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Abstract

Seismic observations reveal a patchwork of thin and dense structures, named

UltraLow Velocity Zones (ULVZs) atop the Earth’s core mantle boundary.

The high width to height ratio of the ULVZs, their spatial correlation with

the edges of Large Low Shear Velocity Provinces (LLSVPs), and their preser-

vation as distinct structures in the convecting mantle remains an enigmatic

problem. In this article, we carry out a series of numerical simulations us-

ing Fast Multipole Boundary Elements Method (FMBEM) to address these

questions and study the internal deformation within the ULVZs. Our results

demonstrate that coupled flow between dense, low viscosity ULVZ patches

and the LLSVP accumulates the ULVZ into stable piles along LLSVP cor-

ners, while coalescence and gravitational drainage leads to thin and wide

ULVZs away from the corners. Deformation of the matrix is localized within

the weaker ULVZ and the LLSVP edges, while the strain in the interior of the

LLSVP remain uniform and low, explaining the observed localized anisotropy

near LLSVP edges.
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1. Introduction1

The base of the Earth’s mantle is marked by a patchwork of seismically2

anomalous structures named UltraLow Velocity Zones (ULVZs), most com-3

monly observed along the edges of two larger antipodal structures, termed4

Large Low Shear Velocity Provinces (LLSVPs). The ULVZs are typically 85

to 10% denser than the surrounding mantle and are marked by up to 30% and6

10% reductions in shear and compressional wave speeds, respectively (Rost7

et al., 2005; Rost and Revenaugh, 2003; Williams and Garnero, 1996). Nar-8

row, elongated ULVZs can span up to several hundreds of kilometers in length9

while reaching only a few tens of kilometers of height above the CMB (Cot-10

taar and Romanowicz, 2012; Rost et al., 2005; Rost and Revenaugh, 2003;11

Thorne et al., 2013; Williams and Garnero, 1996). The larger LLSVPs, char-12

acterized by up to 3% reduction in shear wave speed, are dynamic and likely13

chemically distinct structures (McNamara et al., 2010). Despite strong inter-14

nal circulation and deformation (Bower et al., 2011; McNamara et al., 2010),15

seismic anisotropy is strongly localized along the margins of the LLSVP (Cot-16

taar and Romanowicz, 2013; Lynner and Long, 2014).17

A number of issues arise in reconciling the physical characteristics and18

location of the ULVZs with the available constraints. The distinct physi-19

cal properties and patchy occurrence of the ULVZs suggest that they are20

compositional, rather than thermal anomalies. The excess density and large21

shear wave speed reduction within the ULVZs are likely caused by 5-10 vol%22
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neutrally buoyant melt (Fiquet et al., 2010; Hier-Majumder, 2014; Wimert23

and Hier-Majumder, 2012) hosted in an iron-rich matrix (Mao et al., 2006;24

Muir and Brodholt, 2015a,b; Nomura et al., 2011; Wicks et al., 2010). Ana-25

logue material experiments and geodynamic calculations suggest that the26

ULVZs are likely two orders of magnitude weaker than their surrounding27

(Hier-Majumder and Revenaugh, 2010; Jellinek and Manga, 2004), render-28

ing them susceptible to mixing with the ambient mantle (Manga, 1996). The29

ULVZs can serve as isolated and enriched reservoirs at the base of the man-30

tle as required by Sm-Nd isotopic measurements (Boyet and Carlson, 2005;31

Coltice et al., 2011). Based on the seismic observations and these constraints,32

the outstanding issues are: (a) the high aspect ratio of the ULVZ patches33

(width is 45-80 times higher than the height (Cottaar and Romanowicz, 2012;34

Thorne et al., 2013)) and their preferential associations with the corner of the35

LLSVPs, (b) the preservation of the low viscosity ULVZs as distinct struc-36

tures over geologic timescales, and (c) the fact that the flow in the LLSVP37

does not produce internal seismic anisotropy. In this article, we demonstrate38

that strongly coupled flow in the ULVZ-LLSVP system stabilizes dense UL-39

VZs at the LLSVP corners while stretching them to small thicknesses in the40

other regions. We also demonstrate that matrix deformation arising from41

this coupled flow is strongly partitioned into the weaker ULVZ interior and42

along the LLSVP edges.43

To date, majority of the discovered ULVZ locations are associated with44

edges of the Pacific and the African LLSVPs. There are, however, obser-45

vation of ULVZ patches within a ‘hole’ inside the Pacific LLSVP (Thorne46

et al., 2013) and isolated ULVZ patches away from the LLSVP (e.g. McNa-47
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mara et al., 2010, and references therein). The occurrence of these ULVZs48

can be explained by lateral migration and coalescence of segments of the49

LLSVP, spillage of ULVZ material outside the LLSVP, or the presence of50

ULVZ material inside and outside the LLSVPs. In this work, we do not51

address these processes and focus, instead, on the more commonly observed52

instance of the association between the LLSVP edges and the ULVZs.53

Tracking the evolution of the ULVZ shape while monitoring the internal54

deformation has been difficult in the existing scope of work. While analog55

material experiments are able to provide a wealth of information on the56

evolution of the ULVZ topography, a quantitative description of internal57

deformation is unattainable in these experiments (Jellinek and Manga, 2004).58

In contrast, high resolution convection models can quantify and map the59

strain within the ULVZ, but due to the lack of an explicit interface between60

the ULVZ and the ambient mantle, tracking the shape of the ULVZ and61

calculating the viscous drag on the ULVZ surface are not straightforward in62

these models (Bower et al., 2011; McNamara et al., 2010).63

In this article, we present a new geodynamic model that tracks the shape64

and interaction between multiple ULVZ patches while monitoring their in-65

ternal velocity and strain fields. The system is driven by the flow within66

the LLSVP. The circulation within the LLSVP and the ULVZs are modeled67

using a Fast Multipole Boundary Elements Model (FMBEM). A detailed68

description of the governing equations, boundary conditions, and the nu-69

merical techniques are presented in the online supplementary material. In70

this model, the velocity fields are calculated using a set of coupled boundary71

integral equations, accelerated by fast multipole expansion of the integral72
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kernels (Liu and Nishimura, 2006). As the shape of the ULVZ, the velocity,73

and pressure fields are variables in this system, quantitative evaluation of the74

shape and internal deformation can be performed directly.75

2. Methods76
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Figure 1: A schematic diagram outlining the scope of the problem. The ULVZ patches

within the LLSVP are shaded in light gray. Density and viscosity within each of the

entities are shown in the figure. The figure in the inset shows the no-slip and stress

jump boundary conditions at the ULVZ-LLSVP interface. Velocity at the LLSVP-Mantle

interface are shown by the arrows marked by umantle.

