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Abstract
Recently, hardware manufacturers are increasingly outsourcing their production

process into countries with lower cost structure. Although this reduces the cost

of hardware production, it also creates opportunity for attackers to hack into the

supply chain and change the original design of the hardware components. Such

changes could range from short circuiting a module (for instance random number

generators) to inserting parasite circuits and new masks (such as hardware Trojan

circuits). These kind of intrusions are difficult to detect through pure functional

testing. Furthermore, attacks on runtime program attributes (eg. fault injection

attacks) are increasing in number and sophistication.

In this thesis we propose techniques for platform verification and secure program

execution that can be used in low-end to medium-end embedded systems. Our

design incorporates a pre-deployment device verification and dedicated security

module that monitors the program’s properties during execution. Both our pre-

deployment and runtime verification methods constitute compile and execution

time computations to reduce the time required for security checks during runtime.

In the core of this thesis, we analyse the current threats to the embedded systems

platform and programs. This leads to two major contributions spanning the pre

and post integration of embedded systems into the larger electronic equipment.

We propose side channel based pre-deployment platform verification techniques.

In our techniques we use instruction and basic block level side channel templates

to identify anomalies within the target platform. Our approach does not require

prior detailed knowledge of the inner workings of the program or the platform

under test. Furthermore, we also propose the design of a generic runtime secure

program execution architecture. Our proposal protects the target program’s run-

time data, instructions and control flow jumps during its execution. To achieve

this goal without affecting the performance of the main processor we introduce a

dedicated hardware module. Finally, we provide the test implementations of our

proposals along with their performance measures.
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Chapter 1

Introduction

Contents

1.1 Setting the Scene . . . . . . . . . . . . . . . . . . . . . 18

1.2 The Evolution of Embedded Systems . . . . . . . . . 18

1.3 Motivation and Challenges . . . . . . . . . . . . . . . . 22

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . 26

In this chapter, we provide a brief discussion on the evolution of em-

bedded systems. We then deliberate on the motivation and challenges

of the thesis. This is followed by the contributions of the thesis to the

knowledge on security of embedded systems and program execution.

Finally, the chapter concludes by outlining the structure of the thesis

with a short description of all subsequent chapters.
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1.1. Setting the Scene 1. Introduction

1.1 Setting the Scene

We start the discussion of this chapter with the history of how embedded sys-

tems technology has evolved over the years since its inception. We then explain

our motivations for pursuing this research topic and all the challenges that this

involves. We also point out our rationale for implementing our security counter-

measure techniques. This is followed by a brief discussion of the contributions of

this thesis. Finally, we finish the chapter by outlining the structure for the rest

of thesis.

1.2 The Evolution of Embedded Systems

An embedded system is a complex computing machine made up of multiple mod-

ules, where each module can be considered a separate invention. In 1936 Zuse,

a German civil engineer, designed the first relay computer, also known as Z1

Computer [5]. The Z1 Computer and consecutive computer designs of the 1940’s

were dedicated for a single task. These computers had instructions made to ac-

complish a specific task that the computer was made to be used. Each computer

had a different binary-code program called a machine language that told it how

to operate [6]. Another feature of early computing systems was that they were

too large to be considered “embedded”.

In 1947 an important invention occurred, “The Transistor” [7]. A transistor is not

a computer but has greatly influenced the evolution of a computing system. In

1958 Jack Kilby and Robert Noyce presented their work at a conference in Wash-

ington, DC about a solid block of electronic equipment without connecting wires.

This became to be known as the first Integrated Circuit (IC) or chip [8]. Over

time the concept of re-programmable computing systems was developed from

a combination of computing technology, solid state device and traditional elec-

tromechanical sequence. This led to the emergence of sophisticated but smaller

ICs, such as embedded systems.
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One of the very first modern embedded systems was the Apollo Guidance Com-

puter designed by Charles Stark Draper [9]. The Apollo Guidance Computer

provided computation and electrical interface for guidance, navigation and con-

trol of the spacecraft and it was installed on each of the Apollo Control Module

(CM) and Lunar Module (LM). It had 16 bit word with 15 bits of data and one

parity bit. It also made use of both erasable and permanent memory blocks. The

erasable memory block was used to store intermediate results of communication,

such as the location of spacecraft, while the program data that did not need

changing was stored on the permanent memory.

In 1961 Boeing1 released the Minuteman I missile. Inside the missile was the

Autonetics D-17 guidance computer system [10]. The D-17 was a small serial-

binary computer designed for general purposes [11]. When the Minuteman II

missile went into mass-production in 1966, the D-17 was replaced with a newer

embedded system design, making it the first high-volume production and use of

embedded integrated circuit.

After these early and isolated embedded system applications, their price came

down, permitting their use in commercial products. In 1969 Nippon Calculating

machines approached Intel for the design of 12 custom chips for its new 141-PF

printing calculator. However, Intel’s engineers suggested a set of four chips called

the MCS-42. The MCS-4 contained 4 chips which were the Central Processing

Unit (CPU) - the Intel 4004 -, Read-only memory (ROM), random access memory

(RAM) and a shift register chip for IO purposes. Intel then launched the Intel

4004 with an advertisement in the November 15, 1971 issue of the Electronic

News titled “Announcing the new era in integrated electronics” [12]. That made

the Intel 4004 the first general purpose microprocessor that someone can buy

from the market and customise it to perform their desired operation.

Since then the size of microprocessors decreased while the number of transistors

and computing power increased significantly. In 1965 Gordon Moore in his pa-

1Boeing is one of the largest and leading aerospace companies and manufacturer of commer-
cial jet liners, defence, space and security systems.

2MCS-4 is a chip-set designed by Intel in the early 1970s. It contained the 4001 ROM, 4002
RAM, 4003 Shift Register and 4004 processor.
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per [13], predicted that the number of transistors per integrated circuit will be

doubled roughly every year and will continue to do so for at least a decade. The

Intel 4004 was the size of a fingernail but delivered the same computing power

as the 1940’s computer designs [14] which filled an entire room. Intel 4004 had

2,300 transistors and a circuit line width of 10,000 nanometers. By 2010 an Intel-

core processor holds 560 million transistors with a circuit line width between 32

and 45 nanometers. This trend of transistor miniaturisation led to integration of

additional functionalities into the chip without having to increase the size of the

device, leading to the emergence of the first microcontroller MCS-48 in 1976 [15].

The emergence of the first microcontroller, followed by the continuous increase in

sophistication and decrease in size of integrated circuits fuelled the next break-

through in the evolution of embedded systems. This time it came from Germany

and France, not from America. The French Postes, Télégraphes et Téléphones

(PTT) deployed integrated circuits embedded in a plastic card as telephone cards

[16]. The Germans telephone companies soon followed. These deployments pro-

vided a testing ground for embedded systems in a new application area, which

was later exported to other industries, as chip based cards provided increased

reliability and security.

The early versions of these cards were limited storage capacity memory cards

based on a simple fixed logic circuit. However, later in the 1990’s microprocessor

cards start to emerge onto the scene. These cards can store information as well

as dynamically process the stored information without relying on a fixed logic

circuit. The German post office conducted the first trials of microprocessor cards

for their analogue mobile telephone network. Their purpose was to authenticate

users when they join the network to avoid the cloning of mobile phones. The

success story of these trials resulted in the deployment of such cards in the GSM3

network. At the time, telecommunication companies all over the world were

rapidly adopting microprocessor cards as telephone cards. However, the banks of

the time did not embrace the microprocessor cards quickly.

The development of microprocessor cards coincided with another breakthrough

3Global System for Mobile Communication (GSM) is a standard for mobile telecommunica-
tion industry that is developed and promoted by the GSM Association (GSMA)
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in the field of system security and mathematics. The study of cryptography was

just emerging from government and military secrecies to the public. The secu-

rity offered by sophisticated cryptographic algorithms coupled with an improved

hardware design paved the way for microprocessor cards to be used as a security

tokens. This gave microprocessor cards the edge as a secured token over other

technologies. Shortly afterwards the banks followed the footprints of Telecom

companies in deploying microprocessor cards as bank cards.

The development of such cards was further facilitated in 1996 when engineers

from an IT technology provider (Schlumberger in Austin, Texas, United States

of America) designed a microprocessor card that can support a subset of the

Java4 programming language [17]. Such cards are also known as Java Card5.

This gave birth to the more sophisticated multi-application microprocessor cards,

which support the existence and execution of multiple applications from different

providers, such as the latest Java Card 3.0 [18] and MULTOS [19]. According to

[20], 9 billion Java Cards were deployed since 1998, making it the most widely

used embedded system in the world.

The proliferation of such cards into many other applications (for example, the

electronic identity cards, passports and driving license) coupled with the ad-

vancements in microelectronics helped embedded systems to become one of the

most widely deployed computing system. This is even further strengthened by

the technological progress in smartphones and the emergence of new technologies

(such as the NFC [21] and the Internet of Things [22]). By 2017 two billion NFC

enabled devices are predicted to be shipped [23]. Nearly three billion low-end (4,

8 and 16 bit) processors are sold every year [24]. According to [25] a person uses

250 chips or one billion transistors each day. This data was published in 2008

and it is a truism that these numbers will only increase with time.

4A general purpose programming language designed to create programs capable of running
on any computer.

5Java Card is a multiplication microprocessor card platform which supports subset of the
Java programming language and is promoted by the JavaCard Forum.
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1.3 Motivation and Challenges

A wide range of computing devices are being introduced into our modern life

style, performing different tasks, for example, alarm clocks, smartphones, smart

watches but also more security critical devices such as bank cards and physical

access control systems. With the advancement of the Internet and Internet based

services, such devices are increasing in number and sophistication. Furthermore,

they are increasingly involved in collecting and processing big amount of data

that is paramount for our security. For instance, cyber-physical systems that are

used in traffic monitoring and controlling systems.

The security and privacy concerns of users are increasing with the increasing

number of different devices through which users access associated services and

information. To curve these concerns, several techniques have been proposed to

provide hardware-based privacy and security protection. These proposals differ

in operation and capability from one system (or device) to another. In other

words, a proposed technique’s security and privacy architecture becomes specific

to the target device. For instance, the difference between the Trusted Platform

Module (TPM) [26] and Mobile Trusted Module (MTM) [27] is that they target

two different computing systems; a general-purpose computing device and a mo-

bile phone respectively. Other similar solutions are ARMs TrustZone [28] and

GlobalPlatform Trusted Execution Environment (TEE) [29].

Having a wide range of security protection options is good but it also means

that service providers and system manufacturers, that require security and pri-

vacy, have to implement and support a wide range of technologies. In addition,

over time several devices have evolved from the original purposes that they were

designed for. For instance, initially mobile phones were first designed for voice

and later text communications. Similarly, televisions were designed for news and

drama but now they are also used to access the Internet. This means in addition

to their traditional services they now need to implement internet security tech-

niques as well and the same goes to a number of other devices. The diversity in

protection methods creates a complex issue of implementating, integrating, using

and managing, not only for the service providers but also the consumers.

22



1.4. Contributions 1. Introduction

A possible solution to the aforementioned challenges is to have a unified hardware-

based security and privacy architecture that can be used across different comput-

ing platforms (e.g. smart cards, mobile phones, televisions and other embedded

devices). We divide the security of embedded systems into two phases; post-

production pre-deployment verification and runtime secure execution. The prin-

ciple is that the underlying device’s processor will have the same hardware-based

security architecture that can be used to securely execute all applications regard-

less of their nature. For example, service providers can offer their services on

mobile phones, tablets and televisions without a major design change.

1.4 Contributions

In this thesis we set out to analyse the security of embedded systems. We start

this by looking into the life cycle of an embedded device. Figure 1.1 shows the

different stages of an embedded device during its life cycle. An embedded system

contains a hardware and software components. Normally, both components have

to go through a number of stages before they can be integrated. The design,

synthesis and production stages of the hardware component refer to the pre-

manufacturing phases of the integrated circuit. Similarly, the code generation and

compilation are the code writing and transformation of the software respectively.

After reviewing the current security threats and countermeasures deployed in

embedded devices, we consider modifications to a number of stages within the

life cycle of an embedded device. The modified stages are highlighted in red in

Figure 1.1. The modifications are spread over different stages of an embedded de-

vice’s life cycle, from designing the integrated circuit to post-deployment program

execution. The questions of how these stages should be modified are the focus of

this thesis. Contributions of this thesis extend from chapter 5 to chapter 8.

The main contributions of this thesis are divided into pre-deployment and post-

deployment stages. From here on we refer to the pre-deployment and post-

deployment changes as platform verification and secure program execution. The

pre-deployment platform verification is concerned with identifying undesirable
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platforms or platform components that can not be detected by only purely func-

tional6 tests. Such threats include counterfeits and hardware Trojans. The run-

time secure program execution is tasked with ensuring the programs are executed

securely during runtime.

Counterfeits and hardware Trojans are designed to be difficult to detect with

purely functional tests. Thus we propose side channel based techniques to verify

the hardware and software platforms. First we propose a power consumption

based pre-deployment program control flow verification. Then we propose basic

block instructions integrity verification. This involves the creation of instruc-

tion and basic block level template creation. In addition, it also requires precise

template recognition methods. The principle behind this technique is, the user

creates instruction and basic block level side channel templates using a few legit-

imate devices. Later, using these templates he/she verifies the integrity of other

devices before they are assembled into the final product. The result of these

works are published in international conferences and the papers can be accessed

in [30, 31]. In addition, we improved the previously known highest instruction

based side channel template matching success, 70.1% [32] on PIC microcontrollers

[33], to 100%. Details of this work in available at [34].

The above proposal is to verify a device before it is integrated into the final

product. The second part of this thesis is protecting the programs against threats

that may come once the product is operational. This deals with program control

flow, integrity of executed instructions and runtime program data. To that effect

we propose a number of changes to the traditional design of embedded devices.

We propose an integrated watchdog module as part of the process design. This

watchdog takes additional information generated by a compiler and uses it to

ensure the security of the control flow jumps and executed instructions at runtime.

To protect the runtime data we propose a dual stack processor architecture,

where the second stack is used to ensure the integrity of items in the main stack.

We also proposed a dedicated hardware subsystem to verify the control flow and

instructions integrity. The module takes input from a compiler generated program

attribute and the main processor. Details of these proposals are discussed in the

6A test designed to verify the conformance between a device and its specification.
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second part of this thesis. Details of these proposals and their implementations

is presented in Chapters 7 and 8.

1.5 Thesis Structure

The rest of the thesis is organised as follows:

In chapter 2 we begin the discussion with a brief description of embedded sys-

tems. With the ever-changing characteristics of embedded systems discussion on

the basic architecture of embedded devices is needed. Therefore, in this chapter

we define embedded systems. We then explain the underlying architecture and

the different components that it comprises. Following that we discuss the de-

sign characteristics and application development process of embedded systems.

Finally, we present a list of practical examples.

Attacks on embedded systems are increasing in number and sophistication. These

attacks are generally divided into three main categories; invasive, semi-invasive

and non-invasive attacks. Invasive attacks physically modify the target device

irrecoverably. These changes range from removing the insulation layer of an IC,

reverse engineering to reconfiguring the underlying circuit. Non-invasive attacks

only require exposure to the surface of the target device but do not disrupt the

device’s normal operations. Semi-invasive attacks are in between invasive and

non-invasive attacks. In chapter 3 we discuss these attacks in detail and provide

a number of examples for each category.

Due to the recent increasing in number and sophistication of attacks in embedded

systems several countermeasures have been proposed. The countermeasures range

from modifying the source code, using dedicated external devices to re-designing

the processor architecture. In chapter 4 some of the most commonly utilised

countermeasures are discussed. Among them are code hardening techniques,

Trusted Platform Module (TPM), ARM’s TrustZone, redundant execution and

GlobalPlatform’s application management and trusted execution environment.

We provide explanation and examples of such countermeasures before concluding
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the chapter by highlighting the remaining security threats to embedded systems.

As with any manufacturing plants, integrated circuit manufacturers are increas-

ingly moving their foundry to countries with a cheaper cost structure. This

means electronic equipment makers have to buy their components from all over

the world. Therefore, verifying the integrity of such components before they are

assembled is paramount for the security of the final product. The first part of

our research, Part I: Post-production Pre-deployment Measures , deals

with this challenge. We present our findings of this challenge in chapters 5 and

6.

One of the pre-installed program’s attributes that a product manufacturer may

be interested in verifying is the program’s control flow paths. The easiest way

to do that would be for the component maker to supply the source code and

pre-computed valid paths. However, due to intellectual property issues this does

not happen often. Therefore, in our work, chapter 5,we use side channel leakage

of the device as an alternative information. We use the side channel information

to reconstruct the control flow path followed by the processor in executing the

target program. We then verify it by comparing it with the pre-computed valid

paths. This way the verifier does not need to have a prior knowledge of the inner

workings of the program and the component maker does not need to handover

sensitive company information.

Another attribute of a program that needs verifying is the integrity of executed

instructions. For the same reason as above we selected the side channel leak-

age of the embedded device to verify the instructions. Chapter 6 presents our

work in this area. Our procedure involves building side channel template of the

instructions and classification algorithm to recognise executed instructions from

the device’s leakage. Besides verifying the integrity of instructions this method

can also help identify changes to the device’s original design such as hardware

Trojan as it will be reflected on the side channel leakage.

The second part of our research, Part II: Runtime Secure Execution , deals

with the challenges of securely executing embedded programs. In this part of our

work we proposed techniques that will protect runtime data, control flow and
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instructions of a program during execution. Our proposals for runtime secure

execution are presented in chapters 7 and 8.

Runtime data is an important attribute of a program security during execution.

It is often targeted by an adversary to divert the program’s control flow, circum-

vent countermeasures, extract secret information or simply corrupt the execution

result. Such attacks usually involve manipulating items that are pushed/popped

into/from the stack. Several countermeasure have been proposed to stop or de-

tect manipulating stack items. In chapter 7, we provide a detail discussion of

a stack architecture, operations and countermeasures proposed previously. In

addition, we propose an alternative countermeasure that can be used to protect

runtime program data on embedded systems. We also provide details of our im-

plementation analysis, computational overhead and detection capability of our

proposal.

In chapter 8 we discuss runtime threats to embedded systems control flow and

instructions. We provide brief explanation of related works before we discuss our

proposals. We then discuss about our control flow verification covering inter- and

intra-functional execution flow branches. Furthermore, we propose instruction

integrity verification for executed instructions. Our proposals depend on having

a dedicated hardware subsystem. It also requires a modified compiler module to

extract program attributes during compilation. Finally, we discuss and present

implementation results.

Finally, in chapter 9 we conclude the thesis by summarising the contributions

and suggesting the future direction of this research. In the appendix section

we present additional materials and all source codes of our implementations are

available at a public repository [35].
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Embedded Systems Architecture

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Embedded Systems Architectures . . . . . . . . . . . 32

2.3 Characteristics of Embedded Processors . . . . . . . 36

2.4 Application Development Tools . . . . . . . . . . . . . 40

2.5 Example Applications . . . . . . . . . . . . . . . . . . . 43

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 44

In this chapter, we briefly introduce the main architectural design of

embedded systems. This is followed by a discussion on their main

characteristics. Then we elaborate on the application development

process and tools for embedded systems. Finally, we summarise the

chapter by listing the main talking points after a short discussion on

the some common embedded system applications.
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2.1 Introduction

An embedded system is an applied computer system with a dedicated function

within a larger mechanical or electrical system often with real-time constraints.

That distinguishes them from Personal Computers (PCs) and supercomputers.

However, the definition of “embedded system” is fluid and difficult to pin down,

as it constantly evolves due to advances in technology and decreases in the cost

of implementing various hardware and software components. In recent years,

embedded systems have outgrown many of their traditional descriptions. To

better understand them it is important to know what these descriptions are

and why they may not be accurate today. The most common descriptions of

embedded systems are:

• Embedded systems are more limited in hardware and/or software function-

ality than a personal computer (PC). This holds true for a significant subset

of the embedded systems family of computer systems. In terms of hardware

limitations, this can mean limitations in processing performance, power con-

sumption, memory, hardware functionality, and so forth. In software, this

typically means limitations relative to a PC including fewer applications,

scaled-down applications, no operating system (OS) or a limited OS, or less

abstraction-level code. However, this definition is only partially true today

as circuit boards and software typically found in PCs are being repackaged

into more complex embedded system designs.

• An embedded system is designed to perform a dedicated function. Most

embedded devices are primarily designed for one specific function. How-

ever, we now see devices such as personal data assistant (PDA)/cell phone

hybrids, which are embedded systems designed to do a variety of primary

functions. Also, the latest digital TVs include interactive applications that

perform a wide variety of general functions unrelated to the “TV” function

but just as important, such as e-mail, web browsing, and games.

• An embedded system is a computer system with higher quality and relia-

bility requirements than other types of computer systems. Some families
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of embedded devices have a very high threshold of quality and reliabil-

ity requirements. For example, if a car’s engine controller crashes while

driving on a busy freeway or a critical medical device malfunctions during

surgery, serious problems may occur. However, there are also embedded

devices, such as TVs, games, and cell phones, in which a malfunction is an

inconvenience but not usually a life-threatening situation.

Some devices that are called embedded systems, such as PDAs or web pads,

are not really embedded systems. There is some discussion as to whether or

not computer systems that meet some, but not all of the traditional embedded

system definitions are actually embedded systems or something else. Some feel

that the designation of these more complex designs, such as PDAs, as embedded

systems is driven by non-technical marketing and sales professionals, rather than

engineers. Whether or not the traditional embedded definitions should continue

to evolve, or a new field of computer systems be designated to include these more

complex systems will ultimately be determined by the industries and research

organisations. For now, since there is no new industry-supported field of computer

systems designated for designs that fall in between the traditional embedded

system and the general-purpose PC systems, this thesis supports the traditional

definition of embedded systems. That is a resource constrained integrated circuit

designed to perform a limited functionality (usually for a dedicated task) with

limited power supply under a harsh environment.

In Section 2.2 we discuss the generic architecture of an embedded processor and

its different components. Following in Section 2.3 we elaborate on embedded

system characteristics. We explore the design parameters and their classification.

In Section 2.4 we explain the process and tools required to develop a program

for an embedded device. We continue in, Section 2.5, with a discussion on some

common embedded system application areas. Finally in Section 2.6 we summarise

the main points of the chapter.
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2.2 Embedded Systems Architectures

At the centre of an embedded system there is always a processor that controls

its activities. This processor has multiple modules, including the Microprocessor

Unit (MPU), data and program memory, Input/Output module, bus and other

supporting modules depending on the application of the embedded system [36].

Fig 2.1 depicts the general architecture of a typical embedded processor.
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Figure 2.1: General architecture of embedded processor

The processor is powered up by supplying a voltage source through the power pin.

The clock is a timing signal which is used to synchronise the processor’s various

components while they execute arithmetic and logic operations or transfer data

between different locations. The clock signal can be generated either inside the

processor’s integrated circuit or obtained externally via the clock input pin. We

now discuss the different components of an embedded processor.

2.2.1 Microprocessor Unit

The Microprocessor Unit (MPU) is the main module of an embedded processor.

It is responsible for the execution of embedded programs that are installed inside

the processor. It performs all logic and arithmetic operations and also controls the
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processor’s status. To help it accomplish these activities it has three components:

the Arithmetic Logic Unit (ALU), Registers and the Control Unit (CU).

