affect the shape and normalisation of some of

the kinematic distributions that are used as inputs to the neural network. This will subsequently

affect the ability of the neural network to separate signal from background. Several pairing meth-

ods are investigated and their reconstruction efficiencies are evaluated using the truth information

in simulated samples. The effect of each pairing method on the kinematic distributions and the

subsequent effect on the performance of the neural networks is also investigated. A further study
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Figure 5.6: Table illustrating the 6 dilepton analysis regions along with the distribution used as input to the
fit from each region. Signal regions are shown in green and background regions are shown in red.

comparing the performance of neural networks (NNs) (see Section 5.9) and boosted decision trees

(BDTs) (see Section 5.12) is also presented. Because the performance of the multivariate classifier

is dependent on the pairing method used, classifiers are compared when using the same pairing

method to obtain a like-for-like comparison.

5.3 Statistical Analysis

The analysis presented uses a binned likelihood function constructed from the product of Poisson

probabilities over all bins considered in the analysis. The likelihood function is dependent on the

signal strength parameter µ, and a set of nuisance parameters θ. The signal strength parameter is

defined as the ratio of the observed or expected tt̄H cross-section over the SM tt̄H cross-section.

The nuisance parameters are introduced in the likelihood function as priors and incorporate the

effects of the systematic uncertainties on the signal and background predictions. They act to adjust

the expected signal and background predictions according to the corresponding systematic uncer-

tainties. The resulting fitted values correspond to the amount that best fits the data as is shown

by the pre-fit and post-fit event yields in Figures 5.2 and 5.3 respectively. This procedure reduces

the impact of the systematic uncertainties of the analysis by taking advantage of more populated

background-dominated control regions in the fit.
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The likelihood is used to calculate the test statistic:

qµ =−2ln(L(µ, ˆ̂
θµ)/L(µ̂, θ̂)) (5.1)

where ˆ̂
θµ is the set of values of the nuisance parameters that maximises the likelihood func-

tion for a given value of µ, and µ̂ and θ̂ are the values of the signal strength and nuisance pa-

rameters that maximise the likelihood function with constraints 0 ≤ µ̂ ≤ µ. The test statistic

q0 = −2ln(L(0, ˆ̂
θµ)/L(µ̂, θ̂)) is used to evaluate the probability of obtaining a result as signal-

like as this one if no signal were observed.

To obtain the final result, a simultaneous fit to data of the discriminant distributions in all anal-

ysis regions from both analysis channels is performed. Fits are performed under the signal-plus-

background hypothesis where the parameter of interest, the signal strength parameter µ, is allowed

to float freely in the fit. In the fit, the signal strength is constrained to be the same in all analysis

regions. The normalisation of each of the backgrounds is determined from the fit at the same time

as the fitted value of the signal strength parameter. Both theoretical and instrumental uncertainties

are used to constrain the tt̄, tt̄+V, diboson, W+ jets, Z+ jets and single top components of the

background. The relative statistical uncertainty in each bin of the discriminant distributions is also

taken into account. The performance of the fit is tested by using simulated events and injecting tt̄H

signal with a variable signal strength and comparing it to the fitted value.

5.4 Systematic Uncertainties

The systematic uncertainty in this analysis that has the largest effect on the fitted value of µ arises

from the normalisation uncertainty of the irreducible tt̄+bb̄ background. This uncertainty is≈ 50%

before the fit but is reduced by more than half of its original value by the fit. The tt̄+bb̄ back-

ground normalisation is pulled up by more than 40% by the fit to data, resulting in an increase

in the observed tt̄+bb̄ yield with respect to the nominal prediction. The tt̄+bb̄ modelling uncer-

tainties affecting the shape of this background, for example the renormalisation scale and parton

shower recoil scheme, also affect the fitted value of µ to a large degree. These uncertainties are

not correlated to other tt̄+ jets backgrounds, only to tt̄+bb̄. The largest of these uncertainties is

given by the choice of renormalisation scale, which can drastically change the shape of the tt̄+bb̄

neural network distribution, making it look more signal like. The 15 most significant systematic
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Figure 5.7: Fitted values of the nuisance parameters that have the largest impact on the parameter of interest
- the measured signal strength µttH [58]. The points represent the deviation of the fitted value of the nuisance
parameter θ̂ from the nominal value of the nuisance parameter θ0, in units of the pre-fit standard deviation ∆θ

and conform to the scale at the bottom of the plot. The error bars on the points show the post-fit uncertainty,
σθ. If the data provide a reduction in the size of the uncertainty with respect to the original uncertainty, σθ

will be less than 1. However, if the value is equal to 1, the data do not provide any further constraint on that
uncertainty. The nuisance parameters are sorted such that the parameter with the largest post-fit impact on
µ is at the top. The post fit impact on µtt̄H is shown by the blue hatched area and conforms to the axis at the
top of the plot.
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uncertainties in this analysis are shown in Figure 5.7.

The calculation of an additional uncertainty associated with the choice of parton shower model

for the tt̄H signal simulation is presented in Section 5.14 because, although it is a relatively small

systematic uncertainty, it is original work that was performed entirely by the candidate. Kinematic

distributions of the nominal POWHEL+PYTHIA signal sample are compared with the distributions

obtained from a POWHEL+HERWIG tt̄H sample. An envelope is created by symmetrising the vari-

ation in the discriminant distribution between the nominal and POWHEL+HERWIG samples. The

nominal is used as the reference and the systematic variation is introduced to the fit as an additional

nuisance parameter which can change the normalisation and shape of the signal discriminant dis-

tributions.

The full list of systematic uncertainties considered in this analysis can be found in Appendix

D. A further breakdown of the size of the effect of each systematic uncertainty in the (≥ 4j, ≥
4b) region can be found in Table E.2. This gives a good idea of the relative importance of the

uncertainty associated with the choice of parton shower model for the signal simulation (labelled

‘ttH-PartonShower’ in the Table).

Final results from the dilepton analysis are subsequently combined with the single lepton anal-

ysis to obtain the final “combined” tt̄H(H→bb̄) result. Separate results from the dilepton and single

lepton analyses along with the combined results are discussed at greater length in Section 5.15.

5.5 Analytical Challenges

This analysis is clearly a complicated analysis that requires a great deal of understanding of back-

ground processes. Our understanding of the shape and size of backgrounds is improved through

the use of well defined control regions. An in-depth study of variables that are able to discriminate

between different processes is required to fully harness the power of the combined likelihood fit.

Furthermore, an improved ‘pairing’ method can help to understand signal and background pro-

cesses. Section 5.11.2 addresses these questions in the analysis’ signal region in an original study

performed by the candidate.

b-tagging is also an essential part of this analysis, which allows requiring a given number of

b-tagged jets in an event and subsequently reducing many background processes. However, the

b-tagging of jets comes with its own associated uncertainty. This is ≈ 1% per b-tag and hence the

b-tagging uncertainty tends to be higher for regions in the analysis that require more b-tags. The
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same b-tagging algorithm as is described in Chapter 4 is used in this analysis (the MV1 algorithm).

However, the analysis uses the combinatorial likelihood b-tagging calibration method described in

Reference [34] to obtain b-tagging scale-factors and efficiencies.

Furthermore, requiring high jet and high b-tag multiplicities dramatically increases the sta-

tistical uncertainty of the analysis and this is accentuated by the division of events into analysis

regions. This problem is overcome by using a technique known as the ‘tag rate function’ or ‘TRF’

for short. TRF allows one to use every event in the sample before b-tagging is applied to predict

the normalisation and shape of distributions after b-tagging, thus bolstering the statistics of the

analysis and reducing the statistical uncertainty [60]. This is achieved by, instead of b-tagging the

jets according to some b-tagging algorithm, assigning to each jet a weight associated with its prob-

ability of being b-tagged, which is parametrised as a function of pT and η. For example, events

with 4 jets and 2 b-tags are also used to predict the shapes and normalisations in the region with 4

jets and 4 b-tags. However, they will be assigned a lower weight than for example a true event with

4 jets and 4 b-tags and therefore have less impact in this region. Tagging probabilities are derived

using an inclusive tt̄+jets sample. Since the b-tagging probability for a b-jet coming from the de-

cay of a top quarks is slightly higher than that of a b-jet originating from another source, they are

derived separately. The normalisation and shape of predictions using TRF agree well with those

when using the b-tagging algorithm (‘direct b-tagging’). This method is then applied consistently

to all background and signal samples.

5.6 Simulation Samples

The main background processes after the event selection are tt̄+ jets, Z+ jets, diboson, single

top Wt-channel and tt̄+V (where ‘V’ is either a W or Z boson), all of which can produce two

prompt leptons and are simulated using Monte Carlo. Events can also have non-prompt leptons or

fake leptons that pass all the lepton object selection criteria. These come from W+ jets, tt̄ single

lepton channel or single top s- or t-channel processes. Yields for these processes are obtained from

simulation and cross-checked with data-driven techniques. However, after requiring two b-tagged

jets, the number of events passing the selection is negligible. All MC samples in this analysis were

simulated with a top mass of 172.5 GeV and a Higgs boson mass of 125 GeV.

The main background for this search channel is tt̄+ jets. These events are included in the tt̄

sample which is generated using the POWHEG package [42] which is an NLO MC generator. The
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showering and hadronisation of the parton shower is performed using the PYTHIA package. The

sample is normalised to the theoretical cross-section calculations performed at NNLO [61].

The tt̄ sample is inclusive in jet flavour but is divided into sub-categories that depend on the

flavour of the partons that are matched to the particle jets that do not originate from the decay of

the tt̄ system. Particle jets are reconstructed by clustering stable particles, not including muons

and neutrinos, using the anti-kt algorithm with a radius parameter of 0.4 and are required to have

pT > 15GeV and |η|< 2.5. The matching of particle jets to partons is done by requiring ∆R < 0.4

between the jet and the parton. Events with at least one b-quark not originating from the tt̄-system,

that is matched to a particle jet are labelled tt̄+bb̄. If an event is not labelled as such but at least

one particle jet is matched to a c-quark not originating from the decay of a W boson, it is labelled

tt̄+ cc̄. tt̄+bb̄ and tt̄+ cc̄ events are labelled under the umbrella term tt̄+HF (Heavy Flavour).

Any events which do not fall into the tt̄+HF bracket are labelled tt̄+ light, which includes tt̄

events which have no additional jets.

Fully matched NLO predictions became available within SHERPA [62] plus OPENLOOPS

(SHERPAOL) program [63]. The prediction from SHERPAOL is expected to model the tt̄+bb̄ con-

tribution more accurately than POWHEG+PYTHIA. For the purposes of comparing the tt̄+ jets

events in both generators (and propagating tt̄+HF systematics) the tt̄+HF events are sub-divided

into two further categories. If two particle jets are both matched to b- or c-quarks not originating

from the tt̄-system, the event is labelled tt̄+bb̄ or tt̄+ cc̄ respectively. If only one particle jet is

matched to a b- or c-quark, the event is labelled tt̄+b or tt̄+ c respectively and if a single particle

jet is matched to a bb̄ or cc̄-pair, then the event is labelled tt̄+B or tt̄+C respectively.

In particular, SHERPAOL predicts a larger fraction of tt̄+ jets events coming from tt̄+B events

than POWHEG+PYTHIA. It also predicts larger fractions for any event in which an additional bb̄-

pair is produced.

The kinematic distributions of PYTHIA and SHERPAOL are similar except in the case of the

very low mass and pT region of the bb̄ system. Further differences are seen in the pT distribu-

tions of the tt̄-system and top quark. Therefore a reweighting is applied to tt̄+bb̄ events in the

POWHEG+PYTHIA sample, to correct these distributions using the best available theory correction

at the time of the analysis [64]. This is used in the SHERPAOL program [62]-[63]. The reweighting

is applied at generator level using distributions of the top-quark pT, the pT of the tt̄-system and the

∆R and pT of the dijet system not coming from the top quark decays. After the reweighting is
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applied, a comparison of the relative contributions of the different categories of tt̄+bb̄ events in the

POWHEG+PYTHIA sample is compared with the SHERPAOL. The relevant disagreements seen in

the kinematic distributions are also checked.

A different reweighting is applied to tt̄+ cc̄ and tt̄+ light events in POWHEG+PYTHIA which

uses the ratio of the measured differential cross-section at
√

s = 7 TeV in data and simulation as a

function of the top quark and tt̄-system pT [65]. It was verified using the simulation that the ratio

derived at
√

s = 7 TeV is applicable at
√

s = 8 TeV [4].

Z+ jets and diboson samples were produced using the ALPGEN LO generator. The parton

shower evolution and hadronisation are performed by PYTHIA for Z+ jets and HERWIG for di-

boson samples. The final states with hadronic Z decays of WZ samples are missing in the ALP-

GEN+HERWIG samples so SHERPA samples were generated for these decay modes. The Z+ jets

samples are generated with up to 5 additional partons and separated into parton flavours all of

which are normalised to their NNLO theoretical cross-sections [66]. The diboson samples are

generated with up to three additional partons which are normalised to the NLO theoretical cross-

section calculation [67]. All event generators using HERWIG are also interfaced with JIMMY [68]

to simulate the underlying event.

The single top background simulation samples were generated using the POWHEG package

interfaced with PYTHIA which performs the parton shower evolution and hadronisation. Overlaps

between diagrams from tt̄ and single top final states are removed and samples are normalised to the

NNLO theoretical cross section [69, 70, 71]. tt̄+V samples were generated using the MADGRAPH

LO generator using the PYTHIA package for showering and are normalised to NLO theoretical

cross sections [72, 73].