In our model, we treat the ULVZs as dense, low viscosity patches, embed-77

ded within a larger LLSVP. In our calculation in two-dimensional Cartesian78

coordinates, the coupled convective flow within the LLSVP and the ULVZs79

are driven by density contrast between the LLSVP and the ULVZ patches80

and the prescribed velocity at the boundary between the LLSVP and the81

surrounding mantle.82

The numerical model in this work builds on a previous boundary el-83

ements model developed to study the microstructure in partially molten84
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rocks (Drombosky and Hier-Majumder, 2015; Hier-Majumder, 2008; Hier-85

Majumder and Abbott, 2010; Hier-Majumder and Drombosky, 2015). In86

this method, the governing partial differential equations and the boundary87

conditions are combined into a vector Boundary Integral Equation (BIE). In88

the next subsection, we present the governing equations.89

2.1. Governing equations90

We treat the ULVZs and LLSVP as individual bodies of incompressible91

fluid, with distinct densities and viscosities. Conservation of mass within92

each entity requires,93

∇ · u = 0, (1)

where u is the velocity. Conservation of momentum within each ULVZ and94

the LLSVP requires, in the presence of gravitational acceleration,95

∇ · T+ ρg = 0, (2)

where T is the stress tensor of the fluid with density ρ and the vector g96

represents gravity. The schematic diagram in Figure 1 outlines the bound-97

ary conditions associated with the coupled flow within each of these bodies.98

The governing conservation equations must be supplemented with boundary99

conditions. We impose a no-slip boundary condition at the interface between100

the ULVZ and the LLSVP, expressed as,101

∆u = 0, (3)

where ∆q indicates the difference between the physical quantity q evaluated102

within the ULVZ and evaluated within the LLSVP. In addition, we impose a103

stress jump boundary condition across each interface, such that the difference104
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in traction is balanced by buoyancy contrast between the ULVZ and the105

LLSVP. This condition is given by,106

∆T · n̂+∆ρ (x · g) n̂ = 0, (4)

where n̂ is the unit normal to the interface, as depicted in Figure 1.107

We solve for velocities at the boundary and within each entity by con-108

verting the governing partial differential equations into a Boundary Integral109

Equation (BIE). We provide the details of this conversion, the nondimen-110

sionalization scheme, and implementation of the fast multipole expansion in111

the supplementary material. For the sake of brevity, we next proceed to the112

integral equation describing the coupled flow over multiple domains.113

In a collection of P ULVZ patches embedded within an LLSVP (marked114

as domain P + 1), the dimensionless BIE for the velocity u at point x0 on115

the surface of the q-th ULVZ patch is given by:116

u(x0) =
2

1+λq

[
−
∑P+1

p=1
R
4π

∫
Γp

J(x,x0) ·∆f(x) dΓp

+
∑P+1

p=1
1−λp

4π

∫
Γp

u(x) ·K(x,x0) · n̂(x) dΓp

]
, (5)

where the point x0 is called the pole point while the point x is called the field117

point (Pozrikidis, 2001), λq is the viscosity ratio between the q-th ULVZ patch118

and the LLSVP, R is the nondimensional compositional Rayleigh number,119

∆f(x) is the buoyancy force arising from density contrast between the ULVZ120

and the LLSVP, and the kernels J(x,x0) and K(x,x0) in the two integrals121

on the right hand side are known as the Stokeslet and the Stresslet tensors.122

Each of these integrals are taken over the boundary of the P -th domain.123

The system of linear algebraic equations arising from discretization of124

(5) is dense and generally asymmetric. Following the methods outlined in125
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Drombosky and Hier-Majumder (2015) and Hier-Majumder and Drombosky126

(2015), we use the Fast Multipole (FM) expansion to approximate the kernels127

in the integrands. After discretization and implementing FM expansion, we128

can recast the BIE as a system of algebraic equations given by129 [(
1 + λ

2

)
I−

(
1− λ

4π

)
K
]
u = −R

4π
J∆f , (6)

where J and K are the matrices generated from the kernels J(x,x0) and130

K(x,x0), respectively. The accelerated multiplication, in conjunction with131

iterative methods such as the GMRES (Saad, 2003), solves the linear system132

of equations in (6) in O(N) time.133

The nondimensional BIE consists of two dimensionless quantities, R, the134

compositional Rayleigh number and λ, the viscosity ratio. We define R as,135

R =
∆ρgx2

c

ucµ
, (7)

where µ is the viscosity of the LLSVP, xc is the characteristic length, and136

uc is the characteristic velocity, respectively. The compositional Rayleigh137

number is the inverse of the intrusion number sometimes used in nondi-138

mensional models of spreading viscous gravity currents (Hier-Majumder and139

Revenaugh, 2010; Olson, 1990). It signifies the ratio between buoyancy and140

viscous drag. If the magnitude of R is high, buoyancy dominates over vis-141

cous resistance to flow and the ULVZ patches drain rapidly. Notice also that142

the sign of R is controlled by the difference between densities of the ULVZ143

and the LLSVP. We present further discussion about the relation between144

these two competing forces in Section 2.2. We discuss the value of R in our145

simulations in Section 2.3.146
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Once the boundary velocities are calculated by solving equation (6), and147

the velocities within the ULVZ patches and the LLSVP are calculated by148

the methods outlined in the supplementary section, we update their shapes.149

We describe the shape of the P -th ULVZ patch by the function F p(x, t) = 0150

at time t. To ensure the volume of each grain remains constant during151

deformation of the grain, we use the kinematic equation152

∂F P (x, t)

∂t
+ uP (x, t) ·∇F P (x, t) = 0. (8)