The ALU carries the arithmetic and logic operations required on the operands 1

in the program’s instructions. In some processors, the ALU is divided into Arith-

metic Unit (AU) and Logic Unit (LU). In such configuration the AU performs

the arithmetic operations and the LU deals with the logic operations. In ad-

dition, some processors contain multiple AUs, for instance one for fixed-point 2

and another for a floating-point 3 operations. Normally, an ALU has a direct

input and output access to the control unit, Random-Access Memory (RAM)

(described in detail in Section 2.2.2), and input/output modules (described in

detail in Section 2.2.3).

Registers are memory cells that are located inside the MPU. They are used for

quick reading, storing and manipulating of data. However, there are also des-

ignated registers for special purposes. Some of the special registers that are

paramount for executing programs are; the Instruction Register (IR), Mem-

ory Data Register (MDR), Memory Address Register (MAR), Program Counter

(PC), Accumulator and Status Register (SR). The IR hold the instruction that

is currently being executed. The MDR (also known as memory buffer register

or data buffer register) holds data that is fetched from the memory. The MAR

carries the address of a memory cell that needs to be fetched next. The PC

holds the address of the next instruction that needs to be executed. Normally, its

value is sequentially incremented unless an instruction is executed that changes

it (such as function call instructions and conditional or unconditional branching

instructions). The accumulator is a register which holds the intermediate result

of an arithmetic or logic operations before the final result is moved to the desti-

nation memory location or another register. The status register, is used to save

or indicate the status of the MPU. It has a number of bits that can be used to

flag exceptions, indicate the arithmetic status of the ALU and the reset status of

the MPU.

1A data on which the operation (specified by the opcode) is to be performed.
2A fixed-point is the representation of a number with fixed number of digits after the decimal

point.
3A floating-point is a number with no fixed number of digits before and after the decimal

point. In other words, the decimal point can float.
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The final component of the MPU is the Control Unit, which provides timing and

control signals for all other components of the embedded processor. Basically the

control unit tells the embedded device’s memory, ALU, I/O modules and other

components how to respond to each instruction executed by the processor.

2.2.2 Memory

In general there are two memory types in embedded processors: volatile and

non-volatile. A volatile memory is a storage where all previous data are generally

lost within at most a second or so when the power is turned off. Such storage

is also known as a Random Access Memory (RAM), mainly because any loca-

tion within it can be accessed directly and randomly, rather than sequentially

from some starting point, at approximately the same time and its contents can

be changed multiple times. On the other hand, non-volatile memory retains its

data even when the power source is removed. Examples of such memory are

Read-Only Memory (ROM) and Electrically Erasable Programmable Read-Only

Memory (EEPROM). Information can only be written into ROM once and cannot

be modified again. However, contents of an EEPROM can be erased and repro-

grammed repeatedly by applying a higher electrical voltage through the provided

program pin of the processor.

In Fig. 2.1, these memory types are classified under two categories; the Data

Memory and the Program Memory. The Program Memory is where the applica-

tion/program is stored. On the other hand, Data Memory is where the processor

stores data and variables during runtime. Runtime variables are created dur-

ing and deleted at the end of the program execution and are normally stored in

RAM. However, actual program instructions are required to persist even after

the power is removed and therefore are usually stored in ROM and EEPROM.

Different processors have different configuration of the Data Memory and Program

Memory. For instance the Data Memory and Program Memory of Harvard proces-

sors are organised into two separate blocks: the program memory and the data

memory [37]. They are on physically separate buses so that instructions can-

not be used as data or vice versa. In von Neumann architecture processors the
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MPU uses a single main memory to store both program instructions and data,

and are accessed by through a single bus. Details of Harvard and von Neumann

architectures are discussed in Section 2.3. Modern high performance microcon-

trollers incorporate aspects of both Harvard and von Neumann architectures.

The on-chip cache memory is divided into an instruction cache and a data cache

which store copies of values that are used frequently by the MPU. The MPU uses

Harvard architecture when accessing the cache.

2.2.3 Input/Output

An input/output is a communication between an MPU and the outside world,

possibly human beings or another embedded device. The input/output device

(module) assists the MPU in achieving the above task. The input/output data

can be can be analogue signal or binary information. The input is the signal or

data received by MPU from the outside world and the input device can be, for

instance, a keyboard, mouse or other sensors. The output is signal or data sent

by the MPU to the outside world and the output device can be a printer, display

monitor or a server.

2.2.4 Bus

The bus is a communication channel that data between different components

inside the processor is transferred through. Generally an embedded processor

has three different buses; address bus, data bus and control bus. The address

bus connects the MPU with the memory and carries the address of a location in

the memory. This address is then used to identify a specific location and before

performing an operation on it. A data bus is the pathway through which data

is transferred from MPU to memory and vice versa. The control bus carries a

control information between the MPU and other components of the embedded

processor. This control information carries control signals that indicate the status

of the various components.
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2.2.5 Supporting Devices

Apart from the various modules discussed above an embedded system may require

additional modules to successfully accomplish its tasks. For instance, some of

the most commonly integrated modules into embedded processors are Digital-

to-Analogue Converter (DAC) [38], Analogue-to-Digital Converter (ADC) [39],

serial and parallel ports, timer, etc. The DAC and ADC convert digital signal

to analogue and vice versa respectively. This helps the processor to interface

with the external world and other electronic equipments more easily. The serial

and parallel ports enable the processor to send and receive data either serially

or in parallel. A timer allows the processor to measure the precise execution of

selected tasks. Sometimes a processor may also have subsidiary MPUs, called

co-processors, which generally help the main processor with heavy arithmetic

and logic operations such as those used in cryptographic operations [40].

2.3 Characteristics of Embedded Processors

The heterogeneity of embedded systems provide engineers with a new set of

challenges. As in many areas in engineering, the design of embedded systems

is particularly driven by cost/benefit trade-offs. Furthermore, reliability, size

and time-to-market provide additional design obstacles to engineers. This can

make traditional computer system design methodologies difficult to successfully

apply in embedded systems. In the following sections we discuss the main design

challenges of embedded systems and their classification criteria.

2.3.1 Design Parameters

The uniqueness of embedded application systems makes generalisation very dif-

ficult. Nonetheless, there is a growing interest in the area of embedded systems.

The most common design challenges are size, reliability, durability and cost ef-

fectiveness [41, 42]. These challenges are discussed briefly below.
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Small Size and Light Weight: Like the name implies, embedded systems

are physically located inside larger electronic equipment. The size and weight of

an embedded system is determined by its application area, power consumption

and portability requirement. For example, smart cards are designed to be light

weight and fit into a pocket. Therefore, smart card processors are designed to

meet those requirements.

Safe and Reliable: Embedded systems have been used in tasks from sim-

ple temperature sensing to assisting the functionalities of human organs [43].

Although mission critical embedded systems design raise the obvious reliabil-

ity concerns, unexpected or premature malfunctionality of embedded systems in

applications like game boxes may result in eroding manufacturer’s reputation.

Withstand Harsh Environment: Many embedded systems are designed to

operate in uncontrolled environment. One of the main problem is excessive heat

especially in areas that involve combustion such as missile systems and many

transport systems. However, embedded systems are also designed to withstand

other harsh environments, like vibration, shock, water, corrosion, fire and other

physical abuses.

Cost Sensitivity: Although system designers of all types of electronic devices

or integrated circuits talk the importance of cost effectiveness, the sensitivity

changes dramatically when it comes to embedded devices. One of the reasons is,

embedded devices are deployed in mass and for a specific purpose. For instance,

low-end embedded systems used to monitor environmental changes in agricultural

farms [44].

2.3.2 Classification

Embedded systems can be categorised into different classes based on their at-

tributes. These attributes include the manufacturer company, architectural de-
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sign, processing size, memory layout and instruction set. Fig. 2.2 illustrates the

classification of embedded systems based on these attributes.

One category of embedded devices is based on the processing size of the embedded

processor. The size refers to the number of bits that the processor can handle

at a given time. In modern embedded systems the lowest number of bits that

the processor handles is 8 bits and the highest can go up to 32/64 bits. All

embedded systems have a memory where they save the program instructions and

other data. If the memory module is integrated inside a single chip with the other

processor modules it is known as Embedded Memory otherwise External Memory

embedded system. Every embedded system have a certain set of instructions that

can be used to program the processor to perform desired operation. Embedded

systems with a Reduced Instruction Set Computer (RISC) [45] architecture use

simple, single clock cycle instructions. However, for specific tasks, the number

of instructions per application can be reduced by having multiple operations

within a single instruction which lasts for several clock cycles. This gives a

Complex Instruction Set Computer (CISC) [46] architecture. For example, a

CISC processor needs only one instruction to multiply two memory contents

whereas a RISC processor needs four to perform the same task. Details of this

example is presented in Table 2.1.

mul mem-loc1, mem-loc2 load a, mem-loc1 a ← mem-loc1;
load b, mem-loc2 b ← mem-loc2;
mul a, b a ← a*b;
store mem-loc1, a mem-loc1 ← a;

Table 2.1: CISC, RISC and equivalent Pseudo- Code for Multiplying two Memory
Contents

Apart from the CISC and RISC architectures, an embedded system is said to

have a Application Specific Instruction Set Computer (ASIC) [47] architecture if

its processing unit and instruction set are customised to do a specific type of

job. Another classification criteria is the general architecture of the embedded

processor. The two most common embedded architectures are the von Neumann

and Harvard architectures. Those based on the von Neumann architecture [48, 49]

have a single data bus for fetching program instructions and program data. Both
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the program instructions and data are stored in a common main memory. When

the processor has to perform a task, it fetches the instruction first and then the

data associated with it. Harvard architecture processors use separate buses to

access the program’s instructions and data. Such a configuration allows parallel

memory access to occur. The processor can fetch both the next instruction and

its data simultaneously while executing the current instruction. This generally

leads to improved performance. The final category criteria is the manufacturer

company. In this case the processors are simply known by the name of the

company that manufactured them.

2.4 Application Development Tools

Developing applications for embedded systems involve the process of writing the

program code, compiling, debugging, simulating and finally loading the program

onto the target processor. This requires a set of software and hardware tools.

These tools can be standalone software programs or integrated into one develop-

ment software also known as Integrated Development Environment (IDE).

2.4.1 Source Code Editor

A source code editor is a software program specifically designed to simplify and

speed up code writing and editing for computing systems. Some of the main

features of a source code editor are indentation, syntax highlighting, key words

auto-complete and bracket matching. Such software can be a stand alone, like

gedit [50], an integrated module of a bigger system, such as MPLAB IDE [33],

or web based editor, like [51]. Code editors also support multiple programming

languages. For instance source code editors for embedded systems usually support

C, C++ and assembly programming languages. Below, Figure 2.3, is a picture

of gedit and MPLAB IDE. The gedit is a general purpose code editor whereas

MPLAB IDE is specifically designed for PIC microcontroller families.
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(a) Gedit. (b) MPLAB IDE.

Figure 2.3: Example of source code editor software.

2.4.2 Compiler

A compiler is a software program that translates a source code (usually written

in high-level programming language like C, C++, etc) into an object code that

is understandable by the underlying hardware of the target device [52]. A com-

piler performs all or most of the following tasks; code parsing, pre-processing,

semantic analysis, code generation and code optimisation. GCC is one of the

most accomplished open source compilers that supports multiple programming

languages [53].

2.4.3 Debugger

A debugger is a computer program that assists the detection and correction

of program errors in other computing programs. A debugger uses Instruction

Set Simulator (ISS) to mimic the target processor’s behaviour to execute the

program under test. To speed up the debugging process, debuggers offer two

modes of operation; full or partial simulation. Full and partial simulation refers

to simulating all or selected components of the device respectively. Simulation is

discussed in detail in Section 2.4.4. During evaluation the debugger stops when

it encounters a program bug or invalid data and notifies the programmer about

it by showing the location of the error on the original source code.
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2.4.4 Simulator

As defined in the Oxford Dictionary [54], “simulator” is a computer program

“that enables a computer system to execute a program written for a different

device/system”. An embedded system simulator is a computer program which

imitates the characteristics and functionalities of an embedded device. During

application testing the program code is loaded into the simulator instead of the

physical device memory, and executed. This process is helpful during prototype

verification as it minimises the time needed to load the code into a real device

during testing. An example of such a software, PIC simulator IDE, is shown in

Fig. 2.4. A PIC simulator IDE simulates the memory, processor, input/output

and other functionalities of a range of PIC microcontroller [55].

Figure 2.4: PIC simulator IDE, a software designed to simulate a range of PIC
microcontrollers.

2.4.5 Device Programmer

A device programmer refers to a device that configures the non-volatile memory

of the target processor. It takes the output file of the compiler and writes it to

the device’s internal memory. Normally, this is the last phase of the embedded

program development process. There are four types of device programmers; Gang
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programmers for mass production, development programmers for testing, pocket

programmers and specialised programmers for certain types of circuits only (such

as EEPROM). Example of a device programmer is the universal device program-

mer [56] used on PIC microcontrollers.

2.5 Example Applications

As discuss earlier, embedded systems have become integral part of our modern life

style. In Table 2.2, we list some of the common embedded systems applications

that we use on a daily basis.

Home Applications Dishwasher, Washing Machine, Microwave Oven,

Set-Top-Box, DVD player, Answering Machine,

Home Security Systems, Lighting system,

Remote Controller, Air Conditioner, Sprinklers.

Business Equipment ATM, Alarm Systems, Card Readers, Fingerprint

Detectors, Automatic Toll Systems,

Voice Recognisers, Vending Machine, Barcode Reader.

Communication Router, Hub, Cell Phone, Web Camera, Modem,

Systems Network Cards, Tele-conferencing System.

Aerospace GPS, Automatic Landing System, Space Robotics

Flight Control Inertial Guidance System, RADAR.

Industrial applications Smart Phone, Fax Machines, Photo Copiers,

Printers, Scanners, Data Collection System,

Voltage, Current and Temperature monitoring,

Hazard Detecting System, Industrial Robot.

Automobile Fuel Controller, Brake System, Cruise Control,

Transmission Controller, Active Suspension,

Air-bag System, Air-Conditioner.

Game and Video games, Robot, MP3, Mind Storm, Smart Toy.

Entertainment

Education Smart Board, Smart Room, OCR, Calculator,
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Smart Cord, Stereo Systems, Projector.

Security Systems Face Recognition System, Finger Recognition,

Iris Recognition, Building Security System,

Airport Security System, Alarm System, Digital

Access Card, Fingerprint based Smart Card.

Consumer Electronic Cell phones, Cordless Phones, Digital Cameras,

Products Video recorders, DVD players, TV set, Calculators,

MP3 Players, Stereo Systems, Cable TV tuners,

Digital watches, Personal PDA, iPhone.

Medical Technology CT scanner, ECG, EEG, EMG, MRI, Glucose

Monitor, Blood Pressure Monitor, Diagnostic

Device, X-ray machines, Digital Pulse Monitor.

Table 2.2: A list of embedded system applications.

2.6 Summary

Embedded systems are becoming mandatory tools to perform our day to day

activities. As such providing a brief discussion about them is important to un-

derstand how embedded systems work and to establish a background information

for the subsequent chapters. Therefore, we started this chapter by defining em-

bedded systems and how this definition has changed over time. We discussed

the generic architecture and all the modules that are incorporated for an em-

bedded device to properly function. We then proceeded to discuss the main

design parameters of embedded systems and their classification criteria. Finally

we provided a list of embedded system applications that we use on a daily basis.
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Attacks on Embedded Systems
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In this chapter, we review the different attack categories on embedded

systems. We then discuss on the three widely used attack categories;

invasive, semi-invasive and non-invasive attacks. Under each of these

categories we discuss the stages involved and their applicability in de-

tail. Finally, we summarise the chapter by listing the core discussion

points of the chapter.
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3.1 Introduction

Embedded systems are widely used in applications where conventional worksta-

tions or server computers are not suitable due to their functionality, cost, power

requirements, size and weight. Such application areas may range from a simple

room temperature controller to highly sophisticated systems like bank cards and

commercial and military communication equipments. However, the very same

characteristics that make embedded systems ideally suited for such applications

also lead to a set of potential vulnerabilities.

Some of the main characteristics of embedded systems are limited processing

power, limited power consumption and their ability to be deployed outside the

immediate control of the owner and sometimes even in hostile areas. Limited

processing power means resources of embedded systems can only be dedicated

to perform certain tasks. This makes them vulnerable to certain threats that

are not applicable or at least preventable on conventional computers. Limited

processing power implies that an embedded system can not run applications that

are used for defence against attacks in conventional computers, for example virus

scanner and intrusion detection system. The majority of embedded systems oper-

ate on batteries or limited power supply, therefore, increased power consumption

means reduced lifetime. Hence embedded systems can only run low power con-

suming dedicated tasks with limited attack countermeasures. Furthermore, their

deployability outside the immediate control of the owner or sometimes in hostile

territory1 makes them inherently vulnerable to attacks that exploit the physical

proximity of the attacker. In this scenario a user can also be the attacker.

In recent years several attacks that exploit the above characteristics and others

not mentioned here have been explored in detail. These attacks are discussed

in subsequent sections of this chapter. The abuse of such attacks may range

from aiming at stealing secret information, draining the power supply, reverse

engineering its applications to gain unauthorised access. These security threats

to embedded systems are categorised by the intrusiveness of the attack. Some

1Outside the control of the manufacturer or issuer, where the device could be subjected to
physical and/or logical attacks.
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attacks destroy the embedded system’s structure irreversibly while others observe

its properties through available output channels. In general they all fall into one

of the following categories; invasive, semi-invasive and non-invasive attacks.

Section 3.2 discusses invasive attacks and the different stages and techniques that

they involve. Section 3.3 provides a brief explanation of semi-invasive attacks

and some of the most common examples of semi-invasive attacks. Section 3.4

discusses the final class of attacks, non-invasive, and provides a brief explanation

of the most common attacks that fall under this class. Finally, we summarise the

chapter in Section 3.5 by mentioning the core points.

3.2 Invasive Attacks

Invasive attacks are attacks that require the processor in an embedded system to

be exposed and directly attacked through physical means [57]. This category of

attacks, at least in theory, can compromise the security of any secure processor

chip. However, these attacks require a set of very expensive equipment and large

investment in time to produce results. These equipments are discussed in the

subsequent subsections. Invasive attacks modifies some of the physical properties

of the processor irreversibly [58]. Successful invasive attacks may involve per-

forming a number of different tasks precisely at different stages of the attack [59].

The result of such attacks could be revealing secret information kept inside the

processor, modifying the original circuit design and/or reverse engineering the

semiconductor chip itself [60]. Some of the common invasive attack methods are

discussed below in detail.

3.2.1 Delayering

An IC chip is made of multiple layers of metal and silicon oxide. An IC chip is

covered by a global top layer of epoxy resin. The layer below is made of silicon

oxide which protects the chip from environmental hazards and ionic contamina-
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tions. Delayering is the process of accurately stripping off each layer, one at a

time, while keeping the surface flat before gaining access to the underlying chip

circuit. This requires detailed removal techniques. The techniques include a com-

bination of dry and wet etching, and polishing. For instance, the epoxy resin,

is normally removed using a fuming nitric acid [61]. However, before applying

such removal techniques, several scanning methods, such as Scanning Electron

Microscopes (SEM) [62] and Transmission Electron Microscopes (TEM) [63], are

used to determine the composition and thickness of each layer [64].

3.2.2 Block Localisation

A semi-conductor chip2 is comprised of multiple components. During Block Lo-

calisation the attacker uses a decapsulated chip to locate these different compo-

nents/blocks of the chip. An IC chip block includes the RAM, EEPROM, ROM,

Chip logic and BUS. Depending on the nature of chip it may have other com-

ponents like cryptographic processor and random number generator. Figure 3.1

shows the different components of a decapsulated Infineon processor.

ROM The Read-only Memory (ROM) is a critical part of an IC chip. It is a

type of non-volatile memory where the immutable code of the embedded system,

such firmware that does not require changes, is stored. The contents of ROM can

not be modified.

RAM The Random Access Memory (RAM) is one of the main components of

an embedded device. It is a temporary working storage used during application

execution. Program data and instructions fetched from permanent memory are

stored in RAM.

EEPROM EEPROM which stands for Electrically Erasable Programmable

Read-Only Memory is a non-volatile memory used to store data that must be

2An integrated circuit on a semiconductor material, such as silicon.
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Figure 3.1: Different blocks of a decapsulated Infineon SLE66 [1].

kept after power removal. Unlike ROM individual bytes of EEPROM can be

read, erased and re-written.

BUS A BUS is a communication system that transfers data between the dif-

ferent components inside an embedded device. Early bus were parallel electrical

wires with multiple connections but the term is now used for any physical ar-

rangement that provide the same logical functionality.

Chip Logic This refers to the core circuit of the embedded processor. This

could be either a fixed logic circuit that performs the same operation every time

or a programmable general purpose circuit.

Other components Apart from the components listed above an embedded

system could also have other modules. Such modules may include cryptographic

processor engine, a random number generator or any other component that helps
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the embedded system perform its task [65].

3.2.3 Microprobing

As depicted in Figure 2.1, an embedded device has multiple components and

these components are linked together through an internal wiring, also known

as the BUS. Information flows between these components via the BUS. Prob-

ing is the process of attaching microscopic needles onto this internal wiring of

a decapsulated chip. Once the probes are attached the attacker can read out

information that was not intended to leave the chip. Figure 3.2 shows probing

needles attached to the internal wirings of a chip with its layers removed. Micro-

probing attack require tools like microscope, micropositioners, probing needles

and amplifiers [66, 67].

Figure 3.2: Probing needles on a decapsulated semiconductor chip [2].

3.2.4 Circuit Extraction

Following a successful removal of each layer, the attacker analyses the decapsu-

lated chip to understand the structure, functions and circuit of a semiconductor

device. This requires photographing the chip and detailed analysis of the pictures
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manually or with the help of tools. Figure 3.3 shows a photograph of a decap-

sulated chip being analysed on a computer, identifying all the transistors, coils,

resistors, capacitors, conductors and their interconnection. The result of such

analysis may include a circuit diagram and circuit simulation. A standard netlist

file may also be created using the information gathered. The resulting netlist3

will then be used to create an identical device to the original one. A practical

example of circuit extraction is described in [68].

Figure 3.3: Taking microscopic pictures of the inner circuitry of a semiconductor
chip [2].

3.2.5 Circuit Modification

At its extreme form invasive attacks can be used to destroy or create new tracks

by using focused ion beams [60]. For example, traditional semiconductor chip

manufacturers typically use a test circuit to read and write the entire memory

space while a fuse was present. When the chip leaves the manufacturing process

the fuse is destroyed. However, an attacker may use a focused ion beam to re-

introduce the fuse and therefore, have access to the entire memory address of the

chip.

Another classic example of chip modification attack is reconfiguring the output of

security components. For instance, random number generators are usually part

of modern secure embedded devices. On a decapsulated chip an attacker may

3A netlist is the description of a circuit connectivity in integrated circuit.
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reconfigure the output tracks4 of random number generators to force an all ‘0’,

all ‘1’ or a static value.

3.3 Semi-Invasive Attacks

Semi-Invasive attacks are attacks that require the external surface of the chip to

be exposed to the attacker. At the most extreme they require the decapsulation

of the target device. As such they lay between invasive and non-invasive attacks

in terms of the change that they cause to the device’s integral structure. They

are less damaging to the target device when compared to invasive attacks but

more intrusive compared to non-invasive attacks. Usually these type of attacks

use external equipment to induce errors to the contents of the embedded system,

then later exploit these errors to deduce secret information stored inside the

target device. In the subsequent sections we discuss some of the most common

semi-invasive attacks.