The tt̄H signal process is modelled on NLO matrix elements using the HELAC-Oneloop pack-

age [74]. The POWHEG package is used to interface between the matrix element and the shower

simulation package. Samples produced in such a way are referred to as Powhel samples. The

Higgs boson decay in these samples is inclusive [75] and the tt̄H samples are normalised to their

NLO theoretical cross-sections. The Higgs boson decay branching ratios and NLO theoretical

cross sections are taken from References [76, 77].

All simulated samples are then processed through a full simulation of the ATLAS detector

geometry and response using GEANT4. Simulation and data samples are processed through the

same reconstruction software. Simulated events are then corrected so that object identification

130



efficiencies, energy scales and energy resolutions are the same as in data.

5.7 Data Samples

This analysis uses 20.3 fb−1of data collected with the ATLAS detector in proton-proton collisions

at
√

s = 8 TeV. All events were collected using the single electron or single muon trigger under

stable beam condition and for which all subsystems of the detector were fully functional. Both low

pT and a high pT leptonic threshold triggers are used. The isolation requirements on the candidate

lepton for the low pT triggers result in inefficiencies at high pT which are recovered by the high pT

trigger. For electrons the pT thresholds are set at 24 and 60 GeV and for muons these are set at 24

and 36 GeV. The exact details of the triggers varied during the data taking period but all triggers

have a similar but looser selection than the offline selection.

5.8 Event Selection

After passing the trigger selection, events are required to have at least one reconstructed vertex

which has 5 associated tracks consistent with the beam collision region in the x-y plane. Where

more than one vertex is found the primary vertex (PV) is taken as the vertex with the largest

sum of the squared momenta of associated tracks (see JVF description in Section 4.9). Events

are rejected if any jet in the event with pT > 20 GeV is identified as coming from out-of-time

activity (an interaction that is not consistent with the timing of the hard collision creating the PV)

or calorimeter noise [78].

All jets used in the analysis are required to have pT > 25 GeV and |η| < 2.5. Jets which

have pT < 50 GeV and |η|< 2.4 are required to have a JVF greater than 0.5 to avoid selecting jets

from secondary proton-proton interactions. The leading lepton (defined as the lepton which has the

highest transverse momentum) is required to have pT > 25 GeV and the sub-leading lepton (defined

as the lepton with the second highest transverse momentum) is required to have pT > 15 GeV.

Events are required to have two oppositely charged leptons and at least two jets. At least one of

the jets is required to be b-tagged by the MV1 b-tagging algorithm.

At this point, the type of the selected leptons is used to decide which selection cuts must be

satisfied. If the event is in the eµ-channel the scalar sum of the pT of the leptons and jets in the event

(HT) is calculated and is required to be greater than 130 GeV. This rejects Z→ ττ+jets background
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events which are expected to have a lower HT. In the ee- and µµ-channels however, the dilepton

invariant mass (mll) is required to be greater than 60 GeV for events with two b-tags and greater

than 15 GeV in the other regions. This is used to suppress the weak decay of J/ψ (cc̄) and ϒ (bb̄)

particles which would produce the same ee or µµ signature. A further dilepton Z-mass peak cut

is used to reject Z+ jets events. This rejects events with a dilepton invariant mass within 8 GeV

of the Z boson mass peak: |mll −mZ| > 8 GeV. Events with more than 2 leptons are rejected to

remove possible overlap with other tt̄H decay channels with multilepton final states. Events which

pass this selection are then divided into categories according to the number of jets and number of

b-tagged jets in the event.

For each jet in an event, the MV1 algorithm will output a b-tag weight. In the direct-tag

approach to b-tagging, a jet is btagged if its weight is higher than the weight that corresponds

to the 70% working point. This means that the probability of correctly b-tagging a true b-jet is

approximately 0.7 (70% is the average efficiency across several jet pT bins). For the (4j,4b) region,

4 jets in the event must pass this cut, meaning the probability of each true b-jet being b-tagged

can be multiplied together to give the total probability of a true (4j,4b) event passing the 4 b-tag

selection requirement. From this one can see how by requiring events with large b-tag multiplicities

can statistically limit an analysis when using the direct tag approach.

Statistical limitations cause large fluctuations in the kinematic distributions of the simulated

samples. The large statistical uncertainties and subsequently unreliable systematic uncertainties,

negatively effect the sensitivity of the analysis. A solution to this problem was found by using

another approach to b-tagging called the tag rate function (TRF) method. Rather than requiring a

particular b-tagging weight for each jet in the event and removing events with too few b-tagged

jets, the probability of each jet being b-tagged is parametrised as a function of jet flavour, pT and

η. These weights are then combined multiplicatively into an overall event weight. This allows all

events in the sample before the b-tagging requirements are implemented, to be used in predicting

the normalisation and shape of the distributions after b-tagging. The shapes and normalisations

of kinematic distributions obtained using the TRF method agree well with those obtained when

applying the direct b-tagging method.

The expected signal and background for dilepton events in each of the analysis regions is

shown in Figure 5.4 along with the relative contributions from each of the backgrounds. From

these diagrams it becomes clear that the two signal regions (≥ 4j, ≥ 4b) (4j,4b) and ≥ 4j = 3b
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Table 5.3: Post-fit event yields for signal, backgrounds and data (20.3 fb−1) in each of the analysis regions.
The quoted uncertainties are the sum in quadrature of the statistical and systematic uncertainties on the
yields.

(4j,3b) are not signal rich, but have a relatively large fraction of events coming from the tt̄H signal

process. Pre-fit and post-fit event yields are shown in Figures 5.2 and 5.3 respectively.

5.9 Neural Networks

Given the large number of physics objects in the tt̄H(H→bb̄) final state, how signal-like an event

looks is dependent on many variables. Therefore, using a linear cut on a single variable to separate

signal and background events does not provide the best separation power. Furthermore, due to the

relatively limited signal statistics (≈ O(10) events in combined signal regions) it is preferable to

retain as many signal events as possible when separating background and signal. Simply relying

on one discriminant may disregard events that one variable will classify as background but others
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may classify as signal. In such cases, multiple variables are used simultaneously to make a better

informed decision. In this analysis a multivariate algorithm called a neural network is trained to

separate background events from signal events in the regions where signal is expected to be most

significant.

A neural network is a multivariate classifier that takes an array of several input variables and

outputs a prediction as to whether the event was signal or background. Its structural make up is a

series of layers of neurons interconnected by synapses where each neuron in the input layer repre-

sents a single input variable. Considering just one input variable as shown in Figure 5.8, when an

event is passed to the neural network the value of the input variable ai is passed along the connect-

ing synapses where it is multiplied by a synapse specific weight wi, j, and output to the hidden layer.

The hidden layer neuron sums together the values from all of its input synapses z j and applies an

activation function g j. The result a j is then passed on to its output synapse which then applies

another weight w j,k and passes this weighted value to the output neuron. The output neuron sums

together the values from all of its input synapses zk and applies an activation function gk before it

outputs a prediction y, as to whether the event is signal or background. In the simplified example

in Figure 5.8, the predicted value is calculated as shown in Equation 5.2. The indices i, j, and k

refer to the input layer, the hidden layer and the output layer respectively.

y(gk) = gk

(
∑

j
g j

(
∑

i
aiwi, j

)
w j,k

)
(5.2)

Figure 5.8: Example of a neural network with 1 input neuron, 1 neuron in the hidden layer and 1 output
neuron. Here: z j = ∑

i
aiwi, j with a j = g j(z j) and zk = ∑

j
a jw j,k and finally y = gk(zk). Each of these terms

are used to construct Equation 5.2.

The networks prediction for an event y is compared with the expected classification ŷ which

will equal +1 for signal events and 0 for background events. The predicted value is scaled with

respect to the maximum possible value ymax so that it is somewhere between 0 and +1. Considering
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just a single event, the loss function is evaluated for the NN prediction. y and ŷ are used to calculate

the loss function which in this case is the “Entropy” loss function:

J =
1
m

m

∑
k=1

(ŷkln(yk)+(1− ŷk)ln(1− yk). (5.3)

Here, ‘k’ is cycling through ‘m’ training iterations.

The loss function provides a measure of how good the NN is at predicting the true classification.

The neural network is then trained by finding the combination of weights that minimises this loss

function. The number of neurons in each layer and the number of layers are hyperparameters of

the network and do not change during training.

A fast way of finding the best combination of weights is called is called gradient descent.

Considering a multidimensional phase space where each dimension represents the values taken by

a single weight as shown in 5.9, by differentiating the loss function ‘J’ with respect to each of

the weights an algorithm can quickly find the best direction to move in order to reach the minima

quickly.
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Figure 5.9: Example of the loss function surface for the simplified network in Figure 5.8. The activation
functions g on the hidden layer node and output node are both sigmoid functions 1/(1+ exp(−x)) and the
network is designed to return a value of 1 if given input 1. The neural network tries to find the minima in
this phase space. Due to the sigmoid activation functions, large positive values of the weights provide the
minimum loss.

A procedure called back propagation is used to update the network weights. The error con-

tributed by each weight is propagated back through the neural network from the output node.
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Weights that contribute more to the overall error are changed more. Each weight in the network is

updated according to Equation 5.4 where weights wi, j represent the weights in Figure 5.8 and η is

the learning rate of the network (parameter space step-size).

wi, j = wi, j−η(δJ/δwi, j) (5.4)

The next event will then be evaluated with the new network. The procedure is repeated itera-

tively until the error reaches a tolerably low value, the parameters cease to update (converge) or a

set number of parameter updates is reached.

An example of a network that is more representative of the NN used in this analysis is shown

in Figure 5.10. Now, each layer consists of an array of neurons where every neuron in a layer has

a synapse connecting it with every neuron in the next layer.

Figure 5.10: Example of a neural network with 3 input neurons, 4 neurons in the hidden layer and an output
neuron.

During the training of the network, the loss function should get smaller with each iteration and

will eventually plateau. To ensure the network is not overtrained, a distribution of the loss function

with respect to the number of iterations is made for the networks performance on a training sample

and testing sample. If the network is being overtrained, the loss function on the training sample
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will become significantly lower than for the testing and the training should be stopped. Another

test of overtraining is to compare the response distributions from the training and testing samples.

This is shown in e.g. Figure 5.24 and is also used for the BDT (see Section 5.12) as shown in e.g.

Figure 5.29. The network training used in the analysis showed no significant signs of over-training.

The final neural network is an optimised set of weights and activation functions. Once this is

achieved, the neural networks configuration is frozen. The set of weights and activation functions

can be used on any set of events and will give a prediction as to whether each event is signal or

background. The response value of the NN is transformed according to Equation 5.5 which makes

the NN distribution easier to interpret by forcing the values of y between -1 and +1. In this analysis,

the frozen network is used on data to separate background and signal and the response distributions

from all signal regions are combined with the discriminant distributions in the background regions

to test for the presence of a 125 GeV Higgs boson signal.

R = 2.0/(1.0+ exp(−2.0 · y(x)))−1.0 (5.5)

5.10 Analysis Method

Three neural networks were trained in three different analysis regions: (≥ 4j, ≥ 4b) , ≥ 4j = 3b

and (= 3j = 3b)(3j,3b), as each adds signal sensitivity in the analysis. All other regions in the

analysis have a lower sensitivity as seen in Figure 5.4. For those regions, the scalar sum of the

transverse momentum of all jets and leptons in the event (HT) is used instead as the discriminant.

The NeuroBayes NN package [79] is the preferred multivariate classifier because of its robust-

ness against over-training. The NeuroBayes package provides additional features which improve

the performance of the tool. This includes an internal ranking procedure, which is used to rank the

input variables by their discrimination power, and a sophisticated preprocessing of input variables.

Preprocessing input variables before training the NN is key to the success of NeuroBayes. The

same preprocessing is used for all variables in this analysis. Distributions are first flattened and the

mean is shifted to zero. They are then fitted using a function constructed from several polynomial

functions (a spline). NeuroBayes uses the value which comes out of the fitted spline. Preprocessing

essentially finds the optimal starting point for the subsequent network training.

NeuroBayes has separate training and testing phases. In the training phase an array of variables

is passed to the network. The choice of variables used in the analysis is made by the ranking
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procedure available in the NeuroBayes package which is based on the separation power of the input

variables. An extensive list of variables based on object kinematics, global event variables, event

shape variables and properties between pairs of objects is input to the neural network. NeuroBayes

transforms each of the variables to a Gaussian of unit width and removes one variable at a time.

When each variable is removed, the loss of discrimination power is calculated and the variable

is then replaced into the list of variables. This is repeated for every variable in the list and the

variable showing the smallest loss is removed. The last remaining variable will be the highest

ranking variable. This process is repeated in order to rank the top 10 variables. Only the best 10

variables are used as this was deemed sufficient to achieve a signal-to-background separation close

to optimal [58]. Variables which are highly correlated are removed along with variables whose

distributions showed large differences between tt̄ MC generators.

A different set of variables is chosen for each region’s neural network. All of the variables

used in the dilepton analysis are shown in Table 5.4. In the (≥ 4j,≥ 4b) region, events are limited

to a maximum of 5 jets that can be used to construct the kinematic variables (for example HT).

The b-tagged jets are selected first, before filling up the remaining jet vacancies with the highest

pT non b-tagged jets. For events with more than 5 b-tagged jets, those with the highest pT are

selected. For variables that are dependent on the reconstruction of the Higgs boson candidate, the

b-jets originating from the top quarks in a (≥ 4j,≥ 4b) event are assigned as such by finding the

two b-jets which are closest to the leptons in the event. The remaining two highest pT b-jets are

assigned to the Higgs boson candidate. For the other analysis regions, events with at least 4 jets

but less than 4 b-tagged jets include the remaining untagged jets in the calculation of this variable.