Using the updated shape functions, we calculate the normal vectors at each153

node of the new ULVZ-LLSVP boundary to be used in the BIE (5) for calcu-154

lating the boundary velocities at the next time step. This process is iterated155

in time to model the evolution of the ULVZ shape.156

2.2. Linear analysis157

The rate of gravitational drainage of the dense ULVZs is modulated by the158

viscosity ratio between the ULVZ and the mantle. To understand the nature159

of the relationship between the two key nondimensional parameters, R and160

λ, we carried out a linear stability analysis for the ULVZ shape subjected to161

a straining and drainage flow.162

The linear solution consists of a base state and a perturbed state. The163

base state is characterized by zero motion within a neutrally buoyant, hemi-164

spherical ULVZ. The perturbation is caused by both density contrast and165

flow induced by circulation within the LLSVP. We want to characterize, to166

the first order, a relation between the two nondimensional parameters, λ and167

R, to identify the boundary between two regimes, gravitational drainage and168

entrainment. The set up for the linear problem is outlined in Figure 2. Note169
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that this analysis is applicable to the stability of the ULVZ far away from170

the LLSVP corners.171

With this goal, we can write the entire velocity fields within the ULVZ172

and the LLSVP as uj = ϵ(uj
e+uj

d), where ϵ ≪ 1 is a constant, the superscript173

j refer to either the ULVZ (U) or the LLSVP (L), and the subscripts e and d174

refer to two linear flows arising from entrainment and drainage, respectively.175

To build analytical solutions for each perturbing flow, we use the method176

of solid spherical harmonics. We use the well-known Hadamard-Rybczynski177

solution for gravitational settling of a viscous drop (see, for example, Leal,178

1992, Ch. 5). For the entraining flow, we build a set of solutions forced by a179

straining flow in the LLSVP, uL
e ∝ Ė ·r, where Ė is a constant strain rate and180

r is the distance from the ULVZ center. We present a detailed description181

of the method for solution building in Appendix A.182

For a small perturbation f , the shape of ULVZ is given by F = r−h(1+183

ϵf), where f is the perturbed shape function. The O(ϵ) kinematic condition184

(8), then becomes,185

∂f(x, t)

∂t
=

1

h
uU(x) · n̂, (9)

where n̂ is the unit normal to the hemispherical ULVZ. We present a186

schematic diagram for the linear analysis in Figure 2(a) and solutions to187

equation (9) in Section 3.1.188

2.3. Simulations189

The geometry of the simulation is divided into two sets of interfaces: the190

LLSVP-mantle interface and LLSVP-ULVZ interfaces. For each simulation,191

we fix the LLSVP-mantle boundary as a trapezoid with rounded corners.192
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Roundness around the corner prevents singularities in the simulation arising193

from high curvature of the boundary elements. The width, height, interior194

angle, and radius of curvature for the corners are specified to create the195

LLSVP geometry similar to structures observed in whole-mantle models. The196

LLSVP is 1,000 km across and 100 km high. The lower acute corner of the197

trapezoid has an angle of tan−1(1/3). Both the corners are rounded with a 10198

km radius of curvature. The density of the LLSVP is ρL = 3500 kg/m3, while199

the density of the ULVZ, ρU , is 3850 kg/m3. The viscosity of the LLSVP is200

µL = 5×1020 Pa s, and the viscosity of the ULVZ is two orders of magnitude201

less at µU = 5× 1018 Pa s. Acceleration due to gravity is g = 9.8 m/s2. We202

impose a tangential velocity of 1 cm/yr at the LLSVP-mantle interface.203

We simulate three stages of ULVZ evolution within the LLSVP. Each204

simulation begins with ULVZs configured in a unique initial geometry. The205

first stage simulates the evolution of ULVZ material distributed in the center206

of the LLSVP. The second simulation begins with the ULVZ material dis-207

tributed along the CMB. The third and final simulation demonstrates the208

steady state behavior of the ULVZ material in the corner of the LLSVP.209

We set the characteristic length xc = 25 km and the characteristic ve-210

locity uc = 1 cm/yr, resulting in a time scale of 2.5 Ma. Taken together211

with the physical parameters for the density, gravitational acceleration, and212

viscosity of the LLSVP, the dimensionless compositional Rayleigh number at213

the LLSVP-ULVZ boundary is R = −13.5, where the negative sign indicates214

that the ULVZ is more dense than the surrounding LLSVP.215

These numerical simulations using the FM accelerated BEM allows us216

to specifically address the three questions raised in the introduction. In the217
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following section, we present our results in light of these questions.218

3. Results219

3.1. Results from the linear analysis220

(a) (b)

λμ ρ

μ ρ Δρ

LLSVP

ULVZ

x

y

F=r - h(1+εf)

λ

R
c
 /

 E
1

Entrainment

Drainage

r

Figure 2: Linear analysis of drainage within the ULVZ. (a) A schematic diagram outlining

the problem set-up for the linear analysis. (b) Plots of Rc/E1 from equation (11) as a

function of λ. In the plot we assume h = 1.

As discussed in section 2.2, we build solutions for the entraining flow in221

terms of a known strain rate Ė. In 2D, this tensor can be expressed as Ė =222

[(E1, 0), (0,−E1)]. Combining the solutions for the entraining and drainage223

flow and evaluating equation (9) atop the hemispherical ULVZ patch, the224

O(ϵ) equation becomes225

df

dt
=

(
h2

2
− 1

)
E1 +

2

3h

(
1 + λ

2 + 3λ

)
R. (10)

The first term on the right hand side arises from entraining flow, while the226

second term arises from drainage. This equation provides a direct way to227
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compare the relative contribution of these two types of flows in determining228

the shape of the ULVZ.229

The critical state at which the drainage and entraining flows balance each230

other is marked by df/dt = 0. Notice that in the absence of a straining flow231

in the ULVZ (E1 = 0), the shape change will be determined only by the232

sign of R. For a dense ULVZ, R < 0, rendering df/dt < 0, such that the233

top of the ULVZ drains towards the core-mantle boundary. The presence of234

a straining flow, however, counters this drainage. The critical value Rc for235

which df/dt = 0, thus becomes,236

Rc =
3E1

4

(
2 + 3λ

1 + λ

)
. (11)