3.3.1 Local Heating

Very often, sensitive information such as cryptographic keys and passwords, are

stored in non-volatile memory such as EEPROM and flash5 of secure micro-

controllers. Inducing memory errors could enable an attacker to deduce this

information. Such attacks do not require expensive equipments and do not cause

mechanical damage of the silicon structure. One practical implementation of such

attacks is using local heating. The main principle behind local heating is that

by focusing a strong enough heat generator, like laser radiation, on a small area

inside a semiconductor chip an attacker can modify its contents which eventually

will lead to a leakage of sensitive information. In [69] a local heating attack, using

laser radiation, on a common microcontroller Microchip PIC16F628 [70] has been

4Conductor, normally copper, lines connecting the random number generator output pins
with the other components of the device.

5A non-volatile memory storage that can be erased and reprogrammed electrically.
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demonstrated. In this paper both the EEPROM and Flash memories were found

to be sensitive to local heating.

3.3.2 Ultraviolet Attacks

Ultraviolet attacks are among the first attacks used on microcontrollers and they

were introduced in the mid seventies [71]. A UV attack involves two stages;

locating the area of interest (like a fuse) and resetting its value. In another

word, the attacker changes the value of a selected memory location by using a

UV light. Initially, UV attacks were considered invasive attacks. However, as

they only require decapsulation of the semiconductor chip, at the most of their

intrusiveness, they were later categorised as semi-invasive attack.

3.3.3 Optical Emission Analysis

The existence of photon emission regarding the switching of transistors in semi-

conductor device is a well known. In fact optical emission analysis of semi-

conductor devices have been widely used in various device malfunction analysis

techniques to detect faults in chip circuitry [72]. Apart from device malfunction

analysis, optical emission analysis has been used to attack implementation of AES

on embedded systems [73]. However, there are two main problems associated with

optical emission analysis. These are; a) not every transistor switching produces

emission of photons. That means the photon emission of the circuit must be col-

lected and added for some time. b) the electrical current of the photon emission

sensor adds noise in the measurement and increases the time required to achieve

a reasonable signal-to-noise ratio of the measurement.
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3.4 Non-Invasive Attacks

In a non-invasive attack, the attacker attacks the embedded device only using

directly available interfaces without permanently damaging/altering the device.

Such attacks can be particularly dangerous for two main reasons. Firstly, the

owner of the compromised device might not notice that the device has been

attacked. For example it is unlikely that compromised keys will be revoked unless

they are abused by the attacker as the user will simply not notice it. Secondly,

non-invasive attacks often scale well, as the required attack equipment can usually

be reproduced and updated at low cost.

There exist two main types of attacks; passive non-invasive and active non-

invasive attacks. Passive non-invasive attacks only observe and exploit the de-

vice’s properties while it performs certain tasks. This type of attack often referred

as side channel attack (discussed in Section 3.4.1 in detail) and the property ex-

ploited is often the power consumption and/or electromagnetic emission. Active

non-invasive attack temporarily injects a fault into the device’s operations with-

out permanently damaging it (discussed in Section 3.4.3 in detail). Below we

discuss the three main non-invasive attacks in more detail.

3.4.1 Side Channel Analysis

A side channel is information leaked by an electronic devices while performing

certain procedures. Electronic equipment, such as embedded devices, use electric

current to turn on or off transistors. The instantaneous electric current that the

device consumes depends on how many transistors that the executed instructions

and program data turn on and off. This difference in the electric current is

reflected in the power consumption and electromagnetic emission of the device.

The power consumption and/or electromagnetic emission can then be recorded

and analysed to extract secret information from the target device.

Over the years multiple forms of side channel analysis attacks have been proposed.

If only a single trace is enough to mount a side channel attack it is known as
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Simple Power Analysis (SPA) or single electromagnetic analysis [74]. The SPA

is the visual inspection and interpretation of the target device’s side channel

trace. However, the dependence is quite small or obscured by noise. This can be

compensated by collecting multiple traces and subjecting them to a statistical

analysis. This attack is known as Differential Power Analysis (DPA) [75] and

differential electromagnetic analysis [76]. The DPA uses more advanced statistical

tools to analyse a number of power traces, usually 1000s, collected from the target

device. An important aspect in these attacks is the traces must be aligned, that

is they must be combined in time-domain with corresponding steps coinciding

between all traces. Another type of side channel analysis attack is the Template

Power Analysis (TPA). In TPA the attacker builds a side channel template model

using an identical device and then use the template to attack the target device

while in operation [77]. A TPA can be used to reveal secret information or

full/partial reverse engineering of embedded program [78].

In the context of cryptology, side channel leakage can be used in retrieving se-

cret keys that were kept inside the embedded devices, such as smart cards and

other security tokens. Side channel information such power consumption [79, 77]

and electromagnetic emission [80, 81, 82] have been successfully used in attack-

ing implementations of cryptographic algorithms including AES [83], DES [84]

and RSA [85]. Besides extracting cryptographic keys, side channel information

has also been used to reverse engineer embedded device applications [86, 32, 87].

The attacker constructs a power consumption template of the target device us-

ing an identical reference device, then use the templates to recognise executed

instructions from the target device’s power consumption waveform.

Another well known side channel attack is timing attack. In this class of attack

the attacker attempts to compromise a cryptosystem by collecting and analysing

the time taken to execute a cryptographic algorithm. Every logical operation in

a computer takes time to execute, and the time can differ based on the input.

With a precise measurement of timing an attacker can deduce the cryptographic

key involved in the operation [88, 89, 90].
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3.4.2 Data Remanence

Data remanence is the residual physical representation of data that has been

erased or overwritten. In non-volatile programmable device, such as EEPROM

and flash, bits are stored as charge in floating gates of a transistor. After each

erase operation some of the charge still remains. Residual data after erasure was

first found in magnetic media but then appeared to be the case for other memory

types [91, 92]. This can lead into extraction of the saved data even after it is

erased. Low temperature data remanence is dangerous to tamper resistant se-

curity modules which store keys and secret data in a battery backed-up SRAM.

Long time data storage causes the data to be “burned-in” and likely to appear

after power up. This makes security devices vulnerable to such attacks. Further-

more, lowering the temperature increases the retention time of information after

erasure. In an experiment that involved 8 selected SRAMs the data retention

was found to be varying from 0.1 to 10 sec at room temperature, 1 to 1000 sec

at −20 ◦C and 10 sec to 10 hours at −50 ◦C [93].

3.4.3 Fault Injection

Fault injection is the deliberate introduction of faults into a system and the

subsequent examination of the system for the errors and failures that result [94].

Initially fault injection were used as a hardware and software testing techniques.

It was performed on either simulations and models or working prototype. In this

manner the weakness of the system can be discovered and fixed before the final

design is released.

However, the same technique can also be used in attacking embedded devices

either to extract secret information which were kept inside the device or gain

unauthorised access. The first use of a fault injection attack to extract a secret

key from a cryptographic algorithm was presented in a work by the Bellcore

research team in [95]. In their work they showed how a single fault could be

used to break Chinese Remainder Theorem (CRT) based RSA implementation.

Later, Biham and Shamir introduced the concept of Differential Fault Analysis
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(DFA) [96] on the Data Encryption Standard (DES) [84]. Subsequently, the same

concept led to different attacks [97, 98, 99, 100, 101] on the Advanced Encryption

Standard (AES) [83]. Additional information on fault attacks on cryptographic

algorithms is available in [102, 103, 104].

3.5 Summary

Embedded systems are increasingly deployed in a security critical environments.

As a result attacks on them are on the rise. Before proceeding to our work a

brief discussion on these attacks was needed to understand the security threats

of embedded systems. In this chapter, we reviewed the security threats that par-

ticularly target embedded systems. We started the chapter by briefly explaining

the main criteria of attacks on embedded systems. We then proceed to the differ-

ent classes of attacks, invasive, semi-invasive and non-invasive attacks, and the

characteristics for such classification. We then explored invasive attacks in detail

and the different stages that an attacker is required to perform. We talked about

IC chip delayering, locating the different components, micro-probing, chip ex-

traction and modification techniques. Following this we elaborated semi-invasive

attacks. Under this section we covered some of the most common examples of this

class of attacks; local heating, UV attacks and optical emission analysis. This was

followed by a discussion on the third and final category of attacks; non-invasive

attacks. In this section we deliberated about side channel, data remanence and

fault injection attacks.
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In this chapter, we discuss the common security countermeasures used

to secure embedded systems. First, we deliberate on the different secu-

rity techniques that are used by designers and application developers.

Then we explain the remaining security challenges that need to be met,

both at pre-deployment and runtime. Finally, we finish the discussion

by pointing out the core points.
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4.1 Introduction

As discussed in chapter 3, attacks against embedded systems have increased in

number and sophistication. In many of the modern embedded system applications

security is indispensible. Examples of such applications are transport (avionics,

space, automotive, trains), missile control, smartcards and other factory automa-

tion systems.

To understand the necessity of security in embedded system let’s discuss some

of their common applications. For instance, smartcards are issued to individual

customers by organisations so customers can access the organisation’s services

in a secure and reliable manner. Areas where smartcards are deployed include

telecommunications, banks and access control. The failure to securely access

these services securily may result in monetary, reputation and even physical harm.

Another example is the avionics and automative industry. The Electronic Control

Unit (ECU) plays a crucial role in ensuring the safety and reliability of cars.

These ECUs are embedded devices that control different operations in a car. In a

modern car upto 70 ECUs [105], are used and if any of them can be compromised

the safety of the car and passangers may be at risk.

To ensure the safety and reliability such systems from attacks, several counter-

measures have been proposed and implemented. These countermeasures range

from program source code modification, tamper-resistance sensor shields, deploy-

ing a dedicated security chip to using application specific processors.

In section 4.2, we discuss a source code hardening technique that introduces cer-

tain redundancy to the source code so attacks in progress may be detected. In

section 4.3 we explain protections against side channel attacks. Following, in

section 4.4 we describe tamper resistant methods against physical attacks. A

hardware and time redundant execution against fault injection attacks is dis-

cussed in section 4.5. Then we deliberate on Trusted Platform Module (TPM)

in section 4.6 and ARM’s TrustZone in section 4.7. In sections 4.8.1 and 4.8.2

we explain GlobalPlatform’s application management and trusted execution en-

vironment respectively. Then in section 4.9 we point out the remaining security
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challenges and in section 4.10 we conclude the chapter by summarising the main

discussion points.

4.2 Code Hardening

A program code is a group of executable processor instructions designed to achieve

the desirable output. During execution of the program each instruction performs

a certain operation. Now these instructions can be individually targeted by an

attacker in order to force the processor into generating a faulty output. An

example of such attack is the fault injection attacks, where the attacker uses

equipments such as laser generators and clock manipulators to induce the fault

[106]. This type of attack can be prevented by manipulating the code in such

a way that either; (a) it is difficult for the attacker to locate and target these

instructions or, (b) detect induced faults during execution of the program. This

code manipulation process is know as code hardening.

One type of code hardening technique is the code obfuscation. Obfuscation is

defined as “to make something obscure, unclear and unintelligible” by Oxford

English Dictionary [107]. In software development context obfuscation is the

deliberate act of creating a source and/or machine code that is difficult for other

programers to understand and manipulate. Program developers may deliberately

obfuscate code to conceal its purpose or logic in order to prevent tampering with

it.

A common method of the latter code hardening technique is duplicating all or

parts of the code. The main principle behind this technique is that induced

faults should be detected by executing the duplicate codes and checking if both

the results match or not. If both redundant codes generate the same result then

the code is considered as secure; otherwise, the execution is terminated. The

redundant code may be inserted either into the source or the machine code. In

the case of the former, the source code has to pass through a tool, also known

as source-to-source rewriters, that essentially inserts the code redundancy by du-

plicating selected statements. Source-to-source rewriters however, suffer from
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major drawbacks. Firstly, modern compilers are equipped with a code optimisa-

tion tools. One of such tools is the Common Subexpression Elimination (CSE)

[108] which basically removes redundant expressions/statements. During compi-

lation the CSE searches for identical expressions and removes them. One of the

great advantages of CSE is compacting the program size by removing duplicated

codes. Now this risks the undoing of the security protection that is provided by

redundant code execution in the first place. To ensure that sufficient redundancy

survives the CSE and still remains in the generated code, the source-to-source

rewriter inserts either;

1. un-optimised and un-analysed code by disabling CSE or

2. a code that is complex enough to withstand the compiler optimisation and

analysis process.

Secondly, source-to-source rewriters, are very dependant on the language and

the compiler being used. Hence, they need to be redeveloped (ported) for every

programming language. In other words, neither the protection not the minimal

performance overhead can be ported between compilers and languages. Due to

the above drawbacks, it still remains a challenge how to guarantee the presence

of only the necessary redundancy with acceptable performance overhead. It is

very difficult to have a redundant source code statements that;

1. would survive the compiler optimisation,

2. do not limit the compiler’s existing analysis and optimisation scope.

To avoid the above source-to-source rewriter drawbacks in certain cases redun-

dancy is inserted onto the binary code of the program. Such tools are also known

as Link-Time rewriters. These rewriters do not suffer from the same drawbacks

as the source-to-source code rewriters. However, they suffer from a lack of high-

level semantic information such as symbol and type information. This lack of

information limits the precision and scope of protection provided by the binary

code rewriters. The best example of binary rewriter is Diablo [109].
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4.3 Side Channel Protection

As discussed in Section 3.4.1, side channel attacks exploit the dependancy of

leakages such as power consumption and electromagnetic emission. Therefore,

protection against side channel attacks try to disguise the dependency of side

channel leakage on the data processed. This is usually achieved by adding noise

to the side channel leakage. The design challenge is putting enough countermea-

sure to make the attack too expensive to be interesting [110]. Several software

and hardware implementations of side channel protection are proposed. Among

them is Masking [111], which offers protection against DPA un-correlating the

intermediate results to the actual (unmasked) intermediate values.

4.4 Tamper Resistance

Several advanced packaging and attack response techniques have been recom-

mended by the Federal Information Processing Standard (FIPS 140-2) [112]. For

example, the standard recommends four increasing levels of physical (and other)

security requirements that can be satisfied by a secure system. Security Level 1

requires minimum physical protection, Level 2 requires the addition of tamper-

evident mechanisms such as a seal or enclosure, while Level 3 specifies stronger

detection and response mechanisms. Finally, Level 4 mandates environmental

failure protection and testing (EFP and EFT).

Physical attacks are one of the most effective attacks on embedded systems.

Thus, modern embedded systems implement sensor mesh to detect any physical

attacks on progress [66]. Simple configuration of top-layer sensor mesh is depicted

in Fig 4.1. During operation the sensor line is checked for any interruptions or

short circuits which trigger countermeasure alarms. The countermeasure alarm

could be processor halt or flash erase.

Another common countermeasure for physical attacks, for instance micro-probing,

is changing the order of data bus to make it difficult to observe bus signals, known
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(a) Top-layer sensor mesh setup.

(b) Top-layer sensor mesh
implementation on ST16SF48A.

Figure 4.1: A top layer sensor mesh setup and practical implementation [3].

as bus scrambling [16]. Figure 4.2 depicts a clear and scrambled versions of a

data bus lines. Bus scrambling can be static, chip-specific or session-specific.

Static scrambling uses the same scheme in every chip. This makes it difficult for

an attacker to observe data bus order but not for a very long time for dedicated

attacker.

(a) Clear bus order. (b) Scrambled bus order.

Figure 4.2: A clear and scrambled bus lines [4].

The security provided by static scrambling can be improved by deploying chip-

specific scheme. This can be further strengthened by using session-specific scram-

bling circuits where the order of the bus is changed for every session. In addition

to scrambling encrypting information sent on global buses, such as data and

address bus, is a common practice on modern secure processors [113, 114]. To

achieve this the CPU incorporates a dedicated unit that performs the crypto-

graphic operations. Furthermore, external memory contains only encrypted data

that will be decrypted when fetched into the CPU cache.
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4.5 Redundant Execution

A straight forward way of checking whether a program is executed correctly is to

run it more than once and compare the results. When the results do not match

an alert signal is transmitted to a decision block. At this stage the decision block

responds by either reseting the system or activating a dedicated countermeasure.

Redundant execution can be implemented in two ways; hardware redundancy

or time redundancy. In hardware redundancy, selected or all hardware blocks

of the embedded system are implemented more than once. During execution

the program is fed to all blocks and their results are compared for match. Fig-

ure 4.3, shows a simple configuration of hardware redundant execution, where

the program is executed by two identical but separate hardware blocks.
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Figure 4.3: A simple hardware redundant execution setup.

On the other hand, in time redundancy the program is executed by the same

hardware block but multiple times. In this configuration a delay circuit is used

to feed the program to the processor multiple times. Figure 4.4, depicts a simple

time redundant execution setup, where the program is executed twice by the

same hardware. As in hardware redundancy, the results are checked for match.

64



4.6. Trusted Platform Module (TPM) 4. Security In Embedded Systems

	
  

Hardware	
  
Block	
   Comparator	
  

Decision	
  
Block	
  

Program	
  

Result	
  

Reset	
  
Fault	
  Detected	
  

Reaction	
  Trigger	
  

Result	
  1	
  

Result	
  2	
  Delay	
  

(b) Time redundancy

Figure 4.4: A simple time redundant execution setup.

4.6 Trusted Platform Module (TPM)

The TPM chip, whose specification is defined by the Trusted Computing Group

[26], is known as a hardware root-of-trust into the trusted computing ecosystem.

Currently it is deployed to laptops, PCs, and mobiles and is produced by manu-

facturers including Infineon [115], Atmel [116] and Broadcom [117]. At present,

the TPM is available as a tamper-resistant security chip that is physically bound

to the computer’s motherboard and controlled by software running on the sys-

tem using well-defined commands. The TPM MOBILE with Trusted Execution

Environment has recently emerged; its origin lies in the TPM v1.2 a with some

enhancements for mobile devices [26] . The TPM provides:

1. The Roots of trust includes hardware/software components that are in-

trinsically trusted to establish a chain of trust that ensures only trusted

software and hardware can be used.

2. The Platform Configuration Register “PCR” in the most modern

TPM includes 24 registers. It is used to store the state of system measure-

ments. These measurements are represented normally by a cryptographic

hash computed from the hash values (SHA-1) of components (applications)

running on the platform. PCRs cannot be written directly; data can only
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be stored by a process called extending the PCR.

3. The RSA keys: There are three types of RSA keys that TPM generates

and which are considered as root keys (they never leave the TPM):

(a) Endorsement Key (EK): This key is used in its role as a Root of

Trust for Reporting. During the installation of an owner in the TPM,

this key is generated by the manufacturer with a public/private key

pair built into the hardware. The public component of the EK is

certified by an appropriate CA, which assigns the EK to a particular

TPM. Thus, each individual TPM has a unique platform EK. For the

private component of the EK, the TPM can sign assertions about the

trusted computer’s state. A remote computer can verify that those

assertions have been signed by a trusted TPM.

(b) Storage Root Key (SRK): This key is used to protect other keys

and data via encryption.

(c) Attestation Identity Keys (AIKs): The AIK is used to identify the

platform in transactions such as platform authentication and platform

attestation. Because of the uniqueness of the EK, the AIK is used

in remote attestation by a particular application. The private key

is non-migratable and protected by the TPM and the public key is

encrypted by a storage root key (or other key) outside the TPM with

the possibility to be loaded into the TPM. The security of the public

key is bootstrapped from the TPM’s EK. The AIK is generally used

for several roles: signing/reporting user data; storage (encrypting data

and other keys); and binding (decrypting data, used also for remote

parties).

4.7 ARM’s TrustZone

The ARM’s TrustZone provides the architecture for a secure trusted platform for

a wide range of devices including handsets, tablets, wearable devices and other
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enterprise systems. The underlying concept is the provision of two virtual pro-

cessors with hardware-level segregation and access control [118, 28]. This enables

the ARM’s TrustZone to define two segregated execution environments described

as Secure world and Normal world. A generic architectural view of ARM’s Trust-

Zone is depicted in Fig. 4.5. The Secure world executes the security and privacy-

sensitive components of applications and normal execution takes place in the

Normal world. The switch between the secure and normal world is managed by

a dedicated module described as Monitor Mode. The ARM’s TrustZone is imple-

mented as a security extension to the ARM processors (e.g. ARM1176JZ(F)-S,

Cortes-A8, and Cortex-A9 MPCore) [28], which a developer can opt to utilise if

required.
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Figure 4.5: Generic architectural view of ARM TrustZone

4.8 GlobalPlatform

GlobalPlatform is a inter-industry organisation that publishes and promotes secu-

rity and interoperability among applications on secure chips [119]. In this section

we discuss two GlobalPlatform standards.
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4.8.1 Application Management

GlobalPlatform is an application scheme that is used in smart cards and secure

elements. It provides a platform for different entities to perform various tasks dur-

ing the life cycle of an application, from developing, verifying, loading to deleting

it. The GlobalPlatform card security requirement specification [120], specifies

nine entities that perform various in the overall card application management

architecture. The card issuer in this platform is responsible for acquiring the

card, set policies and issue it to individual customers. The card administrator

then manages the cards once they are issued to individual users. If application

providers want to issue their application, they have to get it verified by the verifi-

cation authority. The verification authority performs an off-card code verification

to ascertain whether the given code conforms to the security policy set by the card

issuer. Once the verification is performed, the application provider requests the

controlling authority to give permission to load the application. The controlling

authority checks the verification authority’s verification and issues the permission

to load the application. Finally, the application provider sends its application to

the application loader, which will install it onto individual customer smartcards.

4.8.2 Trusted Execution Environment

The GlobalPlatform Trusted Execution Environment (TEE) is GlobalPlatform’s

initiative [121, 122, 29] for mobile phones, set-top boxes, utility meters, and pay-

phones. GlobalPlatform defines a specification for interoperable secure hardware,

which is based on GlobalPlatform’s experience in the smart card industry. It does

not define any particular hardware, which can be based on either a typical se-

cure element or any of the previously discussed tamper-resistant devices. The

rationale for discussing the TEE as one of the candidate devices is to provide

a complete picture. The underlying ownership of the TEE device still predom-

inantly resides with the issuing authority, which is similar to GlobalPlatform’s

specification for the smart card industry [123].
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4.9 Remaining Security Challenges

Security, in one form or another, is a requirement for an increasing number of

embedded systems applications, ranging from low-end systems such as Personal

Digital Assistants (PDAs), wireless handsets, networked sensors and smart cards

to high-end systems such as routers, gateways, firewalls, storage servers and web

servers [124]. The security needs in embedded systems can be divided into se-

curity needs for data transfer and security needs within the embedded device

[125]. The former deals with transforming outgoing data into unintelligible form

so that unauthorised entities will not be able to understand. The security chal-

lenges regarding this need are solved by using encryption, digital signature and

hashing algorithms. However, the latter deals with securing the embedded pro-

cessor from within. This may involve adding physical attack protections; such as

mesh sensors, secure ROM and secure bootloader.