If the analysis region requires less than 4 b-tags, such variables are not used.

The procedure by which the b-jets in an event are assigned to the Higgs boson is important as

it can affect the normalisation and shape of the kinematic distributions that are used as input to the

neural network. This can hinder or enhance the classifiers ability to distinguish between signal and

background and therefore affects the sensitivity of the analysis. Several methods for selecting the

b-jet pair originating from the Higgs boson decay are investigated in Section 5.11.
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Variable Name Description 4j,4b 4j,3b 3j,3b

∆ηmax
j j Maximum ∆η between any two jets in the event. 1st 1st 1st

mmin ∆R
bb Invariant mass of the two b-tagged jets with the

smallest ∆Rbb̄.

2nd 8th -

mbb Mass of the two b-tagged jets from the selected

Higgs boson candidate system.

3rd - -

∆Rmin
hl ∆R between the selected Higgs boson candidate and

the closest lepton.

4th 5th -

NHiggs
30 Number of b-jet pairs in an event with an invariant

mass within ±30 GeV of 125 GeV.

5th 2nd 5th

∆Rmax pT
bb ∆R between the pair of b-tagged jets which have the

largest vector sum pT.

6th 4th 8th

Aplan jet 1.5λ2, where λ2 is the second eigenvalue of the mo-

mentum tensor built from all jets.

7th 7th -

mmin
j j Minimum dijet mass of any jet pair. 8th 3rd 2nd

∆Rmax
hl ∆R between the Higgs boson candidate and the fur-

thest lepton.

9th - -

mclosest
j j Dijet mass of the two jets with invariant mass closest

to 125 GeV

10th - 10th

HT Scalar sum of the pT of the jets and both leptons - 6th 3rd

∆Rmaxm
bb ∆R between two b-tagged jets with largest invariant

mass

- 9th -

∆Rmin
l j Minimum ∆R between a lepton and a jet - 10th -

Centrality Sum of the pT divided by the sum of the E for all

jets and both leptons

- - 7th

mmax pT
j j Mass of the combination of the two jets with the

largest pT vector sum

- - 9th

H4 Fifth Fox-Wolfram moment computed using all jets

and both leptons

- - 4th

p jet 3
T pT of the third leading jet - - 6th

Table 5.4: NeuroBayes’s ranking of the top ten variables used as input to the tt̄H dilepton neural networks
along with their descriptions.
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5.11 Identifying b-jets Originating from the Higgs Boson

Constructing events in the tt̄H channel entails assigning b-jets to either the top quarks or the Higgs

boson. The large number of final state b-jets, as well as the fact that, due to imperfect acceptance,

not all of the products of the tt̄H(H→bb̄) decay will necessarily be present, only a relatively low

matching efficiency is achieved. As mentioned in Section 5.10, the current method of constructing

an event is to find the two b-jets closest to the leptons and assign them to the top quarks; the two re-

maining b-tagged jets are assigned to the Higgs boson. However, there are many ways to construct

an event, some of which have a better efficiency than the method currently used in this analysis.

Here, we often use the word “pairing” to refer to an assignment of the reconstructed jets to the

top quarks, or the Higgs boson. Correctly constructing events shows a better understanding of

signal and background processes and may enable the construction of new discriminating variables,

e.g. colour flow variables. This section is devoted to the investigation of alternative pairing meth-

ods and their impact on the power to discriminate between signal and background. Higgs boson

candidate variables are only applicable to the (≥ 4j ≥ 4b) analysis region as the signal signature

typically contains 4 jets all of which are expected to be b-jets.

5.11.1 Truth Matching

The efficiency of a pairing method is calculated as the number of times it selects the correct Higgs

boson b-jets with respect to the total number of events it was possible to obtain such a match in

simulation. The baseline definition that defines whether an event is matchable or not is made using

truth information e.g. flavour, parent particle, decay particles, etc. The truth matching is performed

in two stages. Firstly, the truth information is used to ensure that an event is a true tt̄H(H→bb̄)

dilepton event. This means that the event is checked for two true top quarks that decay to a b-quark,

a leptonically decaying W boson, and a Higgs boson that decays to a bb̄ pair. Upon finding a true

tt̄H(H→bb̄) event, each b-quark is matched with a b-jet.

For a given set of truth b-partons and reconstructed b-jets, the ∆R between each parton-jet pair

is calculated along with the sum of the ∆R values for all pairs in a given permutation. This is then

repeated for every possible permutation. The permutation for which the
4
∑

i=1
∆Ri is minimised is

considered the best permutation. This method is illustrated in Figure 5.11.
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Figure 5.11: A schematic of the truth-matching procedure used to find the best permutation.

One also needs to know which are the ‘correct’ Higgs boson b-jets. The correct Higgs boson

b-jets are the b-jets in the best permutation that can be well matched to the true Higgs boson

b-partons. A b-jet is well matched to a b-parton if it is within ∆R < 0.4. If either an event is

not a true tt̄H(bb) dilepton event, or one or both of the assigned Higgs boson b-jets are not well

matched, the event is discarded and not taken into account when calculating the efficiency of the

pairing algorithms. Table 5.5 shows the number of events that are matchable along out of those

that pass the event selection. 341 events are lost between the first and second rows in Table 5.5

because they are not true tt̄H(H→bb̄) dilepton events. These are mostly H→WW events as shown

in Figure 5.12.

Truth matching cutflow

Events that pass full event selection 10162

True tt̄H(H→bb̄) dilepton events 9821

True tt̄H(H→bb̄) dilepton events with two truth matched Higgs boson candidate b-jets 8481

Table 5.5: Number of events failing at each stage of the truth matching procedure. All events that reach this
stage of the selection will have passed the event selection described in Section 5.8.
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Figure 5.12: Fractional signal contributions to the total post-selection yields from events with different
Higgs boson decay modes for the various analysis regions in the dilepton channel [58].

1340 events are rejected between the second and the last rows in Table 5.5. These are true

tt̄H(H→bb̄) dilepton events that have one or more poorly truth matched (∆R(b− jet,b−parton) > 0.4)

Higgs boson b-jets. A small fraction of these 1340 failing events are found in the high-|η| tail of

the red distribution in Figure 5.13. These events fail because one or more of the true Higgs boson

b-partons is out of acceptance (large |η|). An example of such a case is if the true b-parton has

gone down the beam pipe and is out of the η acceptance range of the detector but a b-jet has been

reconstructed from elsewhere in the event allowing the event to pass all prior selection. When

the truth matching is performed, this can cause the a large ∆R between the true parton and the

reconstructed jet.
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Figure 5.13: Largest |η| of the two Higgs boson b-partons in simulated tt̄H dilepton sample in the (≥ 4j≥
4b) region. The three distributions shown are for all true tt̄H(H→bb̄) events passing full event selection
(All), all true tt̄H(H→bb̄) events that passed the full event selection and the truth ∆R selection (pass dRcut)
and all true tt̄H(H→bb̄) events that passed the full event selection but failed the truth ∆R selection (failed
dRcut).

The reason for the remaining truth matching failures in Table 5.5 (the lower-|η| region of the

red distribution) is more subtle. The b-partons being used for the truth matching are the instances

of the b-partons in the MC truth record before they have radiated gluons. However, often a b-

parton will emit a gluon with a high transverse momentum and/or many softer gluons that will

substantially deviate the path of the b-parton. This means that the b-parton before radiating the

gluon and the reconstructed b-jet can have very different directions which can cause an event to

fail the final ∆R cut.

Furthermore, the loss of energy via gluons inevitably results in a lower peak in the pT spectrum

of such b-jets. This is exemplified in Figure 5.14 where the pT of the final instance of the b-parton

in the MC truth record is plotted for events that have passed (green) and failed (red) the truth-

matching. The truth-matching procedure for these events is still performed using the first instance
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of the b-parton in the truth record. The average lower pT of the b-partons that failed the ∆R cut is

consistent with those partons having radiated gluons.

At the time of this study, information about the gluons themselves was not available in the truth

record of the simulated samples available. In retrospect, a better truth matching efficiency could

have been obtained by using the final instance of the b-parton in the truth record. However, the

number of truth-matched events is only a bench-mark which is used to show how many events it is

possible to correctly pair. Therefore, the method presented was deemed sufficient.
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Figure 5.14: Transverse momentum of the final instance of the Higgs boson b-partons from true tt̄H(H→bb̄)
events in the truth record that pass the full dilepton selection. Events that passed and failed the ∆R truth
matching requirement using the first instance of the b-parton in the truth record are shown. The distributions
are normalised to unity to emphasise the difference between their modal values.

An attempt to recover some of the events that failed the truth matching ∆R requirement was

made by looking at the second-best permutation when the best permutation failed, instead of re-

jecting the event outright. The aim was to investigate whether the second-best permutation could

sometimes provide two ∆R values which on average are larger and have a larger sum, but are both

≤ 0.4. In Figure 5.15 one can see the ∆R between the true Higgs boson b-parton and the b-jet it has
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been matched with, for the best and second best permutations in events that failed the ∆R truth cut.

The lowest two bins for the second best permutation (shown in green) show that around 100 events

can be recovered by using the second-best permutation, however this is out of a total of 1340 that

failed the truth matching and 9821 events that reach this cut.
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Figure 5.15: Distribution of the maximum ∆R between a Higgs boson b-parton and the associated jet for the
best permutation and second-best permutation in events which failed the truth ∆R requirement.

Furthermore, when the event passes the truth requirements as a result of using the second best

permutation, the large ∆R is often simply moved to the top b-jet. This can be explained by the

topology in Figure 5.16, where there are two b-partons, one originating from the Higgs boson

and the other from the top, are both a close ∆R match to the same b-jet (shown in green). The

b-jet indicated in red, has been reconstructed at a large ∆R from the b-partons as a result of hard

gluon emission. Table 5.6 shows a randomly selected collection of event outputs illustrating such

behaviour. It can be seen that in such events, the ‘problematic’ pairing still exists, but due to the ∆R

cut only being applied to the Higgs boson b-jets, the event passes the cut. It was therefore decided

that such events should still be rejected.
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Figure 5.16: Schematic of a possible event topology that would fail the truth ∆R cut. All b-partons drawn
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would be reconstructed from the red b-parton after a high pT gluon has been radiated. In this case, two
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∆Rparton, jet
max ∆RHiggsb1, jet ∆RHiggsb2, jet ∆Rtopb1, jet ∆Rtopb2, jet ∆RHiggsb, jet

max ∑∆R

Best perm. 0.684 0.326 0.0300 0.031 0.684 1.072

2nd best perm. 0.376 0.326 0.030 0.660 0.376 1.394

Best perm. 2.329 0.094 0.019 0.353 2.329 2.796

2nd best perm. 0.12 0.094 2.441 0.353 0.120 3.010

Best perm. 0.040 2.412 0.081 0.039 2.412 2.574

2nd best perm. 0.040 0.268 2.641 0.039 0.268 2.989

Best perm. 0.068 1.63 0.024 0.141 1.63 1.865

2nd best perm. 1.468 3.144 0.024 0.141 3.144 4.776

Table 5.6: ∆R between the matched b-jet and b-parton for the best and second best permutations, in a few
randomly selected events where the first permutation fails the max(∆RHiggsb1, jet , ∆RHiggsb2, jets)< 0.4 cut but
the second permutation passes.
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5.11.2 Higgs Boson b-jet Pairing Methods

In this section, different methods to determine which b-tagged jets in a tt̄H event originated from

the Higgs decay are investigated. The methods presented here rely on simple and well-modelled

information on the topology and kinematics of the events, such as the spatial separation between

jets in the event (and, in the default pairing method, between jets and leptons) and jet-jet invariant

masses. The methods are applicable to events in the region with four or more b-tagged jets. In this

region, the jets from the signal and the remaining irreducible background are all expected to be

b-jets. Therefore, the pairing algorithms only consider b-tagged jets, and any non-b-tagged jets are

ignored, for pairing purposes. The five methods investigated are referred to as: the “dR method”,

the “dM method”, the “dR dM method”, “dRIso dR method” and the “dRIso dM method”.

The dR method is the method that was used in the Run I analysis. It assumes that the decay

products of the top are typically close together in r−φ and that the final state objects (t, t̄, H) of

a typical signal event are well separated. The two b-jets closest to the two leptons (as measured

in terms of ∆R) are assigned to the b-partons originating from the top quarks and then the two

remaining highest pT b-jets are assigned to partons originating from the Higgs boson. This is

shown schematically in Figure 5.17.
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Figure 5.17: Schematic of the dR method. The b-jets paired with the leptons are assumed to have originated
from the top-quarks and the remaining highest pT b-jets are assumed to have originated from the Higgs
boson.

The dM method is motivated by the expectation that a b-jet pair from the decay of the Higgs

boson should have a dijet invariant mass that is typically closer to 125 GeV than any other pair

of b-jets in the event. It was therefore hoped that finding the pair of b-jets with the closest dijet

mass to 125 GeV would, more often than not, yield the b-jet pair associated with the Higgs boson.

However, one possible pitfall of this approach is that one is then biased towards signal/background

distributions with b-jet pairs with this dijet mass.