The two regimes of flow are defined by the critical compositional Rayleigh237

number. The plot in Figure 2(b) depicts Rc/E1 as a function of λ from238

equation (11). For values of R/E1 above the curve, the shape of the ULVZ239

is dominated by density contrast-driven drainage flow, while values of R/E1240

below the curve lead to the entrainment of the ULVZ by the flow within the241

LLSVP. In the numerical simulations described in Section 3.2, the flow takes242

place in the drainage regime.243

In the absence of density contrast, the flow takes place entirely in the244

entrainment regime. We carried out a set of simulations for a neutrally245

buoyant ULVZ patch located in the corner of the LLSVP. Similar to previ-246

ously observed behavior of neutrally buoyant, low viscosity blobs embedded247

in a circulating mantle (Manga, 1996), we found that the neutrally buoyant248

ULVZs are easily entrained by the mantle circulation and will likely ho-249

mogenize with the surrounding mantle over geologically significant periods.250

Results from these simulations are reported in the supplementary material.251
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3.2. Shape of the ULVZs252

While it has been known for some time that the ULVZs are characterized253

by relatively low thickness (Rost et al., 2006; Rost and Revenaugh, 2003;254

Williams and Garnero, 1996), recent discoveries of very large (∼ 800 kms255

or higher in lateral extent) ULVZs indicate that very high width:height ratio256

(45:1 to 80:1) can characterize many of the ULVZs (Cottaar and Romanowicz,257

2012; Thorne et al., 2013). To understand the development of such flattened258

shapes as well as the lack of observed ULVZs high above the CMB, we carried259

out a series of simulations starting with two ULVZ patches suspended above260

the CMB.261

The evolution of the initially suspended ULVZ patches is marked by two262

stages, leading to the coalescence of the patches. In Figure 3, two initially263

circular ULVZ patches of 25 km radius and separated by 100 km, coalesce in264

two phases. During the initial descent phase spanning over the first 0.75 Ma,265

the dense patches rapidly sink to the bottom of the LLSVP. The vertical266

drainage within the patches is marked by the mostly vertical streamtubes267

within each patch. During the next 11 Ma of gravity current phase, the268

patches spread laterally with a lobate front characteristic of spreading grav-269

ity currents (Koch and Koch, 1995; Leahy and Bercovici, 2007). In contrast270

to the top two panels, the streamtubes within the patches are now almost271

entirely horizontal. This gravity current phase is also marked by coalescence272

of the initially distinct patches. As the snapshots in time indicate, the lead-273

ing patch coats the lobate front of the trailing patch. While such coalescence274

of dense spreading multiple layers were not observed in previous single grav-275

ity current models (Koch and Koch, 1995; Leahy and Bercovici, 2007), the276
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coalescence of buoyant viscous blobs rising through a dense liquid follow a277

similar pattern of coating (Manga and Stone, 1995).278

After 12 Ma, flow within the LLSVP continues to drag the ULVZ patches279

towards the corner. At this stage of the simulation, however, highly curved280

boundary elements lead to the development of numerical instabilities in the281

simulations. The horizontal stream tubes intersecting the surface of the282

ULVZ patches indicate that the ULVZs are yet to reach the steady state, as283

they creep towards the LLSVP corner. To study the steady-state location284

and shape of the ULVZs, we start the next set of simulations from an initially285

flat ULVZ patch with rounded corners, described in the following section.286

The lack of observed ULVZs far above the CMB and the high width to287

height ratio is explained by the evolution outlined in Figure 3. While the288

density contrast rapidly drains any ULVZ patches that might have been cre-289

ated above the CMB, subsequent coalescence of multiple patches explain the290

recently observed ULVZs of very large lateral extent (Cottaar and Romanow-291

icz, 2012; Thorne et al., 2013). This observation of ULVZ coalescence from292

our results are qualitatively similar to those obtained by thermochemical293

convection calculations of McNamara et al. (2010). As described above, the294

presence of a thin, flat ULVZ patch away from the corner of the LLSVP is295

likely to be a transient feature of the coupled flow.296

3.3. Stability of the ULVZs297

Upwelling LLSVP circulation sweeps an initially flat ULVZ patch into298

a steady-state pile near the corner over a geologically short period of time.299

The second stage of simulation, depicted in Figure 4, starts with a flat ULVZ300

that would result from the merger of two ULVZ patches to form an approx-301
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imately 111 km long and 9 km high basal layer. At 8.75 Ma, the leading302

edge of the basal layer is lifted up to a height of 19 km along the edge of303

the LLSVP. The change in the topography during the last 3.75 Ma of this304

simulation is substantially muted compared to the first 1.5 Ma. At 8.75 Ma,305

the establishment of a closed loop circulation at the left corner of the ULVZ306

and stream tubes near parallel to the right edge ensures that the shape of the307

ULVZ has reached near steady-state. The attainment of such a steady-state308

implies the ULVZ can survive mixing by mantle convection and remain as309

isolated, chemically distinct entity over geologically significant periods.310

To test the stagnation of the ULVZ patch at the corner of the LLSVP, we311

numerically evaluated the rate of change in topography of the ULVZ patch312

in the simulation in Figure 4 as a function of time. As the plots in Figure 5313

indicate, the initially flat ULVZ patch is uplifted at a velocity of 1.5 km/Ma314

for the first 3.5 Ma. Subsequently the rate of uplift declines rapidly, dropping315

to zero at 8 Ma, indicating the attainment of steady-state topography.316

In the third series of reverse experiment, we started with an initial ULVZ317

patch located at the corner of the LLSVP. The series of simulations in Figure318

6 depict the evolution of the shape of the patch. In the beginning of the sim-319

ulation, the velocity field indicates that the height of the ULVZ is unstable.320