Another security risk in the supply chain of embedded systems is the growing

practice of outsourcing the device production to countries with cheaper infras-

tructure cost. While this reduces the cost of production significantly, it also

make it easy for a hacker to compromise the supply chain and introduce a hidden

backdoor into the design. Such a backdoor can be hard to detect with purely

functional testing. This threat to the embedded systems supply chain is already a

cause for alarm in some countries [126, 127]. For this reason, some governments

have been subsidizing few high-cost local foundries for producing components

used in military applications [128].

The security countermeasures discussed in Sections 4.2, 4.3, 4.4, 4.4, 4.6, 4.7 and

4.8 provide protection against attacks discussed in Chapter 3. However, they have

certain limitations. For example, it is difficult to ensure sufficient redundancy in

code hardening. In TPM, only marked sections of the program securely and the

same goes for GlobalPlatform TEE. Therefore, generic security architecture that

can be used in low-end to medium-end processors is necessary.

The reasons discussed above brings the need to verify embedded devices before

they are deployed in operation to the foreground. Furthermore, monitoring their
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operation for any unusual activities while in operation is paramount. The com-

plexity of embedded processor cores design, including multi-processor cores, along

with constrained resources make implementation of security features a challenge

in embedded systems [129]. This is because, as discussed in Chapter 2, embed-

ded systems are a lot more resource constrained in terms of their area restriction,

storage capacity, processing capabilities and energy consumption. In this thesis

we divide the security needs into post-production pre-deployment and runtime

security needs.

4.9.1 Post-production Pre-deployment Device Verification

Outsourcing the production of chips, to cheaper cost structure countries, has a

number of economic advantages for designers. Normally, a designer sends the ICs

design along with the ROM contents, such as firmwares and other native func-

tionalities, to be manufactured. In this scenario, an attacker may hack the supply

chain and subvert the original design. According to report by U.S. Department

of Commerce [130], defective components incidents have increased from 3,868 in

2005 to 9,356 in 20081. Defective electronic components have at least the fol-

lowing ramifications; (a) original component providers incur an irrecoverable loss

due to the sale of often cheaper defective components, (b) low performance of de-

fective chips (that are often of lower quality and/or cheaper older generations of

a chip family) affects the overall efficiency of the integrated systems that uninten-

tionally uses them; this could in turn harm the reputation of authentic providers,

(c) unreliability of defective devices could render the integrated systems that

uses them; this potentially affects the performance of weapons, airplanes, cars or

other crucial devices [131], and (d) untrusted components may have intentional

malware or backdoor for spying information, remotely controlling critical objects

and leaking secret information.

These ramifications and their growing presence in the market begs the question;

how can these devices be detected before they are integrated into the final prod-

uct? Individual chips can be reverse engineered and checked for fidelity of the

1We could not find a more recent publication on those figures.
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original design. However, this technique is destructive and does not guarantee

other chips that are not subjected to the test are not compromised. Another

option is camouflaging and obfuscation of critical chips [128], where critical ICs

are requested to be manufactured with other non-critical chips and hiding critical

functionalities in a confusing logic. Unfortunately, this will not deter a committed

attacker willing to spend some effort and time to subvert the original design.

4.9.2 Runtime Secure Execution

In this chapter we have discussed several security techniques that are deployed

in embedded devices. However, embedded systems still remain vulnerable to a

range of attacks that target runtime attributes of a program. This is partly true

because security was not a priority during the design of early processor cores and

it has not changed much since.

The common theme of currently deployed security techniques in embedded de-

vices is either to obfuscate programs or the device logic, check for secure boot

or divide programs in to critical and non-critical parts and executing the criti-

cal parts securely. Unfortunately, there are still threats in each countermeasure

that could be exploited by an attacker. For example, obfuscating only makes

the attacks difficult but does not deter committed attackers. Secure boot pro-

tects embedded devices from booting into untrusted state. This does not provide

prevention against attacks that can be applied during runtime. Furthermore, an

attacker could target non-critical parts of a program to divert the execution flow

in devices that only execute critical parts of a program securely.

For the rest of this thesis we focus on solving these two security challenges.

First, we discuss on how defective platforms can be detected before they put in

operation. We selected side channel information of the target device to achieve

this. Our rational for our selection is (1) side channel leakage reflects the inside

state of embedded systems, (2) verifier will have full access to the device’s side

channel leakage and, (3) hardware and software changes can be detected from such

leakage. Second, we propose a change to traditionally accepted design concept
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of embedded system. In this work we propose modifications to how the stack is

used by the core processor during program execution. In addition, we propose

and discuss a compiler assisted component that verifies the control flow and

instructions integrity of embedded programs.

These two proposed countermeasures, seemingly independent, complement each

other in ways that enhance the security of embedded systems before and after

deployment. Under each category we propose different techniques. For instance

for the pre-deployment we propose methods to verify the integrity of executed

instructions and control flow jumps. Separately both techniques protect different

attributes of a program (i.e either the instructions or the control flow jumps).

However, when combined together they protect the device from attacks that seek

to exploit both the program’s instructions and control flow jumps. The same goes

for the runtime execution countermeasures. When the countermeasures proposed

in Chapters 7 and 8 are combined they protect the target program’s runtime data,

instructions and control flow jumps during the program’s execution.

At this point it may be worth mentioning some of the limitations of our proposals.

Some of the techniques proposed utilise dynamic code analysis tools to compute

a program’s basic blocks and their valid control flow jumps between them. The

result of such analysis is a list of valid execution paths from the beginning to

the end of the program execution. Normally, such available techniques suffer

from coverage issues. This issue may lead to some valid execution paths being

excluded from the final list. This limitation of dynamic code analysis tools also

affect the efficiency and accuracy of our proposed countermeasures. Details of

the proposed countermeasures is discussed in subsequent chapters of this thesis.

4.10 Summary

In this chapter we have looked into the current attack protection techniques de-

ployed in embedded systems. The countermeasures range from a simple source

code manipulation (to add redundant markers within the object code), side chan-

nel leakage masking, tamper resistant shield to a dedicated hardware module.

72



4.10. Summary 4. Security In Embedded Systems

The dedicated hardware provides either program authentication during booting

or curtained execution environment. The program authentication is done through

a cryptographic signature over selected attributes of the application. The core

theme of the dedicated curtained execution environments is that the program-

mer labels sections of the application as secure during compilation. Then the

processor treats them differently from the rest of the application during execu-

tion. Finally, we concluded the chapter by discussing the limitations of such

countermeasures.
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In this chapter, we discuss about verification of program control flow

on embedded systems before deployment. First, we explain our device

modelling and the model parameters. Then we elaborate on the re-

construction of program’s control flow fom the device’s side channel,

followed by the verification of the re-constructed control flow. Fur-

thermore, we present our implementations and results of the proposed

verification system. Finally, we summarise the chapter by discussing

the core points.
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5.1 Introduction

In recent years, embedded systems have proliferated into a wide range of modern

life applications. One of the main application vectors of embedded systems is

communication [132, 133, 134]. A typical embedded system application contains

hardware and software components. The hardware component includes storage

areas, execution engines and other peripherals required to successfully execute

instructions. The software component is a written procedures or rules stored in a

memory pertaining to the operation of a computer system or part of the system

itself.

The execution of a software program always involves incrementing the program

counter (a special register which stores the address of the next instruction). Nor-

mally the program counter is incremented by “1”; however, certain instructions

change its value by more than one in both directions. This kind of change is

known as Control Flow Change and can be caused by both conditional and un-

conditional branching instructions. According to [135], program control flow is

the most attacked target in software and such attacks are called Control Flow

Attacks. Control Flow Attack is one of the main threats for embedded systems

[136, 137, 138]. Control Flow Attacks can be performed on embedded systems

using two approaches. First approach, the attacker installs his code segment on

the target device. Then later when the device executes a genuine program, the

attacker targets saved function return addresses to divert the control flow into

his previously installed code. Second approach, the attacker does not install any

code but instead when the program is executed the attacker changes the saved

return addresses just in order to skip the execution of certain part of the program.

In the literature, several countermeasures have been proposed to counteract these

kinds of intrusions. To explain some of them; in [139], the authors discuss a

technique that employs a dedicated hardware module to detect and prevent un-

intended program behaviors. In this method the program’s properties are ex-

tracted through a static code analysis and the hardware module uses them to

enforce a permissible program behavior at runtime. Another countermeasure,

described in [140] introduces Control-Flow Integrity (CFI) enforcement. The CFI
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dictates that software execution must follow the path of a Control-Flow Graph

(CFG) determined ahead of time. The work of Michael Frantzen and Michael

Shuey [141], presents a buffer overflow prevention method. This is acheived via

a kernel modification that performs transparent, automatic and atomic opera-

tions on the function return addresses before they are written into the stack and

before the program transfers execution back to the saved return addresses. In

[142], Aurélien et al. discussed a control flow enforcement technique based on

Instruction Based Memory Access Control (IBMAC). This is done by using a

simple hardware modification to divide the stack into a data and a control flow

stack (or return stack). Moreover, access to the control flow stack is restricted

only to return and call instructions, which prevents control flow manipulation.

More countermeasures can be found in [143, 144, 145]. Most of the proposed

countermeasures are demanding in terms of computational capability, memory

usage and often rely on a hardware module that is not present on simple devices.

In this paper we present a novel approach to verify a program’s control flow by

using the device’s side channel leakage. In our proposal we modelled the device

as a Markov Process [146] with hidden states, each state belonging to a part of

the program. Then a verifying device extracts the control flow transition that the

device had followed when executing the program from its side channel leakage

(power consumption). This extracted control flow (state sequence) is then verified

against a list of valid state transitions of the application which was calculated

ahead of time.

The rest of the chapter is structured as follows. In Section 5.2 we discuss device

model building techniques. We provide detailed explanation of how the model

parameters are constructed. In addition, we discuss techniques to speed up the

process of model parameters construction. Section 5.3 discusses how the device

parameters can be used to reconstruct the control flow transfers that goes inside

the processor. In Section 5.4 we discuss how the reconstructed control flow can

be verified of its validity. The implementation and results of all techniques dis-

cussed above are presented in Section 5.5. Finally, we concluded the chapter by

discussing the main concepts of our proposal in Section 5.6.
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5.2 Device Modelling

An embedded program is a combination of basic blocks. A basic block is a linear

sequence of executable instructions with only one entry point (the first instruction

of the basic block) and one exit point (the last instruction of the basic block)

[147]. After executing one basic block the processor jumps into another basic

block determined by the branching instruction executed at the end of the current

basic block. This branching instruction can be conditional or unconditional. A

basic block may have many predecessors and many successors. It might also be

its own successor. Program entry basic blocks might not have predecessors that

are within the program and program ending basic blocks never have successors

within the program itself.

Based on the above definition of embedded programs, it can be modelled as a

state machine with each basic block corresponding to a state and the branching

statements to a state transition. To verify the validity of control flow transfers

of a pre-installed program without prior knowledge of the program itself, we

need an additional information. At runtime we can not directly observe which

states of the program are being executed. However, we can observe the side-

channel information of the processor. This side-channel information can be power

consumption [75, 148] or electro-magnetic emission [81, 80, 82]. Side channel

information collected from a processor running a program is directly dependent

on and reveals partial information about all executed program states.

Taking the program definition and the side channel information into considera-

tion, an embedded processor running a program can be modelled as a Hidden

Markov Model (HMM) [146, 149]. A Hidden Markov Model is a memoryless

system with a finite number of hidden states. It is called memoryless because

the next state depends only on the current state. Figure 5.1, illustrates a Hidden

Markov Model representation of a processor executing a program with five hidden

states (i.e. A to E). The observable output of the HMM, the power consump-

tion, is measured via a resistor (Rs) connecting the ground pin of the device and

ground pin of the voltage source. Building a complete HMM of such processor

requires three parameters.
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Figure 5.1: A Hidden Markov Model representation of a device executing a pro-
gram with five states (A, B, C, D and E). The power consumption is the observ-
able output that reveals partial information about the executed states.

5.2.1 Model Parameters

Given a set of finite states Q = {qi}, where 1 ≤ i ≤ S and S is the number of

states, building a processor’s Hidden Markov Model requires a transition proba-

bility distribution matrix T = {τij}, an emission probability distribution matrix

E = {ei} and an initial state distribution ~π. Having these probability distribution

matrices, the HMM is defined as λ = (T,E, ~π).

The transition probability distribution τij, is the probability that the next state

to be executed is qj if the current state is qi, where 1 ≤ i, j ≤ S. If we denote

st as the state that the processor executes at a time t, the τij = P(st+1 = qj |
st = qi) is the probability of state transitioning from state qi to state qj. Given

an observable emission, in this case the power consumption, Ot at time t, the

emission probability distribution ei(Ot) = P(Ot | st = qi) is the probability that

Ot belongs to the processor executing state qi. To compute ei(Ot) first we need

79



5.2. Device Modelling 5. Control Flow Verification

to build a power consumption template for each state.

The template of a state is generated by computing the mean, µqi , and the co-

variance, σqi of the state’s power consumption traces. Let us consider N L-

dimensional power consumption traces {xn} collected from the target device while

executing the state qi repeatedly. The mean, µqi , and covariance, σqi , are calcu-

lated using the formulas in equations (5.1) and (5.2) respectively.

µqi =
1

N

N∑
n=1

xn (5.1)

σqi =
1

N

N∑
n=1

(xn − µqi)(xn − µqi)
T (5.2)

where N is the number of recorded power traces for state qi and (xn−µqi)
T is the

transpose of (xn − µqi). These templates can be built beforehand using a target

program in an identical reference device.

Given the mean and covariance, and assuming the power traces are derived from a

Multivariate Gaussian Normal Distribution Model [150], the emission probability

distribution ei(Ot) is computed as shown in equation (5.3).

ei(Ot) =
1

(2π)L/2
√
σqi

exp(−1

2
(Ot − µqi)σ

−1
qi

(Ot − µqi)
T ) (5.3)

Now, if we take a number of time domain observationsO = {Ot,Ot+1,Ot+2, · · · ,Ot+n},
the emission probability distribution matrix E becomes:

E =


e1(Ot) e1(Ot+1) e1(Ot+2) · · · e1(Ot+n)

e2(Ot) e2(Ot+1) e2(Ot+2) · · · e2(Ot+n)
...

...
...

. . .
...

eS(Ot) eS(Ot+1) eS(Ot+2) · · · eS(Ot+n)

 (5.4)
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Transition probability distribution is a simple statistical representation of the

transition between states. For example, in Figure 5.2, we present two code seg-

ments with three basic blocks (states).

int X = RG() % 100;
...

if(x ≥ 10){
...

} else {
...

}

s1

s2

s3

(a)

boolean b;
...

if(b){
...

} else {
...

}

s1

s2

s3

(b)

Figure 5.2: Integer and boolean branching statements in code segment with 3
states.

The significant difference between the two code segments is the state transition

instruction i.e. the if ... else statement. Code segment (a) compares a random

integer X that can have a value between 0 to 99. After completing state s1, if

0 ≤ X ≤ 9 execution control transfers to s3 but if 10 ≤ X ≤ 99 s2 is executed

next. Now given that X is randomly generated using a uniformly distributed

random generator, the probability of s3 being executed after s1 is 0.1 and s2 after

s1 is 0.9. However, for code segment (b) the branching statement simple checks

if b is ‘0’ or ‘1’. The probability of going to s2 or s3 is the same and that is 0.5.

Given these information, the transition probability distribution matrix for code

segments (a) and (b) will look like as shown below (equation 5.5) respectively.

T =

τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33

 =

 0 0 0

0.9 0 0

0.1 0 0

 and
 0 0 0

0.5 0 0

0.5 0 0

 (5.5)

Normally, a program’s execution always starts at the program’s entry basic block,

i.e. the basic block which starts with main() or simple at the processor’s reset

point. Therefore, the initial state distribution for the entry basic block is always
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‘1’ and ‘0’ for the other basic blocks. For instance, for the program state machine

depicted in Fig. 5.1 the program execution always starts at state “A”. So, the

initial state distribution of the whole program will look like as shown below in

equation (5.6).

π = {πA, πB, πC , πD, πE} = {1, 0, 0, 0, 0} (5.6)

So far we have discussed how a device’s HMM parameters are computed from the

program’s basic blocks and the processor’s side channel information. However,

there are still a few challenges that are worth discussing at this point. Firstly,

to successfully compute E using equation (5.3), all observations {Ot, · · · ,Ot+n}
must have equal dimensionality. In other words, the power consumption traces

generated by all states must have the same number of sample points. However,

in reality this may not always be true. Secondly, the dimension of the emissions

(power traces) may be too large for a robust and fast classification. Fortunately,

both challenges can be addressed using the same technique. A common way to

attempt to resolve these challenges is to use a dimensionality reduction tech-

nique. However, we have to maintain as much information about the original

emission (power consumption) as possible while reducing the dimentions of the

traces. Two of the most popular techniques that can be used for such purpose

are: the Principal Components Analysis (PCA) and Fisher’s Linear Discriminant

Analysis (F-LDA).

5.2.2 Principal Components Analysis (PCA)

PCA is a technique used to reduce the dimension of an observation while keep-

ing as much of its variance as possible [151]. This is achieved by orthogonally

projecting the observation onto a lower dimensional subspace vector.

Let us consider an N L-dimensional observations of emissions {xn}, where n =

1, ..., N and their covariance matrix σ. A lower dimensional subspace in this

Euclidean space can be defined by a D-dimensional unit vector −→u1, where D < L.
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The projection of each observation, xn, onto that subspace is given by −→u1Txn.

Now if we stack up all the emissions into a matrix of N × L matrix, where

L is the number of samples of each observation, the projection of each row of

the matrix is represented as UTX, where U is a matrix of eigenvectors of the

covariance matrix σ. The projection of the observations onto a D-dimensional

subspace that maximizes the projected variance is given by D eigenvectors [152]
−→u1, . . . ,−→ud with the D largest eigenvalues λ1, . . . , λd.

5.2.3 Fisher’s Linear Discriminant Analysis (F-LDA)

F-LDA is a method used in statistics, pattern recognition and machine learning

to find a linear combination of features which characterises two or more class

observations [153, 154, 155]. The resulting combination may be used as a linear

classifier for dimensionality reduction before classification. However, instead of

maximising the variance of the original data like PCA, information regarding

the covariance of different classes is taken into consideration. These are the

“between-class” and “within-class” covariance matrices.

Now, let us consider again the N L-dimensional observations for each class. Then

the “within-class” covariance σW is computed as,

σW =
S∑

i=1

∑
w∈xi

(w − µqi)(w − µqi)
T =

S∑
i=1

Nqiσqi (5.7)

In the above equation, Nqi , σqi and w are the number of observations, the co-

variance and the power traces of class qi. The “between-class” covariance σB is

computed as

σB =
S∑

i=1

(µqi − µ)(µqi − µ)T (5.8)

where µqi is the individual class’s mean as defined in equation (5.1) and µ is the
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mean of the entire observation which is computed as shown in equation (5.9).

µ =
1

N

∑
∀x

x =
1

N

S∑
i=1

Nqiµqi (5.9)

Now, let us consider a D-dimensional unit vector −→u1 onto which the data is

projected. This time the objective is to maximise both the projected “between-

class” and the projected “within-class” covariance:

J (−→u1) =
−→u1TσB−→u1
−→u1TσW−→u1

(5.10)

The projected J is maximised if−→u1 is the eigenvector of σ−1W σB. TheD-dimensional

subspace is created by the first D orthogonal directions that maximise the pro-

jected J . These are given by the D eigenvectors −→u1, · · · ,−→uD of σ−1W σB with the

largest eigenvalues λ1, · · · , λD.

5.3 Control Flow Reconstruction

Having the HMM model parameters we need to reconstruct the control flow

transfers that goes inside the device before trying to verify if it was valid or not.

The probability distribution matrices E, T and ~π can be created prior to the

control flow reconstruction using an identical reference device and the target

program. This phase can also be done by a third party and the verifier does not

need to have prior information on the inner working of the program.

Now let us consider observations (power consumption traces)O′ = {O′t,O′t+1,O′t+2,

· · · ,O′t+n}, where n is the number of executed states. These emissions sre

recorded while the device was executing the target program. The most likely

sequence of states that produces the observations O′ can be calculated using the

Viterbi Algorithm [156] as shown in equations (5.11) and (5.12). The calculated
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state sequence is then regarded as the control flow that the device has followed

during the execution of the program.

V1,j = P(O1 | s1 = qj) · πj (5.11)

Vt,j = P(Ot | st = qj) ·maxi∈S(τij · Vt−1,j) (5.12)

In equation (5.12), S is the state space of the Markov Process, πj is the probability

of state qj being the initial state and τij is the probability of transitioning from

state qi to state qj. The Vt,j is the probability of the most probable state sequence

responsible for the first t emissions that has qj as its final state. The state

sequence that resulted in highest probability, according to equation (5.12), from

all possible state sequences of the same length as the emission is regarded as the

most probable state sequence that generated the emissions.

5.4 Control Flow Verification

As described in Section 5.2, a program is a combination of basic blocks. Before

loading the program into the target device, a list of valid transitions between the

states (basic blocks) is extracted using a code analysis tool. This list of valid tran-

sitions is known as the Control Flow Graph (CFG). A CFG, G = (I, P ), is repre-

sented by the program’s states identity, I, and control flow path, P . For instance,

for the program illustrated in Fig. 5.1, the CFG is given as G = (I, P ), where I =

{A,B,C,D,E} and P={(A,B),(A,C),(B,B),(B,C),(C,D),(C,E),(D,C),(D,E)}.

Now the task is verifying if the reconstructed state sequence is among the valid

transitions in the CFG. However, the reconstruction of the state sequence (ex-

plained in Section 5.3) from the power consumption is a probabilistic process.

In other words, the reconstructed sequence is an execution path with a highest

probability of generating the given power consumption. Therefore, it is logical to
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confirm the reconstructed sequence is the execution path followed by the target

device while executing the program. This can be done by assigning each state

with unique identity and then later verify their hash value.

Let’s assume that each state (basic block) is assigned with a unique identiy during

compilation. At runtime the processor (target device) concatenates the identiy

of executed states, compute hash value on it (H∗) at the end of execution and

send it out to the verifier. In the mean time another hash value (H
′
) is computed

over the identity of states reconstructed from the power consumption. Finally,

these hash values are verified using equation (5.13).

f(H∗, H
′
) =

1, if H∗ = H
′

0, otherwise
(5.13)

If it is a match, the reconstructed sequence is what the processor went through

when executing the program. Otherwise, the reconstructed sequence is not the

path that was followed by the device. Equation (5.13) can only verify that the

execute state sequence and the extracted state sequence are the same. Unfortu-

nately, this does not verify if the executed state sequence (control flow) is valid.

Therefore, the validity of the control flow is verified by comparing it against the

pre-calculated paths, P , in CFG. If the reconstructed state sequence is not among

the valid paths in CFG, the device/program is regarded as compromised.

5.5 Implementation and Results

For our experiment we implemented a test application with five basic blocks

(states). This test application is implemented in ATMega163 based smart card

[157]. Each state accomplishes certain task within the program. The processor

follows different control flow paths to execute the application depending on a

value “Vreader” sent from a terminal. The state machine diagram of the test

application and its pseudo code are presented in Figure 5.3 and Figure 5.4.
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State1start

State2 State3

State4

State5

τ12

τ13

τ14

τ25
τ35

τ33
τ43

τ45

Figure 5.3: Test program’s con-
trol flow diagram.