The dR dM method utilises the dR and dM methods sequentially. The top b-jets are assigned

using the dR method, before using the dM method on the remaining b-tagged jets to assign the

Higgs boson b-jets. For events with 4 b-jets this method is the same as using the dR method (as

there would only be two b-tagged jets left for the dM method to iterate on), but it might be expected

to produce an improvement in the small fraction of events with 5 b-tagged jets (see Figure 5.18).
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Figure 5.18: Distribution of the number of b-jets for events passing the full selection (before any truth
matching cuts are implemented) in the (≥ 4j,≥ 4b) analysis region.

The dRIso dR method is predicated on the hypothesis that the most isolated b-jet in a signal

event is unlikely to have originated from the Higgs decay (seeing as the two b-jets from the Higgs

decay are likely to be close to one another in r−φ) - see Figure 5.17. The extreme case of this is for

events with this “broomstick” topology, whereby one very well-isolated b-jet recoils against three

b-jets in the opposite hemisphere of the event. In order to quantify each individual jet’s isolation,

the following variable, ∆Ri, is calculated for each of the four b-jets (i=1,2,3,4):

∆Ri =
4

∑
j=1; j 6=i

∆R(i, j), (5.6)

where the sum is over j, the index representing the other b-jets in the event (see Figure 5.19).

The b-jet which has the largest value of ∆Ri is assigned as one of the top quark b-jets and

therefore removed from the list of possible Higgs boson b-jet candidates. The choice of possible

Higgs boson b-jets is therefore reduced to three, upon which the dR method is then used to find the

remaining top quark b-jet. This method is therefore specifically aimed at reducing the combinato-

rial background in events with this topology described above, by removing the possibility of the

b-jet originating from the top quark on the opposite side of the event from the Higgs boson, being
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assigned to the Higgs boson. For the dRIso dR method, if there are 5 b-jets in the event, out of the

remaining b-tagged jets the two b-tagged jets with the highest pT are assigned as the Higgs boson

b-jets.

The dRIso dM method is a sequential implementation of using the ∆Ri separation in the way

described above, before using the dM method to assign the Higgs boson b-jets instead of the dR

method and pT-ordering.
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b-jet

b-jet

b-jet

b-jet

Figure 5.19: Schematic of the typical event topology targeted by the dRIso methods (see text).

5.11.3 Evaluation of the Performance of Pairing Methods

The evaluation of the performance of the pairing methods is based on the efficiency of each method.

Efficiencies are calculated using Equation 5.7 where Ncorrect is the number of events in which the

two Higgs boson b-jets were correctly assigned to the true Higgs boson b-partons and Nmatchable is

the number of events which passed the truth-matching requirements:

εcorrect pairing =
Ncorrect

Nmatchable
. (5.7)

Table 5.7 shows a summary of the performance of each of the methods.

The dR method does not perform very well, with a particularly low efficiency of just 31%.
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This method makes the assumption that the lepton and b-jet originating from a top-quark are very

close in r− φ and therefore a lepton can be matched to a b-jet by finding one with which it has

the smallest ∆R. The blue data points in Figure 5.20 shows the angular distribution between the

lepton and b-parton from the same top (the correct lepton b-parton pair). This distribution peaks at

∆R ≈ 1. The other distributions (incorrect lepton-b-parton pairs) show peaks at ∆R ≈ 3, however

there are a significant number of data points from all three distributions with values less than 1,

hence, choosing the smallest ∆R pair has significant contamination from the incorrect lepton-b

pairings. The drop in the number of events at 0.4 in Figure 5.20, is due to the ∆R < 0.4 cut in the

selection.
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Figure 5.20: Parton level distributions of the ∆R between the lepton and each of the 4 b-partons associated
with the top-quarks and the Higgs boson in simulated samples. The blue crosses refer to the correct pairing,
as the ∆R is calculated using the negatively charged lepton in the event which has originated from the
anti-top quark.

Particular event topologies can make the task of finding the correct pairing very difficult. The

schematic shown in Figure 5.16 is of a tt̄H(H→bb̄) topology that is particularly problematic for this

technique. In such events, 3 b-jets (2 from the Higgs boson and one from the nearby top quark) are

very close together, meaning the best permutation could be found by matching the wrong jets to the

leptons especially if the ∆R between the lepton and the jet from which it originated is significantly
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large.

This is emphasised by the distributions in Figure 5.21. These plots show the ∆φ angle between

the true Higgs boson and true top quarks in an event. Figure 5.21 (a) shows all events in which

the incorrect b-jets were assigned to the Higgs boson. One can see that the two peaks of the plot

are where one top has very small ∆φ(H,top) with the Higgs boson and the other has a very large

∆φ(H,top) (e.g. ∆φ(H,top1) = 0 , ∆φ(H,top2) = 3 and ∆φ(H,top1) = 3 , ∆φ(H,top2) = 0). This

suggests the dR method frequently assigns the wrong b-jets to the Higgs boson, in events with

similar topologies to that shown in Figure 5.19. Furthermore, one can see that events with this

topology represent a significant fraction of the total number of events.

Figure 5.21 (b) shows the same plot but for events in which the dR method has assigned the

correct b-jets to the Higgs boson. The level green band in the distribution shows that the dR method

is equally good at assigning the correct b-jets to the Higgs boson for all topologies.
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Figure 5.21: Distributions of the ∆φ between the truth Higgs boson and the leading (top1) and subleading
(top2) truth top quarks for events in which the reconstructed Higgs boson b-jets were a) incorrectly and b)
correctly paired by the dR method.

The dRIso dR method mildly improves upon the dR method by reducing the combinatorics of

the problem. However, the poor performance is once again caused by the dR method’s inability to

correctly pair b-jets in the event topology shown in Figure 5.16.

The dM method’s performance is significantly better than that of the dR and dRIso dR meth-

ods. However this method still only obtains the correct pairing ≈ 47% of the time. The broad
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reconstructed H→ bb̄ dijet mass distribution as shown in Figure 5.22 means the true reconstructed

Higgs boson mass can be up to 75 GeV from the measured Higgs boson mass. The dRIso dM

method mildly improves the efficiency of the dM method by reducing the number of possible

combinations of b-jets, but the improvement is ≈ 1%.
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Figure 5.22: Invariant mass distributions using the 6 permutations of the b-jets in true tt̄H(H→bb̄) events
and the invariant mass of the Higgs candidate as constructed using the dM pairing method. The b-jets in
the permuted distributions are labelled according to the true origin of the b partons matched to the b-jets:
Hb = b-jet matched to a b quark originating from the Higgs boson, Hb̄ = b-jet matched to an anti-b quark
originating from the Higgs boson, tb = b-jet matched to a b quark originating from the top quark, tb̄ = b-jet
matched to an anti b-quark originating from the anti-top quark.

The dR dM method is a sequential implementation of the dR and dM method. A small im-

provement is made on the efficiency of the dR method but it is again sub-percent seeing as the dM

part of the method would only be used for the small fraction of events with 5 b-jets.

5.12 Boosted Decision Trees

In addition to the NN, input variable arrays are also used to train a boosted decision tree (BDT) for

each pairing method, to test if an alternative classifier could improve upon the signal/background

separation provided by the NN. This is done by making a like-for-like comparison between the

BDT and NN trained using the same pairing method. BDT’s were chosen as it is a competitive
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Pairing Method Efficiencies
Pairing Method # Events Correctly Matched Efficiency (%)
dRIso dM method 4115 48.52
dM method 3999 47.15
dRIso dR method 2706 31.91
dR dM method 2645 31.19
dR method 2625 30.95

Table 5.7: Table of the efficiencies of each of the pairing methods. The total number of true tt̄H(H→bb̄)
events with well-matched Higgs boson b-jets is 8481.

classifier [80] which is relatively transparent in its structure and quick to train. In Section 5.12.1,

the basic premise behind the boosted decision tree is outlined. The TMVA package [81], which

contains a BDT algorithm, is then used as an analysis tool for the rest of the study.

5.12.1 Decision Trees

A decision tree is a multivariate classifier that uses a series of cuts which can be optimised to dis-

tinguish between signal and background like events. A schematic of an example decision tree is

shown in Figure 5.23. Events are passed to the primary node which splits events into background-

like or signal-like events according to the splitting criterion on that node. The events are then

passed to one of the two child nodes depending on the whether they satisfied the criterion or not.

The fact that the event is not simply classified as background or signal based on one cut means that

a multivariate analysis can recover signal sensitivity. The process is then repeated, with the sample

once again being split according to the criterion on the two child nodes. This process is iterated

until a minimum number of events, a maximum/minimum signal purity is reached or the tree depth

is reached. Following this, the last nodes are labelled signal or background leaves according to the

dominant classification type for events on that leaf.
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Figure 5.23: Schematic of an example decision tree. The primary node splits all events in the sample
according to the primary criterion. Background events are scaled so that they represent the same initial
proportion of the total sample as the signal events. Internal nodes are coloured yellow, background leaves
are red and signal leaves are green. An example GINIgain is shown on the left-hand side of the schematic.

5.12.2 Training

The order of the discriminating variables and the splitting criteria on the nodes are defined during

training. The aim of the training is to maximise the purity on signal nodes and the impurity on the

background nodes. This is done using a set of training events that are independent of those which

will be used to test the NN after. The purity is defined as is shown in Equation 5.8, where S is the

number of signal events and B is the number of background events on a node.

p =
S

S + B
(5.8)

The primary node splits the events into two subsets according to some cut criteria. The variable

and corresponding cut value that provide the best signal/background separation are chosen. At each

node the separation index (GINI index) is calculated as shown in equation . Large GINI indices

(maximum = 0.5) mean the sample is well mixed, whereas small indices mean the sample is well

separated. All separation criteria such as the GINI index have a maximum where the samples are

fully mixed (p = 0.5).
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GINInode = p(1− p) (5.9)

Following the primary node, the training procedure selects the variables and cut criterion that

increases the gain in separation index between the parent node and the sum of the indices of the

child nodes. The gain in separation is calculated as shown in Equation 5.10. A negative gain means

the separation of the two children combined is larger than the parent.

GINIgain ∼= GINIparent −GINIchild #1−GINIchild #2 (5.10)

This process is repeated for subsequent nodes until one of three criterion are met: the number of

events on a given node reaches a minimum percentage of the total number of events in the training

sample which is set at the default value of 5%, the maximum depth of the decision tree is reached

(max. depth = 3 internal node levels) or the maximum/minimum signal purity is reached. Leaves

are then classified as signal or background depending on which holds the majority i.e. signal if

p > 0.5.

The evaluation as to whether the event was correctly classified is done in training by comparing

the true nature of the event which is known in simulation and the decision trees prediction.

Decision trees are considered useful because they can be trained very quickly and are relatively

straightforward to understand. On the other hand, sometimes during training the algorithm can

choose a cut or cut order based on a statistical fluctuation instead of actual signal or background

phenomena. This is known as over-training and can result in an artificially enhanced performance

of the classifier on training data that when tested on an independent data set performs worse. A

good test to see if the classifier is over-trained is to compare the classifiers response in training and

testing.

5.12.3 Boosting

Boosting combines a group of weak learning algorithms to make a stronger learning algorithm.

A boosted decision tree is a collection (forest) of decision trees that are used to classify events

as either background or signal depending on the majority classification of the individual decision

trees.

The BDT algorithm used in this analysis is taken from the TMVA package. The classifier
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is trained using adaptive boosting (AdaBoost) as it is the favoured boosting algorithm provided

by TMVA. Adaptive boosting means misclassified events are given a higher event weight in the

training of the following tree in the forest. The misclassification rate (err) of an individual tree is

evaluated as the ratio of the sum of the weights of the misclassified events with respect to the sum

of the weights of all events as shown in Equation 5.11.

err =
∑
i

wi ·M

∑
i

wi


M = 0 correct classification

M = 1 misclassified
(5.11)

The original event weights used during the training of the first tree are modified according to

the misclassification rate as shown in Equation 5.12.

α =
1− err

err
(5.12)

The value α is known as the common boost weight and is multiplied into the weights of all

events that were misclassified in the previous tree before training the next tree. The entire event

sample is renormalised to retain the total number of events. The reweighting makes the new train-

ing concentrate on avoiding a misclassification of the same events.

The result of an individual decision tree is h(x) where x is a vector of input variables for a

single event. Values of h(x) are designed to give +1 for signal events and 0 for background events.

The resulting event classification of a boosted classifier is an averaged decision of all the individual

trees which is calculated as shown in Equation 5.13. This is then transformed using Equation 5.5

to return a value between -1 and +1 where positive values are signal-like and negative values are

background-like.

yBDT (x) =
1

Ncollection
∑

i∈ f orest
ln(αi) ·hi(x) (5.13)

AdaBoost produces the best results when used on small decision trees with a depth of 2 or 3

internal node layers. Individually these have very little discrimination power, however they are less

prone to over training than larger decision trees and when combined in a BDT they outperform

them [81]. A total of 850 trees with a depth of 3 internal node layers are used which provides

sufficient statistical stability.

The performance is often further enhanced by forcing a slow learning. The aim of the mul-
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tivariate classifier is to find the global minima in the multidimensional parameter space made up

from the input variables, where the classifiers prediction is close to the target value. The learning

rate defines the size of the steps in the parameter space a multivariate classifier can make as it tries

to make its way to a global minima. Smaller learning rates mean the classifier is more likely to

find the global minima as it will investigate a more detailed map of the phase space. However it

can also mean the classifier takes longer to train and can get stuck in local minima. The suggested

rate of for a BDT using the TMVA software is 0.03 and this is what is used here [81].

5.13 Performance of Multivariate Algorithms

Some of the NN input variables (Table 5.4) will distribute differently depending on which pairing

method is used. Changing the pairing method can therefore effect the performance of the NN.