At the corner, concentric stream tubes depict the closed circulation that was321

observed in the steady-state in Figure 4 at 8.75 Ma. The circulation on the322

vertical right edge, however, is quite distinct, as streamtubes enter and leave323

the ULVZ at the top and the bottom of this edge, respectively. Notice that324

the stream tubes are tightly bunched over a small fraction of the area of the325

ULVZ-LLSVP interface, indicating that the flow is focused within narrow326
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regions. This counterclockwise flow, driven primarily by buoyancy forces,327

drains ULVZ material by a gravity current flowing upstream with respect to328

the entraining flow in the LLSVP. Over the next 2.5 Ma, the gravity current329

develops a nose-like structure near the bottom, where the outward normal330

velocity is the highest, indicated by the high angle subtended by the stream331

tubes to the interface. The opposing flow within the LLSVP lifts the bottom332

of the right edge of the ULVZ by a small amount, as the gravity current333

continues spreading upstream. By 5 Ma, two closed circulation cells are es-334

tablished within the ULVZ. Both of these cells are highlighted in the figure.335

The stream tubes on the ULVZ-LLSVP interface is now mostly tangential336

to the interface. As a result, the shape of the ULVZ remains practically337

unchanged during subsequent iterations of the simulation. The steady-state338

ULVZ has a height of 23.5 km and width of 67 km within the corner of the339

LLSVP. The rate of change in height in Figure 7 demonstrates that a brief340

initial period of gravitational drainage of the ULVZ is followed by a brief341

period of uplift, eventually reaching near steady-state around 5Ma.342

3.4. Flow and anisotropy in the ULVZs343

During the coupled flow, the weaker ULVZ absorbs the larger amount344

of deformation. The plot in Figure 8(a) maps the magnitude of the largest345

eigenvalue of the strain-rate tensors within the ULVZ and the LLSVP at the346

steady-state in Figure 4. The warmer colors, corresponding to high strain-347

rate are confined within and around the ULVZ. The strain rate in the interior348

of the LLSVP is relatively uniform and has a substantially lower value. Low349

stress levels associated with such low strain rate will confine deformation in350

diffusion creep regime, preventing the formation of strong anisotropy induced351
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by dislocation creep, explaining the observed lack of anisotropy in the LLSVP352

interior. Strong deformation within and immediately around the ULVZ will353

lead to the development of a strong textural fabric. If partially molten,354

such deformation will lead to wetting of grain boundaries by thin films of355

melt (Daines and Kohlstedt, 1997; Hier-Majumder, 2011; Hier-Majumder356

and Drombosky, 2015). The map in Figure 8(b) Shows the orientation of357

strain-rate ellipses within the ULVZ matrix. Partial melt will segregate in358

films, depicted by the black bars, oriented along the principal axis of shorten-359

ing (Daines and Kohlstedt, 1997; Hier-Majumder, 2011; Hier-Majumder and360

Drombosky, 2015) at angles between 30o and 40o to the CMB. In addition,361

high stress levels within the ULVZ can also cause dislocation motion and362

lattice-preferred orientation in postperovskite crystals.363

4. Assumptions and implications for the lower mantle364

We make two assumptions in our simulations. First, the LLSVP remains365

stationary over the time period of the simulations. LLSVPs are dynamic366

structures and may change shape, coalesce, or break-up over geological time367

scales. Our assumption implies that the timescale for LLSVP migration is368

larger than the rapid stabilization of the ULVZs. In addition, the boundary369

condition of tangential velocity at the LLSVP-mantle interface restricts the370

location of the ULVZ within the physical boundaries of the LLSVPs. Seismic371

observations of sharp and steep boundaries between the LLSVP and the man-372

tle and geodynamic simulations suggest that the flow within the LLSVP is373

likely largely self-contained, prompting our selection of the boundary condi-374

tion at the LLSVP-mantle interface. Isolated observations of ULVZ patches375
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away from the LLSVP (McNamara et al., 2010), however, are difficult to376

explain based on our simulations. To address these issues, future FMBEM377

models incorporating motion of the LLSVPs need to be constructed. Sec-378

ond, we use a Newtonian linear viscosity for the ULVZ and the LLSVP, any379

anisotropy arising from the realignment of melt is not taken into account for380

the simulations. Bearing these assumptions in mind, we discuss the implica-381

tions of our results for the lower mantle dynamics.382

The coupled flow and deformation in the LLSVP-ULVZ system bears383

a number of implications for the Earth’s lowermost mantle. If the ULVZs384

formed from late stage accumulates of a basal magma ocean (Labrosse et al.,385

2007; Nomura et al., 2011), they will act as isolated reservoirs of incompati-386

ble heat producing elements in the lower mantle (Abe, 1997; Boyet and Carl-387

son, 2005). Such fertile ULVZ reservoirs will also stay close to their solidus388

temperature at the CMB (Fiquet et al., 2010), containing small amounts of389

melt, which causes the observed drastic shear wave velocity reduction. As390

deformation within the ULVZ segregates the melt into thin films subparallel391

to the CMB, the ULVZs will likely become strongly anisotropic in elastic392

strength, viscosity, and electrical conductivity. One important outcome of393

formation of anisotropic melt films will be the development of anisotropic394

melt permeability. Two recent models of redistribution of melt within the395

ULVZ demonstrate that shearing from the LLSVPs exert significant influ-396

ence on compaction and localization of melt (Hernlund and Jellinek, 2010;397

Hier-Majumder, 2014). Future work on the effect of anisotropic melt dis-398

tribution within the ULVZ will be crucial in addressing the important issue399

of melt drainage within the ULVZ. Finally, here we explore the commonly400

19



observed association between LLSVP corners and ULVZ patches. But thin,401

undetectable ULVZ layers can exist outside the LLSVPs. ULVZs observed402

outside the LLSVP are likely associated with regions of localized mantle403

upwelling (Jellinek and Manga, 2004).404

In conclusion, our results demonstrate that dense, low-viscosity ULVZs405

stagnate at the corner of LLSVPs remaining chemically unmixed over geolog-406

ically long periods of time. Away from the LLSVP corners, initially distinct407

ULVZ patches can coalesce within a few Ma into flat structures near imme-408

diately above the CMB. During the coupled flow of the surrounding mantle409

and the ULVZ, most of the deformation is partitioned within and around410

the ULVZ, explaining the lack of observed anisotropy in the interior of the411

LLSVP.412
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Appendix A. Linear stability analysis417