State1 : Par = r e c e i v e ( )
Vreader = r e c e i v e ( )
Vnvm = read (nvm)
i f ( Vreader == Vnvm)

State2 : par = ( par )ˆ2
goto State5

end
e l s e i f ( Vreader > Vnvm)

State4 : par = par + 216
par = par /5
Vreader = Vreader − 2
i f ( Vreader < Vnvm)

goto State3
end
e l s e

goto State5
end

end
e l s e i f ( Vreader < Vnvm)

State3 : par = par ∗ 2
par = par − 129
Vreader = Vreader + 1
i f ( Vreader < Vnvm)

goto State3
end
e l s e

goto State5
end

end
State5 : c l e a r r e g i s t e r s

clear memory

Figure 5.4: High-level description of the
test program

Invoking the test program requires passing two arguments: “Vreader” (0 ≤ Vreader ≤
9) and “Par” (0 ≤ Par ≤ 255). The “Vreader” is compared with a reference value

“Vnvm” (0 ≤ Vnvm ≤ 9) (stored in the non-volatile memory of the smart card)

before changing a state. For our experiment the Vnvm is initialised to “4” and the

arguments Par and Vreader are randomly generated and passed to the program

through the smart card reader.

5.5.1 Model Parameters

As illustrated in Figure 5.3, the execution of the test program always starts at

State1. Therefore, the probability of State1 being the initial state is “1”, and

“0” for all other states. If πi is the probability of Statei being the initial state

in the execution of the program, the initial probability distribution vector of our
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Table 5.1: Transition probability distribution of the program illustrated in Fig-
ure 5.3. The columns represent next states and the rows represent current states.
Transition from Transition to [%]

State1 State2 State3 State4 State5
State1 τ11=0 τ12=0.1 τ13=0.4 τ14=0.5 τ15=0
State2 τ21=0 τ22=0 τ23=0 τ24=0 τ25=1
State3 τ31=0 τ32=0 τ33=0.55 τ34=0 τ35=0.45
State4 τ41=0 τ42=0 τ43=0.2 τ44=0 τ45=0.8
State5 τ51=0 τ52=0 τ53=0 τ54=0 τ55=0

test program is given as:

~π = { π1 = 1, π2 = 0, π3 = 0, π4 = 0, π5 = 0 } (5.14)

To compute the transition probability distribution matrix, T, we invoked the

program with a randomly generated “Par” and all possible values (i.e. 0 to 9)

of “Vreader” and record the control-flow transition of the program. Note that for

each different value of “Vnvm” the matrix T is different.

To compute the emission probability distribution matrix E, we collected 1000

traces for each state. Using these traces we computed the mean µqi , and covari-

ance, σqi , for each state as a template. Figure 5.5 shows the mean value of the

traces that we collected.

Principal Components Analysis (PCA): is used to find a subspace whose

basis vectors corresponding to the maximum variance directions in the original

data. In other words PCA searches for those vectors in the underlying data

that best describes the data. When applying PCA the dimensionality of the

projected data has to be selected carefully. On the one hand, if it is too small,

too much of variance of the original data may get lost and with it important

information about the state emissions. On the other hand, if it is too large, the

state classification becomes less reliable again. This might be because of the bad

conditioning of large covariance matrix. Another reason can be, as the dimension

increases the class emission cross-correlation increases. Therefore, when choosing
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Figure 5.5: Mean of the power traces of the states illustrated in Fig. 5.3.

the dimensionality for the projected data we have to decide how much of variance

of the original data that we can afford to lose.
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Figure 5.6: Original data after PCA.

Fisher’s Linear Discriminant Analysis (F-LDA): is a technique used to

classify between classes by finding discriminant features of the class data and

projecting them onto these discriminant vectors. In other words, F-LDA searches

for those vectors in the underlying data that best separates among the classes.
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Figure 5.7: Original data after F-LDA.

In Fig. 5.7 we present the first two components of the state emissions after F-LDA.

As discussed earlier PCA searches for vectors that best describes the original data.

However, it does not take the other classes into consideration. For this reason

PCA may not produce a satisfactory result when classifying different classes. We

can see that in Fig. 5.6 the principal components of classes emissions overlap.

However, as shown in Fig. 5.7 the classes are better separated after F-LDA.

5.5.2 Calculating The Most Probable State Sequence

To calculate the most probable state sequence, first we have to implement the

Viterbi Algorithm discussed in Section 5.3. To do this we have two options: use

the MATLAB [158] Statistics Toolbox implementation hmmviterbi [159] or create

our own implementation of the equations (5.11) and (5.12). Although, the MAT-

LAB Statistics Toolbox implementation of Viterbi Algorithm might be useful for

some statistical calculations we could not use it in our experiment. This was

because firstly it does not utilise the initial probability distribution (~π) and sec-

ondly the output is not in the format that we want it to be. Therefore, we created

our own MATLAB implementation and the source code is available at GitHub

repository [35]. As you can see it from the source code, our implementation takes

all three matrices (~π, E and T) and gives us the most likely state sequence as a

vector.
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Our test program has six valid control-flow paths from the initial state, state1, to

the final state, state5. Our implementation of the Viterbi algorithm calculates a

sequence of states with the highest probability of generating the emission O. We

ran the test program for all possible valid paths by varying the argument “Vreader”

and calculated the most probable state sequence from the smart cards power

consumption trace. We ran the test program 1000 times by varying “VReader”,

recorded the power trace and calculated the most likely sequence of states for

each run.

5.5.3 Verifying The Reconstructed State Sequence

For all the state sequences that we calculated, we verified them using the 2-step

verification system discussed in Section 5.4. Before comparing the reconstructed

state sequence against the CFG, we have to make sure that the reconstructed

sequence is the actual path that the device went through. For that purpose we

verified the hash values calculated by the device against the hash values calculated

over the reconstructed state sequence. Then we compared the reconstructed

state sequence against the valid paths in CFG. In our experiment we successfully

verified the control flow for all (1000) runs of the test program that we made.

In our experiment we calculated the CFG manually; however, for large programs

calculating it manually might be difficult and complicated. In such a case the

CFG may be extracted using source code analysis tools, such as MALPAS [160].

5.6 Summary

In this chapter we proposed a novel approach into checking a program’s control

flow integrity by using the side channel leakage of the target device before it is

integrated into the larger electronic equipment. In our approach the device is

not required to perform extra computation. However, it requires another device

to check for its program’s control flow integrity as it executes the program. Our

approach can be used to verify the integrity of mass produced embedded systems
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by using a few legitimate devices. The legitimate devices are used to build a side

channel fingerprint of the target device. These templates are then used to verify

the mass produced devices.
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Software Integrity Verification
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In this chapter, we discuss verifying the basic block integrity of embed-

ded programs. To achieve that first we explain how to create a precise

power consumption template of the device’s instructions. Then ex-

plain how these templates can be used to extract executed instructions.

Furthermore, on how these extracted instructions can be used to verify

the integrity of the program’s basic blocks. Finally, we summarise the

chapter by pointing out the main concepts.
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6.1 Introduction

An embedded system integrates hardware and software components. The hard-

ware components mainly comprise a processor, volatile and non-volatile memory,

and IO module. The software component controls what the hardware does by

using the underlying processor’s executable instructions. Therefore, maintaining

the integrity of the software is vital for the security of the entire system.

So far several methods have been proposed to verify the integrity of desktop

software [161, 162, 163, 164]. These methods involve generation and verification

of cryptographic authentication message codes on the software binary. However,

these methods often fail to work in embedded environment, the main reason being

the memory read protection1 implemented by most of today’s microcontrollers.

However, in the real world these processors leak information about their internal

state unintentionally. As an example, we can consider a game of poker, where

everyone plays by the same functional rules and keeps their cards well concealed.

If a novice player looks worried or excited when he receives his cards, then he

leaks information about his hand to the other players. An experienced player

may manipulate his reaction (block his emotions/expressions or fake them) to

fool the other players. However, if other physiological reactions (such as heart

beat, blood pressure, respiratory rate and electro-dermal activity) of the players

are measured then even an expert player’s deception can be detected. Of course,

measuring such physiological reactions need more sophisticated instruments, like

Polygraph [165], than reading someone’s facial reaction.

Embedded systems do not have physiological reactions or emotions but as any

electronic devices they have varying electric current flowing through them. This

varying current gives away information about the internal state of the device

in the form of variations in the power consumption or the electromagnetic emis-

sion which can be recorded and analysed. The power consumption has previously

been used for the purpose of extracting secret cryptographic keys from embedded

devices [75, 77, 79]. In [86, 32, 87] power consumption has been demostrated for

reverse engineering embedded programs. In [166], the authors discuss, theoreti-

1Techniques that prevent unauthorised users from accessing memory contents.
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cally, how side channel leakage can be used to fingerprint a smart card platform

and then use it later to detect cloned cards. However, this paper provides a high-

level and does not discuss in detail how the platform fingerprint is constructed

and how a cloned card is detected. George et. al. [167], demonstrated the Ham-

ming weight of executed instructions can create a unique power consumption

fingerprint which may be enough to verify the originality of a software program.

In this chapter we present a technique for verifying integrity of the executed

instructions of an embedded program. In our technique both the embedded

device and the verifying device initialise and update their own parameters using

pre-computed signatures and hash values of executed instructions respectively.

This will be discussed in detail in Section 6.6. At the end of the execution

the verifying device verifies the integrity of the embedded software using both

the parameters and the RSA signature screening. This process also involves

instruction-level templates and instruction classification from the device’s power

consumption waveform.

The rest of this chapter is structured as follows. In Section 6.2, we discuss our

instruction-level side channel construction techniques. In sSection 6.3, we explain

three more dimensionality reduction techniques in addition to those we explored

in Chapter 5. In Section 6.4, we explain instruction classification algorithms

that can be used to extract executed instruction from side channel leakage. Sec-

tion 6.5 provides a discussion on batch RSA signature verification technique and

section 6.6 shows how this can be used to verify the integrity of executed basic

blocks. Our implementation and results of all techniques discussed above are

presented in Section 6.7. Finally, we summarise the chapter in Section 6.8.

6.2 Instruction-Level Template Construction

The power consumption template of an instruction is constructed by recording

and analysing the power intake of identical reference processors while executing

the target instructions repeatedly. Here we make the assumption that all gen-

uinely manufactured embedded processors of the same model have similar leakage
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characteristics. The template training consumptions are collected while the ref-

erence device executes the selected instructions repeatedly. This can be achieved

by running simple training programs on the reference devices.

To build the templates let us consider an N L-dimensional observations of the

processor’s power consumption {xN}. Each of these N L-dimensional observa-

tions belong to one of the K selected instructions (classes) Ik, where 1 ≤ k ≤ K,

running under different conditions (states). The different conditions refers to

data processed, registers and memory cells used by the instruction. Each of the

observations have L number of sample points. The mean of the N L-dimensional

observations of each instruction {xN}Ik , µIk , is calculated as shown in equa-

tion( 6.1).

µIk =
1

N

N∑
n=1

xn (6.1)

Given the mean, µIk , and the power consumption observations, {xN}Ik , of the

instruction Ik the covariance matrix σIk is calculated as follows:

σIk =
1

N

N∑
n=1,Ik

(xn − µIk)(xn − µIk)T (6.2)

Now, the template of instruction Ik is represented by the triplet of τIk =

(〈{xN}Ik , Ik〉, µIk , σIk). However, in practice the dimentionality of the observa-

tions can be too large and have too many cross correlated feature points. In such

a case the template construction may become too time consuming and result

in an unreliable templates. Therefore, to solve this problem we have to employ

dimensionality reduction techniques.
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6.3 Dimensionality Reduction

Dimensionality reduction techniques are feature selection algorithms used to com-

press data while preserving as much variance of the original data as possible.

In the literature, several dimensionality reduction methods have been proposed

[168, 169]. Apart from the dimentionality reduction techniques PCA and F-LDA

(discussed in Sections 5.2.2 and 5.2.3 respectively) we conside three more tech-

niques in this chapter. These are the Sum of Difference of Means, Means-Variance

and Means-PCA.

6.3.1 Sum of Difference of Means

Differential power has been used for correlating information leakage with the

power consumption of a device [75]. In [170] the same technique has been utilised

to reduce the dimensionality of traces obtained from Rivest Cipher 4 (RC4) [171].

In our work we are going to use this method to reduce dimensionality of our

instruction-level traces. In order to compute the first D dimensions from the

original L dimensional observations, where D � L, we performed the following

computations;

• Compute the difference of each pair of mean vectors (the mean is computed

as part of the instruction template),

• Compute the summation of these differences,

• Select the first D points among the highest peaks.

6.3.2 Means-Variance

The most important criterion when reducing the dimensionality of a data is to

retain as much variance of the original data as possible. So, it may be reasonable

to take the feature points accounting for the maximum variance of the original
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data across the different classes. To identify these points we need the mean of

each class µIk , where 1 ≤ k ≤ K. Now if we put these mean vectors into a matrix

(with the kth row being the mean vector of the kth class), we will have a K by L

matrix where L is the number of feature points of the original data. Computing

the variance of each column gives us the inter-class variance of each feature point.

Finally, we reduce the dimension by taking the first D features with the highest

variance (where D � L).

6.3.3 Means-PCA

As discussed in Section 5.2.2, PCA maximises the overall variance of class obser-

vations but does not consider other classes. Since our aim is achieving a higher

classification rate it may be reasonable to maximise the overall variance of the

class means. In other words we maximise the variance of inter-class observa-

tions. The reason for this is moving the class mean vectors apart may result a

higher recognition rate. To do this consider the class means as instances of the

classes and compute the projection coefficients using the techniques discussed in

Section 5.2.2. Later on, these projection coefficients will be used to transform

the observations. Simply speaking the Means-PCA computes global projection

coefficients that maximises inter-class variance while PCA computes projection

coefficients that maximise intra-class variance.

6.4 Instruction Classification

The instruction classification is the process of recognising extracted instructions

from the device’s power consumption waveform. In this section we discuss two

classification algorithms; Multivariate Gaussian Probability Density Function and

k-Nearest Neighbors Algorithm.
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6.4.1 Multivariate Gaussian Probability Density Function

Given the template of each instruction, (〈{xN}Ik , Ik〉, µIk , σIk), the Multivariate

Gaussian Probability Density Function based instruction recognition is performed

as follows. Let W be the power consumption waveform captured at runtime

and assume that its samples are drawn from a Multivariate Gaussian Normal

Distribution model [150]. The noise introduced into the power waveform, W , is

extracted by subtracting the mean value (µIk , which is part of the template) from

the waveform as shown in equation (6.3). For the instruction Ik the noise nIk is

computed as:

nIk = {(W [1]− µIk [1]), (W [2]− µIk [2]), ..., (W [p]− µIk [p])} (6.3)

where p is the selected feature points of the original dimensionality if reduced.

The probability of observing the noise nIk in the device’s power consumption

trace is then computed as shown in the equation (6.4).

N (nIk , µIk , σIk) =
1

(2π)D/2√σIk
exp(−1

2
(nIk)σ−1Ik

(nIk)T ) (6.4)

After computing the probability function, N (nIk , µIk , σIk), for all instructions

Ik, where 1 ≤ k ≤ K, the template that generates the highest probability of

observing the nIk is chosen as the instruction executed by the processor.

6.4.2 k-Nearest Neighbors Algorithm

The k-Nearest Neighbors Algorithm (kNN) [172] is a non-parametric lazy super-

vised learning algorithm. The “non-parametric” means the learning algorithm

does not make assumptions about the data and “lazy” means data generalization

(training) is not needed. In a supervised learning the training data is an ordered

pair 〈x, i〉, where x is an instance and i is its class label (instruction). The goal
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of the algorithm is to predict a class given a new power consumption instance.

Let us assume, instance x is member of {xN} and class label i is member of {Ik}.
Then the classifier is any function f : {xN} → {Ik}

In kNN, the training phase simply stores the training data along with their class

(instruction) labels. During classification, the classifier computes the distance

between the unlabelled power consumption waveform W and all training traces

x ∈ {xN}. Then it keeps the k′ closest training traces, where k′ ≥ 1. The

class that is most common among these traces is assigned to the unlabelled trace

W . In kNN there are two major design choices to be made; (a) the value of k′,

for instance, if only two classes exist k′ = 3 is used to avoid ties, and (b) the

distance function to use. The most common distance function used in kNN is the

Euclidean distance function [173, 174]. Given a training trace x and unlabelled

trace W the Euclidean distance, de is computed as shown in equation (6.5).

de(x,W ) = ‖x−W‖ =
√

(x1 −W1)2 + · · ·+ (xp −Wp)2 =

√√√√ p∑
i=1

(xi −Wi)2

(6.5)

where both x and W have p sample points and xi and Wi are the ith point for

i ≤ p. Apart from the Euclidean distance function, some of the other distance

functions that can be used in kNN are the Correlation [175] and the Cosine

learning distance functions.

6.5 RSA Signature Screening Algorithm

Digital signature algorithms are used to verify the authenticity and integrity

of a block of message. RSA is one of the popular digital signature algorithms

[85]. The verification of n RSA signatures involve the verification of n signatures

sequentially. In a hash-and-sign scheme the process of verifying n signatures

involves the generation of n hash values and n public key encryptions with respect
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to the issuer’s public key. Now this could be very time consuming. A known

method of improving the performance of such a system is to verify a batch of

signatures at the same time. In [176], the authors discuss a method that verifies

if a batch of messages were signed by the correct authority without verifying the

individual signatures. This process is called the RSA signature screening. The

RSA signature screening works as follows: given a batch of message and signature

pairs

{{M1, S1}.....{Mn, Sn}},

where Si (computed as Si = Md
i mod N) is the signature of a message Mi with

respect to some private key (N, d). We assume that the signatures were generated

using the hash-and-sign scheme, then this batch of signatures is verified using the

computation in the equation (6.6) with respect to the corresponding public key

(N, e).

( Πn
i=1Si )e = Πn

i=1 H (Mi) mod N (6.6)

However, as discussed in [177], RSA signature screening can be bypassed if a

message Mi appears more than e − 1 times even though it was never signed

before. This can be an issue if the value of e is significantly small. This problem

can be easily solved by choosing a large value of the public key component e.

6.6 Basic Block Integrity Verification

Our software integrity verification method uses the notion of basic blocks. A

basic block is a group of instructions executed sequentially by the processor. A

basic block has only one entry point (the first instruction executed) and one

exit point (the last instruction executed) [147]. A basic block may have many

predecessors and many successors. It might also be its own successor. Program

entry basic blocks might not have predecessors that are within the program and
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Embedded System

Verifying Device

Application
Executable

Basic Block
Signatures

Application Package

Embedded
Processor

EP-C
(EP = Πn∈BBSn)

Communication Interface
EP

Communication Interface

Instruction Classifier
(O(W,τ))

Templates
(τ)

VP-C
(V P = ΠH(On))

Code Integrity
Verifier

( f (EP,V P,(N,e)))

Public
Keys

(N,e)

Ω

BB {Sn}
EP update signal

{{x}I1 , · · · ,{x}IK}

{On} V P

(1,0)
EP

W

Gnd

Figure 6.1: Basic block integrity verification block diagram

program ending basic blocks never have successors within the program itself.

After executing one basic block the processor jumps into another basic block

based on the branching instruction executed at the end of the current basic block.

This branching instruction can be conditional or unconditional.

During development, the application is divided into basic blocks and that each

basic block is signed with the developers RSA private key, then these basic blocks

together with their signatures are installed in the processors non-volatile memory.

These instruction-level templates together with the basic blocks signatures are

used to verify the integrity of the software using the RSA signature screening

algorithm. Figure 6.1, elaborates the block diagram of our proposed software

integrity verification method.
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As shown in the diagram (Figure 6.1), the embedded system has the embedded

parameter calculator (EP-C), embedded processor and the application package

which includes the application executable and the basic block signatures. The

EP-C is a special module that calculates the product of two large numbers. This

module can be implemented in hardware or software; although, hardware would

be preferable for performance reasons. The embedded processor is the core CPU

that executes the software component of the embedded system.

The verifying device has the instruction-level templates, the instruction classi-

fier, the verifier parameter calculator (VP-C) and the software integrity verifier.

The templates are constructed ahead of time using identical processors and then

installed into the verifying devices non-volatile memory. The instruction classi-

fier uses these templates to extract the executed instructions from the processors

power consumption waveform (W ). The power consumption waveform is mea-

sured as a voltage drop across a shunt resistor connecting the embedded systems

ground and the verifying devices ground voltage. The VP-C uses the output

of the classifier to compute the verifying devices parameter (VP). Finally, the

software integrity verifier uses the output of the EP-C and VP-C to verify the

integrity of the software using RSA signature screening algorithm.

When the software execution starts, both the EP-C and VP-C initialise their

parameters to the value “1”. As the execution commences both modules update

their parameters after the execution of each basic block. Given S = {S1, S2, · · · , Sn},
a collection of basic block signatures with Sn being the signature of the nth basic

block. The EP-C updates its parameter (EP) by multiplying it with the basic

blocks signature. At the end of the execution EP looks like equation 6.7.

EP = Πi∈BBSi (6.7)

where BB is list of executed basic blocks. At the same time the verifying device

records the power consumption wave form and extract executed instructions using

the function O(W , τ). This function takes the power consumption, W , and the

instruction-level templates, τ , and generates a list of executed instructions as
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shown in equation 6.8.

O(W, τ) = {Ins1, Ins2, · · · , Insn} (6.8)

Let On be the output of O(W , τ) for the nth basic block. The VP-C updates

its parameter, VP, by multiplying it with the hash of On. At the end of the

execution VP will look like equation 6.9

V P = Πn∈BBH(On) (6.9)

Once the execution of the program finishes the Code Integrity Verifier verifies

the integrity of the executed part of the software using both parameters EP and

VP as follows.

f(EP, V P, (N, e)) =

1, if (EP )e = V P mod N

0, otherwise
(6.10)

If the result of f , equation (6.10), is “1”, the integrity of the executed part of

the software is executed is still intact. Otherwise, it is regarded as compromised

(modified by an unauthorised entity).

6.7 Implementation and Results

To implement the techniques discussed above we have selected an ATMega163 +

24C256 based smart card. The ATMega163 is an 8-bit AVR2 microcontroller, and

it has 130 instructions. To simplify our experiment we chose 39 instructions. The

selected instructions are explained in detail in Appendix A. During the instruction

selection process we considered the following criteria; redundancy and usage of

2AVR microcontrollers are Atmel family ICs. www.atmel.com
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instructions. The redundancy refers to more than one instruction performing

the same operation; for example in ATMega163 the instructions LD Rd, Z and

LDD Rd, Z+q perform indirect load operation. So, in our experiment we only

use LD. Besides the redundancy, we also tried to choose the most commonly

used instructions by analyzing several source codes. We created a source code

base by using publicly available source codes from various web sites [178, 179].

These websites host open source projects like AES, DES, analogue synthesizer,

general purpose libraries, etc. We have also included our own implementation of

cryptographic algorithms and general purpose applications in the analysis. The

selected instructions are listed in Appendix A.

The power traces are captured via a voltage drop across a shunt resistor connect-

ing the ground pin of the smart card and the ground pin of the voltage source.

The smart card is running at a clock frequency of 4MHz and is powered by a

+5V supply from the reader. The measurements are recorded using a LeCroy

WaveRunner 6100A [180] oscilloscope capable of measuring traces at a rate of 5

billion samples per second (5GS/s). The samples have 8-bit accuracy within a

pre-selected range. The shunt resistor is connected with the oscilloscope using a

special cable, a probe, which was a Pomona 6069A [181], a 1.2m co-axial cable

with a 250MHz bandwidth, 10MΩ input resistance and 10pf input capacitance.