To investigate this effect, independent multivariate classifiers are trained on input files that are

individually generated using the different pairing methods. The classifiers are trained using tt̄H

events as signal and a combined sample of tt̄, tt̄+V, Z+ jets and single top (Wt process) (excluding

fake events) as background. Cross-training is implemented so that the entire sample can be used

for training and testing. This makes the algorithm more resilient to statistical fluctuations, without

increasing the chances of over-training. Cross-training entails training two classifiers for any single

sample; one on events that have an odd event number and another on events that have an even event

number. These classifiers are then tested individually on the events they were not trained on (e.g.

classifier trained on odd event numbers is tested on even event numbers and vice versa).

The NNs use the same packages and hyper-parameters that were used when training the NN in

the Run I analysis. A more detailed description is found in Section 5.10. The NN’s performance

is evaluated on its ability to separate background and signal. This is done by calculating the

separation from the classifier response distributions as:

S =
1
2

N bins

∑
i

(Nsignal
i −Nbckg

i )2

(Nsignal
i +Nbckg

i )
. (5.14)

The classifier response distributions obtained from the training and testing of the NNs are

shown in Figures 5.24, 5.25, 5.26, 5.27 and 5.28. Each distribution shows the response obtained

from a classifier trained using a different pairing method.
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Figure 5.24: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dR method.

Figure 5.25: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dM method.
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Figure 5.26: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dRIso dR method.

Figure 5.27: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dRIso dM method.
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Figure 5.28: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dR dM method.

BDTs were also trained using each of the pairing methods in order to allow like-for-like com-

parisons between NN and BDT classifiers for a single pairing method. The same 10 variables are

used to train the BDT are also used to train the neural network. The training is performed on the

same signal and background samples as the NN’s and also implements cross-training. Distribu-

tions of the classifier responses obtained from training and testing the BDT on simulated samples

of input variables is shown in Figure 5.29, 5.30, 5.31 , 5.32 and 5.33. Once again, each distribution

shows the response obtained from a classifier trained using a different pairing method. Like the

NN, the BDT’s performance is evaluated on its ability to separate background and signal. The

separation of the classifiers trained using each of the pairing methods is shown in Table 5.8.
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Figure 5.29: BDT discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dR method.

Figure 5.30: BDT discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dM method.
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Figure 5.31: BDT discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dRIso dR method.

Figure 5.32: BDT discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dRIso dM method.
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Figure 5.33: BDT discriminant distributions for classifiers trained on simulated input ntuples of events with
10 variables constructed using the dR dM method.

Classifier Pairing Method Separation

BDT dRdM method 0.192±0.003

dR method 0.190±0.003

dRIso dR method 0.181±0.003

dRIso dM method 0.176±0.003

dM method 0.169±0.003

NN dRdM method 0.193±0.002

dR method 0.192±0.002

dRIso dR method 0.181±0.003

dRIso dM method 0.174±0.003

dM method 0.165±0.007

Table 5.8: Separation of BDT and NN classifiers trained on ntuples of 10 input variables constructed using
the different pairing methods, where the separation is defined in Equation 5.14. The statistical uncertainties
are shown. For each classifier, pairing methods are ordered by their separation power. As the same event
samples are used for all the separation values, any statistical fluctuations are very highly correlated between
the quoted separation.

Overall, no significant improvement in the separation power of a classifier trained using the
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dR pairing method is seen for either the NN or BDT when trained on 10 input variables. However,

the wide range of results shows how much the pairing method can effect the performance of an

individual classifier.

The dRIso dM method provides the best pairing efficiency but does not improve the separation

of background from signal with respect to the Run I analysis method. In fact, any classifier trained

using the dM method, performs poorly as shown in Table 5.8. This is explained by the correlation

plots shown in Figure 5.34 which show the appearance of two highly correlated variables when

using the dM method. The large correlation is between the variables ‘mass of the dijet pair nearest

to 125 GeV in the event’ and ‘Higgs boson mass reconstructed from the Higgs boson candidate

b-jets in the event’. This correlation is a result of reconstructing the Higgs boson from the dijet

pair with mass nearest 125 GeV (i.e. the dM Method).
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Figure 5.34: Matrices showing the linear correlation coefficient between BDT input variables. The cor-
relation between variables constructed using the dR method are calculated for (a) signal events and (b)
background events. The correlations between variables constructed using the dM method are calculated for
(c) signal events and (d) background events.

The highly correlated variables cause a redundancy of information and reduce the performance

of the classifier. The variables being used were the 10 variables that provided the best discrimi-

nation as defined by NeuroBayes’ internal ranking procedure. The ranking procedure in this case

will typically remove highly correlated variables however, the correlation between variables can

differ depending on how they are defined. In other words, different pairing methods can change
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the correlation between variables. This set of variables, which was defined using the dR method,

is therefore likely to change if the ranking procedure is rerun using variables made with another

pairing method. A new set of variables could be chosen which would potentially increase the

performance of the classifier by replacing correlated variables with a new discriminating variable.

When both classifiers are trained using 10 input variables and the same pairing method, the

separation power of a BDT is the same as the NN taking into account statistical errors. The order

in which the pairing methods appear in Table 5.8 for the BDT and NN is also the same. This is

caused because the main driving force behind the ordering of the pairing methods is this correlation

introduced by the dM method. The mass of the dijet pair nearest to 125 GeV in the event and the

Higgs boson mass reconstructed from the selected Higgs boson candidate b-jets in the event, are

more correlated if the dM method is the only method involved in the pairing procedure. Classifiers

trained using this method therefore perform the worst. When the dM method is combined into

the dRIso dM method, the dRIso part of the pairing procedure identifies one of the b-jets from the

decay of the top quark which reduces the combinatorics of the problem. This subsequently reduces

the impact of the dM method and improves the performance of the classifier. When combined into

the dR dM method, the only events in which the dM method will actually have a decision to make

is in events with more than 4 b-jets which make up less than ≈ 5%. This means the dM method is

less of a detriment for the performance of the classifiers trained using the dR dM method.

A further study was made into the impact of including additional input variables. An additional

7 variables taken from the variables not used in the (4j,4b) region in Table 5.4 were added to

the input variable list for both the BDT and the NN. New NNs and BDTs were trained for the

two pairing methods which showed the best separation when trained on 10 input variables. The

classifier distributions are shown in Figures 5.35 and 5.36, and 5.37 and 5.38. Comparing Table

5.9 with 5.8 shows that by adding these 7 variables, one can improve the performance of both

classifiers. Larger improvements are seen in the separation power of the BDT than in the NN. A

small improvement is seen between the separation power of the two best-performing BDT’s when

compared to the two best-performing NN’s.
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Classifier Pairing Method Separation

BDT dRdM method 0.201±0.003

dR method 0.200±0.003

NN dRdM method 0.195±0.003

dR method 0.193±0.002

Table 5.9: Separation of BDT and NN classifiers trained on 17 input variables constructed using the different
pairing methods. The statistical uncertainties are shown. For each classifier, pairing methods are ordered
by their separation power. As the same event samples are used for all the separation values, any statistical
fluctuations are very highly correlated between the quoted separation.

Figure 5.35: BDT discriminant distributions for classifiers trained on 17 variables constructed, using the dR
method.
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Figure 5.36: BDT discriminant distributions for classifiers trained on 17 variables constructed, using the dR
dM method.

Figure 5.37: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
17 variables constructed using the dR method.
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Figure 5.38: NN discriminant distributions for classifiers trained on simulated input ntuples of events with
17 variables constructed using the dR dM method.

The performance of the BDTs and NNs trained using each pairing method are shown in Figure

5.39. Each curve shows the receiver operating characteristics (ROC) for each method. The x-axis

represents the signal efficiency (εsignal). To calculate the signal efficiency, a cut is defined on the

multivariate classifier output distribution which distinguishes between signal-like and background-

like events. The cut is varied between the minimum and maximum of the range of the classifier

output and at each point the signal efficiency is calculated as the fraction of signal events that

pass the cut. The y-axis represents the background rejection. This is again calculated by varying

the cut in the same range but for each cut the background efficiency (εbckg) is calculated as the

fraction of background events passing the cut. The background rejection is then calculated as

(rej.bckg = 1− (εbckg)). The better the classifier’s performance, the closer the apex of the curve is

to the top right corner of the plot. These plots also allow one to check the effect of the statistical

uncertainty on the performance of the classifier. Large statistical uncertainties would manifest

themselves as statistical fluctuations in the ROC curve.

A comparison of the best performing 10 variables classifiers with the two best performing 17

variable classifiers can be made by comparing Tables 5.8 and 5.9.
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(a)

(b)

Figure 5.39: ROC curves of the performance of BDT/NN classifiers trained using 10 input variables and
showing all pairing methods. Figure (b) is simply a magnified region of Figure (a) to exemplify the differ-
ences between the curves.
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5.14 Evaluation of the Choice of Signal Sample Parton Shower Sys-
tematic Uncertainty

The nominal tt̄H signal sample matrix element calculations are generated by POWHEL to NLO

accuracy. The PYTHIA parton shower model then evolves the hard process generated by POWHEL

into a multi-hadron final state. To evaluate the systematic uncertainty related with the choice of

parton shower model for the signal sample, the full analysis is rerun with a signal sample that

is generated using an alternative parton shower model (systematic sample). In the case of the

tt̄H(H→bb̄) dilepton analysis, the systematic signal sample used was generated using POWHEL to

calculate the matrix element and HERWIG for the parton shower model. The most fundamental

difference between the two parton shower models is that Pythia applies the string fragmentation

model [82] and Herwig treats quark and gluon fragmentation according to the cluster fragmentation

model [83],[84].

Higgs boson Decay channel POWHEL+PYTHIA BR (%) POWHEL+HERWIG BR (%)

bb̄ 57.62±0.08 70.49±0.08

cc̄ 2.92±0.01 4.47±0.02

ss̄ 0.024±0.002 0.221±0.005

WW 21.47±0.05 17.19±0.04

ZZ 2.65±0.02 2.12±0.01

gg 8.61±0.03 0

ττ 6.30±0.03 5.24±0.02

µµ 0.021±0.001 0.019±0.001

γγ 0.234±0.005 0.189±0.004

Table 5.10: Higgs boson branching ratios for the POWHEL+PYTHIA and POWHEL+HERWIG simulated
samples.

The Higgs boson branching ratios are calculated by the Pythia and Herwig parton shower tools

and are dependant on the mass of the Higgs. For the Pythia sample, the Higgs boson mass was

set at 125 GeV, however in the Herwig sample this was mistakenly set to another value. While

the Higgs boson decay branching ratios in the nominal samples are assumed to be accurate, the

HERWIG sample was generated with significantly different branching ratios. The branching ratios

for both samples are shown in Table 5.10. To use this sample for the evaluation of the choice of
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hadronisation systematic uncertainty the HERWIG branching ratios are corrected to match those in

PYTHIA. The original Higgs boson branching fractions (pre-selection) in the nominal and HERWIG

samples are shown in the histogram on the left of Figure 5.40. In a given decay channel, each

event in the HERWIG sample is multiplied by the ratio of the branching fraction in the PYTHIA

sample with respect to the branching fraction in the HERWIG sample. The weights used are shown

in Table 5.11. The branching fractions after this reweighting are shown on the right of Figure

5.40. All tt̄H(H→gg) events were omitted in the generation of the HERWIG sample which is why

the distributions in Figure 5.40 show branching ratios that don’t quite match those in Table 5.10.

Therefore, these are removed from the PYTHIA sample to avoid an overall global normalisation

difference.

To ensure this has no major impact on the analysis, distributions of the HT variable and other

variables that are used as inputs to the NN are studied with and without the removal of tt̄H(gg)

events. It is found that in the (4j,4b) region, 0.43% of signal events have a Higgs boson that decays

to a gluon pair, which has a negligible effect. In the (4j,2b) region, 9.1% of signal events have a

Higgs boson decaying to a gluon pair. Whilst this is a large fraction of the total number of signal

events, their contribution to the HT variable, which is used as the discriminating variable in this

region, is negligible compared to the overwhelming background. It was therefore deemed reason-

able to remove these events.
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Figure 5.40: Branching ratios of the combined tt̄H dilepton, single lepton and all hadronic
POWHEL+PYTHIA samples and POWHEL+HERWIG samples before (left) and after (right) the branching
ratio correction. These distributions are pre-selection and are normalised to unity after all tt̄H(H→gg)
events removed from the POWHEL+PYTHIA sample.
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The HERWIG sample was generated with limited statistics which means one cannot use it to

obtain a good estimate for the parton shower systematic uncertainty. Due to this, the nominal

PYTHIA (with higher statistics and tt̄H(H→gg) events removed) sample is reweighted so that the

kinematic distributions match those of the corrected HERWIG sample. A variety of kinematic

reweighting methods were derived pre-selection at truth level. The agreement between several

post-selection kinematic distributions were studied to validate the procedure. tt̄H pT reweighting

provided the best agreement between the two samples. The reweighting values are shown appendix

C.

In Figure 5.41 (a) one can see the disagreement between the HT distributions of the two sam-

ples using different parton shower models before the reweighting is applied. This difference is

essentially the parton shower systematic uncertainty. The HT variable is used here to demonstrate

the kinematic differences between the samples because it is the sum of the pT of all of the jets and

leptons in an event and is therefore sensitive to kinematic differences between the samples. After

applying the tt̄H pT reweighting to the PYTHIA sample, the distributions are seen to be in much

better agreement. This is shown in Figure 5.41 (b) for events in the (4j,2b) analysis region, which

has the largest number of signal events. The reweighted PYTHIA sample is then used in the final

fit instead of the HERWIG sample to evaluate the systematic uncertainty.