In this section, we present the method for building an analytical solution418

to the velocity and pressure fields within the ULVZ and the evolution of419

ULVZ shape subjected to a flow within the surrounding mantle.420

Treating the ULVZ and the mantle as separate entities, we notice that421

mass and momentum is conserved within each of them. The conservation422

of mass is described by equation (1). Since we treat pressure as a primary423

variable in this analysis, we can recast the equation for conservation of mo-424

mentum as,425

−∇pj + µj∇2uj = 0, (A.1)

where superscript j = U for the ULVZ and L for the LLSVP. We can write426

the perturbed velocity field within each entity as uj = ϵ(uj
e + uj

d), where427

ϵ ≪ 1 and the subscripts e and d refer to two linear flows characteristic of428

entrainment and drainage. We build analytical solutions for both of these429

velocity fields separately. Since the overall nature of the flow is linear, su-430

perposition of two different flow fields is justified. This formulation enables431

us to determine the relative importance between drainage and entrainment.432

For the draining flow, we use the Hadamard-Rybczinski solution, for a433

translating flow past a viscous sphere (Leal, 1992, Ch. 5). For the entrain-434

ing flow, we build analytical solutions for velocity and pressure fields using435

solid vector harmonics. The system of solution building using the method436

of solid harmonics is described in a number of previous articles (Drombosky437

and Hier-Majumder, 2015; Hier-Majumder, 2011; Hier-Majumder and Drom-438

bosky, 2015).439

To study the influence of deformation of the ULVZ, it is useful to build440
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the solutions in terms of a dimensionless, constant strain rate tensor Ė. We441

set the origin at the center of the hemispherical ULVZ, such that the position442

vector r describes the distance of a point from the center of the ULVZ. The443

nondimensional velocity and pressures within the ULVZ and the LLSVP are444

then given by445

uU
s = −a1

(
1− r2

)
Ė · r + a2rĖ : rr (A.2)

pUs = a3
λ

2
Ė : rr (A.3)

uL
s = c1Ė · r (A.4)

pLs = c2Ė : rr. (A.5)

In the Cartesian coordinates, we can describe the strain tensor Ė in terms446

the principal strain rates as,447

Ė =

 E1 0

0 −E1

 . (A.6)

The solution for uL
s ensures the conservation of mass within the LLSVP. We448

also rewrite the stress jump condition as,449

λ n̂ · TU
s · n̂− n̂ · TL

s · n̂ = 0, (A.7)

at r = h.450

We determine four of the five unknown constants from mass and momen-451

tum conservation within the ULVZ (equations (1) and (A.1)), momentum452

conservation within the LLSVP (equation (A.1)) and continuity of normal453

traction across the ULVZ-mantle interface (equation (A.7)). Then, setting454
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c1 = λ, we obtain the following constants,455

a1 = −1 (A.8)

a2 =
1

2
(A.9)

a3 = −6 (A.10)

c1 = λ (A.11)

c2 = 0. (A.12)

Solution for the axisymmetric Hadamard-Rybczinski flow is given is spher-456

ical polar coordinates (Kim and Karilla, 2005, Ch. 4). For brevity, we only457

provide the solutions for flow internal to the ULVZ, which will be used in the458

next step. This solution is given by,459

uL
d =

[
− 1

2(1 + λ)

( r
h

)2

+
3 + 2λ

2(1 + λ)

]
U cos θ r̂

−
[

1

1 + λ

( r
h

)2

+
3 + 2λ

2(1 + λ)

]
U sin θ θ̂, (A.13)

where r̂ and θ̂ are unit vectors and U is a constant terminal velocity, respec-460

tively. Notice that atop the ULVZ (r = h, θ = 0) this velocity reduces to461

U r̂. The dimensional magnitude of the terminal velocity, U ′, can be modified462

from (Leal, 1992, Eq. 5.45) using our definitions463

U ′ =
2

3

(
1 + λ

2 + 3λ

)
x2
cg∆ρ

µ
. (A.14)

Using the characteristic velocity for nondimensionalization, we can rewrite464

U in terms of the dimensionless compositional Rayleigh number as,465

U =
2

3

(
1 + λ

2 + 3λ

)
R. (A.15)
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The solution for straining flow leads to the following expression for the normal466

component of the velocity atop the ULVZ (r = h, θ = 0)467

uU
s · r̂ =

(
h3

2
− h

)
E1. (A.16)

To determine the change of the ULVZ shape atop, we rewrite equation (8)468

in O(ϵ) as,469

∂f(x, t)

∂t
=

1

h
uU(x) · n̂. (A.17)

Decomposing the total velocity uU in terms of the entraining velocity470

uU
s and the draining velocity uU

d , and using the expressions from equations471

(A.13) and (A.16) for r = h, θ = 0, we can rewrite equation (A.17) as,472

df

dt
=

(
h3

2
− h

)
E1 +

2

3

(
1 + λ

2 + 3λ

)
R. (A.18)

In the main article, we discuss the nature of the above equation in deter-473

mining the regime boundary between entrainment and drainage.474
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Figure 3: Evolution of circular ULVZ reservoirs placed in the LLSVP. The five snapshots

show the evolution of the system between 0 and 12 Ma. The streamlines are colored by

the magnitude of the velocity with light blue corresponding to 1 cm/yr and dark red to 3

cm/yr. The 10% denser and two orders of magnitude weaker ULVZ patches are shaded in

gray. Only half of the symmetric LLSVP flow is shown in the figure.
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Figure 4: Evolution of rectangular ULVZ reservoirs with rounded corners placed in corners

of the LLSVP. The five snapshots show the evolution of the system between 0 and 8.75 Ma.