All measurements are sampled at a rate of 500 MS/s. The same measurement

setup is used throughout the experiment.

6.7.1 Instruction-Level Template Construction

To generate the number of traces we needed for the templates construction we

created several training code snippets. To construct the templates we attempted

to remove all other factors that influence the power consumption apart from

the instructions themselves. Such factors can be the initial values of source

and destination registers/memory cells, data processed by the instruction and,

intrinsic or ambient noise introduced by the measurement setup. To remove

the influence of the source and destination registers/memory cells we selected

a random source and destination before we executed the selected instructions
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and we initialised them with random values sent from the terminal over the

Application Protocol Data Unit (APDU) channel. For the data processed, we

have generated random data for each execution of the target instruction. To

minimise the influence of the ambient noise introduced in the measurement, all

equipment is properly warmed up beforehand so that it is all running at a uniform

temperature throughout the power trace collection phase. This requires running

a few test measurements to be discarded before the actual power trace collection

begins.

To minimise the effect of measurement noise introduced by the reference card

on the power traces we used 5 of the same model reference cards throughout the

experiment. To reduce the influence of other random noise from our measurement

we collected 3000 traces for each of the selected instructions (i.e. 600 traces from

each of the reference cards). Out of these 3000 traces, we used 2500 of them to

construct the templates. As part of the templates we took the average of recorded

traces and this reduces the standard deviation of the random noise by a factor of
√
n, given that n is the number of traces used for calculating the averaged value.
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Figure 6.2: Power consumption waveform of selected ATMega163’s one clock
cycle instructions (NOP, MOV, ADD and SUB).

For multiple clock cycle instructions, the clock cycles are treated as consecu-

tive instructions. Hence, more than one template is created for them. For the

conditional branching instructions, templates are created for both conditions.

When the condition is false the branching instructions only need one clock cy-

cle; however, when it is true they need two clock cycles. Therefore, for each

conditional branching instruction we created three templates. Including the mul-
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tiple templates for the multi-clock cycle instructions and conditional branching

instructions we generated a total of 76 templates. In Figure 6.2 and Figure 6.3

we plot the average of the power consumption waveforms generated by one and

two clock cycle instructions respectively for selected instructions.
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Figure 6.3: Power consumption waveform of selected ATMega163’s two clock
cycle instructions (MUL, ST and LD).

As shown in both the plots, some instructions (for instance NOP and SUB) generate

sufficiently different waveforms to recognise them successfully. However, others

(for instance NOP and MOV) generate similar waveforms which makes it more diffi-

cult to recognise them from their power waveform. So, in order to recognise each

instruction from a given waveform we have to create a well-conditioned template

and for that we need several training traces.

6.7.2 Dimensionality Reduction

When using the Sum of Difference of Means to reduce the dimensionality we

computed 2850 vector subtractions and additions. Fig. 6.4 illustrates the sum-

mation of these differences. The Means-Variance is a straight forward method

and involves the computation of variance for 125 column vectors.

When using PCA, the new dimensionality D has to be chosen carefully. On the

one hand, if D is too small, too much of variance of the original data may get lost

and with it important information about the observations. On the other hand, if

D is too large, the templates cross-correlation increases and the classification be-
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Figure 6.4: Sum of difference of means.

comes less reliable. In Fig. 6.5, we have plotted the amount of variance accounted

for each principal component of instructions NOP, MOV, CLR and ADD.
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Figure 6.5: Overall variance of the original data accounted for the first 15 prin-
cipal components of the instructions NOP, MOV, CLR and ADD.

As shown in Figure 6.5, for the instruction MOV, the first 4 components accounted

for 37.598%, the first 10 for 44.163% and the first 15 for 48.3387% of the overall

variance of the original data. For the instruction CLR 59.796%, 64.089% and

66.648% of the original variance is accounted for the first 4, 10 and 15 components

respectively. So, when choosing the dimensionality, D, we have to decide how

much variance of the original data that we are willing to lose. In addition to

PCA, we also performed Means-PCA on the class-means instead of on the class

observations. Like the other techniques we also reduced the dimensionality of

the original data into 50 using LDA. In the next section, we discuss how our

classification algorithms perform on the unseen 500 traces for all dimensions

1 ≤ D ≤ 50.
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6.7.3 Instruction Classification

So far, we have selected 39 instructions out of the possible 130 and collected 3000

power consumption traces for each of the instructions. Out of these 3000 traces

we used 2500 of them to train the templates. Now we discuss the classification

result for the remaining 500 traces.

Multivariate Gaussian Probability Distribution Function (MVGPDF):

We have tested the MVGPDF classification both before and after the dimension-

ality reduction. Before reduction, we utilised the full space of the original data,

the overall recognition rate was 64.97%. In Table 6.1, we present the recognition

rate of 11 selected instructions using the full data space.

Table 6.1: Percentage of true (bold) and false positive recognition rate for a
selected instructions using MVGPDF. The rows and columns represent executed
and recognised instructions respectively.

Instruction Recognised as [%]
NOP MOV ADD ADC MUL 1 MUL 2 CLR CP INC SUB SBC

NOP 28.7 0 2.8 5.2 0.8 14.3 0.2 10 1.2 0 0.6
MOV 0 49.2 5.2 0 0.4 0 3.2 0 10.2 0 0.6
ADD 9 4.6 17.5 0 0.4 0.6 0 0.2 7.2 0.6 0.2
ADC 0.6 0 0 91.6 0 1.6 0 5.2 0 0 0.2
MUL 1 2.6 0.4 1.2 0 68.7 0 9.2 0.8 0 0 0.6
MUL 2 20.7 0.8 1 1 0 41.6 0 0 9.4 0 0.2
CLR 4.8 2 0.6 0 7.2 0.6 80.1 0 1 0 1.2
CP 2.2 0 0.6 3.8 0 0 0 89.8 0 0 1.2
INC 7.8 4.8 7.8 0.2 0.2 0 0.4 0 42 0.2 0.6
SUB 0 0 0 0 0 0 0 0 0 86.1 0
SBC 0.6 0 0.8 3.6 1.2 0 1.6 3.6 0.2 0 86.3

However, this is costly in terms of computational overhead and is time consuming.

So, to find a good subspace for our dimensionality reduction, we tested MVGPDF

for the first 50 dimensions of the original data.

In Figure 6.6 we plotted the result of our classification rate after the dimension-

ality reduction techniques. In the graph, the first number within the bracket is

the dimension and the second number is the maximum classification rate. Using

MVGPDF, the maximum classification rate we could achieve was 66.78% after
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Figure 6.6: Classification rate after dimensionality reduction using Multivariate
Gaussian Probability Density Function for all 39 instructions.

using Means-PCA for reducing the dimensions.

k-Nearest Neighbors Algorithm (kNN): In kNN there are two major de-

sign decisions that need to be made. One is the number of neighbors, k, par-

ticipating in the decision making. The other is the distance function used to

compute the closeness between the template data and the signal that need to be

classified. First, we tested our traces with k = 1, Euclidean distance function

and full dimension of the traces. The average recognition rate for all the tem-

plates is 45.31%. The recognition rate for a selected 11 instructions is presented

in Table 6.2.

k-Fold Cross Validation k-fold cross validation is a common method used

to estimate how a classifier performs over a given data [182]. Given a set of m

collected samples; k-fold cross validation proceedes as follows;

1. Divide the data into k-equally sized folds,

2. For i=1...k

• Train the classifier on all samples that do not belong to i,

• Test the classifier using all the samples that belong to i
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Table 6.2: Percentage of true (bold) and false positive recognition rate for a
selected instructions using kNN. The rows and columns represent executed and
recognised instructions respectively.

Instruction Recognised as [%]
NOP MOV ADD ADC MUL 1 MUL 2 CLR CP INC SUB SBC

NOP 25.9 0.2 2.8 4.6 2.0 13.9 1.8 6.0 2.2 0 1.0
MOV 1.6 31.1 4.4 0 0.8 0.2 7.6 0 5.6 0 0.4
ADD 6.6 3.8 10.2 0.4 1.0 1.4 1.6 0.6 7.6 0.2 0.4
ADC 7.6 0 0.2 43.4 0.4 15.3 2.0 18.9 0.6 0 0.8
MUL 1 5.6 1.2 1.6 0.2 33.5 1.6 1.6 0.8 0.6 0 0
MUL 2 27.5 1.6 1.6 2.2 0.4 51.2 1.2 0 3.4 0 0
CLR 3.6 3.2 12.5 0.2 6.4 1.4 36.4 0 9.0 0 1.0
CP 10.6 0 5.0 7.0 1.0 0.6 0.4 27.7 0.4 0 3.8
INC 9.0 4.4 8.6 0 0.6 0.4 4.0 0.8 11.3 0 1.2
SUB 0 0 1.6 0 0 0 0 0 0 89.8 0
SBC 4.2 0.4 9.4 9.8 5.2 2.0 3.2 7.2 2.0 0.2 23.3

For the sake of completeness we tested our classifier (the kNN algorithm) using

a k-fold cross validation, where k=4. In this test our data is divided into 4

equally sized folds and used for training and tesing the algorithm. This process

is depicted as shown in Figure 6.7.

The average performance of our classifier with each fold used for testing is pre-

sented in the Tables 6.3.

Table 6.3: Average percentage of true (bold) and false positive recognition rate
for a selected instructions using kNN in k-fold cross validation.

Instruction Recognised as [%]
MOV ADD ADC MUL 1 MUL 2 CLR CP INC SUB SBC

MOV 31.1 14.5 9.7 0 0 0 10.4 3.1 2.4 5.9
ADD 13.9 32.4 6.6 0 0 0.1 9.4 3.2 2.9 6.9
ADC 9.3 7.2 28.6 0 0 0.4 7.8 15.9 8.1 8.3
MUL 1 0 0 0 58.2 0 0 0 0 0 0
MUL 2 0 0 0 0 22.4 0 0 0 0 0
CLR 0 0 0.1 0 0 53.5 0 1.4 6.6 3.4
CP 9.8 10.3 6.5 0 0 0 33.2 1.5 0 1.6
INC 5.1 4.3 18.8 0 0 2.1 1.0 35.3 11.2 12.7
SUB 3 2.8 6.5 0 0 6.9 0 10.9 33.7 18.7
SBC 5 5.4 9.2 0 0 2.5 1.5 10.4 21.2 31.3

To improve the recognition rate we used dimension reduction techniques. With

k = 1 and Euclidean distance function we repeated the experiment on a reduced
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Figure 6.7:

dimensions and the recognition rate is presented in Fig. 6.8. The result for

LDA, Means-PCA, Sum of Difference of Means and Means-Variance was not

very satisfactory. However, for PCA we have achieved a 100% recognition after

only using the first 13 dimensions. In order to see the effect of changing k on the

recognition rate, we repeated the experiment for k = {5, 10, 15, 20} and the result

was the same. Now this steep increase in recognition rate could be a combined

result of removal of inter-class correlated points using PCA and the fact that the

traces are not generalised during the learning process of the algorithm.

To check the effect of the second criterion, the distance function, we tested our

traces using three different distance functions. These are the Euclidean, Correla-

tion and Cosine distance function. The classification result after PCA using all

three different distance functions is plotted in Fig. 6.9. As shown in the graph,

apart from a minor difference for dimensions 1 ≤ D ≤ 12, the recognition rates

are the same. They all reached a 100% of recognition rate after the first D ≥ 13

dimensions.

Finally, it may be worth noting that apart from the two classification techniques,

we have also experimented with several others. These algorithms include Self-

Organizing Maps [183], Support Vector Machines [184], Linear Vector Quanti-
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Figure 6.8: Instruction recognition rate for all 39 instructions using K-Nearest
Neighbors Algorithm for k=1 after applying the dimensionality reduction tech-
niques.

zation [185] and Naive Bayes Classifiers [186]. However, their results were not

satisfactory and we stopped pursuing them.

6.7.4 Basic Block Integrity Verification

To test the software integrity verification technique, we generated a pair of RSA

keys. Normally it is recommended to use large prime numbers in order to be

secure against factorization attacks. However, our aim here is to show that power

consumption can be used to verify the integrity of embedded software. Therefore,

we generated the key pairs using small prime numbers. We selected the prime

numbers to be q = 23 and p = 59. Using CrypTool [187] we generated the

public and private key to be (N = 1357, e = 3) and (N = 1357, d = 851)

respectively. For this experiment we also implemented an application that verifies

a four digit PIN value. The reference PIN is stored in the non-volatile memory of

the processor and the PIN that needs to be verified is sent from a terminal (PC).

Once the processor receives the PIN, it compares it with the reference PIN digit

by digit. The source code is available at [35]
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Figure 6.9: Recognition rate for all 39 instructions using K-Nearest Neighbours
Algorithm with different distance functions for k=1 after applying PCA.

Before signing the basic blocks of our application we generated a hash (fixed)

value on the immutable part of the basic block instructions. For example, in AT-

Mega163 instructions have two parts the Opcode and the Operand. The Opcode

is always static and the Operand depends on the arguments (parameters). In the

RSA hash-and-sign scheme, standard hash algorithms such as SHA-1 [188] and

MD5 [189] are used to generate the hash value. However, since our experiment

was not about attacking hash algorithms we used a simple XOR of the immutable

parts for simplicity.
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Figure 6.10: Power consumption of the processor when executing PIN checking
application with embedded processor parameter update in between the basic
blocks.
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In Figure 6.10, the plot sections labelled as “BB” are when the processor executes

the basic blocks and the sections labelled as “EP” belong to the processor’s

parameter update operation. To test our technique, we changed some of the

instructions of the application after the signatures were generated and ran it

again. In our first trial we replaced two consecutive MOV instructions with

MOVW. They both accomplish the same task, but generate different waveforms.

Secondly we changed the compare instruction CP to CPC in the first two basic

blocks. The PIN still gets verified correctly, but the waveform was not quite the

same and we detected that using our proposed method. Finally, we replaced the

branching statement BRNE with BREQ and ran it. As expected equation (6.10)

returned “0”, which means the integrity of the application is violated, for all

three cases. We have also implemented the same function in PIC16F876 [190]

microcontroller and run the verification process using the templates built for

ATMega163. Again as we expected it, the instruction classification function did

not produce the correct instructions. As a result the verification function returned

“0”.

6.8 Summary

This chapter has explored the unconventional idea of permitting side channel

leakage from an electronic component, before it is deployed in real-time opera-

tion, for the purposes of useful analysis and application code integrity verification.

This approach can be used in to detect if there is a design anomaly in the hard-

ware platform as it will be reflected in the side channel leakage. We conducted

an experiment on an AVR architecture microcontroller, ATMega163. In our ex-

periment we achieved a 100% of classification rate using k Nearest Neighbours

algorithm for executed instructions. As the verification process is only performed

once after acquiring the components (but before deploying them in operation)

it will not affect the performance of the chip once used in operation. Further-

more, special equipment is not required to support the components in real-time

operation. In this chapter we discussed our proposal in the context of verify-

ing an embedded device before used in operation. However, the technique can
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also be used for forensic analysis of electronic components, application integrity

verification and counterfeit components detection purposes.
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In this chapter, we propose a dual-stack processor architecture to pro-

tect runtime data processed by the executable instructions. We start

by explaining a simple attack on runtime data, specifically the stack

items, and preciously proposed countermeasures. We then define an

attacker’s capabilities and attack types that an attacker can mount.

Then we discuss two variants of a dual-stack processor architecture.

In addition, we provide detailed analysis of implementation options,

performance overhead and latency of these variants. Furthermore, we

provide a comparative analysis with other countermeasures. Finally,

we summarise the chapter by mentioning the main points.
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7.1 Introduction

During the execution of a program a processor creates a number of temporary

runtime data to facilitate the execution. This includes intermediate computa-

tional results, function call parameters, return addresses and conditional branch-

ing statement parameters. Such data is usually stored in the stack [191]. A stack

is a Last In First Out (LIFO) data structure with two principal operations; the

push and the pop. The LIFO serves as a collection of runtime data elements. The

push adds a new element to the collection and the pop removes the last element

that was added from the collection. The stack contains valuable information

that can be targeted by an adversary to compromise the integrity of a program

execution. The result of such an attack can be; (1) extract secret information,

(2) divert the execution into a maliciously crafted code segment, (3) skip certain

parts of the program from executing or (4) simply corrupt the final computational

result.

Processors use a shared stack for both intermediate data and function return

addresses. In such a set-up an adversary may write an oversized data into the

stack to overrun the stack boundary and overwrite adjacent memory cells in

a program that does not check data size. This exploit is also known as stack

overflow [192]. One extreme form of stack overflow is the stack smashing [193],

where the adversary overflows the stack to change the return addresses. The

adversary may experiment on a specific data type and size that will modify the

return address in such a way that it will point to a location within the stack

itself, which contains executable instructions.

Another, relatively new, attack on embedded system’s stack is the Fault Injec-

tion Attack, where the adversary intentionally generates malfunction by inducing

faults, either to exploit the faulty output to extract some secret information or

simply injects the fault into the return addresses to divert the program execu-

tion. Such faults can be induced by using clock glitches, power source spikes

[194], heat or laser generators [195, 196, 197]. The first use of fault injection to

extract a secret cryptographic key was presented by Bellcore research team in

[95]. In their work they showed how a single fault can be used to efficiently factor
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the RSA modulus of Chinese Remainder Theorem (CRT) based implementation

with high probability. Later, Biham et al. introduced the concept of Differential

Fault Analysis (DFA) [96] on the Data Encryption Standard (DES) [198]. This

led to a subsequent publications of similar attacks [97, 98, 99, 100, 101] on the

Advanced Encryption Standard [199].

For the sake of completeness we describe a simple fault injection attack example

on stored stack items to divert the execution of a target program. This example

attack is on Java stack, however, it may be worth mentioning that our proposal

is not specific to Java stack items. Figure 7.1 illustrates the Java source code and

bytecode of the target program, which is a wallet applet.

package Debit;

import java.lang .*;

public class Debit{
private int balance = 100;
private String refPIN="1234";

void Deposit(int value){
balance = balance + value;

}
void Withdraw(int value){

balance = balance - value;
}
boolean pinCheck(String pin){

if(pin == refPIN ){
return true;

}
return false;

}

void main (){
String pinTBC="3456";
if(pinCheck(pinTBC )){

Withdraw (20);
}

}
}

1 boolean pinCheck(java.lang.String);
2 Code:
3 0: aload_1
4 1: aload_0
5 2: getfield #4; //Field refPIN:Ljava/

lang/String;
6 5: if_acmpne 10
7 8: iconst_1
8 9: ireturn
9 10: iconst_0

10 11: ireturn
11

12 void main();
13 Code:
14 0: ldc #5; // String 3456
15 2: astore_1
16 3: aload_0
17 4: aload_1
18 5: invokevirtual #6; // Method pinCheck

:(Ljava/lang/String ;)Z
19 8: ifeq 17
20 11: aload_0
21 12: bipush 20
22 14: invokevirtual #7; // Method

Withdraw :(I)V
23 17: return
24

25 }

Figure 7.1: Fault Injection: Attack example on stack items.

The invokevirtual (at line 5 of the main method) invokes the pinCheck func-

tion. This diverts the execution to line ‘0’ of the pinCheck function (which is

the aload 1). Since the provided and reference PINs are different the pinCheck

returns ‘false’ by executing return false instruction. This is done by pushing

the value ‘0’ into the stack as shown in line code 10 (iconst 0). However, if an

adversary can change the top of the stack into anything other than ‘0’ then the
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wrong PIN will be accepted as valid.

Recently fault injection attacks are also being used in combination with other

attacks to maximise their impact. These attacks are known as Combined Attacks.

In Combined Attacks fault injection on runtime data are used to facilitate other

powerful attacks. Such attacks are discussed in detail in [200, 136, 201, 202, 203].

Given the high impact and sophistication of these attacks several countermeasures

have been proposed. In this chapter we propose a new countermeasure against

attacks that target stack items.

The rest of the chapter is organised as follows. Section 7.2 discusses counter-

measures proposed to detect changes to stack items by an adversary. Section 7.3

defines attack types and attacker capabilities with regard to our proposal. Sec-

tion 7.4 discusses our proposed countermeasure in detail. We explain our tech-

niques using two working variants of our countermeasure. Section 7.5 provides

our implementation and analysis. We also provide details of both hardware and

software implementation of our technique. In addition, we elaborate in detail

about performance overhead, detection latency and fault detection capability of

our countermeasure. Finally, section 7.6 summarises the chapter.

7.2 Related Work

One the earliest countermeasures proposed to protect stack items is stack canaries

[144]. Stack canaries are originally proposed to stop stack overflow attacks. Stack

canaries are values that are placed between a buffer and control data in the stack

to monitor buffer overflows. When the buffer overflows, the first data that get

corrupted will be the canary value. A failed verification of the canary value

is therefore an alert of an overflow, which can then be handled, for example,

by invalidating the corrupted data. To stop attacks against predictable canary

values, they are generated randomly and never revealed to the outside world.

As discussed in Section 7.1, stack smashing is an extreme form of buffer overflow.

Stack smashing is the result of a processor’s design decisions; (1) to let the proces-
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sor store user data and program control data in the same stack (memory block),

and (2) the processor being able to execute instructions from the stack area. The

countermeasures against stack smashing directly address these two points. The

Instruction Based Memory Access Control (IBMAC) proposed in [142], splits the

stack into a data stack and function return address stack through a hardware

flag. The function return address stack is only used for storing subroutine func-

tion call return addresses and can only be accessed via instructions such as call

and ret. A non-executable stack enforces a memory policy on the stack memory

region that disallows execution from the stack [204]. Both the IBMAC and the

non-executable stack directly address the design decisions discussed above.

Another countermeasure is proposed by Barbu et al. [200]. In their work they

present countermeasures against fault injection attacks on Java Card operand

stack. In their work they explained three methods that can detect faults in-

jected into the operand stack. The first is, redundant checks, which checks the

value expected to be pushed/popped with the value that was actually pushed or

popped. Both the repeated push and pop operations are performed on the same

stack. The second method, fault propagation, propagates a potential error into

another component of the JCVM such as the context. Finally, stack invariant,

involves the introduction of a variable that holds the XOR of values pushed onto

and popped from the stack. These countermeasures only prevent fault injection

attacks on the processor’s bus not the actual memory content.

7.3 Attack Model

Before we dive into the discussion of the proposed mechanism, we first need to

define the attack types and attacker’s capabilities in the context of stack item

manipulating attacks. These attacks could be physical (e.g. fault injection)

or logical (e.g. stack overflow or stack smashing) attacks. The possible types of

attacks that an attacker can mount and the capabilities he possesses are described

below:
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1. Precise bit fault : In this attack, the attacker has total control over the

timing, location and value of the bit that he/she wants to change.

2. Precise byte fault : This scenario is similar to the previous attack; however,

the attacker has the ability to change the value of a byte rather than a single

bit (i.e. the attacker can change multiple bits within the target byte).

3. Unknown byte fault : The attacker has full control over the timing and

location of the fault but no control over the value.

4. Unknown fault : In this scenario the attacker does not have any control over

the timing, location and value of the fault.

Attacker Capability 1: In this scenario the attacker is capable of

successfully injecting a single fault into the stack during execution.

Attacker Capability 2: In this scenario a skilled attacker is capable

of successfully injecting two separate (at different memory locations)

but identical faults into the stack during execution. [205] .