The percentage pre(post)-fit normalisation uncertainty associated with the choice of signal

sample parton shower model, on the tt̄H sample alone for events in the (≥ 4j, ≥ 4b) dilepton

analysis region was found to be ±1.8%(±0.01%). Using the full set of simulated samples, this

pre(post)-fit normalisation uncertainty was reduced to ±0.03%(<±0.01%) for the same region.

Higgs boson Decay channel Channel Weight

bb̄ 0.892±0.001

cc̄ 0.712±0.005

WW 1.367±0.004

ZZ 1.359±0.001

ττ 1.300±0.007

Table 5.11: Higgs boson branching ratio reweighting values that are applied to the tt̄H HERWIG sample.
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(a)

(b)

Figure 5.41: Distributions of Hhad
T in the ≥ 4j = 2b after applying the Higgs boson branching fraction cor-

rection, after removing tt̄H(H→gg) events and (a) before any reweighting and (b) after the tt̄H pT reweight-
ing.
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5.15 Statistical Analysis and Results

The discriminant distributions from all analysis regions are combined (dilepton analysis is also

combined with the single lepton analysis) to test for the presences of a signal assuming a Higgs

boson mass of 125 GeV. Each bin is considered to be like a Poisson counting experiment with N

bins in the histogram, each providing a measurement. Poisson probability terms are calculated for

each bin in the discriminant distributions using Equation 4.11. A likelihood function is constructed

from the product of the Poisson probabilities over all bins combining distributions from all analysis

regions.

The likelihood function is dependent on the ratio of the number of observed/expected events

with respect to the number predicted by the SM known as the signal strength parameter defined as

shown in Equation 5.15. It is also dependent on a set of nuisance parameters labelled θ, which rep-

resent the effects of systematic uncertainties on signal and background expectations. The number

of events in any given bin is therefore dependent on µ and θ.

µ =
σ(tt̄H)

σSM(tt̄H)
(5.15)

The likelihood function is fit to data where the nuisance parameters will adjust the expectations

for signal and background according to their associated systematic uncertainty. Nuisance param-

eters are implemented in the likelihood function as priors. The final fitted value of a nuisance

parameter corresponds to the value that provides the best fit to data. The impact of systematic un-

certainties upon the search sensitivity is constrained by using the highly populated signal-deficient

regions in the fitting procedure. This requires a good understanding of the background processes

and the effect each systematic uncertainty has on the discriminant distributions.

The different analysis regions have different contributions from various backgrounds and so

the likelihood fit is used to constrain them. The highly populated ≥ 4j = 2b (4j,2b) channel

provides a strong constraint on the overall tt̄ background normalisation. The (= 2j = 2b)(2j,2b),

(= 3j = 2b) (3j,2b) and (≥ 4j = 2b) regions consist almost entirely of tt̄+ light background events

and provides a constraint on the tt̄ modelling uncertainties. Regions with exactly 3 and ≥ 4 b-jets

have different fractions of tt̄+bb̄ and tt̄+ cc̄ backgrounds, so their interplay during the likelihood

fit provides constraints on each of their normalisation uncertainties.

A comparison between the pre-fit and post-fit yields in data and MC for the various dilepton
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analysis regions along with the total uncertainty are shown in Figures 5.42 and 5.43 respectively.

Figure 5.42: Data/MC comparison of pre-fit yields under the signal-plus-background hypothesis in each
dilepton analysis region. The uncertainties are the statistical plus systematic uncertainties on the yields
summed in quadrature. The signal is normalised to the fitted µ and is shown as both a filled area stacked on
the backgrounds and separately as a dashed red line.
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Figure 5.43: Data/MC comparison of post-fit yields under the signal-plus-background hypothesis in each
dilepton analysis region. The uncertainties are the statistical plus systematic uncertainties on the yields
summed in quadrature. The signal is normalised to the fitted µ and is shown as both a filled area stacked on
the backgrounds and separately as a dashed red line.

The likelihood is used to calculate the test statistic qµ as described in Section 5.1, which is used

to measure the compatibility of the observed data with the background-only hypothesis (µ = 0) and

to make statistical inferences about µ such as upper limits using the CLs technique ([85],[86]). This

provides a confidence interval which, upon repeating the experiment on new independent samples,

frequently includes the value of an unobservable parameter of interest. The frequency with which

the observed interval contains the parameter is determined by the % of the confidence level.

Both observed and expected confidence intervals are calculated. The observed confidence in-

terval gives the upper limit on σ(tt̄H)/σSM(tt̄H) using the experimental data observed. The expected

confidence interval gives the expected upper limit on the value of σ(tt̄H)/σSM(tt̄H) under either the

background only hypothesis (signal strength parameter µ = 0) or the signal-plus-background pa-

rameter (signal strength parameter µ = 1) as predicted from simulations.

The discriminant distributions are fit to data in all regions simultaneously to produce the final

result. This uses the signal-plus-background hypothesis and the signal strength parameter is al-

lowed to float freely although it is constrained to be the same in all regions. The normalisation of

each background is determined by fitting µ simultaneously. The fitted value of the signal strength
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in each channel and their combined values along with their associated total uncertainties is shown

in Figure 5.44.

Figure 5.44: Values of the fitted signal strength (µ) in lepton+jets (i.e. single lepton channel) and dilepton
channel along with the two channels combined and the associated uncertainties. The green line is the
statistical uncertainty on µ.

95% CL upper limits on the tt̄H cross-section with respect to the SM prediction are shown in

Figure 5.45 and Table 5.12. The black dashed line represents the expected upper limit under the

background only hypothesis (signal strength parameter µ = 0). The red dashed line represents the

expected limit under the signal-plus-background hypothesis (signal strength parameter µ = 1). The

observed upper limit, represented by the solid black line is the upper limit obtained from data.

For the case where no Higgs boson exists, the possibility of observing a tt̄H signal in the dilep-

ton channel 4.1 times stronger than that predicted by the SM Higgs boson in a repeated experiment

is ruled out with 95% CL. For the case in which a SM Higgs boson exists, the possibility of ob-

serving a tt̄H signal in the dilepton channel 4.7 times stronger than that predicted by the SM Higgs

boson is ruled out with 95% CL.

For the data observed in the dilepton analysis, the possibility of observing a tt̄H signal 6.7

times stronger than that predicted by the SM Higgs boson is ruled out with 95% CL. In all cases

the SM Higgs boson is assumed to have mH = 125 GeV.
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Figure 5.45: 95% CL upper limit on the cross-section σ(tt̄H) with respect to the SM prediction µ = σ(tt̄H)
σSM(tt̄H) .

Each channels individual contribution to the combined upper limit are shown along with the combined upper
limit. The observed limits are represented by the solid lines. These can be compared with the expected
limits under the background-only and signal-plus-background hypotheses. In all cases the backgrounds are
predicted using their pre-fit distributions. 68% and 95% confidence intervals for the expected limit under
the background only hypothesis are represented by the green and yellow bands.

In order to be able to claim an observation of the tt̄H process, one requires sensitivity to the

Statndard Model σ(tt̄H)/σSM(tt̄H) = 1. This means the analyis needs to have an expected 95%

CL upper limit under the signal-plus-background hypothesis (red dashed line in Figure 5.45) equal

to 1. One also needs to be able to rule out the background only hypothesis, which means the ob-

served limit has a 5σ significance from the limit expected under the background only hypothesis.

The analysis does not have this sensitivity, and no significant excess of events above the back-

ground expectation can be claimed for a SM Higgs boson with mass 125 GeV. The observed and

expected 95% CL upper limits are summarised in Table 5.12. The fitted value of the signal strength

parameter in the dilepton channel is equal to µ = 2.8±2.0.

Observed −2σ −1σ Expected (µ = 0) 1σ 2σ Expected (µ = 1)

6.7 2.2 3.0 4.1 5.8 7.7 4.7

Table 5.12: Observed and expected 95% CL upper limits on the tt̄H signal strength for the dilepton channel
for a Higgs boson with mH = 125 GeV. Confidence intervals about the expected upper limit for the back-
ground only hypothesis are shown as±1σ and±2σ along with the upper limit. The 95% CL upper limit for
the signal strength under the signal-plus-background hypothesis is also shown.
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Chapter 6

Conclusions

“
And that, my liege, is how we know the Earth to be banana shaped.

”

Sir Bedivere, Monty Python and the Holy Grail

In this thesis I have presented the first measurement of a potential bias in b-tagging calibrations

performed on b-jets selected using the low momentum muon (soft muon) coming from the decay of

the b hadron. Several calibration methods used by the ATLAS experiment are derived on this type

of b-jet which highlights the importance of this study. To carry out this measurement, I selected an

enriched sample of b-jets by targeting tt̄ production with two charged leptons in the final state, due

to the top quarks large branching fraction to b-quarks. The sample of b-jets was divided into two

categories: those which decayed to a muon plus a neutrino, and those which decayed to another

lepton (i.e. τ or electron) or hadronically. b-tagging efficiencies and scale factors were then derived

separately for each category of jet. The ratio of the scale factors for each jet category is then used

as a measure of the potential bias. This is done in two jet pT bins of 0-90 GeV and 90-300 GeV

due to the limited statistics available for jets that containing a low momentum muon. The ratio of

scale factors is consistent with unity in both jet pT bins. The uncertainty on the measurement of

the bias is ≈ 8% in both pT bins.

I have also presented my work on the tt̄H(H→bb̄) analysis, part of which was a study of possi-

ble pairing algorithms that can be used to correctly match b-jets with the b-partons that originated

from the Higgs boson. Several pairing methods were studied to try and improve upon the poor pair-

ing efficiency of the pairing method used in Reference [58]. Pairing methods with better pairing
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efficiencies allow one to reconstruct more complicated and better discriminating neural network

input variables. The method used in Reference [58] was only able to correctly match the b-jets

with the b hadrons originating from the Higgs boson in 31% of true tt̄H(H→bb̄) events. However,

the method I have called the dRIso dM method (see Section 5.11.3) obtained an efficiency of 49%,

which is a significant improvement.

A study of alternative multivariate classifiers for the tt̄H(H→bb̄) analysis is also presented.

The aim of the study was to improve upon the neural networks ability to separate background from

signal events. The performance of the neural network used in Reference [58] (10 input variables

using dR pairing method) is compared with the performance of a boosted decision tree trained

using the same events, variables and pairing method. The performance of each of the classifiers was

also evaluated for all of the pairing methods individually. The ability of the multivariate classifiers

to separate signal from background where compared using a metric called “speparation”, which

is defined in Equation 5.14. The best separation for the boosted decision tree was achieved when

using the dR dM method which obtained a separation of 0.192± 0.003. The best separation for

the neural network was achieved when using the so-called dR dM method (see Section 5.11.3)

which obtained a separation of 0.193±0.002. No significant improvement was seen when using a

boosted decision tree trained using 10 input variables.

Further research into improving the performances of the multivariate classifiers was performed

by looking at including additional input variables. Several additional variables, based on object

pair properties, were added to the input variable list of both classifiers. The best separation for the

17 variable boosted decision tree was achieved when using the dR dM method which obtained a

separation of 0.201± 0.003, whereas the best separation for the 17 variable neural network was

achieved when using the dR dM method which obtained a separation of 0.195±0.002. Therefore,

a small improvement can be seen in the separation power of both classifiers when using additional

variables. Furthermore, the 17 variable boosted decision tree has greater separation power than the

17 variable neural network, as is shown in Table 6.1.
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Classifier Separation

BDT (10 inputs) 0.192±0.03

NN (10 inputs) 0.193±0.02

BDT (17 inputs) 0.201±0.03

NN (17 inputs) 0.195±0.02

Table 6.1: Comparison of the separation power of the two classifiers investigated: boosted decision tree
(BDT) and neural network (NN). The separation for the classifiers trained on 10 or 17 input variables using
the dR dM method are compared. The uncertainties shown are the statistical only uncertainties on the
separation.

This investigation into several possible methods that can be used to reconstruct tt̄H events

provides an insight into a possible way in which the tt̄H analysis can be improved. Any future

search for tt̄H production at the LHC could use these techniques (or similar methods) to reconstruct

physics objects and improve the signal sensitivity of the analysis.

A full description of the evaluation of the signal sample parton shower systematic uncertainty

in the tt̄H(H→bb̄) analysis is also presented. This uncertainty is evaluated by rerunning the analy-

sis using an alternative signal sample parton shower model. The systematic sample was originally

generated using the HERWIG parton shower model, however this sample had particularly low

statistics and did not provide a very good estimate of the systematic uncertainty. Instead the nom-

inal signal sample is reweighted to provide a high statistics systematic sample. This reweighted

sample is the used in the final fit to evaluate the impact of this uncertainty. A total post-fit normali-

sation systematic uncertainty of ±0.01% is found with respect to the nominal signal normalisation

in dilepton events in the (≥ 4j,≥ 4b) region.