The streamlines are colored by the magnitude of the velocity with light blue corresponding

to 1 cm/yr and dark red to 2 cm/yr. The ULVZ patches are separated from the LLSVP

by a black outline and shaded in gray. At 8 Ma, the rate of change of ULVZ topography

becomes zero, indicating steady-state.
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Figure 5: Rate of change of the ULVZ height in km/Ma is plotted from the numerical

simulation in Figure 4 in solid line. The dashed line represents no change in height, i.e.

steady state. The derivative is passed through a triangle smoothing filter to reduce noise

in the measurement.
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Figure 6: Evolution of ULVZ reservoirs wedged into the corners of the LLSVP. The five

snapshots show the evolution of the system between 0 and 5 Ma. The streamlines are

colored by the magnitude of the velocity with light blue corresponding to 1 cm/yr and

dark red to 2 cm/yr. The ULVZ patches are separated from the LLSVP by the black outline

and shaded in gray. The last snapshot highlights the streamlines, in green and orange,

completely within the ULVZ indicating a steady state geometry has been achieved.
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Figure 7: Change in height of the ULVZ reservoir as it falls down the wall of the LLSVP

in Figure 6 is plotted in the solid line. The dashed line represents no change in height,

i.e., steady state. The derivative is passed through a triangle smoothing filter to reduce

noise in the measurement.
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Figure 8: (a) Map of the magnitude of the largest principal strain rate within the coupled

ULVZ-LLSVP system. The dotted line outlines the steady-state ULVZ-LLSVP interface

at the end of the series of simulations in Figure 2 of the supplementary material. (b)

Orientation of principal strain ellipses, colored by the magnitude of the largest principal

strain rate. The black bars are oriented parallel to the principal shortening axis, and serve

as a proxy for the orientation of melt films. The rose diagram in the inset depicts the

frequency of angles subtended by the melt films with the CMB.
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1. Methods1

The evolution of ULVZ geometry within a convecting LLSVP is governed2

by a coupled viscous flow between ULVZ reservoirs and the LLSVP. In this3

section, we present the governing equations for the coupled flow, the set-4

up for our numerical experiments, and the methods of post-processing our5

numerical data.6

Consider a collection of dense and low viscosity ULVZ patches embedded7

within a viscous LLSVP. The ULVZs and LLSVP are treated as incompress-8

ible fluids, such that the conservation of mass within each phase leads to9

∇ · u = 0, (1)
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where u is the velocity vector.Conservation of momentum within each ULVZ10

and the LLSVP requires, in the presence of gravitational acceleration,11

∇ · T+ ρg = 0, (2)

where T is the stress tensor of the fluid with density ρ and the vector g12

represents gravity. The stress tensor is related to the fluid velocity through13

the constitutive relation,14

T = −P I+ µ
(
∇u+ (∇u)T

)
(3)

where P is the dynamic pressure of the fluid, µ is the fluid viscosity, and I is15

the identity matrix.16

We solve the governing PDEs (1) and (2) within each ULVZ and the17

LLSVP supplemented with boundary conditions to solve for the unknown18

velocity and dynamic pressure. First, we impose the no-slip boundary con-19

dition at the LLSVP-ULVZ interfaces (Kim and Karilla, 2005; Leal, 1992;20

Pozrikidis, 2001), such that21

u(−) |Γp= u(+) |Γp , (4)

where u(−) is the velocity inside the p-th ULVZ and u(+) is the velocity in22

the LLSVP. The interface between the p-th ULVZ and the LLSVP is denoted23

Γp.24

We fix the geometry of the LLSVP within the larger mantle and pre-25

scribe a driven-cavity flow-like condition on the tangential velocities along26

the LLSVP-mantle boundary. High resolution thermochemical convection27

models indicate that the a tangential, upwelling flow prevails along the outer28

2



edge of the LLSVPs (Garnero et al., 2007). The no-slip boundary condition29

at the LLSVP-mantle is30

u |ΓL
=

 t x1 > 0

−t x1 < 0
, (5)

where t̂ is the counterclockwise tangential vector along the LLSVP-mantle31

boundary, ΓL. Boundary condition (5) preserves the shape of the LLSVP.32

Next, we require the difference in traction across the LLSVP-ULVZ interfaces33

balance with buoyancy forces, leading to the stress jump condition,34

∆T · n̂+∆ρ (x · g) n̂ = 0, (6)

where ∆T is the stress drop across the surface of the ULVZ, ∆ρ is the density35

contrast, and n̂ is the unit normal to the ULVZ-LLSVP interface, pointing36

into the LLSVP (Leal, 1992).37

The density contrast is defined as ∆ρ = ρL − ρU , where ρL is the density38

of the LLSVP and ρU is the density of the ULVZ. Since we prescribe the39

velocity at the LLSVP-mantle boundary, the tractions can be calculated40

from the imposed velocity.41

Finally, we need an additional equation to describe the change in ULVZ42

shape due to deformation. Let F p(x, t) = 0 be the level set that defines43

Γp at time t. To ensure the volume of each grain remains constant during44

deformation of the grain, we use the kinematic equation45

∂F P (x, t)

∂t
+ uP (x, t) ·∇F P (x, t) = 0. (7)

We use the Boundary Elements Method(BEM) is used to solve the PDEs46

(1) and (2). In this method, we transfer the PDEs into a set of Boundary47

3



Integral Equations (BIEs), which are Fredholm integral equations of the sec-48

ond kind. Next we discretize the BIE using the method of collocation and49

numerical integration into a system on linear algebraic equations, which are50

then solved numerically. The numerical model in this article builds on a51

previous group of work on multiparticle flow simulations applied to quan-52

tifying the microstructure of partially molten aggregates (Drombosky and53

Hier-Majumder, 2015; Hier-Majumder, 2008; Hier-Majumder and Abbott,54

2010; Hier-Majumder and Drombosky, 2015). We refer the interested reader55

to these articles for a description of this method and Pozrikidis (2001) for an56

overview of multiparticle simulations in the boundary elements method.57

The dimensionless BIE for P ULVZ patches embedded in a LLSVP relates58

the velocity u(x) at point x0 on the surface of the q-th ULVZ patch by:59

u(x0) =
2

1+λq

[
−
∑P+1

p=1
Rp

4π

∫
Γp

J(x,x0) ·∆f(x) dΓp

+
∑P+1

p=1
1−λp

4π

∫
Γp

u(x) ·K(x,x0) · n̂(x) dΓp

]
, (8)

where the point x0, on the q-th ULVZ surface, is called the pole point60

while the point x located on the p-th ULVZ surface is called the field point61

(Pozrikidis, 2001). To keep the notation compact, we define ΓP+1 ≡ ΓL with62

the normal vector pointing from the LLSVP into the mantle. The two inte-63

grals on the right hand side of equation (8) is referred to as the single-layer64

and double-layer integrals, respectively. When x0 is on the boundary be-65

tween an ULVZ and LLSVP, the dimensionless parameter, λp = µU/µL, is66

the viscosity ratio between the ULVZ and LLSVP, otherwise λP+1 = 0.67

Both integrands on the right hand side of equation (8) contain tenso-68

rial kernel functions. The tensors J(x,x0) and K(x,x0) correspond to the69

velocity and stress components of the fundamental solution to the Stokes70
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flow PDE (Kim and Karilla, 2005; Ladyzhenskaya, 1963; Pozrikidis, 2001).71