7.4 Dual-Stack Architecture

The integrity of a stack is critical in regulating how a program behaves during

execution. It influences the control flow jumps through its stored function re-

turn addresses and conditional branching statement parameters. In addition, it

also controls the final output of a function/algorithm via its stored intermediate

computation results and function calling parameters. Therefore, ensuring the

integrity of stack items is paramount to the security of the entire system. In our

work we propose a new countermeasure against attacks that target stack items.

Our countermeasure involves having two stacks. In other words it requires two

separate RAM blocks dedicated for stack items. The processor will use the second

stack to verify items stored in the first stack (Operational Stack) during runtime.

Figure 7.2 illustrates the push and pop operations of our dual-stack architecture.
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Operational Stack (OpeS)

OpeS(1)

OpeS(2)

...

OpeS(top)

Security Stack (SecS)

SecS(1)

SecS(2)

...

SecS(top)

[On Push(expected)]

[expected ← On Pop()]

Figure 7.2: Double stack architecture

To ensure the integrity of operational stack items the processor can keep a direct

copy of them somewhere else and perform redundant stack operations. This

requires the processor pushing and popping the same value into and from both

stacks. In a more sophisticated manner the processor may keep integrity values

of all items pushed into the Operational Stack on the second stack, (Security

Stack), and use this information to verify them during runtime. In the subsequent

sections we will discuss two variants of the dual-stack architecture in detail.

7.4.1 TwinStack: Redundant Stack Operations

The most straightforward approach to check if a stack item is changed is to keep

two copies of each stack item and perform redundant stack operations. Hereafter,

we refer to this as a TwinStack. In TwinStack both stacks are identical (the same

size and store the same data). The push and pop operations in TwinStack are

illustrated in the pseudo code in Listing 7.1.

Listing 7.1: push and pop operations in TwinStack

// Executed when a value is pushed into the stack.

On_Push(expected ){
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push(OpeS , expected );

push(SecS , expected );

}

// Executed when a value is popped from the stack.

byte On_Pop (){

expected = pop(OpeS);

if(expected != pop(SecS )){

ThrowFaultException ();

}

return expected;

}

When the On Push function is executed it pushes the same value (expected)

into both the Operational Stack and the Security Stack. Then when the On Pop

function is executed it pops the top item from both stacks and compare them.

The value is accepted as valid only if both values are equal. Otherwise, the

processor executes the fault handler function (ThrowFaultException()).

To circumvent this protection the attacker must replicate the same fault on both

stacks and at the same index. This requires a detailed knowledge on the memory

organisation of the device and the program implementation. These requirements

make a successful attack on TwinStack very difficult if not impossible. However,

it is a truism that attacks only get better with time and we anticipate significant

improvement to fault injection attacks with regard to replicating faults. We at-

tempt to address this by proposing another variant of the dual-stack architecture,

the IntegrityStack.

7.4.2 IntegrityStack: Verifying Integrity of Stack Items

The other technique that a processor could use to ensure the integrity of the

stack items is to compute and keep their integrity matrix and then use it to

verify popped items. Hereafter, we refer to it as a IntegrityStack. Every time the

processor pushes a value it computes its integrity and pushes it into the Security
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Stack. Then later when it pops it back, it uses this information to verifies its

integrity. The push and pop operations of IntegrityStack is illustrated in the

pseudo code in Listing 7.2.

Listing 7.2: Push and pop operations in IntegrityStack

// Executed when a value is pushed onto the stack.

On_Push(expected ){

push(OpeS , expected );

push(SecS , (expected XOR SecS[top ]));

}

// Executed when a value is popped from the stack.

byte On_Pop (){

expected = pop(OpeS);

if(expected != (pop(SecS) XOR SecS[top ])){

ThrowFaultException ();

}

return expected;

}

When the On Push function is executed the processor pushes the value (expected)

into the Operational Stack. At the same time it XORs it with the top of the

Security Stack and pushes the result into the Security Stack as an integrity infor-

mation of the pushed item. Then when the On Pop function is executed it pops

the top item from Security Stack, XORs it with the new top and compares it

with the item popped from the Operational Stack. The value is accepted as valid

only if the comparison resulted equal. Otherwise, the processor executes the fault

handler function (ThrowFaultException()). Unlike the TwinStack replicating

the same fault will simply not work in IntegrityStack.

To circumvent the IntegrityStack the attacker needs to inject a fault into the

operational stack and accordingly modify the corresponding integrity value on

the security stack. To successfully modify the integrity values without being

detected the attacker needs to know all the values pushed onto the operational

stack before the erroneous item. This is because the integrity value at index i is

computed as SecS(i) =
∑i

ind=1OpeS(ind). This makes it almost impossible to
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launch a successful attack against IntegrityStack.

7.5 Implementation and Analysis

In this section we discuss implementation, performance overhead and detection

latency analysis of the TwinStack and the IntegrityStack. Further, we also pro-

vide a comparative attack detection analysis of our countermeasure and other

countermeasures proposed before.

7.5.1 Implementation

An embedded processor normally maintains one stack during runtime. Therefore,

to use our countermeasure we either need to implement a separate second stack

or change the way the processor utilizes its existing stack. The former can only be

done through a hardware implementation. However, the later can be achieved by

modifying the compiler and the processor’s runtime environment. Hereafter, we

refer to these two implementations as hardware and software implementations.

Source code of our implementation is available at [35].

Hardware Implementation

In our hardware version, we implemented three stacks, a traditional single stack

data structure along with both dual-stack architectures (TwinStack and Integri-

tyStack) that we discussed in this chapter. In our experiment we created a 256

byte SRAM memory block dedicated only for stack operations. Our single stack

implementation uses only one memory block to store its items, whereas the dual-

stack architectures use two separate 256 byte SRAM memory blocks. Figure 7.3,

shows the conceptual block diagram of our implementation.

The two RAM blocks will be used to store stack items. In addition, we also
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Attack
Simulator

Stack

RAM RAM

Testbench

Figure 7.3: Hardware implementation of dual-stack and attack simulator

implemented an attack simulator that can simulate the attack types and capa-

bilities that we described in Section 7.3. The “Testbench” simulates the external

environment through which the programmer can push and pop values to/from

stack and the attacker can perform his attacks. As per our definition of the at-

tack model, the attacker can either pass the precise attack value and address to

the attack simulator (Precise Bit and Precise Byte) or the simulator will ran-

domly generate them (Unknown Byte and Unknown Fault). All modules are

implemented in VHDL 1, compiled and simulated using GHDL [206]. Figure 7.4

presents the data capture of all input and output pins, and the internal RAM

content of our traditional single stack implementation.

Figure 7.4: Normal single stack VHDL implementation

Our stack entity has six input and output ports. The t s clk is the clock signal

input pin. The active low stack enable signal, t s en, enables read and write

operations on the RAM. The t s full and t s empty, when ‘1’, signals whether

1A hardware description language used in electronic design to describe combinational and
sequential systems such as field-programmable gate arrays and integrated circuits.
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the stack is full or empty respectively. The t s data is an inout 2 data port used

to push and pop data into and from the stack. The data and sp are internal

signals representing the SRAM memory content and the stack pointer 3.

In our dual-stack implementation we added one more output port the s faulty.

The s faulty changes from ‘0’ to ‘1’ when an attack is detected on the popped

item. Then all stack operations are frozen. As shown in Figure 7.5, a value

“0x97” is pushed into both Operational Stack and Security Stack, which then

later is changed to “0x33” through our attack simulator, which is shown by the

blue highlight. This change is then detected by TwinStack (signified by the

change of s faulty from ‘0’ to ‘1’) and all stack operations are suspended.

Figure 7.5: TwinStack VHDL implementation

Software Implementation

The software implementation of our proposal only uses the already existing stack.

Incorporating our countermeasure will require changing the processor’s way of

utilizing the stack. For instance, alternating memory locations can be used for

each stack that we proposed. Example, consider a stack with 256 byte entries

on its allocated memory. The memory locations are addressed as 0x00 - 0xFF.

Even addresses (0x00, 0x02, ..., 0xFE can be used as Operational Stack and

odd addresses 0x01, 0x03, ..., 0xFF as Security Stack. This means for every

item the processor has to do two pushes and pops. This requires modification to

the compiler and runtime environment.

2A bi-directional port. Both writing into and reading from are allowed.
3A register that stores the address of the next location in the stack memory.
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The stack is accessed in two ways; (1) the programmer pushes and pops values

using the stack instructions, and (2) the processor pushes and pops function re-

turn addresses to keep track of control flow jumps. For the programmer’s data

the compiler can be modified in a way that it will rewrite (the push and pop

instructions) to perform the necessary actions as discussed in this chapter. A

countermeasure that uses similar technique (rewriting source code) is discussed

in Section 4.2. However, to achieve a similar goal with the control flow infor-

mation, the runtime environment needs to be modified. Full implementation of

a modified compiler and runtime environment is out of scope of our research.

Nevertheless, for the sake of completeness of our analysis, we have created an

abstract processor that counts the number of affected instructions by our coun-

termeasure and analyse the execution overhead incurred. Details of this analysis

is discussed next.

7.5.2 Performance Overhead

The countermeasures involve performing additional tasks compared to a tradi-

tional single stack processor. For instance, in TwinStack, push stores the same

value in both stacks. This is equivalent with 2 push instructions in a single stack

processor. In IntegrityStack, it involves pushing the value into the Operational

Stack, XORing it with the top of the Security Stack and pushing the result into

the Security Stack. This is equivalent with 2 push, an XOR and a memory read

in traditional processor. The pop in TwinStack includes reading the top of both

stacks and comparing them, which makes it equivalent to 2 pop and compare in-

structions. However, in IntegrityStack, it is equivalent with 2 pop, memory read,

XOR and compare instructions of a single stack processor.

The hardware implementation is done in a way that stack operations on both

stacks are performed in parallel without incurring any additional overhead. How-

ever, in software implementation the additional instructions are executed sequen-

tially and thus incur execution overhead. In Table 7.5.2 we presents the addi-

tional instructions executed by our countermeasure compared to a single stack

processor in software implementation. In this table we discussed the effect of the
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countermeasure on instructions that access the stack, such as push, pop, call

and ret.

Affected Software Implementation
Instructions TwinStack IntegrityStack

push 1 3
pop 2 4
call 2 6
ret 4 8

Table 7.1: Number of additional instructions introduced by the countermeasure

For a further analysis of the performance overhead of the software implementation

three programs are selected. These are Advanced Encryption Standard (AES)

[199], 4 digit PIN verification and 16-bit modular multiplication. Given three

16-bit numbers C, M and N , the 16-bit modular multiplication computes (C ∗
M)%N . To evaluate these programs we implemented an abstract processor that

unrolls the programs and computes the overhead based on how many of the

affected instructions are executed. The overall overhead is presented in Table 7.2.

Selected Programs TwinStack IntegrityStack
AES 43.9% 102.4%

PIN Authentication 69.2% 92.3%
16-bit Modular Computation 10.6% 21.9%

Table 7.2: Overall increase in executed instructions of software implementation
of the countermeasure

To follow some good hardware programming practice, in all test programs we

pushed the initial values of all used registers before a function is invoked and

popped them back at the end of function execution. At this point it may be worth

noting that with little optimisation the performance overhead can go significantly

lower.

7.5.3 Latency

Latency is the number of instructions executed after a fault is injected into the

stack and the processor becomes aware of it. For the processor to become aware of
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the fault the erroneous item needs to be popped out of the stack. That means the

fault can not be detected until the faulty item reaches the top of the stack. The

latency measurements are of our proposed countermeasures is listed in Table 7.3

and explained subsequently.

Implementation
Countermeasures Hardware Software

TwinStack N N + 2
IntegrityStack N N + 4

Table 7.3: Latency measurements of the countermeasures

In the above table, N represents the number of instructions executed by the

processor until the erroneous stack item is read out by the processor. In both

hardware implementations, the fault is detected as soon as the erroneous item is

read out. Therefore, the latency is the number of instructions that are executed

after the fault is introduced until it is read out from the stack. However, in

the software implementation there are additional instructions that the processor

executes before the it becomes aware of the fault. In TwinStack, additional pop

and compare instructions are executed. Whereas in IntegrityStack, extra pop,

read, XOR and compare instructions are executed.

7.5.4 Attack Detection Capability Evaluation

In Section 7.2 we discussed security countermeasures designed/proposed to pro-

tect stack items. In addition, in Section 7.3, we defined attack types and attacker

capability in regard to our proposal. Now in Table 7.4 we present the attack de-

tection capability of our proposal and other related techniques against our attack

model. In the table X means that the countermeasure provides defence against

the corresponding attack type and X represents that it does not.
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7.6 Summary

As stated in the beginning of the chapter, attacks on runtime data are increasingly

becoming a powerful tool to defeat embedded systems security. Thus, finding a

solution that works is paramount. In our work we defined four attack models

and two attacker capabilities. Then we proposed a simple but effective coun-

termeasure based on having a second stack memory as an integral component

of the processor. We discussed two variants of a countermeasure in detail. Our

countermeasure is not specific to any kind of algorithm or device. It can be

implemented in hardware or software to prevent any form of fault attack that

involve corrupting the state of the stack. Finally, we provided detailed imple-

mentation options, performance overhead for affected instructions and selected

programs. We also discussed the detection latency and comparative analysis of

its effectiveness against other countermeasures proposed to stop attacks on stack

items.
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We start the chapter by discussing runtime threats to embedded sys-

tems control flow and instructions during execution. We then provide

a brief explanation of basic blocks. This is followed by a detailed dis-

cussion and security proposal for runtime control flow and executed

instructions integrity. We then present our implementations and test

results. Finally, we summarise the chapter by providing the key points

presented.
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8.1 Introduction

Embedded systems are becoming increasingly widespread and inter-networked

both through wireless and the internet means. This opens them up to a num-

ber of security threats and exploits that have traditionally targeted personal

computers. Thus, the question of security in embedded systems received huge

interest amongst researchers [207]. The extensive security research in the context

of general-purpose computing and communication led to advances in security

protocols and cryptographic algorithms [208, 209]. While this provides a strong

basis for securing embedded systems, it is now well accepted that secure imple-

mentation and execution of programs is critical to the overall system security.

A system security can be compromised either through the execution of a program

from untrusted source or the corruption of the program binary. An adversary may

corrupt the binary while it is being downloaded or after it is stored in the target

device’s memory. Normally, the origin of a computer program is verified through

the means of digital signatures [210]. The program developer digitally signs

the program binary and then the user verifies it before installing the program.

However, once the program is installed it is still vulnerable to runtime attacks

and needs protection against such intrusions.

In the literature several mechanisms have been proposed to protect embedded

system programs from runtime intrusions. Shufu et al. [211] proposed a hardware

supported execution flow monitor subsystem. In their proposal the program is

analysed by an offline tool that extracts a monitoring graph. This graph is

then loaded into the monitoring subsystem which compares it with information

generated by the main processor during runtime. The authors also discussed

address, opcode, load/store, control flow and hash patterns as possible options

for such information.

In [212] Arora et al. proposed a hardware assisted runtime monitoring of embed-

ded system programs. In the paper the authors use function call and return tables

to verify control flow jumps. This tables are generated by a modified compiler

function. In addition, they discussed hash function based executed instructions
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integrity verifier. In [213] the authors explored how AES can be used to verify the

integrity of a program during execution. They used Multiple Input Shift Regis-

ters (MISR) to compute the ciphertexts of executed basic block instructions. An

offline tool simply encrypts portions of the program using a pre-chosen key and

the resulting ciphertext is then used as integrity value for verification.

Krutartha et al. [214] discussed a monitor processor that verifies execution flow

path and basic block execution time in multi-processor applications. The paper

proposes a dedicated hardware module that communicates with individual pro-

cessor cores using FIFO data structure. Prior to installation the program passes

through a special function of a compiler that generates a trace file. The trace

file contains valid execution flow paths and expected execution time of individual

basic block. This file is then used by the monitor processor during runtime.

All the proposed techniques have one thing in common. That is dividing the

program into smaller sections of sequentially executed instructions, also known

as basic blocks. Basic blocks are discussed in detail in section 8.2. The monitoring

information is computed from each basic block. More information on security of

embedded devices can be found in [215, 216, 217, 218]. In our work we explored

an alternative approach of protecting program attributes during execution. In our

approach we use two lookups (one for function calls and another for basic blocks)

to verify inter and intra-procedural control flows and opcode integrity verification.

Our approach is also complementary to our program data protection discussed

in chapter 7.

The rest of the chapter is organised as follows. In section 8.2 we discuss the notion

of basic blocks during embedded program execution. In section 8.3 we discuss

control flow jumps that a program may follow during runtime. We explained two

types of control flow jumps; the inter-procedural and intra-procedural control flow

jumps. In addition, we discuss our countermeasure against attacks that target

control flow jumps. In section 8.4 we discuss how the integrity of instructions

can be protected during program execution. In section 8.5 we provide implemen-

tation options and results of our techniques. Finally, we conclude the chapter in

section 8.6.
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8.2 Basic Blocks

A basic block is a linear sequence of program instructions that has only one

entry and one exit point [147]. The entry and exit points are the first and last

instructions to be executed with in the basic block. A basic block may have

multiple predecessors and at most two successors. In case of a loop it may be

its own predecessor and/or successor. In a program there are two special basic

blocks; the entry and terminating basic blocks. An entry basic block does not

have a predecessor and a terminating basic block does not have a successor within

the program. Program instructions within a basic block are executed sequentially.

The last instruction to be executed within a basic block (exit point) usually is

a jump instruction. This jump instruction can be conditional (eg. if · · · else),

unconditional (eg. goto) or a function call. The jump target (the first instruction

to be executed after the jump) is the entry point of the next basic block.

(a) Assembly code segment

ldi r18 , 16

L1: ld r17 , X

rcall SB

st X+, r17

dec r18

brne L1

clr r18

ret

SB: ldi ZL , lo8(SboxTable)

ldi ZH , hi8(SboxTable)

add ZL , r17

clr r17

adc ZH , r17

lpm r17 , Z

ret

(b) Basic blocks of the segment

ldi r18, 16

L1: ld r17, X

rcall SB

st X+, r17

dec r18

brne L1

clr r18

ret

SB: ldi ZL, lo8(SboxTable)

ldi ZH, hi8(SboxTable)

add ZL, r17

clr r17

adc ZH, r17

lpm r17, Z

ret

Figure 8.1: Assembly code segment and its basic blocks.

Picture (a) of Figure 8.1 is a code segment from an assembly implementation

of one of the four AES round functions (the substitute box function). The code

segment starts by loading the value 16 to a register (r18) and proceeds to the next
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instruction. The next instruction (ld r17, X) loads the content of a memory

address pointed by X to r17. However, it is also a jump target of the conditional

jump instruction brne L1. Therefore, ld r17, X is an entry to a new basic

block. The rcall Sbox invokes the function SB and therefore is the exit point of

the basic block. Other exit points within the code segment are the brne L1 and

the two ret instructions. Using the rules of basic block we can divide the code

segment into five basic blocks and are multi-coloured as shown in picture (b) of

Figure 8.1.

8.3 Control Flow

A control flow is the order at which function calls and instructions are executed at

runtime. Within a computer program there are two types of control flow transfers;

inter-procedural and intra-procedural control flow transfers. Inter-procedural con-

trol flow transfers are the result of function calls, whereas intra-procedural control

flow transfers are caused by conditional or unconditional branching statements.

8.3.1 Inter-Procedural Control Flow

Inter-procedural control flow transfer is done through function calls. So, it is

common to represent inter-procedural control flow transfers using a function call

graph. Generally, there are two types of inter-procedural control flow transfers;

the function call and return control transfers. Such control flow transfers include

a simple function call with in the program, library or system calls.

Listing 8.1: Example code of a function (function A)

1 int A(int value) {

2 int a = 0;

3 if(value < 0) {

4 a = B(value );

5 } else {

6 a = C(value );
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7 }

8 return D(a);

9 }

To explain inter-procedural control flow further, we consider an example code

function A that has three function calls before it completes the execution of

the function. The associated code (pseudo code representation) of function A

is shown in Listing 8.1 and the corresponding control flow diagram in Figure8.2.

Each invocation of a function (e.g. B, C and D in Listing 8.1) diverts the execution

to the first instruction within the invoke function and returns back when the

execution completes. The return address is normally pushed into the stack when

a function is invoked and popped when its execution is completed.

A

B

C

A D A
From
function
A invoker

To func-
tion A
invoker

Figure 8.2: Control flow diagram of function A.

To verify the validity of function call control transfers at runtime, the processor

needs some pre-computed information. To explain how this information is com-

puted we will use the control flow diagram of function A shown in Figure 8.2.

Here, we will only consider the control flow jumps within (ignoring the jumps

before and after) the function A. Also it may be worth mentioning that function

calls are represented by blue arrows and returns by red arrows in the control

flow diagram. When a program is compiled, the compiler generates a function

property table. This table is generated by taking every possible valid execution

flow of the program. This can be done by using enhanced compiler tools. The

property table contains information like unique function identity, list of valid

control flow contexts and pointer into another table (which is discussed in detail

in section 8.3.2) as shown in Table 8.1.
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Table 8.1: Function property lookup table TABLEproperty

Unique FID Address Valid Contexts Ptr BB
...

...
...

...

The Unique FID is a unique function identifier assigned by the compiler. In

the control flow diagram in Figure 8.2, we used a simple character representation,

however, a compiler may use a sequence of bytes. For instance the Unique FID

for functions A, B, C and D are 0x01FC, 0x01FD, 0x01FE and 0x01FF respec-

tively. The Valid Contexts is list of the XOR of Unique FID of all functions

that are executed by the processor before the corresponding function is invoked.

Using function A as an example, the first possible inter-procedural control flows

are to B or C depending the input integer value. The inter-procedural control

flow can be represented as A → B or A → C, where → represents the direc-

tion of the execution flow. Therefore, we can represent the Valid Contexts for

functions B and C as A ⊕ B and A ⊕ C (i.e. 0x01FC ⊕ 0x01FD and 0x01FC ⊕
0x01FE) respectively. Another entry in the table, Address is the address of the

first instruction within the function. This address is used by the inter-procedural

control flow jump verifier to identify which function is being currently executed

and can be easily acquired by reading the processor’s Program Control regis-

ter. The final entry in the table, Ptr BB is an index pointer to another table,

TABLEBasicBlock, which is also generated by the compiler. The details of the

table is discussed in the following section 8.3.2. Based on the above discussion

the full TABLEProperty for the example function A will look like as shown in

Table 8.2.

Table 8.2: Function property lookup table TABLEproperty for example function.
Unique FID Address Valid Contexts Ptr BB

0x01FC PCA A⊕B ⊕ A · · ·
A⊕ C ⊕ A

A⊕B ⊕ A⊕D ⊕ A (A⊕B ⊕D)
A⊕ C ⊕ A⊕D ⊕ A (A⊕ C ⊕D)

0x01FD PCB A⊕B · · ·
0x01FE PCC A⊕ C · · ·
0x01FF PCD A⊕B ⊕ A⊕D · · ·

A⊕ C ⊕ A⊕D
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To verify the validity of inter-procedural control flow jumps at runtime, the pro-

cessor keeps track of all execute function, which we refer to as context in our

discussion. The context is 0x0000 before the execution starts. When it starts

executing A, the processor updates the context simply by XORing it with the

function identifier (i.e. 0x0000 ⊕ A). Now the current value of context becomes

0x0000 ⊕ 0x01FC that is the same with 0x01FC. Using function A as an exam-

ple, the next function to be executed is B or C depending on the input integer

value. Therefore, the next possible (valid) context values are A ⊕ B (0x01FC

⊕ 0x01FD) or A ⊕ C (0x01FC ⊕ 0x01FE). If the current context is among the

list of Valid Contexts of the current function then the inter-procedural control

flow jump is regarded as valid.