No evidence for tt̄H production was observed in data taken by the ATLAS detector during

the 2009-2013 data taking period. The tt̄H analysis presented in Reference [58] did not have the

sensitivity required to claim the observation of the tt̄H process. However, the additional techniques

presented such as the alternative pairing methods and the optimisation of the multivariate methods

could improve the sensitivity of the analysis for the next data taking period.
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Appendix A

Simulated Cross-Sections
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Theoretical Cross-Sections and K-factors

Process Cross-section (pb) K-factor

Top pair Powheg+Pythia (full sim)

tt 114.51 1.1992

Single Top AcerMC+Pythia (full sim)

Single top: t-channel 25.750 1.1042

Single Top Powheg+Pythia (full sim)

Single top: s-channel 1.6424 1.1067

Single top: Wt-channel Incl. (Diagram Removal) 20.461 1.0933

Diboson Alpgen+Herwig (full sim)

WW → lvlv + Np0 2.4970 1.2307

WW → lvlv + Np1 1.2491 1.2307

WW → lvlv + Np2 0.59200 1.2307

WW → lvlv + Np3 0.32847 1.2307

W (→ incl.)Z(→ ll) + Np0 0.80162 1.2785

W (→ incl.)Z(→ ll) + Np1 0.52407 1.2785

W (→ incl.)Z(→ ll) + Np2 0.29484 1.2785

W (→ incl.)Z(→ ll) + Np3 0.18258 1.2785

Z(→ incl.)Z(→ ll) + Np0 0.60660 1.3718

Z(→ incl.)Z(→ ll) + Np1 0.28893 1.3718

Z(→ incl.)Z(→ ll) + Np2 0.11853 1.3718

Z(→ incl.)Z(→ ll) + Np3 0.056223 1.3718

WW → qqlv + Np0 9.9819 1.2832

WW → qqlv + Np1 5.0144 1.2832

WW → qqlv + Np2 2.3658 1.2832

WW → qqlv + Np3 1.3139 1.2832

Z+Jets Alpgen+Pythia unfiltered (full sim)

Z→ ee + Np0 718.89 1.18

Z→ ee + Np1 175.60 1.18

Z→ ee + Np2 58.849 1.18

Z→ ee + Np3 15.560 1.18

Z→ ee + Np4 3.9322 1.18

Z→ ee + Np5 1.1994 1.18

Z→ µµ + Np0 718.91 1.18

Z→ µµ + Np1 175.81 1.18

Z→ µµ + Np2 58.805 1.18

Z→ µµ + Np3 15.589 1.18

Z→ µµ + Np4 3.9072 1.18

Z→ µµ + Np5 1.1933 1.18

Z→ ττ + Np0 718.80 1.18

Z→ ττ + Np1 175.83 1.18

Z→ ττ + Np2 58.630 1.18

Z→ ττ + Np3 15.508 1.18

Z→ ττ + Np4 3.9526 1.18

Z→ ττ + Np5 1.1805 1.18

Table A.1: The theoretical cross-sections and K-factors of the signal and background processes. “NP” stand
for the number of additional hard partons generated by the Monte Carlo event generator.

187



Theotretical Cross-Sections and K-factors

Process Cross-section (pb) K-factor

Z+jets+bb Alpgen+Pythia unfiltered samples

Z→ ee+bb + Np0 8.0397 1.18

Z→ ee+bb + Np1 3.2353 1.18

Z→ ee+bb + Np2 1.1388 1.18

Z→ ee+bb + Np3 0.49066 1.18

Z→ µµ+bb + Np0 8.0422 1.18

Z→ µµ+bb + Np1 3.2155 1.18

Z→ µµ+bb + Np2 1.1400 1.18

Z→ µµ+bb + Np3 0.50943 1.18

Z→ ττ+bb + Np0 8.0358 1.18

Z→ ττ+bb + Np1 3.2299 1.18

Z→ ττ+bb + Np2 1.1445 1.18

Z→ ττ+bb + Np3 0.49266 1.18

Z+jets+cc Alpgen+pythia unfiltered samples

Z→ ee+ cc + Np0 15.107 1.18

Z→ ee+ cc + Np1 7.2131 1.18

Z→ ee+ cc + Np2 3.0320 1.18

Z→ ee+ cc + Np3 1.1767 1.18

Z→ µµ+ cc + Np0 15.115 1.18

Z→ µµ+ cc + Np1 7.1980 1.18

Z→ µµ+ cc + Np2 3.0303 1.18

Z→ µµ+ cc + Np3 1.1738 1.18

Z→ ττ+ cc + Np0 15.119 1.18

Z→ ττ+ cc + Np1 7.2016 1.18

Z→ ττ+ cc + Np2 3.0385 1.18

Z→ ττ+ cc + Np3 1.1677 1.18

Z+jets Alpgen+herwig low mass

Z→ ee + Np0 excl. with 10 GeV < M(ll)< 60 GeV 3477.9 1.195

Z→ ee + Np1 excl. with 10 GeV < M(ll)< 60 GeV 108.88 1.195

Z→ ee + Np2 excl. with 10 GeV < M(ll)< 60 GeV 52.651 1.195

Z→ ee + Np3 excl. with 10 GeV < M(ll)< 60 GeV 11.309 1.195

Z→ ee + Np4 excl. with 10 GeV < M(ll)< 60 GeV 2.5743 1.195

Z→ ee + Np5 excl. with 10 GeV < M(ll)< 60 GeV 0.69211 1.195

Z→ µµ + Np0 excl. with 10 GeV < M(ll)< 60 GeV 3477.8 1.195

Z→ µµ + Np1 excl. with 10 GeV < M(ll)< 60 GeV 108.63 1.195

Z→ µµ + Np2 excl. with 10 GeV < M(ll)< 60 GeV 52.675 1.195

Z→ µµ + Np3 excl. with 10 GeV < M(ll)< 60 GeV 11.283 1.195

Z→ µµ + Np4 excl. with 10 GeV < M(ll)< 60 GeV 2.5690 1.195

Z→ µµ + Np5 excl. with 10 GeV < M(ll)< 60 GeV 0.69425 1.195

Z→ ττ + Np0 excl. with 10 GeV < M(ll)< 60 GeV 3478.1 1.195

Z→ ττ + Np1 excl. with 10 GeV < M(ll)< 60 GeV 108.85 1.195

Z→ ττ + Np2 excl. with 10 GeV < M(ll)< 60 GeV 52.777 1.195

Z→ ττ + Np3 excl. with 10 GeV < M(ll)< 60 GeV 11.295 1.195

Z→ ττ + Np4 excl. with 10 GeV < M(ll)< 60 GeV 2.5904 1.195

Z→ ττ + Np5 excl. with 10 GeV < M(ll)< 60 GeV 0.69034 1.195

Table A.2: The theoretical cross-sections and K-factors of the signal and background processes. “NP” stand
for the number of additional hard partons generated by the Monte Carlo event generator.
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Appendix B

B-tagging Systematic Uncertainties

189



@70% channel EM
Systematic 0-90GeV 90-300GeV

tt̄ Monte Carlo Generator 70% -1.26653 -2.94177
tt̄ parton Shower 70% -1.99907 3.37943

tt̄ Initial/final state radiation modelling 70% (+/-) 1.6105 3.53564
Baseline insitu (JES) down -0.988626 0.592231

Baseline insitu (JES) up 1.08112 -0.746439
B-jet (JES) uncertainty down 0.145874 1.30732

B-jet (JES) uncertainty up -0.042665 -1.1619
Close-by (JES) down -0.158564 -0.0163813

Close-by (JES) up 0.0856373 0.17076
Electron energy resolution down 0.0673778 -0.00327586

Electron energy resolution up -0.105339 -0.137636
Electron energy scale down 0.142956 -0.446219

Electron energy scale up 0.366614 -0.21031
Electron reconstruction/identification efficiency scale factor down 0.0255944 -0.130904

Electron reconstruction/identification efficiency scale factor up -0.0506196 0.131527
Electron trigger efficiency scale factor down 0.00131601 0.0472447

Electron trigger efficiency scale factor up -0.0325099 -0.0274437
η-intercalibration (JES) down -0.274228 0.0455364

η-intercalibration (JES) up 0.408604 0.20139
Flavor composition (JES) uncertainty down -1.04243 -1.02206

Flavour composition (JES) uncertainty up 0.977798 0.496057
Flavour response (JES) down -0.774681 -0.615706

Flavour response (JES) up 0.522248 0.251007
Jet reconstruction efficiency 0.106594 0.0218507

Jet energy resolution 0.931561 0.361453
Jet vertex fraction scale factor down -0.131803 0.0215466

Jet vertex fraction scale factor up 0.0374598 0.209874
Muon reconstruction/identification efficiency scale factor down 0.0129321 0.0754325

Muon reconstruction/identification efficiency scale factor up -0.0428697 -0.0772957
Muon trigger scale factor down 0.137922 -0.00657513

Muon trigger scale factor up -0.0373095 -0.0352224
Pileup Offset µ (JES) down -0.380338 0.369905

Pileup Offset µ (JES) up 0.0672015 -0.138827
Pileup offset number of reconstructed primary vertices (JES) down -0.0536857 0.0684607

Pileup offset number of reconstructed primary vertices (JES) up 0.0750484 -0.361198
Charm mistag scale factor down 0.0649064 0.0268843

Charm mistag scale factor up -0.0536751 -0.021101
Light mistag scale factor down 0.180008 0.123278

Light mistag scale factor up -0.177892 -0.121988
tt̄ cross-section down 0.653905 0.461423

tt̄ cross-section up -0.504236 -0.354338
Z+ jets cross-section down -0.119135 -0.129545

Z+ jets cross-section up 0.118806 0.12918
Diboson cross-section down -0.0694956 -0.0206729

Diboson cross-section up 0.0693885 0.0206611
Single top (Wt) cross-section down -0.0505563 -0.0187401

Single top (Wt) cross-section up 0.0502119 0.0186387
Fakes cross-section down -0.37636 -0.0986341

Fakes cross-section up 0.372622 0.0977815
Semi-leptonic jet correction down 0.571734 -0.621832

Semi-leptonic jet correction up -0.628812 0.514782
Non-SL Stat. Uncert. 0.880092 1.28891

SL Stat. Uncert. 3.06275 3.6219
Total Statistical 3.18669 3.84441

Total Systematic 3.56509 6.01269
Total Uncertainty 6.75179 9.85709

Table B.1: Systematic uncertainties in bins of jet pT, on the final b-tagging bias βSL,NSL. The numbers given
are percentage variations from the nominal value. The naming convention dictates that any uncertainty with
(JES) in the name contributes to the total jet energy scale uncertainty.
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Appendix C

Sample Weights

191



tt̄H system pt Weight (post branching ratio correction) Error (stat only)

0 < pT ≤ 10 0.969 ±0.002

10 < pT ≤ 20 0.973 ±0.002

20 < pT ≤ 30 0.981 ±0.002

30 < pT ≤ 40 0.989 ±0.003

40 < pT ≤ 50 0.999 ±0.003

50 < pT ≤ 60 1.003 ±0.003

60 < pT ≤ 70 1.010 ±0.004

70 < pT ≤ 80 1.027 ±0.005

80 < pT ≤ 90 1.029 ±0.005

90 < pT ≤ 100 1.017 ±0.005

100 < pT ≤ 110 1.035 ±0.006

110 < pT ≤ 120 1.025 ±0.006

120 < pT ≤ 130 1.031 ±0.007

130 < pT ≤ 140 1.036 ±0.007

140 < pT ≤ 150 1.036 ±0.008

150 < pT ≤ 160 1.052 ±0.008

160 < pT ≤ 170 1.048 ±0.009

170 < pT ≤ 180 1.040 ±0.009

180 < pT ≤ 190 1.06 ±0.01

190 < pT ≤ 200 1.06 ±0.01

200 < pT ≤ 210 1.06 ±0.01

210 < pT ≤ 220 1.058 ±0.008

220 < pT ≤ 240 1.058 ±0.005

240 < pT ≤ 320 1.098 ±0.004

320 < pT 1.113 ±0.008

Table C.1: tt̄H pT reweighting values (nominal / HERWIG).
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Appendix D

tt̄H(H→bb̄) Systematic Uncertainties

Figure D.1: Full list of systematic uncertainties considered in the dilepton tt̄H(H→bb̄) analysis [58]. If an
uncertainty is labelled with an “N”, it means the uncertainty is taken on normalisation-only for all processes
and in all channels. “S” means the uncertainty is taken on a shape-only uncertainty in all processes for all
channels. “SN” means the uncertainty is taken on both shape and normalisation. The number in the column
labelled “comp” is the number of components the systematic has been split into. Systematics are split into
component parts if a more accurate treatment can be obtained by doing so.
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Appendix E

tt̄H(H→bb̄) Dilepton Cutflow

Cut Data Events Passing

Initial 17030368

GRL (data only) 17030368

Cosmic 17030368

Good vertex 17030368

Two leptons of right type 17021716

Trigger 15553053

At least 1 lepton pt > 25 GeV 15408782

Trigger matched 15349283

E-Mu overlap removal 15346482

Jet Cleaning 15329082

HT 15267668

Exactly 2 Jets 686783

OS leptons 681422

Dilepton mass > 15 GeV 671863

Truth matched leptons 671863

Z mass veto 176322

1 btag 52169

2 btags 17582

Table E.1: Cutflow table showing the number of data events passing each cut in the tt̄H(H→bb̄) dilepton
analysis.
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4 j, ≥ 4 b

tt̄H (125) tt̄ + light tt̄ + cc̄ tt̄ +bb̄ tt̄ +V W+jets Z+jets Single top Diboson Multijet Total