For the present two-dimensional analysis, the second rank Stokeslet tensor is72

given by73

J(x,x0) = − ln r I+
x̂x̂

r2
, (9)

where x̂ = x− x0 and r = |x̂|. The third rank tensor K(x,x0) is known as74

the Stresslet and is given by75

K(x,x0) = −4
x̂x̂x̂

r4
. (10)

In the definitions above, we use the dyadic notation (Malvern, 1969) to in-76

dicate the outer product between two or more vectors.77

The interfacial stress jump ∆f(x) in the single-layer integral arises from78

the fact that density contrast between the ULVZ and the LLSVP is balanced79

by the difference in normal traction across the interface, and is defined by80

∆f(x) = ∆ρ (x · g) n̂. (11)

The dimensionless compositional Rayleigh number, Rp, represents the81

ratio between buoyancy and viscous forces at the LLSVP-ULVZ interface.82

The compositional Rayleigh number can be expressed in terms of the density83

difference ∆ρp, gravitational acceleration g, characteristic length xc, charac-84

teristic velocity uc, and viscosity µL as85

Rp =
∆ρpgx

2
c

ucµL

. (12)

We set RP+1 = 0, eliminating the generation of forces along the LLSVP-86

mantle boundary.87

The viscosity ratios and compositional Rayleigh numbers are the param-88

eters that control the evolution of ULVZ shapes for the imposed velocity89
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at the LLSVP-mantle boundary. At each time step, we solve the BIE (8)90

numerically to obtain the velocities at the boundary nodes of each grain.91

Next, we update the shape of each grain using equation (7). The geometric92

parameters from the new ULVZ shape are then used to solve the BIE for the93

next time step.94

To visualize the coupled flow in the ULVZ interior and the LLSVP, we95

need to construct streamlines from the velocity vectors. Once the velocities96

along the boundaries are known, the velocity at a point x0 located in the97

LLSVP is computed by98

u(x0) = −
∑P+1

p=1
Rp

4π

∫
Γp

J(x,x0) ·∆f(x) dΓp

+
∑P+1

p=1
1−λp

4π

∫
Γp

u(x) ·K(x,x0) · n̂(x) dΓp. (13)

Notice that in contrast to the BIE (8), the velocity u(x) in the integrands in99

the boundary integrals are now known. Thus, by choosing the location x0 at100

various points within the LLSVP and repeating the calculation in equation101

(13), we can generate the representation of the flow field within the LLSVP.102

Similarly, the velocity at a point x0 within the q-th ULVZ is given by,103

u(x0) = −
∑P+1

p=1
Rp

4πλq

∫
ΓP

J(x,x0) ·∆f(x) dΓp

+
∑P+1

p=1
1−λp

4πλq

∫
Γp

u(x) ·K(x,x0) · n̂(x) dΓp. (14)

Since all quantities on the right hand side of equation (14) are known, we104

can calculate the velocity within each ULVZ by repeating the calculation for105

different locations x0 in the interior of the ULVZ. We continue the process106

for other ULVZs to compute the velocity field for a representative section107

of the problem domain. We visualize the velocity streamlines and derived108

strain tensors using the software Paraview.109
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As described above, we use the method of collocation to discretize the110

BIE in (8). For the p-th interface, Np pole nodes are placed on the boundary111

Γp. We adaptively space the pole points according to δ ∝ κ
2
3 (Dritschel,112

1989). The segments between two poles on the boundary is referred to as113

a boundary element. We approximate the position within each boundary114

element by cubic spline interpolation (Press et al., 1992). The stress jump115

∆f(x) and velocity u(x) along the boundary are interpolated piece wise116

linearly over each boundary element.117

The system of linear algebraic equations arising from discretization of (8)118

is dense and generally asymmetric. Direct methods of solving this dense sys-119

tem of equations requireO(N3) time andO(N2) storage, whereN is the num-120

ber of degrees of freedom. Following the methods outlined in (Drombosky121

and Hier-Majumder, 2015) and Hier-Majumder and Drombosky (2015), we122

use the Fast Multipole Expansion (FMM) to approximate the kernels in123

the integrands. The FMM uses series expansions to approximate the dense124

matrix-vector multiplications (Appel, 1985; Barnes and Hut, 1986; Board125

and Schulten, 2000). The series expansions separate the pole point from the126

integrals over the field points, removing the requirement of a unique evalu-127

ation for every combination of pole point and boundary element. The end128

result is an approximate matrix-vector multiplication that takes O(N) time129

and space compared to O(N2) time and space required by direct BEM. The130

accelerated multiplication, in conjunction with iterative methods such as the131

GMRES (Saad, 2003), solves the linear system of equations in (15) in O(N)132

time.133
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The resulting linear system is rewritten in matrix notation as134 [(
1 + λ

2

)
I−

(
1− λ

4π

)
K
]
u = −R

4π
J∆f , (15)

where J andK are the matrices generated from the kernels of the single- and135

double-layer integrals, respectively. The vectors u and ∆f are the velocities136

and interfacial stress jumps along the boundary, respectively.137

2. Neutrally buoyant ULVZs138

To contrast the evolution of a dense ULVZ patch, we carried out a similar139

simulation with a neutrally buoyant ULVZ patch. The series of simulations140

in Figure 1 demonstrates that the neutrally buoyant ULVZs are easily en-141

trained by the ambient flow and stretched along the edge of the LLSVP,142

similar to previously observed behavior of neutrally buoyant, low viscosity143

blobs embedded in a circulating mantle (Manga, 1996). This set of simula-144

tions suggest that low-viscosity, neutrally buoyant ULVZs will be well-mixed145

within the LLSVP matrix over geological time. The high density of the UL-146

VZs, resulting from anomalous chemical composition, allows them to remain147

distinct and act as untapped geochemical reservoirs.148
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