8.3.2 Intra-Procedural Control Flow

When a function is invoked the execution flow is transferred to the first instruction

of the called function. The execution flow will only return when the execution

of the function completes. After the discussion on inter-procedural control flow

transfers, the next logical question should be, how can we verify the control

flow jumps that occur within the function itself? We refer to such control flow

jumps as intra-procedural control flow transfers (jumps). Unlike inter-procedural

control flow jumps, intra-procedural control flow jumps are caused by conditional

or unconditional branching statements.

Listing 8.2: Example code of a function (function B)

1 int B(int value) {

2 int b = -1 * value;

3 int result = 0;

4 if(b%2 == 0) {

5 result = 2 * value;

6 } else {

7 result = 3 * value;

8 }

9 return result;

10 }
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Intra-procedural control flow jumps only divert the execution flow to an instruc-

tion within the function. For instance lets consider function B as shown in List-

ing 8.2. When function B is invoked the execution flow is transferred to the

instruction int b = -1 * value and executes the next 3 instructions sequen-

tially. After executing if(b%2 == 0), the control flow may jump to result = 3

* value depending on whether b is even or odd. Finally, completes the function

by executing return result. Before we try to verify such control flow transfers

we need to breakdown the function into basic blocks. Like the function property

table for inter-procedural control flow, basic block information of each function

is generated using a customised compiler tool for intra-procedural control flow

purposes. The basic block information generated can be represented as a simple

lookup table as shown in Table 8.3.

Table 8.3: Basic block information lookup table (TABLEBasicBlock)
BB ID BB Offset S Integrity Value

...
...

...
...

Each basic block in a program has a row entry on the basic block information

table, TABLEBasicBlock, and are arranged in functions. In other words, the basic

blocks belonging to a functions are represented in consecutive rows. Each row is

represented as a tuple of information rowk(BB ID, BB Offset, S, Integrity Value),

where k being the row index in the TABLEBasicBlock. The BB ID is a unique

basic block identifier in the corresponding and BB Offset is the relative address of

the basic block from the start of the function. In addition, the table also contains

information like a list of unique identifiers of successor basic blocks, S, and the

message integrity code of the instructions within that basic block, Integrity Value.

To elaborate on this further, lets consider function B, shown in Listing 8.2, as

an example. The example code has four basic blocks. The first basic block

contains three instructions in line codes 2, 3 and 4. Basic blocks 2, 3 and 4 have

only one instruction in line codes 5, 7 and 9 respectively. These basic blocks

are represented by 4 consecutive rows arranged in order of appearance in the

function in TABLEBasicBlock. Assuming the line codes are the actual offset and

basic blocks 1, 2, 3 and 4 are represented by unique identifier 0xFA, 0xFB, 0xFC

and 0xFD respectively the TABLEBasicBlock will look like as shown in Table 8.4.
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Table 8.4: Basic block information lookup table for function B.
BB ID BB Offset S Integrity Value
0xFA 2 0xFB, 0xFC · · ·
0xFB 5 0xFD · · ·
0xFC 7 0xFD · · ·
0xFD 9 - · · ·

When a function is called, the inter-procedural control flow verifier validates the

jump and passes the value of Ptr BB to the intra-procedural control flow ver-

ifier. The intra-procedural control flow verifier will use the information stored

in the corresponding row of TABLEBasicBlock to verify the execution flow of

the basic blocks. The intra-procedural control flow verifier will use this infor-

mation to locate the corresponding basic block information of the function in

TABLEBasicBlock. Every time an intra-procedural control flow jump occurs the

verifier will use the basic block information if the target basic block is a valid

successor.

8.4 Instructions Integrity

Some embedded system attacks may not result in a control flow violation. For

instance, altering instructions inside a basic block may not result in an illegal

control flow jump, however it may still result in an erroneous execution of the

basic block. In order to detect such attacks we need a different but complimentary

approach to checking the integrity of executed instructions at runtime. Normally,

integrity of a given message can be verified with the help cryptographic hash

functions. The main design principle of a hash function is given a message x and

its hash value H(x), it is computationally infeasible to find another message y,

where x 6= y and H(x) = H(y). Thus, it is difficult for an attacker to modify the

basic block instructions and pass the integrity checking process.

To verify the integrity of every basic block in a program their hash values must

be computed beforehand and written into the verifier’s memory. Hashing can

be computationally expensive and need a dedicated hardware module to keep
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up with the processor’s execution speed. Moreover, storing the fixed size hash

values (normally between 16 to 20 bytes) of each basic block may incur intensive

memory load on the resource constrained device. To solve such a challenge only a

selected number of bits from the final hash value can be stored and subsequently

used for integrity checking during the execution of the program.

The process of basic block integrity verification starts during the program com-

pilation. The compiler divides the program into basic blocks and computes their

integrity values. The integrity values are then written into the basic block in-

formation lookup table TABLEBasicBlock 8.3. This process is visually presented

Listing 8.3 and the highlighted lines refer to the hash value of the basic blocks

Listing 8.3: Basic blocks with integrity vectors.

1 ldi r18 , 16

2 *!5=#:?-{0
3 Loop1: ld r17 , X

4 rcall Sbox

5 $0-F*}<;.=
6 st X+, r17

7 dec r18

8 brne Loop1

9 /%: +8*K#

10 clr r18

11 ret

12 !3Da(<+?-&

13 Sbox: ldi ZL , lo8(Sbox_Table)

14 ldi ZH , hi8(Sbox_Table)

15 add ZL , r17

16 clr r17

17 adc ZH , r17

18 lpm r17 , Z

19 ret

20 #$!18%RE9*

Program instructions have two parts; the opcode and the operand. The opcode

is the binary representation of the instruction and never changes. However, the
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operand specifies the data that is to be manipulated by the instruction. Now for

the processor to be able to verify the integrity values, it must be computed over

the immutable part (the information that will stay the same during compilation

and execution) of the instructions. For this reason the basic block integrity values

are computed over the opcode of the executed instructions within the basic block.

Instructions Buffer

Hash Function

Selected Bits

Figure 8.3: Hash generating scheme.

Figure 8.3, illustrates the hash value generation process. The opcode of executed

instructions are streamed into a buffer which is later fed to the hash function.

Then selected bits of the hash value is used for checking. A hash function maps

a variable size input data into a fixed size output. Basic blocks contain a varying

number of instructions and deciding the buffer size poses a design challenge. If

it is bigger than the basic blocks, the hash generator will end-up appending the

buffer and if it is too small it will have to repeatedly compute the hash values of

multiple buffers for a single basic block. For this reason we selected symmetric

encryption based hash generator algorithm, the Davies-Meyer scheme [219]. The

Davies-Meyer architecture is shown in Figure 8.4.

In the Davies-Meyer scheme, the instruction buffer serves as the key, Ki, to the

underlying symmetric cipher E. Therefore, the block size of Ki must match

the expected size of the specified cipher algorithm. The previous hash function

Hi−1 serves as a plaintext input. The hash output Hi is the XOR result of the

ciphertext output Ci and the previous hash value Hi−1. For the first round, where

there is no previous hash value, H0 is a pre-specified initial vector. Selected bits

of the final hash value Hi are then used for integrity value checking.
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Instructions Buffer

Selected Bits

E Hi−1

+

Ci

Pi

Hi

Feedback

Ki

Figure 8.4: Davies-Meyer hash generation scheme.

8.5 Implementation

Practical implementation of the techniques discussed in this chapter pose cer-

tain challenges. The inter and intra-procedural control flow use table lookups.

Hence, a faster way of searching a memory is critical. However, the integrity

verification of instructions use cryptographic hash functions. This presents its

own implementation challenges; (a) the hash algorithm should be relatively fast

to compute and compare, and (b) it should be difficult (preferably impossible)

for an attacker to modify the code and still pass the verification phase. Next we

will explore the implementation options of these challenges.

8.5.1 Lookup Tables

In hardware the lookup tables can be directly implemented using Content Ad-

dressable Memory (CAM). A CAM is a read-writeable memory that also includes
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additional logic circuit to provide fast memory operations, such as lookup table

search operations [220]. Smaller CAMs, with only a few hundred entries, can

perform a complete search with a latency of only one clock cycle. Larger CAMs

may take multiple clock cycles. As a proof of concept we have implemented our

own content addressable memory, in VHDL, that can search a 256 byte SRAM

for a particular byte in one clock cycle. A CAM design contains a memory, search

logic circuit and interface ports.

CAM

Search Logic

Memory

MATCH

ADDR OUT[7:0]

CLK

CAM EN

WR SR

ADDR IN[7:0]

DATA IN[7:0]

Figure 8.5: Content Addressable Memory (CAM) architecture.

The Memory and Search Logic in Figure 8.5 refer to the storage and search

circuit of the CAM device respectively. The CAM EN is an active low enable signal

and activates the storage and searching circuit. The CLK and WR SR signals are

the clock and write/search signals respectively. The CAM device writes the value

of DATA IN into the Memory when WR SR is ‘0’ and searches the value of DATA IN

from the Memory when WR SR is ‘1’. The ADDR IN the write memory address.

The VHDL source code for the CAM and testbench are available for download

at [35]. The CAM uses the two output interface ports MATCH and ADDR OUT to

indicate the search result. When a hit is found the MATCH signal becomes ‘1’ and

its address in the memory is written to ADDR OUT, otherwise, MATCH becomes ‘0’

and the ADDR OUT will be in high impedance state.

Before we could search the memory for a specific byte we needed to write into it

first. To fully test out implementation of the CAM we wrote a permutation of

bytes 0x00 - 0xFF into the memory. To do that we selected the AES substitute

box with one modification. We replaced the last byte 0x16 with 0x00. The red
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Figure 8.6: 256 byte Content Addressable Memory (CAM).

circle indicates the change of operation from write to search operation. As shown

in Figure 8.6 we run the search circuit on bytes 0xBF, 0x68, 0x2D and 0xB0

and the CAM returned a match found and their address in the memory within a

single clock cycle for each search. For instance, the magenta circle (on the left)

indicates 0xBF is written into address 0xF4. Then later the CAM returned a

match found and the address 0xF4 when searching for 0xBF as highlighted by the

magenta on the right. Next we searched 0x16 (highlighted by the yellow circle)

which was intentionally not written to the memory, and the CAM search logic

returned match not found as shown by the blue circle in the figure.

8.5.2 Hash Computation

As discussed in section 8.4, our hash computation scheme uses a symmetric cipher

algorithm. In our work, we have selected Advanced Encryption Standard (AES)

as our symmetric cipher algorithm E. The advantage of using AES in Davies-

Meyer scheme is that the instruction buffer can be adjusted to 128 or 256 bits,

depending on the average size of the basic block, without changing the design.

The block size of Pi and Ci is 128 bit. Finally, for the integrity value checking

only the selected 16 bits of the final Hi are used.

Since the integrity verification is performed in parallel with the execution of

instructions, the verification time needs to be the same or less than the execution

time of the next basic block. However, this may not be true for short basic blocks.

In this case the verifier module sends a halt signal to the processor until it finishes

verifying the current basic block.

Our hash computation implementation only requires 40 clock cycles to compute
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Figure 8.7: AES implementation in VHDL.

and verify. This is presented in Figure 8.7. However, with more optimisation and

pipelining of the Davies-Meyer scheme this can be shortened further. Evaluating

the performance overhead incurred into the overall execution requires analysing

the time consumed while the processor was halted by the verifier module. In

addition to that the last round of verification for the last basic block is added to

it.

8.6 Summary

We started the chapter by discussing security proposals for embedded systems.

We then discussed the notion of basic blocks. Next we discussed our control

flow jump verification proposal. Our proposal covers both the inter and intra-

procedural control flow jumps. This is achieved by using two lookup tables gener-

ated by a modified compiler function. The hardware verifier subsystem uses these

lookup tables and runtime generated information to verify the execution flow. In

addition, we have also discussed a basic block instructions integrity verifier sub-

system. This subsystem uses information from the lookup table and processor

registers (like the PC and IR) to verify the integrity of executed instructions. We
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used the Davies-Meyer hash computation scheme to generate the integrity values.

Finally, we presented our implementation for the proposals.
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Chapter 9

Conclusion and Future Work

Contents

9.1 Summary and Conclusions . . . . . . . . . . . . . . . . 153

9.2 Recommendation for Future Research . . . . . . . . . 156

In this chapter, we conclude the thesis. Here we summarise the con-

trobutions of our wprk and discuss the future research challenges that

may need to be addressed later.
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9.1 Summary and Conclusions

The main goal of this thesis was to explore the feasibility of platform verification

and secure program execution in embedded devices.

We started the discussion by mapping the evolution of embedded system devices

and their applications. Embedded devices are used by individuals and organisa-

tions with an ever growing dependency on them, such as commercial and mili-

tary communication systems, transport (land, sea and air) control systems, etc.

Therefore, there needs to be a generic security architecture that can be easily

integrated into any of these systems. Such security architecture incorporates two

phases of security checks. The first phase is the pre-deployment platform veri-

fication. This identifies any unnecessary modules/components incorporated into

the embedded device. The second phase is the runtime program execution. This

phase protects programs running inside the device during execution.

Prior to the discussion on the core contributions of this thesis, we provided a de-

tailed discussion on embedded systems. We identified the different components

that make an embedded system and explained them individually. We then briefly

discussed the application development process and tools required to successfully

write an application for an embedded device. This discussion is then followed

by a list of embedded device applications. Subsequently, we discussed the dif-

ferent type of attacks that target embedded systems. These attacks range from

manipulating runtime program data, platform reverse engineering to inserting

hardware Trojans and parasite circuits. We then proceeded to a brief discussion

of the current security countermeasures used in embedded systems.

As mentioned earlier, the platform verification phase is about identifying if un-

wanted or malicious modules are present inside the embedded device. Normally,

a straight forward method of avoiding unwanted or malicious module would be

for the designer to produce the devices at a local and secure foundry. However,

commercially this is not feasible today. This statement is supported by the in-

creasing relocation of manufacturing plants to a low cost structured countries.

In addition, such modules are very difficult, if not impossible, to be identified
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through purely functional testing. Therefore, in our work we selected the side

channel leakage of the target device as the main input in achieving this goal.

Before we can use the side channel leakage to identify unwanted modules, we need

to build a leakage template first. The templates are built using side channel leak-

age collected from few genuine devices. The leakage, such as power consumption,

is collected while the target device executes a selected program repeatedly under

different conditions. In this thesis, we created two types of power consumption

templates; instruction and basic block level templates. These two templates are

then used to verify executed instructions and control flow jumps of the target

program inside the target device. Our templates were created using power traces

collected from five identical ATMega163 based blank smart card processor.

The idea behind our proposed technique is the existence of unwanted or malicious

modules will be reflected on the side channel leakage. However, this requires a

high precision template matching techniques especially for the instruction-level

templates. After experimenting with a number of dimensionality reduction and

classification techniques, we managed to improve the previously known template

recognition rate of 70.1% [32] to a 100% recognition rate. This enabled us to

successfully reconstruct executed instructions and verify their integrity. On the

other hand, the basic block level templates are used to reconstruct the control

flow jumps and verify them. If there is unwanted, malicious or even slight change

to the embedded device’s modules it will be reflected on the power consump-

tion leakage. This will eventually affect the recognition rate and the verification

process will fail.

The above, side channel based verification, is an offline process performed on the

target embedded device prior to integrating it into the final product. However, the

device still remains vulnerable to threats and exploits during execution. Hence,

it is important to deploy runtime security countermeasure to ensure the security

of the device’s programs during operation. This would require monitoring certain

properties of the program at runtime. In our work, we have selected four program

attributes for runtime security verification. These are the instructions opcode,

program runtime data, inter-procedural and intra-procedural control flow jumps.
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Runtime program data is normally stored in a First In Last Out (FILO) data

structure, also known as stack. Thus, protecting runtime data requires protecting

the stack items. In this thesis, we proposed a dual-stack processor architecture

as a runtime data protection method. We have discussed two varieties of the

dual-stack architecture. A straightforward approach of verifying the integrity of

runtime data is to simply keep a copy of the stack and perform redundant stack

operations. This would require an attacker to perform two identical attacks on

both stacks to bypass the redundant stack operation check-ups. Although this is

considered very difficult, if not impossible, it is a truism that attacks get better

in time. Therefore, to stop such an attack we proposed a second variety of the

dual-stack architecture. In the second variety the second stack is used for storing

integrity value of the items stored in the normal stack. We provided a detailed

implementation analysis, performance overhead, detection capability and latency

of both varieties of our dual-stack architecture.

The other program attribute that needs monitoring is the control flow jumps. A

control flow jump is a change in the execution flow of the program instructions.

There are two types of control flow jumps; inter-procedural and intra-procedural

control flow jumps. Inter-procedural control flow jumps refer to function call

and return control flow jumps. On the other hand, intra-procedural control flow

jumps refers to execution flow change within the function. In our thesis, we pro-

posed a lookup table based control flow jump verification method for embedded

systems. During compilation the compiler extracts information about inter and

intra-procedural control flow jumps such as function address, basic block offset

and integrity value. These information is then written into the monitor’s mem-

ory, which it will later use for runtime verification. The main implementation

challenge of such method is fast memory search technique. In our work, we have

implemented content addressable memory that is capable of full memory search

under one clock cycle.

Finally, the last attribute is the instruction integrity of executed basic blocks. Ver-

ifying their integrity requires computation and comparison of each basic block’s

integrity value. To compliment with our control flow jumps verification, the in-

tegrity values are computed over basic block instructions. In our computation
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we have used symmetric cipher based hash scheme, the Davies-Meyer scheme.

The Davies-Meyer scheme is a feedback loop computation and will be repeated

multiple times depending on the size of the basic block. Once the integrity values

are computed only selected bits are stored in the monitor to save memory re-

quirement. In this thesis, we have implemented and tested this scheme in VHDL

and presented the results. This discussion completed our work of secure program

execution.

9.2 Recommendation for Future Research

Our aim was in this research was to explore the security of embedded devices and

analyse the feasibility of a generic security architecture. We have achieved our

goals by proposing and experimenting on pre-deployment platform verification

and runtime program execution techniques. However, we believe that there is

still a long journey ahead before our proposal can be considered practical.

So far, we have implemented the platform verification and runtime secure pro-

gram execution techniques independently. We have also tested an open source

based 8 bit AVR microcontroller implemented in VHDL [221]. We consider there

is a possible improvement of fully integrating our countermeasures into the mi-

crocontroller’s main processor. Furthermore, since our proposals use information

generated by a modified compiler there needs to be a complete feasibility study

of compilers and how they can be modified to support our architecture. Addi-

tionally, if our proposal is to be considered practical, there needs to be a detailed

study of how it can be extended to support multi-core processors. Program devel-

opers often issue updates to application after deployment. Finally, it is important

to look into the possibility of a secure program update mechanism.
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supply glitch induced faults on fpga: An in-depth analysis of the injec-

tion mechanism. In IEEE 19th International On-Line Testing Symposium

(IOLTS), pages 110–115. IEEE, July 8-10 2013. 119

[195] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction at-
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Appendix A

Selected AVR Instructions

Clock

Instruction Description Operation Cycles

mov Rd, Rr Move a byte Rd ← Rr 1

between registers

movw Rd, Rr Move a word Rd+1 : Rd ← Rr+1 : Rr 1

between registers

ldi Rd,K Load immediate Rd ← K, 0 ≤ d ≤ 31, 1

into register

ld Rd, P Load indirect Rd ← (P ) 2

P ∈ {X,Y, Z}, 0 ≤ d ≤ 31

ld Rd, P+ Load indirect Rd ← (P ), P ← P + 1 2

with post-increment P ∈ {X,Y, Z}, 0 ≤ d ≤ 31

ld Rd,−P Load indirect P ← P − 1, Rd ← (P ) 2

with pre-decrement P ∈ {X,Y, Z}, 0 ≤ d ≤ 31

lds Rd, k Load direct Rd ← (k) 2

from SRAM 0 ≤ d ≤ 31, 0 ≤ k ≤ 65535

st P,Rr Store indirect (P )← Rr 2

P ∈ {X,Y, Z}, 0 ≤ r ≤ 31

st P+, Rr Store indirect (P )← Rr, P ← P + 1 2

with post-increment P ∈ {X,Y, Z}, 0 ≤ r ≤ 31

st −P,Rr Store indirect P ← P − 1, (P )← Rr 2

with pre-decrement P ∈ {X,Y, Z}, 0 ≤ r ≤ 31
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sts k,Rr Store direct (k)← Rd 2

into SRAM 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535

lpm Rd, P Load program Rd ← (P ) 3

memory 0 ≤ d ≤ 31, P ∈ {Z,Z+}
spm Store program 4

memory

in Rd, Pt In port (Pt)← Rd 1

out Pt, Rr Out port Rr ← (Pt) 1

push Rr Push register STACK ← Rd 2

on stack

pop Rd Pop register Rd ← STACK 2

from stack

nop Rd, Rr Do nothing 1

add Rd, Rr Add two Rd ← Rd + Rr 1

registers

adc Rd, Rr Add two registers Rd ← Rd + Rr + C 1

with carry

adiw Rd,K Add register with Rd+1 : Rd ← Rd+1 : Rd + K 2

immediate word

sub Rd, Rr Subtract two Rd ← Rd −Rr 1

registers

sbc Rd, Rr Subtract two Rd ← Rd −Rr − C 1

registers with carry

sbiw Rd,K Subtract immediate Rd+1 : Rd ← Rd+1 : Rd −K 2

from a word stored

in consecutive

registers

mul Rd, Rr Multiply two registers Rd ← Rd ×Rr 2

eor Rd, Rr Exclusive or Rd ← Rd ⊕Rr 1

two registers

inc Rd Increment a register Rd ← Rd + 1 1

dec Rd Decrement a register Rd ← Rd − 1 1

clr Rd Clear a register Rd ← Rd ⊕Rd 1

cpi Rd,K Compare immediate Rd −K 1

with a value
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stored in the

given register

cp Rd, Rr Compare two registers Rd −Rr 1

cpc Rd, Rr Compare two Rd −Rr − C 1

registers with carry

rjmp k Relative jump PC ← PC + k + 1 2

jmp k Direct jump PC ← k 3

rcall k Relative PC ← PC + k + 1 3

subroutine call

call k Direct subroutine call PC ← k 4

ret k Subroutine return PC ← STACK 4

breq k Branch if (Z = 1) then 1/2

if equal PC ← PC + k + 1

brne k Branch if (Z = 0) then 1/2

if not equal PC ← PC + k + 1

brcs k Branch if if (C = 1) then 1/2

carry is set PC ← PC + k + 1

brcc k Branch if if (C = 0) then 1/2

carry is clear PC ← PC + k + 1

brbc b, k Branch if if (SREG(b) = 0) then 1/2

flag is clear PC ← PC + k + 1

brbs b, k Branch if if (SREG(b) = 1) then 1/2

flag is set PC ← PC + k + 1

Table A.1: AVR’s instructions seleted for our experiments.
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