BTAGBREAK0 ±0.01 – – ±0.01 – ±0.08 – – ±0.03 – ±0.01

BTAGBREAK1 ±0.10 ±0.03 ±0.03 ±0.74 ±0.11 ±0.29 ±0.20 ±0.02 ±0.21 – ±0.28

BTAGBREAK2 ±2.1 ±1.3 ±1.2 ±1.9 ±1.8 ±0.07 ±0.27 ±0.12 ±0.20 – ±1.4

BTAGBREAK3 ±2.7 ±1.4 ±1.3 ±2.1 ±2.5 ±0.56 ±1.1 ±0.12 ±1.0 – ±1.6

BTAGBREAK4 ±2.2 ±1.3 ±1.3 ±2.3 ±2.0 ±0.80 ±1.7 ±2.1 ±1.7 – ±1.7

BTAGBREAK5 ±3.9 ±2.2 ±2.0 ±4.0 ±3.6 ±3.1 ±2.6 ±3.1 ±1.5 – ±2.9

CTAGBREAK0 – ±0.04 ±0.06 ±0.01 ±0.02 ±0.16 ±0.52 ±0.08 ±0.02 – ±0.02

CTAGBREAK1 ±0.65 ±2.9 ±5.3 ±1.6 ±1.9 ±2.1 ±4.0 ±2.2 ±3.5 – ±2.7

CTAGBREAK2 ±0.07 ±0.75 ±1.4 ±0.54 ±0.77 ±0.14 ±0.25 ±0.19 ±1.3 – ±0.71

CTAGBREAK3 ±0.81 ±3.5 ±7.1 ±1.9 ±2.3 ±3.1 ±5.2 ±3.1 ±4.9 – ±3.4

Dibosons XS – – – – – – – – – – ±0.00

Dibosons XS jet5 – – – – – – – – – – ±0.00

Dibosons XS jet6 – – – – – – – – – – ±0.00

Dibosons XS LJETS – – – – – – – – ±24.8 – ±0.04

ELE ID ±0.91 ±0.93 ±0.91 ±0.92 ±0.91 ±0.06 ±0.05 ±0.03 ±0.06 – ±0.84

ELE RECO – – – – – – – – – – ±0.00

ELE RES – – – – – – – – – – ±0.00

ELE SCALE – – – – – – – – ±19.0 – ±0.03

ELE TRIG – – – – – – ±0.00 – – – ±0.00

JEFF – – – – ±2.1 – – – – – ±0.01

JER ±1.4 ±0.61 ±1.5 ±1.4 ±2.4 – ±12.9 ±0.97 ±10.6 – ±0.98

JetAF2Closure – – – – – – – – – – ±0.00

JetDet1 ±0.35 ±0.11 ±0.12 ±0.04 ±0.69 – – ±0.08 – – ±0.05

JetDet2 – ±0.03 ±0.04 – – – – – – – ±0.02

JetDet3 – – – – ±0.06 – – – ±23.6 – ±0.04

JetEtaModel ±1.1 ±0.63 ±0.07 ±0.03 ±0.65 – ±3.5 – – – ±0.19

JetEtaStat ±0.08 ±0.01 ±0.03 – ±0.62 – – ±0.12 – – ±0.00

JetFlavB ±1.00 ±1.1 ±0.96 ±2.3 ±0.63 – ±3.6 ±3.0 ±2.7 – ±1.5

JetFlavComp ±3.4 ±0.35 ±1.2 ±3.0 ±2.8 ±2.2 ±2.4 – – – ±1.2

JetFlavResp ±2.4 ±0.02 ±1.1 ±1.9 ±2.4 – – – – – ±0.94

JetMixed1 – – – – – – – – – – ±0.00

JetMixed2 – – ±0.04 – – – – ±0.08 – – ±0.01

JetModel1 ±1.3 ±1.2 ±0.02 ±0.08 ±1.1 ±2.3 ±4.5 ±2.4 ±2.8 – ±0.60

JetModel2 ±0.13 ±0.07 ±0.09 – ±0.05 – – ±0.12 – – ±0.05

JetModel3 – ±0.04 ±0.04 ±0.03 ±0.04 – – ±0.09 – – ±0.04

JetModel4 – ±0.01 – – – – – – – – ±0.01

JetMu – – – – ±0.05 – – – – – ±0.00

JetNPV ±0.02 ±0.00 – ±0.64 ±0.16 – – ±0.09 – – ±0.23

JetPilePt – – – – ±0.19 – – – – – ±0.00

JetPileRho ±1.2 ±1.0 ±0.03 ±0.19 ±1.4 – ±4.5 ±2.1 – – ±0.52

JetSinglePart – – – – – – – – – – ±0.00

JetStat1 ±0.04 ±0.03 – ±0.19 ±0.46 – – ±0.13 – – ±0.08

JetStat2 – – ±0.03 ±0.07 – – – ±0.08 – – ±0.03

JetStat3 ±0.08 ±0.02 ±0.01 – ±0.04 – – ±0.06 – – ±0.00

JVF ±1.2 ±0.04 ±0.83 ±0.70 ±0.73 ±2.3 – – – – ±0.35

LTAGBREAK0 – – – – – – – – – – ±0.00

LTAGBREAK1 – – – – – – – – – – ±0.00

LTAGBREAK10 – ±4.8 ±0.82 ±0.03 – ±0.19 ±0.15 ±0.19 ±0.35 – ±1.9
Table E.2: Normalisation uncertainties (expressed in % ) on signal and each of the background processes
for the systematic uncertainties considered, after the fit to data in = 4jets ≥ 4b−tags region of the single
lepton channel. The total uncertainty can be different from the sum in quadrature of individual sources due
to the correlations between them [58]. 196



4 j, ≥ 4 b

tt̄H (125) tt̄ + light tt̄ + cc̄ tt̄ +bb̄ tt̄ +V W+jets Z+jets Single top Diboson Multijet Total

LTAGBREAK11 ±0.30 ±9.0 ±1.7 ±0.85 ±1.00 ±3.5 ±4.5 ±4.2 ±4.2 – ±4.2

LTAGBREAK2 – – – – – – – – – – ±0.00

LTAGBREAK3 – – – – – – ±0.02 – – – ±0.00

LTAGBREAK4 – ±0.01 – – – ±0.03 ±0.04 – ±0.05 – ±0.00

LTAGBREAK5 – ±1.1 – – – ±0.03 ±0.02 – – – ±0.39

LTAGBREAK6 – ±1.4 – – – ±0.05 ±0.08 – – – ±0.51

LTAGBREAK7 – ±0.05 – – – ±0.03 ±0.03 ±0.04 ±0.03 – ±0.02

LTAGBREAK8 – ±1.9 – – – ±0.02 ±0.09 ±0.07 ±0.02 – ±0.69

LTAGBREAK9 – ±2.3 ±0.50 ±0.03 – ±0.06 ±0.09 ±0.13 ±0.16 – ±0.90

LUMI ±2.6 ±2.6 ±2.6 ±2.6 ±2.6 – ±2.6 ±2.6 ±2.6 – ±2.5

MUON ID – – – – – – – – – – ±0.00

MUON RECO – – – – – – – – – – ±0.00

MUON RES ID – – – – – – – – – – ±0.00

MUON RES MS – – – – – – – – – – ±0.00

MUON SCALE – – – – – – – – – – ±0.00

MUON TRIG ±0.96 ±0.94 ±0.96 ±0.96 ±0.96 ±0.07 ±0.04 ±0.05 ±0.01 – ±0.88

QCD Norm DILEP – – – – – – – – – – ±0.00

QCDmm CRfake LJETS – – – – – – – – – – ±0.00

QCDmm EL LJETS – – – – – – – – – ±22.0 ±0.24

QCDmm MCsub LJETS – – – – – – – – – ±7.1 ±0.08

QCDmm MU LJETS – – – – – – – – – ±24.6 ±0.27

SingleTop-DS – – – – – – – ±5.9 – – ±0.23

singleTop XS – – – – – – – ±4.2 – – ±0.17

TAGEXTRAP ±0.01 ±0.04 ±0.15 ±0.19 ±0.01 ±0.78 ±0.05 ±0.25 ±0.59 – ±0.14

ttbar-DataRw-BTagEff – ±0.09 ±0.10 – – – – – – – ±0.05

ttbar-DataRw-Fragmentation – ±0.06 ±0.12 – – – – – – – ±0.04

ttbar-DataRw-IFSR – ±0.94 ±1.3 – – – – – – – ±0.12

ttbar-DataRw-JER – ±0.77 ±1.1 – – – – – – – ±0.10

ttbar-DataRw-JetCloseby – ±0.07 ±0.42 – – – – – – – ±0.05

ttbar-DataRw-JetDet1 – ±0.07 ±0.11 – – – – – – – ±0.04

ttbar-DataRw-JetEtaCalibration – ±0.02 ±0.06 – – – – – – – ±0.02

ttbar-DataRw-JetFlavB – ±0.01 ±0.02 – – – – – – – ±0.01

ttbar-DataRw-MCgen – ±0.68 ±0.53 – – – – – – – ±0.16

ttbar-DataRw-Notoppt-HF – – ±0.14 – – – – – – – ±0.02

ttbar-DataRw-Nottbarpt-HF – – ±0.42 – – – – – – – ±0.07

ttbar bb – – – ±13.6 – – – – – – ±4.9

ttbar bb-CSSKINRW – – – – – – – – – – ±0.00

ttbar bb-DEFAULTSCALE – – – – – – – – – – ±0.00

ttbar bb-FSRSCALE – – – – – – – – – – ±0.00

ttbar bb-MPISCALE – – – – – – – – – – ±0.00

ttbar bb-MSTWRW – – – – – – – – – – ±0.00

ttbar bb-NNPDFRW – – – – – – – – – – ±0.00

ttbar bb-Q CMMPSRW – – – – – – – – – – ±0.00

ttbar bb-R MBBRW – – – – – – – – – – ±0.00

ttbar cc – – ±27.3 – – – – – – – ±4.6

ttbar cc-DataRw-Notoppt – – – – – – – – – – ±0.00

ttbar cc-DataRw-Nottbarpt – – – – – – – – – – ±0.00

ttbar cc MG – – – – – – – – – – ±0.00
Table E.2: Normalisation uncertainties (expressed in % ) on signal and each of the background processes
for the systematic uncertainties considered, after the fit to data in = 4jets ≥ 4b−tags region of the single
lepton channel. The total uncertainty can be different from the sum in quadrature of individual sources due
to the correlations between them [58]. 197



4 j, ≥ 4 b

tt̄H (125) tt̄ + light tt̄ + cc̄ tt̄ +bb̄ tt̄ +V W+jets Z+jets Single top Diboson Multijet Total

ttbar cc MG-MATCH – – – – – – – – – – ±0.00

ttbar cc MG-MC – – – – – – – – – – ±0.00

ttbar cc MG-Q2 – – – – – – – – – – ±0.00

ttbar MG-MATCH-HF – – ±0.06 – – – – – – – ±0.01

ttbar MG-MC-HF – – – – – – – – – – ±0.00

ttbar MG-PP-HF – – – – – – – – – – ±0.00

ttbar MG-Q2-HF – – ±0.07 – – – – – – – ±0.01

ttbar PartonShower-bb – – – ±11.2 – – – – – – ±4.1

ttbar PartonShower-cc – – ±13.0 – – – – – – – ±2.2

ttbar PartonShower-light – ±2.0 – – – – – – – – ±0.72

ttbar XS – ±4.2 ±4.2 ±4.2 – – – – – – ±3.7

ttbarV XS – – – – ±29.9 – – – – – ±0.16

ttbb FSR – – – ±5.1 – – – – – – ±1.9

ttbb MPI – – – – – – – – – – ±0.00

ttbbNLO CSSKIN – – – ±1.0 – – – – – – ±0.37

ttbbNLO MSTW – – – ±0.23 – – – – – – ±0.08

ttbbNLO NNPDF – – – ±0.46 – – – – – – ±0.17

ttbbNLO QCMMPS – – – ±1.4 – – – – – – ±0.52

ttbbNLO RMBB – – – ±2.5 – – – – – – ±0.89

ttbbNLO scale – – – ±3.4 – – – – – – ±1.3

ttH-Generator ±0.51 – – – – – – – – – ±0.01

ttH-PartonShower ±1.8 – – – – – – – – – ±0.03

ttH-PDF – – – – – – – – – – ±0.00

ttH-Scale Dyn ±5.6 – – – – – – – – – ±0.10

ttH-Scale Var ±0.42 – – – – – – – – – ±0.01

ttH-TTHPDFrel ±3.2 – – – – – – – – – ±0.06

ttV-Shape – – – – – – – – – – ±0.00

ttV scale – – – – ±5.3 – – – – – ±0.03

Wjets pt – – – – – ±32.0 – – – – ±0.73

Wjets XS jet5 – – – – – – – – – – ±0.00

Wjets XS jet6 – – – – – – – – – – ±0.00

Wjets XS LJETS – – – – – ±36.0 – – – – ±0.82

Zjets pt – – – – – – – – – – ±0.00

Zjets XS – – – – – – – – – – ±0.00

Zjets XS 3 – – – – – – – – – – ±0.00

Zjets XS 4 – – – – – – – – – – ±0.00

Zjets XS jet5 – – – – – – – – – – ±0.00

Zjets XS jet6 – – – – – – – – – – ±0.00

Zjets XS LJETS – – – – – – ±47.4 – – – ±0.27

ZjetsPythia pt – – – – – – ±19.1 – – – ±0.11

SigXsecOverSM ±73.0 – – – – – – – – – ±1.3

Total ±73.9 ±10.6 ±24.6 ±15.8 ±32.6 ±32.3 ±55.2 ±12.8 ±43.1 ±48.7 ±8.2

Table E.2: Normalisation uncertainties (expressed in % ) on signal and each of the background processes
for the systematic uncertainties considered, after the fit to data in = 4jets ≥ 4b−tags region of the single
lepton channel. The total uncertainty can be different from the sum in quadrature of individual sources due
to the correlations between them [58].
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